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Quantitative homogenization for combustion
in random media

Yuming Paul Zhang and Andrej Zlatoš

Abstract. We obtain the first quantitative stochastic homogenization result for reaction–diffusion
equations, for ignition reactions in dimensions d � 3 that either have finite ranges of dependence or
are close enough to such reactions, and for solutions with initial data that approximate characteristic
functions of general convex sets. We show an algebraic rate of convergence of these solutions to
their homogenized limits, which are (discontinuous) viscosity solutions of certain related Hamilton–
Jacobi equations.

1. Introduction

A basic model of combustion processes in random media is the reaction–diffusion equa-
tion

ut D �uC f .x; u; !/ (1.1)

with .t; x/ 2 .0;1/ � Rd and ! an element of some probability space .�;F ; P /. Its
solutions u represent normalized temperature of the combusting medium, taking values
between 0 and 1, and the reaction function f is of ignition type, satisfying f .�; u; �/ � 0
whenever u 2 Œ0; �1� [ ¹1º, for some �1 2 .0; 1/.

This model, with homogeneous reactions f .x; u;!/D f .u/, goes back to pioneering
works by Kolmogorov, Petrovskii, and Piskunov [8] and Fisher [7]. In this case it is well
known that solutions to (1.1) propagate ballistically in all directions at a constant speed
c� in the sense that a solution with initial data close to the characteristic function of some
(not too small) set A � Rd is in a sense close to the characteristic function of the set AC
c�tB1.0/ at any large time t > 0. We refer to [3,4] for various results in the homogeneous
reaction case, and to the reviews [5,16,18] for other related developments and references.

The setting of heterogeneous reactions is much more complicated as one cannot expect
the same propagation speed in all directions – or indeed any propagation speed at all – for
general f . However, when an environment is random, and sufficiently so (e.g., when f is
i.i.d. in space in some sense or, more generally, stationary ergodic), large space-time scale
dynamics of physical processes occurring inside it frequently appear as if the environment
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were homogeneous (albeit non-isotropic). This phenomenon, called homogenization, is a
result of large-scale averaging of the random heterogeneities in the medium, and in the
setting of (1.1) would also mean existence of direction-dependent asymptotic propagation
speeds of solutions.

While existence of homogenization has long been known in various settings, in par-
ticular for (first-order as well as “viscous” second-order) Hamilton–Jacobi equations (the
literature is vast; the reader can consult [2, 9–13, 15, 17] and references therein), until
recently it has been proved for reaction–diffusion equations only in one spatial dimension
d D 1, even in the simplest heterogeneous setting of spatially periodic reactions f . The
main reason for this is that in the case of reaction–diffusion equations, the (homogenized)
large-space-time limits of solutions to (1.1) are in fact expected to be (discontinuous)
characteristic functions of time-expanding regions, which are also (viscosity) solutions to
a very different PDE, the (first-order) Hamilton–Jacobi equation (1.4) below with some
f -dependent “speed” c�WSd�1 ! .0;1/. When this fact is coupled with complications
caused by potentially very non-trivial geometries of the boundaries of these regions in
dimensions d � 2, it is not surprising that the question of homogenization in this setting
becomes substantially more challenging.

In fact, the first proofs of stochastic homogenization for (1.1) in dimensions d � 2
have only been provided recently and only for ignition reactions (we also note that a
homogenization result for KPP reactions, satisfying f .�; 0; �/ � f .�; 1; �/ � 0, and 0 <
f .x; u;!/ � fu.x; 0; !/u when u 2 .0; 1/, was stated without proof in [13] by Lions and
Souganidis). First, Lin and the second author obtained a number of conditional homog-
enization results for general reactions, and showed that the hypotheses in these apply, in
particular, to isotropic stationary ergodic ignition reactions in dimensions d � 3 [10]. We
then showed that homogenization also holds for general stationary ignition reactions in
dimensions d � 3 that either have finite ranges of dependence (which is a continuous ver-
sion of an i.i.d. environment) or are in some sense close to such reactions [19] (we refer
to [10,19,21] for further discussion on this, including the reason for the not-just-technical
and physically relevant limitation to d � 3, which we also briefly mention after Definition
1.2 below). Hypotheses (H1)–(H4) below in fact mirror those from [19], although for the
sake of simplicity we will not consider here the most general form of the hypotheses in
[19].

We also note that when it comes to periodic reactions (i.e., f .x; u; !/ D f .x; u/

and periodic in x), homogenization was proved for monostable ones (as KPP but without
requiring f .x;u/� fu.x;0/u, so KPP reactions are included) by Alfaro and Giletti [1] for
initial data with smooth convex supports. This was extended to general convex supports
in [10], where homogenization was also proved for periodic ignition reactions and quite
general initial data in any dimension. We also refer to Majda and Souganidis [14] for the
case of (1.1) with homogeneous KPP reactions and periodic first-order advection terms.

Given how recent the above results are, it is no surprise that until now no quantitative
estimates on the speed of convergence of solutions to (1.1) to their homogenized limits
have been obtained. The goal of this paper is to address this question for the random
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ignition reactions considered in [19] (see Theorem 1.3 below). This involves the study of
the large-space-time-scale version of (1.1), that is,

.u"/t D "�u" C "
�1f ."�1x; u"; !/ (1.2)

with a small " > 0, so that solutions u to (1.1) give rise to those for (1.2) via

u".t; x; !/ WD u."
�1t; "�1x; !/: (1.3)

Our main result in [19] is that if initial data for (1.2) sufficiently well approximate the
characteristic function of some open set A � Rd as "! 0, then the solutions u" almost
surely converge to the characteristic function of a set ‚A;c

�

� .0;1/ �Rd , in the sense
of locally uniform convergence on the complement of @‚A;c

�

(i.e., where this character-
istic function is continuous). In fact, as is shown in [10], �‚A;c� is a viscosity solution
with initial data �A to the deterministic homogeneous (non-isotropic) Hamilton–Jacobi
equation

Nut D c
�
�
�
r Nu

jr Nuj

�
jr Nuj; (1.4)

where c�.e/ > 0 is a (deterministic asymptotic) front speed for (1.1) in direction e 2 Sd�1,
which exists for each e and the function c�WSd�1 ! .0;1/ is Lipschitz [19].

One can therefore view (1.4) as the homogenization limit of (1.2). We then show in
Theorem 1.3 below that when the initial set A is bounded and convex, then convergence to
this limit is algebraic in " (with some power � > 0), with a probability that exponentially
converges to 1 as "! 0. Specifically, we refer here to convergence of the � -super-level
set

�u";� .t; !/ WD
®
x 2 Rd

ˇ̌
u".t; x; !/ � �

¯
of u".�; t; !/ to ‚A;c

�

.t/ WD ¹x 2 Rd j .t; x/ 2 ‚A;c
�

º, for each fixed � 2 .0; 1/ and uni-
formly on bounded time intervals. We also note that in this convexA case, the set‚A;c

�

.t/

is also convex and was in fact shown in [10, Theorem 1.4 (iii)] to have the relatively simple
form

‚A;c
�

.t/ D
\

e2Sd�1

®
x 2 Rd

ˇ̌
x � e < supy2A y � e C c

�.e/t
¯
: (1.5)

Theorem 1.3 is hence a quantitative stochastic homogenization result for (1.1), which
is to the best of our knowledge the first one for reaction–diffusion equations. Our analysis
is based on results from our paper [19], primarily those in Proposition 2.7 below. These
are quantitative estimates on the fluctuations of arrival times at any point in Rd of spe-
cial solutions to (1.1) with half-space-like initial data, and were obtained via a method
inspired by related pioneering results of Armstrong and Cardaliaguet [2] for Hamilton–
Jacobi equations with non-convex finite-range-of-dependence Hamiltonians. We note that
in the case of Hamilton–Jacobi homogenization, the limiting PDE is again a Hamilton–
Jacobi equation; this differs from our reaction–diffusion case, where the homogenization
limit of (1.2) is (1.4) (see [10] for further discussion concerning this relationship).
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We note that while we could prove our results in more generality, in particular, also
include in Theorem 1.3 reactions that are less well approximated by those with finite
ranges of dependence (see in particular [19, hypothesis (H40) & Example 1.6]), we chose
not to do so here for the sake of clarity.

