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Abstract

We study the existence, uniqueness and boundary profile of nonnegative boundary blow-up solution to the cooperative system{
�u = g(u − v) in Ω,

�v = f (v − βu) in Ω,

u = v = ∞ on ∂Ω

in a smooth bounded domain of R
N , where f , g are nondecreasing, nonnegative C1 functions vanishing in (−∞,0] and β > 0 is

a parameter.

Keywords: Cooperative system; Boundary blow-up; Keller–Osserman condition

1. Introduction

For a single equation of the form �u = f (u), f � 0, the existence of solutions which blow up at the boundary of a
smoothly bounded domain Ω is equivalent to a growth condition on f known as the Keller–Osserman condition (see
[15,17] as well as [9]):

∞∫
dt√
F(t)

< ∞, (1)

where F(t) = ∫ t

0 f (s) ds.
If in addition f is nondecreasing, some boundary blow-up solution (BBUS) is maximal: it dominates all other

solutions of the equation. In particular, interior uniform estimates can be derived for any solution of the original
equation, independently of its boundary values.

The current paper is an attempt at generalizing the above theory to autonomous systems of semilinear elliptic
equations. Since blow-up solutions are strongly related to the Maximum Principle, it is natural to consider the case
of cooperative systems first. Failing short of a theory for general cooperative systems (see Remark 2.4 for further
discussion), we study systems of the form
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{
�u = g(u − v) in Ω,

�v = f (v − βu) in Ω,

u = v = ∞ on ∂Ω

(2)

where Ω is a smoothly bounded domain of Euclidean space, f,g are nondecreasing, nonnegative C1 functions such
that f = g = 0 on R

− and β > 0 is a parameter. Solutions are sought in the class C2(Ω) and the boundary condition
is to be understood as

lim
x→x0

u(x) = lim
x→x0

v(x) = +∞ for all x0 ∈ ∂Ω.

Boundary blow-up solutions of cooperative systems have been considered in [12] (with different nonlinearities
than the ones treated here) and some examples of competitive systems have already been studied in [10,11]. Boundary
blow-up solutions in different cooperative, competitive or predator–prey systems arise in problems with “refuge”, that
is, in nonhomogeneous systems where one of the coefficients vanishes on a subset of the domain, see [5,7,8,16]. For
yet another type of systems with large solutions, see [6].

We study existence, first order asymptotics and uniqueness of solutions of (2) respectively in Sections 2, 3, 4. In
Section 5, we study in more detail a list of relevant examples. Here is a summary of our main results.

Theorem 1.1. Let Ω denote a smoothly bounded domain of Euclidean space, f,g : R → R nondecreasing, nonneg-
ative C1 functions such that f = g = 0 on R

− and β > 0. There exists a solution of the system (2) if and only if the
following three conditions hold

• f satisfies the Keller–Osserman condition (1),
• g satisfies the Keller–Osserman condition (1),
• β < 1.

The asymptotics of solutions is obtained at the price of a technical assumption on the nonlinearities commonly
found in the literature (see e.g. [1]). More precisely, let

φ(u) =
∞∫

u

dt√
2F(t)

,

where

F(t) =
t∫

0

f (s) ds.

We assume in what follows that f satisfies

lim inf
t→∞

φ(at)

φ(t)
> 1 ∀a ∈ (0,1). (3)

Examples are given by f (u) = eu or f (u) = up , p > 1. A counter-example is given by f (u) = u (ln(1 + u))2p , p > 1.
For 0 < β < 1 and β < θ � 1, we let wθ > 0 denote the minimal solution to{

�wθ = f (
θ−β

θ
wθ ) in Ω,

wθ = +∞ on ∂Ω
(4)

(see e.g. [9] for the notion of minimal blow-up solution). Then, we have the following result.

Theorem 1.2. Make the same assumptions as in Theorem 1.1. Assume in addition that f satisfies (3).

(a) If f is smaller than g at infinity in the sense that for any ε > 0,

lim
t→+∞

f (t) = 0 (5)

g(εt)
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then for any solution (u, v) of the system (2)

lim
x→∂Ω

u

w1
= 1, lim

x→∂Ω

v

w1
= 1, (6)

where w1 is the minimal nonnegative solution to (4) with θ = 1.
(b) If f is of the order of g at infinity in the sense that for some θ0 ∈ (β,1),

if θ ∈ (β, θ0), then lim inf
t→+∞ θ

g((1 − θ)t)

f ((θ − β)t)
� 1,

if θ ∈ (θ0,1), then lim sup
t→+∞

θ
g((1 − θ)t)

f ((θ − β)t)
� 1 (7)

then for any solution (u, v) of the system (2)

lim
x→∂Ω

u

wθ0

= 1

θ0
, lim

x→∂Ω

v

wθ0

= 1, (8)

where wθ0 is the minimal solution to (4) with θ = θ0.

Remark 1.3. Condition (7) looks rather unpleasant. Nevertheless, its validity can be easily checked on examples. If
e.g. f (t) = g(t) = tp , by the Intermediate Value Theorem there exists θ0 ∈ (β,1) such that limt→+∞ θ0

g((1−θ0)t)
f ((θ0−β)t)

=
θ0

(1−θ0)
p

(θ0−β)p
= 1. Since the quantity θ

g((1−θ)t)
f ((θ−β)t)

is nonincreasing in θ , (7) follows. If f (t) = g(t) = et , then letting

θ0 = (1 + β)/2, we have limt→+∞ θ
g((1−θ)t)
f ((θ−β)t)

= +∞ for θ < θ0, while the limit is equal to 0 if θ > θ0. Observe that
in this case, though (7) holds, there is no value of θ for which the limit is equal to 1.

Remark 1.4. Note that when condition (5) holds, the first order asymptotics of both u and v is independent of the
nonlinearity g. The influence of g can be detected in the next terms of the asymptotic expansion of the solution. See
Example 1 in Section 5.

On the contrary, when condition (7) holds, f and g already interplay in the value of the constant θ0 of the leading
asymptotics of u and v. See Example 2 in Section 5.

As a consequence of Theorem 1.2, we obtain under an extra convexity assumption:

Corollary 1.5. Make the same assumptions as in Theorem 1.1. Assume in addition that f satisfies (3) and either
condition (5) or (7) holds.

(a) If f and g are convex, then the system (2) has a unique solution.
(b) If Ω is a ball and f (t)

t
,

g(t)
t

are nondecreasing in a neighborhood of +∞, then the system (2) has a unique
solution.

Remark 1.6. Even in the case of the ball, we do not know whether uniqueness remains true under the sole assumption
that f and g are nondecreasing.

Notation. For functions m,n : [0,∞) → [0,∞) we say that m ∼ n at infinity if

lim
t→∞

m(t)

n(t)
= 1

and use similar notation when m,n are defined near t0 and limt→t0
m(t)
n(t)

= 1.

2. Existence

The proof of the existence of solutions in Theorem 1.1 follows a standard scheme where one first solves the system
with a finite boundary condition m and then lets m → +∞. The former step can be carried out in a more general
setting as described next. Consider the system
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{
�u = g(u, v) in Ω,

�v = f(v,u) in Ω,

u = v = ∞ on ∂Ω ,
(9)

where f and g are two nonnegative C1 functions such that f(0,0) = g(0,0) = 0 and ∂g/∂v � 0, ∂ f/∂u � 0 (the system
is then called cooperative).

Proposition 2.1. Given m > 0 the system{
�u = g(u, v) in Ω,

�v = f(u, v) in Ω,

u = v = m on ∂Ω

(10)

admits a unique minimal nonnegative solution (u, v).

In the previous statement minimality refers to the following property: take any open set ω ⊆ Ω and ū, v̄ ∈ C2(ω̄)

satisfying⎧⎪⎨
⎪⎩

�ū � g(ū, v̄) in ω,

�v̄ � f(ū, v̄) in ω,

ū � 0, v̄ � 0 in ω,

ū � u, v̄ � v on ∂ω.

(11)

Then,

u � ū, v � v̄ in ω.

To solve the system with finite boundary values we use sub and supersolutions. A convenient reference for mono-
tone methods for equations and systems is [18].

