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Abstract

In this paper we investigate the existence of non-topological solutions of the Chern–Simons Higgs model in R
2. A long standing

problem for this equation is: Given N vortex points and β > 8π(N + 1), does there exist a non-topological solution in R
2 such that

the total magnetic flux is equal to β/2? In this paper, we prove the existence of such a solution if β /∈ {8πN k
k−1 | k = 2, . . . ,N}.

We apply the bubbling analysis and the Leray–Schauder degree theory to solve this problem.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

L’objectif de cet article est de prouver l’existence de solutions non-topologiques du modèle de Chern–Simons Higgs dans R
2.

Un problème de longue date existe pour cette équation : Soit N points vortex et β > 8π(N + 1), existe-t-il une solution non-
topologique dans R

2 telle que le flux magnétique total est égal à β/2 ? Dans cet article, nous prouvons l’existence d’une solution
pour β /∈ {8πN k

k−1 | k = 2, . . . ,N}. Nous appliquons l’analyse par bulles et la theorie de Leray–Schauder pour résoudre ce
problème.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the paper, we want to show the existence of non-topological multi-vortex solutions to the (2 + 1)-dimensional
relativistic Chern–Simons gauge field theory. The Chern–Simons gauge field theory is minimal self-dual model con-
taining the Chern–Simons term and was proposed independently by Hong et al. [11] and Jackiw and Weinberg [12]
to study the anyonic superconductivity. The Chern–Simons–Higgs Lagrangian density is given by

L = κ

4
εμνρFμνAρ + DμφDμφ − 1

κ2
|φ|2(1 − |φ|2)2

, (1.1)
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where Aμ (μ = 0,1,2) is the gauge field on R
3, Fμν = ∂

∂xμ Aν − ∂
∂xν Aμ is the curvature tensor, φ is the Higgs field

on R
3, Dμ = ∂

∂xμ − iAμ (i = √−1) is the gauge covariant derivative associated with Aμ, εμνρ is the skew symmetric
tensor with ε012 = 1 and the constant κ is the coupling constant. When the energy for a pair (φ,A) is saturated, in
[11] and [12], the authors independently derived the following Bogomol’nyi type equations.

(D1 + iD2)φ = 0, and (1.2)

F12 + 2

κ2
|φ|2(|φ|2 − 1

) = 0. (1.3)

Following Jaffe and Taubes [13], we can reduce the self-dual system (1.2) and (1.3) to a single elliptic equation of
second order as follows. Let p1, . . . , pN be any set of points in R2. Introduce a real valued function u and θ by

φ = e
1
2 (u+iθ) and θ = 2

N∑
j=1

arg(z − pj ), z = x1 + ix2 ∈ C
1.

Then u satisfies

�u + 4

κ2
eu

(
1 − eu

) = 4π

N∑
j=1

δ(z − pj ) in R
2, (1.4)

where δ(z − pj ) is the Dirac measure with the total mass at pj .
For the details of the derivation of Eqs. (1.2)–(1.4) and recent developments of related subjects, we refer the readers

to Hong et al. [11], Jackiw and Weinberg [12], Dunne [10], Lee et al. [15,16], Caffarelli and Yang [2], Choe [7,8], Choe
and Kim [9], Lin and Yan [18], Spruck and Yang [21,22], Tarantello [23,24], Yang [25], Wang [26] and references
therein. Eq. (1.4) has recently attracted a lot of attention because it is closely related to the mean field equation of
Liouville type, see Nolasco and Tarantello [20], Chen and Lin [5] and Lin and Wang [17].

A solution u of Eq. (1.4) is called topological if u(x) → 0 as |x| → +∞, and is called non-topological if
u(x) → −∞ as |x| → ∞. For a given set {p1, . . . , pN } of vortex points, the existence of topological solution had
been proved by Wang [26] long time ago. However, the existence problem of non-topological solutions is much more
subtle. When p1 = · · · = pN , Chen et al. [6] proved that for a positive number β , there exists radially symmetric
solution u of (1.4) such that

4

κ2

∫

R2

eu
(
1 − eu

)
dx = β

holds if and only if β > 8π(1 + N).
Naturally, we will ask the question: Given any β > 8π(1 + N), does Eq. (1.4) possess a non-topological solution

u such that

4

κ2

∫

R2

eu
(
1 − eu

)
dx = β?

Note that by (1.3), the quantity β represents twice of the total magnetic flux:∫

R2

F12 dx = 2

κ2

∫

R2

eu
(
1 − eu

)
dx = β

2
. (1.5)

It was Chae and Imanuvilov [3] who obtained the first existence result of non-topological solutions. They solved
the problem by viewing Eq. (1.4) as a perturbation of the classical Liouville equation. Consequently, they could find
solutions such that the order parameter |φ| is very small, and β is very close to 8π(N + 1). On the other hand, Chan
et al. [4] could obtain non-topological solutions with β greater than 16πN . The method of Chan et al. is to construct
solutions which bubble at each vortex point pj , therefore, in their theory the configuration of {p1, . . . , pN } must have
a symmetry. Those are only two existence results for multi-vortex non-topological solutions. At this moment, the
answer toward understanding the structure of non-topological solutions is far from complete. In the paper, we want to
answer the long standing open problem affirmatively.
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Theorem 1.1. Let p1, . . . , pN ∈ R
2 be given. For any number β > 8π(N + 1) satisfying β /∈ {8πN k

k−1 | k =
2,3, . . . ,N}, there exists a solution u of Eq. (1.4) satisfying

4

κ2

∫

R2

eu
(
1 − eu

)
dx = β.

