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JKO estimates in linear and non-linear Fokker-Planck
equations, and Keller-Segel: L? and Sobolev bounds

Simone Di Marino and Filippo Santambrogio

Abstract. We analyze some parabolic PDEs with different drift terms which are gradient flows in
the Wasserstein space and consider the corresponding discrete-in-time JKO scheme. We prove with
optimal transport techniques how to control the L? and L°° norms of the iterated solutions in terms
of the previous norms, essentially recovering well-known results obtained on the continuous-in-time
equations. Then we pass to higher-order results, and in particular to some specific BV and Sobolev
estimates, where the JKO scheme together with the so-called “five gradients inequality” allows us to
recover some estimates that can be deduced from the Bakry—Emery theory for diffusion operators,
but also to obtain some novel ones, in particular for the Keller—Segel chemotaxis model.

1. Short introduction

The goal of this paper is to present some estimates on evolution PDEs in the space of
probability densities which share two important features: they include a linear diffusion
term, and they are gradient flows in the Wasserstein space W,. These PDEs will be of the
form

dep—Ap—V - (pVulp]) =0,

complemented with no-flux boundary conditions and an initial condition on py.

We will in particular concentrate on the Fokker—Planck case, where u[p] = V and V is
a fixed function (with possible regularity assumptions) independent of p, on the case where
u[p] = W x p is obtained by convolution and models interaction between particles, and on
the parabolic—elliptic Keller—Segel case where u[p] is related to p via an elliptic equation.
This last case models the evolution of a biological population p subject to diffusion but
attracted by the concentration of a chemo-attractant produced by the population itself,
so that its distribution is ruled by a PDE where the density p appears as a source term.
In a certain regime (when the production rate is supposed to be much faster than the
motion of the cells), its distribution is ruled by a static PDE, and gives rise to a parabolic—
elliptic system which is a gradient flow in the variable p. The parabolic—parabolic case
(see [11]), where the timescale for the cells and for the nutrient are comparable, is also
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a gradient flow, in the product space W, x L2, but we will not consider this case. Since
we concentrate on the case of bounded domains (supposed to be convex for technical
reasons), in the Keller—Segel case the term u[p] cannot be expressed as a convolution and
requires ad hoc computations.

Throughout the paper, the estimates will be studied on a time-discretized version of
these PDEs, consisting of the so-called JKO (Jordan—Kinderlehrer—Otto) scheme, based
on iterated optimization problems involving the Wasserstein distance W,. We will first
present zero-order estimates, on the L? and L® norms of the solution. This is just a
translation into the JKO language of well-known properties of these equations. The main
goal of this part is hence to popularize the techniques which allow us to handle these
estimates at a discrete level. Then we will turn to first-order estimates, i.e. on the gradient
of the solutions. This includes in particular estimates on the BV norm of the solution
p and WP like estimates (in particular, the quantity that we will consider is related to
0"/ || w1.0). We point out that a first result in this direction (estimates on the gradient for
the JKO scheme) can be found in Lee [25], where the Lipschitz constant of the solution
is bounded for the JKO scheme corresponding to a Fokker—Planck equation. The same
result, presented in [25] in the periodic case, has recently been extended to the case of
convex domains in [16]. However, the technique and the result in this paper are quite
different than those in [16,25].

The estimates we present are non-trivial and seem novel at least in the Keller—Segel
case. In the Fokker—Planck case they correspond to a suitable integral version of the well-
known Bakry—Emery estimate |V(P; f)| < P;(|V f|) for drift-diffusion operators P; (see
[3]). The interest in this case is to obtain them at a discrete level, on the JKO scheme. Note
that, as the Bakry—Emery analogy suggests, these estimates should certainly be obtainable
at a continuous level as well, but the computations are not at all easy (and most likely there
is some term in the estimates which cannot easily be seen to have a sign, while the discrete-
in-time approach allows us to handle it without difficulties). This is an extra reason to also
study the zero-order estimate at a discrete level, since some of these first-order estimates
require us to use the corresponding zero-order ones.

We insist on the interest of studying these estimates at a discrete level, which can
be both theoretical and numerical. From the theoretical point of view, these estimates
can pave the way to similar ones for less classical equations, and lead to new existence
and regularity results. Moreover, the discrete setting can be useful for some classes of
results such as functional inequalities obtained by studying the asymptotic behavior of a
flow, as in the Bakry—Emery theory: discrete versions of the relevant inequalities could
be used when the existence of a continuous-in-time flow is non-trivial, while the JKO
scheme always admits solutions. Regarding numerical schemes, many of them have now
been developed using the JKO approach: these estimates can justify their convergence
regarding the discretization both in time and in space, since it is classical in numerical
analysis to obtain a quantified order of convergence according to a priori knowledge of
the smoothness of the true solution. Finally, certain estimates that we present could also
be turned into bounds on the optimal displacement in the transport problem appearing in
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each JKO step, and could help in reducing the complexity of some linear programming
algorithms required to find the optimizers.

The JKO scheme provides, for a fixed time step T > 0, a sequence (pj,),, where each
Pr41 optimizes a functional depending on py;. All the estimates that we provide are of
the following form: a norm, or a quantity comparable to a norm, computed at p; | can
be bounded in terms of the same expression computed at p;. Of course, we only want
estimates which can be iterated (i.e. the possible increase passing from pj; to p; , ; should
be of the order of 7) and which do not explode when t — 0. When the same quantity
is really decreasing along iterations — in particular if exponential decreasing behavior is
obtained — this can be used to study the asymptotic behavior of the solution p; of the PDE
ast — oo. When there is no decreasing behavior, but the increase is controlled, this can be
used to justify local-in-time bounds which can provide compactness (to be used either for
the convergence of numerical schemes or for other stability results, when data are varying,
for instance).

The paper and the results are organized as follows. After this introduction, in Sec-
tion 2 we present the background that we need for the JKO scheme for gradient flows in
the Wasserstein space, including some useful tools such as displacement convexity and
the five-gradients inequality, together with general facts on optimal transportation and
some details on the functionals that we will use. Section 3 presents the main estimates
on the L? and L°° norms of the solution of one step of the JKO scheme in the case
where the functional is either a potential energy p > [ V dp or an interaction energy p —
% [ W(x —y)dp(x) dp(y). In particular, we prove iterable bounds on the L? norm, for
p < oo, when V or W are Lipschitz, as well as better bounds (which include an L*°
estimate and an L? estimate which can be used in the limit p — oo and also provide an
exponential L° bound) in the case of the potential energy under a second-order condition
on V. As far as the L® norm is concerned, we also provide a uniform bound stating
that the maximal value of pe" is decreasing in time under essentially no assumption
on V, together with an adaptation for the interaction case, when W is Lipschitz con-
tinuous. These results are summarized in Proposition 3.8. Section 4 concentrates, then,
on the Keller—Segel case, and reproduces, in this discretized JKO setting, a well-known
two-dimensional result (based on [15] and [20]) which states that the L? norm and the
L°° norm do not grow too much in time as soon as we are in the subcritical regime, an
assumption which allows us to control the entropy with the total energy itself. This very
technical result is contained in Theorem 4.5. Finally, Section 5 is devoted to higher-order
estimates, which are the core of the paper. The results are expressed in terms of the fol-
lowing quantity: given a convex function H:R¢ — R, we consider [ H(Z,) dp, where

\Y
Zy = 7’0 + Vulp].

When H(z) = |z|? and Vu[p] is bounded, this quantity (usually denoted by J(,)(p)) is
comparable to [ |Vp|?p'~? dx, which can be related by simple algebraic computations
to the W12 norm of p'/?. On these quantities we prove iterable bounds in the case of
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the potential energy when V is semiconvex (Proposition 5.4); it is also useful to consider
convex functions H other than only powers, which can provide Lipschitz bounds and
W L1 regularity. A variant of this result exists for interaction energies, possibly combined
with potential energies (Proposition 5.7, where we assume semiconvexity of ¥ and C 1!
regularity for ). The results for the potential and interaction cases are contained in the
Section 5.1, while the Section 5.2 is devoted to the Keller—Segel case. In this case, the
lack of semiconcavity for u[p], which is only defined as a solution of an elliptic PDE
involving p, prevents us from having easy estimates on the error terms, and a different
technique is required to bound them: finally, we obtain an iterable estimate on J(,)(p)
only for p < 2, and under the extra assumption that p is bounded in an L” space, with
r = (4 — p)/(2 — p) depending on p and exploding as p — 2. This explains the interest
of the zero-order estimates at the JKO level for Keller—Segel, which can indeed guarantee
such an L” assumption.