Proof. Choose a > 0, b > 0 sufficiently large such that the functions

u 
→ g(u, v) − au, v 
→ f(u, v) − bv are decreasing for 0 � u,v � m. (12)

Define

u0 ≡ 0, v0 ≡ 0 (13)

and for k � 1{
�uk − auk = g(uk−1, vk−1) − auk−1 in Ω,

�vk − bvk = f(uk−1, vk−1) − bvk−1 in Ω,

uk = vk = m on ∂Ω.

(14)

We claim that

0 � uk−1 � uk � m in Ω

and

0 � vk−1 � vk � m in Ω.

Indeed, the property is straightforward if k = 1. Take k � 2 and assume by induction that uk−2 � uk−1, vk−2 � vk−1
in Ω . Then,

�(uk − uk−1) − a(uk − uk−1) = g(uk−1, vk−1) − g(uk−2, vk−2) − a(uk−1 − uk−2)

� g(uk−1, vk−2) − g(uk−2, vk−2) − a(uk−1 − uk−2)

� 0 in Ω

and hence uk − uk−1 � 0 in Ω . The remaining inequalities are obtained similarly. In particular, the limits

u = lim uk, v = lim vk

k→∞ k→∞
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exist, solve (10) and satisfy

0 � u � m, 0 � v � m in Ω.

Let us show now that the solution constructed in this way does not depend on a, b as long as these parameters
satisfy (12). For this we argue as follows: suppose that u,v are constructed using a, b and ũ, ṽ are constructed with ã,
b̃ satisfying (12). Let uk , vk denote the sequences defined by (13), (14). Arguing by induction we see that if ũ � uk−1,
ṽ � vk−1 then

�(ũ − uk) − a(ũ − uk) = g(ũ, ṽ) − g(uk−1, vk−1) − a(ũ − uk−1)

� g(ũ, vk−1) − g(uk−1, vk−1) − a(ũ − uk−1)

� 0

and then ũ − uk � 0 in Ω . Note that u 
→ g(u, v) − au and v 
→ f(u, v) − bv are monotone in the appropriate regions
because u,v and ũ, ṽ are between 0 and m. Similarly, ṽ − vk � 0 in Ω and thus ũ � u, ṽ � v in Ω . By symmetry we
obtain the converse inequality and we deduce that ũ = u, ṽ = v.

Minimality. Let ω ⊂ Ω be open and ū, v̄ ∈ C(ω̄) satisfy (11). Choose a, b large enough so that g(u, v) − au is
decreasing in u and f(u, v) − bv is decreasing in v for all u,v in the range 0 � u,v � M with M � m, M � maxω̄ ū

and M � maxω̄ v̄.
Consider uk , vk defined by (13), (14). Now we show that ū � uk , v̄ � vk in ω for all k. By induction, if ū � uk−1,

v̄ � vk−1 in ω then

�(ū − uk) − a(ū − uk) � g(ū, v̄) − g(uk−1, vk−1) − a(ū − uk−1)

� g(ū, vk−1) − g(uk−1, vk−1) − a(ū − uk−1)

� 0 in ω

and hence ū − uk � 0 in ω. �
Proof of Theorem 1.1. Necessary conditions. Suppose that (u, v) is a solution to (2) and for given γ > 0 set w =
min(γ u, v). Let χA denote the characteristic function of a set A. By Kato’s inequality (see [14]),

�w � γ�uχ[γ u<v] + �vχ[γ u>v]
= γg(u − v)χ[γ u<v] + f (v − βu)χ[γ u>v]

� γg
(
(1 − γ )u

)
χ[γ u<v] + f

((
1 − β

γ

)
v

)
χ[γ u>v]

= γg

(
1 − γ

γ
w

)
χ[γ u<v] + f

((
1 − β

γ

)
w

)
χ[γ u>v]

� max

(
γg

(
1 − γ

γ
w

)
, f

((
1 − β

γ

)
w

))
=: h1(w).

Hence w is a supersolution to the single equation �u = h1(u) in Ω with u = +∞ on ∂Ω . Therefore this problem
admits a solution and hence h1 must satisfy the Keller–Osserman condition (1) (see e.g. [9]). Choosing γ = 1 implies
that f satisfies (1) and β < 1. Then, choosing γ = β < 1 implies that g satisfies (1).

Sufficient conditions. Consider the minimal solution (um, vm) to the truncated problem{
�u = g(u − v) in Ω,

�v = f (u − βv) in Ω,

u = v = m on ∂Ω

(15)

where m > 0. Such a solution can easily be constructed by the method of sub and supersolutions, see Proposition 2.1.
Let γ ∈ (β,1) and set

wm = max(γ um, vm).

Then,
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�wm � γ�umχ[γ um>vm] + �vmχ[γ um<vm]
= γg(um − vm)χ[γ um>vm] + f (vm − βum)χ[γ um<vm]

� γg

((
1

γ
− 1

)
wm

)
χ[γ um>vm] + f

((
1 − β

γ

)
wm

)
χ[γ um<vm]

� h2(wm),

where h2(w) = min(γg(
1−γ
γ

w),f ((1 − β
γ
)w)). Since h2 satisfies (1) and is nondecreasing, the boundary blow up

equation �w = h2(w) in Ω , w = +∞ on ∂Ω has a maximal solution w (obtained e.g. as the limit of (wn), where
wn denotes the minimal blow-up solution on a subdomain Ωn � Ω with

⋃
n Ωn = Ω). By comparison, wm � w in Ω

for all m > 0. Hence (um), (vm) remain bounded on compact sets of Ω as m → ∞, and by standard elliptic estimates
they converge- up to a subsequence – in C2

loc(Ω) to a solution of (2). �
Remark 2.2. The proof of Theorem 1.1 implies that whenever solutions exist, one of them is minimal in the class of
nonnegative solutions. Moreover this solution (u, v) satisfies

βu � v � u in Ω. (16)

Indeed let us show that the minimal nonnegative solution (um, vm) to (15) satisfies vm � um in Ω . For this let us recall
that um = limk→∞ um,k , vm = limk→∞ vm,k where um,k , vm,k are defined recursively by (14) starting with the trivial
solutions, with g(u, v) = g(u − v) and f(u, v) = f (v − βu). We chose a = b large so that (12) is satisfied. We claim
that vm,k � um,k . Proceeding inductively, assume vm,k−1 � um,k−1. Then

�um,k − aum,k = g(um,k−1 − vm,k−1) − a(um,k−1 − vm,k−1) − avm,k−1 � −avm,k−1

while

�vm,k − avm,k = f (vm,k−1 − βum,k−1) − avm,k−1 � −avm,k−1.

By the maximum principle um,k � vm,k in Ω . For the other inequality in (16) we may proceed similarly, but this time
it is convenient to work with ũm,k , ṽm,k defined by (14) but with the boundary conditions ũm,k = m and ṽm,k = βm

on ∂Ω . The limit of ũm,k, ṽm,k as k → +∞ and then as m → +∞ is the minimal nonnegative solution to the system,
as can be seen by comparison.

Remark 2.3. For a general system (9) the same proof as that of Theorem 1.1 yields the following necessary condition
for existence:

∀γ > 0 max

(
γ g

(
w

γ
,w

)
, f

(
w

γ
,w

))
satisfies (1). (17)

Similarly the next condition is sufficient for existence

∃γ > 0 such that min

(
γ g

(
w

γ
,w

)
, f

(
w

γ
,w

))
satisfies (1). (18)

However, these conditions are not equivalent in general, see Example 3.

Remark 2.4. For general cooperative systems the problem with finite boundary values (10) is always solvable and
generates an increasing sequence of approximate solutions (um, vm)m∈N. Going back to (9), obtaining a sharp exis-
tence criterion similar to the Keller–Osserman condition (1) is equivalent to characterizing the nonlinearities for which
(um, vm)m∈N remains bounded on compact subsets of Ω . Such a result seems out of reach for general cooperative sys-
tems. Still, it would be interesting to answer the following question: assume (9) admits a solution for any domain of
the form Ω = (−R,R), R > 0. Is it true that (2) is solvable in any smoothly bounded domain Ω ⊂ R

N , N � 2?
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3. Asymptotics

Under the hypotheses on f stated in Theorem 1.1 and the Keller–Osserman condition (1) the problem

�u = f (u) in Ω, u = +∞ on ∂Ω (19)

admits a minimal solution u and a maximal solution U . The maximal solution can be constructed as the limit U =
limδ→0 uδ where uδ is the minimal solution of (19) in the domain Ωδ = { x ∈ Ω: dist(x, ∂Ω) > δ}.