We sketch our idea to prove Theorem 1.1. In Section 4, we consider the deformation of Eq. (1.4):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u + 4

κ2
eu

(
1 − eu

) = 4π

N∑
j=1

δεpj
in R

2,

4

κ2

∫

R2

eu
(
1 − eu

)
dx = β

(1.6)

where ε ∈ [0,1]. For ε = 1, (1.6) is the same equation as (1.4), and ε = 0, (1.6) is reduced to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u + 4

κ2
eu

(
1 − eu

) = 4πNδ0,

4

κ2

∫

R2

eu
(
1 − eu

)
dx = β

(1.7)

where 0 is the origin in R2. The major work in this paper is to establish the uniform bound of any solution uε(x) of
(1.6). This apriori estimate is surprising because in most nonlinear problems, the collapsing of vortices would cause
the bubbling phenomenon.

After establishing the apriori bounds, we will apply the classical Leray–Schauder degree theory to solve Eq. (1.4).
Note that for any radial solution u(z) for (1.7), z = x1 + ix2, uθ (z) = u(eiθ z) is also a solution, and the orbit {uθ (z)},
θ ∈ [0,2π ], is S1, whose Euler characteristic vanishes. Thus the contribution of each orbit to the topological degree
is 0. Hence due to a result of Wang [27], we conclude that the computation of the degree for Eq. (1.7) is reduced to
those radially symmetric solution of (1.7). By the result for radial solution of Eq. (1.7) in [4], the topological degree
for Eq. (1.7), thus for (1.4) also, is equal to −1. Then Theorem 1.1 follows immediately.

2. Preliminaries

Without loss of generality, we may assume that κ2 = 4 in (1.4) and (1.6) in the sequel. Now suppose u is a solution
of (1.6). Then it is easy to see that

u(x) = −2α ln |x| + O(1) as |x| → +∞, (2.1)

where

α = β

4π
− N. (2.2)

Applying the maximum principle to Eq. (1.6), we have u(x) < 0, ∀x ∈ R
2. Write

u(x) = v(x) + fε(x), (2.3)

where fε(x) = ∑N
j=1 ln |x − εpj |2. Then v(x) satisfies

�v + ev+fε
(
1 − ev+fε

) = 0. (2.4)

Lemma 2.1. Let u be a solution of (1.6). Then u satisfies

∫

R2

eu
(
2 − eu

)
dx = 4π

(
α2 − N2) − 4π

N∑
j=1

εpj · ∇v(εpj ), (2.5)

where v ≡ u − fε .
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Proof. In terms of v, (2.4) becomes

−�v = −eu
(
eu − 1

)
.

Multiplying the above by x · ∇(v + fε) and integrating over Ω = BR , we have∫
∂Ω

(
1

2
(x · ν)|∇v|2 − (x · ∇v)(ν · ∇v)

)
dσ −

∫
Ω

(x · ∇fε)�v dx

=
∫

∂Ω

(x · ν)

(
eu − 1

2
e2u

)
dσ −

∫
Ω

(
2eu − e2u

)
dx.

Here ν = x/|x|. Since v(x) = −2(α + N) ln |x| + O(1) near ∞,

LHS = −4π(α + N)2 −
∫
Ω

N∑
j=1

2x · ∇ ln |x − εpj |�v dx + o(1)

= −4π(α + N)2 + 8πN(α + N) −
N∑

j=1

2
∫
Ω

εpj · ∇ ln |x − εpj |�v dx + o(1)

as R → ∞. By the repeated use of the integration by parts and the fact that ln |x − εpj | is the Green function,∫
Ω

εpj · ∇ ln |x − εpj |�v dx

= lim
r→0

[( ∫
∂Ω

−
∫

∂Br (εpj )

)
εpj · (x − εpj )

|x − εpj |2 ν · ∇v −
( ∫

∂Ω

−
∫

∂Br (εpj )

)
ν · ∇

(
εpj · (x − εpj )

|x − εpj |2
)

v

]

= lim
r→0

∫
∂Br (εpj )

[
−εpj · (x − εpj )

|x − εpj |2 ν · ∇v + ν · ∇
(

εpj · (x − εpj )

|x − εpj |2
)

v

]
+ o(1)

= −2πεpj · ∇v(εpj ) + o(1).

Then we have the desired estimates. �
The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let u be a solution of (1.6). Then u satisfies

∫

R2

eu dx = 4π(α + N)(α − N − 1) − 4π

N∑
j=1

εpj · ∇(u − fε)(εpj ),

∫

R2

e2u dx = 4π(α + N)(α − N − 2) − 4π

N∑
j=1

εpj · ∇(u − fε)(εpj ).

We recall some useful results on radially symmetric solutions of (1.7) with κ2 = 4. If N = 0 then every solution
of (1.7) is called a 0-vortex solution, and after a translation this solution must be radially symmetric. Also, u is
a decreasing function of |x| [21]. More generally, when N � 0, there exists a unique radially symmetric solution
of (1.7) if and only if β > 8π(N + 1) (see [4]). Actually, there exists a 1-parameter family of radially symmetric
solution u(r; s) of (1.7) which satisfies

−u′′(r; s) − 1

r
u′(r; s) = eu(r;s)(1 − eu(r;s)), r > 0,

u(r; s) = 2N ln r + s + o(1) near r = 0.
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There exists a number s∗ ∈ R such that u(r; s) is a non-topological solution if and only if s < s∗, and

β(s) ≡
∫

R2

eu(r;s)(1 − eu(r;s))dx (2.6)

is a well-defined continuously differentiable function on (−∞, s∗). It is proved in [4] that β(·) is monotonically
increasing on (−∞, s∗). Moreover, β(s) tends to ∞ as s ↗ s∗, and β(s) → 8π(N + 1) as s → −∞. It is obvious that
s∗ = 0 if N = 0.

