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Abstract

Let Ω ⊂ R
n be a bounded Lipschitz domain and consider the energy functional

Fp[u,Ω] := p−1
∫
Ω

∣∣∇u(x)
∣∣p dx,

with p ∈ ]1,∞[ over the space of measure preserving maps

Ap(Ω) = {
u ∈ W1,p

(
Ω,R

n
)
: u|∂Ω = x, det∇u = 1 a.e. in Ω

}
.

In this paper we introduce a class of maps referred to as generalised twists and examine them in connection with the Euler–Lagrange
equations associated with Fp over Ap(Ω). The main result is a surprising discrepancy between even and odd dimensions. Here we
show that in even dimensions the latter system of equations admit infinitely many smooth solutions, modulo isometries, amongst
such maps. In odd dimensions this number reduces to one. The result relies on a careful analysis of the full versus the restricted
Euler–Lagrange equations where a key ingredient is a necessary and sufficient condition for an associated vector field to be a
gradient.

Résumé

Soit Ω ⊂ R
n un domaine de Lipschitz borné, on considère la fonctionnelle d’énergie

Fp[u,Ω] := p−1
∫
Ω

∣∣∇u(x)
∣∣p dx,

où p ∈ ]1,∞[ sur l’espace de fonctions conservant la mesure

Ap(Ω) = {
u ∈ W1,p

(
Ω,R

n
)
: u|∂Ω = x, det∇u = 1 a.a. dans Ω

}
.

On introduit une classe de fonctions appellée des torsions généralisée qui est examinée dans le cadre des équations d’Euler–
Lagrange associée à Fp sur Ap(Ω). Le résultat principal est une surprenante différence de proprieté selon le parité de le
dimension n. On démontre que pour n pair, ces équations admettent une infinité de solutions régulières qui sont des isometries, alors
qu’en dimension impaire la solution est unique. Le résultat repose sur une analyse minutieuse de la version complète des équations
d’Euler–Lagrange où l’ingrédient clé est une condition nécessaire et suffisante pour qu’un champ vectoriel soit un gradient.
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1. Introduction

Let Ω ⊂ R
n be a bounded Lipschitz domain and consider the energy functional

Fp[u,Ω] :=
∫
Ω

Fp

(∇u(x)
)
dx, (1.1)

with Fp(ξ) = p−1|ξ |p and p ∈ ]1,∞[ over the space of admissible maps

Ap(Ω) := {
u ∈ W 1,p

ϕ

(
Ω,R

n
)
: det∇u = 1 a.e. in Ω

}
, (1.2)

where

W 1,p
ϕ

(
Ω,R

n
)= {

u ∈ W 1,p
(
Ω,R

n
)
: u|∂Ω = ϕ

}
,

and ϕ is the identity map.
In this paper we are concerned with the problem of extremising the energy functional (1.1) over the space (1.2)

and examining a class of maps of topological significance as solutions to the associated system of Euler–Lagrange
equations{divSp[x,∇u(x)] = 0, x ∈ Ω,

det∇u(x) = 1, x ∈ Ω,

u(x) = ϕ(x), x ∈ ∂Ω.

Here, we have that

Sp[x, ξ ] = F′
p(ξ) − p(x)ξ−t

=: Tp[x, ξ ]ξ−t , (1.3)

for x ∈ Ω , ξ ∈ R
n×n satisfying det ξ = 1 and p a suitable Lagrange multiplier while

Tp[x, ξ ] = F′
p(ξ)ξ t − p(x)I. (1.4)

A motivating source for this type of problem is nonlinear elasticity where (1.1) and (1.2) represent a simple model
of a homogeneous incompressible hyperelastic material and solutions to the above system of equations serve as the
corresponding equilibrium states (cf., e.g., Ball [1]).1

While the linear map u = ϕ serves as the unique minimiser of Fp over Ap(Ω) little is known about the structure
and features of the solution set to this system of Euler–Lagrange equations [e.g., multiplicity versus uniqueness,
existence of strong local minimisers, partial regularity, the nature and form of singularities, symmetries, etc. (see,
e.g., [2,3,6,8,9,12,14])].

In this article we contribute towards understanding aspects of these questions by way of presenting multiple so-
lutions to the above system of equations. Indeed we focus attention on the case where the domain Ω ⊂ R

n is an
n-dimensional annulus, i.e., Ω = {x ∈ R

n: a < |x| < b} with 0 < a < b < ∞.2 We proceed by introducing a class of
maps, referred to as generalised twists, characterised and defined by

u = Q(r)x,

where Q ∈ C([a, b],SO(n)) and r = |x|. To ensure admissibility, i.e., u ∈ Ap(Ω) it suffices to impose a further
p-summability on Q̇ := dQ/dr along with Q(a) = Q(b) = In. Restricting the p-energy to the space of such twists we
can write

Ep[Q] := pFp

[
Q(r)x,Ω

]
=

b∫
a

E(r, Q̇)rn−1 dr

1 In the language of elasticity, the tensor fields (1.3) and (1.4) are referred to as the Piola–Kirchhoff and the Cauchy stress tensors respectively
and the Lagrange multiplier p is better known as the hydrostatic pressure.

2 Recall that for star-shaped domains and subject to linear boundary conditions there is a uniqueness result associated with [sufficiently regular]
equilibrium states in both compressible and incompressible hyperelasticity. (See [8].)
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where the integrand itself is given through an integral over the unit sphere, i.e.,

E(r, ξ) :=
∫

Sn−1

(
n + r2|ξθ |2) p

2 dHn−1(θ).

Here, the Euler–Lagrange equation can be shown to be the second order ordinary differential equation

d

dr

{
rn−1[E′(r, Q̇)Qt − QE′t (r, Q̇)

]}= 0.

Now in order to characterise among solutions to the above equation, all those which grant a solution to the Euler–
Lagrange equations associated with Fp over Ap(Ω) we are confronted with the of task of obtaining necessary and
sufficient conditions on the vector field

[∇u]t�pu = ∇s +
{
rsA2 − r2s〈Aθ, Ȧθ〉In

+ 1

rn

d

dr

(
rn+1sA

)+ 1

rn−1

d

dr

(
rn+1s|Aθ |2)In

}
θ

with A = Qt Q̇ and s = (n + r2|Q̇θ |2) p−2
2 for it to be a gradient, specifically, to coincide with ∇p. This analysis

occupies a major part of the paper and is fully settled in Theorems 5.1 and 5.2.
The conclusion that the above analysis bares on to the original Euler–Lagrange equations turns to be a surprising

discrepancy between even and odd dimensions. Indeed it follows that in even dimensions the latter system of equations
admit infinitely many smooth solutions, modulo isometries, in the form of generalised twists whilst in odd dimensions
this number severely reduces to one.3

2. Generalised twists

Definition 2.1 (Generalised twist). Let Ω = {x ∈ R
n: a < |x| < b}. A map u ∈ C(Ω̄, Ω̄) is a generalised twist if and

only if

u(x) = Q(r)x (2.1)

for some Q ∈ C([a, b],SO(n)) and all x ∈ Ω̄ with r = |x|.4

3 Note that for the choice of Ω ⊂ R
n an n-dimensional annulus the space of its continuous self-maps, that is,

A(Ω) = {
φ ∈ C(Ω̄, Ω̄): φ(x) = x for x ∈ ∂Ω

}
equipped with the topology of uniform convergence consist of infinitely many components for n = 2 and precisely two for n � 3. (See [13,15].)
Thus with regards to Ap(Ω) we distinguish the following two cases.
(1) When p � n taking advantage of the embedding Ap(Ω) ⊂ A(Ω) enables one to partition Ap(Ω) into a corresponding collection of pairwise
disjoint sequentially weakly closed subsets on each of which minimising Fp gives rise to a strong local minimiser (see [14]).
(2) When 1 � p < n the above argument encounters two serious obstacles, firstly, there is no embedding of Ap(Ω) into A(Ω), and secondly, the
determinant function fails to be sequentially weakly continuous.

Thus in case (2) the question of existence and multiplicity of strong local minimisers as well as solutions to the system of Euler–Lagrange
equations seem at large open. Luckily the approach developed in this paper overcomes this obstacle and leads to explicit constructions of infinitely
many smooth solutions to the later system of Euler–Lagrange equations for any p ∈ ]1,∞[ when n is even. An interesting question is if the strong
local minimisers in case (1) (n being even) lie amongst this class of twist solutions. Equally interesting is a full characterisation of these minimisers
when n is odd. (See [11].)

Recall that a map ū ∈ Ap(Ω) is a strong local minimiser of Fp if and only if there exists δ = δ(ū) > 0 such that Fp[ū,Ω] � Fp[v,Ω] for all
v ∈ Ap(Ω) satisfying ‖ū − v‖

L1(Ω)
< δ.

4 When n = 2 a generalised twist can be shown to take, in polar coordinates, the alternative form

(r, θ) �→ (
r, θ + g(r)

)
(2.2)

for a suitable g ∈ C[a, b]. Maps of the type (2.2) frequently arise in the study of mapping class groups of surfaces and are better known as Dehn-
twists. In higher dimensions, by contrast, no such simple representation of (2.1) is feasible in generalised spherical coordinates, however, the
terminology here is suggested by analogy with (2.2) when n = 2.
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The continuous function Q in the above definition will be referred to as the twist path. When additionally Q(a) =
Q(b) we refer to Q as the twist loop.