The next lemma is well known. It asserts that under hypothesis (3) all solutions to (19) have the same first order
boundary behavior, see for instance [1,2] or [3].

Lemma 3.1. Let Ω be a bounded smooth domain in R
N . Assume f satisfies (3). Then for any solution u of (19) we

have

lim
x→∂Ω

u(x)

ψ(d(x))
= 1,

where ψ = φ−1 and φ is the function appearing in (3).

Lemma 3.2. Suppose f ∼ g at infinity and that f satisfies (3). Let u be any solution to (19) and v any solution to (19)
with nonlinearity replaced by g. Then

lim
x→∂Ω

u

v
= 1.

Proof. Let G(t) = ∫ t

0 g(s) ds, φg(u) = ∫ ∞
u

dt√
2G(t)

, ψg = φ−1
g . Let φf and ψf denote the corresponding functions

associated to f . By Lemma 3.1 it suffices to prove that

lim
δ→0

ψf (δ)

ψg(δ)
= 1.

Since f ∼ g at infinity we also have F ∼ G at infinity and therefore φf ∼ φg at infinity. It follows from this and
the fact that φf satisfies the condition (3) that φg satisfies this condition too.

Let m > 1. Condition (3) on φg implies that there exists η > 1 and δ0 > 0 such that

ψg(δ) � mψg(ηδ) ∀0 < δ < δ0. (20)

Since φf ∼ φg at infinity we have

lim
δ→0

δ

φg(ψf (δ))
= 1.

Hence taking δ1 > 0 small,

δ � ηφg

(
ψf (δ)

)
< δ0 ∀0 < δ < δ1.

Since ψg is nonincreasing we deduce

ψg(δ) � ψg

(
ηφg

(
ψf (δ)

)) ∀0 < δ < δ1

and by (20)

ψg(δ) � 1

m
ψf (δ) ∀0 < δ < δ1.

It follows that

lim sup
δ→0

ψf (δ)

ψg(δ)
� m

and since m > 1 was arbitrary, that

lim sup
δ→0

ψf (δ)

ψg(δ)
� 1.

The corresponding inequality for the liminf is proved by reversing the roles of ψf and ψg . �
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The next lemma asserts that under the condition (3) the boundary behavior of solutions to (19) depends continu-
ously on multiplicative perturbations of the nonlinearity.

Lemma 3.3. Assume f satisfies (3). Given γ > 0 let uγ denote any solution of

�uγ = f (γ uγ ) in Ω, uγ = +∞ on ∂Ω.

Then

lim sup
γ→1

lim sup
x→∂Ω

uγ

u1
� 1 � lim inf

γ→1
lim inf
x→∂Ω

uγ

u1
.

Proof. Given γ > 0 let fγ (u) = f (γ u), Fγ (t) = ∫ t

0 fγ (s) ds = 1
γ
F (γ t), φγ (u) = ∫ ∞

u
dt√

2Fγ (t)
= 1√

γ
φ(γ u) and

ψγ = (φγ )−1. Note that ψγ (δ) = 1
γ
ψ(

√
γ δ).

By Lemma 3.1 it is enough to establish

lim sup
γ→1

lim sup
δ→0

ψγ (δ)

ψ(δ)
� 1 � lim inf

γ→1
lim inf
δ→0

ψγ (δ)

ψ(δ)
.

Let m > 1 and δ0 > 0, η > 1 be such that (20) holds. Then if
√

γ � η it follows that

1

γ
ψ(δ) � m

γ
ψ(ηδ) � m

γ
ψ(

√
γ δ) = mψγ (δ) ∀0 < δ < δ0

and therefore

lim inf
δ→0

ψγ (δ)

ψ(δ)
� 1

γm
∀0 < γ < η2.

As m > 1 is arbitrary we deduce

lim inf
γ→1

lim inf
δ→0

ψγ (δ)

ψ(δ)
� 1.

Similarly, let m > 1 and δ0 > 0, η > 1 such that (20) holds. If
√

γ � 1
η

we have

ψγ (δ) = 1

γ
ψ(

√
γ δ) � 1

γ
ψ(δ/η) � m

γ
ψ(δ)

for δ > 0 small and therefore

lim sup
δ→0

ψγ (δ)

ψ(δ)
� m

γ
∀γ � 1

η2
.

Hence

lim sup
γ→1

lim sup
δ→0

ψγ (δ)

ψ(δ)
� 1. �

Proof of Theorem 1.2, part (a). Let (u, v) be any solution to (2) and w1 be the minimal nonnegative solution to (4)
with θ = 1. For simplicity we write w = w1. First we note that we have

w � v � u. (21)

Indeed for the minimal solution (u, v), we always have u � v by (16). Consequently,

�v = f (v − βu) � f
(
(1 − β)v

)
so v is a supersolution of (4) and since w is the minimal nonnegative solution it follows that w � v. Let

zθ = max(θu, v),
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where

β < θ < 1.

By Kato’s inequality we have

�zθ � hθ (z)

with hθ given by

hθ (w) = min

(
θg

(
1 − θ

θ
w

)
, f

(
θ − β

θ
w

))
. (22)

Let wθ be the minimal solution to (4) and w̃θ be the maximal solution to

�w̃θ = hθ (w̃θ ) in Ω, w̃θ = +∞ on ∂Ω.

Then zθ � w̃θ in Ω . Note that under condition (5), we have hθ (w) = f (
θ−β

θ
w) for large w. It follows from Lemma 3.2

that

lim
x→∂Ω

w̃θ

wθ

= 1

and therefore

lim sup
x→∂Ω

zθ

wθ

� 1

for any θ ∈ (β,1). It follows from the previous inequality that

lim sup
x→∂Ω

zθ

w
� lim sup

x→∂Ω

zθ

wθ

lim sup
x→∂Ω

wθ

w
� lim sup

x→∂Ω

wθ

w
.

Letting now θ → 1 and using Lemma 3.3 we deduce that

lim sup
θ→1

lim sup
x→∂Ω

zθ

w
� 1.

This together with (21) yields the conclusion. �
Proof of Theorem 1.2, part (b). We use Kato’s inequality with

zθ = max(θu, v),

where

β < θ < θ0.

We have

�zθ � hθ (z)

with hθ given by (22). By assumption (7), given ε > 0, hθ (t) � (1 − ε)f (
θ−β

θ
t) for t large. In particular, there exists

a neighborhood V of ∂Ω , V ⊂ Ω such that

�zθ � (1 − ε)f

(
θ − β

θ
zθ

)
.

Let wε,θ denote the maximal solution of{
�wε,θ = (1 − ε)f (

θ−β
θ

wε,θ ) in V ,

wε,θ = +∞ on ∂V .

Then, zθ � wε,θ in V . By Lemma 3.3

lim sup lim sup
wε,θ

w
� 1, (23)
ε→0,θ→θ0 x→∂Ω
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where w is the minimal solution of (4) with θ = θ0. Thus,

lim sup
θ→θ0

lim sup
x→∂Ω

zθ

w
� 1. (24)

Let θ ∈ (θ0,1) and z̃θ = min(θu, v). Then, as before, z̃θ � w̃ε,θ where now w̃ε,θ is the minimal solution of

⎧⎨
⎩

�w̃ε,θ = (1 − ε)f (
θ−β

θ
w̃ε,θ ) in V ,

w̃ε,θ = +∞ on ∂Ω,

w̃ε,θ = τ on ∂V \ ∂Ω

and τ > 0 is a fixed small constant. Using Lemma 3.3 one proves that

lim inf
ε→0,θ→θ0

lim inf
x→∂Ω

w̃ε,θ

w
� 1, (25)

whence

lim inf
θ→θ0

lim inf
x→∂Ω

z̃θ

w
� 1. (26)

Collecting (24) and (26), the theorem is proved. �
4. Uniqueness

In this section, we prove Corollary 1.5, which states the uniqueness of the solutions of (2) provided that f,g are
nondecreasing, nonnegative C1 functions such that f = g = 0 on R

− that satisfy (3), that either condition (5) or (7)
holds, and that

(a) either f,g are convex functions;
(b) or Ω is a ball and f (t)

t
, g(t)

t
nondecreasing in a neighborhood of +∞, and f,g nondecreasing everywhere.

