
Ann. I. H. Poincaré – AN 27 (2010) 973–995
www.elsevier.com/locate/anihpc

Point-condensation phenomena and saturation effect
for the one-dimensional Gierer–Meinhardt system

Kotaro Morimoto 1

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Received 1 October 2009; received in revised form 11 December 2009; accepted 11 December 2009

Available online 7 January 2010

Abstract

In this paper, we are concerned with peak solutions to the following one-dimensional Gierer–Meinhardt system with saturation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = ε2A′′ − A + A2

H(1 + κA2)
+ σ, A > 0, x ∈ (−1,1),

0 = DH ′′ − H + A2, H > 0, x ∈ (−1,1),

A′(±1) = H ′(±1) = 0,

where ε,D > 0, κ � 0, σ � 0. The saturation effect of the activator is given by the parameter κ . We will give a sufficient condition
of κ for which point-condensation phenomena emerge. More precisely, for fixed D > 0, we will show that the Gierer–Meinhardt
system admits a peak solution when ε is sufficiently small under the assumption: κ depends on ε, namely, κ = κ(ε), and there
exists a limit limε→0 κε−2 = κ0 for certain κ0 ∈ [0,∞).
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we are concerned with the following system of ordinary differential equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = ε2A′′ − A + A2

H(1 + κA2)
+ σ, A > 0, x ∈ (−1,1),

0 = DH ′′ − H + A2, H > 0, x ∈ (−1,1),

A′(±1) = H ′(±1) = 0,

(1)
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where unknowns are A = A(x) and H = H(x). ε > 0, D > 0, κ � 0 and σ � 0 are constants. This system arises as a
steady-state problem of the 1-dimensional Gierer–Meinhardt system with saturation which was proposed by A. Gierer
and H. Meinhardt [4]. The general Gierer–Meinhardt system is written by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

At = ε2�A − A + Ap

Hq(1 + κAp)
+ σ, A > 0, x ∈ Ω, t > 0,

τHt = D�H − H + Ar

Hs
, H > 0, x ∈ Ω, t > 0,

∂A

∂ν
= ∂H

∂ν
= 0, x ∈ ∂Ω, t > 0,

A(x,0) = A0(x), H(x,0) = H0(x), x ∈ Ω,

(2)

where A = A(x, t) and H = H(x, t), τ > 0, � is the Laplace operator in R
N , Ω is a bounded smooth domain in R

N ,
ν is the unit outer normal to ∂Ω . The exponents satisfy the conditions p > 1, q, r > 0, s � 0, and 0 < (p − 1)/q <

r/(s+1). The unknowns A(x, t) and H(x, t) represent the concentrations of an activator and an inhibitor, respectively,
at x ∈ Ω and time t > 0. A0 and H0 are their initial data. One of the parameters of (2), κ stands for the degree of a
saturation effect to the reaction term of the activator. The term σ � 0 is the source term. σ represent the source rate
of the activator. This system expresses some models of biological pattern formation. It is known that (2) has various
kinds of striking solutions when ε is small and D is large. In particular, we are mainly interested in a solution such
that the activator A is concentrated at a finite number of points in Ω . Such a solution is called a “peak solution”. Peak
solutions represent point-condensation phenomena of the activator. When κ = 0 (no saturation case), a lot of methods
to construct peak solutions were established by many mathematicians. However, when κ > 0, it is not trivial whether
a peak solution also exists or not. When κ > 0 is fixed independently of ε, due to the bistable nonlinearity, solutions
with transition layers may exist. Indeed, M. del Pino [3] showed the existence of solutions with multiple layers when
the domain Ω is a ball. See also [1,16,7].

We introduce the shadow system of (2). Dividing the second equation in (2) by D and taking the limit D → ∞
formally, we have �H = 0 in Ω and ∂H

∂ν
= 0 on ∂Ω . This means that H(x, t) does not depend on x, and hence we

can regard H(x, t) = ξ(t). Thus we have the following system which is called the shadow system of (2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At = ε2�A − A + Ap

ξq(1 + κAp)
+ σ, A > 0, x ∈ Ω, t > 0,

τξt = 1

|Ω|
∫
Ω

(
−ξ + Ar

ξs

)
dx, ξ > 0, t > 0,

∂A

∂ν
= 0, x ∈ ∂Ω, t > 0,

A(x,0) = A0(x), ξ(0) = ξ0, x ∈ Ω.

(3)

For this shadow system, in the case (p, q, r, s) = (2,1,2,0), σ = 0, κ > 0, J. Wei and M. Winter [22] showed that the
shadow system (3) admits a stationary solution concentrating at one point of the boundary for sufficiently small ε, and
the stability was studied. In [8], multi-boundary peak stationary solutions to (3) has been constructed for sufficiently
small ε in the case where Ω ⊂ R

N is axially symmetric with respect to xN -axis, (p, q, r, s) = (2,1,2,0), σ = 0,
κ > 0, N � 5. Moreover, multi-boundary peak stationary solutions to the original Gierer–Meinhardt system (2) was
constructed near the solution to the shadow system (3) for sufficiently large D by using the implicit function theorem.
The result was extended to the case σ > 0 in [10]. In [22,8,10], it was supposed that κ � 0 depends on ε, namely
κ = κ(ε), and there exists a limit κε−2N → κ0 ∈ [0,∞) as ε → 0 for certain κ0. This condition is called a “weak
saturation” condition. This condition gives one of the sufficient conditions for which peak solutions appear.

The method, namely, to find a stationary solution to (2) near the stationary solution to the shadow system (3) by
the implicit function theorem, is one of the methods to construct a solution to the Gierer–Meinhardt system (2), which
was developed from the work by W.-M. Ni and I. Takagi [14]. In general, the number D must be large enough in
the method. However, the following question arises, “for D > 0 given arbitrarily, does the Gierer–Meinhardt system
(2) possess a peak solution under the weak saturation condition?”. The purpose of this paper is to construct a 1-peak
solution concentrating at x = 0 to the 1-dimensional Gierer–Meinhardt system (1) for any fixed finite D (which is
called the strong coupling case) under the weak saturation condition.
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We give remarks on other related results. For fixed κ > 0, M. Mimura, M. Tabata and Y. Hosono [1] showed
the existence of interior transition layers by using the singular perturbation method in the case N = 1. Y. Nishiura
[15] showed that, for some 1-dimensional reaction–diffusion systems including the Gierer–Meinhardt system (2), the
bifurcating branch emanating from a uniform state continues to exist until it is connected to the singularly perturbed
solutions when one of the diffusion constants is sufficiently large. Multi-peak stationary solutions to (2) were first
constructed by I. Takagi [17] in the case κ = 0, N = 1. Moreover, its stability was discussed in [5]. In the case κ = 0
and N = 1, J. Wei and M. Winter [23] studied the existence and stability of symmetric and asymmetric multi-peak
stationary solutions to (2), and they showed that multi-peak stationary solutions are generated by exactly two types of
peaks if the peaks are separated. In the case κ = 0 and N = 2, multi-interior peak stationary solutions were constructed
and the stability was discussed in [19–21]. With respect to the stability analysis for the Gierer–Meinhardt system and
its shadow system, see [12,7,9], and the references therein. Some a priori estimate for a stationary solutions to (2)
were given in [6,2,13]. For other results related to the Gierer–Meinhardt system, see [11,18,24] and the references
therein.

Finally, we state remarks on our notation. For a domain Ω ⊂ R, we use standard Lebesgue spaces and Sobolev
spaces L2(Ω), L∞(Ω), H 2(Ω), and so on, with the usual norm. Throughout this paper, unless otherwise stated, we
use the symbols C,C′,C′′, c, c′, c′′ as positive constants, but they need not have the same value in each situation.

This paper is composed as follows. In Section 2, we will state our main results, Theorem 1 and Theorem 2. In
Section 3, we will prepare some lemmas and state an outline of our construction of a solution. In Section 4, we will
give some estimates in order to prove the theorems. In Sections 5 and 6, we will give the proofs of Theorems 1 and 2.

2. Main results

We need some preliminaries to state our main results. We introduce a solution denoted by wδ to the following
problem:{

w′′ − w + fδ(w) = 0, w > 0, in R,

w(0) = max
y∈R

w(y), w(y) → 0 as |y| → ∞, (4)

fδ(w) := w2

1 + δw2
. (5)

It is known that, there exists a constant δ∗ > 0, the problem (4) has a unique solution wδ for each δ ∈ [0, δ∗), and wδ

is radially symmetric, namely, wδ(y) = wδ(−y), y ∈ R. This fact was established in [22]. The number δ∗ is given by

δ∗ = sup

{
δ > 0: there exists a > 0 such that

a∫
0

(−t + fδ(t)
)
dt = 0

}
.