2. Preliminaries on the JKO scheme

We refer to [2,30,31] for the whole theory about gradient flows in the Wasserstein space
which justifies the few facts that we list below.

Throughout the sequel, € will be a compact convex subset of R? with non-empty
interior. The compactness of the domain allows us to obtain weak compactness for the set
of probability measures on it, and the convexity allows us to handle all boundary terms
appearing in the estimates that we will present. We note here that some of the results hold
true also in a more general setting, but for the sake of simplicity we will always keep such
an assumption implicitly on 2. Moreover, with a slight abuse of notation, we will use
the same letters for the probability measure and its density with respect to the Lebesgue
measure.

Whenever a functional ¥ : P (2) — R U {400} is given, we fix a time step 7 > 0 and
a measure 11 € £ (£2), and consider the following minimization problem:

s (e W2 (p,
min{ (o) + Woon . h e P(@)), 2.1)

where W, is the 2-Wasserstein distance (see [2, 30, 32]). Before going on with the discus-
sion, let us recall a few important facts about optimal transport and the W, distance.

If two probabilities u, v € #(2) are given on a compact domain, the Monge—
Kantorovich problem reads

inf{[ lx —TX)Pdu:T:Q — Q, Typ = v}.

This problem, introduced by Monge [28], was reformulated by Kantorovich [22] in the
following convex form:

inf{/ lx —yP2dy :y € P(L X Q), (mx)sy = 1, (7my)uy = v}.
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The square root of the optimal value above defines a distance on the set of probability
measures on a given compact space (in the case of non-compactness a condition on the
second moments has to be added) which, by the way, metrizes the weak convergence of
probabilities (again, under the assumption that € is compact; note that we call “weak
convergence” the convergence of probability measures in duality with continuous and
bounded functions; on compact spaces, this is the weak-* convergence in the dual of C?).
Kantorovich also provided a dual formulation for the above minimization problem, that
we can state, for simplicity, using the cost function |x — y|?/2:

1 1
32 =sopf [gau+ [wav o+ v < Jlx -y},

It is possible to prove the existence of an optimal y and of an optimal pair (¢, ), and,
as soon as u is absolutely continuous, there also exists an optimal transport map 7" (and
the optimal y will be a measure on €2 x 2 concentrated on the graph of such a map 7).
Moreover, the optimal ¢, called the Kantorovich potential, is Lipschitz continuous, and
is connected to the optimal 7 via T'(x) = x — Vo(x) (we can also write T = Vu with
u(x) = |x|?/2 — ¢(x), and u is a convex function, which is the result of the celebrated
Brenier theorem [8,9]).

Using these tools from optimal transport theory, if € is compact and ¥ is L.s.c. (lower
semicontinuous) for the weak convergence of probability measures, then problem (2.1)
admits a solution. We will denote the set of solutions as Prox%- (1), mimicking the notation
for the proximal operator which is used in hilbertian settings. In some cases (in particular if
F is strictly convex) this proximal operator is single valued (i.e. the minimizer is unique),
but this will not be crucial in our analysis.

The JKO scheme (introduced in [21]) consists in iterating the above minimization
problem, i.e. starting from pg and, for fixed v > 0, defining a sequence (pj,), satisfying

Po = P0s  Prt1 € Proxz(py). (2.2)

The above sequence can be used to define a curve of measures p(¢) for ¢t € [0, T'], with
pt(nt) = p}, (for instance by piecewise constant interpolation). Under suitable conditions
on ¥ it can be proven that the curves p° uniformly converge (as curves valued in the
Wasserstein space) to a continuous curve p which is a solution of the PDE

9,p—V- (,OV%) —0

(complemented with no-flux boundary conditions and the initial condition pg), where %

is the first variation of the functional ¥ (see [30, Chapter 7]).
In this paper we will always consider the case where ¥ = & + ¢, where

[plogpdx ifp < £9,

+00 otherwise,

8(p)={
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is the entropy functional. For the functional ¢, we will often write u[p] = §§/5p and we
will consider three cases:

The Fokker—Planck case §(p) = [V dp, for a fixed function V: Q2 — R acting as a
potential, in which case we have u[p] = V. This case will be called the Fokker—Planck
case.

The interaction case §(p) = % [ W(x — y) dp(x) dp(y), for an even function
W:R? — R, in which case we have u[p] = W x p. This case will be called the inter-
action case; it can be mixed with the previous one by considering u[p] =V + W * p,
if explicitly indicated.

Finally, the Keller—Segel case is a particular case arising from mathematical biology:
for y > 0 a given constant take

50 =% / Vhlp)? dx = % / hlpl dp. 23)

where /i [p] is the only solution of

—Ah=p inQ,
h=0 on 0$2.

Note the negative sign before the integral in the definition of §. It is not difficult to

check that we have
13
55 = xhlel
0

Indeed, h[p + £8p] = h[p] + eh[Sp] and
S(p+ e8p) = G(p) — 61 / Vhlo] - Vh[3p] dx + O()
= 5(0) +ex / hp]Ah[Sp] dx + O(E),

which allows us to conclude using Ah[§p] = —8p. This case will be called the Keller—
Segel case and is motivated by chemotaxis modeling (see [18,23] for a description of
the model). In dimension d = 2, it is well known that this model is well posed and that
there is existence (both for the minimization problems in the JKO scheme and for the
continuous-in-time PDE, with global-in-time existence) as soon as y < 8. This is due
to a crucial inequality which states that we can bound & (p) in terms of &(p) + §(p)
(the problem being that § is in general not bounded from below, but & 4 § is bounded
from below on probability measures as soon as y < 8 : this implies

€(p) <A+ B(&(p) +9(p)

with B = 87 /(8 — y)). For a mathematical analysis of the Keller—Segel PDE and of
the corresponding JKO scheme, we refer to [4-6, 10, 12] and to [29, Chapter 5].
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The reader may need to be convinced of the bound from below of & (p) + §(p) when
x < 8m in dimension 2, if we are on a bounded domain and /[p] is defined with Dirichlet
boundary conditions on d2. This can be seen by observing the following facts. The log-
arithmic Hardy—Littlewood—Sobolev inequality provides a uniform bound from below on
[ plogpdx —4x [ h[p] dp, where h[p](x) := —(2m)~" [, log(|x — y|) dp(y). Noting
that we have —Ah[p] = p and h[p] + log(R)/(27) > 0 on Q2 (where R is the diameter
of ), we deduce h[p] < h[p] + log(R)/(27) (since h[p] + log(R)/(27) — h[p] is har-
monic and non-negative on the boundary). Hence, for y < 87 we have &(p) + 9(p) =
[ plogpdx — 4 [ hlpldp > [ plogpdx —4x [ hlp]dp —2log R and this provides the
desired bound from below.

A useful tool, introduced in [14] and already used in the framework of the JKO scheme
in the same paper in order to obtain BV estimates is the so-called five-gradients inequality
(note that this name is not present in [14], but the inequality was popularized under this
name later on). This inequality states the following:

Lemma 2.1. Ler @ C R? be bounded and convex, p,n € WYY (Q) be two probability
densities, and H € CY(R?) be a radially symmetric convex function. Then the following
inequality holds:

/ (Vp-VH(Vg) + V- VH(VY))dx > 0, (2.4)
Q

where ¢ and \ are the corresponding Kantorovich potentials.

Note that the above result is first proven for H € C? (second derivatives are used in the
proof) and then, by approximation, it stays true for H € C!; the same approximation can
also be applied to the quite common case H € C1(R? \ {0}), setting V H(0) := 0 (which
is coherent with the fact that H is radial), and the result stays true. In particular, we will
sometimes apply this to H(z) = |z|. For the sake of completeness we sketch a proof in the
smooth case: after an integration by parts, noting that the boundary terms have the correct
sign thanks to the convexity of €2, we end up having

~ [ (%p: VH(V9) + Vo VH(VY) dx
< /Q D2*H(Vg)-D*pdp + /Q D2H(Vy)- D>y dp
- /Q (D*H(Vg)-D*¢ + D*H(VY) - D*y) dy
_ [92 D2>H(Vo(x)) - (D?¢(x) + D>y (x)) dy <0,
where we used y, the optimal plan between p and 7. In the last line we used that on the

support of y we have Vo(x) = x — y = —V(y) (first-order condition) and D2?¢(x) +
D2y (y) < 0 (second-order condition).
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Another useful notion in the study of gradient flow is that of displacement convexity,
introduced by McCann in [27]. It corresponds to the convexity of a functional along the
geodesics of the metric space (P (£2), Wa).

