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Regularity theory for nonlocal equations with
VMO coefficients

Simon Nowak

Abstract. We prove higher regularity for nonlinear nonlocal equations with possibly discontinu-
ous coefficients of VMO type in fractional Sobolev spaces. While for corresponding local elliptic
equations with VMO coefficients it is only possible to obtain higher integrability, in our nonlocal
setting we are able to also prove a substantial amount of higher differentiability, so that our result is
in some sense of purely nonlocal type. By embedding, we also obtain higher Hölder regularity for
such nonlocal equations.

1. Introduction

1.1. Setting

In this work, we are dealing with nonlinear nonlocal integro-differential equations of the
form

LˆAu D f in � � Rn; (1.1)

where� � Rn is a domain (= open set) and f W�! R is a given function, while AWRn �
Rn ! R is a coefficient and ˆWR! R is a nonlinearity with properties to be specified
below. Moreover, for some fixed s 2 .0; 1/ the nonlocal operator LˆA is formally defined
by

LˆAu.x/ WD p:v:
Z

Rn

A.x; y/

jx � yjnC2s
ˆ.u.x/ � u.y// dy; x 2 �: (1.2)

For the sake of simplicity, throughout the paper we assume that n > 2s. Moreover, we
assume that the coefficient A is measurable and that there exists a constant ƒ � 1 such
that

ƒ�1 � A.x; y/ � ƒ for almost all x; y 2 Rn: (1.3)

In addition, we require A to be symmetric, that is,

A.x; y/ D A.y; x/ for almost all x; y 2 Rn: (1.4)
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We define L0.ƒ/ as the class of all such measurable coefficients A that satisfy conditions
(1.3) and (1.4). Furthermore, we require that the nonlinearityˆ satisfiesˆ.0/D 0 and the
following Lipschitz continuity and monotonicity assumptions, namely

jˆ.t/ �ˆ.t 0/j � ƒjt � t 0j for all t; t 0 2 R (1.5)

and
.ˆ.t/ �ˆ.t 0//.t � t 0/ � ƒ�1.t � t 0/2 for all t; t 0 2 R; (1.6)

where for simplicity we use the same constantƒ � 1 as in (1.3). The above conditions are
for instance satisfied by any C 1 function ˆ with ˆ.0/ D 0 such that the image of the first
derivative ˆ0 of ˆ is contained in Œƒ�1; ƒ�. Consider the fractional Sobolev space

W s;2.Rn/ D
®
u 2 L2.Rn/

ˇ̌ R
Rn

R
Rn
ju.x/�u.y/j2

jx�yjnC2s
dy dx <1

¯
and denote byW s;2

c .�/ the set of all functions that belong toW s;2.Rn/ and are compactly
supported in �. We are now in a position to define weak solutions of equation (1.1) as
follows.

Definition. Given f 2 L
2n
nC2s

loc .�/, we say that u 2 W s;2.Rn/ is a weak solution of the
equation LˆAu D f in �, ifZ

Rn

Z
Rn

A.x; y/

jx � yjnC2s
ˆ.u.x/ � u.y//.'.x/ � '.y// dy dx

D

Z
�

f ' dx 8' 2 W s;2
c .�/: (1.7)

We remark that the right-hand side of (1.7) is finite in view of using Hölder’s inequal-
ity with Hölder conjugates 2n

nC2s
and 2n

n�2s
and the fractional Sobolev embedding (see

Proposition 2.3).
In our main results, we require A to be of vanishing mean oscillation close to the

diagonal in the following sense.

Definition. Let ı > 0 and A 2 L0.ƒ/. We say that A is ı-vanishing in a ball B � Rn if,
for any r > 0 and all x0; y0 2 B with Br .x0/ � B and Br .y0/ � B , we have«

Br .x0/

«
Br .y0/

jA.x; y/ � NAr;x0;y0 j dy dx � ı;

where NAr;x0;y0 WD
ª
Br .x0/

ª
Br .y0/

A.x; y/ dy dx.
Moreover, we say that A is .ı; R/-BMO in a domain � � Rn and for some R > 0, if

for any z 2 � and any 0 < r � R with Br .z/ b �, A is ı-vanishing in Br .z/.
Finally, we say that A is VMO in �, if for any ı > 0, there exists some R > 0 such

that A is .ı; R/-BMO in �.
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If A belongs to the classical space of functions with vanishing mean oscillation
VMO.R2n/ (see e.g. [30, Section 2.1.1], [15] or [39]), then A is also VMO in Rn in
the above sense. Nevertheless, our assumption that A is VMO in � is more general, as
it roughly speaking only means that A is of vanishing mean oscillation in some arbitrar-
ily small open neighborhood of the diagonal in � ��, while away from the diagonal in
� �� and outside � �� the behavior of A is allowed to be more general. In particular,
if A is continuous in an open neighborhood of the diagonal in � ��, then A is clearly
VMO in �. Nevertheless, continuity close to the diagonal is not essential, as there are
plenty of VMO functions that are discontinuous. For example, assuming that � contains
the origin, if for some ˛ 2 .0; 1/ we have

A.x; y/ D

´
sin
�ˇ̌

log.jxj C jyj/
ˇ̌˛�
C 2 if x ¤ 0 or y ¤ 0;

0 if x D y D 0;
(1.8)

or

A.x; y/ D

´
sin
�
log
ˇ̌
log.jxj C jyj/

ˇ̌�
C 2 if x ¤ 0 or y ¤ 0;

0 if x D y D 0;
(1.9)

in an open neighborhood of diag.� ��/, then A is VMO in �. However, in both cases
A is discontinuous at x D y D 0.

1.2. Main results

Our first main result is concerned with Sobolev regularity.

Theorem 1.1. Let � � Rn be a domain, s 2 .0; 1/ and p 2 Œ2;1/. Moreover, fix some t
such that

s � t < min
°
2s
�
1 �

1

p

�
; 1 �

2 � 2s

p

±
D

8̂̂<̂
:̂
2s
�
1 �

1

p

�
if s � 1=2

1 �
2 � 2s

p
if s > 1=2

DW tsup: (1.10)

If A 2 L0.ƒ/ is VMO in � and if ˆ satisfies conditions (1.5) and (1.6) with respect toƒ,
then for any weak solution u 2 W s;2.Rn/ of the equation

LˆAu D f in �;

we have the implication

f 2 L
np

nC.2s�t/p

loc .�/) u 2 W
t;p

loc .�/:

Remark 1.2. In fact, in order to arrive at the conclusion that u 2W t;p
loc .�/ for some t and

some p in Theorem 1.1, it is actually enough to assume that A is .ı; R/-BMO in � for
some arbitrarily small R > 0 and some small enough ı > 0 depending only on p, t , n, s
and ƒ; see Theorem 9.1 below. This is in line with corresponding results for local elliptic
equations; see e.g. [6].
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Figure 1. Higher differentiability in relation to s and p.

An interesting feature of Theorem 1.1 is that the differentiability gain indicated by
the number tsup depends on the gain of integrability by relation (1.10). This relation is
visualized in the Figure 1.

In particular, on the one hand we observe that in the case when p is close to 2, that
is, in the case of a small gain of integrability, Theorem 1.1 also implies only a small gain
of differentiability. On the other hand, in the limit case when p !1 we obtain differen-
tiability in the whole range s � t < min¹2s; 1º, which we expect to be sharp in the case
whenA is merely VMO. An interesting question is whether also in the case of smaller val-
ues of p the differentiability gain in Theorem 1.1 can be improved beyond tsup to the full
range s � t < min¹2s; 1º, or whether counterexamples that contradict such an improve-
ment can be constructed. This is because such an improved gain of differentiability was
in fact observed in the recent paper [32]. However, in [32] this improved regularity is
only proved in the linear case when ˆ.t/ D t and under some Hölder continuity assump-
tion on A, which in particular does not include many examples of discontinuous VMO
coefficients like (1.8) and (1.9); see Section 1.4 for more details.

In Theorem 1.1, we stated the result in terms of the higher integrability exponent p at
which we arrive, which has the advantage that the statement of Theorem 1.1 is relatively
clean. However, an interesting question is how much higher integrability and differen-
tiability we gain if we instead prescribe the integrability of the source function f . This
question leads to the following reformulation of Theorem 1.1.

Theorem 1.3. Let � � Rn be a domain, s 2 .0; 1/ and f 2 Lqloc.�/ for some q 2
. 2n
nC2s

;1/. In addition, assume that A 2 L0.ƒ/ is VMO in � and that ˆ satisfies condi-
tions (1.5) and (1.6) with respect to ƒ. Then for any weak solution u 2 W s;2.Rn/ of the
equation LˆAu D f in �, the following is true. Fix some t such that s � t < 1:
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• If t satisfies

2s �
n

q
< t <

8̂̂<̂
:̂
2s
�
1 �

n

.nC 2s/q

�
if s � 1=2;

1 �
.2 � 2s/.nC q � 2sq/

.nC 2 � 2s/q
if s > 1=2;

(1.11)

then we have u 2 W t;p
loc .�/, where p D nq

n�.2s�t/q
.

• If t satisfies
t � 2s �

n

q
; (1.12)

then we have u 2 W t;p
loc .�/ for any p 2 .1;1/.

Note that in the first case of Theorem 1.3 we always have nq
n�.2s�t/q

> 2, so that we
always gain integrability beyond the initial integrability exponent 2 as well as differentia-
bility beyond the initial differentiability parameter s.

Moreover, we note that in the case when 2s � n
q
< 1, it is relatively easy to see that

we always have

2s �
n

q
<

8̂̂<̂
:̂
2s
�
1 �

n

.nC 2s/q

�
if s � 1=2;

1 �
.2 � 2s/.nC q � 2sq/

.nC 2 � 2s/q
if s > 1=2;

so that in this case the range of t given by (1.11) is always nonempty.
Also, we remark that in the case when 2s � n

q
� 1, Theorem 1.3 implies that u belongs

to W t;p
loc .�/ for any t in the range s � t < 1 and any p 2 .1;1/.

By embedding, Theorem 1.3 also implies the following higher Hölder regularity result.

