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Abstract

We consider the scalar semilinear heat equation ut − �u = f (u), where f : [0, ∞) → [0, ∞) is continuous and non-decreasing 
but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in 
Lq(�) for all non-negative initial data u0 ∈ Lq(�), when � ⊂ R

d is a bounded domain with Dirichlet boundary conditions. For 
q ∈ (1, ∞) this holds if and only if lim sups→∞ s−(1+2q/d)f (s) < ∞; and for q = 1 if and only if

∫∞
1 s−(1+2/d)F (s) ds < ∞, 

where F(s) = sup1≤t≤s f (t)/t . This shows for the first time that the model nonlinearity f (u) = u1+2q/d is truly the ‘boundary 
case’ when q ∈ (1, ∞), but that this is not true for q = 1.

The same characterisations hold for the equation posed on the whole space Rd provided that lim sups→0 f (s)/s < ∞.
© 2015 
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1. Introduction

This paper concerns local existence of solutions of the scalar semilinear heat equation

ut − �u = f (u), u(0) = u0 ≥ 0, (1)

on the whole space Rd and on smooth bounded domains � ⊂ R
d with Dirichlet boundary conditions, when 

u0 ∈ Lq(�), 1 ≤ q < ∞. Throughout and without loss of generality we assume that � contains the origin.
We give a complete solution to the classical problem of characterising those functions f for which (1) has a local 

solution that is bounded in Lq(�) for all non-negative initial data in Lq(�). It is perhaps surprising that such results 
are not already available in the literature, but they are not; nor do our characterisations follow from what has previously 
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been proved about (1). Indeed, most previous results focus on the particular nonlinearity f (u) = up , with more general 
treatments assuming that f is convex. We impose no such restrictions in this paper, requiring only that f : [0, ∞) →
[0, ∞) is continuous and non-decreasing.

The main contribution this paper makes is in identifying the correct characterisation for both the case q > 1 and 
q = 1. Given the ‘correct’ assumptions on f , the methods of proof for existence/non-existence are not difficult, but 
still require some care. The non-existence results rely on lower bounds on the heat kernel, and in particular on lower 
bounds for the action of the heat semigroup on initial conditions equal to the characteristic function of a ball. In a very 
imprecise way, they show that for q > 1 the model equation with f (u) = up ‘tells the whole story’, but that this is 
decidedly not the case when q = 1.

Local well-posedness of (1) for smooth data falls within the scope of the standard theory of parabolic equations 
that goes back half a century [13]. In the early 1980s the well-posedness theory was extended by Weissler [23–25]
to include initial data in Lebesgue spaces, with a locally Lipschitz source term f satisfying a Lipschitz bound of the 
form

|f (u) − f (v)| ≤ C|u − v|(1 + |u|p−1 + |v|p−1, ) (2)

providing sufficient conditions for local existence (and uniqueness).
In particular, in these papers and in much subsequent work, attention was almost exclusively focused on the canon-

ical model with f (u) = |u|p−1u introduced by Fujita [8]. For this particular nonlinearity, given q ∈ (1, ∞), the 
pioneering results of Weissler [23–25] along with those of Giga [10] and Brezis and Cazenave [3] identify a criti-
cal exponent p� = 1 + 2q/d such that (1) with f (u) = |u|p−1u is locally well posed in Lq if and only if p ≤ p�; 
for p > p� one can find initial data in Lq for which there is no local solution. While for q > 1 the equation is well 
behaved when p = p�, for the case q = 1 Celik and Zhou [6] showed that for the critical exponent p� = 1 + 2/d there 
are L1 initial data for which there is no solution (resolving a problem posed in [3]).

This theory has been extended in a number of ways. One natural direction was to extend the theory towards 
weaker classes of data (e.g. measure-valued initial conditions), see Brezis and Friedman [5], for example. Along these 
lines, Baras and Pierre [2] obtained a necessary and sufficient condition on the initial condition for local existence of 
solutions when f is convex.

A second direction focuses on finite-time blowup versus global existence. In most of these analyses, the particular 
form of the Fujita nonlinearity f (u) = |u|p−1u or a related convexity assumption plays a crucial role, see for example 
[1,4,7–9,12,17]. For example, the homogeneity of up facilitates the use of similarity solutions – such scale invariance 
also makes transparent the role of the critical exponent, while for a general convex f one can use Jensen’s inequality. 
Note that we do not consider finite-time blowup here, but rather local non-existence, i.e. ‘immediate blowup’ in some 
sense.

However, most of the above results break down if we only make the assumption that f is monotonic. In this case, 
in order to describe fully the conditions on f ensuring that an initial condition in Lq gives rise to a local solution we 
need a better understanding of the delicate balance between the smoothing action of the heat flow and the converse 
effect of the growing source. In this paper we provide, for every q ∈ [1, ∞), a precise characterisation of those f for 
which equation (1) has local solutions bounded in Lq(�) for all non-negative initial data u0 ∈ Lq(�). Note that this 
includes the delicate case q = 1.

First we show that for q ∈ [1, ∞), if

lim sup
s→∞

s−(1+2q/d)f (s) = ∞ (3)

then there exists a non-negative u0 ∈ Lq(�) for which equation (1) has no local solution that is bounded in Lq(�). 
Since the existence of a finite limit in (3) implies that f (s) ≤ C(1 + s1+2q/d) for some constant C, monotonicity 
of solutions along with classical results for (4) yields local existence in this case for q ∈ (1, ∞). It follows (see 
Theorem 3.4) that equation (1) has at least one local Lq -bounded solution for every non-negative u0 ∈ Lq(�) if and 
only if

lim sup s−(1+2q/d) < ∞.

s→∞
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The ‘moral’ of this is that for q ∈ (1, ∞), the model problem with f (s) = sp in some sense tells the whole story, since 
the critical case lies precisely on the boundary between local existence/non-existence. (This idea has perhaps always 
been implicit in the discussions in the literature, but has not had a rigorous proof until now.)