For fixed D > 0, let GD(x, z) be Green’s function to{
DGxx(x, z) − G(x, z) = −δz(x) in (−1,1),

Gx(±1, z) = 0.
(6)

GD(x, z) can be written explicitly

GD(x, z) =
{

θ
sinh(2θ)

cosh[θ(1 + x)] cosh[θ(1 − z)], −1 < x < z,

θ
sinh(2θ)

cosh[θ(1 − x)] cosh[θ(1 + z)], z < x < 1,
(7)

where θ := D−1/2. We put

αD := 1

GD(0,0)
. (8)

Moreover, the non-smooth part of GD(x, z) is given by

KD

(|x − z|) = 1√ e
− 1√

D
|x−z|

. (9)

2 D
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Let HD(x, z) be the regular part of GD(x, z),

GD(x, z) = KD

(|x − z|) − HD(x, z).

HD(x, z) is C∞ in both x and z.
Next, we prepare a cut-off function. Let χ ∈ C∞

0 (R) be a function such that, 0 � χ � 1, χ(x) = 0 for |x| < 1,
χ(x) = 1 for |x| > 2. Let r0 be a fixed constant such that 0 < r0 < 1/2, for example, r0 = 1/10. We will use a cut-off
function in the form χ( x

r0
). Note that χ( x

r0
) = 0 for |x| > 2r0.

We suppose the following assumption on the constant κ in (1).

(A) κ � 0 depends on ε, and there exists a limit

lim
ε→0

κε−2 = κ0 (10)

for some κ0 ∈ [0,∞).

Let us state our main results. We first state a result in the case σ = 0.

Theorem 1. Let σ = 0. Fix D > 0 arbitrarily. We suppose (A), and let the value κ0α
2
D be sufficiently small. Then, for

sufficiently small ε > 0, (1) admits a 1-peak radially symmetric solution (Aε(x),Hε(x)) such that Aε(x) concentrates
at x = 0. More precisely, there exists δε ∈ [0, δ∗) for each ε sufficiently small such that δε → δ0 as ε → 0 for some
δ0 ∈ [0, δ∗) which is decided by κ0 and D and satisfies

δ0

(∫
R

w2
δ0

(y) dy

)2

= κ0α
2
D, (11)

and Aε takes the form:

Aε(x) = 1

ε
∫

R
w2

δε

{
αDwδε

(
x

ε

)
χ

(
x

r0

)
+ εφε

(
x

ε

)}
, x ∈ (−1,1), (12)

where αD is defined by (8), wδ is the unique solution to (4), and φε(y) is a radially symmetric function on Ωε :=
(− 1

ε
, 1

ε
) such that

‖φε‖H 2(Ωε)
� C (13)

holds for some constant C > 0 independent of ε. Hε has the following property:

Hε(0) = 1

ε
∫

R
w2

δε

(
αD + O(ε)

)
as ε → 0. (14)

Next, we state a result in the case σ 
= 0.

Theorem 2. Let σ > 0. We assume the same assumption on κ as in Theorem 1. Then, (1) admits a radially symmetric
solution provided ε is sufficiently small. More precisely, if we fix σ > 0 and γ ∈ (0,1/2), there exists ε̂1 > 0 such that,
for all ε ∈ (0, ε̂1) and σ ∈ (0, σ ), (1) admits a radially symmetric solution (Aε,σ (x),Hε,σ (x)), and Aε,σ takes the
form:

Aε,σ (x) = 1

ε
∫

R
wδε

{
αDwδε

(
x

ε

)
χ

(
x

r0

)
+ εφε

(
x

ε

)
+ εγ φε,σ

(
x

ε

)}
+ σ, x ∈ (−1,1), (15)

where δε and φε are given in Theorem 1, and φε,σ (y) is a radially symmetric function on Ωε such that

‖φε,σ ‖H 2(Ωε)
� σ (16)

holds, and Hε,σ satisfies
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Hε,σ (0) = 1

ε
∫

R
w2

δε

(
αD + O(ε) + (

σ + σ 2)O(
εγ

))
, (17)

as ε → 0, where O(ε) and O(εγ ) are independent of σ .

Remark 3. The setting of the domain (−1,1) is not essential. For given k ∈ N, if we construct a 1-peak solution to (1)
on smaller domain in advance, then we can obtain a k-peak symmetric solution to (1) by reflections.

Remark 4. The assumption “κ0α
2
D is sufficiently small” in Theorem 1 is due to some technical reason. See Remark 14

stated later.

3. Basic analysis and preliminaries

In this section, we prepare some lemmas to prove Theorem 1 and state the outline of our construction. We first
define some function spaces as follows:

L2
r (R) := {

u ∈ L2(R): u(x) = u(−x), x ∈ R
}
, (18)

H 2
r (R) := H 2(R) ∩ L2

r (R), (19)

and for a domain (−a, a), a ∈ (0,∞),

L2
r (−a, a) := {

u ∈ L2(−a, a): u(x) = u(−x), x ∈ (−a, a)
}
, (20)

H 2
r (−a, a) := H 2(−a, a) ∩ L2

r (−a, a), (21)

H 2
r,ν(−a, a) := {

u ∈ H 2
r (−a, a): u′(±a) = 0

}
. (22)

Because we will frequently use rescaling, we introduce the following notations.

Definition 5. Put Ωε := (− 1
ε
, 1

ε
).

For a function u : (−1,1) → R, let u(y) := u(εy), y ∈ Ωε .
Inversely, for a function v : Ωε → R, let v(x) := v(x

ε
), x ∈ (−1,1).

3.1. Basic analysis

For the unique solution wδ to (4), let us state some known facts. After that, we state some new lemmas.

Lemma 6. For each δ ∈ [0, δ∗), the unique radially symmetric solution wδ has the following properties:

(i) wδ ∈ C∞(R).
(ii) Let

Lδ := d2

dx2
− 1 + f ′

δ(wδ) : H 2(R) → L2(R),

where f ′
δ(wδ) = 2wδ/(1 + δw2

δ ). Then, Ker(Lδ) = span{w′
δ}.

(iii) If we restrict the domain to Dom(Lδ) = H 2
r (R), then Lδ has a bounded inverse L−1

δ : L2
r (R) → H 2

r (R).
(iv) If we fix δ ∈ (0, δ∗), then there exist constants C,c > 0 such that

wδ(y),

∣∣∣∣dnwδ

dyn
(y)

∣∣∣∣ � Ce−c|y|, y ∈ R, n = 1,2, (23)

holds for any δ ∈ [0, δ].

Proof. (i)–(iii) have been proven in Lemma 2.2 of [22]. (iv) have been proven in Lemma 2.4 of [8]. �
We state continuity and differentiability of wδ on δ.
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Lemma 7. As a C1(R)-valued function of δ, wδ satisfies the following:

(i) wδ is continuous in δ ∈ [0, δ∗) with respect to the C1(R)-norm.
(ii) wδ is of class C1((0, δ∗),C1(R)).

Proof. This fact was proven in Lemma 2.3 of [22] (see also Lemma 2.3 of [8]). �
Let us denote the derivatives of wδ in x and in δ by w′

δ(x) and dwδ

dδ
, respectively. Next, we state some useful

formulae.

Lemma 8. The following identities hold:

Lδwδ = f ′
δ(wδ)wδ − fδ(wδ), (24)

Lδ

dwδ

dδ
= f 2

δ (wδ), (25)

Lδ

(
wδ + 2δ

dwδ

dδ
+ 1

2
y · w′

δ

)
= wδ, (26)

Lδ

(
wδ + 2δ

dwδ

dδ

)
= fδ(wδ). (27)

Proof. These facts were proven in Lemma 2.3 of [22]. �
Lemma 9. wδ → b in C2

loc(R) holds as δ → δ∗, where b > 0 is the second positive root of −t + fδ∗(t) = 0, t ∈ R.

Proof. This fact was proven in Lemma 2.3 of [22]. �
Lemma 10. For any δ ∈ (0, δ∗), it holds that

d

dδ

( ∞∫
−∞

w2
δ (y) dy

)
> 0. (28)

Proof. This fact was proven in Lemma 2.6 of [22]. �
Lemma 11. For fixed δ ∈ (0, δ∗), there exists constant C > 0 such that∥∥∥∥dwδ

dδ

∥∥∥∥
H 2(R)

� C (29)

holds for any δ ∈ (0, δ).

Proof. It is easy to see that L−1
δ is bounded uniformly in δ ∈ [0, δ]. By using (25) and Lemma 6(iv), we can estimate

by some constants C,C′ > 0 independent of δ ∈ [0, δ] as follows:∥∥∥∥dwδ

dδ

∥∥∥∥
H 2(R)

= ∥∥L−1
δ f 2

δ (wδ)
∥∥

H 2(R)
� C

∥∥f 2
δ (wδ)

∥∥
L2(R)

� C′. (30)

Hence we complete the proof. �
Lemma 12.

