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Abstract

We establish the uniqueness of the second radial bound state solution of

�u + f (u) = 0, x ∈ R
n. (P)

We assume that the nonlinearity f ∈ C(−∞,∞) is an odd function satisfying some convexity and growth conditions of superlinear
type, and either has one zero at b > 0, is nonpositive and not identically 0 in (0, b), and is differentiable and positive [b,∞), or is
positive and differentiable in [0,∞).

Keywords: Bound state; Uniqueness; Separation lemmas

1. Introduction and main results

In this paper we establish the uniqueness of the second bound state solution to

�u + f (u) = 0, x ∈ R
n (P)

in the radially symmetric case. That is, we will prove that the problem

u′′(r) + n − 1

r
u′(r) + f (u) = 0, r > 0, n > 2,

u′(0) = 0, lim
r→∞u(r) = 0, (1)

has at most one solution u ∈ C2[0,∞) such that

there exists R > 0 such that u(r) > 0, r ∈ (0,R), u(R) = 0,

u(r) < 0, for r > R. (2)
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Any nonconstant solution to (1) is called a bound state solution. Bound state solutions such that u(r) > 0 for all r > 0,
are referred to as a first bound state solution, or a ground state solution.

The function f : R → R is supposed to be continuous and odd, and we set F(s) = ∫ s

0 f (t) dt .
We will assume that f satisfies (f1)–(f5), where

(f1) f (0) = 0, and there exists b � 0 such that f (s) > 0 for s > b, and if b > 0, f (s) � 0, f (s) �≡ 0 for s ∈ [0, b].
(f2) f is continuous in [0,∞) and differentiable in [b,∞).
(f3) f (s) � f ′(s)(s − b), for all s � b. Furthermore, if b = 0, we also assume that

1 < lim
s→0

sf ′(s)
f (s)

. (3)

(f4) The function s → sf ′(s)
f (s)

is nonincreasing in (b,∞).

(f5) If b > 0 we assume that

βf ′(β)

f (β)
� n

n − 2
,

where β > b is the unique positive solution of F(x) = 0.
If b = 0, we also assume

sf ′(s)
f (s)

� n

n − 2
for all s > 0.

We have imposed (3) in the case b = 0, because otherwise, from the assumptions f (s) � sf ′(s) and (f4), f would be
linear, and in this case we obviously do not have uniqueness.

In addition, we will prove the existence of at most one solution to the Dirichlet–Newmann free boundary problem

u′′(r) + n − 1

r
u′(r) + f (u) = 0, r > 0, n > 2,

u′(0) = 0, there exist 0 < R < R̄ such that u(r) > 0, r ∈ (0,R), u(R) = 0,

u(r) < 0, for r ∈ (R, R̄), u(R̄) = u′(R̄) = 0. (4)

In order to prove our results, we will study the behavior of the solutions to the initial value problem

u′′(r) + n − 1

r
u′(r) + f (u) = 0 r > 0, n > 2,

u(0) = α, u′(0) = 0. (5)

for α ∈ (0,∞). As usual, we will denote by u(r,α) a C2 solution of (5).
We state now our main result.

Theorem 1.1. Assume that f satisfies (f1)–(f5) with b > 0. Then problems (1)–(2) and (4) have at most one nontrivial
solution.

This result will follow from the following monotonicity theorem:

Theorem 1.2. Assume that f satisfies (f1)–(f5) and let 0 < α1 < α2, u1(r) := u(r,α1), u2(r) := u(r,α2).

(i) If b = 0, then the problems (1)–(2) and (4) have no nontrivial solutions.
(ii) If u1 has two zeros 0 < R1 < R̄1 with u1(r) > 0 in (0,R1) and u1(r) < 0 in (R1, R̄1), then u2 has at least

two zeros in (0, R̄1), 0 < R2 < R̄2 with R1 > R2, R̄1 > R̄2, u2(r) > 0 in (0,R2) and u2(r) < 0 in (R2, R̄2).
Furthermore,

u′
1(R̄1) < u′

2(R̄2).
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(iii) Let b > 0. If u1 is a solution of (1)–(2), then u2 has at least two zeros 0 < R2 < R̄2 with R > R2, u2(r) > 0 in
(0,R2) and u2(r) < 0 in (R2, R̄2).

As a consequence of Theorem 1.2, we have the following uniqueness result for the Dirichlet problem in a given
ball.

Theorem 1.3. Assume that f satisfies (f1)–(f5). Given ρ > 0, the problem

u′′(r) + n − 1

r
u′(r) + f (u) = 0, r > 0, n > 2,

u′(0) = 0, u(ρ) = 0, (6)

has at most one solution u such that

there exists R ∈ (0, ρ) such that u(r) > 0, r ∈ (0,R), u(R) = 0,

u(r) < 0, for R < r < ρ. (7)

The uniqueness of the first bound state solution of (1) or for the quasilinear situation involving the m-Laplacian
operator ∇ ·(|∇u|m−2∇u), m > 1, has been exhaustively studied during the last thirty years, see for example the works
[3,4,6,7,10,12–14,16–19]. The study was initiated by Coffman, see [4], where the case f (s) = sp − sq is treated for
p = 3 and q = 1 in dimension n = 3. Berestycki and Lions proposed in [1], as an open problem, the uniqueness for
other nonlinearities than the very special one considered by Coffman. In this direction, McLeod and Serrin improved
the results of Coffmann to more general nonlinearities f , including in particular f (s) = sp − s for 1 < p � n/(n−2).
Kwong [12] extended the range for p to 1 < p < (n + 2)/(n − 2). All these works still assumed differentiability of f

in [0,∞). Peletier and Serrin, see [16,17], proved a crucial Monotone Separation result and established uniqueness of
positive bound states for f locally Lipschitz in (0,∞) and under a sublinear type of assumption. Chen and Lin, see [3],
proved uniqueness of positive bound states under a superlinear and subcritical type of assumptions for f ∈ C1[0,∞),
f (0) = 0. Using a combination of the arguments given in [4,12] and [16,17], Cortázar, Felmer and Elgueta, see [6,7],
extended their result for f continuous in [0,∞), f (0) = 0 and locally Lipschitz in (b,∞), under the superlinear
assumption (f3) and (f4). Pucci and Serrin in [18], dealt with a very general operator (including the m-Laplacian
case), and proved the uniqueness of the first bound state under the assumptions f (s) < 0 in (0, b), f (s) > 0 in
(b,∞), f ∈ L1

loc(0, δ) ∩ C1(0,∞) and the subcritical condition (F/f )′(s) � (n − 2)/2n for all s > 0, s �= b. Finally,
we mention the work of Serrin and Tang, see [19], to our knowledge the most complete for the m-Laplacian operator,
where the authors established the uniqueness of the first bound state solution assuming only f ∈ C(0,∞)∩C1(b,∞)

and (f4).
In [19] the authors also conjectured that their methods could be adapted to the study of the uniqueness of positive

solutions to the Dirichlet problem (6) for f (s) = sp − sq and in the quasilinear case of the m-Laplacian. This conjec-
ture was proved true in [11, Theorem 1.2] in the superlinear situation for a certain range of the parameters involved.
This was done using the methods in [7,8]. In the case of the semilinear problem, the result in [11] applies to the
canonical nonlinearity f (s) = sp − sq , with 0 < q < p, p � 1. Note that Theorem 1.3 gives a uniqueness result for
the second bound state of the Dirichlet problem in a ball.