Let us now move to precise statements of our hypotheses, which are from [19], and to
our main result. We start with the definition of stationary reactions.

Definition 1.1. Let .�; F ; P / be a probability space that is endowed with a group of
measure-preserving bijections ¹‡y W�! �ºy2Rd such that for all y; z 2 Rd ,

‡y ı ‡z D ‡yCz :

A reaction function f WRd � Œ0; 1� � � ! Œ0;1/, with the random variables Xx;u WD
f .x; u; �/ being F -measurable for all .x; u/ 2 Rd � Œ0; 1�, is called stationary if for each
.x; y; u; !/ 2 R2d � Œ0; 1� �� we have

f .x; u;‡y!/ D f .x C y; u; !/:

The range of dependence of such f is the infimum of all r 2 RC [ ¹1º such that

E.U / and E.V / are P -independent

for any U; V � Rd with d.U; V / � r , where E.U / is the � -algebra generated by the
family of random variables ¹Xx;u j .x; u/ 2 U � Œ0; 1�º and d.�; �/ is the standard distance
in Rd .

Since we are interested in ignition reactions, we assume the following hypothesis.

(H1) The reaction f is stationary, Lipschitz in both x and u with constant M � 1,
and there are �1 2 .0; 12 /, m1 > 1, and ˛1 > 0 such that f .�; u; �/ � 0 for u 2
Œ0;�1�[ ¹1º, f .�;u; �/� ˛1.1� u/m1 for u2 Œ1� �1; 1/, and f is non-increasing
in u 2 Œ1 � �1; 1/.

In fact, we need to assume slightly more, since one cannot hope for general reactions
satisfying (H1) to lead to homogenization for (1.1) as described above, even for homoge-
neous reactions f .x;u;!/D f .u/. Indeed, if f is allowed to vanish at some intermediate
value � 0 2 .�1; 1� �1/ and is also “sufficiently larger” on .�1; � 0/ than on .� 0; 1/, solutions
typically form “plateaus” at value � 0 (or another intermediate value) whose widths grow
linearly in time, and so these plateaus will not disappear as "! 0 and the scaling (1.3)
is applied (see [20, 21] for more details). To avoid this scenario, we make the following
definition.

Definition 1.2. A reaction f satisfying (H1) is a stationary pure ignition reaction if for
each � > 0 we have

inf
.x;!/2Rd��
�x;!C�<1��1

f .x; �x;! C �; !/ > 0;
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where the ignition temperature �x;! is defined by

�x;! WD sup
®
� � 0

ˇ̌
f .x; u; !/ D 0 for all u 2 Œ0; ��

¯
.2 Œ�1; 1 � �1//:

As the second author showed in [21], the linearly growing plateaus scenario may occur
even for pure ignition reactions, but only in dimensions d � 4 (this relates to transience
of Brownian motion in Rd�1). Therefore our main hypothesis on the reaction f is the
following.

(H2) f is a stationary pure ignition reaction and d � 3.

Finally, we will assume that f either has a finite range of dependence, or is close
enough to such reactions and has certain uniform decay in u near u D 1. The following
two hypotheses relate to the second alternative:

(H3) There are m3 � 1 and ˛3 > 0 such that for all � 2 .0; 1
2
�1� we have

inf
.x;!/2Rd��
u2Œ1��1=2;1�

.f .x; u � �; !/ � f .x; u; !// � ˛3�
m3 :

(H4) There are m4; n4; ˛4 > 0 such that for each n � n4, there exists a stationary
reaction fn with range of dependence � n and kfn � f k1 � ˛4n�m4 .

We are now ready to state our main result. In it we denoteBr .A/ WDAC .Br .0/[ ¹0º/
and A0r WD A nBr .@A/ for A � Rd and r � 0 (in particular, A00 is the interior of A). Note
that if A is convex, so are Br .A/ and A0r . We also let Q� WD min¹ 1

8m1
; m4
4m3C8m4

º, where
we ignore the second term when f is assumed to have a finite range of dependence (and
so (H3)–(H4) is not assumed).

Theorem 1.3. Assume that f satisfying (H2) either has a finite range of dependence or
satisfies (H3)–(H4). There is a Lipschitz function c�WSd�1! .0;1/ such that if u" solves
(1.2) and for some open bounded convex set A � Rd and some � > 0 we have

.1 � �1/�A0
"�
� u".0; �; !/ � �B"� .A/

for each " > 0, then the following holds with � WD 1
2

min¹ Q�; �º: for any � 2 .0; 1/ and
T0 >0, there are constantsC0DC0.M;�1;m1;˛1;A;�/ and "0 >0 such for all "2 .0;"0�
we have

P
�
.‚A;c

�

.t//0"� � �u";� .t; �/ � B"� .‚
A;c�.t// for all t 2 ŒC0"; T0�

�
� 1 � exp.�"�2� /:

Remarks. (1) The limitation of the above estimate to times t � C0" is necessary
because if � is close to 1, it takes time O."/ for u" to reach the value � . If � <
1 � �1, then it is not difficult to show that Theorem 1.3 extends to include t 2
Œ0;T0� in the statement because both inclusions then hold for all .t;!/ 2 Œ0;C0"��
� when " > 0 is small enough.



Y. P. Zhang and A. Zlatoš 6

(2) We can also determine on which parameters "0 depends. It turns out that there is
some �� D ��.M; �1; m1; ˛1/ > 0 such that if for some � > 0 we have

inf
.x;!/2Rd��

u2Œ�x;!C��;1��1�

f .x; u; !/ � �; (1.6)

then "0 can be chosen to depend only on A, �, � , T0 plus on

M; �1; m1; ˛1; �;

and either � or m3, ˛3, m4, n4, ˛4;
(1.7)

depending on whether we assume (H2) plus f having range of dependence at most
� 2 Œ1;1/, or we assume (H2)–(H4). See the proof of Theorem 1.3 for details on
this.

(3) Lemma 2.4 below shows that if A is unbounded (but still convex), then Theo-
rem 1.3 holds locally uniformly, that is, with .‚A;c

�

.t//0"� and �u";� .t; �/ replaced
by their intersections with BN .0/, for any N 2 N (C0 and "0 then also depend
on N ).

(4) We make no attempt here to optimize the power � in Theorem 1.3.

1.1. Organization of the paper

In Section 2 we collect several important preliminary results as well as most of the notation
used later. In Section 3 we construct certain regularized approximations of the sets‚A;c

�

,
which are then used in the proof of Theorem 1.3 in Section 4.

2. Preliminaries and notation

Most of the results in this section are from [19], and we reproduce them here for the
reader’s convenience. Many of them hold uniformly in ! and even without assuming
stationarity of the reaction, and in these we will therefore replace (H1) by the following
weaker hypothesis:

(H10) f satisfies (H1) except possibly the stationarity hypothesis.

We collect the needed results assuming (H10) in the following subsection.