(i) For each δ ∈ [0, δ∗), if φ ∈ H 2
r (R) satisfies the following:
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φ′′ − φ + f ′
δ(wδ)φ − γ

∫
R

wδφ∫
R

w2
δ

fδ(wδ) = 0 in R, (31)

γ 
=
∫

R
w2

δ∫
R

w2
δ + 2δ

∫
R

wδ
dwδ

dδ

, (32)

then φ = 0.
(ii) There exists δ1 ∈ (0, δ∗) such that, for δ ∈ [0, δ1), if φ ∈ H 2

r (R) satisfies the following:

φ′′ − φ + f ′
δ(wδ)φ − γ

∫
R

fδ(wδ)φ∫
R

w2
δ

wδ = 0 in R, (33)

γ 
=
∫

R
w2

δ∫
R

L−1
δ (wδ)fδ(wδ)

, (34)

then φ = 0.

Before the proof, we state some remarks. Lemma 10 implies that
∫

R
wδ

dwδ

dδ
> 0 for any δ ∈ (0, δ∗). Hence, we first

notice that

0 <

∫
R

w2
δ∫

R
w2

δ + 2δ
∫

R
wδ

dwδ

dδ

� 1, δ ∈ [0, δ∗). (35)

Secondly, we consider the value of
∫

R
L−1

δ (wδ)fδ(wδ). By using (26) and integration by parts, we have

lim
δ→0

∫
R

L−1
δ (wδ)fδ(wδ) = lim

δ→0

∫
R

(
wδ(y) + 2δ

dwδ

dδ
(y) + 1

2
y · w′

δ(y)

)
fδ

(
wδ(y)

)
dy

=
∫
R

(
w3

0(y) + 1

2
y · w′

0(y)w2
0(y)

)
dy

=
∫
R

(
w3

0(y) − 1

6
w3

0(y)

)
dy

= 5

6

∫
R

w3
0(y) dy > 0. (36)

Here, we note that δ
∫

R

dwδ

dδ
fδ(wδ) dy → 0 as δ → 0 by Lemma 11. Moreover, we see that

w′′
0 − w0 + w2

0 = 0,

∫
R

w′′
0w0 −

∫
R

w2
0 +

∫
R

w3
0 = 0,

∫
R

(
w′

0

)2 +
∫
R

w2
0 =

∫
R

w3
0. (37)

Therefore,
∫

R
w3

0 >
∫

R
w2

0. Thus we have∫
R

w2
δ∫

R
L−1

δ (wδ)fδ(wδ)

∣∣∣∣
δ=0

=
∫

R
w2

0
5
6

∫
R

w3
0

<
6

5
. (38)

Proof. (i) By using (27), the equation (31) can be written as follows:

Lδφ = γ

∫
R

wδφ∫
R

w2
δ

fδ(wδ), φ = γ

∫
R

wδφ∫
R

w2
δ

L−1
δ

(
fδ(wδ)

)
,

∫
R

wδφ = γ

∫
R

wδφ∫
R

w2
δ

(∫
R

w2
δ + 2δ

∫
R

wδ

dwδ

dδ

)
.

Hence,
∫

wδφ = 0 must be hold by (32). Thus we have Lδφ = 0, φ ∈ H 2
r (R), and hence φ = 0 by Lemma 6(iii).
R
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(ii) Define δ1 by

δ1 := sup

{
δ ∈ (0, δ∗):

∫
R

L−1
δ′ (wδ′)f ′

δ′(wδ′) > 0 for δ′ ∈ (0, δ)

}
. (39)

This δ1 is well defined by (36). Then we can prove by the same argument as in the proof of (i). �
Now, we define an operator Lδ on L2(R) with Dom(Lδ) = H 2(R) by

Lδφ = φ′′ − φ + f ′
δ(wδ)φ − 2

∫
R

wδφ∫
R

w2
δ

fδ(wδ). (40)

Its conjugate operator is given by

L∗
δψ = ψ ′′ − ψ + f ′

δ(wδ)ψ − 2

∫
R

fδ(wδ)ψ∫
R

w2
δ

wδ, ψ ∈ H 2(R). (41)

Let us define δ2 by

δ2 = sup

{
δ ∈ (0, δ1):

∫
R

w2
δ′∫

R
L−1

δ′ (wδ′)fδ′(wδ′)
< 2 for δ′ ∈ (0, δ)

}
, (42)

where δ1 is defined by (39). This δ2 is well defined by (38).

Lemma 13. For the operators Lδ and L∗
δ , and δ2 defined above, there hold that

(i) Ker(Lδ) ∩ H 2
r (R) = {0} for any δ ∈ [0, δ∗),

(ii) Ker(L∗
δ ) ∩ H 2

r (R) = {0} for any δ ∈ [0, δ2).

Proof. This lemma is a consequence of Lemma 12. �
Remark 14. We do not know whether Ker(L∗

δ ) ∩ H 2
r (R) is trivial or not for δ near δ∗. If Ker(L∗

δ ) ∩ H 2
r (R) = {0}

holds for all δ ∈ [0, δ∗), then we can remove the assumption “κ0α
2
D is sufficiently small” in Theorem 1. However, it

seems to be a difficult problem.

3.2. Outline of our construction

We state an outline of our construction. We see by Lemmas 9–11 that there exists unique δε ∈ [0, δ∗) such that

δε

(∫
R

w2
δε

)2

= κε−2α2
D (43)

holds for each ε > 0. By the assumption (A), in the limit ε → 0, there hold that

δε → δ0, δ0

(∫
R

w2
δ0

)2

= κ0α
2
D, (44)

as ε → 0, for some δ0 ∈ [0, δ∗). We assume henceforth that κ0α
2
D � 0 is small enough so that δ0 ∈ [0, δ2), where

δ2 is given by (42). Then we note that there exists δ ∈ (0, δ2) such that δε ∈ [0, δ] holds for all ε > 0 sufficiently
small. Hence, we may assume that c <

∫
R

w2
δε

(y) dy < C holds for all ε sufficiently small, the constants c,C > 0 are
independent of ε.

Put

cε := 1

ε
∫

w2
. (45)
R δε
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We consider the following problem for a and h:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2a′′ − a + a2

h(1 + δεα
−2
D a2)

+ σε = 0, a > 0, x ∈ (−1,1),

Dh′′ − h + cεa
2 = 0, h > 0, x ∈ (−1,1),

a′(±1) = h′(±1) = 0,

(46)

where

σε := σ

cε

. (47)

If we obtain a solution to (46), then we obtain a solution to (1) by putting A(x) = cεa(x) and H(x) = cεh(x). For
U ∈ H 2

r,ν(Ωε), let T [U ] be a unique solution to the following problem for v:{
Dv′′ − v + cεU

2 = 0, x ∈ (−1,1),

v′(±1) = 0.
(48)

Here, the under-bar and over-bar notation is due to Definition 5. Moreover, we put

S[U ](y) := U ′′(y) − U(y) + U2(y)

T [U ](y)(1 + δεα
−2
D U2(y))

, y ∈ Ωε. (49)

If we can find U ∈ H 2
r,ν(Ωε) such that, S[U ] + σε = 0, U > 0 in Ωε , then we obtain a solution to (46) by putting

a(x) = U(x) and h(x) = T [U ](x).
Here, we note that T [U ] is written by using Green’s function as follows:

T [U ](x) = cε

1∫
−1

GD(x, z)U2(z) dz, x ∈ (−1,1), (50)

for U ∈ L2(Ωε). In particular, T [U ] is radially symmetric provided U is radially symmetric. Now, let us define an
approximate function wε as follows:

wε(x) := αDwδε

(
x

ε

)
χ

(
x

r0

)
, (51)

where αD = GD(0,0)−1, wδε is the unique solution to (4) for δ = δε , χ is the cut-off function defined in the previous
section. We will first consider the case σ = 0 and prove Theorem 1 in Section 5. For the purpose, we will seek
U ∈ H 2

r,ν(Ωε) such that S[U ] = 0, U > 0 in Ωε in the form U(y) = wε(y) + εφ(y) for some φ ∈ H 2
r,ν(Ωε). Next, we

will consider the case σ 
= 0 in Section 6. Note that (σε =)σ/cε � Cσε holds for some constant C > 0 independent
of ε sufficiently small. Therefore, we can prove Theorem 2 by a perturbation argument.

4. Basic estimates

In this section, we show some basic estimates.

Lemma 15. There exists c1 > 0 such that T [wε](x) � c1, x ∈ (−1,1), for all ε sufficiently small.

Proof.

T [wε](x) = cε

1∫
−1

GD(x, z)w2
ε (z) dx

= α2
Dcε

1∫
GD(x, z)w2

δε

(
z

ε

)
χ2

(
z

r0

)
dz
−1
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= α2
Dεcε

1/ε∫
−1/ε

GD(x, εz)w2
δε

(z)χ2
(

ε

r0
z

)
dz

�
α2

D∫
R

w2
δε

θ

sinh(2θ)

1/ε∫
−1/ε

w2
δε

(z)χ2
(

ε

r0
z

)
dz

= α2
D∫

R
w2

δ0

θ

sinh(2θ)

∞∫
−∞

w2
δ0

(z) dz + o(1),

as ε → 0, where o(1) is uniform in x ∈ (−1,1). This estimate completes the proof. �
Next, we show the following elementary inequality.