The case q = 1 is more delicate, and is well known to be significantly more challenging. As remarked above, Celik 
and Zhou [6] showed that for the canonical equation

ut − �u = up (4)

with p = p� = 1 + 2/d there is non-negative initial data in L1(Rd) and L1(�) for which there is no local solution. 
One might therefore conjecture that for q = 1 the condition in (3) can be weakened to

lim sup
s→∞

s−(1+2/d)f (s) > 0

(i.e. the limit is finite but strictly positive) and still ensure non-existence for some non-negative u0 ∈ L1(�). In fact 
significantly more is true: we show that the condition

∞∑
k=1

s
−(1+2/d)
k f (sk) = ∞

for some sequence such that sk+1 ≥ θsk (for some θ > 1) is sufficient for such a non-existence result. In particular, if 
f satisfies this condition there are non-negative data in L1(�) for which there is no solution with u(t) ∈ L1(�) for 
any t > 0.

For any particular f this divergent series condition seems awkward to check in practice, so we show that it is 
equivalent to the integral condition

∞∫
1

s−(1+2/d)F (s)ds = ∞, where F(s) = sup
1≤t≤s

f (t)

t
. (5)

Remarkably, if the integral in (5) is finite, then a version of an argument due to Sierżęga [20] guarantees local existence 
of an L1-bounded solution for every non-negative u0 ∈ L1(�) (in fact the solution is in L∞(�) for every t > 0). As 
a consequence we obtain our second main result (Corollary 4.5), namely that equation (1) has at least one local 
L1-bounded solution for every non-negative u0 ∈ L1(�) if and only if

∞∫
1

s−(1+2/d)F (s)ds < ∞, where F(s) = sup
1≤t≤s

f (t)

t
.

Here the ‘moral’ is that the model problem does not tell the whole story.
We note here that we do not treat the question of uniqueness in this paper, but concentrate solely on local existence. 

For this reason we do not require any Lipschitz-type assumptions on f (such as (2)).
The paper is organised as follows. In Section 2 we prove some preliminary lower bounds on solutions of the heat 

equation for an initial condition that is the characteristic function of a ball; these are the key estimates that we use in 
our proofs. Section 3 contains the results for q > 1, with Section 4 treating q = 1. In Section 5 we discuss the problem 
posed on the whole space and on a bounded domain with Neumann boundary conditions, and we end with a brief 
recapitulation and discussion of open problems.

2. Lower bounds on solutions of the Dirichlet heat equation

An important ingredient of our arguments is the following simple lemma, which gives a lower bound on the action 
of the heat equation on the characteristic function of a Euclidean ball. We write Br(x) for the open ball in Rd of 
radius r centred at x, denote by χr the characteristic function of Br := Br(0), and use ωd for the volume of the unit 
ball in R

d .
The solution of the heat equation on � with Dirichlet boundary conditions,

ut − �u = 0, u|∂� = 0, u(x,0) = u0(x) ∈ L1(�)
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can be given in terms of the Dirichlet heat kernel K� by the expression

u(x, t) = [S(t)u0](x) :=
∫
�

K�(x, y; t)u0(y)dy.

The proofs of the results in this section use the following lower bound on K�: if the line segment joining x and y is a 
distance at least δ from ∂�, then the Dirichlet heat kernel K�(x, y; t) is bounded below by the Gaussian heat kernel 
on Rd ,

K�(x, y; t) ≥ e−d2π2t/4δ2
(4πt)−d/2e−|x−y|2/4t for all t > 0. (6)

(See van den Berg [22], Theorem 2 and Lemmas 8 and 9.)

Lemma 2.1. There exists an absolute constant cd ∈ (0, 1), which depends only on d , such that for any r, δ > 0 for 
which Br+2δ ⊂ �,

S(t)χr ≥ cd

(
r

r + √
t

)d

χr+√
t , (7)

for all 0 < t ≤ δ2.

Proof. Note that since, by assumption, Br+2δ ⊂ �, it follows that for every x ∈ Br+√
t we have dist(x, ∂�) ≥ δ while 

0 < t ≤ δ2; and so for such x and t the lower bound in (6) implies that

[S(t)χr ](x) =
∫

Br(0)

K�(x, y; t)dy

≥ e−d2π2/4 (4πt)−d/2
∫
Br

e−|x−y|2/4t dy.

The latter integral is radially symmetric and decreasing with |x| and so for |x| ≤ r +√
t , choosing any unit vector u

we can write

[S(t)χr ](x) ≥ e−d2π2/4 (4πt)−d/2
∫

Br((r+√
t)u)

e−|z|2/4t dz

= e−d2π2/4 π−d/2
∫

Br/2
√

t ((
1
2 + r

2
√

t
)u)

e−|w|2 dw.

Observing that

Br/2
√

t ((
1
2 + r

2
√

t
)u) ⊆ Bρ/2

√
t ((

1
2 + ρ

2
√

t
)u)

if ρ ≥ r , it follows that for r/
√

t ≥ 1 we have

[S(t)χr ](x) ≥ e−d2π2/4 π−d/2ωd

∫
B1/2(u)

e−|w|2 dw =: c′
d .

On the other hand, if r/
√

t ≤ 1 then

[S(t)χr ](x) ≥ e−d2π2/4 π−d/2
(

r

2
√

t

)d

e−9/4 =: c′′
d(r/

√
t)d .
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So with cd = min(c′
d , c′′

d)

[S(t)χr ](x) ≥ cd

(
r

max(r,
√

t)

)d

≥ cd

(
r

r + √
t

)d

. �
We will use this result in the form of one of the following two simple corollaries.

Corollary 2.2. There exists an absolute constant αd > 0, depending only on d , such that for any r, δ > 0 for which 
Br+2δ ⊂ �,∫

�

S(t)χr dx ≥ αdrd,

for all 0 < t ≤ δ2.

Proof. Integrating the inequality in (7) over � yields∫
�

S(t)χr dx ≥ cd

(
r

r + √
t

)d ∫
�

χr+√
t dx = cdωdrd . �

Corollary 2.3. There exists an absolute constant βd > 0, depending only on d , such that for any r, δ > 0 for which 
Br+2δ ⊂ �,

S(t)χr ≥ βd χr+√
t ,

for all 0 < t ≤ min(δ2, r2).