2.1. General ignition reactions

Let us start with a basic lower bound which shows that general solutions to (1.1) propagate
with speed no less than some c0 > 0 (see [21]). Consider the largestM -Lipschitz function
F0W Œ0; 1�! Œ0;1/ such that F0.u/ � ˛1.1 � u/m1�Œ1��1;1�.u/ for all u 2 Œ0; 1�, which
of course guarantees that f .x; �; !/ � F0 for all ! 2 � when f satisfies (H10). Then F0
is a homogeneous pure ignition reaction, and we let c0 > 0 be its traveling front speed
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(i.e., such that the PDE ut D uxx C F0.u/ in one spatial dimension has a traveling front
solution u.t; x/ D U.x � c0t /, with U.�1/ D 1 and U.1/ D 0).

Lemma 2.1. There exists �2D �2.M;�1;m1;˛1/ < 1 such that for each c < c0 and � < 1,
there is �0 D �0.M; �1; m1; ˛1; c; �/ � 1 such that the following holds: If uW .0;1/ �
Rd ! Œ0; 1� is a solution to (1.1) with f satisfying (H10) and with some ! 2 �, and if
u.t0; y/ � �2 for some t0 � 1 and y 2 Rd , then for all t � t0 C �0,

inf
jx�yj�c.t�t0/

u.t; x/ � �:

If also ut � 0, then this clearly holds with any t0 � 0 (and �0 increased by 1).

Let

�� WD
min¹1 � �2; �1º

4
: (2.1)

The next few results are from [19], and are stated there with �2 D �2.M; 12�1;m1; ˛1.1�
1
8
�1/

m1�1/ in the definition of ��; however, the remark after [19, Lemma 2.1] explains
that they also hold with (2.1) and �2 D �2.M; �1; m1; ˛1/ (moreover, this distinction will
be of no consequence here). The first of these is [19, Lemma 2.8], which provides an upper
bound on �0.M; �1; m1; ˛1; c04 ; �/ from Lemma 2.1 as � ! 1.

Lemma 2.2. Let uW Œ0;1/ � Rd ! Œ0; 1� solve (1.1) with f satisfying (H10) and some
! 2 �. There is D1 D D1.M; �1; m1; ˛1/ such that if u.t0; y/ � 1 � �� for some t0 � 1
and y 2 Rd , then for any � 2 Œ1 � ��; 1/ and t � t0 CD1.1 � �/1�m1 we have

inf
jx�yj�c0.t�t0/=4

u.t; x/ � �:

Throughout the rest of the paper we will primarily use Lemma 2.1 with c D c0
2

and
� D 1 � ��, hence we define

�0 WD �0.M; �1; m1; ˛1;
c0
2
; 1 � ��/:

We note that while the two lemmas appear similar, since the latter was stated in [19] with
c D c0

4
inside �0 instead, we will not try to unify them here for the sake of brevity.

The next result is [19, Lemma 2.2], which constructs smooth initial data u0;S that
approximate .1 � ��/�S and the corresponding solutions satisfy ut � 0.

Lemma 2.3. There is R0 D R0.M; �1; m1; ˛1/ � 1 such that for any f satisfying (H10)
and S � Rd , there is a smooth function u0;S satisfying

�u0;S C F0.u0;S / � 0;

and
.1 � ��/�S � u0;S � .1 � �

�/�BR0 .S/:
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The following counterpart to Lemma 2.1 (see [10, Lemma 2.2] and [19, Lemma 2.5])
yields an upper bound on the speed of propagation of perturbations of solutions to (1.1).

Lemma 2.4. Let u1; u2W Œ0;1/�Rd ! Œ0; 1� be, respectively, a subsolution and a super-
solution to (1.1) with some f satisfying (H10) and some ! 2�, and let r > 0 and y 2Rd .
If u1.0; �/ � u2.0; �/ on Br .y/, then for all .t; x/ 2 Œ0;1/ �Rd we have

u1.t; x/ � u2.t; x/C 2de
p
M=d.jx�yj�rC2

p
Mdt/:

This estimate yields the following two results. The first of them is just [19, Corollary
2.6], and in the second we let

Tu.x/ WD inf
®
t � 0

ˇ̌
u.t; x/ � 1 � ��

¯
:

Corollary 2.5. If uW Œ0;1/ � Rd ! Œ0; 1� solves (1.1) with some f satisfying (H10) and
some ! 2 �, then for any t � 0 we have®

x 2 Rd
ˇ̌
u.t; x/ � 1 � �1

¯
� Bc1tC�1

�®
x 2 Rd

ˇ̌
u.0; x/ � �1

¯�
;

where

c1 WD 2
p
Md > c0 and �1 WD 1C

p
d=M ln

2d

1 � 2�1
:

Corollary 2.6. Let u1; u2W Œ0;1/ � Rd ! Œ0; 1� solve (1.1) with f satisfying (H10) and
some ! 2 �. There is D2 D D2.M; �1; m1; ˛1/ � 1 such that if u1.0; �/ � u2.t0; �/ on
BR.0/ for some t0 � 0 and R � D2.1C Tu1.0//; then

Tu1.0/ � Tu2.0/ � t0 � �0:

Proof. By Lemma 2.4 we have

u1.t; 0/ � u2.t C t0; 0/C 2de
2Mt�

p
M=dR

for all t � 0. Hence,

u2.Tu1.0/C t0; 0/ � u1.Tu1.0/; 0/ � �
�
� 1 � 2��

as long as

R � 2
p
MdTu1.0/C

p
d=M ln

2d

��
;

which will be guaranteed if we let D2 WD 2
p
Md ln 2d

��
. But then Lemma 2.1 yields

u2.Tu1.0/C t0 C �0; 0/ � 1 � �
�

and the result follows.
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2.2. Stationary ignition reactions

Identification of the front speeds c�.e/ for (1.1) with a stationary reaction f is based on
the analysis of the dynamics of special solutions starting from approximate characteristic
functions of half-spaces. Specifically, for any e 2 Sd�1 let H�e WD ¹x 2 Rd j x � e � 0º,
and for any y 2 Rd let u D u.t; x; !I e; y/ be the solution to

ut D �uC f .x; u; !/ on .0;1/ �Rd ;

u.0; �; !I e; y/ D u0;H�e Cy on Rd ;
(2.2)

where u0;H�e Cy satisfies Lemma 2.3 with S WD H�e C y. Then for any .x; !/ 2 Rd ��
let

T .x; !I e; y/ WD inf
®
t � 0

ˇ̌
u.t; x; !I e; y/ � 1 � ��

¯
;

which one can think of as the arrival time of the solution from (2.2) at x. Now, [19,
Corollary 2.7 & Propositions 3.8, 4.2, and 5.1] (see also [19, estimate (5.5)]) yield the
following fluctuation estimate for y D 0, which immediately extends to all y 2 Rd by
stationarity of f .

Proposition 2.7. Let f satisfying (H2) either have range of dependence at most � 2
Œ1;1/ or satisfy (H3)–(H4). Then there is xC � 1 such that if in the former case we let

ˇ WD 1 �
1

2m1
; (2.3)

and in the latter case we let

ˇ WD 1 �min
° 1

2m1
;

m4

m3 C 2m4

±
; (2.4)

then for each e 2 Sd�1, � � 0, and x; y 2 Rd with .x � y/ � e � 1, we have

P
�
jT .x; �I e; y/ � EŒT .x; �I e; y/�j � �

�
� 2 exp

�
� xC�2�2..x � y/ � e/�2ˇ

�
:

Moreover, there is xT .e/ 2 Œ 1
c1
; 1
c0
� (depending on f ) and for each ı > 0 there is Cı � 1

such that for all l � 1 we haveˇ̌̌EŒT .le C y; �I e; y/�
l

� xT .e/
ˇ̌̌
� Cı l

�1CˇCı :

Finally, xC and Cı can be chosen to only depend on (1.7) (and Cı also on ı).

Note that ˇ 2 .1
2
; 1/. Also, see the discussion at the start of Section 4 below for the

last claim. Next we state the definition of deterministic front speeds from [10].