Lemma 16. For the non-smooth part KD(|x − z|) of GD(x, z), the following estimate holds:

∣∣KD

(|x|) − KD

(|y|)∣∣ � 1

2
√

D

{
1√
D

(∣∣|x| − |y|∣∣) + 1

2

(
1√
D

)2(|x|2 + |y|2)}. (52)

Proof. This lemma is easily verified by (9) and the following elementary inequality:

1 − |x| � e−|x| � 1 − |x| + 1

2
|x|2.

Thus, we omit the details. �
Lemma 17. For wε defined by (51), it holds that

T [wε](0) = αD + O(ε), (53)

as ε → 0.

Proof. Note that

T [wε](0) = cε

1∫
−1

GD(0, z)w2
ε (z) dz = α2

D∫
R

w2
δε

1/ε∫
−1/ε

GD(0, εz)w2
δε

(z)χ2
(

ε

r0
z

)
dz,

and the following inequality holds:

∫
|z|< r0

ε

GD(0, εz)w2
δε

(z) dz �
1/ε∫

−1/ε

GD(0, εz)w2
δε

(z)χ2
(

ε

r0
z

)
dz �

∫
|z|< 2r0

ε

GD(0, εz)w2
δε

(z) dz. (54)

The left-hand side of (54) is written as follows:

(l.h.s.) = GD(0,0)

∫
|z|< r0

ε

w2
δε

(z) dz +
∫

|z|< r0
ε

{
GD(0, εz) − GD(0,0)

}
w2

δε
(z) dz ≡ I + II.

Moreover, noting α−1
D = GD(0,0), we can estimate by Lemma 6(iv) so that

I = α−1
D

{∫
R

w2
δε

(z) dz −
∫

|z|> r0

w2
δε

(z) dz

}
= α−1

D

∫
R

w2
δε

(z) dz + e.s.t., (55)
ε
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where “e.s.t.” means “exponentially small term”. Next, we can estimate by Lemma 16 and the mean value theorem as
follows:

|II| �
∫

|z|< r0
ε

∣∣KD

(
ε|z|) − KD(0)

∣∣w2
δε

(z) dz +
∫

|z|< r0
ε

∣∣HD(0, εz) − HD(0,0)
∣∣w2

δε
(z) dz

� C

∫
|z|< r0

ε

ε|z|w2
δε

(z) dz

� C′ε.

Here, we note that, ε2|z|2 < ε|z|r0 for |z| < r0/ε,
∫

R
|z|w2

δε
(z) dz is bounded uniformly in ε sufficiently small since

we may assume δε ∈ [0, δ] and we can apply Lemma 6(iv). Hence

(
l.h.s. of (54)

) = α−1
D

∫
R

wδε + O(ε). (56)

We can see that the right-hand side of (54) have the same behavior as (56). Thus we have

T [wε](0) = α2
D∫

R
w2

δε

(
α−1

D

∫
R

w2
δε

(z) dz + O(ε)

)
= αD + O(ε).

Thus we complete the proof. �
Lemma 18. For some constant C > 0, the following estimate holds:∣∣T [wε](εy) − T [wε](0)

∣∣ � C
(
ε|y| + ε

)
, y ∈ Ωε, (57)

for all ε sufficiently small.

Proof.

T [wε](εy) − T [wε](0) = cε

1∫
−1

{
GD(εy, z) − GD(0, z)

}
w2

ε (z) dz

= α2
D∫

R
w2

δε

1/ε∫
−1/ε

{
GD(εy, εz) − GD(0, εz)

}
w2

δε
(z)χ2

(
ε

r0
z

)
dz

= α2
D∫

R
w2

δε

[ 1/ε∫
−1/ε

{
KD

(
ε|y − z|) − KD

(
ε|z|)}w2

δε
(z)χ2

(
ε

r0
z

)
dz

−
1/ε∫

−1/ε

{
HD(εy, εz) − HD(0, εz)

}
w2

δε
(z)χ2

(
ε

r0
z

)
dz

]
.

Now, by Lemma 16, and noting ε|z| � 1 for |z| � 1/ε, the following estimate holds:∣∣KD

(
ε|y − z|) − KD

(
ε|z|)∣∣ � C

(
ε
∣∣|y| − |y − z|∣∣ + ε2(|y − z|2 + |z|2)) � C′ε

(|y| + |z|), y, z ∈ Ωε,

for some C,C′ > 0 independent of ε, y and z. Moreover, we can estimate by the Maclaurin expansion as follows:∣∣HD(εy, εz) − HD(0, εz)
∣∣ � C′′ε

(|y| + |z|), y, z ∈ Ωε,

for some C′′ > 0 independent of ε, y and z. Thus we have
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∣∣T [wε](εy) − T [wε](0)
∣∣ � ε

α2
D∫

R
w2

δε

(
C′ + C′′) 1/ε∫

−1/ε

(|y| + |z|)w2
δε

(z) dz � C′′′(ε|y| + ε
)
, y ∈ Ωε,

for some C′′′ > 0 independent of ε and y. Thus we complete the proof. �
Lemma 19. There exists C1 > 0 such that∥∥S[wε]

∥∥
L2(Ωε)

� C1ε, (58)

for all ε sufficiently small.

Proof. It is easily to see that �wε − wε = −fδε (wδε )αD + e.s.t. in L2(Ωε) as ε → 0. Hence,

S[wε](y) = −fδε (wδε )αD + 1

T [wε](y)

w2
ε(y)

1 + δεα
−2
D w2

ε(y)
+ e.s.t.

= −fδε (wδε )αD + 1

T [wε](y)

α2
Dw2

δε
(y)χ2( ε

r0
y)

1 + δεw
2
δε

(y)χ2( ε
r0

y)
+ e.s.t.

= −fδε (wδε )αD + α2
D

T [wε]
fδε (wδε ) + e.s.t. in L2(Ωε).

By Lemma 17, we have

−fδε (wδε )αD + α2
D

T [wε]
fδε (wδε ) = fδε (wδε )αD

{
−1 + αD

T [wε](0)
+ αD

T [wε](y)
− αD

T [wε](0)

}

= fδε (wδε )αD

{
O(ε) + αD

T [wε](εy)T [wε](0)

(
T [wε](0) − T [wε](εy)

)}
.

Moreover, by Lemma 18, the following estimate holds:

∥∥fδε (wδε )
(
T [wε](0) − T [wε](εy)

)∥∥2
L2(Ωε)

=
∫
Ωε

w4
δε

(1 + δεw
2
δε

)2

(
T [wε](0) − T [wε](εy)

)2
dy

� C

∫
Ωε

w4
δε

(y)
(
ε|y| + ε

)2
dy � C′ε2,

for some constants C,C′ > 0 independent of ε sufficiently small. From these estimates and by Lemma 15, we have a
conclusion. �

Next, we give the derivatives of T and S. The proofs of Lemmas 20, 21 below are uninteresting calculation. So we
give their proofs in Appendix A.

Lemma 20. If we regard T as a mapping form L2(−1,1) into L∞(−1,1), then T is Fréchet differentiable on
L2(−1,1), and its derivative at u ∈ L2(−1,1) is given by

T ′[u]φ = 2cε

1∫
−1

GD(x, z)u(z)φ(z) dz, φ ∈ L2(−1,1). (59)

Moreover, for some constant C > 0 independent of ε sufficiently small, the following estimates hold:∥∥T [u + h] − T [u] − T ′[u]h∥∥
L∞(Ωε)

� C‖h‖2
L2(Ωε)

, (60)∥∥T ′[u]h∥∥
L∞(Ωε)

� C‖u‖L2(Ωε)
‖h‖L2(Ωε)

, (61)

for any u,h ∈ L2(Ωε).
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For τ > 0, we define a ball in H 2(Ωε) as follows:

Bτ (wε) := {
u ∈ H 2(Ωε): ‖wε − u‖H 2(Ωε)

< τ
}
. (62)

Let us fix τ > 0 so that

T [u](x) � 1

2
c1, x ∈ (−1,1), (63)

holds for all u ∈ Bτ (wε) and ε sufficiently small, where c1 is a constant given in Lemma 15.

Lemma 21. For all ε sufficiently small, S : H 2(Ωε) → L2(Ωε) is Fréchet differentiable on Bτ (wε), and its derivative
at u ∈ Bτ (wε) is given by

S′[u]φ = φ′′ − φ + 2uφ

T [u](1 + δεα
−2
D u2)2

− u2(T ′[u]φ)

T [u]2(1 + δεα
−2
D u2)

, φ ∈ H 2(Ωε). (64)

Moreover, the following estimates hold: for u ∈ Bτ (wε), φ ∈ H 2(Ωε) and h ∈ H 2(Ωε), ‖h‖H 2(Ωε)

 1,∥∥S[u + h] − S[u] − S ′[u]h∥∥

L2(Ωε)
� C

(‖h‖2
L2(Ωε)

+ ‖h‖L∞(Ωε)‖h‖L2(Ωε)

)
, (65)∥∥S′[u + h]φ − S′[u]φ∥∥

L2(Ωε)
� C

(‖h‖L2(Ωε)
+ ‖h‖L∞(Ωε)

)‖φ‖L2(Ωε)
, (66)

where C > 0 is independent of u, φ, h and ε sufficiently small.