Lemma 2.3. Let u be a non-topological solution of (1.6) with β fixed. There exists a constant ν = ν(max |pj |) > 0
such that u < −ν in R

2.

Proof. We know that u < 0. So, u − fεn < −fεn � Cr on ∂Br = {x | |x| = r} for any r > maxj |pj | + 1.
Suppose now that there exist a sequence of solutions un := uεn and a sequence of points {xn} such that un(xn) → 0.

Since ωn := un(x) − fεn(x) � Cr on ∂Br , r > maxj |pj | + 1, and ωn satisfies �ωn + 1 � 0 in Br , by the maximum
principle, we have ωn(x) � Cr in Br . Thus if |xn − εnpj | → 0 for some j ∈ {1,2, . . . ,N}, then un(xn) = ωn(xn) +
fεn(xn) → −∞, which yields a contradiction. Hence we must have

lim inf
n→∞ dist

(
xn, {εnpj | j = 1, . . . ,N}) > C > 0.

We claim that |xn| → ∞. Indeed, if there exists a bounded subsequence of {xn}, then, by the locally uniform Hölder
estimate of un outside pj ’s, un must converge locally uniformly to a function u∗ � 0 up to subsequences. But then u∗
must be a solution of (1.6) having zero as a maximum, which contradicts the strong maximum principle. This proves
our claim.

Now, choose a number s0 < 0 such that β0(s0) > β = 4π(α + N), where β0(·) is β(·) in (2.6) for the 0-vortex
solution. Since |xn| → ∞ and un(xn) → 0, there exists a sequence {yn} such that |yn| � |xn| and un(yn) = s0. This
holds true because un(x) → −∞ as |x| → ∞.

Let un(x) = un(x + yn) for |x| � |yn|/2. un satisfies

−�un = eun
(
1 − eun

) −
N∑

j=1

4πδεnpj −yn .

Then, along a subsequence, un converges in C2
loc(R

2) to u � 0 with u(0) = s0 < 0, satisfying �u + eu(1 − eu) = 0
in R

2, and
∫

R2

eu
(
1 − eu

)
dx � lim inf

n→∞

∫

R2

eun
(
1 − eun

)
dx = β.

Since u is a 0-vortex non-topological solution of (1.7), it is radially symmetric [21]. Since M∗ := maxR2 u � u(0) = s0,

β < β0(s0) � β0(M∗) =
∫

R2

eu
(
1 − eu

)
dx � β,

which leads to a contradiction and the lemma is proved. �
Now, let ϕ(r; s) = d

ds
u(r; s) for s < s∗. We borrow the following lemma for ϕ(r; s) from [4].

Lemma 2.4. ϕ(·; s) has only one zero in R+ = (0,∞) and limr→∞ ϕ(r;s)
ln r

= −c0 for some constant c0 = c0(s) > 0.

Lemma 2.4 will be used in the calculation of degree in the final section.
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3. Boundedness of solutions

In this section, we show that the solutions of the problem (1.6) are uniformly bounded by the blow-up analysis if
β > 8π(N +1) and β �= 8πN k

k−1 for any integer k = 2, . . . ,N . In what follows we always assume that N � 1. Recall
that

fε(x) =
N∑

j=1

ln |x − εpj |2 with 0 � ε � 1.

Theorem 3.1. Let p1, . . . , pN ∈ R2, β > 8π(N + 1) and β /∈ {8πN k
k−1 | k = 2, . . . ,N}, and u be a solution of (1.6).

Then, for each compact subset K , there exists a constant C = C(β,N,maxj |pj |,K) independent of ε such that

‖u − fε‖L∞(K) � C. (3.1)

We will show Theorem 3.1 by contradiction. Since u(x) < 0 in R
2, (1.6) can be rewritten as

�u(x) + d(x)u(x) = 0

in R
2 \{p1, . . . , pN }, where |d(x)| = | eu(1−eu)

u(x)
| � C. Thus for any compact set K ⊂ R

2 \{p1, . . . , pN }, by the Harnack
inequality, there exists a constant C(K) > 0 such that

sup
K

∣∣u(x)
∣∣ � C inf

K

∣∣u(x)
∣∣.

Therefore, if there exists a sequence un := uεn of solutions which do not satisfy (3.1), then un → −∞ uniformly on
each compact subset. We will show that {un} exhibits a specific concentration near ∞, which leads to a contradiction.
In what follows, un is assumed to satisfy un(x) = −2α ln |x| + O(1) near ∞, where α is given in (2.2). We start with
the following lemma.

Lemma 3.2. Let xn be a maximum point of un. Then, |xn| → ∞ as n → ∞ and un(xn) > −C uniformly for some
constant C > 0.

Proof. Suppose that |xn| is bounded up to subsequences. Then, un(xn) → −∞ since un → −∞ locally. Now, we let

sn = e
1
2 un(xn), ũn(x) = un(x/sn) − ln s2

n, vn = ũn − fsnεn .

Then ũn � ũn(snxn) = 0 in R
2, and

−�vn = evn+fsnεn
(
1 − s2

nevn+fsnεn
)
.