Definition 2.2. Let #: P(2) — R U {400} be a functional defined on probability mea-
sures on a compact convex domain 2. We say that J is displacement convex if for every
pair of measures p, n € P (£2) there exists a curve p; which is geodesic for the W, distance,
which connects p and v (i.e. pg = p, p1 = v) and such that # (p;) < (1 —1)H (p) +tH (v).

We recall that, whenever p is absolutely continuous, the geodesic curve between p and

v is unique and is given by
pr = (id —1V)yp,

where ¢ is the Kantorovich potential between p and v for the cost ¢(x, y) = %|x -y~
Indeed, id — t Vg is the convex interpolation between the identity map and the optimal
transport map 7' = id — V.

In [27], McCann provided the condition for the displacement convexity of functionals
of the form J (p) := [ F(p(x)) dx.

Definition 2.3. Let F' be a convex increasing function on [0, +00) such that F(0) = 0.
Then we say that F satisfies the d-McCann condition if s > F (Sld)sd is convex and
decreasing.

Note that s — F (Sid)sd being convex and decreasing is enough to guarantee that F'
itself is convex.

The main result of [27] is indeed the fact that, if F satisfies the d -McCann condition,
then the functional #, defined via ¥ (p) := [ F(p(x)) dx, is displacement convex in
dimension d. In particular, this applies to F(s) = s%, g > 1, and to F(s) = slogs (hence
to H = E).

In [2] the general theory for gradient flows in a metric space is presented, and the
assumption of geodesic convexity is crucial, in particular for uniqueness and stability.
Here we do not insist on this aspect (by the way, the functional § in the Keller—Segel case
is in general not displacement convex), but we are interested in another property related
to displacement convexity. As was first observed in [26], estimates can be provided on
H(py 1 1) interms of F(py) when J is displacement convex, even when the gradient flow
that we are considering is the gradient flow of another functional ¥ (in the case ¥ = ¥,
the inequality # (o, ) < #(py) is trivial). The key point is to use the following general
estimate.

Lemma 2.4. Let us consider two absolutely continuous measures p,n € F(2), and a
convex function F, such that F(0) = 0, satisfying the d -McCann condition. Suppose that
the density of p is Lipschitz continuous, and that Q is convex. Then, denoting by ¢ the
Kantorovich potential in the transport from p to n, we have

/ Fp)dx = / F(p)dx — [ PY(F'(p)) - Vo dx. 25)
Q Q Q
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Proof. Using the displacement convexity of #, we have

d
H(n) — H(p) = H(p1) — H(po) = E%(pt”t:m
where (p;); is the geodesic interpolation between n = p; and p = pg. We just need to
prove that we have

d
E%mmﬂz—/pWP@»qu. 2.6)
Q

A formal computation gives

d
EW@0=/VWWM=/VWWMWMM @7

where v, is the velocity field of the geodesic curve (p;)s, solving d;p; + V - (psv;) = 0.
The equality vg = —V¢ provides the result.

The reader should be aware that this argument is only formal because of a lack of
regularity. Yet everything could be justified by a precise computation of the density of
the measure p;. This is classical but technically delicate, and it is done, for instance,
in [7, Appendix A2]. In particular, the possible presence of singular parts in the second
derivatives of ¢ justifies the inequality in (2.6), instead of the equality we found using
@.7). [

This can then provide estimates on ¥ (p) once we suppose p € Prox% (1) and use the
optimality condition in the optimization problem solved by p, which is of the form
F
¢ + — = conston {p > 0},
T 6
(see [30, Chapter 7] for precise statements and justifications on these optimality condi-
tions). The consequence in the case ¥ = & + ¥§ is presented in the next section.

3. Warm-up: L? and L* estimates for Fokker-Planck and
interaction equations

In this section we present various computations leading to L? estimates (including p =
oo) for the simplest case that we consider, i.e. the linear Fokker—Planck case with §(p) =
J V dp. We will then adapt them to the case where the first variation u[p] depends on p
(while for the Fokker—Planck case we do have u[p] = V for every p) but in a very simple
way, by convolution.

We start from the following result.
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Proposition 3.1. Let us consider an absolutely continuous measure n € P (2) and F €
C([0, 00)) N C2((0, 00)) a convex function satisfying the d-McCann condition. Let §:
P (§2) — R be a given functional, p € Proxg , o (1), and u[p] := 6§ /Sp. Suppose that u[p]
is Lipschitz continuous. Then p is also Lipschitz continuous, and bounded from below by
a positive constant, and, if 2 is convex, we have

| Fax= [ F@rax s [ (F7OIT6P +pF @95 Vuls)). D)
Q Q Q

Proof. This estimate is a combination of the one in Lemma 2.4 with the optimality con-
ditions characterizing p. Indeed, we have (see [30, Chapter 8] and adapt the computations
which are presented there just in the case u[p] = V)

\Y \Y
log p + u[p] + ¢ _ const, hence ML + Vulp] + 1 _ 0,
T 0 T

these equalities being true a.e. on €2 since we have p > 0 a.e. (for this, see the proof in
[30, Chapter 8]). As a consequence, log p is Lipschitz continuous, and we can apply the
result of Lemma 2.4, replacing Vo with —t(Vu[p] — Vp/p). L]

Let us analyze first the purely linear Fokker—Planck case, i.e. the case where u[p] = V
does not depend on p, and let us concentrate on L? estimates.

Proposition 3.2. Let n € LP(Q), with p < oo, be a probability measure and §: P (2) —
R be defined via §(p) := [V dp for a given Lipschitz function V:Q — R. Take p €
Proxg 1g (n): then p is Lipschitz continuous and bounded from below by a positive con-
stant, and

* denoting by Lip(V') the Lipschitz constant of V, we have

—1
[np dx > (l—rM Lip(V)2>/pp dx;
4
e fAV <AinQandVV -n > 0on 022, then
/npdxz(l—r(p—l)A)/ppdx.

If moreover n € L°°(2) we have

A\d
lelloo < Il (1 4+ 7).

Proof. The estimates on the L? norm are consequences of the estimate in Proposition 3.1,
applied to F(s) = s?. In this case we obtain

/npdxz/ppdx+rp(p—l)(/ pp_2|Vp|2+p"_1Vp-Vde).
Q Q Q
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For the first estimate, we apply Young’s inequality which gives

1
/pHVp- (PVV)dx > —/pf’—zwmz - Z/pf’wwzdx,

which proves the claim.
For the second, we ignore the positive term [q, p? ~2|Vp|? and we rewrite the remain-
ing terms as

rp(p—l)/ PPV - VV dx =r(p—1)/ V(p?)-VVdx
Q Q

and we integrate by parts, using our assumptions on V.

The last statement, about the L norm, can be proven differently, following the same
strategy as in [30, Proposition 7.32]. The adaptations to be performed in the proof are
the following: instead of a minimum point of ¢ we take a minimum point for ¢ + 7V
we first use det(/ — D%¢) < (1 — Ap/d)?, which is a consequence of the geometric—
arithmetic mean inequality, and then —A¢ < tAV < tA. The assumption on dV/dn is
needed to handle a possible maximizer on the boundary. This statement can first be proven
for V' € C? and then by approximation, for a less regular V, where the assumptions on
the Laplacian and on the sign of the normal derivative should be interpreted as a condition
on the distributional divergence of the vector field VV, extended as 0 outside €2. ]

Remark 3.3. We observe that, in the continuous-time limit of the JKO scheme, the second
estimate would give [ ol dx < elp—DAt / pp dx. It is then possible to raise to the power
1/ p, take the limit p — oo, and obtain || p;||ec < €4?||P0]l0o. Unfortunately, this cannot be
done in discrete time since if we first send p — oo for fixed v > 0, the coefficient on the
right-hand side in front of | p? can become negative. This is why we presented a different
technique for the L°° estimate, but we can notice that, asymptotically as t — 0, the two
results coincide.

Also, we observe that the first estimate is not suitable for a limit p — oo, as the

coefficient on the right-hand side is quadratic in p, so that its continuous-in-time version
is [ pf dx < ep(p—l)Lip(V)zt/4fp(l)’ dx.

Proposition 3.4. Let us consider a probability measure n € L°°(2), and let §: P (Q) —
R be defined via §(p) := [V dp for a given bounded function V: — R. Take p €
Proxg , ¢(n); then p is bounded, and satisfies

|4 |4
loe” lloo < lIne” [loo-

Proof. The proof, consisting in looking at the maximum point of pe"’, i.e. of logp + V,
is exactly the same as in [19, Lemma 2.4]. Indeed, [19] concerns the case of a functional

of the form
|—>/ P( ) m(x) dox.,
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but here we can write
= _ P
8(P)+/Vdp—/(p10gp+pV)dx_/F(E)dm’

for F(s) = slogs and m = e~", thus falling into the setting of [19, Lemma 2.4]. |

Remark 3.5. Actually, as is proven in [19], the same bound also holds from below. More-
over, morally this upper bound weighted by e should also work for the L? estimates,
but it would require the geodesic convexity of the L? norm with respect to e~ which
requires V' to be convex (and if V' is only A-convex, it does not work). It is interesting to
see that the assumption is the opposite of the one in Proposition 3.2, where we needed
upper bounds on D2V .