3. Initial data in Lq(�), q ∈ (1, ∞)

Given these preliminaries we can prove our first non-existence result. We take the following definition from [18]
as our (essentially minimal) definition of a solution of (1). Note that any classical or mild solution is a local integral 
solution in the sense of this definition [18, pp. 77–78].

Definition 3.1. Given f : [0, ∞) → [0, ∞) and u0 ≥ 0 we say that u is a local integral solution of (1) on [0, T ) if 
u : � × [0, T ) → [0, ∞] is measurable, finite almost everywhere, and satisfies

u(t) = S(t)u0 +
t∫

0

S(t − s)f (u(s))ds (8)

almost everywhere in � × [0, T ).

We will be interested in solutions with non-negative initial data u0 ∈ Lq(�) that remain bounded in Lq(�). To this 
end we make the following definition.

Definition 3.2. We say that u is a local Lq solution of (1) if u is a local integral solution on [0, T ) for some T > 0
and u ∈ L∞((0, T ); Lq(�)). If every non-negative u0 ∈ Lq(�) gives rise to a local Lq solution then we say that (1)
has the local existence property in Lq(�).

We now show that there are non-negative initial conditions in Lq(�) for which there is no local Lq solution if f
satisfies the asymptotic growth condition

lim sup s−(1+2q/d)f (s) = ∞

s→∞
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(which is (9), below). This condition is modelled on the stronger condition

lim sup
s→∞

s−γ f (s) = ∞ for some γ > q(1 + 2/d),

which was used by Laister et al. in [15] to construct a non-negative initial condition in Lq(�) for which any local in-
tegral solution is not in L1

loc(�) for any t > 0 small (a stronger form of non-existence than we obtain in Theorem 3.3). 
(A similar condition was used to analyse the problem on the whole space in [14].)

Note that our assumption in Theorem 3.3 does not imply any lower bounds on the function f itself, nor does our 
result require them; for example, we impose no condition on the behaviour of

lim inf
s→∞ s−(1+2q/d)f (s),

as in Weissler [24] (Theorem 5, Corollaries 5.1 and 5.2), nor do we require f to be continuous.

Theorem 3.3. Let f : [0, ∞) → [0, ∞) be non-decreasing. If q ∈ [1, ∞) and

lim sup
s→∞

s−(1+2q/d)f (s) = ∞ (9)

then there exists a non-negative u0 ∈ Lq(�) such that

ut − �u = f (u), u|∂� = 0, u(0) = u0 (10)

has no local Lq solution.

Proof. Set p = 1 + (2q/d). It follows from (9) that we can choose a sequence φk such that

φk ≥ k and f (φk) ≥ φ
p
k ek/q .

We now construct an initial condition in Lq(�) that is the sum of characteristic functions on a sequence of balls of 
decreasing radius. More precisely, set

rk = εφ
−q/d
k k−2q/d ,

and choose the initial data

u0(x) =
∞∑

k=1

uk, uk = β−1
d φkχrk ,

where βd is the constant from Corollary 2.3 and ε is chosen sufficiently small that B3rk ⊂ � for every k. Noting that

‖uk‖q
Lq = ωdrd

k β
−q
d φ

q
k = ωd

(
εφ

−q/d
k k−2q/d

)d

β
−q
d φ

q
k = ωdβ

−q
d εdk−2q,

i.e. that ‖uk‖Lq = ω
1/d
d β−1

d εd/qk−2, it follows that

‖u0‖Lq ≤
∑

k

‖uk‖Lq = ω
1/d
d β−1

d εd/q
∑

k

k−2 < ∞.

Now, if a solution u(t) of (10) exists, then it can be written using the variation of constants formula,

u(t) = S(t)u0 +
t∫

0

S(t − s)f (u(s))ds. (11)

Since u ≥ 0 and f ≥ 0, it is immediate that

u(t) ≥ S(t)u0 ≥ S(t)uk, (12)

for any choice of k. Choosing and fixing one k for now, we can neglect the first term in (11) and use the lower bound 
in (12) to obtain
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u(t) ≥
t∫

0

S(t − s)f (S(s)uk)ds, (13)

since f is non-decreasing. To aid readability, and in a slight abuse of notation, we now write χ(r) for χr .
Corollary 2.3 with δ = rk implies that

S(s)uk = S(s)[β−1
d φkχ(rk)] ≥ φk χ(rk + √

t) ≥ φk χ(rk), 0 ≤ s ≤ r2
k ,

and so

f (S(s)uk) ≥ f (φk)χ(rk), 0 ≤ s ≤ r2
k ,

since f is non-decreasing. Using Corollary 2.3 again

S(t − s)f (S(s)uk) ≥ βdf (φk)χ(rk), 0 ≤ s ≤ t ≤ r2
k .

Now, using the lower bound in (13), it follows that for any1 t ∈ [tk/2, tk], where tk = r2
k ,

[u(t)](x) ≥
t∫

0

S(t − s)f (S(s)u0)ds

≥
r2
k /2∫

0

βdf (φk)χ(rk)ds

≥ 1

2
βd r2

k f (φk)χ(rk).

Thus

‖u(t)‖q
Lq ≥

∫
B(rk)

|u(t)|q dx ≥ c r
2q
k f (φk)

qrd
k

= cr
d+2q
k f (φk)

q

≥ c[εφ−q/d
k k−2q/d ]d+2qφ

[1+(2q/d)]q
k ek

= ck−2q(1+2q/d)ek.

Since the right-hand side tends to infinity as k → ∞, it follows that u is not an element of L∞((0, T ); Lq(�)) for 
any T > 0. �

We remarked above that Laister et al. [15] showed that under the stronger condition

lim sup
s→∞

s−γ f (s) = ∞, γ > q(1 + 2/d)

there is non-negative initial data in Lq(�) for which any local solution is not in L1
loc(�) for all small t > 0. It is an 

interesting open question whether such strong blowup still occurs under the weaker condition in Theorem 3.3.
A combination of the blowup result of Theorem 3.3 and classical results for the Fujita equation now give our first 

characterisation theorem, on local existence in Lq(�) when q > 1.