Clearly, vn(x) = (ũn −fsnεn)(x) � −fsnεn(x) � C for |x| � maxj |pj |+1. Also, since the right-hand side of the above
equation is bounded, vn � C on BR(0) for R = maxj |pj | + 1. Thus, we have vn � C in R

2 for some constant C.
Then it follows that

−2N ln sn − fεn(xn) = −fsnεn(snxn) = vn(snxn) � C.

Since sn → 0, it follows that fεn(xn) → +∞ as n → ∞, which yields a contradiction. Therefore |xn| → ∞.
Next, since un converge locally uniformly to −∞, Green’s representation formula for {un} implies that

∇(un − fεn) → 0 in C1
loc(R

2). Then by (2.2), Corollary 2.2 and the above convergence, we have

4π(α + N)(α − N − 2) + o(1) =
∫

R2

e2un dx � eun(xn)

∫

R2

eun dx

= eun(xn)
(
4π(α + N)(α − N − 1) + o(1)

)
.

Since α > N + 2, un(xn) is bounded from below uniformly. �
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From now on, we let

wn(x) = un(x/rn) − ln r2
n, rn = 1/|xn| → 0,

where xn is a maximum point of un as before. Then wn satisfies

−�wn = ewn
(
1 − r2

newn
) −

N∑
j=1

4πδrnεnpj
in R

2. (3.2)

Note that rnεnpj → 0 as n → +∞. By Lemma 2.3, the Brezis–Merle type alternatives for {wn} in [9] are still valid
in any open set D satisfying D � R

2\{0}. Since wn(rnxn) → ∞ by Lemma 3.2, {wn} has a blow-up point q on the
unit circle, namely, there exists a sequence {yq,n} such that yq,n → q and wn(yq,n) → ∞. Thus, {wn} satisfies the
blow up case in the alternatives: along a subsequence, there exists a non-empty finite set S of nonzero points such that
wn → −∞ uniformly on each K � R

2\(S ∪ {0}) and

ewn
(
1 − r2

newn
) →

∑
q∈S

2πMqδq,

on any D � R
2\{0} with S ⊂ D in the distribution sense.

For any q ∈ S , let d be small, and

Mq,n = 1

2π

∫
Bd(q)

ewn
(
1 − r2

newn
)
dx.

Clearly Mq,n → Mq . By Pohozaev’s identity, we have∫
Bd(q)

ewn dx = πMq(Mq − 2) + o(1),

∫
Bd(q)

r2
ne2wn dx = πMq(Mq − 4) + o(1). (3.3)

Indeed, multiplying by (x − q) · ∇wn both sides of (3.2) and integrating over Bd(q), we can repeat the Pohozaev
argument as in Lemma 2.1. Therefore Mq � 4 for all q ∈ S . Then we have |S| � (α + N)/2. Furthermore, we can
prove that all Mq ’s are the same in the following lemma.

Lemma 3.3. Let {wn} and Mq as before. Then Mp = Mq for all p,q ∈ S . Moreover max|x−q|<d wn(x) + ln r2
n > −C

uniformly for any small constant d > 0.

Proof. Choose a small constant d > 0 such that B2d(q)∩ (S ∪{0}) = {q} for any q ∈ S . Due to Green’s representation
formula for wn, the local estimates for periodic blow-up solutions of the Chern–Simons Higgs equation in [7] are still
valid. Actually, following the proof of existence of profiles for the mean field equation [1], we obtain∣∣∣∣wn(x) − wn(qn) + Mq,n

2
ln

(
1 + ewn(qn)|x − qn|2

)∣∣∣∣ � C (3.4)

in |x − qn| � d for some constant C. Here wn(qn) = max|x−q|�d wn(x) → ∞ with qn ∈ Bd(q). Clearly qn → q .
We claim that

wn(qn) = − ln r2
n + O(1) if Mq > 4.

Indeed, we note that wn + ln r2
n � 0 in R

2. Then our claim is an immediate consequence of the following inequality.

max
Bd(q)

[
r2
newn

] ∫
Bd(q)

ewn dx �
∫

Bd(q)

r2
ne2wn dx = πMq(Mq − 4) + o(1).

We now prove that Mq are all the same. For this purpose, we suppose that Mp > Mq for some p,q ∈ S . Choose
two points x ∈ ∂Bd(p) and y ∈ ∂Bd(q), respectively. It also follows from Green’s representation formula for wn that
there exists a constant C such that |wn(x) − wn(y)| � C. Since Mp > 4, we have wn(pn) = − ln r2

n + O(1), where
pn is a maximum point of wn in Bd(p). Since wn(qn) � − ln r2

n , it follows from (3.4) that
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wn(x) − wn(y) =
(

1 − Mp,n

2

)
wn(pn) −

(
1 − Mq,n

2

)
wn(qn) + O(1)

�
(

1 − Mp,n

2

)(− ln r2
n

) −
(

1 − Mq,n

2

)(− ln r2
n

) + C

� 1

2
(Mq,n − Mp,n)

(− ln r2
n

) + C → −∞,

which yields a contradiction. Therefore Mp = Mq for all p,q ∈ S .
Finally, we show Mq > 4 for all q ∈ S . Let xn be a maximum point of un in R

2. Since the limit points of xn/|xn|
belong to S , it is enough to show

lim inf
n→∞

∫
|x−xn|<R

eun
(
1 − eun

)
dx > 8π (3.5)

for some large enough R > 0. Actually, since un(xn) is bounded from below, it follows from Harnack’s inequality that
{un} is bounded in L∞(Br(xn)) for any r > 0. Along a subsequence, un(x + xn) converges in C2

loc(R
2) to a 0-vortex

non-topological solution V of (1.7). Then (3.5) immediately follows from the fact that ‖eV (1 − eV )‖L1(R2) > 8π

[4,6,21]. This finishes the proof. �
In what follows, we let M denote the mass at q ∈ S instead of Mq . In the following two lemmas, we show that

concentration may occur only for special values of α. In particular, the following lemma implies that the origin is not
a blow-up point for {wn}.