Definition 2.8. Let f satisfy (H1) and let e 2 Sd�1. If there is c�.e/ 2 R and �e � �
with P .�e/ D 1 such that for each ! 2 �e and compact K � ¹x 2 Rd j x � e > 0º we
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have

lim
t!1

inf
x2.c�.e/e�K/t

u.t; x; !I e; 0/ D 1;

lim
t!1

sup
x2.c�.e/eCK/t

u.t; x; !I e; 0/ D 0;

then we say that c�.e/ is a deterministic front speed in direction e for (1.1).

The comparison principle shows that this definition is independent of the choice of
u0;H�e in (2.2) with y D 0, as long as it satisfies Lemma 2.3 (and c�.e/ is clearly unique
if it exists). It was shown in [19, Proposition 6.2] that under the hypotheses of Propo-
sition 2.7, deterministic front speeds for f exist for all e 2 Sd�1, and in fact they are
c�.e/ D xT .e/�1 2 Œc0; c1�. Moreover, [19, Theorems 1.3 and 1.4] show that c� is Lips-
chitz continuous on Sd�1.

If A is open convex, then we have the very useful formula (1.5). It will be convenient
to let (1.5) in fact be the definition of ‚A;c

�

.t/ for any continuous c�W Sd�1 ! .0;1/

(with open convex A), and we note that then ‚A;c
�

.t/ is also open convex for each t � 0
(openness follows from continuity of c�). Now if cW Sd�1 ! .0;1/ is continuous and
c � c�, then clearly ‚A;c.t/ � ‚A;c

�

.t/ for each t � 0. In particular, if c0 � c� � c1 for
some c0; c1 2 .0;1/, then for all t � 0 we have

Bc0t .A/ � ‚
A;c�.t/ � Bc1t .A/: (2.5)

Finally, we have the semigroup property

‚A;c
�

.t C s/ D ‚‚
A;c� .t/;c�.s/ (2.6)

for all t; s � 0. The inclusion � is trivial, so let us now consider any x 2 ‚A;c
�

.t C s/.
Take any e 2 Sd�1, and then ye 2 @A such that ye � e D supz2A z � e. Then define

xe WD x �
s

t C s
.x � ye/ D ye C

t

t C s
.x � ye/

and note that x 2 ‚A;c
�

.t C s/ implies for any e0 2 Sd�1 that

xe � e
0 < ye � e

0
C

t

t C s
c�.e0/.t C s/ D sup

z2A

z � e0 C c�.e0/t:

Hence xe 2 ‚A;c
�

.t/, which together with .x � ye/ � e < c�.e/.t C s/ yields

x � e < xe � e C
s

t C s
c�.e/.t C s/ < sup

z2‚A;c
�
.t/

z � e C c�.e/s:

Since this holds for all e 2 Sd�1, we can see that x 2 ‚A;c
�

.t C s/, and (2.6) is proved.
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3. An approximation lemma

In this section we construct a perturbation (A0,c0) of (A,c�) such that the sets ‚A
0;c0.t/

from (1.5) satisfy an interior ball condition on a large time interval. We will use this in the
proof of Theorem 1.3 in the following section.

We say that an open set U � Rd satisfies the r-interior ball condition for some r > 0
if for any x 2 @U there is y 2 U such that Br .y/ � U and x 2 @Br .y/. We also recall
that U � Rd is strictly convex if for all x; y 2 U , the line segment connecting x and y
lies in U 00 [ ¹x; yº.

Lemma 3.1. Let A � Rd be an open bounded convex set, and let c�WSd�1 ! .0;1/ be
continuous. If c0; c1 2 .0;1/ are such that c0 � c� � c1 and r > 0, then for any T � 2r

c0

there is open convex A0 � Rd and a continuous function c0WSd�1 ! .0;1/ such that

(i) c0 � c�;

(ii) A0 � Br .A/ and ‚A;c
�

.T / � Bc1r=c0.‚
A0;c0.T //;

(iii) ‚A
0;c0.t/ satisfies the r-interior ball condition for all t 2 Œ0; T �.

Proof. Since A is convex, by [6, Theorem 5.4], the signed distance function hA of A (i.e.,
hA.x/ WD d.x; @A/ if x 2 Ac , and hA.x/ WD �d.x; @A/ otherwise) is a convex function.
Take any x0 2 A and ı > 0 such that supx2A ıjx � x0j

2 < r . Then

A1 WD
®
x 2 Rd

ˇ̌
hA.x/C ıjx � x0j

2 < 0
¯

is open, convex, with A1 strictly convex and satisfying A1 � A� Br .A1/DW A0. Then A0,
which clearly satisfies the r-interior ball condition, also has strictly convex closure and

A � A0 � A0 � Br .A/: (3.1)

Since A0 satisfies the r-interior ball condition and A0 is strictly convex, for each e 2 Sd�1

there is a unique xe.0/ 2 @A0 such that the outer unit normal vector to @A0 at xe.0/ is e,
and @A0 D

S
e2Sd�1¹xe.0/º. Moreover, we have

x � e < xe.0/ � e for all x 2 A0 n xe.0/: (3.2)

Similarly, replacing A in the above argument by .‚A;c
�

.T //0r , we can find an open,
bounded, convex set A00 satisfying the r-interior ball condition, having strictly convex
closure, and

.‚A;c
�

.T //0r � A
00
� A00 � Br

�
.‚A;c

�

.T //0r
�
.� ‚A;c

�

.T //: (3.3)

Moreover, for each e 2 Sd�1, there is again a unique xe.T / 2 @A00 such that the outer unit
normal at xe.T / is e, we have @A00 D

S
e2Sd�1¹xe.T /º, as well as

x � e < xe.T / � e for all x 2 A00 n xe.T /: (3.4)
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From T � 2r
c0

, c� � c0, and (2.5) we now obtain

Br .A/ � Bc0T�r .A/ D .Bc0T .A//
0
r � .‚

A;c�.T //0r � A
00: (3.5)

Notice also that for any x 2 ‚A;c
�

.T � r
c0
/, we have Br .x/ � ‚A;c

�

.T / due to (2.6) and
(2.5). Therefore ‚A;c

�

.T � r
c0
/ � .‚A;c

�

.T //0r , and it follows that

‚A;c
�

.T / � Bc1r=c0.‚
A;c�.T � c�10 r// � Bc1r=c0

�
.‚A;c

�

.T //0r
�
� Bc1r=c0.A

00/: (3.6)

Now define c0WSd�1 ! R by

c0.e/ WD
.xe.T / � xe.0// � e

T
:

Then c0 > 0 because A0 � A00 by (3.1) and (3.5), and it is also continuous because A0 and
A00 are strictly convex. SinceA00 �‚A;c

�

.T / andA�A0 by (3.3) and (3.1), by using (1.5)
and (3.2) we obtain

xe.0/ � e C c
0.e/T D xe.T / � e � sup

y2A

y � e C c�.e/T � xe.0/ � e C c
�.e/T

for each e 2 Sd�1, so (i) holds. Moreover, from (1.5), (3.2), and (3.4) we see that

‚A
0;c0.T / D

\
e2Sd�1

®
x 2 Rd

ˇ̌
x � e < xe.0/ � e C c

0.e/T
¯

D

\
e2Sd�1

®
x 2 Rd

ˇ̌
x � e < xe.T / � e

¯
D A00:

This, (3.1), and (3.6) yield (ii).
It remains to show that‚A

0;c0.t/ satisfies the r-interior ball condition for all t 2 Œ0; T �.
For any e 2 Sd�1 and t 2 Œ0; T �, let

xe.t/ WD .1 � T
�1t /xe.0/C T

�1txe.T /: (3.7)

Then
xe.t/ � e D xe.0/ � e C c

0.e/t; (3.8)

and (3.2) and (3.4) show for all e0 2 Sd�1 n ¹eº that

xe.t/ � e
0 < .1� T �1t /xe0.0/ � e

0
C T �1txe0.T / � e

0
D xe0.0/ � e

0
C c0.e0/t .D xe0.t/ � e

0/:

Therefore xe.t/ 2 @‚A
0;c0.t/ by (1.5), and xe.t/ ¤ xe0.t/ for all e0 2 Sd�1 n ¹eº.