Theorem 3.4. Let f : [0, ∞) → [0, ∞) be non-decreasing and continuous. If q ∈ (1, ∞) then (10) has the local 
existence property in Lq(�) if and only if

lim sup
s→∞

s−(1+2q/d)f (s) < ∞. (14)

1 We prove a lower bound valid for t in an interval since a priori our definition of a local Lq solution requires only that u(t) ∈ Lq for almost 
every t .
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Proof. It remains only to show that (10) has a local solution bounded in Lq(�) when (14) holds. In this case it follows 
that there exists a constant C such that

f (s) ≤ C(1 + sp), where p = 1 + 2q/d,

and now one can use comparison (see Theorem 1 in Robinson and Sierżęga [19], for example) and standard existence 
results for the equation

ut − �u = C(1 + up)

(Corollary 3.2 in Weissler [24]) to guarantee that (10) has the local Lq(�) existence property. �
One could rephrase the above result in terms of the quantity

γ � = sup{γ ≥ 0 : lim sup
s→∞

s−γ f (s) = ∞}.

With q� = d(γ � − 1)/2 equation (10) does not enjoy local existence for all non-negative initial data in Lq for q < q�, 
but does for q > q�. In this way q� defines a ‘critical exponent’ for the general class of non-decreasing f we consider 
here. Provided that q� > 1, local existence/non-existence in the critical space Lq�

is determined by the behaviour of

lim sup
s→∞

s−γ �

f (s).

When q� = 1 the situation is more delicate and somewhat surprising, as we now show.

4. Initial data in L1(�)

4.1. A condition for non-existence of a local L1 solution

As just remarked, the behaviour of solutions for initial data in L1(�) is more delicate. Celik and Zhou [6] showed 
that when f (s) = s1+2/d , there is initial data in L1(�) for which there is no local L1 solution. This suggests that 
when q = 1 the requirement of Theorem 3.3 can be weakened. Indeed, the requirement that the sum in (15) diverges 
is clearly weaker than the asymptotic condition,

lim sup
s→∞

s−(1+2/d)f (s) > 0;

blowup can even occur for certain f for which the above lim sup is zero, such as f (s) = s1+2/d/ log(e + s)β with 
0 < β ≤ 1. In particular, algebraic growth f (s) = s1+2/d is not in fact the true ‘boundary’ for L1 blowup. We examine 
this example in a little more detail in Section 4.4.

Note that in the statement of the following theorem we do not include the hypothesis that f is continuous; this is 
not required for this blowup result.

Theorem 4.1. Suppose that f : [0, ∞) → [0, ∞) is non-decreasing and that there exists a sequence {sk} such that

sk+1 ≥ θsk for some θ > 1,

and

∞∑
k=1

s
−p
k f (sk) = ∞, (15)

where p = 1 + 2
d

. Then there exists a non-negative initial condition u0 ∈ L1(�) such that

ut − �u = f (u), u|∂� = 0, u(x,0) = u0, (16)

has no local integral solution that remains in L1 (�) for t > 0 (so in particular no local L1 solution exists).
loc
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Before we give the proof proper, it is instructive to present a much simplified argument for the ‘L1-like’ initial 
data u0 = δ0, a delta function centred at the origin (such data is L1-like so far as 

∫
δ0 = 1). To further simplify the 

argument we pose the problem on the whole space Rd .
Since in this case

[S(s)δ0](x) = (4πs)−d/2e−|x|2/4s

it follows that for each k,

S(s)δ0(x) ≥ φkχ√
s for s ≤ tk := cφ

−2/d
k

(where c = e−1/2d/4π ).
Now for any t > 0, using the fact that 

∫
Rd S(t)χr = ωdrd and arguing as in the proof of Theorem 3.3,

∫
Rd

u(t; δ0) ≥
∫
Rd

t∫
0

S(t − s)f (S(s)δ0)ds

≥
∫
Rd

∑
k

tk∫
tk+1

S(t − s)f (S(s)δ0)ds

≥
∑

k

f (φk)

tk∫
tk+1

∫
Rd

S(t − s)χ√
s ds

= ωd

∑
k

f (φk)

tk∫
tk+1

sd/2 ds

= cωd

∑
k

f (φk)(t
(2+d)/2
k − t

(2+d)/2
k+1 )

(tk = cφ
−2/d
k ) ≥ c′ωd

∑
k

f (φk)(φ
−p
k − φ

−p

k+1)

(φk+1 ≥ θφk) ≥ c′(1 − θ−p)ωd

∑
k

f (φk)φ
−p
k = ∞,

using (15). The proof of Theorem 4.1 will follow very similar lines.

Proof of Theorem 4.1. Define φk = c−1
d sk , and set

un(x) = 1

n2
αd

nχ(1/αn), where αn = (n2φζn)
1/d ,

with ζn to be chosen later. Let

u0(x) =
∞∑

n=n0

un(x),

with n0 chosen such that

1

αn0

< δ0 := 1

3
inf

x∈∂�
|x|.

Note that 1/αn ≤ δ0 and so B1/αn+2δ0 ⊂ � for all n ≥ n0, and that

‖u0‖L1 ≤
∞∑

‖un‖L1 = ωd

∞∑
n−2 < ∞.
n=1 n=1
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Arguing as in the proof of Theorem 3.3, for any choice of n we have

∫
�

u(t;u0)dx ≥
∫
�

t∫
0

S(t − s)f (S(s)un)ds dx.

We now consider the action of the heat semigroup on the initial data v0 = ψαdχ1/α . It follows from Lemma 2.1
with r = 1/α and δ = δ0 that

S(s)v0 ≥ cdψ
αd

(1 + α2s)d/2
χ(1/α)+√

s ,

so [S(s)v0](x) ≥ cdφk for

|x| ≤ 1

α
+ √

s while s ≤ tk = min

(
δ2

0,

(
ψ

φk

)2/d

− 1

α2

)
,

and this range is non-empty provided that φk ≤ ψαd .
Now for any 0 < t < δ2

0 , using Corollary 2.2 we have

∫
�

t∫
0

S(t − s)f (S(s)v0)ds dx ≥
∑

k

∫
�

tk∫
tk+1

S(t − s)f (S(s)v0)ds dx

=
∑

k

tk∫
tk+1

∫
�

S(t − s)f (S(s)v0)dx ds

≥ c′∑
k

f (cdφk)

tk∫
tk+1

∫
�

S(t − s)χα−1+√
s dx ds

≥ αdc′∑
k

f (cdφk)

tk∫
tk+1

(
1

α
+ √

s

)d

ds

≥ c′′∑
k

f (cdφk)

tk∫
tk+1

sd/2 ds,

where the sum in k is taken over those values for which

1

αd
≤ ψ

φk

≤
(

t + 1

α2

)d/2

.