Theorem 1.4. Let � � Rn be a domain, s 2 .0; 1/ and f 2 Lqloc.�/ for some q > n
2s

.
If A 2 L0.ƒ/ is VMO in � and ˆ satisfies conditions (1.5) and (1.6) with respect to ƒ,
then for any weak solution u 2 W s;2.Rn/ of the equation

LˆAu D f in �;

we have

u 2

8̂̂<̂
:̂
C
2s� nq
loc .�/ if 2s �

n

q
< 1;

C ˛loc.�/ 8˛ 2 .0; 1/ if 2s �
n

q
� 1:

(1.13)

While, as mentioned, it is up to further investigation whether the differentiability gain
in Theorems 1.1 and 1.3 is optimal, we nevertheless expect the Hölder regularity in Theo-
rem 1.4 to be sharp in the case of VMO coefficients or even continuous coefficients, since
even the mentioned improved gain of differentiability along the Sobolev scale in the range
s � t < ¹2s; 1º would still only lead to the same amount of Hölder regularity obtained in
Theorem 1.4.
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1.3. Local elliptic equations with VMO coefficients

For the sake of comparison, let us briefly discuss corresponding regularity results for local
elliptic equations in divergence form of the type

div.Bru/ D f in �; (1.14)

where the matrix of coefficients B D ¹bij ºni;jD1 is assumed to be uniformly elliptic and
bounded. In the linear case when ˆ.t/ D t , equation (1.14) can in some sense be thought
of as a local analogue of the nonlocal equation (1.1) corresponding to the limit case
s D 1. For some rigorous results in this direction, we refer to [21]. It is known that if

the coefficients bij belong to VMO.�/ and f 2 L
np
nCp

loc .�/ for some p > 2, then weak
solutions u 2 W 1;2

loc .�/ of equation (1.14) belong to W 1;p
loc .�/; see e.g. [6, 15, 23] and

also [1,2,17,26] for more general developments in this direction. This corresponds to our
Theorem 1.1 in the case when t D s. On the other hand, in order to gain any amount of
differentiability along the Sobolev scale in the context of local equations, a corresponding
amount of differentiability has to be imposed on the coefficients, so that in the case of
VMO coefficients in general no differentiability gain at all is attainable. Therefore, the
additional differentiability gain in Theorem 1.1 is in some sense a purely nonlocal phe-
nomenon.

This nonlocal differential stability effect is also visible in the context of Hölder regu-
larity, although in this case it is somewhat more subtle to recognize it. In fact, embedding
the aboveW 1;p regularity result implies that for any weak solution u 2W 1;2

loc .�/ of (1.14)
with f 2 Lqloc.�/ for some q > n

2
we indeed have

u 2

8<:C
2� nq
loc .�/ if q < n;

C ˛loc.�/ 8˛ 2 .0; 1/ if q � n;

which at first sight directly corresponds to Theorem 1.4. However, there is an important
difference in the case when q is large, which is due to the differentiability gain in Theo-
rem 1.3. In order to illustrate this difference, note that in the case when f 2 L1loc.�/, for
any weak solution u 2 W 1;2

loc .�/ of (1.14) we have C ˛loc.�/ for any ˛ 2 .0; 1/. Since in
some sense the order of equation (1.1) is s times the order of equation (1.14), one might
therefore be tempted to guess that weak solutions u 2 W s;2.Rn/ of (1.1) should in gen-
eral not exceed C s regularity. However, Theorem 1.4 shows that any such weak solution
to (1.1) indeed belongs to C ˛loc.�/ for any 0 < ˛ < min

®
2s; 1

¯
whenever f 2 L1loc.�/,

exceeding C s regularity. In particular, in the case when s � 1=2, such weak solutions to
nonlocal equations with VMO coefficients and locally bounded right-hand side enjoy the
same amount of Hölder regularity as weak solutions to corresponding local equations with
VMO coefficients, despite the fact that the order of such nonlocal equations is lower.
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1.4. Previous results

In recent years, the regularity theory for weak solutions to nonlocal equations of type (1.1)
has seen a great amount of progress, in particular concerning regularity results of purely
nonlocal type, in the sense that, as above, the obtained regularity is better than one might
expect when considering corresponding results for local elliptic equations.

Regarding such results for general coefficients A 2 L0.ƒ/, in [28] and [40] it is
demonstrated that weak solutions to nonlocal equations of type (1.1) have slightly higher
differentiability and higher integrability along the scale of fractional Sobolev spaces,
which is a phenomenon not shared by local elliptic equations of type (1.14) with merely
measurable coefficients, where it is only possible to obtain higher integrability.

Concerning higher Sobolev regularity of purely nonlocal type, in [32] the authors in
particular show that in the linear case when ˆ.t/ D t , if � D Rn and if the mapping
x 7! A.x;y/ is globally Hölder continuous with some arbitrary Hölder exponent, then the
statement of Theorem 1.1 holds for t in the improved range s � t < min¹2s; 1º. As we
discussed briefly in Section 1.2, an interesting question is therefore whether the regularity
obtained in [32] can be replicated in our general setting of possibly nonlinear equations
with VMO coefficients posed on general domains��Rn, in particular since many exam-
ples of discontinuous VMO coefficients like (1.8) or (1.9) are not covered by the Hölder
continuity assumption in [32].

On the other hand, regarding higher Hölder regularity, by the Sobolev embedding the
mentioned Sobolev regularity result in [32] implies exactly the same amount of Hölder
regularity given by (1.13) from Theorem 1.4 under the mentioned assumptions imposed
in [32]. In other words, although in comparison to [32] in general we obtain less differ-
entiability along the Sobolev scale, we nevertheless gain enough differentiability in order
to obtain the same amount of Hölder regularity by embedding in our general setting. A
similar Hölder regularity result was obtained in [19], again in the case of linear equa-
tions, but allowing for coefficients that are merely continuous. Concerning higher Hölder
regularity for possibly nonlinear equations, in [35] it is in particular proved that ifˆ satis-
fies assumptions (1.5) and (1.6) and A is continuous in �, then weak solutions u of (1.1)
belong toC ˛loc.�/ for any 0< ˛ <min¹2s � n

q
; 1ºwhenever f 2Lqloc.�/ for some q > n

2s
,

which almost matches the regularity (1.13) obtained in Theorem 1.4. In addition, while
in comparison with Theorem 1.4 the result in [35] does not include general discontinuous
coefficients of VMO type, it in fact holds for a slightly larger class of coefficients than
simply continuous ones, including in particular coefficients that are translation invariant
inside �. Nevertheless, our approach can easily be modified in order to prove our main
results under the assumption on A from [35]; see Remark 9.3. In addition, the Hölder reg-
ularity result in [35] holds for a slightly larger class of weak solutions called local weak
solutions, essentially only assuming that u 2 W s;2

loc .�/ and the finiteness of the nonlocal
tails of u; see [35]. While we believe that our approach can be modified in order to gen-
eralize our main results to this setting of local weak solutions, we decided not to insist on
this point, in particular since this would also require a revision of the previous work [28].
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Let us also mention that in [36] (see also [34]), Theorem 1.1 was proved in the case
when t D s, that is, without the additional differentiability gain, under essentially the same
assumptions on A and ˆ as in [35].

More results concerning Sobolev regularity for nonlocal equations are for example
proved in [3, 4, 12, 18, 22, 25, 31, 44], while some more results on Hölder regularity are
proved in [5, 7, 9–11, 13, 14, 20, 24, 29, 38, 41]. Furthermore, for various regularity results
regarding nonlocal equations similar to (1.1) in the more general setting of measure data,
we refer to [27].

1.5. Approach

Our approach is mainly influenced by techniques introduced in [8] and [28]. Namely, in
[8] techniques were developed allowing us to prove higher integrability of the gradient
ru of weak solutions to local equations with VMO coefficients of type (1.14), which
corresponds to the W 1;p regularity theory briefly discussed in Section 1.2.

The approach can be summarized as follows. The first step is to use the assumption
that the coefficients bij are VMO in order to locally approximate the gradient of some
weak solution u of (1.14) by the gradient of a weak solution v to a suitable homogeneous
equation with constant coefficients. In order to include discontinuous coefficients of VMO
type into the analysis, one uses the fact that ru is known to satisfy an L2Cloc estimate
for some small  > 0, which can be proved in the general setting of merely bounded
measurable coefficients by means of so-called Gehring-type lemmas. One then exploits the
fact that the approximate solution v, which in the local case up to a change of coordinates
is simply a harmonic function, is already known to satisfy a local Lipschitz estimate in
order to transfer some regularity from v to u. This transfer of regularity is achieved by
covering the level sets of the Hardy–Littlewood maximal function of jruj2 of the form
¹M.jruj2/ > �2º by dyadic cubes that are chosen by means of an exit time argument and
form a so-called Calderón–Zygmund covering, essentially meaning that the cubes in the
covering have in some sense good density properties with respect to the level set that is
covered by them. Combined with the fact that ru can be approximated by the gradient
of a harmonic and therefore very regular function, these good density properties are then
exploited in order gain control of the measures of the cubes in the covering by means
of so-called good-� inequalities. By standard arguments from measure theory, this then
allows us to prove the desired higher integrability of ru, which then implies the desired
W
1;p

loc estimate.
Adapting this approach in order to prove higher Sobolev regularity for nonlocal equa-

tions of type (1.1) comes with a number of obstacles. In particular, a main challenge in
the nonlocal context is to find a suitable replacement for the gradient ru which is used
in the local context. In [34] and [36], the above approach was executed for weak solu-
tions u to nonlocal equations of type (1.1) with the local gradient replaced by the nonlocal
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gradient-type operator

r
su.x/ D

�Z
Rn

.u.x/ � u.y//2

jx � yjnC2s
dy

� 1
2

: (1.15)

In view of an alternative characterization of Bessel potential spaces, the obtained higher
integrability of rsu then leads to W s;p

loc regularity, which corresponds to the case of no
differentiability gain as in the setting of local equations. However, as no local higher inte-
grability estimate for small exponents is known for rsu for weak solutions u to (1.1),
the main result in [36] does not include the case of VMO coefficients. In addition, while
this result corresponds to the W 1;p

loc estimate obtained in the setting of local equations,
considering the gradient-type operator (1.15) does not lead to any higher differentiability.