Since ‚A
0;c0.t/ is bounded and convex by (1.5), it has a supporting hyperplane for

each (outer) direction e 2 Sd�1. From xe.t/ 2 @‚
A0;c0.t/, (3.8), and (1.5) we see that

this hyperplane is precisely ¹x � e D xe.t/ � eº. Since xe0.t/ � e < xe.t/ � e for all e0 2
Sd�1 n ¹eº and xe0.t/ is continuous in e0 for each t 2 Œ0; T � (because it is for t D 0; T ,
by strict convexity of A0, A00), it follows that for each " > 0, there is ı 2 .0; 1/ such
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that if 0 < je0 � ej < ı, then the supporting hyperplane ¹x � e0 D xe0.t/ � e0º contains the
point xe0.t/ satisfying xe0.t/ � e < xe.t/ � e and jxe0.t/� xe.t/j < ". This and xe.t/ � e0 <
xe0.t/ � e

0 show that the closest point to xe.t/ that lies in the intersection of the two
hyperplanes, which is xe.t/C se0

e0�.e0�e/e
je0�.e0�e/ej

for some se0 2 R, must have se0 2 .0; "/. But
since the points from ¹x � e D xe.t/ � eº that satisfy x � e0 � xe0.t/ � e0 are precisely those
with .x � xe.t// �

e0�.e0�e/e
je0�.e0�e/ej

� se0 , and this holds for all e0 with je0 � ej < ı, we see that

@‚A
0;c0.t/\¹x � eD xe.t/ � eº�B".xe.t//. Taking "! 0 shows that @‚A

0;c0.t/\¹x � eD

xe.t/ � eº D ¹xe.t/º, and so

@‚A
0;c0.t/ D

[
e2Sd�1

¹xe.t/º:

Now fix any t 2 Œ0; T � and x 2 @‚A
0;c0.t/, and let e 2 Sd�1 be such that xe.t/ D x.

Since A0 and A00 satisfy the r-interior ball condition, there are y0, yT such that B0 WD
Br .y0/ and BT WD Br .yT / satisfy B0 � A0, BT � A00, xe.0/ 2 @B0, and xe.T / 2 @BT .
Now if

B t WD Br ..1 � T
�1t /y0 C T

�1tyT /;

then (3.7) shows that x D xe.t/ 2 @B t . It therefore remains to show that B t � ‚A
0;c0.t/.

For any z 2 B t , there are z0 2 B0 and zT 2 BT such that z D .1 � T �1t /z0 C T �1tzT .
It follows from (3.2) and (3.4) that for any e0 2 Sd�1 we have

z � e0 < .1 � T �1t /xe0.0/ � e
0
C T �1txe0.T / � e

0
D xe0.0/ � e

0
C c0.e0/t

D sup
y2A0

y � e0 C c0.e0/t;

and hence z 2 ‚A
0;c0.t/ by (1.5). Thus B t � ‚A

0;c0.t/, finishing the proof.

4. Proof of Theorem 1.3

We will do the proof simultaneously for f satisfying (H2) and having finite range of
dependence (then we assume this range to be at most � 2 Œ1;1/), and for f satisfying
(H2)–(H4). This is because Proposition 2.7 applies in both these cases, with definitions
(2.3) and (2.4), respectively (we will use these below). We also let c� be the deterministic
front speed for (1.1).

Before we start, for any solution uW Œ0;1/�Rd! Œ0;1� to (1.1) and any 0<�<� <1,
we let the width of the transition zone of u from � to � (at any time t � 0) be (see [21])

Lu;�;� .t; !/ WD inf
®
L > 0

ˇ̌
�u;�.t; !/ � BL.�u;� .t; !//

¯
: (4.1)

It follows from [19, Remark 2 after Definition 2.3] and [19, Lemma 2.4] that if f satisfies
(H2), then there are ��; �� > 0 such that if u solves (1.1) with some ! 2 � and initial
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data satisfying Lemma 2.3 for some S � Rd , then

sup
t�0; �2.0;1���/

Lu;�;1���.t/

1C j ln �j
� ��1� ; (4.2)

inf
.t;x/2Œ��;1/�Rd

u.t;x/2Œ��;1����

ut .t; x/ � ��:

We will in fact only need this in the first part of this proof, for S being half-spaces (so for
the solutions from (2.2)).

Moreover, it follows from the above results in [19] that there is ��D ��.M;�1;m1;˛1/
> 0 such that ��, �� can be chosen to depend only onM , �1,m1, ˛1 from (H1) and � > 0
from (1.6). Similarly, xC and Cı in Proposition 2.7 can be chosen to depend only on (1.7)
(and Cı also depends on ı) because they depend on the constants from [19, list (2.10)]
(plus � in the finite range of dependence setting), which is (1.7) without �, � and also with
��, ��, m2, ˛2, m04. But when we assume (H2), we can simply let m2 WD 1 and ˛2 WD 0
in [19] because 1C jln �j � ��1 for � 2 .0; 1/; and when we also assume (H4), in which
case m04 also plays a role in [19] , we can let m04 WD 1.

In the rest of this section, constants that include C will again depend on (1.7), while
any other dependence will be explicitly declared in the notation (e.g., C 0";T also depends
on ", T ). These constants may also vary from one expression to the next.

We are now ready for the proof of Theorem 1.3, which we split into two main parts.
Without loss, we will assume that T0 � 1.

4.1. Proof of the “upper bound”

In this part we will prove (4.19) below for all small " > 0. Let us pick

� 0 WD min
°1 � ˇ

4
; �
±
D 2�; (4.3)

and some "0 2 .0; 12 / such that

max
®
.1C jln.� � "1=m10 /j/��1� "

1�2� 0

0 ; ..��/�1 C 4C 0/"�
0

0

¯
� 1; (4.4)

with C 0 � 1 to be determined later. Note that this "0 depends only on (1.7) and �, � . Fix
any y 2 @A and ey 2 Sd�1 such that A � H�ey C y (such an ey always exists because A
is convex, and we call it an outer normal to @A at y). Then let

v"y.t; x; !/ WD u.t; x; !I ey ; "
�1y/;

with the right-hand-side function defined in (2.2). If we now let u".t;x;!/WDu"."t;"x;!/,
then Lemmas 2.1 and 2.2 yield

v"y.�"; �; !/ � .1 � "
1=m1/�H�eyC"

�1.yC"�ey/ � u
".0; �; !/ � "1=m1 (4.5)
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with
�" WD �0 C 2c

�1
0 "��1 CD1"

.1�m1/=m1

(then also �" � C"�
0�1 for some C > 0 due to (4.3) and � � � 0).