The case where u[p] depends on p, but in a very good way, is easy to handle. Take an
even function W:R? — R and consider

ulp) = W s p. ie 50 = / W dp(x) dp(y).

The first of the two estimates in Proposition 3.2 is easy to adapt, while unfortunately
the other one, based on second-order assumptions but also on the boundary behavior,
cannot be easily translated in terms of W. The same problem occurs for the L°° estimate
of Proposition 3.2. We can therefore state the following:

Proposition 3.6. Let p < oo and n € L?(K2) be a probability measure, and let §: P () —
R be defined via §(p) := %f W(x — y) dp(x) dp(y) for an even Lipschitz function
W:R? — R. Take p € Proxg_ ¢ (n): then p is Lipschitz continuous and bounded from
below by a positive constant, and

/np dx > (1 - r@ Lip(W)z)/Pp dx.

Proof. The proof is identical to that in Proposition 3.2, which does not depend on the fact
that u[p] depends or not upon p, but only on its Lipschitz bounds. Hence, we just have to
observe that we have Lip(W = p) < Lip(W). |

On the other hand, it is easier to extend the estimate in Proposition 3.4, but this requires
an adaptation if one wants to iterate it.

Proposition 3.7. Let n € L°°(2) be a probability measure and §: P (2) — R be defined
via §(p) := %f W(x — y)dp(x) dp(y) for an even Lipschitz function W:R? — R. Take
p € Proxg_ o(n): then p is Lipschitz continuous and bounded from below by a positive
constant, and

lpe" oo < 7€ oo

This implies in particular the (more useful) estimate

||pe"[p] ||ooe€(p)+§(p) <l ne”["] ||ooeg(fl)ﬁ-g(n)eTLip(W)z/%
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Proof. The estimate || pe?)||o, < ||7e*P]|| o, can be trivially obtained in the same way as
in the case where u[p] = V does not depend on p. Then we observe that we have

ulp] < un] + W * (p —n)lloo < uln] + Lip(W)Wi(p, n).

‘We then use

. . T W3 (o, 1)
Lip(W)Wi(p,n) < Lip(W)Wa(p. n) = 5 Lip(W)? + = ——
T 3 [rod T
< Lip(W)? + () = F (p),
where ¥ = & + §. This provides the claimed result. |

We can now deduce, from the various estimates of this section, the following bounds,
whose proofs are just combinations of the arguments above.

Proposition 3.8. Suppose py € LP(2) is a probability measure. Let us consider the
sequence p;, defined via the JKO scheme as in (2.2), where ¥ = & 4 §; we will denote
by p; the piecewise constant interpolation of p,; = py,.

In the Fokker—Planck case §(p) = [V dp, we have the following:

* if p < 4ooandV is Lipschitz continuous, then the norm ||p; ||, grows at most expo-
nentially in time;

* ifpe[l,+o0]isarbitrary and V is such that AV is bounded from above and VV -n >
0 on 0, then | p; ||, grows at most exponentially in time.

o if p=o0andV is bounded, then the norm ||pse" ||oo is non-increasing in time.

In the case of the interaction functional §(p) = % J W(x —y)dp(x)dp(y), we have the
following:

* if p < +o0oand W is Lipschitz continuous, then the norm | p;||p, grows at most expo-
nentially in time;

* if p = oo and W is Lipschitz continuous, then the quantity

€™ " [oge ™0
grows at most exponentially in time, and in particular the same is true for the norm
ll0¢ [l oo-
4. L? and L estimates for the Keller-Segel case

Proposition 4.1. For every p > 1 and K > 0 the function Fp g (s) = (s¥ — KS%)J,_ is
convex and satisfies the d-McCann condition.
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Proof. Itis clear that F), g is convex and increasing. It is then sufficient to compute

F, et = (1 K
P’K(s_d)s _<Sd(p—1)_ S)+’

which is clearly convex as it is the positive part of a convex function. ]

Remark 4.2. The goal of Proposition 4.1 is to find a function, satisfying the d-McCann

condition, growing as a power s7, but vanishing before a certain threshold. We could have

considered, instead, the simpler function F,, g (s) = (s — K )‘j_. However, the computations
4d

are messier and the d-McCann condition seems to be true only in the case p > 34T

which explains why we preferred to use Fj, g, for which the condition is satisfied for
any p.

For the study of the Keller—Segel case we will use the following functional §:

X X
50y =4 [ 19 ax = ~% [ 1.
where y > 0 is a given constant and h[p] is the only solution of

—Ah=p inQ,
h=0 on 092.

Note the negative sign before the integral in the definition of §. As we previously did in
Section 2, it is not difficult to check that we have

88
5, = Xl
0

Proposition 4.3. Let us consider an absolutely continuous n € () and F a convex
(but not necessarily smooth) function satisfying the d-McCann condition, and let # (p) =
%fg p? dx with q > d /2. Then, let § > 0 and consider p € Proxg s 3, ¢(1); we have

/ Fnydx > / F(p)dx — 1y / [0F" (p) — F(p)]p dx
Q Q Q
+r/ IVol? Fe(p) dx, “.1)
Q

where F) is the absolutely continuous part of the derivative of F' and F"" is the right
derivative of F.

Proof. Since p € L? with ¢ > d/2 (this is the main reason for adding the term §# in
this statement, since the condition p € L9 allows us to start the regularity argument on p)
we have that h[p] € W2 is bounded and Holder continuous. Looking at the optimality
condition

logp+68p77" = c— g/t + xh[p].
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we deduce that p is also Holder continuous, and bounded from above and below (in par-
ticular we deduce p € L, but we would not have been able to do so without starting
from p € L9). As a consequence, by elliptic regularity, [p] is a C? function. Then p has
the same regularity as the worst between ¢ and /[p], and in particular p is Lipschitz con-
tinuous. Now let us assume for a while that F is convex and C?2: we start from (3.1) and
replace u[p] with §p9~1 — yh[p]. This provides

| Fax= [ Forax o [ FroIvePax
Q Q Q
+5r/ pF”(p)Vp-V(p"“)dx—xr/ pF"(p)Vp - Vhlp]dx.
Q Q

Noting that s +> sF"(s) is the derivative of s — sF’(s) — F(s), we can integrate the last
term by parts, thus obtaining

/ PF"(0)Vp - Vhipldx = — / (pF'(0) — F(p)) Ah[p] dx
Q Q
4 / (oF'(p) — F(p))Vhip] - vdo
Q

< / (oF'(p) — F(p))p dx.
Q

In the above inequality, do denotes the uniform (d — 1)-measure on the boundary 92 (and
the terms we integrate on the boundary make sense, because of regularity). Moreover, we
used Vh[p] - v < 0 (a consequence of the positivity of h[p] together with its Dirichlet
boundary condition on d2) and pF’(p) — F(p) > 0 (a consequence of the convexity of F
together with F(0) = 0). Using this information, and the positivity of Vp - V(p?~1), we
get

/ Flnydx > / F(p)dx + 1 / F' (VP — x7 / (PF'(p) — F(p))pdx. (42)
Q Q Q Q

Now let us consider any convex function F (also not smooth) and let us approximate
it by smooth convex functions satisfying McCann conditions. In order to do this, instead
of directly approximating F by convolution, we approximate by convolution the function
M given by M(s) = s? F(s~%). We want to define M, to be the convolution of M with a
standard convolution kernel supported on [—¢, €], so that M, is also convex and decreasing.
Yet M could be impossible to extend with finite values on s < 0, so that we will have M, =
400 close to 0. Therefore, before convolving, we also modify M close to 0, replacing M
with its tangent at s = ¢. We then define Fy(s) = s M, (s~'/?) so that F; satisfies McCann
conditions. Note that any function satisfying McCann conditions is automatically convex,
and so is F. Note that the modification that we performed on M only modifies the values
of F,(s) for s > ¢~'/4 which is irrelevant since p only takes bounded values. If we denote
by I an interval, bounded away from 0 and + oo, where p takes its values, we also have
F; — F uniformly on /, as a consequence of the local uniform convergence of M, to M.
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For convex functions this implies convergence of the derivatives: we have F, — F' at
any differentiability point of F (and limsup F, < F”" at every non-differentiability point,
where F”" stands for the right-derivative of F), and F/ — F,/ almost everywhere, where
F!" is the absolutely continuous part of F”. This implies |Vp|>F/(p) — |Vp|>F/(p)
since the convergence holds on a.e. level set of p, and we have |Vp| = 0 a.e. on {x €
Q : p(x) € A}, where A is the set of values on which we do not have the convergence
F/' — F/. Finally, we note that F/(p), F""(p) are bounded since p € I is bounded from
above and from below.
In particular, we can pass to the limit in (4.2) using Fatou’s lemma, thus obtaining

| Fax= [ F@rax+c [ FLoIVeldx - xe [ (oF(9) - Fpppdx,
Q Q Q Q

which proves the claim. ]

The following estimates require d = 2 and y sufficiently small.