In order to also gain higher differentiability and include the case of VMO coefficients,
we instead use another nonlocal-type gradient operator which is inspired by [28]. Fix
some � 2 .0; 1

2
/. We define a Borel measure � on R2n as follows. For any measurable set

E � R2n, set

�.E/ WD

Z
E

dx dy

jx � yjn�2�
: (1.16)

Moreover, for any function uWRn ! R and .x; y/ 2 R2n with x ¤ y, we define the
function

U.x; y/ WD
ju.x/ � u.y/j

jx � yjsC�
: (1.17)

For any domain � � Rn, we then clearly have u 2 W s;2.�/ if and only if u 2 L2.�/
and U 2 L2.� ��;�/, so that U and � are in some sense in duality. Regarding larger
exponents, by a simple computation for any p > 2 and s� WD s C �.1 � 2

p
/ > s, we have

u 2 W s� ;p.�/ if and only if u 2 Lp.�/ and U 2 Lp.� ��;�/: (1.18)

Therefore, in contrast to the gradient-type operator rs , by proving higher integrability of
the gradient-type function U with respect to the measure �, we do not only gain regularity
along the integrability scale of fractional Sobolev spaces, but also a substantial amount of
higher differentiability! However, proving this higher integrability ofU in the case whenA
is merely VMO in� comes with a number of additional difficulties. In order to accomplish
this, we combine nonlocal adaptations of the approximation and covering techniques from
[8] with adaptations of some further covering and combinatorial techniques from [28].

First of all, in order to include equations with VMO coefficients, we need a local
higher integrability result for U for small exponents, which is proved in [28] for � > 0

small enough, which is sufficient for our purposes.
Furthermore, in contrast to the functions ru and rsu which are defined on Rn, the

function U is defined on R2n. In particular, the level sets of the maximal function with
respect to � of U 2, that is, the sets of the form ¹M.U 2/ > �2º, are subsets of R2n instead
of Rn. Therefore, in this setting we need to run an exit time argument in R2n instead of Rn

in order to cover the level set of U by Calderón–Zygmund cubes in R2n. In other words,
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every dyadic cube K in the corresponding Calderón–Zygmund covering is of the form
K D K1 � K2, where K1 and K2 are dyadic cubes in Rn. A major technical issue that
arises at this point is that for cubes K DK1 �K2 that are far away from the diagonal in the
sense that dist.K1; K2/ is large, the information that u solves a nonlocal equation of type
(1.1) cannot be used effectively. For this reason, we additionally construct an auxiliary
diagonal cover consisting of diagonal balls B D B � B that once again have nice density
properties with respect to the level set ¹M.U 2/ > �2º. Since close to the diagonal the
information given by the equation can be used much more efficiently, we construct this
auxiliary cover in such a way that the exit time at which the balls are chosen is somewhat
smaller than the corresponding exit time at which the corresponding Calderón–Zygmund
cubes are chosen, so that the balls in the auxiliary cover tend to be somewhat larger than
the corresponding Calderón–Zygmund cubes. All in all, roughly speaking we have

¹M.U 2/ > �2º �
[

B [
[

K;

where the balls B are diagonal balls with good density properties and the cubes K are
Calderón–Zygmund cubes that are far away from the diagonal.

The measures of the balls in the auxiliary diagonal cover can then be estimated by
approximating U by a corresponding function V in small enough balls, which is given as
in (1.17) with u replaced by a weak solution v of a corresponding equation of the form
Lˆ
QA
v D 0, where the coefficient A is locally replaced by a suitable constant, while the

global behavior ofA has to be left unchanged, since our assumption thatA is VMO is local
in nature. This leads to the issue that proving a strong enough estimate for v, enabling us
to transfer enough regularity to u, is much more difficult than in the setting of linear local
equations, where as mentioned, the approximate solution is effectively simply a harmonic
function. Nevertheless, in [35] it is proved that such weak solutions v toLˆ

QA
v D 0 satisfy a

C sC�loc estimate in the restricted range 0 < � <min¹s; 1� sº. This Hölder estimate directly
implies that V satisfies anL1loc estimate, which is sufficient in order to control the measures
of the balls in the auxiliary diagonal cover.

As already indicated, the task of controlling the measures of the off-diagonal
Calderón–Zygmund cubes requires additional ideas, since far from the diagonal the infor-
mation provided by the equation is only of very limited use. In order to bypass this
problem in the context of proving higher integrability and differentiability of u for small
exponents, in [28, Lemma 5.3] it was noted that on cubes that are far away from the
diagonal, L2-reverse Hölder-type inequalities hold for U without relying on the equation.
Since we want to prove higher integrability for large exponents as well, we overcome
this problem by noticing that such reverse Hölder-type inequalities for off-diagonal cubes
also hold for larger exponents. However, as in [28, Lemma 5.3], these reverse Hölder-type
inequalities come with additional diagonal correction terms involving diagonal cubes that
do not belong to the original Calderón–Zygmund covering, leading to serious difficul-
ties. These difficulties are bypassed by an involved combinatorial argument inspired by
a corresponding one in [28], enabling us to also control the measures of the off-diagonal
Calderón–Zygmund cubes.
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By combining the estimates for the measures of the diagonal balls and off-diagonal
cubes, we are then able to estimate the measure of the level set ¹M.U 2/ > �2º for � large
enough, which by a standard application of Fubini’s theorem and standard properties of
the Hardy–Littlewood maximal function implies the desired Lploc estimate for U in the
form of an a priori estimate, which is then used in order to prove the desired regularity by
standard smoothing techniques based on mollifiers.

1.6. Outline of the paper

The paper is organized as follows. In Section 2 we formally introduce the fractional
Sobolev spaces W s;p and mention some important results concerning these spaces.

In Section 3.1 we turn to discussing some simple properties of the measure � intro-
duced in the previous Section 1.5, while in Section 3.2 we define the Hardy–Littlewood
maximal function with respect to the measure � and mention some important properties
of it.

In Section 4 we then discuss some preliminary estimates for nonlocal equations which
are essentially known. More precisely, in Section 4.1 we briefly recall the mentioned
higher Hölder regularity result from [35], while in Section 4.2 we recall the mentioned
Sobolev regularity result for small exponents contained in [28]. In Section 4.3 we then
state a result about H 2s;p estimates for the homogeneous Dirichlet problem involving the
fractional Poisson-type equation .��/sg D f , where .��/s is the fractional Laplacian.
This estimate allows us to focus on proving regularity for nonlocal equations of the type
LˆAu D .��/

sg instead of (1.1), since once we are able to transfer a sufficient amount of
regularity from g to u, Theorem 1.1 follows by first transferring the regularity from f to
some solution g of .��/sg D f and then from g to weak solutions u of (1.1).

The rest of the paper is then devoted to the proof of our main results. Namely, in
Section 5 we prove a comparison estimate enabling us to carry out the approximation
argument and also the smoothing procedure mentioned in Section 1.5. Section 6 is devoted
to proving good-� inequalities, both at the diagonal and far away from the diagonal. In
Section 7 we then set up the mentioned covering argument and use the good-� inequalities
from Section 6 in order to estimate the measure of the level sets of M.U 2/. In Section 8,
this level set estimate is then used in order to prove the desired regularity in the form of
an a priori estimate. Finally, in Section 9 we then use smoothing techniques in order to
deduce our main results from the a priori estimates obtained in Section 8.

1.7. Some definitions and notation

For convenience, let us fix some notation which we use throughout the paper. By C , c and
Ci , ci , i 2 N0, we always denote positive constants, while dependences on parameters of
the constants will be shown in parentheses. As usual, by

Br .x0/ WD
®
x 2 Rn

ˇ̌
jx � x0j < r

¯
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we denote the open euclidean ball with center x0 2 Rn and radius r > 0. We also set
Br WD Br .0/. In addition, by

Qr .x0/ WD
®
x 2 Rn

ˇ̌
jx � x0j1 < r=2

¯
we denote the open cube with center x0 2 Rn and sidelength r > 0. Moreover, if E � Rn

is measurable, then by jEj we denote the n-dimensional Lebesgue measure of E. If 0 <
jEj <1, then for any u 2 L1.E/ we define

NuE WD

«
E

u.x/ dx WD
1

jEj

Z
E

u.x/ dx:

Throughout this paper, we often consider integrals and functions on R2n D Rn � Rn.
Instead of dealing with the usual euclidean balls in R2n, for this purpose it is more conve-
nient for us to use the balls generated by the norm

k.x0; y0/k WD max¹jx0j; jy0jº; .x0; y0/ 2 R2n:

These balls with center .x0; y0/ 2 R2n and radius r > 0 are denoted by Br .x0; y0/ and
are of the form

Br .x0; y0/ WD Br .x0/ � Br .y0/:

In the case when x0 D y0 we also write Br .x0/ WD Br .x0; x0/, and we call such balls
diagonal balls. We also set Br WD Br .0/. Similarly, for x0; y0 2 Rn and r > 0 we define
Qr .x0; y0/ WD Qr .x0/ �Qr .y0/ and Qr .x0/ WD Qr .x0; x0/ and also Qr WD Qr .0/.

2. Fractional Sobolev spaces

Definition. Let��Rn be a domain. For p 2 Œ1;1/ and s 2 .0;1/we define the fractional
Sobolev space

W s;p.�/ WD
®
u 2 Lp.�/

ˇ̌ R
�

R
�
ju.x/�u.y/jp

jx�yjnCsp
dy dx <1

¯
with norm

kukW s;p.�/ WD .kuk
p

Lp.�/
C Œu�

p

W s;p.�/
/1=p;

where

Œu�W s;p.�/ WD

�Z
�

Z
�

ju.x/ � u.y/jp

jx � yjnCsp
dy dx

�1=p
:

Moreover, we define the corresponding local fractional Sobolev spaces by

W
s;p

loc .�/ WD
®
u 2 L

p
loc.�/

ˇ̌
u 2 W s;p.�0/ for any domain �0 b �

¯
:

Also, we define the space

W
s;p
0 .�/ WD

®
u 2 W s;2.Rn/

ˇ̌
u D 0 in Rn n�

¯
:
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We use the following fractional Poincaré inequality; see [33, Section 4].