Proposition 2.1. Let Ω = {x ∈ Rn: a < |x| < b}. A generalised twist u lies in Ap = Ap(Ω) with p ∈ [1,∞[ provided
that the following hold.

(1) Q ∈ W 1,p([a, b],SO(n)),
(2) Q(a) = In,
(3) Q(b) = In.

Thus, in particular, when a generalised twist u lies in Ap its corresponding twist path forms a loop in the pointed
space (SO(n), In).

Proof. Assume that u is a generalised twist. Then u ∈ Ap(Ω) if and only if the following hold.

(i) u = x on ∂Ω ,
(ii) det∇u = 1 in Ω , and,

(iii) ‖u‖W 1,p(Ω) < ∞.

Evidently (2) and (3) give (i). Moreover, a straight-forward calculation gives

∇u = Q + rQ̇θ ⊗ θ

= Q
(
In + rQt Q̇θ ⊗ θ

)
(2.3)

where r = |x|, θ = x/|x| and Q̇ := dQ/dr . Hence in view of det Q = 1 we can write

det∇u = det(Q + rQ̇θ ⊗ θ)

= det
(
In + rQt Q̇θ ⊗ θ

)
= 1 + r

〈
Qt Q̇θ, θ

〉
= 1 + r〈Q̇θ,Qθ〉 = 1,

where in the last identity we have used the fact that 〈Qθ,Qθ〉 = |θ |2 = 1 for all θ ∈ S
n−1 and so as a result

d

dr
〈Qθ,Qθ〉 = 〈Qθ, Q̇θ〉 + 〈Q̇θ,Qθ〉 = 0.

This therefore gives (ii). Finally, to justify (iii) we first note that

|∇u|2 = tr
{[∇u][∇u]t}

= tr
{
(Q + rQ̇θ ⊗ θ)

(
Qt + rθ ⊗ Q̇θ

)}
= tr

{
In + rQθ ⊗ Q̇θ + rQ̇θ ⊗ Qθ + r2Q̇θ ⊗ Q̇θ

}
= n + 2r〈Qθ, Q̇θ〉 + r2〈Q̇θ, Q̇θ〉.

Therefore as a result of 〈Qθ, Q̇θ〉 = 0 for any p ∈ [1,∞[ we have that

|∇u|p = (
n + r2|Q̇θ |2) p

2 . (2.4)

Hence in view of |u| = r
√〈Qθ,Qθ〉 = r we can write

∫
Ω

|u|p + |∇u|p =
b∫

a

∫
Sn−1

{
rp + (

n + r2|Q̇θ |2) p
2
}
rn−1 dHn−1(θ) dr,

and so referring to (1) the conclusion follows. �
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Proposition 2.2. Suppose that u is a generalised twist with the associated twist path Q ∈ C2(]a, b[,SO(n)). Then for
p ∈ [1,∞[ we have that

�pu := div
(|∇u|p−2)∇u

= Q
[
∇s ⊗ θ + 1

rn

d

dr

(
rn+1sA

)+ rsA2
]
θ,

where A = Qt Q̇ and s = s(r, θ) := (n + r2|Aθ |2) p−2
2 .

Proof. (1) (p = 2) Referring to Definition 2.1 and using the notation u = (u1, u2, . . . , un) we can write with the aid
of (2.3) in Proposition 2.1 that

�ui =
n∑

j=1

∂

∂xj

{
Qij + r

n∑
k=1

Q̇ikθkθj

}

=
n∑

j=1

{
Q̇ij θj + θj

n∑
k=1

Q̇ikθkθj + r

n∑
k=1

Q̈ikθj θkθj

+
n∑

k=1

Q̇ik(δkj − θj θk)θj +
n∑

k=1

Q̇ikθk(1 − θj θj )

}

= 2
n∑

j=1

Q̇ij θj + r

n∑
j=1

Q̈ij θj + (n − 1)

n∑
j=1

Q̇ij θj

= (n + 1)

n∑
k=1

Q̇ikθk + r

n∑
j=1

Q̈ij θj .

As this is true for 1 � i � n going back to the original vector notation and using the substitutions Q̇ = QA and
Q̈ = Q[Ȧ + A2] we have that

�u = [
(n + 1)Q̇ + rQ̈

]
θ

= Q
[
(n + 1)A + rȦ + rA2]θ

= Q
[

1

rn

d

dr

(
rn+1A

)+ rA2
]
θ,

which is the required result for p = 2. [Note that in this case s = s(r, θ) ≡ 1.]
(2) (p ∈ [1,∞[) According to definition we have that

�pu = div
(|∇u|p−2∇u

)
= div(s∇u) = ∇u∇s + s�u.

Now a straight-forward differentiation gives

∇s = ∇(n + r2|Q̇θ |2) p−2
2

= ∇(n + r2|Aθ |2) p−2
2

= β
[
rAtA + r2〈Aθ, Ȧθ〉In

]
θ, (2.5)

where β = β(r, θ,p) := (p − 2)(n + r2|Aθ |2) p−4
2 . Thus we can write

�pu = ∇u∇s + s�u

= Q[In + rAθ ⊗ θ ]∇s

+ sQ
[
(n + 1)A + rȦ + rA2]θ



1902 M.S. Shahrokhi-Dehkordi, A. Taheri / Ann. I. H. Poincaré – AN 26 (2009) 1897–1924
= Q∇s + rβQ[Aθ ⊗ θ ][rAtA + r2〈Aθ, Ȧθ〉In

]
θ

+ sQ
[
(n + 1)A + rȦ + rA2]θ.

In order to further simplify the second term on the right in the last identity we first notice that

sr := ∂s
∂r

= ∂

∂r

(
n + r2|Aθ |2) p−2

2

= β
[
r|Aθ |2 + r2〈Aθ, Ȧθ〉]

and consequently

rsrQAθ = rβQ
[
r|Aθ |2 + r2〈Aθ, Ȧθ〉]Aθ

= rβQ[Aθ ⊗ θ ][rAtA + r2〈Aθ, Ȧθ〉In

]
θ.

Therefore substituting back gives

�pu = Q
[∇s ⊗ θ + rsrA + (n + 1)sA + rsȦ + rsA2]θ

= Q
[
∇s ⊗ θ + 1

rn

d

dr

(
rn+1sA

)+ rsA2
]
θ

which is the required conclusion. �
Proposition 2.3. Suppose that u is a generalised twist with the associated twist path Q ∈ C2(]a, b[,SO(n)). Then for
p ∈ [1,∞[ we have that

[∇u]t�pu = ∇s +
{
rsA2 − r2s〈Aθ, Ȧθ〉In

+ 1

rn

d

dr

(
rn+1sA

)+ 1

rn−1

d

dr

(
rn+1s|Aθ |2)In

}
θ (2.6)

where A = Qt Q̇ and s = s(r, θ) = (n + r2|Aθ |2) p−2
2 .

Proof. In view of (2.3) we have that

[∇u]t = [Q + rQ̇θ ⊗ θ ]t = [
Qt + rθ ⊗ Q̇θ

]= [In + rθ ⊗ Aθ ]Qt .

Therefore by substituting for [∇u]t and �pu (from the previous proposition) we arrive at

[∇u]t�pu = [In + rθ ⊗ Aθ ]
×
[
∇s ⊗ θ + 1

rn

d

dr

(
rn+1sA

)+ rsA2
]
θ

=
[
∇s ⊗ θ + 1

rn

d

dr

(
rn+1sA

)+ rsA2
]
θ

+
[
r〈∇s,Aθ〉 + 1

rn−1

〈
d

dr

(
rn+1sA

)
θ,Aθ

〉
+ r2s

〈
A2θ,Aθ

〉]
θ.

However, in view of A being skew-symmetric it can be easily verified that 〈A2θ,Aθ〉 = 0 and in a similar way referring
to (2.5)

〈∇s,Aθ〉 = 〈
β
[
rAtA + r2〈Aθ, Ȧθ〉In

]
θ,Aθ

〉
= βr

{〈
A3θ, θ

〉+ r〈Aθ, Ȧθ〉〈Aθ, θ〉}= 0.

Thus summarising, we have that
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[∇u]t�pu = ∇s +
{
rsA2 + 1

rn

d

dr

(
rn+1sA

)
+ 1

rn−1

〈
d

dr

(
rn+1sA

)
θ,Aθ

〉
In

}
θ

= ∇s +
{
rsA2 − r2s〈Aθ, Ȧθ〉In + 1

rn

d

dr

(
rn+1sA

)
+ 1

rn−1

d

dr

(
rn+1s|Aθ |2)In

}
θ.

The proof is thus complete. �
3. The p-energy restricted to the loop space

For a generalised twist u referring to (2.4) we have for any p ∈ [1,∞[ that

∫
Ω

|∇u|p =
b∫

a

∫
Sn−1

(
n + r2|Q̇θ |2) p

2 rn−1 dHn−1(θ) dr.