Remark 22. For the estimate (66), we note that the term φ′′ vanishes in S′[u+h]φ −S ′[u]φ. Actually, (66) also holds
for φ ∈ L2(Ωε).

5. Construction of a solution for σ = 0

In this section, we construct the 1-peak solution to (1) in the case σ = 0 and prove Theorem 1. Therefore, we
always assume σ = 0 throughout this section. Our construction is based on the argument due to the contraction
mapping principle, which was used in [14,23,8], and so on.

Now we define an operator L̃ε on L2(Ωε) with Dom(L̃ε) = H 2
r,ν(Ωε) by

L̃εφ := S′[wε]φ = φ′′ − φ + 2wεφ

T [wε](1 + δεα
−2
D w2

ε)
2

− w2
ε(T

′[wε]φ)

T [wε]2(1 + δεα
−2
D w2

ε)
. (67)

Then its conjugate operator L̃∗
ε is given by Dom(L̃∗

ε) = H 2
r,ν(Ωε) and

L̃∗
εψ = ψ ′′ − ψ + 2wεψ

T [wε](1 + δεα
−2
D w2

ε)
2

−
(

T ′[wε]
[

wεψ

T [wε]2(1 + δεα
−2
D w2

ε )

])
wε. (68)

The most important thing for our construction is the invertibility of L̃ε . We will notice that the limits of L̃ε and L̃∗
ε as

ε → 0 are Lδ0 and L∗
δ0

in some sense.

Proposition 23. There exist ε0 > 0 and λ > 0 such that, for ε ∈ (0, ε0), the following inequality holds:

‖L̃εφ‖L2(Ωε)
� λ‖φ‖H 2(Ωε)

, φ ∈ H 2
r,ν(Ωε). (69)

In particular, if δ0 given in (44) is small so that δ0 ∈ [0, δ2), then

Ran(L̃ε) = L2
r (Ωε), (70)

holds for ε ∈ (0, ε0), and hence, L̃ε : H 2
r,ν(Ωε) → L2

r (Ωε) has a bounded inverse L̃−1
ε .

Before the proof, we make sure of the following extension and embedding lemmas on Ωε and a priori elliptic
estimate. Although they are elementary and well-known facts, we need to state their ε-dependence clearly because
our domain Ωε depends on ε. So, we give their proofs in Appendix A for the completeness.
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Lemma 24 (Extension lemma). For fixed ε > 0, there exists an extension operator E from H 2
r (Ωε) into H 2

r (R), and
there exists C > 0 depending only on ε such that, for all ε ∈ (0, ε),

‖Eu‖H 2(R) � C‖u‖H 2(Ωε)
, u ∈ H 2

r (Ωε). (71)

Lemma 25 (Embedding lemma). For fixed ε > 0, there exists C > 0 depending only on ε such that, for all ε ∈ (0, ε),

‖u‖L∞(Ωε) � C‖u‖H 2(Ωε)
, u ∈ H 2(Ωε). (72)

Lemma 26 (A priori elliptic estimate). For fixed ε > 0 and f ∈ L2(Ωε), let ε ∈ (0, ε) and u ∈ H 2
ν (Ωε) satisfy the

following equation:

−u′′ + u = f in Ωε. (73)

Then, the following estimate holds:

‖u‖H 2(Ωε)
� C‖f ‖L2(Ωε)

, (74)

the constant C > 0 is independent of u, f and ε ∈ (0, ε).

Proof of Proposition 23. We first prove (69). Let the contrary be true. Then there exist {εn}∞n=1 and φn ∈ H 2
r,ν(Ωεn)

such that{
εn → 0, ‖L̃εnφn‖L2(Ωεn ) → 0, as n → ∞,

‖φn‖H 2(Ωεn ) = 1, n = 1,2, . . . .
(75)

Then, each φn can be extended to an element of H 2
r (R) by the extension lemma. For simplicity, let us denote the

extended function Eφn by φn again. Note that ‖φn‖H 2(R) � M holds for some constant M > 0 independent of n.
Hence, we can pick up a subsequence (we denote the subsequence by {φn} simply), such that,

φn ⇀ φ in H 2(R), (76)

φn → φ in L2
loc(R) and L∞

loc(R), (77)

as n → ∞, for some φ ∈ H 2
r (R), where “⇀” means the weak-limit. Let us denote δεn and Ωεn corresponding to εn

by δn and Ωn, respectively. Recall that δn → δ0 as n → ∞. We claim that:

Claim. For any ϕ ∈ C∞
0 (R), it holds that

(L̃εnφn,ϕ)L2(Ωn) → (Lδ0φ,ϕ)L2(R) (n → ∞). (78)

Indeed, let K := supp(ϕ) for ϕ ∈ C∞
0 (R). We may assume Ωn ⊃ K considering n is large enough. Then,

(L̃εnφn,ϕ)L2(Ωn) =
∫
K

φ′′
nϕ −

∫
K

φnϕ +
∫
K

2wεnφnϕ

T [wεn ](1 + δnα
−2
D w2

εn
)2

−
∫
K

w2
εn

(T ′[wεn ]φn)ϕ

T [wεn ]2(1 + δnα
−2
D w2

εn
)
.

Let us consider each term. We first notice that∫
K

φ′′
nϕ −

∫
K

φnϕ →
∫
K

(
φ′′ − φ

)
ϕ (n → ∞).

Recall wεn(y) = αDwδn(y)χ( εn

r0
y). For each y ∈ K , we have

2wεn(y)φn(y)ϕ(y)

T [wεn ](y)(1 + δnα
−2
D w2

εn
(y))2

= 2αDwδn(y)χ( εn

r0
y)φn(y)ϕ(y)

T [wεn ](εny)(1 + δnw
2
δn

(y)χ2( εn

r0
y))2

→ 2wδ0(y)φ(y)ϕ(y)

(1 + δ0w
2 (y))2

= f ′
δ0

(wδ0)φ(y)ϕ(y),

δ0
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as n → ∞. By applying Lebesgue’s convergence theorem, we can see that∫
K

2wεnφnϕ

T [wεn ](1 + δnα
−2
D w2

εn
)2

→
∫
K

f ′
δ0

(wδ0)φϕ (n → ∞).

Next, for each y ∈ K , let

(
T ′[wεn ]φn

)
(y) = 2cεn

1∫
−1

GD(εny, z)wεn(z)φn

(
z

εn

)
dz

= 2αD∫
R

w2
δn

1/εn∫
−1/εn

GD(εny, εnz)wδn(z)χ

(
εn

r0
z

)
φn(z) dz

= 2αD∫
R

w2
δn

{ 1/εn∫
−1/εn

GD(εny,0)wδn(z)χ

(
εn

r0
z

)
φn(z) dz

+
1/εn∫

−1/εn

[
GD(εny, εnz) − GD(εny,0)

]
wδn(z)χ

(
εn

r0
z

)
φn(z) dz

}
.

We notice that

2αD∫
R

w2
δn

1/εn∫
−1/εn

GD(εny,0)wδn(z)χ

(
εn

r0
z

)
φn(z) dz → 2∫

R
w2

δ0

∫
R

wδ0(z)φ(z) dz

as n → ∞ for each y ∈ K . By the same estimate as was used in the proof of Lemma 18, the following estimate holds:

∣∣∣∣∣ 2αD∫
R

w2
δn

1/εn∫
−1/εn

[
GD(εny, εnz) − GD(εny,0)

]
wδn(z)χ

(
εn

r0
z

)
φn(z) dz

∣∣∣∣∣
� Cεn

∫
Ωn

(|y| + |z|)wδn(z)
∣∣φn(z)

∣∣dz

� Cεn

(|y| · ‖wδn‖L2(Ωn) + ‖zwδn‖L2(Ωn)

)‖φn‖L2(Ωn)

� C′εn

(
1 + |y|),

for some constants C,C′ > 0 independent of n. Hence, for each y ∈ K , it holds that

(
T ′[wεn ]φn

)
(y) → 2

∫
R

wδ0φ∫
R

w2
δ0

(n → ∞). (79)

Noting (79), we can see by Lebesgue’s convergence theorem that

∫
K

w2
εn

(T ′[wεn ]φn)ϕ

T [wεn ]2(1 + δnα
−2
D w2

εn
)

→ 2

∫
R

wδ0φ∫
R

w2
δ0

∫
K

fδ0(wδ0)ϕ (n → ∞).

By these observations, the claim is verified.
On the other hand, we notice that∣∣(L̃εnφn,ϕ)L2(Ωn)

∣∣ � ‖L̃εnφn‖L2(Ωn)‖ϕ‖L2(Ωn) → 0 (80)
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as n → ∞ for any ϕ ∈ C∞
0 (R). Combining (78) and (80), we have

(Lδ0φ,ϕ)L2(R) = 0 for any ϕ ∈ C∞
0 (R). (81)

Therefore, Lδ0φ = 0, φ ∈ H 2
r (R). Thus we conclude φ = 0 by Lemma 13.