Indeed, we first use the following fact, which we mentioned in Section 2: for y < 8w,
if d = 2, the functional ¥ := & + § is bounded from below; hence, if y < 8, then
there exist constants A, B > 0 such that E(p) < A + B(E(p) + F(p)) is true for every
p € P(RQ).

Moreover, another point of the proof where we use d = 2 is an inequality where we
use the BV norm to estimate the L2 norm of a given function, which is a two-dimensional
fact. The precise statement that we need is the following lemma:

Lemma 4.4. Let @ C R? be a bounded connected domain with Lipschitz boundary. Then,
for every number a € (0, |2]) there exists a constant C = C(a, ) such that

|l ]] < C/ |Vul| for everyu € WH1(Q) with |{u = 0}| > a.
Q

_d_
Ld-1
In particular, this applies to convex domains, and in dimension d = 2 provides a bound
on the L? norm in terms of the L' norm of the gradient.

Note that the statement would also be true for BV functions instead of W1, but we
will only apply it to functions which actually belong to a Sobolev space.

Proof. The continuous embedding of W' and BV into L'" with 1* = d/(d — 1) is a
well-known fact for which we refer, for instance, to [1, Corollary 3.49]. This would give
the desired bound, with a constant only depending on €2 but not on a, in terms of the full
BV norm of u, i.e. [ |Vu| + |u|. Hence, we just need to prove a sort of Poincaré inequality
of the form

lullpr < C(a,Q)/ |Vu| forevery u € WH1(Q) with |[{u = 0}| > a.
Q

This can be proven by contradiction. If it is false, for fixed a, we have a sequence of
functions u, satisfying
L= lunllLr =z nl|Vun| 1.
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together with |[{u,, = 0}| > a, which means that we can choose a sequence of functions
Uy € L® with 0 < v, <1, [v, > a, and [ u,v, = 0 (take v, = Iy, for some sets
Apn C {u, = 0}). Then the compact embedding of BV into L' allows us to extract a
converging subsequence such that u, — u in L! and u € BV with ||Du| = 0, i.e. u
is a constant. We write ¥ = o and we have |lu||;1 = 1 and hence o # 0. If we also
extract a weakly-* converging subsequence v, — v in L°, then we have the following
contradiction:  ['v = lim [ u,v, =0buter # 0and [v >a > 0. n

Theorem 4.5. Let n € LP(2) be a probability measure and § be as in (2.3). For every
co > 0 there exists D1 = D1(cg, p) > 0 such that whenever ¥ (n) := &(n) +§(n) < co,
for K > K(co, p) there exists p € Proxg_ ¢(n) with

/QFP,K(,O) dx < /;z Fpx(m)dx + tD;. 4.3)

In particular, p € LP(Q2).

Moreover, let p; as in (2.2) with po := 1, paying attention to selecting the mea-
sures so that the above estimate applies, we have ||pL|l5 < |p5|5 4+ (1 + nt) Dy with
D5 again depending only on co and p. A similar estimate holds for p = 00: ||pn|loo <
(1 4+ n7)C(co. [[polloo)-

P Let us consider # and pg = Pro as in Proposition 4.3. Then we use
roof. u 1 ps = x€+3ﬂ+g(n) p we u

F = F, gk with K = kP~ in (4.1). The conditions on K (or k), which has to be chosen
large enough, will be made precise later.
First, note that we have F, g (s) > 0 if and only if s > k, as well as

0 < pF, " (p) = Fp(p) < ppP oz, (Fy g)ac(p) = p(p — Dp? L pi.

This allows us to write the inequality

/ Fp,K(Vl)dx—/ Fp,K(p(S)d)C > _-L—Xp/ 17+1 dx
¢ Q@ ps>k

+Tp(p—1) \Vosl?of 2 dx, (4.4

ps=k

Consider a constant ¢; = ¢1(£2) such that we have | Du|(£2) > ¢1 ||u|| for every func-
tion u satisfying 2|{|u| > 0}| < |€2| (a constant which exists because of Lemma 4.4). Then,
whenever 2|{p > k}| < Q (note that k > 2|Q2|~! is enough) and p > —1, we have

2
/ pdx / Vo072 dx (/ Vol dx)
p=k p=k p=k
2
e (90 -k ar)

4c
- (p+11)2/( K E)dx,

A%
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Now we can use the inequality (Valid for p > 0)

ptl

(05 —k"T)% p
pp ! < VA= aroreye P22 k.
2kPp if0<p<2YPk.

Using 5 p—'H > 5, we have 1/(1 —2_%’1)2 <(1—=1/+/2)"2 =6 + 4+/2 < 12, and we find
[ pPH dx §2k1’/ pdx + 12/ (0”7 — k"7 )2 dx,
Q Q Q

12/ (0" — k"2 dx z/ PP+ dx — 2kP
Q Q

In particular,

2
Vps|2pl 2 dx > a / P gy —okr ).
/ppk' Pl *= 3(p+ 12 [, p psdx T

Now, it is sufficient to find k such that

(p—1)c3
psdx <a(p) = oL
/ﬁ:ng 3(P + 1)2)(

in order to obtain

/ Fpx(n)dx — / Fp x(ps)dx > =2ty pk?,
Q Q

which would give the first part of the claim.
In order to estimate | ps=k P§ We just use

/m log ps| < €(ps) +2Q0e" < A +2/Q0e™" + BF (ps)

W3 (p.n)
2t }

It is easy to prove the I'-convergence of ¥ + §H# to ¥ (the I'-liminf inequality is trivial,

and the I'-limsup is straightforward for p € L9, which is a subset of 4 (£2) which is dense

in energy for the functional ¥), and this implies (using the continuity of the Wasserstein

distance for the weak convergence)

<A+2Qe '+ B mpin{av(p) L 8H(p) +

W22 (109 T))

W3 (p,n) }
2t ’

fim min{sv(p) £ 8H(p) +
5—0 p 2T

} = min{?(p) +
o

Hence, we have, for small §,

W3 (p, ) } Wi (p, ) }

—_— —= 1 +1
2T 2T

<Fm+1<co+1.

min{?'(p) + §H (p) + < min{ff*‘(,o) +
p o
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Then we can choose k looking at

1 A+2|Qle™! + B(co + 1)
ps < ps|log ps| < -
ps=k logk Jps>k logk

It is then enough to take k large enough depending on ¢y and p, and in particular we
impose k > 2|Q|~! and

A+2|Qle™! + B(co + 1) _ (p- 1)c?
logk(co. p) 3(p+1)2x

The value of K(cg, p) is defined accordingly, and then we find, for K > K(cg, p),

k > k(co, p) with

/ Fp k(ps) dx S/ Fp x(n)dx + tD;.
Q Q

Now we let § — 0: up to a subsequence we have ps — p and the limit p satisfies the
same inequality; moreover we also have that p € Proxg | g () thanks to the I'-convergence
of the functionals. For the global-in-time estimate we can iterate the previous result, thanks
to the fact that ¥ (p,) is decreasing in 7, in order to get

/ Fpk(pn)dx < / Fp.k(po) dx +ntDj.
Q Q
Then we can use the inequalities
—k?"p + p? < (pP = kP p)1 < Fpr(p) < p?

(remember K = k?~@=1/d) o conclude
L1onl? dx = [ Fotondx ko)™ < [ fpol” dx 4 meDy + kico. p)?

< / Ipol? dx + (1 + zn)2pk(co. p)?.
Q

where in the last inequality we use the dependence of D in terms of k and we suppose
k>1.