Lemma 3.4. For each constant 0 < s < minq∈S |q|, we have

lim
n→∞

∫
|x|�s

ewn
(
1 − r2

newn
)
dx = 0, (3.6)

and wn → −∞ uniformly on Bs(0). Moreover, |S| � 2 and M = 4N/(|S| − 1).

Proof. Let s < minq∈S |q| be a small positive number. We first show (3.6). To see this, we argue by contradiction and
suppose that, along a subsequence,

M0 := lim
n→∞

∫
|x|�s

1

2π
ewn

(
1 − r2

newn
)
dx > 0.

Let ξn = wn −frnεn . Note that ξn → −∞ uniformly on any compact subset of R
2\(S ∪ {0}). By Eq. (3.2), Green’s

representation formula for ξn implies that

ξn(x) − bn → −M0 ln |x| −
∑
q∈S

M ln |x − q| in C1
loc

(
R

2 \ (
S ∪ {0}))

for some real sequence bn → −∞. The Pohozaev-type identity shows that

∫
∂Ω

(
1

2
(x · ν)|∇ξn|2 − (x · ∇ξn)(ν · ∇ξn)

)
dσ

=
∫

∂Ω

(x · ν)

(
ewn − r2

n

2
e2wn

)
dσ −

∫
Ω

(
2ewn − r2

ne2wn
)
dx −

∫
Ω

x · ∇frnεn

(
ewn − r2

ne2wn
)
dx

where Ω is an open set with smooth boundary. To simplify the notations, we let
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In =
∫

∂Ω

(
1

2
(x · ν)|∇ξn|2 − (x · ∇ξn)(ν · ∇ξn)

)
dσ,

Jn =
∫
Ω

x · ∇frnεn

(
ewn − r2

ne2wn
)
dx.

If we take Ω = {x | |x| � s}, then we obtain that

In = −πM2
0 + o(1)

as n → ∞. Moreover

Jn = 4πNM0 +
∫
Ω

N∑
j=1

2rnεnpj · (x − rnεnpj )

|x − rnεnpj |2
(
ewn − r2

ne2wn
)
dx + o(1)

= 4πNM0 +
∫

|x|�s/rn

N∑
j=1

2εnpj · (x − εnpj )

|x − εnpj |2
(
eun − e2un

)
dx + o(1)

= 4πNM0 + o(1)

as n → ∞. Therefore we obtain that

−πM2
0 + o(1) = −4πM0 −

∫
|x|�s

r2
ne2wn dx − 4πNM0 + o(1).

In particular M0 � 4 + 4N .
Next, we take Ω = ⋃

q∈S Br(q) with small enough r > 0. Note that

∇ξn(x) → ∇ξ(x) = −M(x − q)

|x − q|2 + ∇Hq(x), ∇Hq(x) = −M0x

|x|2 −
∑

p∈S\{q}

M(x − p)

|x − p|2

uniformly on any compact subset of Ω \ S . Denoting x ≡ q + rν on |x − q| = r , we have ∇ξ = −M
r

ν + ∇Hq on
|x − q| = r . As n → ∞,

In →
∑
q∈S

∫
|x−q|=r

(
1

2
(x · ν)|∇ξ |2 − (x · ∇ξ)(ν · ∇ξ)

)
dσ

=
∑
q∈S

∫
|x−q|=r

(
−M2

2r
+ M

r
q · ∇Hq(x)

)
dσ

= −π |S|M2 − 2π |S|MM0 − 2πM2
∑
q∈S

∑
p∈S\{q}

q · (q − p)

|q − p|2 + O(r)

= −π |S|M(|S|M + 2M0
) + O(r).

Moreover, it follows from (3.3) that∫
Ω

(
2ewn − r2

ne2wn
)
dx =

∫
Ω

r2
ne2wn dx +

∫
Ω

2
(
ewn − r2

ne2wn
)
dx

=
∑
q∈S

∫
|x−q|�r

r2
ne2wn dx + 4π |S|M + o(1)

= π |S|M(M − 4) + 4π |S|M + o(1).

Finally we obtain that
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Jn = 4πN |S|M +
N∑

j=1

∫
Ω

2rnεnpj · (x − rnεnpj )

|x − rnεnpj |2
(
ewn − r2

ne2wn
)
dx + o(1)

= 4πN |S|M + o(1).

Then we conclude that

4N = 2M0 + M
(|S| − 1

)
� 8 + 8N + M

(|S| − 1
)
, (3.7)

which leads to a contradiction. Therefore (3.6) is proved. By letting M0 = 0 in (3.7), we conclude that 4N =
M(|S| − 1).

Next, we show that wn → −∞ uniformly on Bs(0). It follows from Lemma 3.2, (3.4) and Green’s representation
formula for wn that, for |x| � s/rn,

un(x) = fεn(x) + Cn + 1

2π

∫

R2

ln
|y|

|x − y|e
un

(
1 − eun

)
dy

= fεn(x) + Cn + 1

2π

∫
|y|�s/rn

ln
|y|

|x − y|e
un

(
1 − eun

)
dy + O(1).