Next, we claim that:

Claim.

‖φn‖H 2(Ωn) → 0 as n → ∞. (82)

Indeed, by Lemma 26, we have

‖φn‖H 2(Ωn) � C

{
‖L̃εnφn‖L2(Ωn) +

∥∥∥∥ 2wεnφn

T [wεn ](1 + δnα
−2
D w2

εn
)2

∥∥∥∥
L2(Ωn)

+
∥∥∥∥ w2

εn
(T ′[wεn ]φn)

T [wεn]2(1 + δnα
−2
D w2

εn
)

∥∥∥∥
L2(Ωn)

}
≡ C(I + II + III). (83)

By (75), I → 0 as n → ∞. Moreover, by the exponentially decay estimate of Lemma 6(iv) and the fact φn → φ = 0
in L∞

loc(R) and L2
loc(R), we can see that II, III → 0 as n → ∞.

However, (82) contradicts ‖φn‖H 2(Ωn) = 1. Thus (69) is verified.

Next, we show (70). We note that (69) implies the range of L̃ε is closed. Hence, by a general theory of the functional
analysis, Ran(L̃ε) = L2

r (Ωε) if and only if L̃∗
ε is one to one. However, by the same argument as was used in the proof

of (69), we can show that L̃∗
ε is one to one for sufficiently small ε under the assumption where δε → δ0 ∈ [0, δ2) as

ε → 0. Therefore, we omit the details. �
At last, we construct a solution to (1) and complete the proof of Theorem 1. Let us find φ ∈ H 2

r,ν(Ωε) such that
S[wε + εφ] = 0 for sufficiently small ε. Note that it is equivalent to the following: for φ ∈ H 2

r,ν(Ωε),

S[wε + εφ] = 0,(
L̃ε(εφ)

) = S′[wε](εφ) = −S[wε + εφ] + S′[wε](εφ),

εL̃εφ = −S[wε] − (
S[wε + εφ] − S[wε] − S′[wε](εφ)

)
,

φ = 1

ε

{−L̃−1
ε

[
S[wε]

] − L̃−1
ε

[
S[wε + εφ] − S[wε] − S′[wε](εφ)

]} =: Mε(φ).

Hence, we only need to find a fixed point φ of Mε . Define

B :=
{
φ ∈ H 2

r,ν(Ωε): ‖φ‖H 2(Ωε)
<

2C1

λ

}
, (84)

where C1 and λ are constants given in Lemma 19 and Proposition 23, respectively. Let us show that Mε is a contraction
mapping on B when ε is sufficiently small.

Proposition 27. There exists ε1 > 0 such that, for ε ∈ (0, ε1), Mε is a contraction mapping on B .

Proof. For φ ∈ B , note that Mε(φ) ∈ H 2
r,ν(Ωε). Moreover, by Lemma 19, (65) and (72), we can estimate as follows:

∥∥Mε(φ)
∥∥

H 2(Ωε)
� 1

ελ

{∥∥S[wε]
∥∥

L2(Ωε)
+ ∥∥S[wε + εφ] − S[wε] − S′[wε](εφ)

∥∥
L2(Ωε)

}
� 1

ελ

{
C1ε + Cε2(‖φ‖2

L2(Ωε)
+ ‖φ‖L∞(Ωε)‖φ‖L2(Ωε)

)}
� 1

λ

{
C1 + C′ε‖φ‖2

H 2(Ωε)

}
� 1

{
C1 + C′ε

4C2
1

2

}
,

λ λ
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where C,C′ > 0 are independent of ε sufficiently small. Hence, if ε is small so that ε < λ2/(8C1C
′), then

‖Mε(φ)‖H 2(Ωε)
< 2C1

λ
for φ ∈ B . Therefore, Mε is a mapping form B into itself for sufficiently small ε.

For φ1, φ2 ∈ B , by (65), (66) and (72), we can estimate as follows:∥∥Mε(φ1) − Mε(φ2)
∥∥

H 2(Ωε)

� 1

ελ

∥∥S[wε + εφ1] − S[wε + εφ2] − S′[wε](εφ1) + S′[wε](εφ2)
∥∥

L2(Ωε)

� 1

ελ

{∥∥S
[
wε + εφ2 + ε(φ1 − φ2)

] − S[wε + εφ2] − S′[wε + εφ2]
(
ε(φ1 − φ2)

)∥∥
L2(Ωε)

+ ε
∥∥S′[wε + εφ2](φ1 − φ2) − S′[wε](φ1 − φ2)

∥∥
L2(Ωε)

}
� C

ελ

{
ε2‖φ1 − φ2‖2

H 2(Ωε)
+ ε2‖φ2‖H 2(Ωε)

‖φ1 − φ2‖H 2(Ωε)

}
� C′ε‖φ1 − φ2‖H 2(Ωε)

,

where C,C′ > 0 are independent of ε sufficiently small. Therefore, Mε is a contraction mapping on B provided ε is
small enough. �
Proof of Theorem 1. By Proposition 27, Mε has a unique fixed point in B if ε is sufficiently small. Let φε ∈ B be the
fixed point. Then φε satisfies S[wε + εφε] = 0. As we stated in Section 3.2, by putting Aε(x) := cε(wε(x) + εφε(x))

and Hε(x) := cεT [wε + εφε](x), we obtain a solution to (1). We can see that this (Aε,Hε) satisfies (12)–(14). Thus
we complete the proof. �
6. Construction of a solution for σ > 0

In this section, we construct a solution to (1) in the case σ > 0 and prove Theorem 2. Let us treat σ as a parameter.
To lead precise estimates, we fix σ > 0 arbitrarily, and we will consider σ ∈ (0, σ ). Let φε ∈ B be a unique fixed point
of Mε given in the proof of Theorem 1. Put

Uε(y) := wε(y) + εφε, y ∈ Ωε, (85)

and we define an operator L̂ε on L2(Ωε) with Dom(L̂ε) = H 2
r,ν(Ωε) by

L̂εφ := S′[Uε + σε]φ, φ ∈ Dom(L̂ε). (86)

We note that

‖σε‖H 2(Ωε)
= σε‖1‖H 2(Ωε)

= σε√
2ε

= εσ
∫

R
w2

δε
(y) dy√

2ε
< C

√
εσ

holds for some constant C > 0 independent of ε sufficiently small. Thus, we may assume Uε + σε ∈ Bτ (wε) for
sufficiently small ε and σ ∈ (0, σ ). Then we have the following proposition.

Proposition 28. There exists ε̂0 > 0 depending on σ such that, for ε ∈ (0, ε̂0) and σ ∈ (0, σ ), L̂ε has a bounded
inverse L̂−1

ε : L2
r (Ωε) → H 2

r,ν(Ωε), and the following estimate holds:

∥∥L̂−1
ε φ

∥∥
H 2(Ωε)

� 2

λ
‖φ‖L2(Ωε)

, φ ∈ L2
r (Ωε), (87)

where λ is a constant given in Proposition 23.

Proof. Let φ ∈ L2
r (Ωε) be given. For ψ ∈ H 2

r,ν(Ωε), the following equations are equivalent:

L̂εψ = φ,

L̃εψ − (L̃εψ − L̂εψ) = φ,

(I − Kε)ψ := ψ − L̃−1
ε (L̃εψ − L̂εψ) = L̃−1

ε φ. (88)
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Noting L̃εψ − L̂εψ = S′[wε]ψ − S′[Uε + σε]ψ , we can regard Kε is a mapping from L2
r (Ωε) into itself. We can

estimate so that

‖Kεψ‖L2(Ωε)
� ‖Kεψ‖H 2(Ωε)

� 1

λ
‖L̃εψ − L̂εψ‖L2(Ωε)

= 1

λ

∥∥S′[wε + εφε + σε]ψ − S′[wε]ψ
∥∥

L2(Ωε)

� C

λ

(‖εφε + σε‖L2(Ωε)
+ ‖εφε + σε‖L∞(Ωε)

)‖ψ‖L2(Ωε)

� C′(ε + √
εσ )‖ψ‖L2(Ωε)

,

by Lemma 21, where C′ > 0 is independent of σ ∈ (0, σ ) and ε. Therefore, ‖Kε‖L2
r (Ωε)→L2

r (Ωε)
� 1/2 holds provided

ε is small enough. Hence, by the Neumann series theory, (I − Kε)
−1 : L2

r (Ωε) → L2
r (Ωε) exists. Thus, we have

ψ = (I − Kε)
−1φ ≡ L̂εφ. Moreover, from (88), we have ψ ∈ H 2

r,ν(Ωε) and the estimate:

‖ψ‖H 2(Ωε)
� ‖Kεψ‖H 2(Ωε)

+ ∥∥L̃−1
ε ψ

∥∥
H 2(Ωε)

� 1

2
‖ψ‖H 2(Ωε)

+ 1

λ
‖φ‖L2(Ωε)

.

