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ABSTRACT. - The integral representation of the relaxed energies 

P’“(u, 0) := inf 
{ul,) c J 

liminf * F(z, uu,,, VU,) dz : ?L, E W1lq(flt, P), 
n-cc fl 

‘u&L - u weakly in W11P(b2, I@) 

of a functional 

w7 - u weakly in W11P(62, bid) 
> 

E:tLtt 
.I 

F(x, u, Vu) dx, u E wqp: Rd), 
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310 I, FONSECA AND _I XlAl.‘j’ 

where 0 _< F(z.[,<) 5 L’(1 + Iii”+ I</“) and max I.T$$.(/~ 
> < 

p _< 4, is studied. In particular, M”. “-sequential weak lower semicontinuity 
of IT(.) is obtained in the case where F = F(t) is a quasiconvex function 
and p > q(N - 1)/N. 

Kq words: Quasiconvexity. relaxation 

RLsuM~. - On Ctudie la representation integrale d’energies relaxees 

IL IL - 7~ faible dans W1*“(12, W”) 

IL , )  - u faible dans W1,y(O, W”) 

de la fonctionnelle 

oti 0 5 F(z,<,<) 5 C(l + ICI” + jElq) et max 
{ l,r$$$,qy < P < Y. 

En particulier, la W1*P -semicontinuitC inferieure sequentielle faible de E( .) 
est obtenue dans le cas oti F = F(t) est une fonction qUaSiCOwXe et 
p > q(N - 1)/N. 

1. INTRODUCTION 

We study lower semicontinuity properties of a functional 

(1.1) u H F(z> u; VU) dz, 
.I’ 

7L E wyfl, Rd), 
I2 

where R c Iw” is a bounded, open set and F : 0 x R” x Mdxx + R is 
a nonnegative Caratheodory function. Here, and in what follows, tJAdxiV 
denotes the set of real-valued d x N matrices. 
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We are interested in problems where there is lack of convexity, which 
leads us to considering various types of relaxed energies. Let p, Q E [l. X] 
and let IL E W’,P( 0, R”). We introduce the functionals 

II,,, - II, weakly in W1’“( 62, @) , 

The value of the functional 3T4,p may depend, in a rather complicated 
way, on the values of p, 4, and on the regularity properties of U. Consider 
the example where N = d, F(z, <,I) = F(t) = 1 det (1. Notice that F 
is polyconvex, hence is quasiconvex (see the definitions below), and the 
growth condition 

is satisfied. It is well known that 

if I-‘, Q > N ([2, 3, 7, 211). Recently, (1.2) was shown to hold also for 
Q 2 N and p > N - 1 (see Celada and Dal Maso [6]; for related work, we 
refer to [l, 8, 9, 12, 15, 181). If u E W1)“(R,Rd), then we get equality in 
(1.2), whereas for u 6 W ‘T~(R, IWd) it is difficult to describe 34)r(~: 0) 
(for partial results on this direction, see Remark 3.3 and [l, 111). We obtain 

(1.3) 3q+(UL1, n) = 0 

if Q < N (see [4, 141) or if p < N - 1 (see [15] and [lo]). 
As usual, the relaxed energy is related to the quasiconvexiJication of F. 

We recall that, when F (z, 7. <) = F(E), the quasiconvex envelope of F 
is defined by (see [7, 221) 

&F(E) := inf CJ F(< + VP(X)) dz : cp E C,T”((O, l)jv; rWd) . 
(%l)‘v 1 

It is clear that QF < F, and F is said to be quasiconvex if QF = F. 
Also, the polyconvex envelope, PF, of F is the supremum of all rank-one 
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affine functions bounded above by F. As it turns out, PF < CJJ’ and we 
say that F is polyconvex when PF = F. 

In this paper we will treat the case where q is the growth exponent of $ 
and p < (1. As a first step towards obtaining an integral representation for 
3Q’r(u, R), we aim at identifying a lower bound for the relaxed energy, 
precisely 

assuming the growth condition 

In view of (1.4) we need to establish a lower semicontinuity result for 
quasiconvex integrals (see Theorem 4. l), namely 

(1.6) 

if 71, E Wr+‘(Q, El), u,, E W1.y(b2, R”), u,, - u weakly in W1*1’(f2, Iw”) 
and F is quasiconvex. It is well known that this inequality holds when 
p > 4 (see [2, 4, 20, 211). As indicated by ( 1.3), we remark that the 
inequality (1.6) may no longer be valid if p < ‘I. 

The study of lower semicontinuity properties for (1.1) when y < (I 
finds its motivation on questions in nonlinear elasticity. As an example, 
in the case where F is the polyconvex function F(t) := 1 det (1 , the 
condition p < N plays a fundamental role in the study of cavitation, as 
it allows deformations to be discontinuous (see [3]). It can be shown that. 
within the class of polyconvex energy densities, and under suitable structure 
conditions, if u,, E W1-“(b2. W”) converges to 11, E Wr’“(Q: RN) weakly 
in WIJ’. then 