To the best of our knowledge, there is only one work concerning the uniqueness of higher bound states: Troy, see
[20, Theorems 1.1, 1.3] studied the existence and uniqueness of the solution to (1)–(2) in dimension n = 3 for

f (s) =
⎧⎨
⎩

s + 1, s � −1/2,

−s, s ∈ (−1/2,1/2),

s − 1, s � 1/2.

Note that in this case b = 1, β = 1 + √
2/2, and for s > b,

sf ′(s)
f (s)

= 1 + 1

s − 1
.
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Fig. 1. The graph of two solutions in the neighborhood V illustrating their intersection points.

Hence all assumptions (f1)–(f5) are satisfied since

βf ′(β)

f (β)
= 1 + √

2 < 3 = n

n − 2
.

His study is carried out through a careful analysis of the behavior of the function ∂u/∂α.
Classical examples of a function f satisfying (f1)–(f5) are given by f (s) = sp − sq in dimension n = 3 for

0 < q < 1 � p with p + q � 2 in the case b > 0, and f (s) = sp , with 1 < p � n
n−2 in the case b = 0, see Section 7.

The existence of sign changing bound state solutions of (1)–(2) has been established by Coffman in [5] and
McLeod, Troy and Weissler in [15], where f : R → R is locally Lipschitz continuous and satisfies appropriate sign
conditions and is of subcritical growth. Their proof uses shooting techniques and a scaling argument.

Finally we describe our approach. Our theorems will follow after a series of comparison results between two
solutions to (5) with initial value in some small neighborhood of α∗, where u(·, α∗) is either a second bound state, or
u(r,α∗) has at least two zeros. We will show (see Propositions 2.2 and 4.1.1), that there exists a neighborhood V of α∗
such that any solution to (5) with α ∈ V has a first minimum value Um(α) at r = Rm(α) satisfying Um(α) < −β (see
Fig. 1). Then, we divide our study according to the interval where u(r,α) belongs: [b,α], [−β,b] and [Um,−β] before
the minimum, and then [Um,−b] and [−β,0) after the minimum. In Section 3 we follow the ideas of Coffman, see
[4], and use the function ϕ(r,α) = ∂

∂α
u(r,α) to study the behavior of the solutions in [b,α]. It is here that assumptions

(f4)–(f5) play a fundamental role allowing us to determine the “good” comparison between solutions at u = b. In
Section 4 we study the case b > 0. In Subsection 4.1, using the comparison of the solutions at u = b, and following
ideas in [16,17], we study the behavior of the solutions in the interval [−β,b], which implies the corresponding good
comparison of the solutions when they cross the value −β . This is done by considering a modified functional W̃

defined by

W̃ (s,α) = rn−1(s, α)

√(
u′(r(s,α),α

))2 + 2F(s), s ∈ [
Um(α),α

]
where r(s,α) denotes the inverse of u before the minimum. Then in Subsection 4.2, we use ideas of Pucci, Serrin
and Tang in [18,19] to study the behavior of the solutions in the interval [Um,−β] before the minimum. We do so by
considering the celebrated functional introduced first by Erbe and Tang in [9]:

P(s,α) = −2n
F

f
(s)

rn−1(s, α)

r ′(s, α)
− rn(s,α)

(r ′(s, α))2
− 2rn(s,α)F (s), s �= b.

Again, the good behavior at −β will yield a good comparison of P(Um(α),α). In Subsection 4.3 we deal with the
behavior of the solutions in [Um,−b] after the minimum using the same ideas. In particular we derive the behavior
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of the solutions at their second intersection point. This in turn allows us to determine the behavior of the solutions in
the interval [−β,0) after the minimum. We do this in Subsection 4.4, and the main tool we use is the functional W

defined by

W(s,α) = r̄(s, α)

√(
u′(r̄(s, α),α

))2 + 2F(s), s ∈ [
Um(α),α

]
,

introduced by Peletier and Serrin in [16,17]. Here r̄(s, α) denotes the inverse of u after the minimum. Section 5 is
devoted to derive the corresponding separation results for the case b = 0. Our main results are proved in Section 6.
Finally in Section 7 we give some examples and we make some remarks to show that our results remain valid for the
m-Laplacian.

The study of uniqueness under weaker assumptions on the function f remains open, see the remark at the end of
Section 3.

2. Preliminaries

The aim of this section is to establish several properties of the solutions to the initial value problem (5).
The functional

I (r,α) = (
u′(r, α)

)2 + 2F
(
u(r,α)

)
(8)

will play a fundamental role. A simple calculation yields

I ′(r, α) = −2(n − 1)

r

(
u′(r)

)2
, (9)

and therefore, as n > 2, we have that I is decreasing in r . It can be seen that for α ∈ (b,∞), one has u(r,α) > 0 and
u′(r, α) < 0 for r small enough, and thus we can define

R(α) := sup
{
r > 0

∣∣ u(s,α) > 0 and u′(s, α) < 0 for all s ∈ (0, r)
}
.

Following [16,17] we set

N = {
α: u(R(α),α) = 0 and u′(R(α),α

)
< 0

}
,

G = {
α: u

(
R(α),α

) = 0 and u′(R(α),α
) = 0

}
,

P = {
α: u

(
R(α),α

)
> 0

}
.

As in [6], the sets N and P are open intervals, and moreover, if N �= ∅, then N = (a,∞) for some a > 0. If our
problems (1)–(2) or (4) have a solution, then N �= ∅. Let

F1 = {
α ∈ N : u′(r, α) < 0 for all r > 0

}
.

For α /∈ F1 we define

Rm(α) := inf
{
r > R(α): u′(r, α) = 0

}
, Um(α) = u

(
Rm(α),α

)
,

and if α ∈ F1, we set Rm(α) = ∞. Also, for α ∈ N \ F1 we set

R̄(α) := sup
{
r > Rm(α)

∣∣ u(s,α) < 0 and u′(s, α) > 0 for all s ∈ (Rm, r)
}
,

and Ū (α) := u(R̄(α),α). Let now

F2 = {
α ∈ N \ F1: u

(
R̄(α),α

)
< 0

}
,

N2 = {
α ∈ N \ F1: u

(
R̄(α),α

) = 0 and u′(R̄(α),α
)
> 0

}
,

G2 = {
α ∈ N \ F1: u

(
R̄(α),α

) = 0 and u′(R̄(α),α
) = 0

}
,

P2 = F1 ∪ F2.