Motivated by the above representation in this section we introduce the energy functional

Ep[Q] :=
b∫

a

E(r, Q̇)rn−1 dr

where the integrand itself is given through the integral

E(r, ξ) =
∫

Sn−1

(
n + r2|ξθ |2) p

2 dHn−1(θ).

Associated with the energy functional Ep and in line with Proposition 2.1 we introduce the space of admissible loops

Ep = {
Q = Q(r): Q ∈ W 1,p

([a, b],SO(n)
)
, Q(a) = Q(b) = In

}
.

Our primary objective here is to obtain the Euler–Lagrange equation associated with the energy functional Ep over
the space of loops Ep . In doing so the following observation will prove useful.

Proposition 3.1. Let Q ∈ SO(n) and R ∈ Mn×n. Then the followings are equivalent:

(1) RQt + QRt = 0,
(2) R = (F − Ft )Q for some F ∈ Mn×n.

Moreover, F in (2) is unique if it is assumed skew-symmetric, i.e., Ft = −F.

Proof. The implication (2) ⇒ (1) follows from a direct verification. For the reverse implication it suffices to assume
Ft + F = 0 and then take 2F = RQt . �
Proposition 3.2. Let p ∈ [1,∞[. Then the Euler–Lagrange equation associated with Ep over Ep takes the form

d

dr

{
rn−1[Eξ (r, Q̇)Qt − QEt

ξ (r, Q̇)
]}= 0. (3.1)

Proof. Fix Q ∈ W 1,p([a, b],SO(n)) and pick a variation H ∈ C∞
0 ([a, b],Mn×n). For ε ∈ R put Qε = Q + εH. Then,

QεQt
ε = [Q + εH][Q + εH]t
= In + ε

[
HQt + QHt

]+ ε2HHt .
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Hence for Qε to take values on SO(n) to the first order it suffices to have

HQt + QHt = 0,

on [a, b]. In view of Proposition 3.1 this is equivalent to assuming that for some F ∈ C∞
0 ([a, b],Mn×n) the variation

H has the form

H = (
F − Ft

)
Q.

With this assumption in place we examine the vanishing of the first derivative of the energy, i.e., that indeed

0 = d

dε
Ep[Qε]

∣∣∣∣
ε=0

= d

dε

b∫
a

E(r, Q̇ε)r
n−1 dr

∣∣∣∣
ε=0

=
b∫

a

{
∂E
∂ξ

(r, Q̇ε) : d

dε
Q̇ε

}
rn−1 dr

∣∣∣∣
ε=0

=
b∫

a

{
∂E
∂ξ

(r, Q̇) : [(Ḟ − Ḟt
)
Q + (

F − Ft
)
Q̇
]}

rn−1 dr

=: I + II.

We now proceed by evaluating each term separately. Indeed, with regards to the first term we have that

I =
b∫

a

{
∂E
∂ξ

(r, Q̇) : (Ḟ − Ḟt
)
Q
}
rn−1 dr

=
b∫

a

{
∂E
∂ξ

(r, Q̇)Qt : (Ḟ − Ḟt
)}

rn−1 dr

=
b∫

a

{
− d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F − Ft

)}
dr.

Note that in the third line we have used integration by parts which together with the boundary conditions F(a) =
F(b) = 0 gives

0 = rn−1 ∂E
∂ξ

(r, Q̇)Qt : (F − Ft
)∣∣∣∣

b

a

=
b∫

a

rn−1 ∂E
∂ξ

(r, Q̇)Qt : (Ḟ − Ḟt
)
dr

+
b∫

a

d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F − Ft

)
dr.

On the other hand for the second term a direct verification reveals that

II =
b∫ {

∂E
∂ξ

(r, Q̇) : (F − Ft
)
Q̇
}
rn−1 dr
a
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=
b∫

a

∫
Sn−1

p
(
n + r2|Q̇θ |2) p−2

2
〈
Q̇θ,

(
F − Ft

)
Q̇θ
〉
rn+1 dr = 0

as a result of the pointwise identity 〈Q̇θ, (F − Ft )Q̇θ〉 = 0. Thus, summarising, we have that

d

dε
Ep[Qε]

∣∣∣∣
ε=0

=
b∫

a

{
− d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F − Ft

)}
dr = 0.

As this is true for every F ∈ C∞
0 ([a, b],Mn×n) it follows that the skew-symmetric part of the tensor field in the

brackets in the equation above is zero. This gives the required conclusion. �
Proposition 3.3. The Euler–Lagrange equation associated with Ep over Ep can be alternatively expressed as

b∫
a

∫
Sn−1

〈{
d

dr

(
rn+1sA

)}
θ,
(
F − Ft

)
θ

〉
dHn−1(θ) dr = 0

for all F ∈ C∞
0 (]a, b[,Mn×n) where A = Qt Q̇ and s = (n + r2|Aθ |2) p−2

2 .

Proof. Referring to the proof of Proposition 3.2 and making the substitutions described above for A and s we can
write

0 = d

dε
Ep[Qε]

∣∣∣∣
ε=0

= I

=
b∫

a

{
∂E
∂ξ

(r, Q̇) : (Ḟ − Ḟt
)
Q
}
rn−1 dr

=
b∫

a

∫
Sn−1

p
〈
rn+1sAθ,

(
Ḟ − Ḟt

)
θ
〉
dHn−1(θ) dr

=
b∫

a

∫
Sn−1

−p

〈{
d

dr

(
rn+1sA

)}
θ,
(
F − Ft

)
θ

〉
dHn−1(θ) dr

which is the required conclusion. �
Any twist loop forming a solution to the Euler–Lagrange equation associated with Ep over Ep (as described in the

above proposition) will be referred to as a p-stationary loop.

Remark 3.1. In view of Proposition 3.3 a sufficient condition for an admissible loop Q ∈ Ep to be p-stationary is the
stronger condition

d

dr

(
rn+1sA

)= 0. (3.2)

Interestingly for p = 2 the latter is equivalent to the Euler–Lagrange equation described in Proposition 3.3 (see [10]).
However, in general, i.e., for p �= 2, this need not be the case as in the original Euler–Lagrange equation the function s
depends on both r and θ .5

5 In fact, if, s were to be independent of θ then the Euler–Lagrange equation described in Proposition 3.3 could be easily shown to be equivalent
to (3.2).
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4. Minimising p-stationary loops

Consider as in the previous section for p ∈ [1,∞[ the energy functional

Ep[Q] =
b∫

a

E(r, Q̇)rn−1 dr,

with the integrand

E(r, ξ) =
∫

Sn−1

(
n + r2|ξθ |2) p

2 dHn−1(θ),

over the space of admissible loops

Ep = {
Q = Q(r): Q ∈ W 1,p

([a, b],SO(n)
)
, Q(a) = Q(b) = In

}
.

According to an elementary version of Sobolev embedding theorem any Q ∈ Ep has a continuous representative (again
denoted Q). Thus each such Q represents an element of the fundamental group π1[SO(n)] which is denoted by ]Q[.
As is well known (see, e.g., [4])

π1
[
SO(n)

]∼=
{

Z when n = 2,

Z2 when n � 3,

and so these facts combined enable one to introduce the following partitioning of the loop space Ep .

(1) (n = 2) for each m ∈ Z put

cm[Ep] := {
Q ∈ Ep: ]Q[= m

}
. (4.1)

As a result the latter are pairwise disjoint and that

Ep =
⋃
m∈Z

cm[Ep].

(2) (n � 3) for each α ∈ Z2 = {0,1} put

cα[Ep] := {
Q ∈ Ep: ]Q[= α

}
. (4.2)

As a result, again, the latter are pairwise disjoint and that

Ep =
⋃

α∈Z2

cα[Ep].

When p > 1 an application of the direct methods of the calculus of variations to the energy functional Ep together
with the observation that the homotopy classes c�[Ep] ⊂ Ep are sequentially weakly closed gives the existence of
[multiple] minimising p-stationary loops.6

The only missing ingredient in this regard is the following statement implying the coercivity of Ep over Ep .

Proposition 4.1. Let p ∈ [1,∞[. Then there exists c = c(n,p) > 0 such that∫
Sn−1

|Fθ |p dHn−1(θ) � c|F|p,

for every F ∈ Mn×n.

6 The sequential weak closedness of the homotopy classes c�[Ep] is a result of SO(n) having a tubular neighbourhood that projects back onto
itself and this in turn follows from SO(n) being a smooth compact manifold.
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Proof. Fix F ∈ Mn×n. Then the non-negative symmetric matrix FtF is orthogonally diagonalisable, that is, FtF =
PtDP where D = diag(λ1[FtF], . . . , λn[FtF]) and P ∈ O(n). As a result for θ ∈ S

n−1 we can write

|Fθ | = ∣∣〈Fθ,Fθ〉∣∣ 1
2 = ∣∣〈FtFθ, θ

〉∣∣ 1
2 = ∣∣〈PtDPθ, θ

〉∣∣ 1
2 = ∣∣〈DPθ,Pθ〉∣∣ 1

2 .