lim inf 
J 

F( OIL,,) d:c > 
I 

F(V?L) cl:1 
n-c-z s1 . s2 

provided p > N - 1. This result was first found by Marcellini [19] for 
p > 6, then extended by Dacorogna and Marcellini [8] for p > N - 1. 
The borderline case p = N - 1 was considered in [ 151 with a partial success, 
and completely established by Acerbi, Dal Maso and Sbordone [I], [9]. 
Improvements are due to Gangbo [ 131 and Celada and Dal Maso [6]. An 
elementary approach has been found by Fusco and Hutchinson [ 121. 
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The quasiconvex case is more general. Under the growth condition 
(1.5), and some additional structure conditions, the lower semicontinuity 
property was proved by Marcellini [ 191 for p > q A, by Carbone and 
De Arcangelis [5] in some further special cases, by Fonseca and Marcellini 
[l l] for p > q - 1. Recently, Maly [17] extended the later result to the 
borderline case p = q - 1. Notice that all the above mentioned results need 
some additional assumptions. Our approach allows to eliminate additional 
assumptions if the growth is (1.5) and ~1 > cl?, and it is based on a 
method presented by Maly in [16], where lower semicontinuity is shown 
to hold in the context of W’>p-weak convergence of Cl-functions. 

Further, we investigate the dependence of PJ’(,u. U) and F::(~L. U) on 
the open subsets U c 62. We assume that 

(1.7) 

We prove that if p > max (I?, r$$ , and if .P+(u. 12) < ec, then 
{ 1 

there exists a finite, nonnegative, Radon measure 1-1 such that 

w9 P”(u, U) = ,@I) 

at least for open sets U c 0 with I = 0. In addition, we can show that 

(1.9) 

holds for all open sets U c 0, where X is some finite, nonnegative, 
Radon measure. The representation formula (1.8) may fail if p 5 q$$, 
as illustrated by an example provided by Celada and Dal Maso [6]: if 
F(t) := I[lnr-l + 1 det [I and if p = N - 1, then .P+‘(TL~ .) is not even 
subadditive (see Remark 3.3 (i)). 

If F is independent of z and <, then the lower semicontinuity result (1.6) 
implies the estimate ,G, 2 QF(Vu)LCN for the absolutely continuous part, 
,LL~, of ,LL. Actually, in all known examples the equality ,LL, = QF(Bu)LN 
holds. 

This paper is organized as follows: 
In Section 2 we construct a linear operator Tu from WIJ’ into W1,” 

which conserves boundary values and improves integrability of u and C711,. 
Namely, the W1,Q -norm of Tu is estimated in terms of a special maximal 
function if p > q y. We use this trace-preserving operator to “connect” 
two functions across a thin transition layer and to estimate the increase of 
the energy. We remark that the standard way to perform this connection, by 
means of convex combinations using cut-off functions, would not achieve 
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a comparable result, namely an arbitrarily small increase of the energy on 
an arbitrarily thin transition layer, since the admissible sequences may not 
remain bounded in W1,q(Q W”). 

In Section 3 we prove that FE;F( U, .) is a Radon measure and we obtain 
a representation of F+( U, .) by means of a Radon measure /L, in the sense 
described above (see (1.8), (1.9)). Moreover, we show that (1.8) holds for 
all open sets [J c 12 provided there exists a Radon measure 11 such that 

(1.10) P”(U, U) 5 71(U) 

for all open subset lJ c 62. In Remark 3.3 we provide a couple of examples 
to illustrate the sharpness of these results. 

In Section 4 we establish that (1.1) is lower semicontinuous in Wi.I’- 
weak if F is quasiconvex (see Theorem 4.1). This enables us to obtain a 
lower bound for F*,“(u. U). 

In particular, when (1.10) holds then the absolutely continuous part of /L 
with respect to L”, /Lo, satisfies 

for Lc” a.e. :I’ E (2. Here, and in what follows, C” denotes the N- 
dimensional Lebesgue measure. If, in addition, U, E W’,“(R, W”), then we 
obtain the usual relaxation result, 

The extension of this lower semicontinuity result to more general energy 
density functions F = F(z, C. 4’) is addressed in Remark .4.3 and 
Example 4.4. 

2. TRACE-PRESERVING OPERATORS 

Throughout this section we consider fixed exponents T, 4 2 1, and 

p>max 
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Further, let 71 E C?(n) be a nonnegative function, and [tl, t2] c (0,11~11~). 
Suppose that 0 < JVr/l 5 A on {tl _< rl 2 t2}. Given a subinterval 
(u,b) c (tl,t2), we write 2: := (u. < 71 < b}. 

In the sequel we will need an operator on W1,“( 0) which improves 
the integrability properties of a function and its gradient in Zg, while 
conserving the function values elsewhere. 

Fix to E (tl, TV) and consider the level set rt, := (~1 = to}. There exists 
a diffeomorphism +‘tci of rtn x [tl. f2] onto ??il such that 

for all z E lYto, i5 E [tl j tz]. Precisely, given z E Ftc, it suffices to consider 
the flow /z,,~ verifying 

dhz VdW)) 
dt - JVrl(h(t))12 

and set Qto(.z, t) := h,(t). The mapping +‘t0 satisfies the bi-Lipschitz 
condition and the jacobians of Qto and @‘t,’ are bounded. Also, using 
@‘to and by virtue of the Sobolev imbedding theorem on smooth N - l- 
dimensional manifolds, one can show that if v is a smooth function 
then 

(I 
l/l. 

JvJT dW”-l 
{l1=to) > 
IC (s (77=t 1(l4o + w”> mN-l 

” > 
l/l3 

’ 

where 1 5 ,lj, and either ,0 1 N - 1 or 1‘ 5 m, and C = 
C(N> P, 7’, rl, t1, t2). 