We begin with the proof of the uniqueness result assuming that f,g are convex functions.

Proof of Corollary 1.5, part (a). Let ε > 0. Consider (u, v) the minimal BBUS solution and (u1, v1) another solution
to (2). Actually, by (6) or (8) we have that (1 + ε)u > u1 � u, (1 + ε)v > v1 � v in a neighborhood of ∂Ω .

Therefore, since by convexity f (t)
t

, g(t)
t

are increasing functions ((1 + ε)u, (1 + ε)v) is a supersolution of (2):{
�(1 + ε)u � g((1 + ε)u − (1 + ε)v) in Ω,

�(1 + ε)v � f ((1 + ε)v − β(1 + ε)u) in Ω,

(1 + ε)u = (1 + ε)v = ∞ on ∂Ω.

Therefore, w := u1 − (1 + ε)u, z := v1 − (1 + ε)v satisfy w � 0, z � 0 in a neighborhood of ∂Ω , and

�w − g′(ξ1)w + g′(ξ1)z � 0 in Ω,

�z − f ′(ξ2)z + βf ′(ξ2)w � 0 in Ω,

for some ξ1 � 0, ξ2 � 0. Since g′(ξ1) � 0, f ′(ξ2) � 0 and (−1 + β)f ′(ξ2) � 0 we can apply the maximum principle
for cooperative systems (see for example Appendix A of this paper or [19], Theorem 3.15 and its following remark)
to conclude that w � 0 and z � 0 in Ω . Letting ε → 0, we obtain the desired inequality. �

We now prove the uniqueness result relaxing the hypotheses on f,g if Ω is a ball. This result compares with the
uniqueness result in [9]. We begin with a lemma concerning the boundary behavior of the minimal solution (u, v) of
our problem, and that is interesting in itself, since it is true for general domains and gives some insight of the boundary
behavior of solutions.
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Lemma 4.1. Let u,v denote the minimal boundary blow-up solution of (2). Then,

lim
x→∂Ω

(
u(x) − v(x)

) = +∞, (27)

lim
x→∂Ω

(
v(x) − βu(x)

) = +∞. (28)

Proof. We establish (27), the other limit being similar. Fix A > 0. Consider the problem

�uA,m = g(uA,m − vA,m), (29)

�vA,m = f (vA,m − βuA,m), (30)

uA,m = m + A, vA,m = m on ∂Ω. (31)

For a given A > 0, if m is large enough then (m + A,m) is a supersolution to this problem and by the classical
iterative method described in Proposition 2.1, we can construct a solution to this approximated problem. As we did in
the proof of Theorem 1.1, (uA,m, vA,m) converges to the minimal BBUS solution when m → +∞.

In addition, we have that

�(uA,m − vA,m) � g(uA,m − vA,m), (32)

uA,m − vA,m = A on ∂Ω. (33)

Therefore uA,m − vA,m is a supersolution to a single equation problem. Set wA for the solution to

�wA = g(wA) in Ω, (34)

wA = A on ∂Ω. (35)

Therefore, everywhere in Ω

wA(x) � uA,m(x) − vA,m(x). (36)

We now let m → +∞, then A → +∞ that leads to

w(x) � u(x) − v(x), (37)

where w is the minimal BBUS solution to (34). �
We now complete the proof of the uniqueness result.

Proof of Corollary 1.5, part (b). To fix ideas, assume that Ω is the unit ball. Consider (u, v) the minimal solution to
(2) and (u1, v1) the maximal solution (obtained as the limit (u1, v1) = limδ→0(uδ, vδ) where (uδ, vδ) is the minimal
solution in the ball with radius 1 − δ). Then it suffices to show that u ≡ u1 and v ≡ v1. It is worth to observe that u,
v, u1, v1 are radial functions.

Consider r ∈ (0,1). Let Ωr be the ball of radius r . Then for each x ∈ Ωr there exist ξ, ξ ′ ∈ R such that

�(u1 − u) = g(u1 − v1) − g(u − v) = g′(ξ)(u1 − u) − g′(ξ)(v1 − v), (38)

�(v1 − v) = f (v1 − βu1) − f (v − βu) = f ′(ξ ′)(v1 − v) − βf ′(ξ ′)(u1 − u). (39)

By the maximum principle for cooperative systems, we have

sup
Ωr

(u1 − u) � max
(
u1(r) − u(r), v1(r) − v(r)

)
,

sup
Ωr

(v1 − v) � max
(
u1(r) − u(r), v1(r) − v(r)

)
.

This ensures that the function

r 
→ M(r) := max
(
u1(r) − u(r), v1(r) − v(r)

)
is nondecreasing in (0,1).
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Assume that

u(0) < u1(0) or v(0) < v1(0) (40)

for if u(0) = u1(0) and v1(0) = v(0) by uniqueness for the system of ODEs we would have u ≡ u1 and v ≡ v1 in
(0,1) and the proof is over.

By Lemma 4.1 there is R0 such that min(u − v, v − βu)(t) � a for all t � R0, where a is such that both f (t)
t

, g(t)
t

nondecreasing for t � a.
We argue in a slightly different way in the following cases:

there exists r ∈ (R0,1) such that u1(r) − u(r) > v1(r) − v(r), (41)

there exists r ∈ (R0,1) such that u1(r) − u(r) < v1(r) − v(r), (42)

u1(r) − u(r) = v1(r) − v(r) for all r ∈ (R0,1). (43)

To begin with we assume that (41) holds. In this case choose R1 ∈ (R0,1) such that

u1(R1) − u(R1) > v1(R1) − v(R1). (44)

Define

w := u1 − (1 + ε)u, z := v1 − (1 + ε)v

and take ε > 0 small enough such that

w(R1) > z(R1)

and by (40)

w(R1) > 0 or z(R1) > 0.

Thus in particular w(R1) > 0. We choose rε > R1 close to 1, such that w(rε) < 0 and z(rε) < 0. This is possible by
(6) or (8).

In the annulus {r: R1 < r < rε} we then have{
�((1 + ε)u − u1) � g((1 + ε)u − (1 + ε)v) − g(u1 − v1),

�((1 + ε)v − v1) � f ((1 + ε)v − β(1 + ε)u) − f (v1 − βu1).

Therefore, (w, z) satisfy in the annulus

�w − g′(ξ1)w + g′(ξ1)z � 0,

�z − f ′(ξ2)z + βf ′(ξ2)w � 0.

By the maximum principle in the annulus R1 � r � rε we have

max(w, z) � max
(
w(R1), z(R1)

) = w(R1)

and hence

u1(r) − (1 + ε)u(r) � u1(R1) − (1 + ε)u(R1).

Note that as ε → 0, rε can be taken to approach 1. We then let ε → 0 to obtain u1(r) − u(r) � u1(R1) − u(R1) for
R1 � r < 1. By continuity M(r) = u1(r) − u(r) in some interval around R1. Since r 
→ M(r) is nondecreasing we
deduce that M(r) = λ = const in some interval of the form [R1,R1 + σ ] with σ > 0. From Eq. (38) we also have
g(u1 − v1) = g(u− v) in that interval. But g(t) is strictly increasing for t � a and u(r)− v(r) � a, u1(r)− v1(r) � a

for r � R0 if we choose R0 close enough to 1. Hence v1 − v = λ = const in [R1,R1 + σ ]. This contradicts (44).
A similar argument rules out the case (42) and therefore we are in the situation (43). The previous argument with

R1 replaced by R0 then yields

max(w, z) � max
(
w(R0), z(R0)

)
, R0 � r � rε,

which implies

u1(r) − (1 + ε)u(r) � max
(
u1(R0) − (1 + ε)u(R0), v1(R0) − (1 + ε)v(R0)

)
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for R0 � r � rε . Letting ε → 0 we have

M(r) = u1(r) − u(r) � M(R0), R0 � r < 1,

and since M is nondecreasing we conclude that M is constant in [R0,1). Thus u1 −u = λ and v1 −v = μ are constant
in [R0,1). Going back to the system we then have in the annulus R0 < r < 1

0 = �(u1 − u) = g(u1 − v1) − g(u − v),

0 = �(v1 − v) = f (v1 − βu1) − f (v − βu).