Setting ω := Pθ and noting that O(n) acts as the group of isometries on S
n−1, an application of Jensen’s inequality

followed by Hölder inequality [on finite sequences] gives

{
−
∫

Sn−1

|Fθ |p dHn−1(θ)

} 1
p

� −
∫

Sn−1

|Fθ |dHn−1(θ)

� −
∫

Sn−1

{
n∑

j=1

λj

[
FtF

]
ω2

j (θ)

} 1
2

dHn−1(θ)

� 1√
n

n∑
j=1

λ
1
2
j

[
FtF

] −
∫

Sn−1

∣∣ωj (θ)
∣∣dHn−1(θ)

� αn√
n

{
n∑

j=1

λj

[
FtF

]} 1
2

= αn√
n
|F|.

Hence the conclusion follows with the choice of

c = α
p
n n1− p

2 ωn = min
1�j�n

{
−
∫

Sn−1

|θj |dHn−1(θ)

}p

n1− p
2 ωn > 0. �

Proposition 4.2. Let p ∈ [1,∞[. Then there exists d = d(n,p,Ω) > 0 such that

Ep[Q] � d‖Q‖p

1,p

for all Q ∈ Ep .

Proof. In view of Proposition 4.1 it is enough to note that for Q ∈ Ep we can write

Ep[Q] =
b∫

a

∫
Sn−1

(
n + r2|Q̇θ |2) p

2 rn−1 dHn−1(θ) dr

�
b∫

a

∫
Sn−1

rp+n−1|Q̇θ |p dHn−1(θ) dr

� c

b∫
a

rp+n−1|Q̇|p dr,

and so the conclusion follows by an application of Poincaré inequality. �
Theorem 4.1. Let p ∈ ]1,∞[. Then the following hold.

(1) (n = 2) for each m ∈ Z there exists Qm ∈ cm[Ep] such that

Ep[Qm] = inf
cm[Ep]

Ep,
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(2) (n � 3) for each α ∈ Z2 there exists Qα ∈ cα[Ep] such that

Ep[Qα] = inf
cα[Ep]

Ep.

In either case the resulting minimisers satisfy the corresponding Euler–Lagrange equations (3.1).

We return to the question of existence of multiple p-stationary loops having specific relevance to the original
energy functional Fp over the space Ap towards the end of the paper. Before this, however, we pause to discuss in
detail the implications that the original Euler–Lagrange equations [see Definition 5.1 below] will exert upon the twist
loop associated with a generalised twist.

5. Generalised twists as classical solutions

The aim of this section is to give a complete characterisation of all those p-stationary loops Q ∈ Ep whose resulting
generalised twist

u = Q(r)x

furnishes a solution to the Euler–Lagrange equations associated with the energy functional Fp over the space Ap . To
this end we begin by clarifying the notion of a [classical] solution.

Definition 5.1 (Classical solution). A pair (u,p) is said to be a classical solution to the Euler–Lagrange equations
associated with the energy functional (1.1) and subject to the constraint (1.2) if and only if

(1) u ∈ C2(Ω,R
n) ∩ C(Ω̄,R

n),
(2) p ∈ C1(Ω) ∩ C(Ω̄), and
(3) (u,p) satisfy the system of equations7⎧⎨

⎩
[cof ∇u(x)]−1�pu(x) = ∇p(x), x ∈ Ω,

det∇u(x) = 1, x ∈ Ω,

u(x) = x, x ∈ ∂Ω.

In view of Proposition 2.3 the task outlined at the start of this section amounts to verifying that under what addi-
tional conditions would the vector field described by the expression on the right in (2.6) be a gradient. The answer to
this question is given by the following two theorems.

Theorem 5.1. Let Ω = {x ∈ R
n: a < |x| < b} and consider the vector field v ∈ C1(Ω,R

n) defined in spherical
coordinates through

v =
{
rsA2 − r2s〈Aθ, Ȧθ〉In + 1

rn

d

dr

(
rn+1sA

)+ 1

rn−1

d

dr

(
rn+1s|Aθ |2)In

}
θ

where r ∈ ]a, b[, θ ∈ S
n−1, A = A(r) ∈ C1(]a, b[,Mn×n) is skew-symmetric and

s = s(r, θ)

=: (n + r2|Aθ |2) p−2
2 (5.1)

with p ∈ [1,∞[. Then the following are equivalent.

(1) v is a gradient,
(2) A2 = −σ In for some σ ∈ C1]a, b[ with σ � 0 and

d

dr

(
rn+1sA

)= 0. (5.2)

7 Note that �pu := div(|∇u|p−2∇u).
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Proof. (2) ⇒ (1) Assuming A to be skew-symmetric and A2 = −σ In it follows that

s = (
n + r2|Aθ |2) p−2

2

= (
n − r2〈A2θ, θ

〉) p−2
2

= (
n + σr2) p−2

2

and so in particular s = s(r). Now referring to (5.2) we can write

0 = 1

rn

〈
d

dr

(
rn+1sA

)
θ,Aθ

〉
= (n + 1)s|Aθ |2 + rsr |Aθ |2 + rs〈Aθ, Ȧθ〉
= 1

rn

d

dr

(
rn+1s|Aθ |2)− rs〈Aθ, Ȧθ〉. (5.3)

As a result the vector field v can be simplified and hence re-written in the form

v = rsA2θ = −(n + σr2) p−2
2 σθ.

Denoting now by F a suitable primitive of f (r) := −(n + σr2)
p−2

2 σ it is evident that

v = ∇F

and so v is a gradient. This gives (1).
(1) ⇒ (2) For the sake of clarity and convenience we break this part into two steps. In the first step we establish (5.2)

and in the second one the particular diagonal form of A2.8

Step 1. [Justification of (5.2)] We begin by extracting a gradient out of v and hence re-writting it in the form

v = ∇t +
{

1

rn

d

dr

(
rn+1sA

)+ 1

rn−1

d

dr

(
rn+1s|Aθ |2)In

}
θ (5.4)

where t = −p−1(n + r2|Aθ |2) p
2 .

To the vector field v = (v1, . . . , vn) we now assign the differential 1-form ω = v1dx1 + · · · + vndxn. Then in view
of v being a gradient, for any closed path γ ∈ C1([0,2π ],S

n−1) it must be that

0 =
∫
rγ

ω

=
2π∫

0

〈
v
(
rγ (t)

)
, rγ ′(t)

〉
dt

= 1

rn

2π∫
0

〈
d

dr

[
rn+1s

(
r, γ (t)

)
A
]
γ (t), rγ ′(t)

〉
dt

+ 1

rn−1

2π∫
0

〈
d

dr

[
rn+1s

(
r, γ (t)

)∣∣Aγ (t)
∣∣2]γ (t), rγ ′(t)

〉
dt

= 1

rn

2π∫
0

〈
d

dr

[
rn+1s

(
r, γ (t)

)
A
]
γ (t), rγ ′(t)

〉
dt, (5.5)

8 Thus it is important to note that in the first two steps the function s depends on both r and θ !
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where in concluding the last line we have used the pointwise identity 〈γ, γ ′〉 = 0 which holds as a result of γ taking
values on S

n−1 and consequently implying that

0 =
2π∫

0

〈
d

dr

[
rn+1s

(
r, γ (t)

)∣∣Aγ (t)
∣∣2]γ (t), rγ ′(t)

〉
dt

=
2π∫

0

d

dr

[
rn+1s

(
r, γ (t)

)∣∣Aγ (t)
∣∣2]r 〈γ (t), γ ′(t)

〉
dt.

Anticipating on (5.2) we first note that in view of A being skew-symmetric it can be orthogonally diagonalised,
i.e.,9

A = PDPt , (5.6)

where P = P(r) ∈ SO(n) and D = D(r) ∈ Mn×n is in special block diagonal form, i.e.,

(1) (n = 2k)

D = diag(d1J, d2J, . . . , dkJ),

(2) (n = 2k + 1)

D = diag(d1J, d2J, . . . , dkJ,0),

with {±d1i,±d2i, . . . ,±dki} or {±d1i,±d2i, . . . ,±dki,0} denoting the eigen-values of the skew-symmetric matrix A
[as well as D] respectively.10

With the aid of (5.6) and for the sake of convenience we now introduce the skew-symmetric matrix

F = F(r, θ) := Pt d

dr

(
rn+1sA

)
P. (5.7)

Then a straight-forward differentiation shows that

F = Pt d

dr

(
rn+1sA

)
P

= Pt
{
rn
[
(n + 1)s + rsr

]
A + rn+1sȦ

}
P

= Pt
{
rn
[
(n + 1)s + rsr

]
PDPt + rn+1sȦ

}
P

= rn
[
(n + 1)s + rsr

]
D + rn+1sPt ȦP. (5.8)

Evidently establishing (5.2) is equivalent to showing that

F(r, θ) = 0 (5.9)

for all r ∈ ]a, b[ and all θ ∈ S
n−1.