2.1. LEMMA. - Consider s E (tl, t2) and p > 0 such that [s - p, s f p] c 
(t1, t2). Let f b e a nonnegative measurable function on R. Then 

J (/ {v=sl 
. B( “) f(y) dy 

2, A > 
dHN-‘(2) I CP”-’ /,3+p f(y) dy 

s--P 

where C = C(N, 7, tl, t2). 

Vd. 14, Ilo 3-1997. 



316 I. FONSECA AND J. MALq 

Prooj: - It can be seen easily that if 2 E I‘,, then B(z, :) c ZC’;;. 
Hence, using the change of variables ;/I = @,q(z, t) and (2.1), we obtain 

since, due to the Lipschitz continuity of the mapping @;I, 

2.2. LEMMA. - Let tl < (I < 0 < t2. There exists a linear operator 
T:W1~p(R) --) w ‘J’(O) such that I’u = u on 62 \ Z,f, and 

where C = C(N, y, q, T, rl, tl, t2) and T = ~(lV,p, q, 7.) > 0. 

Proof. - Set 

Tu(x) := 
f 

u(II: + fq:x)y) dy, 
’ B(O,l) 
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where 
0(z) : = -& max{O, min{q(z) - n, b - Q(Z)}} 

I 

0 if q(z) > b 

b - v(z) 
2A 

if nfb < sq(fr) < 1) . I 
2 = 

rl(Lt.) - a, CL f b 

2A 
if (I < r/(z) 5 2 

0 if q(2) 5 0,. 

It is clear that Tu(z) = :r if z $! Zg, and 

TIL = 
.f 

zL(z) dz 
B(E;B(X.)) 

for :I: E 2:. Let c := * and denote 

MO := sup (t - a)-’ 
tE(a.6) .I 

by dY: 
z: 

Ml := sup (t - a)-’ 
E(a.b) .I 

z:; (I@ + IV4”) &ll. 

Assume, first, that 1~ is smooth and fix (I: 1 p. If p E (0, i(b - a)) and if 
z E {q = (L + 2p}, then H(z) = 5 and B(z,B(z)) c ZC~~~“. Thus, 

Using Lemma 2.1, we obtain 

(2.4) i,=cL+2,i lTUl”(z) dHN-l(z) 
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By virtue of the co-area formula and (2.4) for (I: = q, and since (Vvl is 
bounded away from zero, we obtain 

The latter inequality has been proven for smooth functions 11. Using a 
standard approximation argument, together with Fatou’s Lemma, it can be 
seen easily that it is still valid for any 71, E D(R). In addition, and since 

we have 

where N-l 
71 -- := 

P 
By means of an entirely similar argument we conclude that 

I 
JTu(Q(z) d:r: 2 m&b - uy. 

. zp 

Now we obtain estimates on the gradient of Tu. We have 
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and thus 

319 

It follows that the LQ estimate (2.5) holds also for derivatives, so that 

Note, however, that the right hand side of the above inequality may not 
be finite. Next, using the co-area formula, (2.4) with CY = p, and (2.6) we 
obtain, for smooth functions %I,, 

(2.7) 

(puIP + pmLy) dy 

ITul”(z)+lVTul”(z) dP-l(z) dp 
> 

A similar bound holds for 

I’ 
(ITllI” + IVTVI”) dy. 

. zp 

It is easy to see that Tu is weakly differentiable on R (and thus, by 
the above estimates, 7’~ E W’J)(C!) and (2.7) holds with 2; and 2: 
replaced by 0) if u is smooth enough. If II E lV’J’(fl) and if {Us} is a 
sequence of smooth functions converging to u in W1J’(b2), then clearly 
Tu,, (:c) + Tv(z) for all :I: E 62, while, by (2.7) {TuIL} is bounded in 

1,-c% 
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W1”‘(f2). Thus, a subsequence of { Tu,,} converges weakly in W1,J’(!2) 
to ‘(1 and by (2.7) we have 

J 
(ITlip) + p7q”) dy 2 c 

0 I 
(I”(~/)IP + pu(:y)I”) dy. 

. 0 
and we conclude that T is a linear continuous map from Wr>“( 0) into 
W1>P(!A). It remains to prove the L1’-estimate. Fix ,L? 2 1 such that 

Given a smooth function PL, by (2.2), by (2.4) with CY = /j, and by (2.6), 
we have 

(I 

J/7. 
IT$(z) &IN-‘(z) 

. {‘7=a+Zp} 1 

<c 
J 

~ I= +2P{~Tuli’(z) + IVT#(z)) cMP=~(z) 
7 n 

hence, just as in the proof of (2.5), we obtain 

Using a density argument we conclude that this inequality is still valid for 
%L E W’,P( Q), from which we obtain 

where r2 := : - (N - 1) (i - i) > 0. This concludes the proof. 

2.3. ELEMENTARY LEMMA. - Let ,$ be u continuous nondecreasing function 
on un interval [n, 61, a < 6. There exist CL’ E [n,n + i(6 - u)], 
6’ E [b - i(b - a),b], such that n < CL’ < 6’ < 6, and 

I 

ii/(t) - ?4Nd < yi(6) - ?an) 
t-n’ - 6 - II, - 

(2.9) 
7/q,‘) - *T)(t) < gm - vJJ(u> 

b’-t - 6-o. 
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for all t E (a’, b’). 