Since f,g are strictly increasing functions in the appropriate range we then have u1 − v1 = u − v and v1 − βu1 =
v − βu in R0 < r < 1. Hence λ = μ = 0 and therefore u1 − u = 0 and v1 − v = 0 in [0,1). This completes the
proof. �
5. Examples

Example 1. The first example falls in case (a) of Theorem 1.2.⎧⎨
⎩

�u = eu−v − 1 in Ω,

�v = (v − βu)p in Ω,

u = v = ∞ on ∂Ω ,
(45)

where p > 1, 0 < β < 1.

By Theorems 1.1, 1.2 and Corollary 1.5, problem (45) has a unique solution (u, v), which we know the leading
order asymptotics of. We investigate here how the first equation affects the next terms in the asymptotic expansions
of u,v. We do this for simplicity in the case p > 3.

Proposition 5.1. Assume 0 < β < 1 and p > 3. Let d denote the function distance to the boundary. Then the unique
solution (u, v) of (45) has the behavior

u = cd−α + e1 logd + f1 + O
(
dε

)
,

v = cd−α + e2 logd + f2 + O
(
dε

)
where ε > 0 is suitably small and the constants are uniquely determined by the equations

α = 2

p − 1
, (46)

(1 − β)pcp−1 = α(α + 1), (47)

e1 − e2 = −α − 2, e2 − βe1 = 0, (48)

ef1−f2 = cα(α + 1), cα(α + 1)p
f2 − βf1

(1 − β)c
= −e2. (49)

Proof. The argument relies on constructing a sub- and a supersolution having a suitable boundary behavior. The
reader is invited to check that the sub- and the supersolution that we construct depend continuously on Ω : this means
that if a comparison principle is available (for systems with standard boundary conditions), then the solution (u, v) of
(45) can be compared e.g. on an increasing sequence of domains Ωn � Ω with the supersolution ūn, v̄n blowing-up
on ∂Ωn. Letting n → ∞ and checking that ūn(x), v̄n(x) converge pointwise to the supersolution ū, v̄ blowing-up on
∂Ω , we obtain the desired inequality: u � ū, v � v̄. A similar approximation by outer domains enables us to compare
(u, v) with a given subsolution.

We finally note that the standard comparison principle for systems can be used, since for g(u, v) = eu−v , f (u, v) =
(v−βu)p we have ∂g

∂u
+ ∂g

∂v
� 0, ∂g

∂v
� 0 and ∂f

∂u
+ ∂f

∂v
� 0, ∂f

∂u
� 0. So it remains to construct the sub- and supersolution

of (45). Let δ > 0 be small and define Uδ = {x ∈ Ω: d(x) < δ}.
We use as a supersolution

ū = cd−α + e1 logd + f1 + g1d
ε and v̄ = cd−α + e2 logd + f2 + g2d

ε
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where 0 < ε < α and g1, g2 > 0 are to be fixed later on.
In Uδ we have

�ū = cα(α + 1)d−α−2 − e1d
−2 − g1ε(1 − ε)dε−2 − cαd−α−1�d + e1d

−1�d + g1εd
ε−1�d,

�v̄ = cα(α + 1)d−α−2 − e2d
−2 − g2ε(1 − ε)dε−2 − cαd−α−1�d + e2d

−1�d + g2εd
ε−1�d

and

eū−v̄ = cα(α + 1)d−α−2e(g1−g2)d
ε

= cα(α + 1)d−α−2 + cα(α + 1)d−α−2(e(g1−g2)d
ε − 1

)
.

We take g1, g2 of the form

g1 = ta1, g2 = ta2

where t � 1 and a1, a2 > 0 are fixed such that

βa1 < a2 < a1.

Using convexity

eū−v̄ � cα(α + 1)d−α−2 + cα(α + 1)(a1 − a2)td
ε−α−2

and hence

�ū − (
eū−v̄ − 1

)
� −cα(α + 1)(a1 − a2)td

ε−α−2 + Cd−α−1 + Ctdε−2 in Uδ

where C depends only on p, β , Ω , a1 and a2.
Again, using convexity

(v̄ − βū)p � cα(α + 1)d−α−2 + cα(α + 1)p
f2 − βf1

(1 − β)c
d−2 + cα(α + 1)p

a2 − βa1

(1 − β)c
tdε−2.

Since p > 3 we have α ∈ (0,1). Hence, using (49) we find

�v̄ − (v̄ − βū)p � −cα(α + 1)p
a2 − βa1

(1 − β)c
tdε−2 + Ctdε−1 + Cd−α−1 in Uδ.

Then there is δ > 0 such that ū, v̄ is a supersolution of the system in the set Uδ = {x ∈ Ω: d(x) < δ} for any t � 1.
Having fixed δ we now select t large such that

ū � u and v̄ � v on d(x) = δ.

It follows by comparison that u � ū and v � v̄ in Uδ .
The construction of a subsolution u, v is similar. We take

u = cd−α + e1 logd + f1 − a1td
ε and v = cd−α + e2 logd + f2 − a2td

ε

where 0 < ε < α, a1 > 0, a2 > 0 are chosen such that

βa1 < a2 < a1

and t > 0 is to be fixed later on. Let us introduce

σ = a2 − βa1 > 0.

Later on we will need σ to be small.
Let δ > 0 be small and Uδ = {x ∈ Ω: d(x) < δ}. Recall that the unique solution u,v to (45) satisfies u � 0, v � 0.

We take C large so that if

t = Cδ−α−ε (50)

then

u � 0 and v � 0 at d(x) = δ.
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We have in Uδ

�v = cα(α + 1)d−α−2 − e2d
−2 + a2tε(1 − ε)dε−2 − cαd−α−1�d + e2d

−1�d − a2tεd
ε−1�d.

Given � > 0 there is A > 0 such that

(1 + h)p � 1 + ph + Ah2 ∀−1 � h � �.

Using this inequality with

h = f2 − βf1

(1 − β)c
dα + σ t

(1 − β)c
dα+ε

we find

(v − βu)p � cα(α + 1)d−α−2 + cα(α + 1)p
f2 − βf1

(1 − β)c
d−2 + cα(α + 1)p

σ t

(1 − β)c
dε−2

+ A

(
cα(α + 1)p

f2 − βf1

(1 − β)c
d−2 + cα(α + 1)p

σ t

(1 − β)c
dε−2

)2

,

provided that h ∈ [−1, �]. This condition is indeed satisfied if we take � > 0 large but fixed and then δ > 0 small, since
t is given by (50). It follows that in Uδ

�v − (v − βu)p � −Cd−α−1 − Cεtdε−1 + Ctσdε−2 − ACdα−2 − ACσ 2t2d2ε+α−2.

By taking σ > 0 sufficiently small and then δ > 0 small we finally obtain

�v − (v − βu)p � 0 in Uδ.

Now let us verify that �u − eu−v � 0 in Uδ . It will then follow that (u, v) is a subsolution of (45). First we have

�ū = cα(α + 1)d−α−2 − e1d
−2 + a1tε(1 − ε)dε−2 − cαd−α−1�d + e1d

−1�d − a1tεd
ε−1�d

In addition

eu−v = cα(α + 1)d−α−2 + cα(α + 1)d−α−2(e−(a1−a2)td
ε − 1

)
.

If γ > 0 is sufficiently small then

ex � 1 + γ x for − 1

2γ
� x � 0.