Concerning the sets N2 and P2 we have:

Proposition 2.1. The sets N2 and P2 are open.
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Proof. The proof that N2 is open is by continuity and follows as in [7] with obvious modifications, so we omit it.
The proof that P2 is open is based on the fact that the functional I defined in (8) is decreasing in r , and α ∈ P2 if

and only if α ∈ N and I (r1, α) < 0 for some r1 ∈ (0, T (α)), where T (α) = R̄(α) if α ∈ F2 and T (α) = ∞ if α ∈ F1.
Let α ∈ P2 and assume first that R̄(α) = ∞. We claim that

lim
r→∞u(r,α) = −b, lim

r→∞u′(r, α) = 0.

Since u(·, α) is monotone (decreasing for all r > 0 if α ∈ F1 and increasing in (Rm(α),∞) if α ∈ F2), there exists L

such that limr→∞ u(r,α) = L. Furthermore, since I (·, α) is decreasing and bounded and F(s) → ∞ as s → ±∞, we
have that L is finite and limr→∞ u′(r, α) = 0. Moreover, from the equation and applying L’Hôpital’s rule twice, we
conclude that

0 = lim
r→∞

u(r,α) − L

r2
= lim

r→∞
rn−1u′(r, α)

2rn
= −f (L)

2n
.

Thus, L = −b as we claimed, implying that

lim
r→R̄(α)

I (r,α) = 2F(−b) < 0.

Assume next R̄(α) < ∞ and hence α ∈ F2. Then R̄(α) is a maximum point of u(·, α) implying that

0 � −u′′(R̄(α),α
) = f

(
u
(
R̄(α),α

))
and thus −b < u(R̄(α),α) < 0 (u(R̄(α),α) �= −b from the uniqueness of the solutions and since u(0, α) = α). Hence

I
(
R̄(α),α

) = 2F
(
u
(
R̄(α),α

))
< 0.

Conversely, if α /∈ P2 and α ∈ N , then α ∈ G2 ∪ N2, and thus the claim follows from the fact that I (r,α) �
I (R̄(α),α) � 0 for all r ∈ (0, R̄(α)). Hence the openness of P2 follows from the continuous dependence of solutions
to (5) in the initial value α and from the openness of N . �

Finally in this section we establish the existence of a neighborhood of α∗ so that solutions with initial value in this
interval cannot be decreasing for all r > 0 (see Fig. 2).

Proposition 2.2. Let α∗ ∈ G2 ∪ N2. Then there exists δ0 > 0 such that (α∗ − δ0, α
∗ + δ0) ⊆ N \ F1.

Proof. Since α∗ ∈ G2 ∪ N2, there exists τ > Rm(α∗) such that u′(τ,α∗) > 0. By continuity, there exists δ0 > 0 such
that

u′(τ,α) > 0 for all α ∈ (
α∗ − δ0, α

∗ + δ0
)
,

implying that

Rm(α) < τ for all α ∈ (
α∗ − δ0, α

∗ + δ0
)
,

and thus(
α∗ − δ0, α

∗ + δ0
) ⊂ N \ F1. �

We will study the behavior of the solutions to the initial value problem (5). To this end, α∗ ∈ G2 ∪ N2 is fixed and
α ∈ (α∗ − δ0, α

∗ + δ0), where δ0 > 0 is given in Proposition 2.2. Then

u(·, α) : [0,Rm(α)
] −→ [

Um(α),α
]

is invertible with inverse r(·, α), and

u(·, α) : [Rm(α), R̄(α)
) −→ [

Um(α), Ū(α)
)
,

is also invertible with inverse r̄(·, α).
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Fig. 2. The graph of the solution for α ∈ P2 in the neighborhood of α∗ ∈ G2.

3. Behavior of the solutions in [b,α]

Under assumptions (f1) and (f2), and for every α ∈ (b,∞), the functions u(r,α) and u′(r, α) are of class C1 in

O = {
(r, α): α ∈ (b,∞) and r ∈ [

0, r(b,α)
)}

,

hence for (r, α) ∈ O, we set

ϕ(r,α) = ∂u

∂α
(r,α), ′ = ∂

∂r
.

Then, ϕ satisfies the linear differential equation

ϕ′′(r) + N − 1

r
ϕ′(r) + f ′(u)ϕ = 0, n > 2,

ϕ(0, α) = 1, ϕ′(0, α) = 0. (10)

It can be proven just as in [7] that both ϕ(r,α) and ϕ′(r, α) are continuous in

O = {
(r, α): α ∈ (b,∞) and r ∈ [

0, r(b,α)
]}

,

and the extension of ϕ′(r, α) is the left derivative with respect to r of ϕ(r,α).
Set

ϕ(r) = ϕ(r,α), and r(b,α) = Rb.

The following result appears in [3], we include its proof for the sake of completeness.

Proposition 3.1. Let f satisfy (f1)–(f3). Then ϕ has a first zero at z ∈ (0, r(b,α)]. Moreover, if b = 0, then z ∈ (0,Rb)

(and thus u(z,α) > 0).

Proof. If ϕ(r) > 0 in (0,Rb) we will prove that ϕ(Rb) = 0 and thus the lemma follows.
Multiplying the equation in (10) by rn−1(u − b) and integrating by parts over (0,Rb), we have that

−
Rb∫

rn−1u′(r)ϕ′(r) dr +
Rb∫

f ′(u(r)
)
ϕ(r)

(
u(r) − b

)
rn−1 dr = 0,
0 0
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and a second integration by parts yields

Rb∫
0

(
f ′(u(r)

)(
u(r) − b

) − f
(
u(r)

))
ϕ(r)rn−1 dr = −Rn−1

b ϕ(Rb)
∣∣u′(Rb)

∣∣. (11)

Using now that from (f3), f ′(u(r))(u(r) − b) − f (u(r)) � 0 for r ∈ (0,Rb), and that u′(Rb) < 0, we deduce from
(11) that ϕ(Rb) = 0. If b = 0, then by our assumption (f3), we have that the integral in (11) is strictly positive and
thus ϕ(Rb) < 0, a contradiction. �

We set Uz = u(z,α), where z is as in Proposition 3.1. The first part of the next lemma is also contained in [3,6].
We include its proof for the sake of completeness.

Lemma 3.1. Let f satisfy (f1)–(f4). Then z is the only zero of ϕ in (0,Rb]. Assume that f satisfies (f5). If either
b = 0 or b > 0 and Uz � β , then ϕ′(Rb) � 0.

Proof. If Uz = b, then z = Rb and ϕ′(Rb) � 0.
Assume next that Uz > b. We will show that

Uzf
′(Uz)

f (Uz)
> 1.

From (f3), this is always the case when b > 0. If b = 0, assume there exists a first value s0 ∈ (0, α) at which s0f
′(s0) =

f (s0) for some s0 ∈ (b,α). Then from (f3) and (f4) it must be that f (s) = f (s0)
s0

s for all s � s0 and hence αϕ(r) =
u(r) for r ∈ (0, r0), where u(r0) = s0. This implies that ϕ(r) > 0 in (0, r0] and thus Uz < s0 implying that there exists
c > 0 such that

Uzf
′(Uz)

f (Uz)
= 1 + 2

c
.