Hence, ‖ψ‖H 2(Ωε)
� 2

λ
‖φ‖L2(Ωε)

follows. �
We put

B̂ := {
φ ∈ H 2

r,ν(Ωε): ‖φ‖H 2(Ωε)
< σ

}
,

and fix γ ∈ (0,1/2) arbitrarily. Let us find φ ∈ B̂ such that S[Uε +σε + εγ φ]+σε = 0. We note that this is equivalent
to the following:

−εγ L̂εφ = S
[
Uε + σε + εγ φ

] − S[Uε + σε] − S′[Uε + σε]
(
εγ φ

) + S[Uε + σε] + σε,

φ = − 1

εγ
L̂−1

ε

(
S
[
Uε + σε + εγ φ

] − S[Uε + σε] − S′[Uε + σε]
(
εγ φ

) + S[Uε + σε] + σε

) =: Mε,σ (φ).

Proposition 29. For σ and γ , there exists ε̂1 > 0 such that, for ε ∈ (0, ε̂1) and σ ∈ (0, σ ), Mε,σ is a contraction
mapping from B̂ into itself.

Proof. By Proposition 28, we have

∥∥Mε,σ (φ)
∥∥

H 2(Ωε)
� 2

εγ λ

{∥∥S
[
Uε + σε + εγ φ

] − S[Uε + σε] − S′[Uε + σε]
(
εγ φ

)∥∥
L2(Ωε)

+ ∥∥S[Uε + σε]
∥∥

L2(Ωε)
+ ‖σε‖L2(Ωε)

}
≡ 2

εγ λ
(I + II + III).

Moreover, by Lemmas 21, 25, we can see that the following estimates hold: for φ ∈ B̂ ,

I � 2Cε2γ ‖φ‖2
H 2(Ωε)

� 2Cε2γ σ 2,

II �
∥∥S[Uε + σε] − S[Uε] − S′[Uε]σε

∥∥
L2(Ωε)

+ ∥∥S′[Uε]σε

∥∥
L2(Ωε)

� C′√ε
(
σ 2 + σ

)
,

III � C′′√εσ ,

the constants C,C′,C′′ > 0 are independent of σ ∈ (0, σ ) and ε sufficiently small. Thus we have∥∥Mε,σ (φ)
∥∥

H 2(Ωε)
� C′′′(σ 2 + σ

)
max

{
ε1/2−γ , εγ

}
for some constant C′′′ > 0 independent of σ and ε sufficiently small. Hence, ‖Mε,σ (φ)‖H 2(Ωε)

< σ holds for all φ ∈ B̂

and σ ∈ (0, σ ) provided ε is small enough.
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Let φ1, φ2 ∈ B̂ . Then, by the same argument as was used in the proof of Proposition 27, we can see that∥∥Mε,σ (φ1) − Mε,σ (φ2)
∥∥

H 2(Ωε)
� Cσεγ ‖φ1 − φ2‖H 2(Ωε)

holds for some constant C > 0 independent of σ and ε sufficiently small. Hence, there exists ε̂1 > 0, Mε,σ is a
contraction mapping on B̂ for ε ∈ (0, ε̂1) and σ ∈ (0, σ ). Thus we complete the proof. �
Proof of Theorem 2. By Proposition 29, Mε,σ has a unique fixed point in B̂ if ε is sufficiently small. Let φε,σ ∈ B̂

be the fixed point. Then φε,σ satisfies S[wε + εφε + σε + εγ φε,σ ] = 0. As we stated in Section 3.2, by putting
Aε,σ (x) := cε(wε(x)+ εφε(x)+σε + εγ φε,σ ) and Hε,σ (x) := cεT [wε + εφε +σε + εγ φε,σ ](x), we obtain a solution
to (1). We can easily see that this (Aε,σ ,Hε,σ ) satisfies (15)–(17). Thus we complete the proof. �
Appendix A

In this section, we give the proofs of Lemmas 20, 21, 24, 25 26. We first prove Lemmas 24, 25, 26.

Proof of Lemma 24. In general, H 2(R)-extensions denoted by E1u and E2v of u ∈ H 2(0,∞) and v ∈ H 2(−∞,0)

are given by

E1u(x) =
{

u(x), x > 0,

3u(−x) − 2u(−2x), x < 0,
E2v(x) =

{
3v(−x) − 2v(−2x), x > 0,

u(x), x < 0,

respectively, and

‖E1u‖H 2(R) � C‖u‖H 2(0,∞), ‖E2v‖H 2(R) � C‖v‖H 2(−∞,0), (89)

hold for some C > 0 independent of u and v. By translation, we see that there exists H 2(R)-extensions denoted by
Ẽ1u and Ẽ2v of u ∈ H 2(− 1

ε
,∞) and v ∈ H 2(−∞, 1

ε
). Because translation does not change the H 2-norm,

‖Ẽ1u‖H 2(R) � C‖u‖
H 2(− 1

ε
,∞)

, ‖Ẽ2v‖H 2(R) � C‖v‖
H 2(−∞, 1

ε
)
, (90)

hold for the same constant C as that in (89). Now, let ϕ ∈ C∞(R) be a function such that, 0 � ϕ � 1, ϕ(x) = 1 for
x � − 1

3 , ϕ(x) = 0 for x > 1
3 . Moreover, we take ϕ so that

1 − ϕ(x) = ϕ(−x), x ∈ R, (91)

holds. We define ϕε(x) := ϕ(εx). Then, for fixed ε > 0, we note that the estimates

sup
x∈R

∣∣ϕ′
ε(x)

∣∣, sup
x∈R

∣∣ϕ′′
ε (x)

∣∣ � M, ε ∈ (0, ε), (92)

hold for some constant M > 0 depending only on ϕ and independent of ε ∈ (0, ε). For u ∈ H 2
r (Ωε), if we regard

(ϕεu)(x) = 0 for x ∈ [− 1
ε
,∞), then ϕεu ∈ H 2(− 1

ε
,∞). Note that ‖ϕεu‖

H 2(− 1
ε
,∞)

� C′‖u‖H 2(Ωε)
holds for all ε ∈

(0, ε) by (92). We extend ϕεu by Ẽ1, Ẽ1(ϕεu) ∈ H 2(R). Similarly, we can regard (1 − ϕε)u ∈ H 2(−∞, 1
ε
), and

Ẽ2((1 − ϕε)u) ∈ H 2(R). Define Eu := Ẽ1(ϕεu) + Ẽ2((1 − ϕε)u). Then, this E is a desired extension operator from
H 2

r (Ωε) into H 2
r (R). Indeed, we can easily see that Eu gives the H 2(R)-extension of u. Moreover, Eu is radially

symmetric by our construction. Note the estimate

‖Eu‖H 2(R) �
∥∥Ẽ1(ϕεu)

∥∥
H 2(R)

+ ∥∥Ẽ2
(
(1 − ϕε)u

)∥∥
H 2(R)

� C
{‖ϕεu‖

H 2(− 1
ε
,∞)

+ ∥∥(1 − ϕε)u
∥∥

H 2(−∞, 1
ε
)

}
� 2CC′‖u‖H 2(Ωε)

.

Thus we complete the proof. �
Proof of Lemma 25. Let E be the extension operator given by Lemma 24. By Morrey’s inequality, we have

‖u‖L∞(Ωε) = ‖Eu‖L∞(Ωε) � ‖Eu‖L∞(R) � C′′‖Eu‖H 2(R) � CC′′‖u‖H 2(Ωε)
.

The constants C,C′′ > 0 are independent of ε ∈ (0, ε). �
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Proof of Lemma 26. We first note that

‖u‖H 1(Ωε)
� ‖f ‖L2(Ωε)

(93)

holds. This can be easily confirmed by multiplying (73) by u and integrating over Ωε . For fixed c ∈ (0, 1
2 ), let ϕ1, ϕ2 ∈

C∞
0 (R) be functions such that

ϕ1(x) =
{

1, |x + 1| < c,

0, |x + 1| > 2c,
ϕ2(x) =

{
1, |x − 1| < c,

0, |x − 1| > 2c.

Define ϕ0(x) := 1 − (ϕ1(x) + ϕ2(x)) for x ∈ (−1,1). Let

ϕε
j (x) := ϕj (εx), j = 0,1,2.