For the L°° estimate we cannot simply pass to the limit in the L? inequality we just
found since k(cp, p) — oo as p — co. However, we can iterate the procedure, finding
better estimates for k(co, p) using the fact that we have some explicit bounds on || op || »:
let us fix 7 and let us consider T = nt. We will consider iteratively p; = 2° + 1. Always
choosing k(co, p) > ||pollco We find that

D(pi) = sup [|pmllp < (2 + xT)2pi)"Pik(co, pi); (4.5)
m=<n

For the iterative step, we have

N L S
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in particular it is sufficient to choose

oo = (505

Now we can use a(p;) > C/p; > C27 (where C also depends on y) and (4.5) to obtain
] 1 1
k(co. pis1) < (C2F2H @+ 4T k(co. pi)'

From here we can derive a uniform bound for k(cg, p;): indeed, defining c;+; =

]_[j-=2(1 + %) and writing k; := k(co, pi), we have
_1 1

1
ki < (€M@ 4 gy Fanky

i+1
<k [](€2¥¥ @+ yT)%
j=2

< Dk2\/2 + XT

In particular, using (4.5) together with the last estimate and the fact that ¢; < 2, we can
say that we have

Ionllos < fim D(pi) = lim k(co. pi) < D@+ yT) max{k(co. 5). |polloc)®.  m

The above estimate is the discrete counterpart of a well-known result studied in con-
tinuous time, which can be found for instance in [29], and is proven in [20] and [15] (more
precisely, [20] showed that equi-integrability of p is enough to propagate in time the esti-
mates on the L? norms, and [15] found the sharp condition to bound the entropy of the
solution, and hence provide equi-integrability).

We note that in the above L? estimate we obtain linear growth in time of the L? norm
raised to the power p, i.e. on [ p? dx, so that the norm itself has much slower growth. In
this regard, the estimate on the L°° norm is most likely not sharp, as it is the norm itself
which grows linearly.

Regarding the L°° estimates, we recall that other L°° bounds have been found on a
(perturbed) JKO scheme in [13], but those bounds always explode in finite time (at time
T = 1/|pollco)- On the other hand, they have the advantage that they are true for any form
of diffusion, and that they require no condition on y, nor on the dimension.

Remark 4.6. With similar but more tedious calculation it is also possible to get hypercon-
tractivity estimates (improvement in time of the summability exponent) in the JKO setting:
this could potentially weaken the integrability requirement on pg in Theorem 5.11, but
then we would need a different analysis for the first steps, where the integrability assump-
tion p € L” is still not satisfied. For this reason we do not want to pursue this direction
here, but it would certainly be interesting.
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In a similar but different spirit we also mention that it is possible to obtain L? estimates
in time and space starting from L” assumptions on pg, as is done in [24, Lemma 2.11],
but we do not investigate this question here since we decided to concentrate on bounds
which are not integrated in time but derived from the decreasing behavior from one step
of the JKO scheme to the next.

5. Sobolev estimates

In this section we pass to the core of the paper, i.e. the higher-order estimates. The goal
will be to obtain results comparable to those of Proposition 3.8, but for norms involving
the gradient of p.

Lemma 5.1. Let us consider an absolutely continuous n € $ () and a functional §:
P(2) — R U {oc}. Take p € Proxg (1) and set u[p] := 85 /8p. Set

v \%
Z, =Ly vulpl, Z, = L+ Vuly]
P n
and consider ¢ and  the optimal Kantorovich potentials for the dual formulation of
Wa(p, n), with T = id — V¢ the optimal transport map from p to 1. Then for every radial
convex function H: R4 — R we have

[HEpan= [ #zpao+ [vi(2E)-Full - vulilo ) dp.

Proof. We first notice that the optimality condition on p gives Z, + % = 0. As the state-
ment involves both Z, and Z,, it is important to underline that we do not have, instead,
any relation between Z, and VT‘/’ = 0; since ¢ and y are the Kantorovich potentials in the
transport between p and 7, we have p € Proxg , ¢ (1) but we do not have 7 € Proxg , £ (p).
However, we can heuristically expect Z;, to look like VT'/’ (note the sign, which is different
from that in the equality Z, = —%). Therefore, we first estimate H(Z;) from below in
terms of H (—Vr—w), using the convexity of H and the fact that it is radial and hence even:

[ Hznan= [ ez ay

-V -V %
z/H(—‘/’)dnJr/VH( ).(—Zn+—¢’)dn.
T T T
We look at the different parts of the right-hand side. First weuse n = Typand —Viyy o T =
Vo, together with the optimality condition Z, + % = 0 and again the fact that H is even,

in order to get
fH(ﬂ) dn = /H(?) dp = / H(Z,)dp.
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Using n = Tup and —Viy o T = V¢ again, we obtain
[on(2) T fon(%) e o) 20
= /VH(?) -Vpdx + / VH(?) - Vulp] dp.

‘We now pass to the part involving Z;, and write

/VH(_V%W).(—Z,,)dn - /VH(V‘/’).(z,,)dn

T

:/VH(VT—W)-Vndx+[VH(va)-Vu[n]dn
=/VH(VTW)-Vndx—/VH(¥)-vu[n]onp.

Summing all the terms, and using the five-gradients inequality, Lemma 2.1 (which requires
H to be radial in order to handle the boundary terms),

\YJ \Y

/VH(—W) -Vndx +/VH<—¢) -Vpdx >0,
T T

we obtain the desired result. [

The quantities of the form f H(Z,) dp will be crucial for the Sobolev regularity of
the solutions of the JKO scheme. We will then often note J(,(p) := [ H(Z,) dp when
H(z) = |z|P, without explicit reference to the term u[p], which will be clear from the
context.

5.1. Fokker-Planck and aggregation

We will see some consequences of Lemma 5.1, starting from the easiest case, i.e. the
purely linear Fokker—Planck case: u[p] = V and §(p) := [V dp.

Proposition 5.2. Let ) € P(2) and let us consider §(p) := [V dpand p € Proxg | ¢(n).
Suppose that V is A-convex, i.e. DV > Al.
Then, if A = 0 and H : RY — R is a radial convex function, we have

/H(Zp)dpf/H(Z,,)dn.
If A > 0 and H(0) = 0, we also have
(l—l—kt)/H(Zp)dpS/H(Zn)dn.
For A <0, if H satisfies VH(z) -z < C(H(z) + 1) then

(1—|x|cf)/H(zp) dpf/H(Zn)dn—i- IA|Cr.
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Proof. All these results are just consequences of Lemma 5.1. They can be obtained if one
estimates the term [ VH ( 2. (Vulp] — Vuln] o T) dp. First, note that since H is radial,
the vectors VH (Ve /1) and V¢ are parallel and oriented in the same direction. We also
use u[p] = u[n] = V and the assumptions on V. Indeed, we have

(VV(x) = V(T (x))) - Vo(x) = (VV(x) = VV(x = Vo(x))) - Vo(x) = A|Ve(x)[%,

thanks to the A-convexity of V. In the case A = 0 this is enough to obtain the claim.
For A > 0, we write

/VH(VT ) (VV - VVoT)dp_/|—|)|(VV VVoT) Vedp

zh/H(?) dp,

where we used the inequality |V H(z)| > H(z)/|z| which is valid for radial convex func-
tions with H(0) = 0 and the same estimate due to the A-convexity of V' as above. This
allows us to prove the second part of the claim.

In the case A < 0, the estimate is similar, but since we bound the scalar product
(VV(x) — VV(T(x))) - Ve(x) from below with 1|Vg(x)|?, which is negative, we need
to estimate |V H(z)| from above, and for this we use our assumption on H (which is
essentially an assumption of polynomial growth for H ; note that, H being radial, we have
VH(z) -z = |VH(z)||z])- ]

Remark 5.3. As we underlined in the introduction, the above result is a time-discrete
translation of a suitable integral version of a well-known estimate in Bakry—Emery theory
(again, we refer for instance to [3]). Indeed, the time-continuous equation satisfied by p
when taking the gradient flow of & + § is d,p — Ap — V - (pVV) = 0. If one defines
u = pe” then u satisfies the drift—diffusion PDE d;u = Au — VV - Vu. If we call P,
the semigroup associated with this PDE, the celebrated Bakry—Emery estimates provide
|V(P; f)| < e P;(|V f|) when D2V > AI. Taking H convex and radially increasing
(and writing, by abuse of notation, H(z) = H(|z|)), and using this inequality, for instance
for A = 0, together with the convexity of the function (s, y) — H(y/s)s, one can prove

V(P f) y P(IV f1) v |V /] v,
[H( P )Ptfde SIH(—Ptf )P,fde 5[ (f )fd
which can be seen to be equivalent to the result of Proposition 5.2 since
V(P f) _ Vu _ (Vp+pVV)eV
Pif  u peV

As a consequence, we obtain the following information on the JKO scheme:

=7,

Proposition 5.4. Suppose that V is A-convex and Lipschitz, and consider § (p) = fQ Vdp;
let po € P () and let p;, be provided by JKO scheme as in (2.2). Fix a time T > 0 and
only consider (n, t) such that tn < T. Then we have the following bounds:
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* ifA >0, iflog pg is Lipschitz continuous, then log p, is also Lipschitz continuous, with
bounded Lipschitz constant, and Lip(log py + V') decreases in time (in n);

. if,o(l)/’J e WLP(Q), then (p,’l)l/p is bounded in WP (Q) independently of T and n;
* if po € BV(Q), then pj, is bounded in BV (S2) independently of T and n;

e if po € WH(Q), then all the densities pt belong to a weakly compact subset of
wi(Q).