Let us consider k that satisfy this requirement and the additional constraint that φk+1/α
dψ ≤ 1/2. For each such k

we have
tk∫

tk+1

sd/2 ds = 2

2 + d
(t

d/2+1
k − t

d/2+1
k+1 )

= 2

2 + d

⎧⎨
⎩
[(

ψ

φk

)2/d

− 1

α2

]d/2+1

−
[(

ψ

φk+1

)2/d

− 1

α2

]d/2+1
⎫⎬
⎭

= 2

2 + d

(
ψ

φk

)1+2/d
⎡
⎣(1 −

(
φk

αdψ

)2/d
)d/2+1

− φ
1+2/d
k

φ
1+2/d

(
1 −

(
φk+1

αdψ

)2/d
)d/2+1

⎤
⎦

k+1
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≥ 2

2 + d

(
ψ

φk

)1+2/d
(

1 − φ
1+2/d
k

φ
1+2/d

k+1

)(
1 −

(
φk+1

αdψ

)2/d
)d/2+1

≥ σ

(
ψ

φk

)1+2/d

,

using the facts that φk+1 ≥ θφk and φk+1/α
dψ ≤ 1/2. So certainly

∫
�

t∫
0

S(t − s)f (S(s)v0)ds ≥ c′′σ
∑

k

f (cdφk)

(
ψ

φk

)1+2/d

= c′′′ψp
∑

k

f (sk)s
−p
k ,

where the sum is taken over{
k : 2

αd
≤ ψ

φk+1
<

ψ

φk

≤
(

t + 1

α2

)d/2
}

. (17)

For any fixed t with 0 < t < δ2
0 , once n is sufficiently large that tn4/d ≥ 1 the set in (17) with ψ = n−2 and 

α = αn = (n2φζn)
1/d certainly contains

{k : 1 ≤ φk and φk+1 ≤ 1
2φζn} = {k : k0 ≤ k ≤ kn},

where k0 is the smallest value of k for which φk ≥ 1 and by choosing ζn such that φkn+1 ≤ 1
2φζn we can achieve any 

desired sequence kn.
Since 

∑∞
k=1 f (sk)s

−p
k = ∞ (by (15)) we can choose kn such that

n−2p

kn∑
k=k0

f (sk)s
−p
k

diverges as n → ∞. �
We note that if we assume in addition that f (s) ≥ cs for some c > 0, then under the conditions in Theorem 4.1

there is in fact no local integral solution of (16). Indeed, suppose that there is a local integral solution u : � ×[0, T ) →
[0, ∞). Then by Definition 3.1, u is finite almost everywhere on � × [0, T ). Since all our estimates are performed 
within Bδ0 , we have in fact shown that there is a ball B ⊂ � and a time δ2

0 > 0 such that∫
B

u(y, s)dy = ∞ for all s ∈ (0, δ2
0).

Now fix τ = min(T , δ2
0) and choose any (x, t) ∈ B × [τ/2, τ ]. Since u satisfies (8),

u(x, t) ≥
t∫

0

∫
�

K(x, y; t − s)f (u(y, s))dy ds

≥ c

τ/4∫
0

∫
B

K(x, y; t − s)u(y, s)dy ds,

using the assumption that f (s) ≥ cs. For s ∈ [0, τ/4] and t ∈ [τ/2, τ ] we have t − s ∈ [τ/4, τ ]. By the continuity and 
positivity of K there exists κ > 0 such that

K(x,y;σ) ≥ κ for all (x, y, σ ) ∈ B × B × [τ/4, τ ],
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whence

u(x, t) ≥ cκ

τ/4∫
0

∫
B

u(y, s)dy ds = ∞.

Therefore u = ∞ on B × [τ/2, τ ], contradicting the requirement that u is finite almost everywhere on � × [0, T ).

4.2. An equivalent integral condition for blowup

Since the condition in (15) is potentially awkward to check in practice, we now formulate an equivalent integral 
condition. Note that when f (s)/s is non-decreasing, the integral condition in (ii) of the lemma below becomes the 
more conventional

∞∫
1

s−(1+p)f (s)ds = ∞.

Lemma 4.2. Suppose that f : [0, ∞) → [0, ∞) is non-decreasing and p > 1. Then the following two conditions are 
equivalent.

(i) There exists a sequence {sk} such that sk+1 ≥ θsk , θ > 1 and
∞∑

k=1

s
−p
k f (sk) = ∞.

(ii)

∞∫
1

s−pF (s)ds = ∞, where F(s) = sup
1≤t≤s

f (t)

t
.

Proof. First we show that (i) implies (ii). We can augment the sequence {sk} to a new sequence σk so that we still 
have

∞∑
k=0

σ
−p
k f (σk) = ∞

but now in addition, choosing 1 < α < p, we can ensure that

1 < θ ≤ σk+1

σk

≤ θα,

by including points θj sk until sk+1 ≤ θj+αsk .
Setting σ0 = 1 we can write

∞∫
1

s−pF (s)ds =
∞∑

k=0

σk+1∫
σk

s−pF (s) ≥
∞∑

k=0

σk+1∫
σk

s−pF (σk)ds

≥ 1

p − 1

∞∑
k=0

(σ
−(p−1)
k − σ

−(p−1)

k+1 )
f (σk)

σk+1

= 1

p − 1

∞∑
k=0

σ
−p
k f (σk)

{
σk

σk+1
− σ

p
k

σ
p

k+1

}

≥ 1

p − 1
(θ−α − θ−p)

∞∑
k=0

σ
−p
k f (σk),

from which (ii) follows.
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We now show that (ii) implies (i). Choose θ > 1 and for k = 0, 1, 2, . . . let σk = θk ; note that F(s) ≤ F(σn+1) for 
all s ∈ (σn, σn+1]. There exists a sequence {kn} with kn ≤ n and kn+1 ≥ kn such that F(σn+1) = f (τn)/τn for some 
τn ∈ (σkn, σkn+1]. Thus

F(s) ≤ F(σn+1) ≤ f (σkn+1)

σkn

for all s ∈ (σn, σn+1].