On the other hand for each fixed r ∈ ]a, b[ setting ω := Pt γ [also a closed path in C1([0,2π ],S
n−1)] in (5.5) we

have that expressed as

0 =
2π∫

0

〈
d

dr

(
rn+1sA

)
γ, γ ′

〉
dt

9 At this stage the reader is encouraged to consult Appendix A at the end of the paper where some notation as well as basic properties related to
the matrix exponential as a mapping between the space of skew-symmetric matrices and the special orthogonal group is discussed.
10 We emphasise that nowhere in this proof have we assumed continuity or differentiability on P = P(r) or D = D(r) with respect to r . These in
general need not even be true! [See, e.g., [7].]
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=
2π∫

0

〈
d

dr

(
rn+1sA

)
Pω,Pω′

〉
dt

=
2π∫

0

〈
Pt d

dr

(
rn+1sA

)
Pω,ω′

〉
dt

=
2π∫

0

〈Fω,ω′〉dt

where in the above s = s(r,Pω) and F = F(r,Pω). Thus the necessary condition (5.5) can be equivalently expressed
as

2π∫
0

〈
F(r,Pω)ω,ω′〉dt = 0 (5.10)

for every closed path ω ∈ C1([0,2π ],S
n−1).

With this introduction the conclusion in Step 1 now amounts to proving the implication

(5.10) �⇒ (5.9).

This will be established below in a componentwise fashion. Note that in view of the skew-symmetry of F it suffices to
justify the latter in the form Fpq(r, θ) = 0 only when 1 � p < q � n.

Indeed consider a parameterised family of closed paths ρ ∈ C∞([0,2π ],S
n−1) given by

ρ : [0,2π ] � t �→ ρ(t) ∈ S
n−1 ⊂ R

n (5.11)

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ1 = sin t sinφ2 sinφ3 · · · sinφn−1,

ρ2 = cos t sinφ2 sinφ3 · · · sinφn−1,

ρ3 = cosφ2 sinφ3 · · · sinφn−1,
...
ρn−1 = cosφn−2 sinφn−1,

ρn = cosφn−1,

where φj ∈ [0,π] for all 2 � j � n − 1. For fixed 1 � p < q � n we introduce the matrix Γ pq as that obtained by
simultaneously interchanging the first and pth and the second and qth rows of In, i.e.,

Γ pqej =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ep if j = 1,

e1 if j = p,

eq if j = 2,

e2 if j = q,

ej otherwise,

where {e1, e2, . . . , en} denotes the standard basis of R
n. In view of Γ pq ∈ O(n) setting ω = Γ pqρ it is clear that ω is

a closed path in C∞([0,2π ],S
n−1).

Claim 1. For any skew-symmetric matrix F ∈ Mn×n and ω = Γ pqρ as above we have that

2π∫
0

〈
Fω(t),ω′(t)

〉
dt = 2π

(
ρ2

1 + ρ2
2

)
Fpq.

The proof of this claim follows by direct verification noting that here ω′(t) = Γ pqρ′(t) = Γ pq(ρ2,−ρ1,0, . . . ,0).
We now proceed by substituting ω as described above into (5.10) and then considering the following two distinct

cases.
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(1) (p = 2j − 1, q = 2j for some 1 � j � k = [n/2]) In this case by utilising the special block diagonal form of D
a straight-forward calculation shows that

s = s
(
r,Pω(t)

)
= (

n − r2〈D2ω(t),ω(t)
〉) p−2

2

= (
n − r2〈D2Γ pqρ(t),Γ pqρ(t)

〉) p−2
2

= (
n + r2[d2

1ρ2
p + d2

1ρ2
q + · · · + d2

j

(
ρ2

1 + ρ2
2

)+ · · ·]) p−2
2

is indeed independent of the t variable [as ρ2
1 + ρ2

2 does not depend on t ]. Hence the same is true of F(r,Pω) and so
referring to (5.10) and utilising Claim 1 we can write

0 =
2π∫

0

〈
F(r,Pω)ω,ω′〉dt

=
2π∫

0

〈
F
(
r,PΓ pqρ(t)

)
Γ pqρ(t),Γ pqρ′(t)

〉
dt

= 2π
(
ρ2

1 + ρ2
2

)
Fpq(r,Pω)

which in turn for ρ2
1 + ρ2

2 �= 0 gives11

Fpq(r,Pω) = 0. (5.12)

Now to get (5.9) for the latter choice of p,q pick θ ∈ S
n−1 and set α = [Γ pq ]tPt θ . Then α ∈ S

n−1 and thus can be
written in generalised spherical coordinates as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1 = sinφ1 sinφ2 sinφ3 · · · sinφn−1,

α2 = cosφ1 sinφ2 sinφ3 · · · sinφn−1,

α3 = cosφ2 sinφ3 · · · sinφn−1,
...
αn−1 = cosφn−2 sinφn−1,

αn = cosφn−1,

where φ1 ∈ [0,2π ] and φj ∈ [0,π] for all 2 � j � n − 1. Considering now the closed path ρ in (5.11) for the latter
choice of parameters φ2, . . . , φn−1 a straight-forward calculation gives

s(r, θ) = (
n + r2|Aθ |2) p−2

2

= (
n + r2

∣∣DΓ pqα
∣∣2) p−2

2

= (
n + r2

∣∣DΓ pqρ
∣∣2) p−2

2

= (
n + r2|APω|2) p−2

2

= s(r,Pω)

and so referring to (5.12) for ρ2
1 + ρ2

2 �= 0 we obtain

Fpq(r, θ) = Fpq(r,Pω) = 0

as required.

11 Note that (ρ2
1 + ρ2

2 ) =∏
2�j�n−1 sin2 φj and so ρ2

1 + ρ2
2 = 0 ⇐⇒ ∑

3�j�n ρ2
j

= 1 ⇐⇒ φj ∈ {0,π} for some 2 � j � n − 1. This set is

a copy of S
n−3 lying in S

n−1.
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(2) (p,q not as in (1)) Unlike the case with (1) here s depends explicitly on the t variable [yet in a specific manner
(see below)] whilst Dpq = 0 as can be verified by inspecting its block diagonal representation.

Now referring, again, to (5.10) and noting that the pth and qth components of ω′ are given by ω′
p = ρ′

1 = ρ2 and
ω′

q = ρ′
2 = −ρ1 [with all the remaining derivatives vanishing] we can write using F = F(r,Pω)

0 =
2π∫

0

〈Fω,ω′〉dt

=
2π∫

0

{
n∑

j=1

Fpjωjω
′
p +

n∑
j=1

Fqjωjω
′
q

}
dt

=
2π∫

0

{(
Fpqρ2

2 − Fqpρ2
1

)+ ρ2

n∑
j=1
j �=q

Fpjωj − ρ1

n∑
j=1
j �=p

Fqjωj

}
dt

= I + II − III. (5.13)

In order to evaluate the above terms we first observe that here s takes the form

s = s
(
r,Pω(t)

)
= (

n − r2〈D2ω(t),ω(t)
〉) p−2

2

= (
n − r2〈D2Γ pqρ(t),Γ pqρ(t)

〉) p−2
2

= (
n + r2[d2

1ρ2
p + d2

2ρ2
q + · · · + d2

ξ ρ2
1 + · · · + d2

ζ ρ2
2 + · · ·]) p−2

2

=: s(sin2 t, cos2 t
)
. (5.14)

Returning to (5.13) we have that

II =
2π∫

0

ρ2

n∑
j=1
j �=q

Fpjωj dt

=
2π∫

0

ρ2

n∑
j=1
j �=q

[
Pt d

dr

(
rn+1sA

)
P
]

pj

ωj dt

=
n∑

j=1
j �=q

[
Pt d

dr

(
rn+1

{ 2π∫
0

ρ2sdt

}
A

)
P

]
pj

ωj ,

and in a similar way

III =
2π∫

0

ρ1

n∑
j=1
j �=p

Fqjωj dt

=
2π∫

0

ρ1

n∑
j=1

[
Pt d

dr

(
rn+1sA

)
P
]

qj

ωj dt
j �=p
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=
n∑

j=1
j �=p

[
Pt d

dr

(
rn+1

{ 2π∫
0

ρ1sdt

}
A

)
P

]
qj

ωj ,

where in concluding the last line in both equalities we have used the fact that the only components of ω depending
explicitly on the t variable are ωp = ρ1 and ωq = ρ2 where in each case one is excluded from the summation sign and
the other has a zero coefficient in view of the skew-symmetry of the matrix preceding it.

However in view of the specific manner in which s depends on t [see (5.14)] it follows that both integrals vanish
and so as a result II = III = 0.12 Hence returning to (5.13) and utilising the skew-symmetry on F and (5.8) we can
write

I =
2π∫

0

(
Fpqρ2

2 − Fqpρ2
1

)
dt

=
2π∫

0

(
ρ2

1 + ρ2
2

)
Fpq dt

=
2π∫

0

rn+1(ρ2
1 + ρ2

2

)
s
[
Pt ȦP

]
pq

dt

= rn+1(ρ2
1 + ρ2

2

){ 2π∫
0

sdt

}[
Pt ȦP

]
pq

= 0.

Thus as s > 0 for ρ2
1 + ρ2

2 �= 0 it follows that [Pt ȦP]pq = 0. Since for the latter range of p,q we have that Dpq = 0
referring to (5.8) it immediately that Fpq = 0.

Hence summarising we have shown that in both cases (1) and (2) for fixed r ∈ ]a, b[ we have Fpq(r, ·) = 0 outside
a copy of S

n−3. By continuity of Fpq(r, ·) on S
n−1 this gives (5.9) and as a result (5.2). The proof of Step 1 is therefore

complete.