Lemma 2.1 (Fractional Poincaré inequality). Let s 2 .0; 1/, p 2 Œ1;1/, r > 0 and x0 2
Rn. For any u 2 W s;p.Br .x0// we haveZ

Br .x0/

ju.x/ � NuBr .x0/j
p dx � Crsp

Z
Br .x0/

Z
Br .x0/

ju.x/ � u.y/jp

jx � yjnCsp
dy dx;

where C D C.s; p/ > 0.

We also use another Poncaré-type inequality; see [35, Lemma 2.3].

Lemma 2.2 (Fractional Friedrichs–Poincaré inequality). Let s 2 .0; 1/ and consider a
bounded domain � � Rn. For any u 2 W s;2

0 .�/ we haveZ
Rn

ju.x/j2 dx � C j�j
2s
n

Z
Rn

Z
Rn

ju.x/ � u.y/j2

jx � yjnC2s
dy dx; (2.1)

where C D C.n; s/ > 0.

For the following embedding results we refer to [16, Theorems 6.7, 6.10, 8.2].

Proposition 2.3. Let � � Rn be a Lipschitz domain, s 2 .0; 1/ and p 2 Œ1;1/:

• If sp < n, then we have the continuous embedding

W s;p.�/ ,! L
np
n�sp .�/:

• If sp D n, then for any q 2 Œ1;1/ we have the continuous embedding

W s;p.�/ ,! Lq.�/:

• If sp > n, then we have the continuous embedding

W s;p.�/ ,! C
s� np .�/:

By combining Proposition 2.3 with Lemma 2.1 and a scaling argument, it is easy to
deduce the following result.

Lemma 2.4 (Fractional Sobolev–Poincaré inequality). Let s 2 .0; 1/, p 2 Œ1;1/, r > 0
and x0 2 Rn. In addition, let

q 2

8<:
h
1;

np

n � sp

i
if sp < n;

Œ1;1/ if sp � n:

Then for any u 2 W s;p.Br .x0// we have�«
Br .x0/

ju.x/ � NuBr .x0/j
q dx

� 1
q

� Crs
�«

Br .x0/

Z
Br .x0/

ju.x/ � u.y/jp

jx � yjnCsp
dy dx

� 1
p

;

where C D C.n; s; p; q/ > 0.
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For p 2 .1;1/ and s 2 .0; 2/, denote byH s;p.�/ the standard Bessel potential spaces
on�; see e.g. [34, Section 3]. The following embedding result follows from [43, Theorem
2.5], where it is given in the more general context of Besov and Triebel–Lizorkin spaces

Proposition 2.5. Let 1 < p0 < p < p1 <1, s 2 .0; 2/, s0; s1 2 .0; 1/ and assume that
� � Rn is a smooth domain. If s0 � n

p0
D s � n

p
D s1 �

n
p1
; then

W s0;p0.�/ ,! H s;p.�/ ,! W s1;p1.�/:

Unlike the classical Sobolev spaces W 1;p.�/ on a bounded domain � � Rn, the
fractional Sobolev spaces W s;p.�/ are not contained in each other as the integrability
exponent p decreases. Nevertheless, we have the following result, essentially stating that
the mentioned inclusions are almost true.

Proposition 2.6. Let 1 < p0 � p <1, s 2 .0; 1/ and assume that � � Rn is a smooth
bounded domain. Then for any 0 < " < min¹1 � s; 2n

p
; 2n.1 � 1

p0
/º we have

W sC";p.�/ ,! W s;p0.�/:

Proof. By Proposition 2.5, we have W sC";p.�/ ,! H sC"=2; Qp.�/, where Qp WD np
n�"p=2

.
Now since for Op0 WD np0

nC"p0=2
we have 1 < Op0 < p0 � p < Qp, by [43, Theorem 2.85(ii)]

we have H sC"=2; Qp.�/ ,! H sC"=2; Op0.�/. Since in addition by Proposition 2.5 we have
H sC"=2; Op0.�/ ,! W s;p0.�/, the proof is finished by combining the above three embed-
dings.

3. The measure �

3.1. Basic properties of �

For the rest of this paper, we fix some s 2 .0; 1/ along with some parameter � in the range

0 < � < min¹s; 1 � sº (3.1)

and let the measure � be defined by (1.16). Moreover, for any function uWRn ! R, let
the function U be given by (1.17). The following relation can be deduced by a simple
computation.

Lemma 3.1. Let p � 2 and set s� WD s C �.1 � 2
p
/. Then we have

u 2 W s� ;p.�/ if and only if u 2 Lp.�/ and U 2 Lp.� ��;�/

and
kU kLp.���;d�/ D Œu�W s� ;p.�/:

The next proposition contains some further important properties of the measure �
which are straightforward to deduce by applying changes of variables. We will use these
properties frequently throughout the paper, usually without explicit reference.
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Proposition 3.2. (i) For all r > 0 and x0 2 Rn, we have

�.Br .x0// D �.Br / D cr
nC2� ;

where c D c.n; �/ > 0.

(ii) (Volume doubling property). For any .x0; y0/ 2R2n, any r > 0 and anyM > 0,
we have

�.BMr .x0; y0// DM
nC2��.Br .x0; y0//:

3.2. The Hardy–Littlewood maximal function

Another tool we use is the Hardy–Littlewood maximal function with respect to the mea-
sure �.

Definition. Let F 2 L1loc.R
2n; �/. We define the Hardy–Littlewood maximal function

MF WR2n ! Œ0;1� of F by

M.F /.x; y/ WD sup
�>0

«
B�.x;y/

jF j d�;

where «
B�.x;y/

jF j d� WD
1

�.B�.x; y//

Z
B�.x;y/

jF j d�:

Moreover, for any open set E � R2n, we define

ME .F / WDM.F�E /;

where �E is the characteristic function of E. In addition, for any r > 0 we define

M�r .F /.x; y/ WD sup
��r

«
B�.x;y/

jF j d�; M�r;E .F / WDM�r .F�E /:

The following result shows that the Hardy–Littlewood maximal function behaves
nicely in the context of Lp spaces. Since by Proposition 3.2, � is a doubling measure
with doubling constant 2nC2� , the result follows directly from [42, Chapter 1, Section 3,
Theorem 1].

Proposition 3.3. Let E be an open subset of R2n:

(i) (Weak p–p estimates). If F 2 Lp.E; �/ for some p � 1 and � > 0, then

�
�®
x 2 E

ˇ̌
ME .F /.x/ > �

¯�
�
C

�p

Z
E

jF jp d�;

where C depends only on n; � and p.

(ii) (Strong p–p estimates). If F 2 Lp.E; �/ for some p 2 .1;1�, then

kME .F /kLp.E;d�/ � CkF kLp.E;d�/;

where C depends only on n, � and p.
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For the following result we also refer to [42, Chapter 1, Section 3].

Proposition 3.4 (Lebesgue differentiation theorem). If F 2 L1loc.R
2n;�/, then for almost

every .x; y/ 2 R2n, we have

lim
r!0

«
Br .x;y/

F d� D F.x; y/:

An immediate corollary of the Lebesgue differentiation theorem is given as follows.

Corollary 3.5. Let F 2 L1loc.R
2n; �/. Then for almost every .x; y/ 2 R2n we have

jF.x; y/j �M.F /.x; y/:

In addition, for any open set E � R2n and any p 2 Œ1;1� we have

kF kLp.E;d�/ � kME .F /kLp.E;d�/:

4. Some preliminary estimates

4.1. Higher Hölder regularity

The following result on higher Hölder regularity plays an essential role in our approach
and follows from [35, Theorem 1.1].

Theorem 4.1. Let � � Rn be a domain and let f 2 L1loc.�/. Consider a coefficient
A 2 L0.ƒ/ that is continuous in � �� and suppose that ˆ satisfies (1.5) and (1.6) with
respect to ƒ. Moreover, assume that u 2 W s;2.Rn/ is a weak solution of the equation
LˆAuD f in�. Then for any 0 < ˛ < min¹2s; 1º, we have u 2 C ˛loc.�/. Furthermore, for
all R > 0, x0 2 Rn such that BR.x0/ b � and any � 2 .0; 1/, we have

Œu�C˛.B�R.x0// �
C

R˛

�
R�

n
2 kukL2.BR.x0// CR

2s

Z
RnnBR.x0/

ju.y/j

jx0 � yjnC2s
dy

CR2skf kL1.BR.x0//

�
;

where C D C.n; s;ƒ; ˛; �/ > 0 and

Œu�C˛.B�R.x0// WD sup
x;y2B�R.x0/

x¤y

ju.x/ � u.y/j

jx � yj˛
:

Remark 4.2. In [35], Theorem 4.1 is proved in the more general context of so-called
local weak solutions; see [35, Section 1.1] for a precise definition. From [36, Lemma 3.5]
it follows that any local weak solution is a weak solution in our sense, so that Theorem 4.1
indeed follows from [35, Theorem 1.1]. Moreover, it is immediate from the definition of
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local weak solutions in [35, Section 1.1] that for any local weak solution u of the equation
LˆAu D 0 in � and any constant c 2 R, u � c is also a local weak solution of the same
equation. Therefore, in the setting of Theorem 4.1 for any weak solution u 2 W s;2.Rn/
of LˆAu D 0 in � and any c 2 R, we have the estimate

Œu�C˛.B�R.x0// �
C

R˛

�
R�

n
2 ku � ckL2.BR.x0// CR

2s

Z
RnnBR.x0/

ju.y/ � cj

jx0 � yjnC2s
dy

�
;

where C D C.n; s;ƒ; ˛; �/ > 0.

4.2. Higher integrability of U for small exponents

For technical reasons, we also study equations with a more general right-hand side than in
(1.1).

Definition. Let 2? WD 2n
nC2s

. Given f 2 L2?.�/ and g 2 W s;2.Rn/, we say that u 2
W s;2.Rn/ is a weak solution of the equation LˆAu D .��/

sg C f in � ifZ
Rn

Z
Rn

A.x; y/

jx � yjnC2s
ˆ.u.x/ � u.y//.'.x/ � '.y// dy dx

D Cn;s

Z
Rn

Z
Rn

g.x/ � g.y/

jx � yjnC2s
.'.x/ � '.y// dy dx C

Z
�

f ' dx 8' 2 W
s;2
0 .�/:

Here .��/sg is the fractional Laplacian of g (see Section 4.3) and Cn;s is a constant
depending on n and s whose exact value is not important for our purposes.