Therefore
∞∫

1

s−pF (s)ds =
∞∑

n=1

σn+1∫
σn

s−pF (s)ds ≤
∞∑

n=1

f (σkn+1)

σkn

σn+1∫
σn

s−p ds.

Now observe that there is an increasing sequence nj such that

knj
= kn < knj+1 for n = nj , . . . , nj+1 − 1,

and so

∞∑
n=1

f (σkn+1)

σkn

σn+1∫
σn

s−p ds =
∑
j

f (σknj
+1)

σknj

σknj+1∫
σknj

s−p ds

<
∑
j

f (σknj
+1)

σknj

∞∫
σknj

s−p ds

≤ 1

p − 1

∞∑
n=1

f (σknj
+1)

σknj

σ
1−p
knj

= θp

p − 1

∞∑
j=1

σ
−p

knj
+1f (σknj

+1).

Taking sj = σknj
+1 yields (i). �

4.3. An integral condition for local existence

We now show that the integral condition in (ii) of Lemma 4.2 is sufficient for the L1 local existence property. 
We will use the following theorem from Robinson and Sierżęga [19] (Theorem 1, after Weissler [25]) which guarantees 
the existence of a solution u(t) of (1) given the existence of a supersolution v(t), i.e. a function satisfying (18). For 
later use we remark that � = R

d , with S(t) denoting the action of the heat semigroup (defined by convolution with 
the Gaussian kernel) is an admissible choice in Theorem 4.3 (see discussion in the ‘Final comments’ in [19]).

Theorem 4.3. Take u0 ≥ 0. If f : [0, ∞) → [0, ∞) is continuous and non-decreasing and there exists a v ∈
L1((0, T ) × �) such that

S(t)u0 +
t∫

0

S(t − s)f (v(s))ds ≤ v(t) for all t ∈ [0, T ] (18)

then there exists a local integral solution u of (1) on [0, T ] with u(x, t) ≤ v(x, t) for all x ∈ � and t ∈ [0, T ].

This theorem is proved by constructing a sequence of supersolutions vn(t) defined by setting v0(t) = v(t) and

vn+1(t) = F (vn) := S(t)u0 +
t∫
S(t − s)f (vn(s))ds.
0
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Such a sequence is monotonically decreasing, is bounded below by S(t)u0, and hence has a pointwise limit u(t) which 
can be shown to satisfy

S(t)u0 +
t∫

0

S(t − s)f (u(s))ds = u(t) for all t ∈ [0, T ]

using the Monotone Convergence Theorem.
Using this result we prove a local existence theorem; the argument is adapted from the proof of Proposition 7.2 in 

Sierżęga [20]. Note that our standing assumption that � is bounded is an important ingredient in the proof, since we 
require χ� ∈ L1(�).

Theorem 4.4. If f : [0, ∞) → [0, ∞) is continuous, non-decreasing, and

∞∫
1

s−(1+2/d)F (s)ds < ∞, where F(s) = sup
1≤t≤s

f (t)

t
(19)

then for every non-negative u0 ∈ L1(�) there exist a T > 0 such that (10) has a solution

u ∈ L∞
loc((0, T );L∞(�)) ∩ C0([0, T ];L1(�)).

In particular, (10) has the local L1 existence property.

Proof. If u0 = 0 then v(t) ≡ χ� is a supersolution, since

S(t)u0 +
t∫

0

S(t − s)f (S(s)χ�)ds ≤
t∫

0

S(t − s){f (1)χ�} ≤ tf (1)χ� ≤ χ�

for all t sufficiently small.
To treat u0 �= 0, define f̃ (s) = f (s) for s ∈ [0, 1] and f̃ (s) = sF (s) for s > 1. Then f (s) ≤ f̃ (s) and f̃ (s)/s :

[1, ∞) → [0, ∞) is non-decreasing. In particular, any supersolution for the equation

ut − �u = f̃ (u) (20)

is also a supersolution for (10), and therefore to show that (10) has a solution it suffices to find a supersolution for (20).
Rewritten in terms of f̃ , the integral condition in (19) becomes

∞∫
1

s−(2+2/d)f̃ (s)ds < ∞,

and after the substitution s = τ−d/2 we obtain

1∫
0

τd/2f̃ (τ−d/2)dτ < ∞.

We now show that for any A > 1, v(t) = AS(t)u0 + χ� is a supersolution of (20) on some suitable time interval, 
i.e. satisfies the condition (18) in Theorem 4.3. In order to do this, first recall the smoothing estimate

‖S(t)u0‖L∞ ≤ t−d/2‖u0‖L1

(see Lemma 7 in Brezis and Cazenave [3], for example).
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We therefore obtain

S(t)u0 +
t∫

0

S(t − s)f̃ (v(s))ds = S(t)u0 +
t∫

0

S(t − s)f̃ (AS(s)u0 + 1)ds

= S(t)u0 +
t∫

0

S(t − s)

(
f̃ (AS(s)u0 + 1)

AS(s)u0 + 1

)
(AS(s)u0 + 1)ds

≤ S(t)u0 +
t∫

0

S(t − s)

∥∥∥∥∥ f̃ (AS(s)u0 + 1)

AS(s)u0 + 1

∥∥∥∥∥
L∞

(AS(s)u0 + 1)ds,

where for notational convenience we have written 1 in place of χ�. Since the L∞ norm is a scalar constant and 
S(t − s) is linear, it follows that

F (v)(t) ≤ S(t)u0 +
⎧⎨
⎩

t∫
0

∥∥∥∥∥ f̃ (AS(s)u0 + 1)

AS(s)u0 + 1

∥∥∥∥∥
L∞

ds

⎫⎬
⎭ [AS(t)u0 + χ�],

as S(t)χ� ≤ χ� for all t > 0. Now, using the fact that f̃ (s)/s is non-decreasing for s ≥ 1,