Step 2. [A2 = −σ In] Here we establish the remaining part of (2) namely that A2 = −σ In for some σ ∈ C1]a, b[
with σ � 0. To this end, we first observe that by utilising (5.2) the vector field v can be considerably simplified and
re-written in the form [as in (5.3)]

v = rsA2θ.

Now for v = (v1, v2, . . . , vn) to be a gradient it is necessary that the differential 1-form ω = v1 dx1 + · · · + vn dxn be
closed. In other words dω = 0 which in turn amounts to

∂vq

∂xp

− ∂vp

∂xq

= 0,

for all 1 � p,q � n. Setting F = A2 we have that

∂vq

∂xp

= r
∂s
∂xp

[Fθ ]q + rs[Ḟθ ]qθp + sFqp

12 It can be easily shown that as a result of periodicity the following identities hold:

2π∫
0

s
(
sin2 t, cos2 t

)
sin t dt = 0,

2π∫
0

s
(
sin2 t, cos2 t

)
cos t dt = 0.
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and in a similar way

∂vp

∂xq

= r
∂s
∂xq

[Fθ ]p + rs[Ḟθ ]pθq + sFpq.

Thus in view of the symmetry of F for the latter range of p,q we have that

0 = ∂vq

∂xp

− ∂vp

∂xq

= r
∂s
∂xp

[Fθ ]q − r
∂s
∂xq

[Fθ ]p + rs
{[Ḟθ ⊗ θ ]qp − [Ḟθ ⊗ θ ]pq

}
.

Alternatively using tensor notation this can be simplified in the form

0 = ∇s ⊗ Fθ − Fθ ⊗ ∇s

+ s(θ ⊗ Ḟθ − Ḟθ ⊗ θ)

= 1

2
βr2〈Ḟθ, θ〉(Fθ ⊗ θ − θ ⊗ Fθ)

+ s(θ ⊗ Ḟθ − Ḟθ ⊗ θ) (5.15)

where in concluding the second identity we have used

∇s = ∇(n + r2|Aθ |2) p−2
2

= ∇(n − r2〈Fθ, θ〉) p−2
2

= −β

[
1

2
r2〈Ḟθ, θ〉In + rF

]
θ,

with β = β(r, θ,p) := (p − 2)(n − r2〈Fθ, θ〉) p−4
2 . Next a straight-forward calculation using (5.2) gives

Ḟ = −2

(
n + 1

r
+ sr

s

)
F. (5.16)

Therefore substituting this into (5.15) results in

0 = 1

2
βr2〈Ḟθ, θ〉(Fθ ⊗ θ − θ ⊗ Fθ)

− s(Ḟθ ⊗ θ − θ ⊗ Ḟθ)

=
{

2

(
n + 1

r
+ sr

s

)(
s − 1

2
βr2〈Fθ, θ〉

)}
(Fθ ⊗ θ − θ ⊗ Fθ)

= γ × (Fθ ⊗ θ − θ ⊗ Fθ) (5.17)

where for the sake of convenience we have introduced

γ = γ (r, θ,p)

=: 2

(
n + 1

r
+ sr

s

)(
s − 1

2
βr2〈Fθ, θ〉

)
. (5.18)

Claim 2. Let p ∈ [1,∞[. Then γ = γ (r, θ,p) > 0 for all r ∈ ]a, b[ and θ ∈ S
n−1.

The proof of this claim follows by direct verification. Indeed here a straight-forward differentiation gives

sr = ∂s
∂r

= ∂

∂r

(
n + r2|Aθ |2) p−2

2

= ∂

∂r

(
n − r2〈Fθ, θ〉) p−2

2

= −β

[
r〈Fθ, θ〉 + 1

r2〈Ḟθ, θ〉
]
.

2
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Now eliminating the term 〈Ḟθ, θ〉 in the above expression with the aid of (5.16) results in

sr = nrβs〈Fθ, θ〉
s − r2β〈Fθ, θ〉 .

(See below for a justification that s − r2β〈Fθ, θ〉 �= 0.) Hence referring to (5.18) we can write

γ = 2

(
n + 1

r
+ sr

s

)(
s − 1

2
βr2〈Fθ, θ〉

)

= (n + 1)s − r2β〈Fθ, θ〉
r(s − r2β〈Fθ, θ〉)

(
2s − r2β〈Fθ, θ〉)

=: I
II

× III.

We now proceed by evaluating each term separately. Indeed with regards to the first term we have that

I = (n + 1)s − r2β〈Fθ, θ〉
= (

n − r2〈Fθ, θ〉) p−4
2
[
n(n + 1) − (n + p − 1)r2〈Fθ, θ〉]

and in a similar way

II = r
(
s − r2β〈Fθ, θ〉)

= r
(
n − r2〈Fθ, θ〉) p−4

2
[
n − (p − 1)r2〈Fθ, θ〉]

and

III = (
2s − r2β〈Fθ, θ〉)

= (
n − r2〈Fθ, θ〉) p−4

2
[
2n − pr2〈Fθ, θ〉].

Now in view of −〈Fθ, θ〉 = 〈AtAθ, θ〉 = |Aθ |2 � 0 for all r ∈ ]a, b[ and θ ∈ S
n−1 along with p ∈ [1,∞[ it follows

that all the terms I, II and III are strictly positive. As a result

γ > 0 (5.19)

and so the claim is justified.
Now returning to the identity (5.17) it follows as a result of (5.19) that necessarily

Fθ ⊗ θ − θ ⊗ Fθ = 0 (5.20)

for all r ∈ ]a, b[ and θ ∈ S
n−1. The conclusion in Step 2 is now an immediate result of the following statement.

Claim 3. Let F ∈ Mn×n. Then (5.20) holds for all θ ∈ S
n−1 if and only if there exists −σ ∈ R such that F = −σ In.

For a proof of Claim 3 we refer the interested reader to Proposition 7.1 in [10]. Finally σ ∈ C1]a, b[ and σ � 0 are
consequences of the representation above and the hypothesis of the theorem. With this the proof of Theorem 5.1 is
complete. �
Theorem 5.2. Let Ω = {x ∈ R

n: a < |x| < b} and consider the vector field v as defined in Theorem 5.1. Then the
following are equivalent.

(1) v is a gradient,
(2) A = μJ for some μ ∈ C1]a, b[ with μ � 0, J ∈ Mn×n skew-symmetric with J2 = −In and

d

dr

(
rn+1sμ

)= 0 (5.21)

in ]a, b[. Here s = (n + r2μ2)
p−2

2 .
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Proof. (2) ⇒ (1) The argument here is similar to that in Theorem 5.1 and so will be abbreviated.
(1) ⇒ (2) Let v be a gradient. Then according to (2) in Theorem 5.1, A2 = −σ In for some σ ∈ C1(]a, b[) with

σ � 0 and so A = √
σJ where J = J(r) and J2 = −In. The aim is to show that J is independent of r .13 To this end we

proceed as follows. Indeed according to (2) in Theorem 5.1,

d

dr

(
rn+1sA

)= 0.

Integrating the above equation gives rn+1sA = ξ for some constant ξ ∈ Mn×n. Moreover,

−(rn+1s
)2

σ In = (
rn+1sA

)2 = ξ2 (5.22)

giving (rn+1s)2σ ≡ c for some non-negative constant c. Thus either σ ≡ 0 in which case A ≡ 0 on ]a, b[ and so the
choice μ ≡ 0 gives the conclusion or else σ > 0 on ]a, b[ and so setting

J := 1√
c
ξ

we have as a result of (5.22) that J2 = −In. Furthermore setting

μ := 1√
c
rn+1sσ

it follows that μ ∈ C1]a, b[, μ2 = σ and by substitution A = μJ. As a result μ also satisfies (5.21). The proof of the
theorem is thus complete. �
Remark 5.1. Referring to the above proof it follows from rn+1sμ = c on ]a, b[ that when p > 1 the function μ

remains bounded on ]a, b[.

Theorem 5.3. Let Ω = {x ∈ R
n: a < |x| < b} and u ∈ Ap with p ∈ ]1,∞[ be a generalised twist whose corresponding

twist loop Q ∈ C2(]a, b[,SO(n)). Then the following are equivalent.

(1) u is a classical solution to the Euler–Lagrange equations associated with Fp over Ap ,
(2) depending on whether n is even or odd we have that

(2a) (n = 2k) there exist g = g(r) ∈ C[a, b] ∩ C2]a, b[ with g(a), g(b) ∈ 2πZ and P ∈ O(n) such that

Q = P diag
(
R(g), . . . ,R(g)

)
Pt

whilst g is a solution on ]a, b[ to

d

dr

{
rn+1(n + r2g′2) p−2

2 g′
}

= 0 (5.23)

or
(2b) (n = 2k + 1) necessarily u = x on Ω̄ .