Then, since by (f4), the function

r → c
u(r)f ′(u(r))

f (u(r))
− c − 2

is increasing in (0,Rb), we have that

φ(r) := f
(
u(r)

)(
c
u(r)f ′(u(r))

f (u(r))
− c − 2

)

is nonpositive in (0, z) and nonnegative in (z,Rb).
Let us set v(r) = ru′(r) + cu(r). Then v satisfies

v′′ + n − 1

r
v′ + f ′(u(r)

)
v = φ(r),

and, as long as ϕ(r) does not change sign in (z, r), with r ∈ (z,Rb), we have

0 �
r∫

0

tn−1ϕ(t)φ(t) dt =
r∫

0

tn−1(ϕ�v − v�ϕ)dt

= rn−1(ϕ(r)v′(r) − ϕ′(r)v(r)
)
, (12)

and therefore

ϕ(r)v′(r) − ϕ′(r)v(r) � 0, (13)

implying in particular that v(z) � 0. Now we can prove that z is the only zero of ϕ in (0,Rb]. Indeed, if ϕ has a second
zero at z1 ∈ (z,Rb), then from (13), it must be that v(z1) � 0. On the other hand, since ru′(r)/u(r) is decreasing in
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(0,Rb) (see [3] and the proofs of [7, Lemma 3.1] or [11, Lemma 4.1], which apply to both cases b = 0 or b > 0), we
find that

v(z1) = u(z1)

(
z1u

′(z1)

u(z1)
+ c

)
< u(z1)

(
zu′(z)
u(z)

+ c

)
= u(z1)

u(z)
v(z) � 0

implying that v(z1) < 0, a contradiction. Hence ϕ has exactly one zero in (0,Rb].
Assume now that f also satisfies (f5) and suppose that either b = 0 or b > 0 and Uz � β . Then by (f4) and (f5),

we have that c � n − 2 and thus

v′(r) = ru′′(r) + (c + 1)u′(r) � ru′′(r) + (n − 1)u′(r) = −rf
(
u(r)

)
< 0

for all r ∈ (0,Rb), hence
Evaluating (13) at r = Rb , we find that

ϕ(Rb)v
′(Rb) − ϕ′(Rb)v(Rb) � 0,

implying ϕ′(Rb) � 0. �
Remark. As it will become clear in the next sections, if we a priori know that ϕ′(Rb) � 0, then we can replace
assumptions (f4) and (f5) with the much weaker subcritical assumption(

F

f

)′
(s) � n − 2

2n
for all s > b.

4. The case b > 0

In this section we will study the behavior of the solutions to (5) in the neighborhood of α∗ ∈ G2 ∪ N2. We will do so
by analyzing the solutions in the intervals [−β,b] before the minimum, [Um(α),−β] (before and after the minimum)
and [−β,0] after the minimum.

4.1. Behavior in [−β,b] before the minimum

We start by showing that there exists a neighborhood V of α∗ such that any solution to (5) with α ∈ V has a first
minimum value Um(α) at r = Rm(α) satisfying Um(α) < −β .

Proposition 4.1.1. Let f satisfy (f1)–(f4) and let α∗ and δ0 > 0 be as in Proposition 2.2. Then there exists δ1 ∈ (0, δ0]
such that

Um(α) = u
(
Rm(α),α

)
< −β for all α ∈ (

α∗ − δ1, α
∗ + δ1

)
. (14)

Proof. The assumption α∗ ∈ G2 ∪ N2 implies that the functional defined in (8) satisfies

I
(
R̄

(
α∗), α∗) � 0,

and thus I (r,α∗) > 0 for all r ∈ (0, R̄(α∗)). Also, from the continuity of Rm(α) for α ∈ (α∗ − δ0, α
∗ + δ0), and the

fact that

2F
(
u
(
Rm

(
α∗), α∗)) = I

(
Rm

(
α∗), α∗) > 0,

we conclude that there exists δ1 � δ0 such that (14) holds. �
Let δ1 > 0 be as given by Proposition 4.1.1. Given α1, α2 ∈ (α∗ − δ1, α

∗ + δ1), we will denote

u1(r) = u(r,α1), u2(r) = u(r,α2),

and

r1(s) = r(s,α1), r2(s) = r(s,α2).
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For α ∈ (α∗ − δ1, α
∗ + δ1), consider the energy-like functional

W̃ (s,α) = rn−1(s, α)

√(
u′(r(s,α),α

))2 + 2F(s), s ∈ [
Um(α),α

]
,

and set

W̃1(s) = W̃ (s,α1), W̃2(s) = W̃ (s,α2).

We note from (9) and (14) that
(
u′(r(s,α),α

))2 + 2F(s) � 2F
(
Um(α)

)
> 0, s ∈ [

Um(α),α
]
,

and thus W̃ (s,α) is well defined for all s ∈ [Um(α),α]. We have the following separation lemma.

Lemma 4.1.1. Let f satisfy (f1)–(f4). Let α1, α2 ∈ (α∗ − δ1, α
∗ + δ1) with α1 < α2. Assume that there exists

U ∈ [0, β] such that

r1(U) � r2(U) and W̃1(U) < W̃2(U), (15)

then

r1(s) > r2(s) and W̃1(s) < W̃2(s), for all s ∈ [−β,U).

Proof. From (15) we easily obtain that |r ′
1(U)| > |r ′

2(U)|, and thus r1 > r2 in some small left neighborhood of U.

Hence, there exists c ∈ [−β,U) such that

W̃1 � W̃2, r1 > r2, and r ′
1 < r ′

2 in [c,U).

Next, we will show that W̃1 − W̃2 is increasing in [c,U), and this will imply that the infimum of such c is −β , and
thus the conclusion of the theorem will follow.

Indeed, from the definition of W̃ (s,α) we have

∂W̃

∂s
(s,α) = 2(n − 1)rn−2(s, α)F (s)

u′(r(s,α),α)
√

(u′(r(s,α),α))2 + 2F(s)
,

and thus for s ∈ [c,U)

1

2(n − 1)

(
∂W̃1

∂s
(s) − ∂W̃2

∂s
(s)

)

= F(s)

(
rn−2

1 (s)

u′
1(r1(s))

√
(u′

1(r1(s)))2 + 2F(s)

− rn−2
2 (s)

u′
2(r2(s))

√
(u′

2(r2(s)))2 + 2F(s)

)

� rn−2
2 (s)

∣∣F(s)
∣∣( 1

|u′
1(r1(s))|

√
(u′

1(r1(s)))2 + 2F(s)

− 1

|u′
2(r2(s))|

√
(u′

2(r2(s)))2 + 2F(s)

)

� 0. �
Since (α∗ − δ1, α

∗ + δ1) ⊂ N , we have, by [11, Theorem 4.4], that if α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2, then
R(α2) < R(α1), and therefore there exists a first point rI ∈ (0,R(α2)) such that u1(rI ) = u2(rI ). We denote by UI

this common value.