Proof. - Without loss of generality, we may assume that (L = 0, $(cJ) = 0. 
Let a’ be a point of [O; b] where 

111(b) p(t) := 7)(t) - 3t7 

attains its maximum and let b’ be a point of [O; b] where cp attains its 
minimum. It is clear that formulas (2.9) hold. To show that CL’ < i, it 
suffices to remark that ~(0) = 0, while p(t) < 0 whenever t > 4. Indeed, 
as ,(il is nondecreasing, 3tq > q!>(b) > $(t). In a similar way, one can 
show that b’ > b - +!I. 

2.4. LEMMA. - Let V CC (2 and W c R be open sets, R = V U W, 
‘u E W’,‘i(V) and 711 E W’)Y(W). Let m E N. There exist a function 
z E W,::(0) and open sets V’ c V and W’ c W, such that V’ U W’ = 62, 
z = 7) on 12 \ W’, z = w on 12 \ V’, 

(2.10) LA’(V’ n W) 5 C61 

and 

(2.12) rl= 0 on 62 \ V and q = 1 on 0\ W. 

By Sard’s Lemma, the image of the set of all critical points of v is 
a closed set of measure zero; hence, there is an nondegenerate interval 
[(I, b] c (0,l) \ rl( {V7/ = O}). Choose m E N and define 

f := 1 + pq + \vwy + p/p + ItlIP + mPlw - tql-‘. 
Since {a < 11 < 6) c V n W, we may find ,4 E { 1, . . . , m} such that 

(2.13) 
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where a,+ := rr + (k-l~,jb-u), ok := (I + y. Using Lemma 2.3. with 

we find [a’, b’] c [ ak, bb] such that b’ - n’ 2 i (bk - Q), and 

for all t E (a’, b’). Set 

V’ := i2 n {r/ > a,‘}, w’ := (2 n {r) < h’}. 

By (2.12), it is clear that V’ c V, W’ c W, and V’ U W’ = (2. Also, 
(2.10) holds because lVr]l is bounded away from zero on {Q, < q < b} and 
b’ - (I,’ 5 e. A direct computation shows that 

on {n’ < 71 < h’}. Using (2.13), (2.14) and Lemma 2.2, we hnd a function 
z E W1sp(b2) such that z = TL = 21 on (7 2 b’} = R \ W’, z = 1~ = 111 on 
(~1 5 a’} = R \ V’ and (2.11) is satisfied. 

3. THE RELAXED ENERGY: DEPENDENCE ON THE DOMAIN 

Let ~1, be a Radon measure on 62. We say that p (strongly) represents 
F1’p(u, .) if 

for all open sets U c 12. We say that p weakly represents 3q>p(u. .) if 
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for all open sets U c 0. Strong and weak measure representations for 
3;:(‘)1, .) are defined in an similar way. In this section we will study 
measure representation properties of the relaxed functional ~E,“(u. .) for a 
functional (1.1) satisfying (1.7). We show that if 

(3.1) 
r: (1 2 P; 

1 1 
N-l N-l 

p > max l,r- - 
Nsr” N ’ 

then F:~(u, .) can be represented by a Radon measure and 3q>P (‘1~; .) is 
weakly represented (see Theorems 3.1, 3.2). We characterize the case where 
strong measure representation for 3’JJ’(q .) occurs. We include an example 
of weak measure representation which is not strong and an example which 
illustrates that measure representation properties may fail altogether if the 
condition (3.1) is violated. 

First we state the main results which will be proved later in this section. 

3.1. THEOREM. - Let F be a Carathefodory function satisfying (I. 7) and let 
p. g, 7’ verify (3.1), u E W1sP(b2; Iw”). rf3c,“(u, 0) < 00, then there exists a 
nonnegative, finite Radon measure X on R which represents 3zf(u; a). 

3.2. THEOREM. - Let F be a CarathPodorq function satisfying (1.7) and let 
p. q, r’ verify (3.1), u E W1+(R. (Wd). Zf3q~“(u; 0) < x then there exists a 
nonnegative, Radon measure ,LL on 2 which weakly represents 3qJ’(u, 12). 

3.3. REMARK. - (i) The latter result is sharp, in that we may find p = yy 
and II, E W1lP(R, HCf) such that .P+(u, .) cannot be weakly represented by 
a measure. Indeed, let B stand for the unit ball in Iw”‘, let q = d = N, 
r’ = p = N - 1, *U(X) := 6 and 

F(t) := 111 *‘-’ + 1 det<I . 

Then ‘u. E W1+(B5 Iw”) for all s < N, in particular for s = p, 

p H F’>“(u; pB) - 
.I 

F(Vu)ds: 
PB 

is of order p at 0, whereas 

3-“(u, B \ pB) - 
.I’ 

F(Vu)dz = 0. 
BbB 

Hence, P>“(u, .) cannot be additive. The same argument works here also 
for 3:: (u, .). This example is essentially due to Acerbi and Dal Maso [ 11. 
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(ii) In (i) the additivity property failed due to the fact that p < qy. Now 
we will see that, in spite of requiring p > (r$$, the measure representation 
may not be strong. Let y = d = iii and ,(6(z) := 6, but now p > N - I 
(which is the case in which Theorems 3.1 and 3.2 are valid), and 

Let p := LCN(B)So be the l”(B) -multiple of the Dirac measure at 0. 
Then (see [l 11, Theorem 4. l), 

(3.2) F+(u, U) = p(U) 

if I = 0. If U = {:I; E B : :x1 > 0}, then we have 

(this can be seen using the approximation r],,(z) = ,u(n: + :(:I)). In the 
case where U := B \ {O}, we have 

(3.3) PP(v,, U) = p(B) = p(U) > /f,(U): 

as each 21 E W1,Q(U, Rd) is also in WIJ(B, Rd) (the point 0 is a removable 
singularity). Clearly, F~,*(v, .) cannot be a measure since in this case, and 
by (3.2), it would have to be the measure IL, contradicting (3.3). 