Standard argument ([1]) shows that

un(x) − fεn(x) − Cn = o(1) ln rn + O(1) for |x| � s/rn.

Then it follows from (3.4) that Cn = (M + 2N + o(1)) ln rn + O(1), and consequently, wn(x) = frnεn(x)+ (M − 2 +
o(1)) ln rn + O(1) for |x| � s. This completes the proof of Lemma 3.4. �
Lemma 3.5. For any constant R > maxq∈S |q|, wn → −∞ uniformly for |x| � R, and

lim
n→∞

∫
|x|�R

ewn
(
1 − r2

newn
)
dx = 0. (3.8)

Moreover (|S| + 1)M = 4α.

Proof. Let

ϕn(x) = wn

(
x/|x|2) − 2α ln |x|.

Choose a constant R > (minq∈S |q|)−1. Then ϕn satisfies

−�ϕn = |x|2α−4eϕn
(
1 − r2

n |x|2αeϕn
)

for |x| < R, (3.9)

and ϕn → −∞ uniformly on any closed subset of R
2 \ (S̃ ∪ {0}), where we set S̃ = {q/|q|2 | q ∈ S}. Each ϕn is of

class C2 in a neighborhood of the origin.
We now show that ϕn → −∞ uniformly on any compact subset of R

2 \ S̃ . Choose a number 0 < s <

(maxq∈S |q|)−1. We argue by contradiction and suppose that there exists a subsequence still denoted by {ϕn} such that
sup|x|�s ϕn(x) is bounded below. Elliptic estimates show that sup|x|�s ϕn(x) → ∞. Otherwise, along a subsequence,
the right-hand side of (3.9) would be uniformly bounded on Bs(0). Since ϕn(x) → −∞ uniformly for |x| = s, we
would have sup|x|�s ϕn(x) → −∞, which yields a contradiction.

We claim that

lim inf
n→∞

∫
|x|�s

|x|2α−4eϕn
(
1 − r2

n |x|2αeϕn
)
dx � 8π (3.10)

under the assumption that sup|x|�s ϕn(x) → ∞. To see this, we choose a point yn ∈ Bs(0) such that ϕn(yn) =
sup|x|�s ϕn(x). It is obvious that |yn| → 0. Choose a number tn such that
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ϕn(yn) + (2α − 2) ln tn = 0.

Along a subsequence, we have two cases:

Case 1. If |yn|/tn is bounded above, then we consider the function

ϕn(x) = ϕn(tnx) − ϕ(yn) for |x| � s/tn.

Note that ϕn(x) � ϕn(yn/tn) = 0 for |x| � s/tn. Then elliptic estimates show that, along a subsequence, ϕn converges
in C2

loc(R
2) to a solution ϕ of

−�ϕ = |x|2α−4eϕ in R
2, |x|2α−4eϕ ∈ L1(

R
2).

Consequently we find that

lim inf
n→∞

∫
Bs(0)

|x|2α−4eϕn
(
1 − r2

n |x|2αeϕn
)
dx �

∫

R2

|x|2α−4eϕ dx = 8π(α − 1).

Case 2. If |yn|/tn → ∞ then we consider the function

wn(x) = wn

(
x/|yn|

) − ln |yn|2. (3.11)

Then wn satisfies

−�wn = ewn
(
1 − r2

n |yn|2ewn
) −

N∑
j=1

4πδrn|yn|εnpj
in R

2.

Since wn(yn/|yn|) = ϕn(yn) + (2α − 2) ln |yn| → ∞, along a subsequence, {wn} has a blow-up point q∗ on the unit
circle. Consequently we have

lim inf
n→∞

∫
Bs(0)

(−�ϕn)dx � lim inf
n→∞

∫
Br(q∗)

ewn
(
1 − r2

n |yn|2ewn
)
dx � 8π

for any small constant r > 0. This proves (3.10).
Without loss of generality we may assume that

lim
n→∞

∫
|x|�s

|x|2α−4eϕn
(
1 − r2

n |x|2αeϕn
)
dx = 2πM1, M1 � 4.

Then the local estimates for {wn} show that

|x|2α−4eϕn
(
1 − r2

n |x|2αeϕn
) → 2πM1δp=0 +

∑
q∈S̃

2πMδq

in the distribution sense. Green’s representation formula for ϕn implies that

ϕn(x) − cn → −M1 ln |x| −
∑
p∈S̃

M ln |x − p|

in C1
loc(R

2 \ (S̃ ∪ {0})) for some real sequence cn → −∞. We repeat the calculations used in the proof of Lemma 3.4.
The Pohozaev-type identity implies that∫

∂Ω

(
(x · ∇ϕn)(ν · ∇ϕn) − 1

2
(x · ν)|∇ϕn|2

)
dσ + an

= (2α − 2)

∫
|x|2α−4eϕn dx − (2α − 1)

∫
r2
n |x|4α−4e2ϕn dx (3.12)
Ω Ω
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where an → 0, and Ω = ⋃
p∈S̃ Br(p). Here r > 0 is a small number. Note that

∫
Ω

|x|2α−4eϕn dx =
∫

Ω̃

ewn dy = π |S|M(M − 2) + o(1),

∫
Ω

r2
n |x|4α−4e2ϕn dx =

∫

Ω̃

r2
ne2wn dy = π |S|M(M − 4) + o(1),

where we set Ω̃ = {y | y/|y|2 ∈ Ω}. As n → ∞, we obtain from (3.12) that

π |S|2M2 + 2π |S|M1M + O(r) = π |S|M(−M + 4α).