The above bounds but the first are also valid for A < 0, but if A > 0 then they are inde-

pendent of T. Moreover, if A > 0 then the gradients of the functions (p;ev)l/ P converge

exponentially fast to 0 in L? (e~""), uniformly with respect to t, and hence the functions

(,o;eV)l/P converge in WP (e™V) to a constant.

Proof. In the case A > 0, for the first part of the statement, take a measure 7 and p €
Proxg_ ¢(n). Let us suppose Lip(logn + V) < L and use as a function H the con-
vex indicator function of B(0, L). From [ H(Z,) dn = 0 we deduce that we also have
[ H(Z,)dp = 0. This means |V(log p + V)| < L a.e. on {p > 0}. Yet we know from the
optimality conditions that p is a continuous density which is bounded away from 0 since
logp = C —V —¢/t, hence we get Lip(log p + V) < L. This can be iterated along the
JKO scheme thus obtaining the first part of the statement.
For the second part of the statement, we use H(z) = |z|? and

197 = <o) [ 0719007 + [ p < c() [ HZpdp+ .

where we used the boundedness of VV'. Since [ H(Z ;) dpf, decreases with n (if A > 0) or
at least its growth is exponentially controlled (if A < 0), then (p},) 1/P is bounded in W -7,

The third part of the statement is proven in a similar way, using p = 1. Indeed, given
n € BV(R2) and p € Proxg_ ¢(7), we can approximate n with smoother densities 7; with
[Vn; +n; VV| = [[Vn 4+ nV V|| (the norm being taken in the space of vector measures).
For each j we have a measure p; € Proxg, ¢(n;), which is Lipschitz continuous and
satisfies

Vi
19+ 0r9VI = |32 4 9v|dpy < 1905 + 0,9V 5.1)
J

It is moreover clear (from a triangular inequality on the Wasserstein term, which is
bounded because Q2 is bounded) that the functionals %, = &(-) +§()) + ZLTWZZ(', n;)
are I"-converging, with respect to the Wasserstein distance, to 5;: we then have p; — p.
In particular, passing to the limit in j in the inequality (5.1), we get

[Vo+ pVV| < IVn+nVV].

This proves that ||V p; + p; VV|| is decreasing, and hence ||V p} | stays bounded.
Regarding the W:! estimate, we use a convex and superlinear function H such that
[ H(Z,,) dpo < oo (which exists since Vpg € L' implies Vpo/po + VV € L(po) and



JKO estimates for Fokker—Planck and Keller—Segel 1509

we know that L! functions are also integrable when composed with a suitable superlinear
function, which can be taken convex). The results of Proposition 5.7 allow us then to keep
the same integrability of the gradient along the iterations of the JKO scheme: this is easy
if A > 0, while for A < 0 we just need to note that H can be taken superlinear but with
polynomial growth (actually, its growth can be taken as close to linear as we want), and
hence we can apply the last claim in Proposition 5.7. This guarantees equi-integrability
for Vp! and hence the claim.

We are now left to consider the behavior for n — oo in the case A > 0. In this case we
have exponential decay of the quantity J(,)(p5) := [ H(Z ;) dpf for H(z) = |z|P. We
can then observe that we have

/’% + vv‘p dp = / IV log(pe” ) Pe=" d(pe")
= c/|V((peV)1/P)|”d(e—V).

This last result provides a sort of rate of convergence to the steady state of the Fokker—
Planck equation p = e~". For the W -7 convergence we only have to use an appropriate
local Sobolev inequality and exploit uniform integrability. ]

Remark 5.5. The bound on the Lipschitz constant could have been obtained as a limit on
the L? norms for p — oo. Indeed, for A > 0 we can also easily obtain

/|zp|1’dps/|zn|l’dn

which, raising to the power 1/ p and sending p — oo also gives a bound on the L°° norm
of Z,, and hence on the Lipschitz constant of log p 4+ V. On the other hand, the approach
with H(z) = |z|? is interesting for A < 0, as it provides

/ 1Z,1P dp < (1 — || pr)~! / \Zy|Pdn.

This estimate provides exponential bounds on [ |Z, |? dp;, i.e.

/ \Zp 1 dpy < P! / 1 Zpo? dpo.

By taking the power 1/ p and the limit as p — 00, one gets || Z,, oo < elAlt | Z po ll oo- Yet,
this last computation can only be performed in continuous time. More precisely, we first
need to send t — 0 and then p — oo. Indeed, if we first send p — oo while t > 0 is
fixed, we would get 1 — |A|p < 0 which prevents any interesting estimate being obtained.

In the next remark we use the following notation: when a vector z and an exponent
a > 0 are given, by z* we mean |z|* 1z (if z # 0, and 0 if z = 0), i.e. a vector whose
norm is |v|* and the direction is the same as that of v.



S. Di Marino and F. Santambrogio 1510

Remark 5.6. The estimate with H(z) = |z|?” when V is A-convex with A < 0 can also be
concluded in a different way when p < 2. Indeed, we can use

[Q(VV—VVOT)-(x_fT(x))p_l dp > %/ﬂ |[x = T(x)|? dp

Al

Pl

lid— T2,
We then use p < 2 to bound the L? norm with the L? norm and write

lid = TlLrp) < llid = Tll2p) = Walp, ),

thus obtaining
- T p—1
/(VV—VVoT)-(x—(x)> dp >
Q T

In particular, if p, is the sequence generated by the JKO scheme we have, by induction,

=1 2o )"

n
Wa(pi, pi+1)\P?
T (pu1) = Ty (i) + plAL Y ()
i=k
Now we can use the Holder inequality (again based on p < 2) and, together with
sz(Pn» Pn+1) = 2T(F (pn) — F (pn+1)), we obtain

Wz(Pi,,Oi+1))2 p/2
T

Jp)(on+1) = J(p) (o) + pIAI((n — k)f)l—p/z(z T(
i=k

< J(y(pr) + pIALE — ) P2 QF (png1) — 2F (ox))?/2.

Hence, we deduce that J(,)(p;) is locally bounded in time, and grows sublinearly as
t — o0.

We also want to consider the case where V' depends on p via a smooth convolution
kernel. This is typical in aggregation equations. We consider the case

5(p) 1= / Vot [ / W(x — y) dp(x) dp(y) (5.2)

for an interaction potential W:R? — R which is supposed to be even (W(z) = W(—z2))
and C 1!, This last assumption is very demanding and non-optimal, but allows for a simple
presentation of the estimates. The Keller—Segel case that we will see later is in some sense
obtained from a singular interaction potential (W(z) = log |z| in dimension d = 2, when
in the whole space), and will be treated in detail, but in a different way. We will set

Vp P
T (0) = ‘7 FVV + YW | dp,

ie. Jp)(p) = [ H(Z,)dp, where u[p] = V + W x p. For simplicity, in the notation Jp),
we are omitting the dependence on V and W.
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Proposition 5.7. Let us consider § as in (5.2), and p € Proxg_ ¢(n). Suppose that 2 is
convex, that V is A-convex, i.e. D>V > A1, and that W is CV1, with Lip(VW) = u. Then
we have

1+ pA =2)0) Iy (p) < Jpy(0).

Proof. The starting point is, of course, the result of Lemma 5.1 applied to H(z) = |z|?.
This gives

Jip) (M) = J(p)(p)
+p /(X —Z(X))P_l . (VV(X) — VV(T(x)) + (VW * p)(x)

— (VW xn)(T(x))) dp(x).

where by v”~!, when v is a vector (here v = (x — T(x))/7), we mean |v|?~2v.
Using the same argument as in Remark 5.6 we can obtain

/ (X—_T(x))l’— A(VV(x) = VV(T(x))) dp(x) > TA / )

T
= tAJ(p) (P)

ﬂ‘ dp(x)

as well as
x—T(x)\»r-1
J =) (W ) = (W (T 00) dpt) = e 0)
since the function W % n is (—u)-convex.
We are left to estimate the remaining term

/(x - T(x)>”‘1 (VW % ) (x) = (VW * p)(x)) dp(x).