Theorem 3.1 ensures that a similar example does not exist for the relaxed 
energy FtF (7~ .)-situation; notice that it may happen that %I E W,:<!‘( U, Wd) 
and ‘u $ IV,b,!(B,R”). 

(iii) If U CC V c 0, then, obviously, 

Hence, if the measures 1~ and X from Theorems 3.1 and 3.2 exist, then 
x = pp. 

3.4. LEMMA. - Let F be a Curath~odot-y function satisfying (I. 7), and let 
p, q, r verify (3.1). Let V, W c fl be open sets, V CC R and fl = V U W, 
and let u E W’)p(R,@). Then 

Proof. - Choose E > 0. We find open sets V’ c V and W’ c W such 
that R = V’ U W’ and V’ n W’ c Vfl W. Using the definition of relaxation 
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and Rellich’s compact imbedding theorem, we find U, E WIJ(V. W”) and 
W, E W1,4(W, W”) such that 

‘(&I - u weakly in W1yp(V, P), 

II% - 41 LP(I”nv1/‘) F 4 n 

.I 
F(x, I),, VIJ,,) dx < Tq’p(u, V) + E. 

I’ 
WI - u weakly in W1,p(W, Rd), 

.I F(x, wn, Vwn) dx 5 .i=q’p(u, W) + E. 
WY 

By virtue of Lemma 2.4, we may find open sets V, c V’, W,,, c W’, and 
functions z,, E W1,4(R, IWd), such that V,, U W, = R, z,, = vu, on R \ IV,, 
z n = WI on R \ V,, and, by (1.7), 

where T is as in Lemma 2.4. It follows that 

F(x, zn, Vzn) dx 5 
.I 

F(x, u,, VU,,) dx 
I’ 

+ 
I F( 2, w, i VW,,) dx + CrlPT: 
. It 

hence 

liminf 
I 

F(.x, z,; VG) dx 5 F’“(U, V) + PP(u,, W) + 2E. 
7’-oo . 61 

It remains to prove that z, - u weakly in W’J’(0). It is easy to check that 
the sequence is bounded in W’ap(R, I@). Furthermore, taking into account 
that LN(Vn n Wn) + 0 and Rellich’s compact imbedding theorem, we see 
that each subsequence of z, contains a sub-subsequence converging to IL 
a.e. It follows that z, - u which concludes the proof. 

3.5. REMARK. - A similar assertions holds for .T~:(u, .), with essentially 
the same proof. 
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Proof of Theorm 3.2. - WC: write 

3(U) := 3n-JJ( II. 7:). 

First we assume that the coercivity assumption 

(3.4) F’(:r, i. I) 2 c(lCl” + I</“) 

is satisfied. Let u,, E IVl.‘l(Q, iw”) be a minimizing sequence such that 
‘U,, - 11. weakly in WlJ’(b2, R”), and 

lim 
/’ 

F(:L ‘IL,, . Vu,,) d:r = 3( 62). 
‘1133. $2 

Passing to a subsequence, if necesssary, there exists a nonnegative Radon 
measure /I on 2 such that 

w*- lim F(vu,,)LCS 112 = p 
!-l-CC 

(weak” convergence in measures on a). In particular, we have 

(3.5) p( 0) = 3( 0) 

and for every open set I’ c Q 

(3.6) 

Conversely, let V c 12 be an open set and fix E > 0. We find an open 
set 2 cc V such that 

p(V) - p(Z) < E. 

Then, using Lemma 3.4, (3.5), (3.6), we have 

p(V) 5 p(Z)+E = p(L)-p(L\Z)+c 5 3(R)-3(Q\z)+E < 3(V)+c. 

Letting E + 0 we obtain 

P(V) 5 3(V). 

Now, we remove the assumption (3.4). By the above part of the proof, 
and for every E > 0, we obtain a measure /lSE representing the relaxation 
3E of the functional 
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Since 
jLE(i2) = 3$q < 3(O) + &SUP ~~‘zL,~~~I;‘,? 5 c, 

11. 
we may select &k: --f 0 such that the subsequence /I,, converges weak* 
in the sense of measures to a finite, nonnegative, Radon measure b. Let 
U c 12 be open. Then, obviously, 

and passing to the weak* limit, 

Conversely, given E’ > 0, there exists a sequence vu, such that 71, - IL 
weakly in Wt,P(U) and 

I F(x, SW,, VW,,) dx 5 3(U) + E’. 
.u 

Then, for k: large enough, we have 

.LJ ( I’ 
F x, w,, VT/,,) + E,+U,J~ + EJ$‘u,I~) dx 5 3(U) + 2~‘; 

thus 
pEL (U) I 3’(U) + 2E’. 

Passing to the weak* limit and letting E’ -+ 0 we conclude the proof. 
We show that (1.10) is a necessary and sufficient condition for strong 

representation. This will be a consequence of the following lemma. 