Proposition 4.1.2. Let f satisfy (f1)–(f5). Then there exists δ ∈ (0, δ1] such that for all α1, α2 ∈ (α∗ − δ,α∗ + δ)

with α1 < α2 it holds that

r1(s) > r2(s) and W̃1(s) < W̃2(s), for all s ∈ [−β,UbI ),

where UbI = min{b,UI }.
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Proof. Let Uz = u(z,α∗), where z is given in Proposition 3.1 and assume first that Uz < β . By continuity, there
exists δ � δ1 such that for α1, α2 ∈ (α∗ − δ,α∗ + δ), it holds that UI < β . Since |r ′

1(UI )| > |r ′
2(UI )|, it must be that

W̃1(UI ) < W̃2(UI ). The result follows now from Lemma 4.1.1 with U = UI .
Assume next that Uz � β . By direct computation we have that

∂r

∂α
(s,α) = − ϕ(r(s,α),α)

u′(r(s,α),α)

and

∂W̃

∂α
(s,α) = r(s,α)f (s)ϕ(r(s,α),α)u′(r(s,α))

u′(r(s,α))
√

(u′(r(s,α),α))2 + 2F(s)
rn−2(s, α)

+ r(s,α)(u′(r(s,α)))2ϕ′(r(s,α),α) − 2(n − 1)F (s)ϕ(r(s,α),α)

u′(r(s,α))
√

(u′(r(s, α),α))2 + 2F(s)
rn−2(s, α).

Hence, evaluating at s = b and using Lemma 3.1 we find that

∂r

∂α
(b,α) = − ϕ(Rb)

u′(Rb,α)
� 0

and

∂W̃

∂α
(b,α) = Rb(u

′(Rb,α))2ϕ′(Rb) − 2(n − 1)F (b)ϕ(Rb)

u′(Rb,α)
√

(u′(Rb,α))2 + 2F(b)
Rn−2

b > 0.

Therefore, if α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2 it holds that

r1(b) � r2(b) and W̃1(b) < W̃2(b),

and thus the result follows from Lemma 4.1.1 with U = b. �
4.2. Behavior in [Um,−β] before the minimum

From now on we assume that f satisfies (f1)–(f5) and that δ > 0 is fixed by Proposition 4.1.2.
In this and the next section we follow the ideas of Pucci, Serrin and Tang in [18,19]. To this end, for s ∈

(Um(α),−β] we set

P(s,α) = −2n
F

f
(s)

rn−1(s, α)

r ′(s, α)
− rn(s,α)

(r ′(s, α))2
− 2rn(s,α)F (s).

Then,

P ′(s, α) = ∂P

∂s
(s,α) =

(
n − 2 − 2n

(
F

f

)′
(s)

)
rn−1(s, α)

r ′(s, α)
. (16)

We will need the following technical proposition.

Proposition 4.2.1. Assumptions (f3), (f4) and (f5) imply

(f6) (F
f

)′(s) � n−2
2n

for all s > b.

Proof. By (f3), f ′(s) > 0 for s � β , and from (f4),

F(s) =
s∫

β

f (t) dt =
s∫

β

f (t)

tf ′(t)
tf ′(t) dt

� f (s)

sf ′(s)

s∫
tf ′(t) dt
β
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= f (s)

sf ′(s)
(
sf (s) − βf (β) − F(s)

)
.

Using now that f (β) � 0, we obtain

F(s)

(
1 + f (s)

sf ′(s)

)
� f 2(s)

f ′(s)
,

implying that

s → sf (s)

F (s)
is decreasing in (β,∞). (17)

On the other hand (f4) and (f5) imply that sf ′(s)
f (s)

� n+2
n−2 for all s ∈ (β,∞), and thus

s → (f (s))
n−2
n+2

s
is decreasing in (β,∞). (18)

(Note that we have used a much weaker assumption than (f5).) From (17), (18), and since both functions involved are
positive, by multiplication we obtain that

s → (f (s))
2n

n+2

F(s)
is decreasing in (β,∞)

and thus, differentiating we obtain 2n
n+2f

2n
n+2 −1(s)f ′(s)F (s) � f

2n
n+2 +1 which is equivalent to

n − 2

2n
� 1 − f ′(s)F (s)

f 2(s)
=

(
F

f

)′
(s).

Since this last inequality holds trivially for s ∈ (b,β], (f6) follows. �
Hence under the assumptions of our main theorems, it holds that P ′(s, α) � 0 for all s ∈ (Um(α),−β].
Let now α1, α2 ∈ (α∗ − δ,α∗ + δ), with α1 < α2, and set

P1(s) = P(s,α1), P2(s) = P(s,α2),

U1m = u1
(
Rm(α1)

)
, U2m = u2

(
Rm(α2)

)
.

As in [9,19], we set

S12(s) = rn−1
1 r ′

2

rn−1
2 r ′

1

(s).

Then

S′
12(s) = S12(s)f (s)

((
r ′

2(s)
)2 − (

r ′
1(s)

)2)
. (19)

Proposition 4.2.2. For any α1, α2 ∈ (α∗ − δ,α∗ + δ), with α1 < α2, we have that U1m > U2m and

r1 > r2 and P1 > P2 in [U1m,−β].
Moreover,

P1(U1m) > P2(U2m).

Proof. We will prove first that U1m > U2m and that for all s ∈ [U1m,−β] we have

S12(s) < 1,
∣∣r ′

1(s)
∣∣ >

∣∣r ′
2(s)

∣∣, r1(s) > r2(s). (20)

From Proposition 4.1.2 and since F(−β) = 0, we have that S12(−β) � 1 and r1(−β) > r2(−β), and thus, r ′
1(−β) <

r ′
2(−β). Moreover, from (19) we have that S12(s) is increasing as long as |r ′

1(s)| > |r ′
2(s)|, for s < −β. If (20) does

not hold for all s ∈ (max{U1m,U2m},−β), then at the largest point s0 where it fails, it must be that |r ′ (s0)| = |r ′ (s0)|
1 2
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and r1(s0) > r2(s0) implying that S12(s0) > 1, a contradiction. Thus (20) holds in (max{U1m,U2m},−β), implying
that U1m = max{U1m,U2m}.

Next we prove that P1 > P2, in [U1m,−β]. From the definition of P1 and P2 we have

(P1 − P2)(−β) =
(

rn
2

(r ′
2)

2
− rn

1

(r ′
1)

2

)
(−β)

=
(

rn
2

(r ′
2)

2

[
1 − S2

12
rn−2

2

rn−2
1

])
(−β) > 0.

On the other hand, from (f6) and (20),

(P1 − P2)
′(s) = (

S12(s) − 1
)(

n − 2 − 2n

(
F

f

)′
(s)

)
rn−1

2

r ′
2

(s) < 0,

implying that P1 > P2 in [U1m,−β]. In particular, P1(U1m) > P2(U1m). Now, since P ′
2 > 0, we have that P2(U1m) >

P2(U2m), and thus P1(U1m) > P2(U2m), ending the proof of the theorem. �
4.3. Behavior in [Um,−b] after the minimum

We recall that for α ∈ (α∗ − δ,α∗ + δ), u(r,α) is strictly increasing in [Rm(α), R̄(α)), and we have denoted its
inverse by r̄(s, α).

Lemma 4.3.1. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. If r̄1(U1m) < r̄2(U1m), then there exists ŪI ∈ (U1m,−b)

such that r̄1(ŪI ) = r̄2(ŪI ) and r̄1(s) < r̄2(s) for all s ∈ (U1m, ŪI ).