Therefore

eu−v � cα(α + 1)d−α−2 − γ cα(α + 1)dε−α−2(a1 − a2)t

in Uδ provided that

(a1 − a2)td
ε � 1

2γ
in Uδ. (51)

To this end we choose γ = κδα with κ > 0 small. Recalling that t is given by (50) we see that (51) is satisfied in Uδ .
It then follows that

�u − (
eu−v − 1

)
� −Cd−2 − Ctdε−1 + Ctγ d−α+ε−2 in Uδ

and so

�u − (
eu−v − 1

)
� 0 in Uδ

if we fix δ > 0 sufficiently small. By comparison we deduce that u � u and v � v in Uδ . �
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Example 2. Our second example falls in case (b) of Theorem 1.2. Let α > 0, β > 0 and consider{
�u = eu−αv in Ω,

�v = ev−βu in Ω,

u = v = +∞ on ∂Ω.

(52)

We shall see that the constants involved in the leading asymptotics of the solution (u, v) depend on both nonlinearities
f and g. We also compute the next term in the asymptotics of (u, v) and we observe that it is independent of the
geometry of ∂Ω .

Existence of solutions for the system (52) does not follow directly from Theorem 1.1, since the nonlinearities
g = exp and f = exp do not vanish at 0. To obtain the existence we thus need to construct a suitable subsolution.

Proposition 5.2. The system (52) has a solution if and only if αβ < 1. Moreover if αβ < 1 then (52) has a unique
solution (u, v) and it satisfies

u = −c1 logd + e1 + o(1), v = −c2 logd + e2 + o(1) as x → ∂Ω (53)

where

d(x) = dist(x, ∂Ω)

and

c1 = 2
1 + α

1 − αβ
, c2 = 2

1 + β

1 − αβ
, (54)

e1 = log c1 − α log c2

1 − αβ
, e2 = log c2 − β log c1

1 − αβ
. (55)

Proof. Regarding the existence part we let the reader check that Theorem 1.1 still holds when f,g do not vanish
at (0,0), provided there exists a bounded subsolution of the problem. We construct such a subsolution for (52) as
follows. Take K > 0 large so that

|x|2 − K � 0 ∀x ∈ Ω

and choose γ > 0 such that

1

α
> γ > β.

Let

u = A
(|x|2 − K

)
, v = Aγ

(|x|2 − K
)

with A > 1 such that Aγ > 1. Then

�u = 2NA � 1, �v = 2NAγ � 1,

and

exp(u − αv) = exp
(
A

(|x|2 − K
)
(1 − αγ )

)
� 1

since |x|2 − K � 0 and 1 − αγ > 0. Similarly

exp(v − βu) = exp
(
A

(|x|2 − K
)
(γ − β)

)
� 1.

The fact that αβ < 1 is a necessary and sufficient condition for existence follows from the above discussion,
Theorem 1.1 and the change of unknown ũ = u, ṽ = αv.

For the rest of the proof we assume that αβ < 1. Regarding the asymptotic behavior of solutions, first we establish
that any solution (u, v) to (52) satisfies (53). For this purpose we first construct appropriate sub- and supersolutions.
For δ > 0 define

Uδ = {
x ∈ Ω: d(x) < δ

}
.
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Let δ0 > 0 be a small fixed number. Then there is d̃ smooth in Ω such that d̃ > 0 in Ω and

d̃ ≡ d in Uδ0 .

Let 0 < σ < 1 and w be the solution to{
−�w = d̃σ−2 in Ω,

w = 0 on ∂Ω.
(56)

Using comparison with appropriate powers of d one can obtain

a1d̃
σ � w � a2d̃

σ in Ω (57)

for some constants a1, a2 > 0. See also Gilbarg, Trudinger [13] Theorem 4.9 and Exercise 4.6.
Step 1. For appropriate choices of γ ∈ (α,1/β) and K > 0

u = −c1 log d̃ + e1 − γKw, v = −c2 log d̃ + e2 − Kw, (58)

form a subsolution of (67), where the constants c1, c2, e1, e2 are given by (54), (55). Indeed,

�u = c1d̃
−2|∇d̃|2 − c1d̃

−1�d̃ + γKd̃σ−2,

while

eu−αv = c1d̃
−2e−(γ−α)Kw.

Therefore

�u − eu−αv = c1d̃
−2(|∇d̃|2 − e−(γ−α)Kw − d̃�d̃

) + γKd̃σ−2. (59)

Using the inequality

e−t � 1 − t

3
∀0 � t � 1 (60)

and (57) we have

−e−(γ−α)Kw � −1 + 1

3
(γ − α)a1Kd̃σ

whenever

d̃σ � 1

(γ − α)a2K
.

This holds in Uδ if δ > 0 is small and

δσ K � 1

(γ − α)a2
.

We note that from the start γ can be chosen close to α so that

c1 + ‖d̃�d̃‖L∞

min(1, γ )
� 1

(γ − α)a2
. (61)

We now decrease δ > 0 further to achieve |∇d̃| = 1 in Uδ and

δ
3‖�d̃‖L∞

(γ − α)a1
� c1 + ‖d̃�d̃‖L∞ . (62)

With δ > 0 now being fixed we choose K such that

c1 + ‖d̃�d̃‖L∞

min(1, γ )
� Kδσ � 1

(γ − α)a2
. (63)

Then in Uδ we have by (59), (60)

�u − eu−αv � c1d̃
σ−2

(
1
(γ − α)a1K − d̃1−σ �d̃

)
+ γKd̃σ−2 � 0
3
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by (62) and (63). In Ω \ Uδ

�u − eu−αv � −c1d̃
−2 − c1d̃

−1�d̃ + γKd̃σ−2 � 0

thanks to (63). Similar calculations imply that �v − ev−βu � 0 in Ω .
Step 2. Let (u, v) denote the subsolution (58). Then for any solution (u, v) of (52) we have

u � u, v � v in Ω. (64)

To prove this statement, for ε > 0 small consider the domain Ωε = Ω ∪ {x ∈ R
N : dist(x, ∂Ω) < ε}. Using Step 1,

we can construct a subsolution (uε , vε) to (52) in the domain Ωε . Note that uε , vε depend continuously on ε for ε > 0
small. Substituting u by λu (for a given λ > 0) in the system (52), we obtain the equivalent form{

�u = gλ(u, v) in Ω,

�v = fλ(u, v) in Ω,

u = v = ∞ on ∂Ω

(65)

where gλ(u, v) = 1
λ
eλu−αv , fλ(u, v) = ev−λβu. Note that ∂gλ

∂u
= 1 � 0, ∂gλ

∂v
= −α

λ
� 0 and ∂gλ

∂u
+ ∂gλ

∂v
= 1− α

λ
. Similarly

∂ fλ
∂v

= 1 � 0, ∂ fλ
∂u

= −βλ � 0 and ∂ fλ
∂u

+ ∂ fλ
∂v

= 1−βλ. Since αβ < 1 it is possible to choose λ > 0 such that ∂gλ

∂u
+ ∂gλ

∂v
� 0

and ∂ fλ
∂u

+ ∂ fλ
∂v

� 0. With these conditions the maximum principle holds for the system (65) and since uε − u → −∞,
vε − v → −∞ as x → ∂Ω we deduce

u � uε and v � vε in Ω.

Letting ε → 0, we obtain (64).
Step 3. Following the same argument as in the two previous steps one can show that for appropriate choices of

γ > 0 and K > 0

ū = −c1 log d̃ + e1 + γKw, v̄ = −c2 log d̃ + e2 + Kw,

where w is the solution of (56), is a supersolution of (67), and for any solution u,v of (67) we have

u � ū and v � v̄ in Ω. (66)

Step 4. Let ui, vi , i = 1,2, be two solutions to (52). Then u1 = u2 and v1 = v2. Indeed ui/λ, vi are also solutions
to (65). Moreover by (64) and (66) and the fact that w(x) → 0 as x → ∂Ω we have that (u1 − u2)/λ → 0 and
v1 − v2 → 0 as x → ∂Ω . By the maximum principle for (65) we conclude that u1 = u2 and v1 = v2. �
Example 3. Our next system is not of the form (2). It demonstrates how our technique can still be used in more general
settings. It also provides an example where conditions (17) and (18) in Remark 2.3 are not equivalent. Consider
p,q, r, s > 0 and the system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
�u = up

vq in Ω,

�v = vr

us in Ω,

u > 0, v > 0 in Ω,

u = v = +∞ on ∂Ω.