Throughout this work, whenever we deal with functions u and g as in the above defi-
nition, for .x; y/ 2 R2n with x ¤ y we define the functions

U.x; y/ WD
ju.x/ � u.y/j

jx � yjsC�
; G.x; y/ WD

jg.x/ � g.y/j

jx � yjsC�
:

The following higher integrability result is essentially given by [28, Theorem 6.1], where
it is stated under the stronger assumptions that the equation holds on the whole space Rn

and that g is higher differentiable and integrable in the whole Rn. Nevertheless, in [28] the
equation in only used to prove the Caccioppoli-type inequality [28, Theorem 3.1], where
the equation is tested with test functions that are supported in the ball where the estimate
is proved. Therefore, it is enough to assume that the equation holds locally. Moreover, as
indicated by the estimate below, in comparison with [28] it is also sufficient to prescribe
the higher differentiability and integrability on g locally.

Theorem 4.3. Let r > 0, x0 2Rn and �0 >0. Moreover, consider a coefficientA2L0.ƒ/

and assume that the Borel function ˆWR! R satisfies

jˆ.t/j � ƒt; ˆ.t/t � ƒ�1t2 8t 2 R: (4.1)

In addition, assume that u2W s;2.Rn/ is a weak solution of the equationLˆAuD.��/
sgC

f inB2r .x0/. Then there exist small enough positive constants  D .n; s;ƒ;�0/ 2 .0; s2 /
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and � D �.n; s;ƒ; �0/ 2 .0; �0/ such that if f 2 L2?C�0.B2r .x0// and g 2 W s;2.Rn/\
W s ;2C�0.B2r .x0// for s WD s C .1 � 2

2C�0
/, then�«

Br .x0/

U 2C� d�

� 1
2C�

� C

1X
kD1

2�k.s�/
�«

B
2kr
.x0/

U 2 d�

� 1
2

C C

�«
B2r .x0/

G2C�0 d�

� 1
2C�0

C C

1X
kD1

2�k.s�/
�«

B
2kr
.x0/

G2 d�

� 1
2

C Crs�
�«

B2r .x0/

F 2?C�0 d�

� 1
2?C�0

;

where C D C.n; s;ƒ; �0/ > 0. Here we denote

U .x; y/ WD
ju.x/ � u.y/j

jx � yjsC
; G .x; y/ WD

jg.x/ � g.y/j

jx � yjsC
; F .x; y/ WD f .x/;

while the measure � is defined on measurable sets E � R2n by

� .E/ WD

Z
E

dx dy

jx � yjn�2
:

We note that the assumptions in (4.1) are clearly implied by the assumptionsˆ.0/D 0,
(1.5) and (1.6) which are used in our main results. Since working with the measure �
and the functions U and G is inconvenient for us, we note that the right-hand side of
the estimate from Theorem 4.3 can be rewritten in terms of the measure � and the func-
tions U and G. More precisely, by using the relevant definitions and taking into account
Lemma 3.1, it is straightforward to deduce from Theorem 4.3 the following version of the
estimate in Theorem 4.3 for a different C as in Theorem 4.3 depending only on n, s, ƒ,
� ,  and �0:�«

Br .x0/

U 2C� d�

� 1
2C�

� Cr��
� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2

C

�«
B2r .x0/

G2C�0 d�

� 1
2C�0

C

1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�

C Crs�
�«

B2r .x0/

f 2?C�0 dx

� 1
2?C�0

: (4.2)



Regularity theory for nonlocal equations with VMO coefficients 79

4.3. H 2s;p estimates for the fractional Laplacian

For any regular enough function uWRn ! R and s 2 .0; 1/, the fractional Laplacian of u
is formally defined by

.��/su.x/ D Cn;s p:v:
Z

Rn

u.x/ � u.y/

jx � yjnC2s
dy;

where, as in Section 4.2, Cn;s is a certain constant depending on n and s. In other words,
.��/s corresponds to the operator LˆA in the special case when ˆ.t/ D t and A D Cn;s .

The following local regularity result for weak solutions of the Dirichlet problem asso-
ciated to the fractional Laplacian is essentially proved in [3]; see also [25]. The main idea
is to multiply the solution by an appropriate cutoff function in order to reduce the prob-
lem to a corresponding one which is posed on the whole space Rn, for which the desired
estimate can be inferred by classical techniques from Fourier analysis; see [25, Lemma
3.5]. We note that while in [3] estimate (4.4) is not explicitly stated, it can be deduced by
keeping track of the estimates in the proofs in [3]. Also, for a formal definition of weak
solutions to nonlocal Dirichlet problems as considered below, we refer to [36, Section 4].

Theorem 4.4. Let � � Rn be a bounded domain, s 2 .0; 1/ and p 2 . 2n
nC2s

;1/. If f 2
Lp.�/ \ L2.�/, then the unique weak solution u 2 W s;2.Rn/ of the Dirichlet problem´

.��/su D f in �;

u D 0 a.e. in Rn n�;
(4.3)

belongs to H 2s;p
loc .�/. Moreover, for any open set �0 b �, we have the estimate

kukH2s;p.�0/ � Ckf kLp.�/; (4.4)

where C D C.n; s; p;�0; �/ > 0.

Also, for some more local and global regularity results for the fractional Laplacian,
we refer to [22, 37].

5. Comparison estimates

The following lemma relates the nonlocal tail of a function u to the corresponding function
U .

Lemma 5.1. Let R > 0 and x0 2 Rn. For any function u 2 W s;2.Rn/ we haveZ
RnnBR.x0/

ju.y/ � NuBR.x0/j

jx0 � yjnC2s
dy � CR�sC�

1X
kD1

2�k.s��/
�«

B
2kR

.x0/

U 2 d�

� 1
2

; (5.1)

where C D C.n; s; �/ > 0.
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Proof. First of all, splitting the integral on the left-hand side into annuli yieldsZ
RnnBR.x0/

ju.y/ � NuBR.x0/j

jx0 � yjnC2s
dy D

1X
jD0

Z
B
2jC1R

.x0/nB2j R.x0/

ju.y/ � NuBR.x0/j

jx0 � yjnC2s
dy

�

1X
jD0

.2jR/�n�2s
Z
B
2jC1R

.x0/

ju.y/ � NuBR.x0/j dy

D C1

1X
jD0

.2jR/�2s
«
B
2jC1R

.x0/

ju.y/ � NuBR.x0/j dy;

where C1 D C1.n/. Using the Cauchy–Schwarz inequality, we deduce«
B
2jC1R

.x0/

ju.y/ � NuBR.x0/j dy

�

«
B
2jC1R

.x0/

ju.y/ � NuB
2jC1R

.x0/j dy C

jX
kD0

j NuB
2kC1R

.x0/ � NuB2kR.x0/
j

�

«
B
2jC1R

.x0/

ju.y/ � NuB
2jC1R

.x0/j dy C 2
n

jX
kD0

«
B
2kC1R

.x0/

ju.y/ � NuB
2kC1R

.x0/j dy

� 2nC1
jC1X
kD1

«
B
2kR

.x0/

ju.y/ � NuB
2kR

.x0/j dy

� 2nC1
jC1X
kD1

�«
B
2kR

.x0/

ju.y/ � NuB
2kR

.x0/j
2 dy

� 1
2

:

In order to further estimate the right-hand side of the previous computation, we use the
fractional Poincaré inequality (Lemma 2.1) in order to obtain«
B
2kR

.x0/

ju.y/ � NuB
2kR

.x0/j
2 dx � C2.2

kR/2s
Z
B
2kR

.x0/

«
B
2kR

.x0/

ju.x/ � u.y/j2

jx � yjnC2s
dy dx

D C3.2
kR/2.sC�/

«
B
2kR

.x0/

U 2 d�;

where C2 and C3 depend only on n, s and � . Combining the previous two calculations
leads to«

B
2jC1R

.x0/

ju.y/ � NuBR.x0/j dy � C4

jC1X
kD1

.2kR/.sC�/
�«

B
2kR

.x0/

U 2 d�

� 1
2

;
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where C4 D C4.n; s; �/ > 0. Next, combining the previous estimate with the first display
in this proof yieldsZ

RnnBR.x0/

ju.y/ � NuBR.x0/j

jx0 � yjnC2s
dy

� C1C4R
�sC�

1X
jD0

jC1X
kD1

2�2sj 2k.sC�/
�«

B
2kR

.x0/

U 2 d�

� 1
2

: (5.2)

By reversing the order of summation, we obtain

1X
jD0

jC1X
kD1

2�2sj 2k.sC�/
�«

B
2kR

.x0/

U 2 d�

� 1
2

D

1X
kD1

2k.sC�/
�«

B
2kR

.x0/

U 2 d�

� 1
2
1X

jDk�1

2�2sj

� 42s
1X
kD1

2�k.s��/
�«

B
2kR

.x0/

U 2 d�

� 1
2
1X
jD1

2�2sj :

Since the sum
P1
jD1 2

�2sj is finite, we conclude that

1X
jD0

jC1X
kD1

2�2sj 2k.sC�/
�«

B
2kR

.x0/

U 2 d�

� 1
2

� C5

1X
kD1

2�k.s��/
�«

B
2kR

.x0/

U 2 d�

� 1
2

;

where C5 D C5.s/ > 0. Finally, by combining the last display with (5.2), we arrive at
(5.1).

A crucial tool for the proof of the higher integrability of U is given by the following
comparison estimate. Essentially, it will allow us to transfer some regularity from the
solution of a more well-behaved equation to the solution of the original equation.