Proof. Assume by contradiction that u1 > u2 for all r ∈ (r̄1(U1m), r̄1(−b)), then we will have that u1 > u2 for all
r ∈ (r1(−b), r̄1(−b)).

Since f is an odd function from (f3) we obtain that f (s)
s+b

is decreasing for all s < −b, and thus

0 <

r̄1(−b)∫
r1(−b)

rn−1
(

f (u2)

u2 + b
− f (u1)

u1 + b

)
(u2 + b)(u1 + b)dr

=
r̄1(−b)∫

r1(−b)

rn−1(f (u2)(u1 + b) − f (u1)(u2 + b)
)
dr

=
r̄1(−b)∫

r1(−b)

rn−1f (u1)(u1 − u2) −
r̄1(−b)∫

r1(−b)

rn−1(f (u1) − f (u2)
)
(u1 + b)dr

=
r̄1(−b)∫

r1(−b)

rn−1f (u1)(u1 − u2) +
r̄1(−b)∫

r1(−b)

(
rn−1(u1 − u2)

′)′
(u1 + b)dr

= I1 + I2. (21)

Integrating I2 twice by parts we obtain that

I2 = 0 − rn−1(u1 − u2)(u1 + b)′
∣∣r̄1(−b)

r1(−b)
+

r̄1(−b)∫
r1(−b)

(u1 − u2)
(
rn−1u′

1

)′
dr

< −I1,

a contradiction with (21). �
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As in the previous subsection we define

P̄ (s, α) = −2n
F

f
(s)

r̄n−1(s, α)

r̄ ′(s, α)
− r̄n(s, α)

(r̄ ′(s, α))2
− 2r̄n(s, α)F (s),

P̄ ′(s, α) =
(

n − 2 − 2n

(
F

f

)′
(s)

)
r̄n−1(s, α)

r̄ ′(s, α)
,

S̄12(s) = r̄n−1
1 r̄ ′

2

r̄n−1
2 r̄ ′

1

(s),

S̄′
12(s) = S̄12(s)f (s)

((
r̄ ′

2(s)
)2 − (

r̄ ′
1(s)

)2)
. (22)

Lemma 4.3.2. For any α1, α2 ∈ (α∗ − δ,α∗ + δ), with α1 < α2, it holds that

P̄1(U1m) > P̄2(U1m).

Proof. Note that P̄1(U1m) = P1(U1m) and P̄2(U2m) = P2(U2m). From Proposition 4.2.2 we have that P1(U1m) >

P2(U2m). Hence P̄1(U1m) > P̄2(U2m). From (f6), P̄ ′
2(s) � 0, hence since U1m > U2m we obtain P̄1(U1m) >

P̄2(U2m) > P̄2(U1m). �
Lemma 4.3.3. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. If r̄1(U1m) < r̄2(U1m), then

r̄n−1
1

r̄ ′
1

(s) <
r̄n−1

2

r̄ ′
2

(s) and P̄1(s) > P̄2(s) for all s ∈ [U1m, ŪI ],

with ŪI as in Lemma 4.3.1.

Proof. Observe first that S̄12(U1m) = 0 and S̄12(ŪI ) < 1. If there exists a point s ∈ (U1m, ŪI ) such that S̄′
12(s) = 0,

then r̄ ′
1(s) = r̄ ′

2(s) and hence

S̄12(s) = r̄n−1
1

r̄n−1
2

(s) < 1,

implying S̄12(s) < 1 for s ∈ [U1m, ŪI ].
On the other hand, from the second in (22), using that S̄12(s) < 1 and (f6), we obtain

(P̄1 − P̄2)
′(s) =

(
(S̄12 − 1)

(
n − 2 − 2n

(
F

f

)′) r̄n−1
2

r̄ ′
2

)
(s) > 0.

Hence, for all s ∈ (U1m, ŪI ), P̄1(s) − P̄2(s) > P̄1(U1m) − P̄2(U1m) > 0, from Lemma 4.3.2. �
Let us define

UII =
{

U1m if r̄1(U1m) � r̄2(U1m),

ŪI if r̄1(U1m) < r̄2(U1m).

Proposition 4.3.1. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. Then,

r̄1

r̄ ′
1

<
r̄2

r̄ ′
2

at ŪI if UII � −β ,

and

r̄1 > r̄2, and
r̄1

r̄ ′
1

<
r̄2

r̄ ′
2

in (UII ,−β] if UII < −β. (23)
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Proof. If UII � −β , we obtain from the fact that U1m < −β, that UII = ŪI and thus the result follows from the
definition of ŪI .

We assume next that UII < −β . As r̄1(UII ) � r̄2(UII ) and S̄12(UII ) < 1, then

r̄1

r̄ ′
1
(UII ) <

r̄2

r̄ ′
2
(UII ).

Assume by contradiction that (23) does not occur. Then, there exists a first point t ∈ (UII ,−β) such that

r̄1

r̄ ′
1
(t) = r̄2

r̄ ′
2
(t) and r̄1(s) > r̄2(s), for all s ∈ (UII , t],

implying

S̄12(t) =
(

r̄1(t)

r̄2(t)

)n−2

= D > 1.

Also, from the definition of P̄1 and P̄2, we have that

(P̄1 − DP̄2)(t) = 2
(
Dr̄n

2 − r̄n
1

)
F(t) = 2r̄n−2

1

(
r̄2

2 − r̄2
1

)
F(t) < 0.

If UII = ŪI , then by Lemma 4.3.3, we have that (P̄1 − P̄2)(UII ) > 0, while if UII = U1m, then by Lemma 4.3.2,
(P̄1 − P̄2)(UII ) > 0. From (22) and (f6), we have that P̄ ′

1(s, α) � 0 for s � Ū1m and thus P̄1(ŪI ) � P̄1(Ū1m) < 0,
(see Proposition 4.1.1) implying that P̄2(UII ) < P̄1(UII ) < 0. Since D > 1 we conclude that

(P̄1 − DP̄2)(UII ) > 0.

From the last in (22) we obtain that S̄12 is increasing in (UII , t) implying that S̄12(s) < D. Finally, using (f6) we
deduce

(
P̄1 − DP̄2

)′
(s) =

(
(S̄12 − D)

(
n − 2 − 2n

(
F

f

)′ ) r̄n−1
2

r̄ ′
2

)
(s) > 0,

and thus

(P̄1 − DP̄2)(t) > 0,

a contradiction. �
4.4. Behavior in [−β,0) after the minimum

In this section we will examine the behavior of the solutions for u ∈ [−β,0) after the minimum. To do this, we will
use the functional W defined below, first introduced by Peletier and Serrin, see [16,17]:

W(s,α) = r̄(s, α)

√(
u′(r̄(s, α),α

))2 + 2F(s), s ∈ [
Um(α),Z(α)

)
,

where

Z(α) := sup
{
s ∈ (

Um(α), Ū(α)
)
: u′(r̄(s, α),α

)2 + 2F(s) > 0
}
.