It follows from (4.5) and the last claim in [19, Lemma 3.7] with f2 D f1 D f (this
extends [19, Lemma 2.9] from initial data approximating characteristic functions of balls
to those in (2.2), which instead approximate characteristic functions of half-spaces) that if
we extend f to Rd � .1;1/ �� by 0, then with M� WD 1CM

��
we have that

v"y..1CM�"
1=m1/t C �"; x; !/C "

1=m1

is a supersolution to (1.1) for .t; x/ 2 .��;1/ � Rd . Hence, if we let � 0" WD �" C .1 C

M�"
1=m1/�� and use .v"y/t � 0 (by Lemma 2.3) and (4.5), we obtain from the comparison

principle that

w"y.t; x; !/ WD v
"
y..1CM�"

1=m1/t C � 0"; x; !/C "
1=m1 � u".t; x; !/

for all .t; x/ 2 .0;1/ �Rd . Therefore,

w";y.�; �; !/ WD w
"
y."
�1
�; "�1�; !/ � u".�; �; !/ (4.6)

on .0;1/ �Rd . We can now use this estimate to prove (4.19).
Let us first obtain a crude !-uniform bound. Corollary 2.5 yields

�v"y ;1���.t; !/ � �v"y ;1��1.t; !/ � H�e C "
�1y C .R0 C �1 C c1t /ey ;

and so from R0 C �1 C c1Œ.1CM�"
1=m1/t C � 0"� � C.t C "

� 0�1/ for some C > 0, we
obtain

�w";y ;1���.t; !/ � H�e C y C C.t C "
� 0/ey

for all t � 0. From (4.2) and (4.4) we see that supt�0Lv"y ;��"1=m1 ;1���.t/ � "
2� 0�1, hence

sup
t�0

Lw";y ;�;1���.t/ � " sup
t�0

Lv"y ;��"1=m1 ;1���.t/ � "
2� 0 : (4.7)

So in view of (4.6), for all t � 0 we get

�u";� .t; !/ � �w";y ;� .t; !/ � H�e C y C C.t C "
� 0/ey : (4.8)

Since this holds for all y 2 @A and all normal directions ey at y, there exists C > 0 such
that for all t � 0 and ! 2 � we have

�u";� .t; !/ � BC.tC"� 0 /.A/: (4.9)

Now fix any T � "�
0

(> "), so we have

�u";� .T; !/ � B zCT .A/; (4.10)
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with zC WD 2max¹C; c1º. Next, take any Ny 2 B zCT .A/ n ‚
A;c�.T /, let y be the unique

projection of Ny onto @A, let ey WD
Ny�y
j Ny�yj

(which is then an outer normal to @A at y), and
define v"y , w"y , and w";y as above. Then the definition of ‚A;c

�

.�/ yields

c�.ey/T � j Ny � yj � zCT: (4.11)

Consider the arrival times

T w" . Ny; !/ WD inf
®
t � 0

ˇ̌
w";y.t; Ny; !/ � 1 � �

�
¯
;

T v" . Ny; !/ WD "
�1 inf

®
t � 0

ˇ̌
v"y.t; "

�1
Ny; !/ � 1 � ��

¯
;

both of which are � CT for some C > 0 by (4.11) and Lemma 2.1. Since (4.3) and (4.4)
yield "1=m1 � �� (and so 1 � �� � "1=m1 � �2), Lemma 2.1, � 0 < 1

m1
, and "� 0" � C"

� 0

imply

T v" . Ny; !/ � T
w
" . Ny; !/C C"

1=m1T C "� 0" C "�0 � T
w
" . Ny; !/C C.1C T /"

� 0 : (4.12)

Next, after applying Proposition 2.7 to v"y with ı WD � 0 and l WD j Ny � yj D . Ny � y/ � ey ,
and using c�.ey/ D xT .ey/�1 and ˇ � 1 � 4� 0, we getˇ̌̌EŒT v" . Ny; �/�

j Ny � yj
�

1

c�.ey/

ˇ̌̌
� C."�1j Ny � yj/�3�

0

(here we call the constant Cı D C� 0 just C ). This and (4.11) yield

T � EŒT v" . Ny; �/� � C j Ny � yj
1�3� 0"3�

0

� C.1C T /"3�
0

: (4.13)

Using (4.11) again, it follows from Proposition 2.7 that for all � � 0,

P
�
jT v" . Ny; �/ � EŒT v" . Ny; �/�j > "�

�
� 2 exp.�C�2�2."�1j Ny � yj/�2ˇ /

� 2 exp.�C�2�2T �2ˇ"2ˇ /: (4.14)

Now take � WD CT ˇ"�ˇ��
0

with C from the last expression, and then � � CT"2�
0�1 by

ˇ � 1 � 4� 0 and T � "�
0

. Hence (4.13) and (4.14) show that there is C > 0 such that

P
�
T v" . Ny; �/ � T � C.1C T /"

2� 0
�
� 2 exp.�"�2�

0

/:

Using (4.12) yields, with some C > 0 and C";T WD C.1C T /"�
0

,

P
�
w";y.T � C";T ; Ny; �/ � 1� �

�
�
D P

�
T w" . Ny; �/ � T � C";T

�
� 2 exp.�"�2�

0

/: (4.15)

Now let r WD "2�
0

(2 ."; T / because � 0 2 .0; 1
8
/), and note that (4.7) implies

L" WD r C sup
z2@A

sup
t�0

Lw";z ;�;1���.t; !/ � 2"
2� 0 : (4.16)
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Next let G";T � B zCT .A/ n‚
A;c�.T / be some set containing one point from each cube in

Rd with side length rd�1=2 and all vertices in rd�1=2Zd that has a non-empty intersection
with B zCT .A/ n‚

A;c�.T /. Note that then B zCT .A/ n‚
A;c�.T / � Br .G";T /.

Let us now consider any Ny 2 G";T . If we have w";y.t; x; !/ � � for some x 2 Br . Ny/
and t � 0, then (4.1) shows that there is x0 2 BL". Ny/ such that w";y.t; x0; !/ � 1 � ��.
Applying Lemma 2.1 to v"y then implies w";y.t C 2c�10 L" C "�0; Ny; !/ � 1 � �

�. Since

C";T C 2c
�1
0 L" C "�0 � C

0.1C T /"�
0

DW C 0";T

by (4.16) (with some C 0 � 1, that will then also be the number in (4.4)), from (4.15) we
get

P
�
w".T � C

0
";T ; x; �/ � � for some x 2 Br . Ny/

�
� 2 exp.�"�2�

0

/ (4.17)

(with the understanding that this probability is 0 when T �C 0";T < 0). Then (4.10), (4.17),
w";y � u", .w";y/t � 0, and the fact that jG";T j � CAT d r�d for some CA > 0 (depending
only on the diameter of A and (1.7)) yield

P
�S

t2Œ0;T�C 0";T �
�u";� .t; �/ 6� ‚

A;c�.T /
�

�

X
Ny2G";T

P
�
w".T � C

0
";T ; x; �/ � � for some x 2 Br . Ny/

�
� 2CAT

d r�d exp.�"�2�
0

/: (4.18)

From (4.4) and T0 � 1 we now have C 0";T0 <
T0
2

. So for any t 2 ŒC 0";T0 ; T0�, there is a
unique T 2 .t; 2t/ such that t D T � C 0";T . Then C 0";T � 2C

0
";T0

and so

‚A;c
�

.T / � B3c1C 0";T0
.‚A;c

�

.t � C 0";T0//

by c� � c1. Then (4.18) yields

P
�
�u";� .s; �/ 6� B3c1C 0";T0

.‚A;c
�

.s// for some s 2 Œt � C 0";T0 ; t �
�

� 2dC1CAT
d
0 "
�2d� 0 exp.�"�2�

0

/;

and so from dT0.C 0";T0/
�1e � 2"��

0

we obtain

P
�
�u";� .s; �/ 6� B3c1C 0";T0

.‚A;c
�

.s// for some s 2 Œ0; T0�
�

� 2dC2CAT
d
0 "
�.2dC1/� 0 exp.�"�2�

0

/:

If we make "0 > 0 smaller yet, depending on the constants mentioned after (4.4) as well
as A and T0, then for all " 2 .0; "0/ this shows

P
�
�u";� .t; �/ � B"� .‚

A;c�.t// for all t 2 Œ0; T0�
�
� 1 � exp.�"�2� /: (4.19)
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4.2. Proof of the “lower bound”

The second part of this proof is considerably more involved than the first. This is because
a lower bound for the solution u" is needed here, but the solutions u.�; �; �I e; y/ with front-
like initial data cannot serve as global barriers from below. We overcome this problem by
using them as approximate local barriers on short time intervals, making use of Lemma
3.1 in the process.