Proof. (1) ⇒ (2) Let u = Q(r)x be a classical solution to the stated Euler–Lagrange equations. Then setting A = Qt Q̇
an application of Proposition 2.3 in conjunction with Theorem 5.2 gives

d

dr
Q = μQJ (5.24)

where μ ∈ C1]a, b[ satisfies (5.21) and J2 = −In. Moreover either μ ≡ 0 or else μ > 0 and bounded on ]a, b[. (See
Remark 5.1.) We now consider the cases (2a) and (2b) separately.

(2a) (n = 2k) Let g ∈ C[a, b] ∩ C2]a, b[ be a primitive of μ satisfying g(a) ∈ 2πZ. (The continuity of g on [a, b]
follows from g being monotone and g′ = μ being bounded on ]a, b[.) Next, a straight-forward calculation gives

13 Note that in general there is no uniqueness or even finiteness associated with the choice of a square root of a matrix! Thus an argument purely
based on continuity would not yield the aforementioned claim and it is crucial to additionally utilise (5.2).
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s = (
n + r2|Aθ |2) p−2

2

= (
n + r2g′2|Jθ |2) p−2

2

= (
n + r2g′2) p−2

2 .

Thus in view of (5.21) g satisfies (5.23) on ]a, b[. An application of Tonelli and Hilbert–Weierstrass differentiability
theorems (see, e.g., [5, pp. 57–61]) now gives g ∈ C2[a, b] and so in particular μ ∈ C1[a, b].14

With this introduction now put C = gJ. Then A = g′J = μJ. In particular A and C commute and so we have that

d

dr
eC = eCA = g′eCJ = μeCJ.

Thus eC is a solution to (5.24). Moreover by bringing C into a block diagonal form we can write C = gPJnPt where
P ∈ O(n) and Jn = diag(J2, . . . ,J2). As a result

eC = egPJnPt

= PegJnPt

= P diag
(
R(g), . . . ,R(g)

)
Pt .

Since g(a) ∈ 2πZ the above shows that eC|r=a = Q(a) = In and so by uniqueness of solutions to initial values
problems Q = eC on [a, b]. Since Q(b) = In it follows in a similar way that g(b) ∈ 2πZ.

(2b) (n = 2k + 1) Here in view of the skew-symmetry of Qt Q̇, pre-multiplying (5.24) by Qt and then taking
determinants from both sides, μ ≡ 0 and so Q̇ ≡ 0 on ]a, b[. As Q(a) = Q(b) = In this gives Q ≡ In on [a, b] and so
u = x on Ω̄ .

(2) ⇒ (1) For the case (2b) this is trivial and for (2a) it is enough to note that for such u, (5.23) is equivalent
to (5.2). �
6. A characterisation of all twist solutions

In Section 4 we proved the existence of multiple p-stationary loops by directly minimising the energy functional Ep

over the homotopy classes c�[Ep] of the loop space Ep . By contrast in this section we focus on the Euler–Lagrange
equation itself and present a class of p-stationary loops that in turn will prove fruitful in discussing the existence of
multiple solutions to the Euler–Lagrange equations associated with the energy functional Fp over the space Ap .

To this end we consider the case of even dimensions (n = 2k) and for p ∈ [1,∞[ and m ∈ N set

Gm
p = Gm

p (a, b) := {
g = g(r) ∈ W 1,p(a, b): g(a) = 0, g(b) = 2πm

}
. (6.1)

Now for g ∈ Gm
p and P ∈ O(n) set

Q = P diag
(
R(g), . . . ,R(g)

)
Pt . (6.2)

It is then evident that the path Q so defined forms an admissible loop, i.e., lies in Ep . It is thus natural to set

Gp[g] := Ep[Q] =
b∫

a

∫
Sn−1

(
n + r2|Q̇θ |2) p

2 rn−1 dHn−1(θ) dr

= nωn

b∫
a

(
n + r2g′2) p

2 rn−1 dr. (6.3)

An application of the direct methods of the calculus of variations and standard regularity theory (see, e.g.,
[5, pp. 57–61]) leads us to the following statement.

14 As will be seen in the next section (5.23) is the Euler–Lagrange equation corresponding to the energy functional Gp over the space Gm
p [see

(6.1), (6.3)]. In particular it follows that g ∈ C∞[a, b].
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Theorem 6.1. Let p ∈ ]1,∞[ and consider the energy functional Gp over the space Gm
p . Then for each m ∈ N there

exists a unique g = g(r;m,a,b) ∈ Gm
p such that

Gp[g] = inf
Gm

p

Gp.

Moreover g(r;m,a,b) satisfies the corresponding Euler–Lagrange equation

d

dr

{
rn+1(n + r2g′2) p−2

2 g′}= 0 (6.4)

on ]a, b[. Additionally g ∈ C∞[a, b].

Remark 6.1. The Euler–Lagrange equation (6.4) for g is equivalent to Eq. (3.2) for the twist loop Q defined
through (6.2) and implies the Euler–Lagrange equation (3.2) [or alternatively that given in Proposition 3.3 for
A = Qt Q̇]. Hence for every P ∈ O(n) and every m ∈ Z the corresponding Q given by (6.2) with g = g(r;m,a,b) is
a p-stationary loop.

Theorem 6.2. Let Ω = {x ∈ R
n: a < |x| < b}. Consider the energy functional Fp with p ∈ ]1,∞[ over the space Ap .

Then the set S of all generalised twist solutions to the corresponding Euler–Lagrange equations can be characterised
as follows.

(1) (n = 2k) S is infinite and any generalised twist u ∈ S can be described as

u = rQ(r;a, b,m)θ

= rP diag
(
R(g), . . . ,R(g)

)
(r)Pt θ

where P ∈ O(n) and g ∈ C∞[a, b] satisfies

d

dr

{
rn+1(n + r2g′2) p−2

2 g′}= 0

with g(a), g(b) ∈ 2πZ,
(2) (n = 2k + 1) S consists of the single map u = x.

Proof. This is an immediate consequence of Theorems 5.3 and 6.1. �
Remark 6.2. Is it possible to consider generalised twists u whose twist loop lies in other spaces [than SO(n) already
considered] with the hope of finding new classes of classical solutions to the Euler–Lagrange equations associated
with the energy functional Fp over Ap?

Motivated by the requirement det∇u = 1 on such maps the choice of loops in SL(n) ⊃ SO(n) seems a natural
one.15 However it turns out that the choice SO(n) is no less general than SL(n)!

Claim. Let Ω = {x ∈ Rn: a < |x| < b}. For p ∈ [1,∞[ consider the map u ∈ C(Ω̄, Ω̄) defined via

u = F(r)x

where r = |x| and F ∈ W 1,p([a, b],SL(n)). Then

u ∈ Ap(Ω) �⇒ F ∈ W 1,p
([a, b],SO(n)

)
.

Proof. A straight-forward calculation as in the proof of Proposition 2.1 gives

∇u = F + rḞθ ⊗ θ

= F
(
In + rF−1Ḟθ ⊗ θ

)
.

15 Recall that for every non-negative integer n we have that

SL(n) = SL(R, n) := {
F ∈ Mn×n(R): det F = 1

}
.
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Hence in view of det F = 1 we can write

det∇u = det(F + rḞθ ⊗ θ)

= det
(
In + rF−1Ḟθ ⊗ θ

)
= 1 + r

〈
F−1Ḟθ, θ

〉
.

Evidently u ∈ Ap(Ω) provided that

(i) u = x on ∂Ω ,
(ii) det∇u = 1 in Ω , and

(iii) ‖u‖W 1,p(Ω) < ∞.

Now again referring to the proof of Proposition 2.1 we have that

(i) ⇐⇒ F(a) = F(b) = In,

whilst

(ii) ⇐⇒ 〈
F−1Ḟθ, θ

〉= 0 for all θ ∈ S
n−1 ⇐⇒ F1Ḟ + ḞtF−t = 0.

However, anticipating on the latter, we can write

F−1Ḟ + ḞtF−t = 0 ⇐⇒ Ḟ + FḞtF−t = 0

⇐⇒ ḞFt + FḞt = 0

⇐⇒ d

dr

(
FFt

)= 0.

This together with (i) and the continuity of F on [a, b] gives FFt = In and so the conclusion follows. �
7. Limiting behaviour of the generalised twists as the inner hole shrinks to a point

In this section we consider the case where b = 1 and a = ε > 0 with the aim of discussing the limiting properties
of the generalised twists from Theorem 6.2 as ε ↓ 0. This is particularly interesting since in the limit (the punctured
ball) all components of the function space collapse to a single one and so it is important to have a clear understanding
as to how the twist solutions and their energies [for each fixed integer m] behave.16

To this end, let Ωε := {x ∈ Rn: ε < |x| < 1} where n = 2k and for each m ∈ Z let uε ∈ Ap denote the generalised
twist from (1) in Theorem 6.2, that is, with the notation x = rθ ,

uε = rQ(r; ε,1,m)θ

= rPε

[
diag

(
R(gε), . . . ,R(gε)

)]
Pt

εθ

where Pε ∈ O(n) and gε(r) = g(r; ε,1,m).
In order to make the study of the limiting properties of uε more tractable, we fix the domain to be the unit ball and

extend each map by identity off Ωε . [In what follows, unless otherwise stated, we speak of uε in this extended sense.]
Thus, here, we have that

uε : (r, θ) �→ (
r,Gε(r)θ

)
(7.1)

where

Gε(r) = Pε

[
diag

(
R(gε), . . . ,R(gε)

)]
Pt

ε

16 In the case of a punctured disk, say, Ω = B\{0}, for any pair of maps φ0, φ1 ∈ A := {φ ∈ C(Ω̄, Ω̄): φ = ϕ on ∂Ω = {0} ∪ ∂B}, the continuous
path [0,1] � t �→ φt := (1 − t)φ0 + tφ1 lies within A and joins φ0 to φ1. Therefore, here, A consists of a single component only! [Compare this
with the discussion in the footnote at the end of Section 1.]
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and

gε(r) =
{

0, r � ε,

g(r; ε,1,m), ε � r � 1.