The functional W is well defined in this interval, since

d

ds

[(
u′(r̄(s, α),α

))2 + 2F(s)
] = −2(n − 1)

u′(r̄(s, α),α)

r̄(s, α)
< 0,

and

u′(r̄(Um(α),α
)
, α

)2 + 2F
(
Um(α)

) = 2F
(
Um(α)

)
> 0.

We note that Z(α) = 0 if and only if α ∈ G2 ∪ N2. Indeed, if α ∈ G2 ∪ N2, then(
u′(r̄(s, α),α

))2 + 2F(s) � 0 at s = Ū (α),

and if α ∈ F2, then as in the proof of Proposition 2.1, we can prove that I (R̄(α),α) < 0 which implies that Z(α) <

Ū(α) < 0.
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Lemma 4.4.1. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. Assume that there exists U ∈ [−β,0] such that

r̄1(U) � r̄2(U) and W1(U) < W2(U), (24)

then

Z(α1) � Z(α2)

and

r̄1(s) > r̄2(s), W1(s) < W2(s), and u′
1

(
r1(s)

)
< u′

2

(
r2(s)

)
, s ∈ (

U,Z(α1)
]
.

Moreover, if α2 ∈ G2, then α1 ∈ F2, and if α1 ∈ G2 ∪ N2, then α2 ∈ N2 and

R̄(α1) > R̄(α2) and u′
1

(
R̄(α1)

)
< u′

2

(
R̄(α2)

)
.

Proof. If we set l = min{Z(α1),Z(α2)} � U , then W1 and W2 are well defined in [−β, l]. From (24) we deduce that
u′

1(r̄1(U)) < u′
2(r̄2(U)), and thus r̄1 > r̄2 in some small right neighborhood of U. Observe that as long as W1 � W2,

r̄1 and r̄2 do not intersect and hence neither do u′
1(r1(s)) and u′

2(r2(s)) .
Let d ∈ (U, l] such that

W1(s) � W2(s), r̄1(s) > r̄2(s), and u′
1

(
r̄1(s)

)
< u′

2

(
r̄2(s)

)
in (U,d]. (25)

We will show that W1 − W2 is strictly decreasing in (U,d], and this will imply that the supremum of such d is l.
Moreover, from (25) it will follow that u′

1(r̄1(l)) < u′
2(r̄2(l)) implying that Z(α1) � Z(α2). Indeed, if Z(α1) > Z(α2),

then Z(α2) < 0, and W2(Z(α2)) = 0, and from (25), W1(Z(α2)) = 0, a contradiction with Z(α1) > Z(α2). Hence
l = Z(α1).

From the definition of W(s,α) we have

∂W

∂s
(s,α) = 2F(s) − (n − 2)(u′(r̄(s, α),α))2

u′(r̄(s, α),α)
√

u′2(r̄(s, α),α) + 2F(s)
. (26)

For any fixed s ∈ (−β,0) let us define

h(p) = 2F(s) − (n − 2)p2

p
√

p2 + 2F(s)
, p > 0.

As F(s) � 0, h is strictly increasing. Thus, from (26)

∂W1

∂s
(s) − ∂W2

∂s
(s) = h

(
u′

1

(
r̄1(s)

)) − h
(
u′

2

(
r̄2(s)

))
< 0,

implying that W1 − W2 is strictly decreasing in (U,d] and the first part of our result follows.
Now, if α1 ∈ G2 ∪ N2, then Z(α1) = 0 and thus Z(α2) = 0, implying that α2 ∈ G2 ∪ N2, and thus

R̄(α1) = r̄1(0) > r̄2(0) = R̄(α2) and u′
1

(
R̄(α1)

)
< u′

2

(
R̄(α2)

)
and hence α2 ∈ N2.

Let now α2 ∈ G2. If Z(α1) = 0, then u′
1(R̄(α1)) < u′

2(R̄(α2)) = 0, a contradiction, implying Z(α1) < 0 and thus
α1 ∈ F2. �
Proposition 4.4.1. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. Then

Z(α1) � Z(α2)

and there exists U ∈ [−β,0] such that

r̄1(s) > r̄2(s), W1(s) < W2(s), and u′
1

(
r̄1(s)

)
< u′

2

(
r̄2(s)

)
, s ∈ (

U,Z(α1)
]
.

Moreover, if α1 ∈ G2 ∪ N2, then α2 ∈ N2 and hence

R̄(α1) > R̄(α2) and u′
1

(
R̄(α1)

)
< u′

2

(
R̄(α2)

)
, (27)

and if α2 ∈ G2, then α1 ∈ F2.
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Proof. Let

U :=
{−β if UII < −β,

ŪI if UII � −β.

From Proposition 4.3.1 we have

r̄1(U) � r̄2(U), and r̄1(U)u′
1

(
r̄1(U)

)
< r̄2(U)u′

2

(
r̄2(U)

)
,

and since F(U) � 0, we obtain that W1(U) < W2(U). Hence the result follows from Lemma 4.4.1. �
5. The case b = 0

In this case we need to examine the behavior of the solutions in the intervals [0, α] and [Um(α),0] before and after
the minimum. We start with the analogue of Proposition 4.1.2.

Proposition 5.1. Let f satisfy (f1)–(f5). Then for all α1, α2 ∈ (α∗ − δ1, α
∗ + δ1) with α1 < α2 it holds that

r1(0) > r2(0) and rn−1
1 (0)

∣∣u′
1

(
r1(0)

)∣∣ � rn−1
2 (0)

∣∣u′
2

(
r2(0)

)∣∣.
Proof. By direct computation, using Lemma 3.1 and Proposition 3.1, we have that

∂r

∂α
(s,α)

∣∣
s=0 = − ϕ(r(0, α),α)

u′(r(0, α),α)
< 0

and
∂

∂α
rn−1(s, α)u′(r(s,α),α

)∣∣
s=0 = rn−1(0, α)ϕ′(r(0, α),α

)
,

and thus the result follows. �
We have the following analogues of Proposition 4.2.2 and Lemmas 4.3.1, 4.3.1 and Proposition 4.3.1. Their proofs

follow by a step by step modification of the ones given in Section 4, so we omit them.

Proposition 5.2. For any α1, α2 ∈ (α∗ − δ1, α
∗ + δ1), with α1 < α2, we have that U1m > U2m and

r1 > r2 and P1 > P2 in [U1m,0].
Moreover,

P1(U1m) > P2(U2m).

Lemma 5.1. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. If r̄1(U1m) < r̄2(U1m), then there exists ŪI ∈ (U1m,0) such
that r̄2(ŪI ) = r̄1(ŪI ) and r̄2(s) > r̄1(s) for all s ∈ (U1m, ŪI ).

Lemma 5.2. Let α1, α2 ∈ (α∗ − δ,α∗ + δ) with α1 < α2. If r̄1(U1m) < r̄2(U1m), then

r̄n−1
1

r̄ ′
1

(s) <
r̄n−1

2

r̄ ′
2

(s) and P̄1(s) > P̄2(s) for all s ∈ [U1m, ŪI ],

with ŪI as in Lemma 5.1.