Our goal is now to prove a counterpart to (4.19), namely

P
�
.‚A;c

�

.t//0"� � �u";� .t; �/ for all t 2 ŒC�;A"; T0�
�
� 1 � exp.�"�2� / (4.20)

for all " 2 .0; "0/, with some C�;A and with "0 > 0 depending on the constants mentioned
after (4.4) as well as A and T0. Of course, this will then finish the proof.

We will simplify our task a little, so we only have to study .1� ��/-level sets of a spe-
cial solution Qu" to (1.1) with initial data Qu"0 satisfying Lemma 2.3 with S D "�1.A0"� / DW
A". We again let Qu".t;x;!/ WD Qu". t" ;

x
"
;!/, and claim that for some �0D �0.M;�1;m1;˛1;

�; A/ > 0 we have
� Qu";1���.t � �0"; !/ � �u";� .t; !/ (4.21)

for all t � �0". Indeed, let U W Œ0;1/! Œ0; 1� be a solution to U 0 D F0.U / with initial
data U.0/ D 1� �1. Since F0.u/ > 0 for all u 2 Œ1� �1; 1/, there is �1 D �1.m1; ˛1/ > 0
such that U.�1/ � 1 � 1

2
��. It follows from Lemma 2.4 with u1.t; x/ WD U.t/, u2 WD u",

and r WD 2
p
Md�1 C

p
d=M ln 4d

��
that

u".�1; �; !/ � U.�1/ � 2de
p
M=d.�rC2

p
Md�1/ � 1 � ��

on .A"/0r (which is non-empty if "0 > 0 is small enough, depending on A, �). Next let

�2 WD �1 C 2c
�1
0 r 0 C 2c�10 R0 C �0;

where Br 0..A"/0r /� A
" for all small enough " > 0 (such an r 0 D r 0.A; r/ exists because A

is convex and hence @A is Lipschitz). Then u".�2; �; !/ � 1 � �� on BR0.A
"/ by Lemma

2.1, so u".�2; �; !/ � Qu".0; �; !/. Thus for all .t; !/ 2 Œ0;1/ �� we obtain

� Qu";1���.t; !/ � �u";1���.t C �2"; !/:

When � � 1 � ��, this immediately yields (4.21) with �0 WD �2 . When � 2 .1 � ��; 1/,
this and Lemma 2.2 yield (4.21) with �0 WD �2 C 1CD1.1 � �/1�m1 .

Now let � 0 be from (4.3). We claim that (4.20) will follow once we show that there is
zC > 0 such that for all T0 � 1 and " > 0 small enough (depending on the constants after
(4.4) and A, T0) we have

P
�
.‚"A

";c�.t//0
zCT0"�

0 � � Qu";1���.t; �/ for all t 2 Œ0; T0�
�
� 1 � exp.�"��

0

/: (4.22)

Indeed, for all small " > 0 we have

.‚A;c
�

.t//0
2"�
0 � ‚

"A";c�.t � �0"/
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for all t � �0" due to the convexity of A, (1.5), and (4.3). This and (4.21) now show that
if .‚"A

";c�.t//0
zCT0"�

0 � � Qu";1���.t; !/ for all t 2 Œ0; T0�, then

.‚A;c
�

.t//0
.2C zCT0/"�

0 � �u";� .t; !/

for all t 2 Œ�0"; T0�. So again, if we make "0 > 0 smaller yet, depending on the constants
mentioned after (4.4) as well as A and T0, then (4.22) will indeed imply (4.20) with
C�;A WD �0.

So let us now prove (4.22). In the proof, we will write u" and A in place of Qu" and "A"

(so .u"/t � 0), and denote

� 00 WD
1 � ˇ

2.2 � ˇ/
2 .� 0; 1

6
/ and r" WD "

� 00 (4.23)

(recall that ˇ 2 .1
2
; 1/). Let us also pick "0 2 .0; 12 / such that

max
®
2c�10 "�

00�� 0

0 ;D2.1C �0 C c1.1C 4c
�1
0 //"�

00

0

¯
� 1 (4.24)

(where �0 is from Lemma 2.1 andD2 from Corollary 2.6); we will need to further decrease
"0 later. For any uW Œ0;1/ �Rd ��! Œ0; 1�, let us denote by

Tu.x; !/ WD inf
®
t � 0

ˇ̌
u.t; x; !/ � 1 � ��

¯
the arrival time at x 2 Rd .

Now we fix any " 2 .0; "0� and T 2 Œ"�
0

; T0�, and pick A0; c0 as in Lemma 3.1 with
r D r" (then T � 2r

c0
by (4.24)). Then let ‚k";T WD ‚

A0;c0.kr2" / for each k 2 N, and

tk.!/ WD inf
®
t � 0

ˇ̌
u".t; �; !/ � .1 � �

�/�‚k";T

¯
for each ! 2 �. Note that from Lemmas 2.1 and 3.1 (ii) we obtain

t0.�/ � 2c
�1
0 r" C �0": (4.25)

LetK WD dT r�2" e, so that clearly‚A
0;c0.T /� �u";1���.tK.!/;!/ for all ! 2�. Our goal

is now to prove (4.36) below, which is a high-probability upper bound on tkC1.�/ � tk.�/
for each k D 0; 1; : : : ;K � 1. Adding these will then yield a high-probability upper bound
on tK.�/, and therefore also estimate (4.37) below, which is very close to (4.22) for the
single time T instead of all t 2 Œ0; T0�. We will then upgrade this to (4.22).

Fix any x0 2‚kC1";T n‚
k
";T and ! 2�. Since‚k";T is convex, there is x1 2 @‚k";T such

that d.x0; ‚k";T / D jx0 � x1j, and e WD x0�x1
jx0�x1j

is an outer normal to @‚k";T at x1. Then

d0 WD jx0 � x1j � c
0.e/r2" � c

�.e/r2" (4.26)

by (2.6) and Lemma 3.1 (i). Since ‚k";T satisfies the r"-interior ball condition by Lemma
3.1 (iii), e is the unique outer normal to @‚k";T at x1 and

Br".x1 � r"e/ � ‚
k
";T � �u";1���.tk.!/; !/:
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So if we let w"
k
.t; x; !/ WD u".tk C "t; x0 C "x; !/, then clearly

B"�1r".�"
�1.d0 C r"/e/ � �w"

k
;1���.0; !/: (4.27)

Let us now define d1 WD c1r2" CD2..1C �0/"C 4c
�1
0 c1r

2
" /, withD2 � 1 from Corol-

lary 2.6. Then d1 > max¹r2" ; d0º by (4.26), and d1 < min¹r"; C r2" º for some C > 0 by
2� 00 < 1 and (4.24). We also let

d2 WD
d21 C d

2
0 C 2d0r"

2.d0 C r"/
;

so then d1 � d2 D
.d1�d0/.2r"�d1Cd0/

2.d0Cr"/
> 0 and d2 � d0 D

d21�d
2
0

2.d0Cr"/
> 0. Hence,

0 � d0 < d2 < d1 � min¹r"; C r2" º and d2 � d0 � Cr
3
" ; (4.28)

with some C > 0. We then have®
x 2 Rd

ˇ̌
x � e < �"�1d2

¯
\ B"�1d1.0/ � B"�1r".�"

�1.d0 C r"/e/; (4.29)

which follows from (4.28) and the fact that the spherical cap on the left has axis e and the

radius of its base is
q
d21 � d

2
2 , which equals

p
r2" � .r" C d0 � d2/

2 due to the definition
of d2.