Proposition 5.2. Let x0 2 Rn, r > 0, g 2 W s;2.Rn/ \ W s� ;2C�0.B2r .x0//, f 2
L2?C�0.B2r .x0//, Qf 2 L2?.B2r .x0// and A 2 L0.ƒ/. In addition, assume that ˆ sat-
isfies conditions (1.5) and (1.6). Moreover, let u 2 W s;2.Rn/ be a weak solution of the
equation

LˆAu D .��/
sg C f in B2r .x0/; (5.3)

and let v 2 W s;2.Rn/ be the unique weak solution of the Dirichlet problem´
Lˆ
QA
v D Qf in B2r .x0/;

v D u a.e. in Rn n B2r .x0/;
(5.4)
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where QA is another coefficient of class L0.ƒ/ such that QAD A in R2n nBr .x0/. Then the
function w WD u � v 2 W s;2

0 .B2r .x0// satisfiesZ
Rn

Z
Rn

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� C!.A � QA; r; x0/

n� �.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2
�2

C C!.A � QA; r; x0/

n� �.Br .x0//

�«
B2r .x0/

G2C�0 d�

� 2
2C�0

C C.!.A � QA; r; x0/

n� C 1/�.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�2

C C!.A � QA; r; x0/

n� r2.s��/�.Br .x0//

�«
B2r .x0/

jf j2?C�0 dx

� 2
2?C�0

C Cr2.s��/�.Br .x0//

�«
B2r .x0/

jf � Qf j2? dx

� 2
2?

;

where C D C.n; s; �;ƒ; �0/ > 0 and

!.A � QA; r; x0/ WD

«
Br .x0/

«
Br .x0/

jA.x; y/ � QA.x; y/j dy dx:

Proof. First of all, note that the function v that uniquely solves (5.4) exists by [36, Propo-
sition 4.1]. Using w as a test function in (5.4) and also in (5.3), using (1.6) and taking into
account that A.x; y/ D QA.x; y/ whenever .x; y/ … Br .x0/, we obtainZ

Rn

Z
Rn

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� ƒ

Z
Rn

Z
Rn

QA.x; y/

�
.u.x/ � u.y// � .v.x/ � v.y//

�2
jx � yjnC2s

dy dx

� ƒ2
�Z

Rn

Z
Rn

QA.x; y/
ˆ.u.x/ � u.y//.w.x/ � w.y//

jx � yjnC2s
dy dx

�

Z
Rn

Z
Rn

QA.x; y/
ˆ.v.x/ � v.y//.w.x/ � w.y//

jx � yjnC2s
dy dx

�
D ƒ2

�Z
Rn

Z
Rn

. QA.x; y/ � A.x; y//
ˆ.u.x/ � u.y//.w.x/ � w.y//

jx � yjnC2s
dy dx

C

Z
Rn

Z
Rn

A.x; y/
ˆ.u.x/ � u.y//.w.x/ � w.y//

jx � yjnC2s
dy dx

�

Z
B2r .x0/

Qf .x/w.x/ dx

�
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D ƒ2
�Z

Br .x0/

Z
Br .x0/

. QA.x; y/ � A.x; y//
ˆ.u.x/ � u.y//.w.x/ � w.y//

jx � yjnC2s
dy dx„ ƒ‚ …

DWI1

C Cn;s

Z
Rn

Z
Rn

.g.x/ � g.y//.w.x/ � w.y//

jx � yjnC2s
dy dx„ ƒ‚ …

WDI2

C

Z
B2r .x0/

.f .x/ � Qf .x//w.x/ dx„ ƒ‚ …
WDI3

�
:

Let � D �.n; s; ƒ; �0/ > 0 and  D .n; s; ƒ; �0/ > 0 be given by Theorem 4.3. By
using (1.5), the Cauchy–Schwarz inequality and then Hölder’s inequality with conjugated
exponents 2C�

�
and 2C�

2
, we estimate I1 as

I1 � ƒ

�Z
Br .x0/

. QA.x; y/ � A.x; y//2U 2 .x; y/ d�

� 1
2

�

�Z
Br .x0/

Z
Br .x0/

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� 1
2

� C1

��Z
Br .x0/

j QA.x; y/ � A.x; y/j
4
�C2 d�

� �
2C�
�«

Br .x0/

U 2C� d�

� 2
2C�

r
2nC4
2C�

� 1
2

�

�Z
Rn

Z
Rn

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� 1
2

;

where C1 D C1.n;ƒ; �; / > 0. By using Hölder’s inequality with conjugated exponents
n�
n�2

and n�


, we obtainZ
Br .x0/

j QA.x; y/ � A.x; y/j
4
�C2 d�

�

�Z
Br .x0/

Z
Br .x0/

j QA.x; y/ � A.x; y/j
. 4�C2/.

n�
 /
dy dx

� 
n�

�

�Z
Br .x0/

Z
Br .x0/

dy dx

jx � yjn�

� n�2
n�

� .2ƒ/
4
�C2

�«
Br .x0/

«
Br .x0/

j QA.x; y/ � A.x; y/j dy dx

� 
n�

� C2r
2n


n� �=2.Br .x0//

n�2
n�

� C3!.A � QA; r; x0/

n� r

2n
n�C.nC/

n�2
n� ;

where C2 D C2.n; s; / > 0 and C3 D C3.n; s; ; �;ƒ/ > 0.
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By combining the last two displays with estimate (4.2) and the fact that

�

2C �

� 2n
n � 

C .nC /
n � 2

n � 

�
C
2nC 4

2C �
C 2.� � / D nC 2�;

we arrive at

I1 � C4

�
!.A � QA; r; x0/


n� �.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2
�2

C !.A � QA; r; x0/

n� �.Br .x0//

�«
B2r .x0/

G2C�0 d�

� 2
2C�0

C !.A � QA; r; x0/

n� �.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�2

C !.A � QA; r; x0/

n� r2.s��/�.Br .x0//

�«
B2r .x0/

jf j2?C�0 dx

� 2
2C�0

�
;

where C4 D C4.n; s; ; �; �; �0; ƒ/ > 0.
In order to estimate I2, we set g1 WD g � NgB2r .x0/ and split the integral as follows:

I2 �

Z
B4r .x0/

Z
B4r .x0/

jg.x/ � g.y/j jw.x/ � w.y/j

jx � yjnC2s
dy dx

C 2

Z
B2r .x0/

Z
RnnB4r .x0/

jg1.x/ � g1.y/j jw.x/j

jx � yjnC2s
dy dx

�

Z
B4r .x0/

Z
B4r .x0/

jg.x/ � g.y/j jw.x/ � w.y/j

jx � yjnC2s
dy dx„ ƒ‚ …

DWI2;1

C 2

Z
B2r .x0/

Z
RnnB4r .x0/

jg1.x/j jw.x/j

jx � yjnC2s
dy dx„ ƒ‚ …

DWI2;2

C 2

Z
B2r .x0/

Z
RnnB4r .x0/

jg1.y/j jw.x/j

jx � yjnC2s
dy dx„ ƒ‚ …

DWI2;3

:

By using the Cauchy–Schwarz inequality, we estimate I2;1 as

I2;1 � C5�.Br .x0//
1
2

�«
B4r .x0/

G2 d�

� 1
2
�Z

Rn

Z
Rn

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� 1
2

;

where C5 D C5.n; �/ > 0. For any x 2 B2r .x0/ and any y 2 Rn n B4r .x0/ we have

jx0 � yj � jx0 � xj C jx � yj <
� 2r

jx � yj
C 1

�
jx � yj

�

�2r
2r
C 1

�
jx � yj D 2jx � yj: (5.5)
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Moreover, in view of integration in polar coordinates we haveZ
RnnB4r .x0/

dy

jx0 � yjnC2s
D

Z
RnnB4r

dy

jyjnC2s
D
C6

r2s
; (5.6)

where C6 D C6.n; s/ > 0. Therefore, by using (5.5), (5.6), the Cauchy–Schwarz inequal-
ity, the fractional Poincaré inequality (Lemma 2.1) and the fractional Friedrichs–Poincaré
inequality (Proposition 2.2), we obtain

I2;2 � 2
nC2s

Z
B2r .x0/

Z
RnnB4r .x0/

jg1.x/j jw.x/j

jx0 � yjnC2s
dy dx

D C7r
�2s

Z
B2r .x0/

jg1.x/j jw.x/j dx

� C7r
�2s

�Z
B2r .x0/

jg1.x/j
2 dx

� 1
2
�Z

B2r .x0/

jw.x/j2 dx

� 1
2

� C8�.Br .x0//
1
2

�«
B2r .x0/

G2 d�

� 1
2
�Z

Rn

Z
Rn

jw.x/ � w.y/j2

jx � yjnC2s
dy dx

� 1
2

;

where all constants depend only on n, s, � and ƒ. Next, by (5.5), the Cauchy–Schwarz
inequality, the fractional Friedrichs–Poincaré inequality (Proposition 2.2) and Lemma 5.1,
we obtain

I2;3 � 2
nC2s

�Z
RnnB2r .x0/

jg1.y/j

jx0 � yjnC2s
dy

��Z
B2r .x0/

jw.x/j dx

�
� C9

�
r�sC�

1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�
jB2r j

1
2

�Z
B2r .x0/

jw.x/j2 dx

� 1
2

� C10�.Br .x0//
1
2

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�

�

�Z
Rn

Z
Rn

jw.x/ � w.y/j2

jx � yjnC2s
dy dx

� 1
2

;

C9 and C10 depend only on n, s and � . Next, by Hölder’s inequality and the fractional
Sobolev inequality (see [16, Theorem 6.5]), for I3 we get

I3 �

�Z
B2r .x0/

jf .x/ � Qf .x/j2? dx

� 1
2?
�Z

B2r .x0/

jw.x/j
2n
n�2s dx

� n�2s
2n

� C11

�Z
B2r .x0/

jf .x/ � Qf .x/j2? dx

� 1
2?
�Z

Rn

Z
Rn

jw.x/ � w.y/j2

jx � yjnC2s
dy dx

� 1
2

;

where C11 D C11.n; s/ > 0. Combining all the above estimates along with squaring both
sides of the resulting inequality and then dividing by

R
Rn

R
Rn
jw.x/�w.y/j2

jx�yjnC2s
dy dx on both

sides now finishes the proof.