Letting r → 0, we find that

2M1 + (|S| + 1
)
M = 4α. (3.13)

Recall that ϕn(yn) = sup|x|�s ϕn(x) and |yn| � s. It follows from (3.13) that ϕn(yn) + (2α − 2) ln |yn| → ∞. Then
we consider the function wn given in (3.11). Along a subsequence, wn has finitely many nonzero blow-up points as
we mentioned above.

On the other hand, the proof of Lemma 3.4 implies that

o(1) =
∫

|x|�d

ewn
(
1 − r2

n |yn|2ewn
)
dx =

∫
|y|�d/|yn|

ewn
(
1 − r2

newn
)
dy � 2π |S|M

for any small number d > 0, which yields a contradiction.
Therefore we conclude that ϕn → −∞ uniformly on Bs(0), and (3.8) holds. Letting M1 = 0 in (3.13), we find that

(|S| + 1)M = 4α. �
We are now in a position to prove Theorem 3.1. In Lemmas 3.4 and 3.5, we have proved that if un → −∞ uniformly

on any bounded set then∫

R2

eun
(
1 − eun

)
dx =

∑
q∈S

∫
|x−q|�d

ewn
(
1 − r2

newn
)
dx + o(1)

= 4|S|N
|S| − 1

+ o(1) = 4|S|α
|S| + 1

+ o(1).

In particular α ∈ {N(k + 1)/(k − 1) | k = 2, . . . ,N} since α > N + 2. Then Theorem 3.1 immediately follows
from (2.2).

To apply the degree theory to the problem (1.6), the first step is to determine an appropriate space in which we
should seek the solution vε (see below). To this aim we introduce the following space:

D ≡
{
v : R2 → R

∣∣∣ ‖v‖2
D =

∫

R2

|∇v|2 dx +
∫

R2

v2

(1 + |x|2)2
dx < ∞

}
.

D is clearly a Hilbert space, and every v ∈ D satisfies

ln
∫

R2

ev

(1 + |x|2)2
dx � 1

16π
‖∇v‖2

L2 + v + C. (3.14)

Here,

v = 1

π

∫

R2

v

(1 + |x|2)2
dx.

The above inequality is obtained by pulling back the Moser–Trudinger inequality on S2 through the stereographic
projection (see for example [14]). Now let uε be a solution of (1.6) with κ2 = 4. Recall that α is given in (2.2). We set
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vε = uε − hε, where hε(x) = fε(x) − (N + α) ln
(
1 + |x|2). (3.15)

Then, from (3.14) and the maximum principle, we can see vε ∈ D and it satisfies

�vε + evε+hε
(
1 − evε+hε

) = g, (3.16)

where g(x) = 4(N+α)

(1+|x|2) .

Theorem 3.6. Let vε be given in (3.15). Under the assumptions of Theorem 3.1, we have

‖vε‖L∞(R2) � C (3.17)

for some constant C independent of ε. Consequently, {vε} is bounded uniformly in D.

Proof. {vε} is bounded in L∞
loc(R

2) by Theorem 3.1. So, we need to prove that {vε} is bounded in L∞(|x| � 1).
Consider the function

ξε(x) = uε

(
x/|x|2) − 2α ln |x|, |x| � R0 :=

(
1 + max

j
|pj |

)−1
.

It follows from Theorem 3.1 that {ξε} is bounded in L∞
loc(BR0(0) \ {0}).

We now show that {ξε} is bounded from above in BR0(0). We argue by contradiction and suppose that there is a
sequence ξn := ξεn such that ξn(zn) = max|x|�R0 ξn(x) → ∞ with |zn| � R0. Clearly |zn| → 0 and

−�ξn = |x|2α−4eξn
(
1 − |x|2αeξn

)
for |x| < R0.

Therefore, the origin is a blow-up point for {ξn} in this case.
We claim that ξn(zn) + (2α − 2) ln |zn| → ∞. Indeed, if along a subsequence ξn(zn) + (2α − 2) ln |zn| � C, then

we consider the scaled function ξn(tnx + zn) − ξn(zn), where tn satisfies ξn(zn) + (2α − 2) ln tn = 0. Then the proof
of Lemma 3.5 implies that

8π(α − 1) � lim inf
n→∞

∫
|x|�R0

|x|2α−4eξn
(
1 − |x|2αeξn

)
dx � 4π(α + N),

which contradicts the assumption α > N + 2. This proves our claim.
We let un(x) = uεn(x/|zn|) − 2 ln |zn| for x ∈ R

2. Since un(zn/|zn|) = ξn(zn) + (2α − 2) ln |zn| → ∞, along a
subsequence, {un} has a nonzero blow-up point on the unit circle. Then the proof of Lemma 3.4 implies that∫

|x|�d

eun
(
1 − |zn|2eun

)
dx =

∫
|y|�d/|zn|

euεn
(
1 − euεn

)
dy = o(1)

for any small constant d > 0. However, by Theorem 3.1, uεn is locally uniformly bounded outside the vortex points.
Therefore we conclude that {ξε} is bounded from above uniformly. Elliptic estimates and Theorem 3.1 further show
that {ξε} is also bounded from below uniformly. Therefore (3.17) is proved.