In discussing the limiting properties of uε it is convenient to introduce a so-called comparison map. Indeed, fix
m ∈ Z and consider the generalised twist

vε : (r, θ) �→ (
r,Hε(r)θ

)
(7.2)

where

Hε(r) = Pε

[
diag

(
R(hε), . . . ,R(hε)

)]
Pt

ε

and

hε(r) :=
⎧⎨
⎩

0, r ∈ (0, ε),

2mπ( r
ε

− 1), r ∈ (ε,2ε),

2mπ, r ∈ (2ε,1).

Proposition 7.1. Let p ∈ ]1,∞[. The family of generalised twists (vε) enjoys the followings properties.

(1) vε → x in W 1,p(B,R
n),

(2) vε → x uniformly on B̄.

Proof. (1) Using (7.2) and a straight-forward calculation we have that

‖vε − x‖p

W
1,p
0

=
∫
B

|∇vε − I|p

=
∫

B2ε\Bε

|∇vε − I|p � 2p−1
∫

B2ε\Bε

|∇vε|p + |I|p.

Furthermore, referring to Proposition 2.1 [see (2.4)] we can write

∫
B2ε\Bε

|∇vε|p =
2ε∫

ε

∫
Sn−1

(
n + r2|Ḣεθ |2) p

2 rn−1 dHn−1(θ) dr

= nωn

2ε∫
ε

(
n + r2h′2

ε

) p
2 rn−1 dr

� ωn

(
2n − 1

)
εn
[
n + 4(2mπ)2] p

2 . (7.3)

The above estimates when combined give (1) as a result of Poincaré inequality.
(2) By direct verification we have that

|vε − x|2 = ∣∣rHε(r)θ − rθ
∣∣2

= r2
∣∣Pε diag

(
R(hε), . . . ,R(hε)

)
Pt

εθ − θ
∣∣2

= r2
∣∣Pε

(
diag

(
R(hε), . . . ,R(hε)

)− In

)
Pt

εθ
∣∣2

= r2
∣∣(diag

(
R(hε), . . . ,R(hε)

)− In

)
ωε

∣∣2 (
ωε := Pt

εθ
)

= 1

2
r2
∣∣R(hε) − I2

∣∣2. (7.4)

However a straight-forward calculation gives∣∣R(hε) − I2
∣∣2 = 4(1 − coshε) = 8 sin2 hε

.

2
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Thus combining the above and referring to the definition of hε we arrive at the bound

sup
B

|vε − x| = sup
[ε,2ε]

2r

∣∣∣∣sin
hε

2

∣∣∣∣� 4ε,

which gives the required conclusion. �
Let p ∈ ]1,∞[ and fix m ∈ Z. Then gε,hε ∈ Gm

p (ε,1) [see (6.1)] and so according to the minimising property of gε

we have that

Fp[uε,B] = 1

p
Ep[Gε] = 1

p
Gp[gε] � 1

p
Gp[hε] = 1

p
Ep[Hε] = Fp[vε,B]. (7.5)

This in conjunction with (1) in Proposition 7.1 implies the boundedness of (uε) in W 1,p(B,R
n) and so as a result (uε)

admits a weakly convergent subsequence. Indeed more is true!

Theorem 7.1. Let Ωε := {x ∈ R
n: ε < |x| < 1}. For p ∈ ]1,∞[ and m ∈ Z let (uε)ε>0 denote the family of generalised

twists as in (7.1). Then,

(1) uε → x in W 1,p(B,R
n),

(2) uε → x uniformly in B̄.17

Proof. (1) Fix m ∈ Z and let vε be as in (7.2). Then referring to (7.5) it follows that by passing to a subsequence
(not re-labeled) uε ⇀ u in W 1,p(B,Rn). Appealing to the sequential weak lower semicontintuity of Fp and (1) in
Proposition 7.1 we can write

Fp[x,B] � Fp[u,B] � lim inf
ε↘0

Fp[uε,B]
� lim sup

ε↘0
Fp[uε,B]

� lim
ε↘0

Fp[vε,B] = Fp[x,B].

This in view of the strict convexity of Fp (on W 1,p) gives u = x. As a result of the uniform convexity of the p-norm
(p > 1) the aforementioned weak convergence can now be improved to strong convergence and this gives (1).

(2) By (1) we can assume without loss of generality that uε → x Ln-a.e. in Ω . To justify the uniform convergence
in (2) let gε be as that described in (7.1) and fix σ ∈ (0,1). Then we claim that gε → 2mπ uniformly on [σ,1]. Indeed,
(uε) bounded in W 1,p(B,R

n) gives (uε) bounded in W 1,p(B\B̄σ ,R
n) and so referring to (2.4) and using a calculation

similar to that in (7.3) we have (gε) bounded in W 1,p(σ,1). Hence, there exists f = fσ ∈ W 1,p(σ,1) so that passing
to a subsequence (not re-labeled)⎧⎨

⎩
gε ⇀ f, in W 1,p(σ,1),

gε → f, in L∞[σ,1],
f (1) = 2mπ.

In addition referring again to (7.1) we can assume in view of O(n) being compact, that by passing to a further
subsequence (again, not re-labeled) Pε → P for some P ∈ O(n). Hence for Ln-a.e. x ∈ Ω we can write

lim
ε↘0

uε(x) = lim
ε↘0

rGε(r)θ

= lim
ε↘0

rPε diag
(
R(gε), . . . ,R(gε)

)
Pt

εθ

= rP diag
(
R(f ), . . . ,R(f )

)
Pt θ = rθ

= x,

17 Note that here both convergences are in reference to the entire sequence and not merely a subsequence as was implied in discussing the weak
convergence prior to the proposition. The argument is standard and will be abbreviated.
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giving R(f ) = I2 and in turn that f = 2πn(r) for some n(r) ∈ Z. The continuity of f along with f (1) = 2mπ now
gives f = 2mπ on [σ,1] justifying the assertion. Next, arguing as in (7.4) we can write

|uε − x|2 = ∣∣rGε(r)θ − rθ
∣∣2

= 2r2(1 − cosgε)

= 4r2 sin2 gε

2
.

Thus, to conclude [2] fix δ > 0 and first take σ ∈ (0,2−1δ] and then ε0 such that | sin(2−1gε)| � 2−1δ on [σ,1] for
ε < ε0. Then supB |uε − x| � max(2σ, δ) = δ.18 �
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Appendix A

Recall from linear algebra that all eigen-values of a [real] skew-symmetric matrix have zero real parts. Hence they
either appear as purely imaginary conjugate pairs or zero. In particular when n is odd there is necessarily a zero eigen-
value. Thus distinguishing between the cases when n is even and odd respectively we can bring every skew-symmetric
matrix to a block diagonal form. Let

J :=
[

0 1
−1 0

]
.

Proposition A.1. Let A ∈ Mn×n be skew-symmetric. Then there exist P ∈ SO(n) and (λj )
k
j=1 ⊂ R such that19

(1) (n = 2k)

A = Pt diag(λ1J, λ2J, . . . , λkJ)P,

(2) (n = 2k + 1)

A = Pt diag(λ1J, λ2J, . . . , λkJ,0)P.

Proof. Indeed, here, A is normal [i.e., it commutes with its transpose At = −A] and so the conclusion follows from
the well-known spectral theorem. �

With the aid of the above representation evaluating the exponential function for skew-symmetric matrices becomes
remarkably convenient. Let

R(s) :=
[

cos s sin s

− sin s cos s

]
.

Proposition A.2. Let A ∈ Mn×n be skew-symmetric. Then using the notation in Proposition A.1 we have that

(1) (n = 2k)

esA = Pt diag
(
R(sλ1),R(sλ2), . . . ,R(sλk)

)
P,

18 The uniform convergence in (2) above looks at first counter-intuitive, as, how can uε and x be uniformly close when uε twists m times while
the limit x none? Indeed a careful consideration reveals that the latter twists occur at a distance ε from the origin and within a layer of thickness
O(ε) and this is in no conflict with the stated uniform convergence!
19 Indeed by allowing P ∈ O(n) we can additionally arrange for the sequence (λj )k

j=1 to be non-negative.
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(2) (n = 2k + 1)

esA = Pt diag
(
R(sλ1),R(sλ2), . . . ,R(sλk),1

)
P.

Proof. A straight-forward calculation gives

esJ =
∞∑

n=0

1

n! s
nJn = R(s).

The conclusion now follows by noting that eA = ePt DP = Pt eDP. �
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