3.6. LEMMA. - Let F be a Carathkodory function satisfjling (1.7) and let 
p, q, I- verify (3.1), u E W’J’(Q, Wd). Let U be an open subset of R. Zf p is 
a Radon measure on n weakly representing 3qlP(u, .) then 

/L(U) = 3”lP(U, U), 

provided 

(3.7) i;f{3q,p(lr, U \ K) : K c U is compact} = 0. 

Proof. - We need to establish the inequality 3q,p(~u, U) 5 p(U). Fix 
E > 0 and, by virtue of (3.7), let K c U be a compact set such that 

3q>p(~, U \ K) < E. 
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Choosing an open set W such that K c W CC U, by Lemma 3.4 we have 

3q)p(u, U) < 3q’p(u, W) + 3g,p(u, U \ K) 
I 3q’p(u, W) + E 

IP(W)+E 
I p(U) + E, 

and this concludes the proof. 

3.7. COROLLARY. - Let F be a Carath&odory function satisfying (1.7) and 
let p, q, r verify (3.1), u E WlJ’(fI, II*). Zf p is a finite Radon measure on 
2 weakly representing 34,P(u, .), then p represents 3qlP(u, .) if and only 
if (1.10) is satisjied., 

Proof. - If (1.10) is satisfied, then clearly (3.7) holds for any open 
set U c R. Thus, by Lemma 3.6, p represents 3q’P(~, .). The converse 
implication is trivial. 

3.8. REMARK. - If u E Wl>Q(R, lR*), then the hypotheses of Corollary 3.7 
are fulfilled by setting 

u(U) := 
s 

F(x,u, Vu)dx. 
u 

As we will see in Corollary 4.5, in this case, and if F does not depend on 
2 and C, we have p = QF(Vu)CN, and, in particular, 

3q1p(u, 0) = 
s 

QF(Vu) dx. 
n 

We conclude this section proving that 3;Qdcp(~, a) admits always a measure 
representation. 

Proof of Theorem 3.1. - Assume, in addition, that the coercivity 
condition (3.4) is satisfied. As in the proof of Theorem 3.2, we find a 
Radon measure X on n such that 

for every open set U c 0. Given an open set U c 0, we are going to 
show that 

Consider an increasing sequence of open, bounded, smooth sets U, CC U, - 
h E N, such that Uh c Uh+l for all h and U = U;P=, Uh. By the 
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definition of relaxed energy, for h 2 3 there exists a sequence ZL~,% E 
W,l,‘,Q(Uh \ UhU2,RBd) such that 

Uh,n - u weakly in W1>p(Uh \ Uh-2, UP), 
n-03 

and 

(3.8) J Uh\fjh--I F(xT Uh,n> vUh,n) 5 ~;~(u, u, \ &-2) + 2-h, 

Fix positive integers ah, to be determined later in the proof, and after 
extracting a subsequence from ~2,~ (still denoted by ‘lLh,n)r we may assume 
that uh,n -+ u a.e. in uh \ Uhe2 and n-+03 

We make use of Lemma 2.4 to connect uh,+ to ?&+r,n across Uh \ Uh-r. 
There exist open sets vhfn, VhQl,+ such that V& C Uh \ Vh-2, Vh;+ C 

uh+l \ uh-1, uh+l \ Uh-2 = v;% u V;+I,~, 

and there exist functions zh,n E wl”(uh+r,, \ Vh-1, Rd) such that 
Zh,n = Uh,n in (Uh\Vh-1)\Vh;l,n9 Zh,n = uh+l,n in (Uh+l\Uh-l)\Vh~n’ 

and 

J F( 
Vh:nnVh&7 

x, Zh,n, vZh,n) dx 

SC J VhilnnVL., 

(1 + IZh,nlr + lvzh,n[‘) dx 

5 cha7’2-pr (n+h) 
i 

where r is as in Lemma 2.4 and ch depends on h. Now we specify the 
choice of oh so that ahTq ch < 1. Let z, E kVk:(fl\ VI, Rd) be given by 
z n= Zh,n On VhTnnVh-++l,n7 % = %+l,n on (Uh+l\Uh--1)\(Vh~nUVh;2,n). 
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Fix k E N, L > 2. We have 

m < - XI’ F(x. z,,, Vz,,)& 
/L=k+l * u,, \G,, , 

33 

< 

- c i.i h=k+l u,,+l\i,,-1 

F(z. ,&+I,,, . V?L,,+~.,,) dr 

h=k+l It = b, + 1 

5 c 2x(u/,+z \ u,,-,) + 2-k-l + CY2-ffT(ll+L) 
h=k+l 

< 6X(U \ [i&l) + 2-“+l f c2-“‘(“+L’). 

Due to (3.4), (3.8), and since F~;,“(II,. 12) < X, the sequence z,, is bounded 
in Wi,P(U \ ??k), and, as in Lemma 3.4, we show that z,, + ‘II weakly 
in WIJ’(U \ u,). We infer that 

Hence, (3.7) is verified and, by virtue of Lemma 3.6, we conclude that 

Now, using the same argument as in the proof of Theorem 3.2, we remove 
the additional assumption (3.4). 