T

This term will be bounded in absolute value, and we first note that we have

|((VW x p)(x) = (VW x ) (x)| = /VW(X —y)d(p—mn(y)

< uWi(p.n),

since y — VW (x — y) is u-Lipschitz for every x. We also use

Wi(p, U)<f|X—T(x)|dp [| —TMI ([‘X—T(x)’ )1/,,

= Jip (P,

Then we have

T

'/ (x_—T(X))p_l (VW % (n = p)(x)) dp(x)

< utdg )(p)l/p/) T(x)‘p 1 o07)

< 1ty ()2 Iy ()PP = it d) (p).

Putting all the results together provides the claim. ]
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Let us note that in the above result, in order to obtain an estimate which could be
iterated, we needed to replace VW x n with VW x p, and hence we used the Lipschitz
behavior of VIW: for this estimate, lower bounds on D?W (as we required on V') were
not enough. We also note that the same kind of exponential asymptotic behavior providing
convergence to the steady state as in the last point of Proposition 5.4 could be obtained,
provided A > 2, but these computations will not be detailed.

5.2. Keller-Segel case

We come back to the case §(p) = —% [ h[p] dp, where —Ah[p] = p in  with Dirichlet
boundary conditions. In this case we have that the first variation of § is u[p] = —yh[p].
The main goal of this section will be to have an estimate of

\Y% P
J(p>(p)=/g‘7p—xVh[p] dp. (5.3)

As we will see, in order to deal with some of the error terms, we will need to estimate J( )
with Wz (p, 1), and use p < 2. Moreover, we will also need an a priori bound on the L"
norm of p and 7, for an exponent r depending on p. All these restrictions are mainly due
to the fact that —h[p] does not necessarily satisfy the semiconvexity assumptions that we
usually used to handle remainder terms.

Thanks to Lemma 5.1 we have

Jip (p) (—x _TT(X))IH d

IA

Sy () + PX/Q(Vh[p] —Vh[n]oT)-

Jpy(m) +px/Q(Vh[p]_Vh[,7])_(X%T(X))p—ld

x =T (x)\»r-1
—px [ o = Vh - (*2)" (54
In order to treat the two remainder terms, we state a general comparison result between
Sobolev dual norms and Wasserstein distances ([30, Exercise 38]).

Proposition 5.8. Let p,n € P () be two absolutely continuous measures. Then, suppos-
ing that ||pll;, |nll» < C with é +1+ % =1+ %,forevery(p e CY(Q) we have

/sﬂd(p —n) < Ve, - Y- Wyn. p).

where q' = q/(q — 1) is the dual exponent of q. In particular, we have || p — 1l (w1.r)* @) <
vmax{{plly, [Inll-}W2(n, p) for r = p/(p —2).

The following lemma is very classical, and can be found, for instance, in [17, Theo-
rem 10.15] (where the case p > 2 is treated; for p < 2 one can then argue by duality).

Lemma 5.9. Let Q be a bounded convex domain, and [ € (Wol’p )*(K2) be given. Denot-
ing by h[f] the unique solution in Wol’p,(Q) (with p’ = p/(p — 1) the dual exponent
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to p) of —Ah = f, there exists a constant C > 0, depending only on the dimension, on p,
and possibly on 2, such that

IVALf1llpr < CIf Il wrry)-

Lemma 5.10. Given p € (1,2), setr = ;:_;' Let us assume p,n € P(2) N L™ (L) with
Q convex and let us denote by T the optimal map between p and 1. Then there exists a
constant C, only depending on 2, p, and d, such that

— T\~ W2(n,
/(Vh[n]—Vh[n]oT).(x—(x)y " dp < Comaxtplr ol + 22GP).
Q T _[_

-T - W2 ,
[ (Vhlp] = Vh[n]) - (x—(x))p " dp < Comax{ ol InllZ} + Wy (.0
Q T T

Proof. We begin with the first inequality: if we set Ty (x) = x 4+ (T (x) — x) then we know
that (T;)gp0 := p; € P(R2) is the Wasserstein geodesic from p to 1, and the displacement
convexity properties of the L™ norms imply that we have | p; ||, < max{||n||,, [|pll,} =: M.
We have

/Q(Vh[n] — Vhin]oT)- O%T(X))H )

1 -T —
= [ [ w-ren- @) (E2) drap
<[ P2 D2gl(T ()] - B gy g
[0,1]xS2 TP/2

IA
Qe

T

! i _ 2 £
([ [ apar)” ([ F=TO8 )
0 JQ Q T

T;([Ol/Q|D2h[n](x)|qpt(x)dxcit);.(w)é”

where g denotes here the dual exponent of 2/ p, i.e. ¢ = 52— = r — 1. Using the Holder

2-p
inequality with exponents qqll and ¢ + 1 and then the classical estimate ||D2h[p]||, <

CllAA[p]ll; = C]|pllr, we obtain

/ [D2hlpll?pr < |D2hlplllg1 1 lpellg+1 = CMTT.
Using this estimate and eventually Young’s inequality with exponents ¢ and 2/ p we obtain

(/01/QT|D2h[p](x)|‘fpt(x)dxdz);-(—WZ(Z’p)Z)g < (ﬁCM”i)'(—Wz(Z’p)Z)%

Wa(n. p)?
—

<tCM" +
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Now we can pass to the second inequality. We perform directly the Holder inequality with

exponents 3= and p —=7, and then the Holder inequality with exponents 4_71’ and gz—g

/ @hipl Vi) - (“T) g,

,p 1(/ |Vhlp — n]|3”dp) - (/ IT(X)—xlzdP)z

[n— plls=2 l’”P”r RATE

IA

| A

We then use Proposition 5.8 and Lemma 5.9 in order to write

VAl = pllls=z = Clin = pllwrs-r@)y- = CVMWa(1. p).
Using this and then Young’s inequality, we obtain

C

4-p
M 7 Walp, )

Ws(p, n)>
comr 4 e .
T

Wz(P mnP! <

IA

We can then collect all the previous results to obtain the following estimate.

Theorem 5.11. Let § be defined as in (2.3) and let py € P (2); let us consider (p},)n, a
sequence obtained from the JKO scheme (2.2) for the Keller-Segel functional ¥ = & + 8,
and let J () be defined as in (5.3), for p < 2. Then we have

J o) (Pni1) + Fopr1) < Jpy(pn) + F (o) + Crmax{|op Iy lopiqllyy (5.5

Hence, if J(py(po) < oo, if F is bounded from below, and if ||p; || stays bounded along
iterations, then (p;)l/ P is bounded in WVP. In particular, for every o > 0, in the two-
dimensional Keller—Segel model with y < 87, when (po)'/? € L N WP there exists a
solution p; which satisfies a bound of the form J,)(ps) < C + Ct'*® (the constant C
depending on «, on p, on ||, and on the initial datum). If we do not suppose (po)'/? €
WP then the same bound will be true fort >ty > 0, with a constant depending on t.

Proof. The iterated estimate (5.5) is just a consequence of (5.4) and of Lemma 5.10,
together with
W2 (0% pp 1)
DL < F(p}) = F (phg)-
If ¥ is bounded from below and the L" norm from above, we obtain a bound on J(,)(py,)
and then we use

16 7w = €+ Cliip) + € [ 1VhIpIP dp,
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Using p € L”, we just need to bound VA[p] in L?”" in order to obtain the desired Sobolev
bound. From elliptic regularity, we have h[p] € W2 and hence Vh[p] € L™", with r* =
dr/(d —r), if r < d (the case r > d is easy, since in this case Vh[p] belongs to all
Lebesgue spaces). We just need to check r* > pr’, which is true using r > 3 and p < 2.

In order to apply this estimate to the two-dimensional Keller—Segel model with y <
8, we first note that in this case ¥ is bounded from below (this would also be true
for y = 8x). We just need to bound the L" norm of the solution, and for this we use
the estimates of Theorem 4.5. We obtain || p;|l; < C(1 + 1)/4 for arbitrary ¢ > 1, since
po € L. Taking ¢ = r/a one gets || p; || < C|Q1*(1 + £)* and the conclusion follows
iterating (5.5).

If we do not suppose J(p)(00) < 0o, then we can use the dissipation of the energy F
itself. Indeed, this dissipation provides % (pg) = fgo Jy(p:) dt + F (ps,), which means
that we can assume J(2)(ps,) < (F (po) + C)/to for some t; € (0, tp). This provides
finiteness of J(,)(ps,) for every p < 2. We then start a JKO scheme from py, . ]
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