(67)

Proposition 5.3. Problem (67) has a solution if and only if

p > 1, r > 1 and (p − 1)(r − 1) > qs. (68)

Moreover, under condition (68) the system has a unique solution and it satisfies

u = c1d
−γ

(
1 + o(1)

)
and v = c2d

−λ
(
1 + o(1)

)
as x → ∂Ω (69)

where

γ = 2
r − 1 + q

(p − 1)(r − 1) − sq
, λ = 2

p − 1 + s

(p − 1)(r − 1) − sq
(70)

and c1, c2 are given by
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c
(p−1)(r−1)−qs

1 = (
γ (γ + 1)

)r−1(
λ(λ + 1)

)q
, (71)

c
(p−1)(r−1)−qs

2 = (
γ (γ + 1)

)s(
λ(λ + 1)

)p−1
. (72)

Remark 5.4. Let m = p+s−1
q+r−1 . Observe the following distinction between the balanced system (m = 1) and the case

m > 1

• balanced system: introduce n = r − s = p − q , then problem (67) reads also⎧⎪⎪⎨
⎪⎪⎩

�u = ( u
v
)qun in Ω,

�v = ( v
u
)svn in Ω,

u > 0, v > 0 in Ω,

u = v = +∞ on ∂Ω.

(73)

Consider z the BBUS for the single equation �z = zn. Then (z, z) is the BBUS for the balanced system.
• unbalanced system: perform the change of variable w = um. Then

�w �
(

w

v

)q

w1−q+ p−1
m =

(
w

v

)q

wn,

�v =
(

v

w

)s

vn,

with n = r − s
m

= 1 − q + p−1
m

. Observe that n = 1 + (p−1)(r−1)−sq
p+s−1 > 1. Let again z denote the BBUS for the

single equation �z = zn, then using an ordering lemma (see Lemma 5.5 below), we have

um � v � z.

Before proving Proposition 5.3 we need to establish some preliminary results. The first one is the following com-
parison lemma.

Lemma 5.5. Let u1, v1 ∈ C2(Ω), u1, v1 > 0 in Ω , be a subsolution to (67).
Similarly, let (u2, v2) be a supersolution to (67) and assume

lim sup
x→∂Ω

u1

u2
� 1 and lim sup

x→∂Ω

v1

v2
� 1. (74)

If p,q, r, s > 0 satisfy (68) then

u1 � u2 and v1 � v2 in Ω. (75)

Proof. Consider ũi = logui , ṽi = logvi . Then ũ1, ṽ1 satisfy{
�ũ1 + |∇ũ1|2 � e(p−1)ũ1−qṽ1 in Ω,

�ṽ1 + |∇ṽ1|2 � e(r−1)ṽ1−sũ1 in Ω

and ũ2, ṽ2 satisfy the corresponding reversed inequalities. It is convenient to introduce one more change of variables:
λUi = ũi and Vi = ṽi where λ is such that

r − 1

s
> λ >

q

p − 1
. (76)

Then {
�U1 + λ|∇U1|2 � gλ(U1,V1) in Ω,

�V1 + |∇V1|2 � fλ(U1,V1) in Ω
(77)

where gλ(u, v) = 1
λ
e(p−1)λu−qv , fλ(u, v) = e(r−1)v−sλu.

The inequalities (75) are equivalent to U1 � U2 and V1 � V2 in Ω . Suppose that one of these inequalities fail. We
deal first with the case supΩ(U1 − U2) � supΩ(V1 − V2). Then supΩ(U1 − U2) > 0 and, since lim supx→∂Ω(U1 −
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U2) � 0 by (74), there is x0 ∈ Ω where U1 − U2 attains its maximum. Then ∇U1(x0) = ∇U2(x0) and �U1(x0) −
�U2(x0) � 0. Using the first inequality in (77) – and its analogue for U2 – we obtain for some η1, η2 � 0

0 � �(U1 − U2)(x0) + λ
(∣∣∇U1(x0)

∣∣2 − ∣∣∇U2(x0)
∣∣2)

� gλ

(
U1(x0),V1(x0)

) − gλ

(
U2(x0),V2(x0)

)
= ∂gλ(η1, η2)

∂u

(
U1(x0) − U2(x0)

) + ∂gλ(η1, η2)

∂v

(
V1(x0) − V2(x0)

)
.

Since ∂gλ(η1,η2)
∂v

� 0 and V1(x0) − V2(x0) � supΩ(V1 − V2) � U1(x0) − U2(x0) we deduce

0 �
(

∂gλ(η1, η2)

∂u
+ ∂gλ(η1, η2)

∂v

)(
U1(x0) − U2(x0)

)
. (78)

But

∂gλ(η1, η2)

∂u
+ ∂gλ(η1, η2)

∂v
= (

λ(p − 1) − q
)
e(p−1)η1−qη2 > 0

by (76). This gives a contradiction with (78).
The remaining case, that is when supΩ(U1 − U2) � supΩ(V1 − V2), is analogous so we skip it. �
Proposition 5.3 will be obtained through a blow-up argument, using an idea from [4]. We start out by study-

ing the associated limiting problem. We write x ∈ R
N as x = (x1, x

′) with x1 ∈ R and x′ ∈ R
N−1. Let R

N+ =
{(x1, x

′): x1 > 0}.

Proposition 5.6. Assume condition (68) and let γ,λ, c1, c2 be defined by (70)–(72). Suppose u,v ∈ C2(RN+), u,v > 0
solve (67) in R

N+ and satisfy

1

C
x

−γ

1 � u � Cx
−γ

1 and
1

C
x−λ

1 � v � Cx−λ
1 (79)

for some C > 0. Then u ≡ c1x
−γ

1 and v ≡ c2x
−λ
1 .

Proof. We start proving that u � c1x
−γ

1 in R
N+ . Let σ > 0 satisfy

q

r − 1
< σ <

p − 1

s
. (80)

For t > 0 set

ut = tc1x
−γ

1 , vt = tσ c2x
−λ
1

and note that for t > 1 the pair (ut , vt ) is a supersolution of (67) in R
N+ . Let

t0 = inf
{
t > 1: u � ut and v � vt in R

N+
}
.

Note that by (79) t0 is well defined and

u � ut0 and v � vt0 in R
N+ . (81)

We wish to show that t0 � 1. Assume by contradiction that t0 > 1. Let tn be a sequence such that tn → t0 and for
each n, either u � utn fails or v � vtn does. At least one of these inequalities has to fail for infinitely many n’s, and we
work out the details in the former case. Passing to a subsequence if necessary there are xn such that

u(xn) > utn(xn). (82)

We write xn = (x1,n, x
′
n) and define rn = x1,n and the functions

un(y) = r
γ
n u

(
rny + (0, x′

n)
)
, vn(y) = rλ

nv
(
rny + (0, x′

n)
)
.
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Then un, vn also satisfy the bounds (79). By standard elliptic estimates, up to a new subsequence un → u∗ and
vn → v∗ uniformly on compact sets of R

N+ and (u∗, v∗) is a solution to (67) in R
N+ and satisfies (79). From (81) we

find

u∗ � ut0 and v∗ � vt0 in R
N+ (83)

and (82) implies that

u∗(e1) = ut0(e1).

This yields �u∗(e1) � �ut0(e1). On the other hand, since t0 > 1 we have �ut0 < u
p
t0
/v

q
t0

in all of R
N+ . Hence

u∗(e1)
p

v∗(e1)q
= �u∗(e1) � �ut0(e1) <

ut0(e1)
p

vt0(e1)q

which leads to v∗(e1) > vt0(e1), contradicting (83). �
Proof of Proposition 5.3. Step 1. Here we show that (68) is necessary for existence. Consider α,β ∈ (0,1). Suppose
that (u, v) is a solution of (67) and define

w = min
(
uα, vβ

)
.

Then,

�w � αw
α−1+p

α w
− q

β χ[uα<vβ ] + βw
β−1+r

β w− s
α χ[uα>vβ ].

Hence the function

w 
→ max
(
w

α−1+p
α

− q
β ,w

β−1+r
β

− s
α
)

must satisfy the Keller–Osserman condition (1). Therefore for any α,β ∈ (0,1)

p − 1

q
>

α

β
or

α

β
>

s

r − 1
.