Notice that vε ∈ D satisfies (3.16). Multiplying by vε both sides of (3.16) and using integration by parts after
integration, we have ‖∇vε‖L2 � C uniformly, which completes the proof. �
4. Existence

Due to Theorem 3.6, we can calculate the Leray–Schauder degree for the problem (1.6) as follows. Let u(r) be the
unique radially symmetric solution of (1.7). Recall that u(r) = −2α ln r + O(1) near ∞, where α is given in (2.2).
Choose a constant Cα such that

Q(r) := Cα

(1 + r2)2
+ eu(r)

(
1 − 2eu(r)

)
> 0 for r � 0.

We define a map Tε : D → D by

Tε(v) = (−� + σ)−1(ev+hε
(
1 − ev+hε

) + σv − g
)
,

where σ(x) = Cα(1 + |x|2)−2, and hε(x) = fε(x) − (N + α) ln(1 + |x|2).
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It is obvious that Tε : D → D is compact, and there exists a constant R > 0 such that every zero of I − Tε is
contained in a ball ΩR := {v ∈ D | ‖v‖D < R} due to Theorem 3.6. Then the degree deg(I − Tε,ΩR,0) is well
defined. Moreover, I − Tε is a continuous homotopy with respect to ε, and it preserves the degree by Theorem 3.6.

Now, we calculate the Leray–Schauder degree of I − T0. It is well known that non-radial solutions of
(I −T0)(v) = 0, if they exist, do not affect the calculation of deg(I −T0,ΩR,0). See [27] and references therein. Then
it is enough to calculate the index of I − T0 at v(r) = u(r) − h0(r) in the subspace of radially symmetric functions
in D.

Lemma 4.1. If I − T0 is restricted to the subspace of radially symmetric functions in D then the index of I − T0 at
v(r) is −1.

Proof. Recall that Q(r) = σ(r) + eu(r)(1 − 2eu(r)) > 0 for r > 0, where u(r) = v(r) + h0(r) and DT0(v(r))w =
(−� + σ)−1(Q(r)w) for w ∈ D. Let Λ be the set of real eigenvalues of DT0(v(r)) bigger than 1. We are interested
in the radially symmetric eigenfunctions corresponding to λ ∈ Λ. If λ is an eigenvalue of DT0(v(r)), and ξ = ξ(r) is
an eigenfunction corresponding to λ, then ξ satisfies

−ξ ′′ − 1

r
ξ ′ = eu(r)

(
1 − 2eu(r)

)
ξ + 1 − λ

λ
Q(r)ξ. (4.1)

Without loss of generality, we may assume that ξ(0) = 1. Otherwise, by the uniqueness for the initial value problem
of (4.1), ξ = 0 identically. As before, let ϕ(r) be the solution of the linearized equation

−ϕ′′ − 1

r
ϕ′ = eu(r)

(
1 − 2eu(r)

)
ϕ for r > 0, ϕ(0) = 1. (4.2)

Recall that ϕ has only one zero, and limr→∞ ϕ(r)
ln r

= −c for some number c > 0.
First, we claim that λ = 1 cannot be an eigenvalue for a radially symmetric eigenfunction. Indeed, otherwise, ξ(r)

and ϕ(r) would satisfy the same equation and ξ(0) = ϕ(0), ξ ′(0) = ϕ′(0) = 0. Therefore, again by the uniqueness, we
have ξ = ϕ /∈ D, which yields a contradiction.

Second, we claim Λ �= ∅. Indeed, if we put ϕ+, the positive part of ϕ into the energy

E(ξ) =
∞∫

0

(
r
(
ξ ′)2 − reu

(
1 − 2eu

)
ξ2)dr,

then we have E(ϕ+) = 0, which means that E has negative minimum in D and consequently Λ �= ∅ since λ = 1 is
not an eigenvalue of DT0(v(r)).

Third, Λ = {λ}. Moreover, up to a multiplicative constant, there exists only one radial eigenfunction corresponding
to λ ∈ Λ. To see this, we argue by contradiction. Suppose there exists a sign-changing eigenfunction corresponding
to λ ∈ Λ. We denote it by ξ and let a > 0 be the first zero of ξ . We may assume that ξ > 0 on (0, a). We also let
b > 0 be the unique zero of ϕ(r). Then the comparison theorem to (4.1) and (4.2) implies that a > b. Indeed if a � b,
integration by parts would give

0 � −aξ ′(a)ϕ(a) =
a∫

0

1 − λ

λ
Q(r)ξ(r)ϕ(r)r dr < 0,

which yields a contradiction. The comparison theorem also shows that ξ has only one zero. Otherwise, ξ would have
the second zero c > a. Then integration by parts and Hopf lemma would give

0 < aξ ′(a)ϕ(a) − cξ ′(c)ϕ(c) =
c∫

a

1 − λ

λ
Q(r)ξ(r)ϕ(r)r dr < 0,

which leads to a contradiction.
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It is easy to check that (rξ ′)′ < 0 for r sufficiently large. Since ξ ∈ D, we have rξ ′(r) → 0, and ξ(r) converges to
a non-positive constant as r → ∞. Therefore rξ ′(r) = O(r−2) near ∞. Since a > b, integration by parts shows that

0 < aξ ′(a)ϕ(a) �
∞∫

a

1 − λ

λ
Q(r)ξ(r)ϕ(r)r dr < 0,

which yields a contradiction again. Therefore, by orthogonality, Λ = {λ} for some λ > 1, and the sum of the algebraic
multiplicities of λ is equal to 1.

As a conclusion, the index of I − T0 at v(r) is −1 [19]. �
In conclusion, we have deg(I − T1,ΩR,0) = deg(I − T0,ΩR,0) = −1, which implies that I − T1 has a zero in

ΩR ⊂ D. Theorem 1.1 is proved.
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