F (v)(t) ≤ S(t)u0 +
⎧⎨
⎩

t∫
0

f̃ (‖AS(s)u0 + 1‖L∞)

‖AS(s)u0 + 1‖L∞
ds

⎫⎬
⎭ [AS(t)u0 + χ�]

≤ S(t)u0 +
⎧⎨
⎩

t∫
0

f̃ (2As−d/2‖u0‖L1)

2As−d/2‖u0‖L1
ds

⎫⎬
⎭ [AS(t)u0 + χ�],

for t sufficiently small, since

‖AS(s)u0 + 1‖L∞ = ‖AS(s)u0‖L∞ + 1 ≤ As−d/2‖u0‖L1 + 1 ≤ 2As−d/2‖u0‖L1

for s sufficiently small.
Therefore F (v)(t) is bounded above by

S(t)u0 + (2Ac‖u0‖L1)
2/d

⎛
⎜⎝

t (2Ac‖u0‖L1 )−2/d∫
0

τd/2f̃ (τ−d/2)dτ

⎞
⎟⎠ [AS(t)u0 + χ�]

≤ AS(t)u0 + χ�,

provided that t is sufficiently small. Local existence of a solution u(t) with u(t) ≤ v(t) = AS(t)u0 + χ� now 
follows from Theorem 4.3. That u(t) is bounded in L1(�) now follows from Theorem 4.3. It follows that u ∈
L∞

loc((0, T ); L∞(�)), i.e. is a classical solution. Then from the integral condition on f , f (u) ∈ L1((0, T ); L1(�)), 
whence from (8) it follows that u ∈ C0([0, T ]; L1(�)). �

We have therefore obtained the following characterisation of those f for which there is local existence in L1(�).

Corollary 4.5. If f : [0, ∞) → [0, ∞) is continuous and non-decreasing then (10) has the local L1 existence property 
if and only if

∞∫
1

s−(1+2/d)F (s)ds < ∞, where F(s) = sup
1≤t≤s

f (t)

t
.
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We note that one can apply the ‘local existence’ part of this characterisation (i.e. Theorem 4.4) to a nonlinearity g

that is not non-decreasing by finding a non-decreasing function f (s) such that g(s) ≤ f (s), applying Theorem 4.4
and then deducing local existence by comparison. The following section provides an example of this along with an 
illustration of the application of Corollary 4.5.

4.4. An example: f (s) = s1+2/d/[log(e + s)]β

We mentioned before the proof of Theorem 4.1 that the family of nonlinearities

f (s) = sp

[log(e + s)]β , p = 1 + 2/d, β ≥ 0,

provides an interesting set of examples, particularly in the light of the (erroneous) expectation that f (s) = s1+2/d lies 
on the ‘boundary’ between those functions for which (1) does and does not have the local L1 existence property.

Strictly, such a function f only falls within the scope of our results when it is non-decreasing, which occurs if and 
only if β ≤ λp, where λ � 3.15 is the largest positive root of the equation ex = e2x. It follows from Corollary 4.5 that

(i) if 0 ≤ β ≤ 1 then (1) does not have the L1 local existence property;
(ii) if 1 < β ≤ λp then (1) does have the L1 local existence property;

and since although when β > λp the function f (s) is not monotone, it is bounded above by the monotone 
sp/ log(e + s)λp , which provides a supersolution and hence (see Theorem 6.2 in Sierżęga [20], for example)

(iii) if β > λp then (1) does have the L1 local existence property.

Within this family the function f (s) = sp/ log(e + s) lies on the ‘boundary’. One could refine this with the addition 
of an arbitrary number of repeated logarithms.

5. Results for the whole space and for Neumann boundary conditions

It is worth remarking that since they rely only on Gaussian lower bounds for the Dirichlet heat kernel, the non-
existence results of Theorems 3.3 and 4.1 are valid with essentially the same proofs for the equations posed on the 
whole space Rd . They are also valid for Neumann boundary conditions ( ∂u

∂n
= 0 on ∂�), since

K�N
(x, y; t) ≥ K�D

(x, y; t), x, y ∈ �, t > 0,

where KN and KD denote the Neumann and Dirichlet heat kernels, respectively (the proof follows by comparison, or 
one can use probabilistic methods, see Corollary 2.5 in van den Berg [21], for example).

However, local existence results on the whole space require some additional assumptions. It is easy to see that if 
f (0) �= 0 then any non-negative initial condition gives rise to a solution that is not in Lq(Rd) for any q ∈ [1, ∞). 
Indeed, since then u(t) ≥ 0 for all t ≥ 0 we have

u(t) ≥
t∫

0

S(t − s)f (u(s))ds ≥
t∫

0

S(t − s)f (0)ds = tf (0) /∈ Lq(Rd).

We also require a ‘bounded derivative at zero’ condition, namely

lim sup
s→0

f (s)

s
< ∞. (21)

Without this condition we can find a non-negative u0 ∈ Lq(Rd) for which the solution is not bounded in Lq(Rd) for 
all t > 0.
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Indeed, if (21) does not hold then there exist sn → 0 such that sn ≤ n−2 and f (sn) ≥ n2sn. Consider initial data

u0 =
∞∑

n=1

c−1
d snχn−2/d s

−q/d
n

(xn)

where the xn are chosen such that B(xn, n−2/ds
−q/d
n ) are disjoint. Note that ‖u0‖Lq < ∞ and that n−2/ds

−q/d
n ≥ 1.

Then

S(s)u0 ≥
∞∑

n=1

snχn−2/d s
−q/d
n

(xn)

for all s ≤ 1. So for t ≤ 1 we have

u(x, t) ≥
t∫

0

∞∑
n=1

S(t − s)n2snχn−2/d s
−q/d
n

(xn)ds

≥
t∫

0

∞∑
n=1

cdn2snχn−2/d s
−q/d
n

(xn)ds

= tcd

∞∑
n=1

n2snχn−2/d s
−q/d
n

(xn)

and so∫
Rd

|u(x, t)|q dx ≥ ωd(tcd)q
∞∑

n=1

n2qs
q
nn−2s

−q
n = ωdtcd

∞∑
n=1

n2(q−1) = ∞.