3.9. REMARK. - The growth condition (1.7) can be further weakened. The 
constant 1 may be replaced by an integrable function. If p > N - 1, then. 
in view of the Sobolev imbedding theorem, the function z in Lemma 2.4 
is bounded. In this case, it is enough to assume, instead of (1.7), that 

for some increasing function (‘. 
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4. THE RELAXED ENERGY: A LOWER BOUND 

4.1. THEOREM. - Suppose thut q > 1 and p > q( N - 1)/N. Let F be 
LI quasiconvex function on Mdxn’ satisfiing (1.5). Let u E W1~J’(~2. I@), 
‘u,, E W1-‘l(12. [w(l), u,, - 11, in Wl.‘(R, IS”). Then 

Proof. - The proof will be carried out in two steps. 

Step 1. - Suppose that Q = L3 = B(0, 1) and u is linear, U(X) = ,!+ 
for to E M rlXN In view of Rellich’s compact imbedding theorem, passing . 
to a subsequence we may assume that 

Let R < 1, and set p := y. We apply Lemma 2.4 to 11 := ?I,~, ‘w := ‘u, 
V = ~JB and W = B \ RB to obtain functions z, E Wl,g(B, l@) and 
open sets V,, CC V and W,, c W such that V,, U W, = B, z,, = TL,, on 
B \ W,, , zr, = ‘~1. on B \ V,, and 

7 > 0. Since z,, - 11, E Wi3”(B: (w”), due to the growth condition (1.5) it is 
legitimate to test the quasiconvexity of F with 2, and we obtain 

J F(Vu) dn: 5 J F(Vz,L) da:. 
B B 

It follows that 

I F(VzrL) - F(VqL) dz 
.B 

(F(Vq) - F(Vu,)) dz 

< 
-I 

F( Vu) dz + 
J 

F(VqL) &I: 
. B\l-,, I ;, nvf- 71 

5 C C”(B\v,,)+ 
. I 

(1 + JVZ,, I”) fh 
I:, n1+-,, > 

5 C(&“(B \ RB) + C(R) 71V) 

< C (1 - R) + C(R) ,r/>-gT. 
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To conclude, it suffices to let first 71, 4 00 and then R -+ 

Step 2. - Let u E W1+(S2, R”), U, E IVy”(b2, RN), fl/~,~ 
W1,“(Q, RN). Without loss of generality, we may assume 

1. 

- 7~ weakly in 
that 

SUP 
s 

F(Vu,) dx < OS. 
n R 

Passing, if necessary, to a subsequence, we obtain the existence of finite, 
Radon, nonnegative measures ,LL and v such that 

lim inf 
s 

F(Vu,) dx = lim J F(Vu,) dx 
n-im 12 n-cc Q 

and 
,LL = w*- lim F(Vu,,) C”;, 

FL-00 
u = w*- lim lVu,,Ip ,Cc”. 

Tl-CX 

We are going to show that 

(4.1) $(x0) = lim @(IL.Od) > F(Vu(x0)) 
c-O+ P(B(xo, &) - 

holds true for almost every x0 E 62. Assuming that (4.1) is verified, for 
any cp E C,(Q), 0 5 cp 5 1, we have 

F(Vu,) dx 2 lim 
J’ 

cpF(Vu,) dx 
n-03 n 

L s ‘p F(Vu) dx. 
R 

It suffices to let cp to converge increasingly to 1 and to apply Lebesgue’s 
monotone convergence theorem, to conclude that 

lim 
.I 

F(Vu,) dx > 
ntcc Cl s 

F( Vu) dx. 
ct 

It remains to prove (4.1). To this end, we consider ~0 E R such that 

exists and is finite, 
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exists and is finite 

and 

(4.4) E’O+ Ef,,, E)(u(Y) - ‘zL(xo) - WQJ(Y - 41 44 = O* lim 1 

We select &k -+ o+ such that &%(za, &k)) = 0, v(dB(za, ek)) = 0. It is 
well known that conditions (4.2), (4.3) and (4.4) are satisfied by all points 
x0 E R, except maybe on a set of CN measure zero. Then 

@%0,&k)) lim lim 
f!!?k CN(B(x,,, &k)) = k-+x n--tee 

W’d4) dx 

= lim lim 
s Ic+Oo nicc B(O,l) 

F(V”n,k(d) dy, 

where 

‘h,k(d := 
U,(XO +&kg) - u(xO) 

Ek 

Then U,,k E J@q(B(O, I), @)T 

where ?&J(X) := VU(X~)X. Hence, we may extract a subsequence vk = unl,k 
such that (passing, if necessary, to a subsequence) vk - ‘2~~ weakly in 
W’J’(B(O, l), Rd), and 

*(x0) = ;iimf’ 
dCN 

F(vv&/)) dy. 
. B(O,l) 

From Step 1, we deduce that 

This shows (4.1), and thus it concludes the proof. 
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4.2. COROLLARY. - Suppose that q 2 1 and 1) > q(N - 1)/N. Let f+’ hc LI 
function on MdX N satis-ing (I..~), and let ‘11, E W”+(12. W’). Then 

I 
. FQ+(rr. a) 2 QF(Ou) d:r. 

. I,, 

Proof. - Since 0 < QF([) < F(E), it follows that QF satisfies the 
growth condition (l.S), i.e. 

0 5 QF(F) 5 C(1 + I(/ “). 

Hence, if Y& E W1lp(sl, I@) and if u,, - u weakly in W1.p(Ot, R”), then 
by Theorem 4.1 

lirn inf 
I 

F( VU~~) da: > lirn inf 
I 

QF(Vw,,) d:c 
n-+cx . R 7’-cx . 12 

L I QF(Vu) dx. 
.s2 

Taking the infimum over all such sequences we obtain 

as required. 