S. Nowak 86

From now on, we fix some p 2 .2;1/, someƒ � 1 and some coefficient A 2 L0.ƒ/

that is ı-vanishing inB4n, where ı > 0 remains to be chosen small enough later. Moreover,
we fix another number q 2 Œ2; p/ and define

q? WD

8<:
nq

n � sq
if n > sq;

2p if n � sq:
(5.7)

In addition, we choose the number �0 > 0 small enough that 2C �0 <min¹.qC q?/=2;pº
and set

q0 WD max¹2C �0; qº < min¹.q C q?/=2; pº: (5.8)

Furthermore, we fix some g 2 W s;2.Rn/ and a weak solution u 2 W s;2.Rn/ of the equa-
tion

LˆAu D .��/
sg in B4n (5.9)

and set

�0 WDM0

� 1X
kD1

2�k.s��/
�«

B
2k4n

U 2 d�

� 1
2

C ı�1
1X
kD1

2�k.s��/
�«

B
2k4n

G2 d�

� 1
2

C

�«
B4n

Gq0 d�

� 1
q0
�
; (5.10)

where M0 � 1 remains to be chosen large enough.

Lemma 5.3. Let M > 0, x0 2 Bpn
2

, r 2 .0;
p
n

2
/ and � � �0. Moreover, consider the

coefficient

QA.x; y/ WD

´
NA3r;x0;x0 if .x; y/ 2 B3r .x0/;

A.x; y/ if .x; y/ … B3r .x0/:

Then for any "0 > 0, there exists some small enough ı D ı."0; n; s; �;ƒ;M/ 2 .0; 1/ such
that, under the assumptions made above along with

MB4n
.U 2/.x0/ �M�2; MB4n

.Gq0/.x0/ �M�q0ıq0 ; (5.11)

for the unique weak solution v 2 W s;2.Rn/ of the Dirichlet problem´
Lˆ
QA
v D 0 in B6r .x0/;

v D u a.e. in Rn n B6r .x0/;
(5.12)

and the function

W.x; y/ WD
ju.x/ � v.x/ � u.y/C v.y/j

jx � yjsC�
; .x; y/ 2 R2n;
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we have Z
R2n

W 2d� � "2�2�.Br .x0//: (5.13)

Moreover, the function

V.x; y/ WD
jv.x/ � v.y/j

jx � yjsC�
; .x; y/ 2 R2n

satisfies the estimate
kV kL1.B2r .x0/;d�/ � N0� (5.14)

for some constant N0 D N0.n; s; �;ƒ;M/ > 0.

Proof. Fix x0 2 Bpn
2

and r 2 .0;
p
n

2
/ and note that QA D A in R2n nB3r .x0/: Moreover,

since A is ı-vanishing in B4n, we have

!.A � QA; 3r; x0/ D

«
B3r .x0/

«
B3r .x0/

jA.x; y/ � NA3r;x0;x0 j dy dx � ı: (5.15)

First, we prove (5.13). Letm 2N be determined by 2m�1r <
p
n� 2mr ; note thatm� 2.

Then for any k < m, by (5.11) we have«
B
2k3r

.x0/

U 2 d� �M�2;«
B
2k3r

.x0/

Gq0 d� �M�q0ıq0 :

(5.16)

On the other hand, in view of (5.10) and the inclusions

B2k
p
n.x0/ � B2kCm�13r .x0/ � B2k3

p
n.x0/ � B2k4n;

we have

1X
kDm

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2

D 2�.m�1/.s��/
1X
kD1

2�k.s��/
�«

B
2kCm�13r

.x0/

U 2 d�

� 1
2

�

1X
kD1

2�k.s��/
�
�.B2k4n/

�.B2k
p
n/

«
B
2k4n

U 2 d�

� 1
2

D C1

1X
kD1

2�k.s��/
�«

B
2k4n

U 2 d�

� 1
2

� C1�0;
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where C1 D C1.n; �/ > 0. Together with (5.16) and the facts that � < s and � � �0, we
arrive at

1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2

�

m�1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2

C

1X
kDm

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2

�M
1
2�

1X
kD1

2�k.s��/ C C1�0 � C2�; (5.17)

where C2 D C2.n; s; �;M/ > 0. By similar reasoning to above, we have

1X
kDm

2�k.s��/
�«

B
2k3r

.x0/

G2 d�

� 1
2

� C1

1X
kD1

2�k.s��/
�«

B
2k4n

G2 d�

� 1
2

� C1�0ı

and therefore along with Hölder’s inequality,

1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

G2 d�

� 1
2

�

m�1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

Gq0 d�

� 1
q0

C

1X
kDm

2�k.s��/
�«

B
2k3r

.x0/

G2 d�

� 1
2

�M
1
q0 �ı

1X
kD1

2�k.s��/ C C1�0ı � C2�ı: (5.18)

By combining (5.15), (5.16), (5.17) and (5.18) with Proposition 5.2, the fact that 2C �0 �
q0 and Hölder’s inequality, we obtainZ

R2n

W 2d� D

Z
Rn

Z
Rn

.w.x/ � w.y//2

jx � yjnC2s
dy dx

� C3!.A � QA; 3r; x0/

n� �.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2
�2

C C3!.A � QA; 3r; x0/

n� �.Br .x0//

�«
B6r .x0/

Gq0 d�

� 2
q0

C C3.!.A � QA; 3r; x0/

n� C 1/�.Br .x0//

� 1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

G2 d�

� 1
2
�2

� C4�.Br .x0//�
2ı

2
n� < "2�2�.Br .x0//;

where C4 D C4.n; s; �; ƒ;M/ > 0 and the last inequality was obtained by choosing ı
sufficiently small. This proves (5.13).



Regularity theory for nonlocal equations with VMO coefficients 89

Let us now prove estimate (5.14). Since QA is constant and therefore continuous in
B3r .x0/, by Theorem 4.1 and Remark 4.2 with ˛ D s C � 2 .0;min¹2s; 1º/ and c D
NvB3r .x0/, we have

kV k2L1.B2r .x0/;d�/

� Œv�2C˛.B2r .x0//

�
C5

r2.sC�/

�
r�nkv1k

2
L2.B3r .x0//

C

�
r2s

Z
RnnB3r .x0/

jv1.y/j

jx0 � yjnC2s
dy

�2�
�

C6

r2.sC�/

�
r2s�nŒv�2

W s;2.B3r .x0//
C

�
r2s

Z
RnnB3r .x0/

jv1.y/j

jx0 � yjnC2s
dy

�2�
;

where v1 WD v � NvB3r .x0/ and C5 and C6 depend only on n, s and ƒ. Here we also used
Lemma 2.1 in order to obtain the last inequality. By using (5.16) and (5.13), we further
estimate the first term on the right-hand side as

r2s�nŒv�2
W s;2.B3r .x0//

� 2r2s�n
�Z

B3r .x0/

Z
B3r .x0/

ju.x/ � u.y/j2

jx � yjnC2s
dy dx

C

Z
B3r .x0/

Z
B3r .x0/

jw.x/ � w.y/j2

jx � yjnC2s
dy dx

�
� 2r2s�n

�
�2�.B3r .x0//C "

2�2�.Br .x0//

�
� C7�

2r2.sC�/;

where C7 D C7.n; �/ > 0. Moreover, by taking into account that v D u in Rn n B3r .x0/,
we split the tail term as�

r2s
Z

RnnB3r .x0/

jv1.y/j

jx0 � yjnC2s
dy

�2
� 2

�
r2s

Z
RnnB3r .x0/

ju.y/ � NuB3r .x0/j

jx0 � yjnC2s
dy

�2
„ ƒ‚ …

DWJ1

C 2

�
r2s

Z
RnnB3r .x0/

j NuB3r .x0/ � NvB3r .x0/j

jx0 � yjnC2s
dy

�2
„ ƒ‚ …

DWJ2

:

In view of Lemma 5.1 and (5.17), for J1 we have

J1 � C8

�
rsC�

1X
kD1

2�k.s��/
�«

B
2k3r

.x0/

U 2 d�

� 1
2
�2
� C8�

2r2.sC�/:

Moreover, by using (5.6), applying Jensen’s inequality twice, using the fractional Frie-
drichs–Poincaré inequality with respect to w D u � v 2 W s;2

0 .B2r .x0// and again taking
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into account (5.16) and (5.13), for J2 we obtain

J2 D C9

ˇ̌̌̌«
B3r .x0/

.u.x/ � NvB3r .x0// dx

ˇ̌̌̌2
� C9

«
B3r .x0/

ju.x/ � NvB3r .x0/j
2 dx

� C9

«
B3r .x0/

«
B3r .x0/

ju.x/ � v.y/j2 dy dx

� 2C10

�
r�2n

Z
B3r .x0/

Z
B3r .x0/

ju.x/ � u.y/j2 dy dx C r�n
Z
B3r .x0/

jw.y/j2 dy

�
� C11r

2s�n

�Z
B3r .x0/

Z
B3r .x0/

ju.x/ � u.y/j2

jx � yjnC2s
dy dx

C

Z
Rn

Z
Rn

jw.x/ � w.y/j2

jx � yjnC2s
dy dx

�
� C12�

2r2.sC�/;

where all the constants depend only on n, s, � ,ƒ andM . Combining the last five displays
now shows that estimate (5.14) holds for someN0DN0.n; s;�;ƒ;M/> 0, which finishes
the proof.

6. Good-� inequalities

6.1. Diagonal good-� inequalities

The following result is a consequence of the above approximation lemma and roughly
speaking shows that if the set where the maximal function of U is very large has a large
enough density in a ball, then in this ball the maximal functions of U and G cannot be too
small.