This implies (68).
Step 2. Condition (68) is sufficient for the existence of a solution.
First we show that there exists a subsolution u,v > 0 of (67). Consider

u = a
(|x|2 + 1

)
, v = b

(|x|2 + 1
)
.

Then �u � up/vq if

2N � ap−1b−qA where A = sup
Ω

(|x|2 + 1
)p−q (84)

and similarly, in order that �v � vr/us it is sufficient that

2N � a−sbr−1B, B = sup
Ω

(|x|2 + 1
)r−s

.

Setting as = br−1B/(2N) and inserting in (84) shows that it is enough that

(2N)p−1+s � b(p−1)(r−1)−qsBp−1As,

which can be achieved for small b > 0 thanks to the condition (p − 1)(r − 1) − qs > 0.
Consider now the minimal solution (um, vm) to the truncated problem (10) with g(u, v) = up/vq , f (u, v) = vr/us

where m > 0, which existence is guaranteed by Proposition 2.1. Let α,β > 1 be such that

p − 1

q
>

α

β
and

α

β
>

s

r − 1
(85)

which is possible thanks to (68). Now let

wm = max
(
uα

m, vβ
m

)
.
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Then by Kato’s inequality and since α,β > 1

�wm � αw
α−1+p

α
m w

− q
β

m χ[uα<vβ ] + βw

β−1+r
β

m w
− s

α
m χ[uα>vβ ] � h(wm)

where

h(w) = min
(
αw

α−1+p
α

− q
β , βw

β−1+r
β

− s
α
)
.

But thanks to (85) we have α−1+p
α

− q
β

> 1 and β−1+r
β

− s
α

> 1, which implies that h satisfies the Keller–Osserman
condition (1). Hence the problem �w = h(w) in Ω has a solution w with w = ∞ on ∂Ω . It follows that wm � w,
which shows that um and vm remain bounded on compact sets of Ω , and in a standard way one obtains a solution
to (67).

From now on we assume that (68) holds.
Step 3. For any solution (u, v) of (67) we have

1

C
d−γ � u � Cd−γ and

1

C
d−λ � v � Cd−λ in Ω (86)

for some constant C > 0.
We let t > 1 and σ > 0 such that (80) holds. Let 0 < ε < min(γ,λ) and define

ū = t
(
c1d

−γ − k1d
ε−γ

)
, v̄ = tσ

(
c2d

−λ − k2d
ε−λ

)
where γ,λ, c1, c2 are defined by (70)–(72) and k1, k2 > 0 will be specified later on. Let δ > 0 be small such that in
Uδ = {x ∈ Ω: d(x) < δ}, d is smooth and |∇d| = 1. Then, in Uδ ,

�ū = tc1γ (1 + γ )d−2−γ

[
1 − 1

1 + γ
d�d − k1

(γ − ε)(γ − ε + 1)

c1γ (1 + γ )
dε + k1

γ − ε

c1γ (1 + γ )
d1+ε�d

]
.

By choosing k1 such that

k1 � 2‖�d‖L∞
c1γ

(γ − ε)(γ − ε + 1)

and δ < 1 such that

δ‖�d‖L∞ � 1

2
we have

�ū � tc1γ (1 + γ )d−2−γ in Uδ.

Additionally,

ūp

v̄q
= tp−σqc

p

1 c
−q

2 d−2−γ (1 − k1d
ε/c1)

p

(1 − k2dε/c2)q
.

Therefore

�ū − ūp

v̄q
= tc1γ (1 + γ )d−2−γ

[
1 − tp−1−σq (1 − k1d

ε/c1)
p

(1 − k2dε/c2)q

]
.

Since p − 1 − σq > 0 thanks to (80) we may fix t0 > 1 and find a uniform δ small such that for all t > t0:

�ū − ūp

v̄q
� 0 in Uδ.

Similarly

�v̄ − v̄r

ūs
� 0 in Uδ

for all t > t0. By decreasing δ we also can achieve

inf ū(x) > 0 and inf v̄(x) > 0.

d(x)=δ d(x)=δ
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Now we take t0 large enough such that ū � u and v̄ � v on {x ∈ Ω: d(x) = δ}. By Lemma 5.5, we deduce that u � ū

and v � v̄ in Uδ which implies the upper bounds in (86). The lower bounds are obtained similarly.
Step 4. Any solution (u, v) of (67) satisfies the boundary behavior (69).
Let xn ∈ Ω be such that xn → x0 ∈ ∂Ω . Without loss of generality we may assume that ν(x0) = −e1. Let

rn = d(xn) and x̂n ∈ ∂Ω be the point on ∂Ω closest to xn.
Define

un(x) = r
γ
n u(rnx + x̂n), vn(x) = rλ

nv(rnx + x̂n).

Then (un, vn) solves (67) in Ωn = (Ω − x̂n)/rn. As n → ∞, Ωn approaches the half space R
+
N . Moreover, letting

dn(x) = dist(x, ∂Ωn) we have dn(x) = d(rnx)/rn. Using this and (86)

1

C
d

−γ
n � un � Cd

−γ
n and

1

C
d−λ
n � vn � Cd−λ

n in Ωn.

Using standard elliptic estimates and the above inequalities, up to a subsequence, un → u∗, vn → v∗ uniformly on
compact sets of R

N+ where (u∗, v∗) is a solution to (67) in R
N+ satisfying

1

C
x

−γ

1 � u∗ � Cx
−γ

1 and
1

C
x−λ

1 � v∗ � Cx−λ
1 in R

N+ .

By Proposition 5.6 we have u∗ ≡ c1x
−γ

1 and v∗ ≡ c2x
−λ
1 . Hence

d(xn)
γ u(xn) = un

(
(xn − x̂n)/rn

) → u∗(e1).

It follows that limn→∞ d(xn)
γ u(xn) = c1. Similarly limn→∞ d(xn)

λv(xn) = c2.
Step 5. From Step 4 and Lemma 5.5 we deduce that (67) has a unique solution, which satisfies (69). �
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Appendix A. Maximum principle for cooperative systems

Let Ω ⊆ R
N be a bounded open set and consider the linear system

�u � a11u + a12v in Ω,

�v � a21u + a22v in Ω. (87)

We assume that aij ∈ L∞(Ω) satisfy

a11 + a12 � 0, a12 � 0 in Ω,

a21 + a22 � 0, a21 � 0 in Ω.

Theorem A.1. Suppose u,v ∈ C2(Ω) ∩ C(Ω) satisfy (87) and

u � M, v � M on ∂Ω

where M � 0. Then

u � M, v � M in Ω.

Proof. First we assume M = 0. Let ε > 0 and

ũ = u + εeAx1 , ṽ = v + εeAx1
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where A > 0 is a large constant. Then

�ũ � a11u + a12v + εA2ex1 = a11ũ + a12ṽ + εex1
(
A2 − a11 − a12

)
> a11ũ + a12ṽ

in Ω if A is taken large, and similarly

�ṽ > a21ũ + a22ṽ.

Moreover ũ � εK and ṽ � εK on ∂Ω where

K = max
∂Ω

eAx1 .

We claim that

ũ � εK and ṽ � εK in Ω.

Suppose that the conclusion fails and that maxΩ u > εK and maxΩ u � maxΩ v. Let x0 ∈ Ω be a point where ũ

attains its maximum. Then

0 � �ũ(x0) > a11ũ(x0) + a12ṽ(x0) � (a11 + a12)ũ(x0) � 0

which is impossible. Thus we have

max
Ω

(
u + εeAx1

)
� εK, max

Ω

(
v + εeAx1

)
� εK.

Letting ε → 0 we obtain

max
Ω

u � 0, max
Ω

v � 0.

Now we assume M � 0. Consider ũ = u − M , ṽ = v − M . Then

�ũ � a11u + a12v = a11ũ + a12ṽ + M(a11 + a12) � a11ũ + a12ṽ

by the assumptions M � 0, a11 + a12 � 0. Similarly

�ṽ � a21ũ + a22ṽ.

Applying the previous case we deduce ũ � 0 and ṽ � M which yields

u � M and v � M in Ω . �
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