Now, for q > 1 if we have, with p = 1 + 2q/d ,

lim sup
s→∞

s−pf (s) < ∞ and lim sup
s→0

f (s)

s
< ∞

then

f (s) ≤ C(s + sp)

for some C > 0. For f (s) = C(s + sp) we can guarantee the local Lq existence property on Rd as follows. First, 
results guaranteeing the Lq local existence property on the whole space when f (s) = 2Csp can be found in Weissler 
[23,24] (the analysis there is valid on the whole space), Theorem 1 in Giga [10], or Robinson and Sierżęga [19] (see 
‘Final comments’). So given a non-negative u0 ∈ Lq(Rd), let u(t) be the local Lq solution obtained in this way. Now 
define v(t) = e2Ctu(t). Then

vt − �v = 2Ce2Ctu + e2Ct (ut − �u)

= 2Ce2Ctu + e2Ct2Cup

= 2C(v + (e2Ct )1−pvp)

≥ C(v + vp)

provided that (e2Ct )1−p ≥ 1/2. This is legitimate since v is a strong, classical solution for t > 0. It then follows 
easily that v is a supersolution in the integral sense of Theorem 4.3 on some small time interval. The existence of 
such a supersolution, which is bounded in Lq(Rd), then implies the existence of a solution bounded in Lq(Rd) using 
Theorem 4.3.

For q = 1 local existence follows from the arguments in Theorem 4.4, now taking

F(s) = sup
f (t)

t
0≤t≤s



1536 R. Laister et al. / Ann. I. H. Poincaré – AN 33 (2016) 1519–1538
and observing that if u0 ≥ 0 and is non-zero then S(t)u0 > 0 for all t > 0 (this follows immediately from the expres-
sion for S(t)u0 in terms of the Gaussian kernel). (If u0 = 0 then obviously u(t) = 0 is a solution since f (0) = 0 by 
the limsup condition at s = 0.)

We summarise formally in the following theorem.

Theorem 5.1. Let f : [0, ∞) → [0, ∞) be continuous and non-decreasing and let � =R
d . Then

(i) for q ∈ (1, ∞) equation (1) has the local Lq existence property if and only if

lim sup
s→0

f (s)

s
< ∞ and lim sup

s→∞
s−(1+2q/d)f (s) < ∞;

(ii) equation (1) has the local L1 existence property if and only if

lim sup
s→0

f (s)

s
< ∞ and

∞∫
1

s−(1+2/d)F (s)ds < ∞,

where F(s) = sup0≤t≤s
f (t)

t
.

6. Concluding remarks

We have completely characterised those non-negative, non-decreasing, continuous functions f for which the equa-
tion

ut − �u = f (u), u|∂� = 0, u(0) = u0 ∈ Lq(�), u0 ≥ 0,

has at least one local solution that is bounded in Lq(�). For 1 < q < ∞ this occurs if and only if

lim sup
s→∞

s−(1+2q/d)f (s) < ∞,

while for q = 1 this occurs if and only if

∞∫
1

s−(1+2/d)

(
sup

1≤t≤s

f (t)

t

)
ds < ∞. (22)

We have also given results for the equations on the whole space Rd and for the Neumann problem on a bounded 
domain.

The non-existence parts of our arguments are perhaps the most novel, using lower bounds on the Dirichlet heat 
kernel due to van den Berg [21,22] to give lower bounds on solutions of the heat equation with characteristic functions 
as initial data, and hence lower bounds on solutions of the semilinear problem. The L1 case behaves very differently 
from the problem in spaces with higher integrability, with the appearance of the upper bound

sF (s) = s sup
1≤t≤s

[f (t)/t]

in both the blowup and existence criteria something of a surprise.
An open question left by our Lq -based analysis is whether we have ‘strong blowup’, u(t) /∈ Lq for all t > 0, when 

q > 1 and

lim sup
s→∞

s−γ f (s) = ∞, γ ∈ [1 + 2q/d, q(1 + 2/d)],

or whether there is a true transition from such strong blowup (obtained in [15] for γ > q(1 + 2/d)) to only the 
unbounded behaviour lim supt→0 ‖u(t)‖Lq (obtained here in Theorem 3.3 when γ = 1 + 2q/d). A related question 
is whether it is possible to exclude the existence of local integral solutions for a wider class of f than we do in the 
discussion at the end of Section 4.1 (we currently require f (s) ≥ Cs for some C > 0).
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The relationship between our results and those of Baras and Pierre [2], who provide a necessary and sufficient 
condition for local existence for given initial data u0 ∈ L1

loc(�) when f : [0, ∞) → [0, ∞) is a convex function with 
f (0) = 0, is unclear. For convex f it should be possible to obtain our necessary and sufficient condition for the L1

existence property for L1 data (22) from their condition. However, we think that the straightforward nature of our 
argument and its wider applicability is a major strength, and we have not attempted this analysis.

It would be interesting to attempt to prove similar characterisation results in other scales of spaces, such as Sobolev 
spaces or Besov spaces. These would require different techniques, given that our current arguments do not take into 
account the smoothness of solutions but only their integrability.

Seeking generalisation in a different direction, one could ask whether there is a way of identifying the critical 
Lebesgue space for the more general class of positive but not necessarily monotone f , or even for general f with 
sign-changing initial data.

Finally, we note that we have not attempted here to consider the problem of uniqueness. For the nonlinearity 
f (u) = |u|p−1u Ni and Sacks [17] proved non-uniqueness for the critical value of p (Theorem 3); see also Matos and
Terraneo [16] and Haraux and Weissler [11]. It would be interesting to see whether it is possible to obtain an exact 
characterisation of those f that admit unique solutions, perhaps based on asymptotic conditions generalising (2) in 
the way that our conditions for local existence generalise the growth rates of the canonical example f (u) = |u|p−1u.
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[14] R. Laister, J.C. Robinson, M. Sierżęga, Non-existence of local solutions for semilinear heat equations of Osgood type, J. Differ. Equ. 255 

(2013) 3020–3028.
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