Then, note that | dnϕε
j

dxn (x)|, j = 0,1,2, n = 1,2, are bounded uniformly with respect to ε ∈ (0, ε). Now, ϕε
0u solves the

following equation:

−(
ϕε

0u
)′′ + (

ϕε
0u

) = −(
ϕε

0

)′′
u − 2

(
ϕε

0

)′
u′ + ϕε

0f =: gε
0 in Ωε. (94)

Note that ‖gε
0‖L2(Ωε)

� C‖f ‖L2(Ωε)
holds for some constant C > 0 independent of ε ∈ (0, ε) by (93). We extend ϕε

0u

and gε
0 as 0 in R \ Ωε . Then ϕε

0u ∈ H 2(R) and gε
0 ∈ L2(R) satisfy the same equation as that in (94) over R. Thus, by

using a priori estimate of solutions for elliptic equations in whole space, we have∥∥ϕε
0u

∥∥
H 2(Ωε)

= ∥∥ϕε
0u

∥∥
H 2(R)

� C′∥∥gε
0

∥∥
L2(R)

� CC′‖f ‖L2(Ωε)
, (95)

for some constant C′ > 0. Next, we consider ϕε
1u. We extend ϕε

1u = 0 for x � 1
ε

. Then ϕε
1u ∈ H 2(− 1

ε
,∞). Moreover,

we extend it to H 2(R)-function by reflection (this extension is possible since u satisfies u′(− 1
ε
) = 0). Then we notice

that ϕε
1 satisfies

−(
ϕε

1u
)′′ − (

ϕε
1u

) = −(
ϕε

1

)′′
u − 2

(
ϕε

1

)′
u′ + ϕε

1f in R. (96)

Hence, by the same argument as was used for ϕε
0u, we have ‖ϕε

1u‖H 2(Ωε)
� C′′‖f ‖L2(Ωε)

for some constant C′′ > 0
independent of ε ∈ (0, ε). We can estimate for ϕε

2u in the same way. Thus we have

‖u‖H 2(Ωε)
�

∥∥ϕε
0u

∥∥
H 2(Ωε)

+ ∥∥ϕε
1u

∥∥
H 2(Ωε)

+ ∥∥ϕε
2u

∥∥
H 2(Ωε)

� C′′′‖f ‖L2(Ωε)
(97)

for some constant C′′′ > 0 independent of u, f and ε ∈ (0, ε). �
Proof of Lemma 20. It is easily to see that the Fréchet derivative of T at u ∈ L2(−1,1) is given by T ′[u] of (59).
Hence, we only show the inequalities (60) and (61). Noting that c � GD(x, z) � C, x, z ∈ (−1,1), holds for some
C,c > 0, we can estimate as follows:

∣∣T [u + h](y) − T [u](y) − (
T ′[u]h)

(y)
∣∣ = cε

∣∣∣∣∣
1∫

−1

GD(εy, z)h2(z) dz

∣∣∣∣∣ = 1∫
R

w2
δε

∣∣∣∣∣
1/ε∫

−1/ε

GD(εy, εz)h2(z) dz

∣∣∣∣∣
� C′‖h‖2

L2(Ωε)
, y ∈ Ωε,

and

∣∣(T ′[u]h)
(y)

∣∣ = 2cε

∣∣∣∣∣
1∫

−1

GD(εy, z)u(z)h(z) dz

∣∣∣∣∣ = 2∫
R

w2
δε

∣∣∣∣∣
1/ε∫

−1/ε

GD(εy, εz)u(z)h(z) dz

∣∣∣∣∣
� C′‖u‖L2(Ωε)

‖h‖L2(Ωε)
, y ∈ Ωε,

for any u,h ∈ L2(Ωε), where C′ > 0 is independent of ε sufficiently small. Thus we complete the proof. �
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Proof of Lemma 21. Let us show the inequalities (65) and (66). We first note that ‖u‖L∞(Ωε),‖u‖L2(Ωε)
� Cτ holds

for any u ∈ Bτ (wε), where Cτ > 0 is some constant independent of u and ε sufficiently small. For simplicity of
notation, we put

gε(t) := t2

1 + δεα
−2
D t2

. (98)

Let u ∈ Bτ (wε), h ∈ H 2(Ωε), ‖h‖H 2(Ωε)

 1, and

S[u + h] − S[u] − S ′[u]h = gε(u + h)

T [u + h] − gε(u)

T [u] − g′
ε(u)h

T [u] + (T ′[u]h)gε(u)

T [u]2

= 1

T [u + h]
{
gε(u + h) − gε(u) − g′(u)h

}

+ gε(u)

{
1

T [u + h] − 1

T [u] − (T ′[u]h)

T [u]2

}

+ g′
ε(u)h

{
1

T [u + h] − 1

T [u]
}

≡ I + II + III.

Note that

∣∣gε(u + h) − gε(u) − g′
ε(u)h

∣∣ =
∣∣∣∣∣

1∫
0

{
g′

ε(u + th) − g′
ε(u)

}
dt · h

∣∣∣∣∣ � M|h|2

holds for some constant M > 0 independent of ε sufficiently small. By this,

‖I‖L2(Ωε)
� C

( ∫
Ωε

h4
) 1

2

� C‖h‖L∞(Ωε)‖h‖L2(Ωε)

holds for some constant C > 0 independent of ε sufficiently small. Next, let

II = gε(u)

T [u + h]T [u]
{
T [u]2 − T [u + h]T [u] + T [u + h](T ′[u]h)}

= gε(u)

T [u + h]T [u]
[
T [u]{T [u] − T [u + h] + (

T ′[u]h)} − (
T ′[u]h){

T [u + h] − T [u]}].
Note that∥∥∥∥ gε(u)

T [u + h]T [u]
∥∥∥∥

L2(Ωε)

,
∥∥T [u]∥∥

L∞(Ωε)
,

are bounded independently of u and ε sufficiently small. Hence, by applying (60) and (61), we can estimate so that

‖II‖L2(Ωε)
� C′‖h‖2

L2(Ωε)

for some constant C′ > 0 independent of ε sufficiently small. By the same estimate, we have ‖III‖L2(Ωε)
�

C′′‖h‖2
L2(Ωε)

for some constant C′′ > 0 independent of ε sufficiently small. By these estimates, we obtain (65).

Let u ∈ Bτ (wε), h ∈ H 2(Ωε), ‖h‖H 2(Ωε)

 1, φ ∈ H 2(Ωε), and∥∥S′[u + h]φ − S′[u]φ∥∥

L2(Ωε)

=
∥∥∥∥
(

g′
ε(u + h)

T [u + h] − g′
ε(u)

T [u]
)

φ + (T ′[u + h]φ)

T [u + h]2
gε(u + h) − (T ′[u]φ)

T [u] gε(u)

∥∥∥∥
2
L (Ωε)
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�
∥∥∥∥
(

g′
ε(u + h)

T [u + h] − g′
ε(u)

T [u]
)

φ

∥∥∥∥
L2(Ωε)

+
∥∥∥∥ (T ′[u + h]φ)

T [u + h]2

(
gε(u + h) − gε(u)

)∥∥∥∥
L2(Ωε)

+
∥∥∥∥gε(u)

(
(T ′[u + h]φ)

T [u + h]2
− (T ′[u]φ)

T [u]2

)∥∥∥∥
L2(Ωε)

≡ IV + V + VI.

Let us estimate each term. By applying Lemma 20 and the mean value theorem,

IV � ‖φ‖L2(Ωε)

{∥∥∥∥g′
ε(u + h)

{
1

T [u + h] − 1

T [u]
}∥∥∥∥

L∞(Ωε)

+
∥∥∥∥ 1

T [u]
{
g′

ε(u + h) − g′
ε(u)

}∥∥∥∥
L∞(Ωε)

}

� C‖φ‖L2(Ωε)

{∥∥T [u + h] − T [u]∥∥
L∞(Ωε)

+ ∥∥g′
ε(u + h) − g′

ε(u)
∥∥

L∞(Ωε)

}
� C′‖φ‖L2(Ωε)

(‖h‖L2(Ωε)
+ ‖h‖L∞(Ωε)

)
,

V � C
∥∥T ′[u + h]φ∥∥

L∞(Ωε)

∥∥gε(u + h) − gε(u)
∥∥

L2(Ωε)
� C′‖φ‖L2(Ωε)

‖h‖L2(Ωε)
,

VI � C
∥∥(

T ′[u + h]φ)
T [u]2 − (

T ′[u]φ)
T [u + h]2

∥∥
L∞(Ωε)

� C
{∥∥T ′[u + h]φ∥∥

L∞(Ω)

∥∥T [u]2 − T [u + h]2
∥∥

L∞(Ωε)

+ ∥∥T [u + h]2
∥∥

L∞(Ωε)

∥∥T ′[u + h]φ − T ′[u]φ∥∥
L∞(Ωε)

}
� C′‖φ‖L2(Ωε)

‖h‖L2(Ωε)

hold for some constants C,C′ > 0 independent of ε sufficiently small. Here, we used the fact that we may assume
there exists a constant M ′ > 0 independent of ε such that∥∥T [u]∥∥

L∞(Ωε)
,
∥∥T [u + h]∥∥

L∞(Ωε)
� M ′

holds as long as u ∈ Bτ (wε) and ‖h‖H 2(Ωε)

 1. Indeed, for example,

∣∣T [u](x)
∣∣ = cε

∣∣∣∣∣
1∫

−1

GD(x, z)u2(z) dz

∣∣∣∣∣ = 1∫
R

w2
δε

∣∣∣∣
∫
Ωε

GD(x, εz)u2(z) dz

∣∣∣∣ � CC2
τ .

By these estimates, we complete the proof. �
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