We recall the definition of UII from the previous section:

UII =
{

U1m if r̄1(U1m) � r̄2(U1m),

ŪI if r̄1(U1m) < r̄2(U1m).

Proposition 5.3. Let α1, α2 ∈ (α∗ − δ1, α
∗ + δ1) with α1 < α2. Then

r̄1 > r̄2, and
r̄1

r̄ ′
1

<
r̄2

r̄ ′
2

in (UII ,0].
In particular,

R̄(α1) > R̄(α2), and u′
1

(
R̄(α1)

)
< u′

2

(
R̄(α2)

)
. (28)
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6. Proof of the main results

We start by proving Theorem 1.2.

Proof of Theorem 1.2(i). This is a well-known result, see for example [2], where much stronger nonexistence results
are proved. We give its proof for the sake of completeness. From (f4) − (f5), we obtain that there exist C0 > 0 and
s0 > 0 such that

f (s) � C0s
n

n−2 for all s ∈ (0, s0).

Assume now by contradiction that there exists α ∈ G2 and set v(r) = −u(r,α). Let r0 > R(α) be such that v � s0 and
v′(r) < 0 for r � r0. Integrating the equation in (1) over (r/2, r), r � 2r0, we find that

−rn−1v′(r) =
r∫

r/2

tn−1f
(
v(t)

)
dt � Const.f

(
v(r)

)
rn � Const.

(
v(r)

) n
n−2 rn, (29)

and thus

−v′(r)v− n
n−2 (r) � Const.r for all r � 2r0

implying that

v− 2
n−2 (2r0) − v− 2

n−2 (r) � Const.
(
r2 − 4r2

0

)
in contradiction with limr→∞ v(r) = 0.

Hence G2 = ∅ and (i) follows. �
Proof of Theorem 1.2(ii). Assume first b = 0. From (i), G2 = ∅, and thus, as under the assumptions of (ii),
N2 �= ∅, therefore from Proposition 2.1, we have P2 = ∅. Hence N2 = N = (a,∞) for some a > 0. Also, R̄(α)

and u′(R̄(α),α) are continuous in [α1,∞), and from (28) in Proposition 5.3, R̄(α) is locally strictly decreasing and
u′(R̄(α),α) is locally strictly increasing in (α1,∞), hence the result will follow.

Assume next b > 0. From the assumptions, α1 ∈ G2 ∪ N2 hence by Proposition 4.4.1, (α1, α1 + δ) ⊂ N2. Let

ᾱ = sup{α > α1: α ∈ N2}.
Assume ᾱ < ∞. Since P2 and N2 are open, we deduce that ᾱ ∈ G2. By Proposition 4.4.1, (ᾱ − δ, ᾱ) ⊂ F2, a con-
tradiction, and thus (α1,∞) ⊂ N2. As R̄(α) and u′(R̄(α),α) are continuous in [α1,∞), and, also by (27) in Propo-
sition 4.4.1, R̄(α) is locally strictly decreasing and u′(R̄(α),α) is locally strictly increasing in (α1,∞), the result
follows. �
Proof of Theorem 1.2(iii). In this case α1 ∈ G2, hence the same argument as above yields (α1,∞) ⊂ N2 implying
the desired result. �
Proof of Theorem 1.1. Follows directly from Theorem 1.2(iii). �
Proof of Theorem 1.3. Follows directly from Theorem 1.2(ii). �
7. Concluding remarks and examples

First we observe that our method can be used to establish the uniqueness of the radial solutions of the corresponding
problems when we consider the more general equation

−�u = |x|θf (u), θ > −2.

Indeed, by making the change of variables

t = 2
r

θ+2
2 , v(t) = u(r),
2 + θ
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we obtain that v is a solution of

−(
tN−1v′(t)

)′ = tN−1f (v),

where

N = 2(n + θ)

θ + 2
.

Uniqueness follows provided we change (f5) to

(f θ
5 )

βf ′(β)

f (β)
� n + θ

n − 2
if b > 0,

sf ′(s)
f (s)

<
n + θ

n − 2
for all s > 0 if b = 0.

We also remark that we have assumed f odd and worked the problem with the Laplacian operator instead of the
m-Laplacian operator for the sake of simplicity. In particular, the results remain valid if instead of f odd we assume

(f1) f (0) = 0, and there exist b+ > 0 > b− such that f (u) > 0 for u > b+, f (u) < 0 for u < b−, and f (u) � 0,
f (u) �≡ 0, for u ∈ (0, b+) and f (u) � 0, f (u) �≡ 0, for u ∈ (b−,0).

(f2) f is continuous in R and differentiable in (−∞, b−] ∪ [b+,∞),
(f3) f (u) � f ′(u)(u − b+), for all u � b, and f (u) � f ′(u)(u − b−) for all u � b−,
(f4) the function u → uf ′(u)

f (u)
is decreasing in (b+,∞) and increasing in (−∞, b−),

(f5)
β+f ′(β+)

f (β+)
� n

n−2 , and β−f ′(β−)

f (β−)
� n

n−2

where β+ > 0 > β− are the nonzero solutions of F(x) = 0.
On the other hand, consider the m-Laplacian operator with n > m > 1, instead of the Laplacian in problems (1)–(2),

(4) and (6)–(7), and assume

(f m
3 ) (m − 1)f (u) � f ′(u)(u − b), for all u � b,

(f m
5 )

βf ′(β)
f (β)

� n(m−1)
n−m

,

instead of (f3) and (f5) (or the appropriate assumptions for the case f � 0). All the proofs in the previous sections
can be carried out, with the obvious modifications, provided that we redefine the functionals I , W̃ and W as follows:

Im(r,α) = (
u′(r, α)

)m + m′F
(
u(r,α)

)
,

W̃m(s,α) = r
n−1
m−1 (s, α)

√(
u′(r(s,α),α

))m + m′F(s)

and

Wm(s,α) = r(s,α)

√(
u′(r(s,α),α)

)m + m′F(s),

where as usual m′ = m/(m − 1). Hence Theorems 1.1–1.3 are also valid in this case.
Finally we give some examples. As we mentioned in the introduction, our results apply to the canonical example

f (s) = sp − sq in dimension n = 3 for 0 < q < 1 � p with p + q � 2. In this case,

b = 1, β =
(

p + 1

q + 1

) 1
p−q

,
sf ′(s)
f (s)

= p + p − q

sp−q − 1
.

Thus the function f satisfies (f1)–(f4) for any p � 1 and 0 < q < p, and (f5) if p + q � 2
n−2 . Other examples

can be constructed as follows: Let b > 0 be fixed. If f ∈ C1[b,∞) ∩ C[0, δ] for some δ ∈ (0, b), satisfies (f3)–(f4),
f (0) = 0, f (s) < 0 in (0, δ) and

lim
s→∞

sf ′(s)
f (s)

<
n

n − 2
, (30)

then we can extend f continuously to [δ, b] in order that (f5) is satisfied. Hence we can construct f with any pre-
scribed behavior near zero and near infinity to which our results apply, provided (30) is satisfied.
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