Now let
v.�; �; !/ WD u.�; "�1x0 C �; !I e; "

�1.x0 � d2e//;

where u is from (2.2). Then v and w"
k

both satisfy (1.1) with f shifted in space by x0
"

, and
supp v.0; �; !/ � H�e C .R0 �

d2
"
/e. This, (4.27), (4.29), and Lemma 2.1 yield

v.0; �; !/ � w"k.�3; �; !/

onB"�1d1.0/, where �3 WD 2R0
c0
C �0. Since v.0; �;!/� .1� ��/�H�e �"�1d2e , from Lemma

2.1 we also obtain Tv.0;!/ � 2."c0/�1d2 C �0, so the definition of d1, (4.26), and (4.28)
yield

"�1d1 � D2.1C �0 C 4."c0/
�1c1r

2
" / � D2.1C Tv.0; !//;

provided "0 > 0 is small enough (depending on (1.7)) so that d2 � c�.e/r2" C Cr
3
" �

2c1r
2
" . So Corollary 2.6 with

u1 WD v.�; �; !/; u2 WD w
"
k.�; �; !/; t0 WD �3; and R WD "�1d1;

yields
Tv.0; !/ � Tw"

k
.0; !/ � �3 � �0: (4.30)

We next apply both claims in Proposition 2.7, with ı WD � 0 and l WD "�1d2 (also recall
that xT .e/ D c�.e/�1), to obtain

P
�
jTv.0; �/ � ."c

�.e//�1d2j � C."
�1d2/

ˇC� 0
C �

�
� 2 exp.� xC�2�2."�1d2/�2ˇ / (4.31)
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for some C > 0 and all � � 0. Let us then take � WD xC."�1d2/ˇ"��
0

. We get from (4.23)
and (4.28) that

."�1d2/
ˇC� 0

� ."�1d2/
ˇ"��

0

� C"3�
00�1; (4.32)

because (4.23) yields

3� 00 C � 0 � 2� 00ˇ � � 00.4 � 2ˇ/ � 1 � ˇ:

Then (4.31) and d2 � c�.e/r2" C Cr
3
" show that with some C > 0 we have

P
�
Tv.0; �/ � "

2� 00�1
C C"3�

00�1
�
� 2 exp.�"�2�

0

/: (4.33)

Hence (4.30), 3� 00 � 1, and the definition of w"
k

yield with some C > 0,

P
�
Tu".x0; �/ � tk.�/ � "

2� 00
C C"3�

00�
� 2 exp.�"�2�

0

/: (4.34)

In order to upgrade this to (4.36), letGk";T �‚
kC1
";T n‚

k
";T be a set containing one point

from each cube in Rd with side length "d�1=2 and all vertices in "d�1=2Zd that has a non-
empty intersection with ‚kC1";T n ‚

k
";T (recall that d � 3 is the spatial dimension). Then

clearly‚kC1";T n‚
k
";T � B".G

k
";T /. If x0 2 Gk";T , applying Lemma 2.1 to u" D u"."�; "�; !/

yields
Tu".x0; !/ � sup

x2B".x0/

Tu".x; !/ � .2c
�1
0 C �0/": (4.35)

This, (4.34), and the fact that jGk";T j � CAT
d�1r2" "

�d for some CA > 0 yield with some
C > 0,

P
�
tkC1.�/ � tk.�/ � "

2� 00
C C"3�

00�
D P

�
sup

x2‚kC1";T n‚
k
";T
Tu".x; �/ � tk.!/ � "

2� 00 C C"3�
00�

� 2CAT
d�1"2�

00�d exp.�"�2�
0

/: (4.36)

Next recall thatKDdT"�2�
00

e, and T0�max¹T;1º. Then forC 0 WD 1C 2C C 2c�10 C
�0, with C from (4.36), we have

K."2�
00

C C"3�
00

/C 2c�10 "�
00

C �0" � T C C
0T0"

� 00 :

This, (4.36), and (4.25) imply that

P
�
tK.�/ � T C C

0T0"
� 00
�
�

K�1X
kD0

P
�
tkC1.�/ � tk.�/ � "

2� 00
C C"3�

00�
� 4CAT

d
0 "
�d exp.�"�2�

0

/:

Now (1.5) and Lemma 3.1 (ii) show that

Bc1"�
00
=c0
.‚A;c

�

.T � c1c
�2
0 "�

00

// � ‚A;c
�

.T / � Bc1"�
00
=c0
.‚A

0;c0.T //:
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Then the convexity of A implies ‚A;c
�

.T � c1c
�2
0 "�

00

/ � ‚A
0;c0.T / (note that both these

sets are also convex), so the definition of tK.!/ yields

P
�
‚A;c

�

.T � c1c
�2
0 "�

00

/ 6� �u";1���.T C C
0T0"

� 00 ; �/
�

� P
�
‚A

0;c0.T / 6� �u";1���.T C C
0T0"

� 00 ; �/
�

� P
�
tK.�/ � T C C

0T0"
� 00
�
:

Therefore

P
�
‚A;c

�

.T � c1c
�2
0 "�

00

/ 6� �u";1���.T C C
0T0"

� 00 ; �/
�

� 4CAT
d
0 "
�d exp.�"�2�

0

/: (4.37)

Now let
T" WD "

� 0
C C 0T0"

� 00 and C 00 WD c1C
0
C c21c

�2
0 :

If t 2 ŒT"; T0�, it follows from (4.37) with T WD t � C 0T0"�
00

, and from .‚A;c
�

.t//0c1s �

‚A;c
�

.t � s/ for any s 2 Œ0; t �, that (recall also T0 � 1, so C 00T0 � c1.C 0T0 C c1c�20 /)

P
�
.‚A;c

�

.t//0
C 00T0"�

00 6� �u";1���.t; �/
�
� 4CAT

d
0 "
�d exp.�"�2�

0

/: (4.38)

On the other hand, if t 2 Œ0; T"�, then from c� � c1 and .u"/t � 0 we obtain

.‚A;c
�

.t//0c1T" � A � �u";1���.t; !/: (4.39)

The last two estimates will now yield (4.22). For any t � s � 0 we clearly have
‚A;c

�

.s/ � ‚A;c
�

.t/, and also �u";1���.s; �/ � �u";1���.t; �/ because .u"/t � 0. Then
(4.39) and

zCT0"
� 0
� max

®
c1T"; C

00T0"
� 00
C c1"

� 0
¯
;

with zC WD C 00 C c1, show that

P
�
.‚A;c

�

.t//0
zCT0"�

0 6� �u";1���.t; �/ for some t 2 Œ0; T0�
�

� P
�
.‚A;c

�

.t//0
C 00T0"�

00
Cc1"�

0 6� �u";1���.t; �/ for some t 2 ŒT"; T0�
�

�

dT0"
�� 0e�1X

jDdT""��
0
e�1

P
�
.‚A;c

�

..j C 1/"�
0

//0
C 00T0"�

00
Cc1"�

0 6� �u";1���.j"
� 0 ; �/

�
:

Again using .‚A;c
�

.t//0c1s �‚
A;c�.t � s/ for t � s � 0, and then (4.38), we can continue

this estimate via

�

dT0"
�� 0e�1X

jDdT""��
0
e�1

P
�
.‚A;c

�

.j"�
0

//0
C 00T0"�

00 6� �u";1���.j"
� 0 ; �/

�
� 4CAT

dC1
0 "�d��

0

exp.�"�2�
0

/:
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Recalling that we wrote u" and A in place of Qu" and "A", this yields (4.22) after we let
"0 > 0 be small enough (it will then depend on the constants mentioned after (4.4) as well
as A and T0). The proof is thus finished.
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