4.3. REMARK. - It is easy to verify that the blow-up argument of 
Theorem 4.1, Step 2, can be used to prove that 

in the case where F(z, <,E) = a(z)g(c), u is nonnegative, continuous, 
and g satisfies (1.5). The generalization of (4.5) to more general energy 
density functions F = F(x, C, <) can be obtained under some smallness 
assumptions on 

However, these conditions are far from being ‘natural’. By analogy with the 
case where p 1 q, we consider to be ‘natural’ those conditions of the form 

IF(z, <, r) - F(z’, C’, <)I 5 W((LC - :c’I + I< - <‘/)I(1 + l<lq). 

where w is a bounded modulus of continuity. The latter ensures (4.5) if 
P > q. 
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We recall that Gangbo [ 131 proved that lower semicontinuity holds when 
d = N = q, p > N - 1, F(z,<,[) = a(~,<)g(~,<), o is continuous, 
nonnegative and bounded away from zero, g is continuous, and g(z:, .) 
is a polyconvex function for all 2 E R. In that same paper, Gangbo 
used heavily the fact that d = N, without which lower semicontinuity 
may fail (see Example 4.4). In addition, he showed that the continuity 
of the integrand function is an important feature. Indeed, he exhibited an 
example where F(z, <) = XK((C) det [, xx is the characteristic function 
of a compact set K, and where, given N - 1 < p < N, 

u, H 
I 

1 det VU] dx 
. h- 

is lower semicontinuous in W ‘,p(R, R”) if and only if L”(dK) = 0. 

4.4. EXAMPLE. - This example is similar to examples by Ball and Murat 
[4] and Maly [15]. 

Here Q denotes the cube (-1, l)“r in R”, and N - 1 < p < N. 
Let ?I,,, : Q -+ RgN+r be a 2/n-periodic function, given by U,(X) := 
((P~~(I:EI):I:~ &(Ixl)) if 1c E [-l/n,, l/nlN, where 

r > n-l, 
%(T) := t&r), rlrk 

{ 
< r < 71-l, 

' 1 7" > ck, 

and 

{ 

1, 7' > 7b-k+l 

Y&(7.) := k + &, n-k < r < n,++1, 

0: r 5 6'. 

The integer k is fixed so that {Us,} remains bounded in W1,“(Q, EP+l), 
precisely (k - l)(N - p) > N. Then U, are Lipschitz-continuous, and 
UT, - II, := (x, 1) in W1,P(b27 lJP+l). 

Now, define F : IFBN+l x M(N+l)xN -+ [0, +m) by 

FCC, <) := b(~N+l)ldet(Ei,j)i,j=l,...,Nl, 

with 
b(t) := y$. 

As it turns out, 

J F(u, vu) dx = 2N b(l) > 2N b(l) + QN (b(O) - h(l)) 
12 

= liminf 
rL’+cc , I 

’ F(uL,, Vun) dx, 
Q 
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where oAhr denotes the volume of the unit ball in R” Note that 
fl,(<) := b(<\;,l) is continuous, bounded away from zero. and 

where w is a bounded modulus of continuity. It is well know that the latter 
condition provides lV1,“;(62: [WA”+‘) weak lower semicontinuity. 

4.5. COROLLARY. - Suppose that q 2 1 and p > p(N - 1)/N. Let E’ he (I 
function on M’lx A’- satisfying (l.S), and let II, E vI”-“(12. W’). Then 

Proo$ - Since 1~ E W1,‘1(62, I@) and ( 1.5) holds, the standard relaxation 
results apply (see [2. 71). Thus, we may find a sequence of functions 
u,, E W1,q(12, R”) such that 

and so 

which, together with Corollary 4.2, yields the desired representation. 

4.6. REMARK. - Notice that if QF is convex, i.e. QF = P** where F”” 
denotes the lower convex envelope of F, then 

for every u E W1,J’(<2, R’l), for every 1) 2 1, and every open set l,i CC I?. 
The result is trivial in the case where ~1 > 9, since the standard relaxation 

theorems can be applied (see [7]). 
Suppose now that p < 9. If the sequence {u,,} c W1,“(03 R”) converges 

to TL E W’J’(O, R”) in W1ll-weak, since F** is convex we have 
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Conversely, consider a smooth kernel w > 0 in RN with support on B(0, l), 
JkN w(z)& = 1, and given k E N we set We := kNw(kx). For each 
k E N select a sequence Vk,n E w134(u, t@) such that 

Vk,7L - wk * u in wl”(u, Rd) weak 11’00 

and 
lim 

I 11-00. c’ 
F(vv,+)dx = k QF(V(wl, * u))dz 

As ~1 < 4 we may extract a diagonal subsequence uk := ?il;,,L(k) such that 

II F(Vur;)dn: - 
.G I 

* QF(V(wl, * u))dx 5 ;. 
. li 

Therefore TI,~ + u in W1.“(U, [w’l), and 

F.l’( u, U) 5 lim inf F(vuk)d:x 

QF(V(wk * u))d.x. 

However, since QF is convex and as the measure /L:, given by 

is a probability measure, using Jensen’s inequality we have 

lim inf 
.I k-cc u 

QF(V(wk * u))dz = lipinif 
.I 

QJ’((&W)d~ 
1’ 

We conclude that 

FyJ’(u, U) = 
.I 

QF(Vu)dx. 
c’ 
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