Lemma 6.1. There is a constant Nd D Nd .n; s; �;ƒ/ � 1, such that the following holds.
For any " > 0 and any � > 0 there exists some small enough ı D ı."; �;n; s; �;ƒ/ 2 .0; 1/,
such that for any � � �0, any r 2 .0;

p
n

2
/ and any point x0 2 Q1 with

�
�®
.x; y/ 2 Br .x0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�
� �"�.Br .x0//; (6.1)

we have

Br .x0/ �
®
.x; y/ 2 Br .x0/

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯

\
®
.x; y/ 2 Br .x0/

ˇ̌
MB4n

.Gq0/.x; y/ > �q0ıq0
¯
; (6.2)

Proof. Let "0 > 0 andM > 0 be chosen and consider the corresponding ı D ı."0; n; s; �;
ƒ;M/ 2 .0; 1/ given by Lemma 5.3. Fix "; � > 0, r 2 .0;

p
n

2
/, x0 2 Q1 and assume that
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(6.1) holds, but that (6.2) is false, so that there exists a point .x0; y0/ 2 Br .x0/ such that

MB4n
.U 2/.x0; y0/ � �2; MB4n

.Gq0/.x0; y0/ � �q0ıq0 :

Therefore, for any � > 0 we have«
B�.x0;y0/

�B4n
U 2 d� � �2;

«
B�.x0;y0/

�B4n
Gq0 d� � �q0ıq0 : (6.3)

Note that for any � � r we have B�.x0/ � B2�.x
0; y0/ � B3�.x0/. Together with (6.3),

this observation yields«
B�.x0/

�B4n
U 2 d� �

�.B2�.x
0; y0//

�.B�.x0//

«
B2�.x0;y0/

�B4n
U 2 d�

�
�.B3�.x0//

�.B�.x0//

«
B2�.x0;y0/

�B4n
U 2 d�

� 3nC2��2

and similarly,«
B�.x0/

�B4n
Gq0 d� �

�.B2�.x
0; y0//

�.B�.x0//

«
B2�.x0;y0/

�B4n
Gq0 d�

�
�.B3�.x0//

�.B�.x0//

«
B2�.x0;y0/

�B4n
Gq0 d� � 3nC2��q0ıq0

so that U and G satisfy condition (5.11) with M D 3nC2� . Therefore, by Lemma 5.3 the
unique weak solution v 2 W s;2.Rn/ of the Dirichlet problem´

Lˆ
QA
v D 0 weakly in B6r .x0/;

v D u a.e. in Rn n B6r .x0/;

satisfies Z
R2n

W 2 d� � "20�
2�.Br .x0//; (6.4)

where W is given as in Lemma 5.3. Moreover, by Lemma 5.3 there exists a constant
N0 D N0.n; s; �;ƒ/ > 0 such that

kV k2L1.B2r .x0//
� N 2

0 �
2: (6.5)

Next we define Nd WD .max¹4N 2
0 ; 5

nC2�º/1=2 > 1 and claim that®
.x; y/ 2 Br .x0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯

�
®
.x; y/ 2 Br .x0/

ˇ̌
MB2r .x0/.W

2/.x; y/ > N 2
0 �

2
¯
: (6.6)

To see this, assume that

.x1; y1/ 2
®
x 2 Br .x0/

ˇ̌
MB2r .x0/.W

2/.x; y/ � N 2
0 �

2
¯
: (6.7)
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For � < r , we have B�.x1; y1/ � Br .x1; y1/ � B2r .x0/, so that together with (6.7) and
(6.5) we deduce«

B�.x1;y1/

U 2 d� � 2

«
B�.x1;y1/

.W 2
C V 2/ d�

� 2

«
B�.x1;y1/

W 2 d�C 2kV k2L1.B�.x1;y1//

� 2MB2r .x0/.W
2/.x1; y1/C 2kV k

2
L1.B2r .x0//

� 4N 2
0 �

2:

On the other hand, for � � r we have B�.x1; y1/ � B3�.x
0; y0/ � B5�.x1; y1/, so that

(6.3) implies«
B�.x1;y1/

�B4n
U 2 d� �

�.B3�.x
0; y0//

�.B�.x1; y1//

«
B3�.x0;y0/

�B4n
U 2 d�

�
�.B5�.x1; y1//

�.B�.x1; y1//

«
B3�.x0;y0/

�B4n
U 2 d� � 5nC2��2:

Thus, we have

.x1; y1/ 2
®
.x; y/ 2 Br .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ � N 2
d�

2
¯
;

which implies (6.6). Now using (6.6), the weak 1–1 estimate from Proposition 3.3 and
(6.4), we conclude that there exists some constant C D C.n; �/ > 0 such that

�
�®
.x; y/ 2 Br .x0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

� �
�®
.x; y/ 2 Br .x0/

ˇ̌
MB2r .x0/.W

2/.x; y/ > N 2
0 �

2
¯�

�
C

N 2
0 �

2

Z
R2n

W 2 d�

�
C

N 2
0

�.Br .x0//"
2
0 < "��.Br .x0//;

where the last inequality is obtained by choosing "0 and thus also ı sufficiently small. This
contradicts (6.1) and thus finishes our proof.

6.2. Off-diagonal reverse Hölder inequalities

Our next goal is to prove an analogue of the above diagonal good-� inequality on balls that
are far away from the diagonal. In order to prove Lemma 6.1, the main tool was given by
the comparison estimates from Section 5. Unfortunately, far away from the diagonal the
equation cannot be used very efficiently, since the further away we are from the diagonal,
the less the estimates available reflect the scale we are working at. In particular, far away
from the diagonal no useful comparison estimates are available.
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In order to bypass this loss of information, we replace the comparison estimates used
in the diagonal setting by certain off-diagonal reverse Hölder inequalities with diagonal
correction terms. Although such reverse Hölder inequalities lead to, in some sense, weaker
good-� inequalities than comparison estimates, by using combinatorial techniques and an
iteration argument at the end we will nevertheless be able to deduce the desired regularity.

For this reason, from now on we assume that for any r > 0, x0 2 Rn with Br .x0/ �
B4n, U satisfies an estimate of the form�«

Br=2.x0/

U q d�

� 1
q

� Cq

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2

C

�«
Br .x0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�
; (6.8)

where Cq depends only on q, n, s, � and ƒ.

Proposition 6.2. Let r > 0, x0; y0 2 Rn and suppose that for some m 2 .0; 1� we have
dist.Br .x0/; Br .y0// � mr . Then we have�«

Br .x0;y0/

U q
?

d�

� 1
q?

� Cnd

�«
Br .x0;y0/

U 2 d�

� 1
2

C Cnd

� r

dist.Br .x0/; Br .y0//

�sC�� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2

C

�«
B2r .x0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�

C Cnd

� r

dist.Br .x0/; Br .y0//

�sC�� 1X
kD1

2�k.s��/
�«

B
2kr
.y0/

U 2 d�

� 1
2

C

�«
B2r .y0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2kr
.y0/

G2 d�

� 1
2
�
;

where Cnd D Cnd .n; s; �;ƒ;m; q; p/ � 1 and q? is given by (5.7).



S. Nowak 94

Proof. Choose points x1 2 xBr .x0/ and y1 2 xBr .y0/ such that dist.Br .x0/; Br .y0// D
jx1 � y1j. For any .x; y/ 2 Br .x0; y0/, we obtain

jx � yj � jx1 � y1j C jx1 � xj C jy1 � yj

� dist.Br .x0/; Br .y0//C 2r � 3 dist.Br .x0/; Br .y0//=m:

Together with the definition of dist.Br .x0/; Br .y0//, it follows that for any .x; y/ 2
Br .x0; y0/, we have

1 �
jx � yj

dist.Br .x0/; Br .y0//
� 3=m: (6.9)

Therefore, by taking into account the definition of the measure �, we conclude that

c1r
2n

dist.Br .x0/; Br .y0//n�2�
� �.Br .x0; y0// �

C1r
2n

dist.Br .x0/; Br .y0//n�2�
; (6.10)

where c1 D c1.n;m; �/ 2 .0; 1/ and C1 D C1.n/ � 1. By (6.10) and (6.9), we have�«
Br .x0;y0/

U q
?

d�

� 1
q?

�

�
dist.Br .x0/; Br .y0//n�2�

c1r2n

Z
Br .x0/

Z
Br .y0/

ju.x/ � u.y/jq
?

jx � yjn�2�Cq
?.sC�/

dy dx

� 1
q?

� C2 dist.Br .x0/; Br .y0//�.sC�/
�«

Br .x0/

«
Br .y0/

ju.x/ � u.y/jq
?

dy dx

� 1
q?

;

where C2 D C2.n; m; �/ � 1. By using Minkowski’s inequality, we further estimate the
integral on the right-hand side as�«

Br .x0/

«
Br .y0/

ju.x/ � u.y/jq
?

dy dx

� 1
q?

�

�«
Br .x0/

ju.x/ � NuBr .x0/j
q? dy dx

� 1
q?

„ ƒ‚ …
DWI1

C

�«
Br .y0/

ju.x/ � NuBr .y0/j
q? dy dx

� 1
q?

„ ƒ‚ …
DWI2

C j NuBr .x0/ � NuBr .y0/j„ ƒ‚ …
DWI3

:

By using the fractional Sobolev–Poincaré inequality (Lemma 2.4) and then estimate (6.8),
for I1 we obtain

I1 � C3r
s

�
1

rn

Z
Br .x0/

Z
Br .x0/

ju.x/ � u.y/jq

jx � yjnCsq
dy dx

� 1
q

D C4r
s

�
r2�

�.Br .x0//

Z
Br .x0/

Z
Br .x0/

ju.x/ � u.y/jqjx � yj.q�2/�

jx � yjn�2�Cq.sC�/
dy dx

� 1
q
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� C5r
sC�

�«
Br .x0/

U q d�

� 1
q

� CqC5r
sC�

� 1X
kD1

2�k.s��/
�«

B
2kr
.x0/

U 2 d�

� 1
2

C

�«
B2r .x0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2kr
.x0/

G2 d�

� 1
2
�
;

where C3, C4 and C5 depend only on n, s and � . In the same way, for I2 we have

I2 � CqC5r
sC�

� 1X
kD1

2�k.s��/
�«

B
2kr
.y0/

U 2 d�

� 1
2

C

�«
B2r .y0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2kr
.y0/

G2 d�

� 1
2
�
:

Finally, by the Cauchy–Schwarz inequality, (6.10) and (6.9), for I3 we have

I3 �

�«
Br .x0/

«
Br .y0/

ju.x/ � u.y/j2 dy dx

� 1
2

�

�
C1

dist.Br .x0/; Br .y0//n�2��.Br .x0; y0//

Z
Br .x0/

Z
Br .y0/

ju.x/ � u.y/j2 dy dx

� 1
2

� C6

�«
Br .x0;y0/

ju.x/ � u.y/j2 d�

� 1
2

� C7 dist.Br .x0/; Br .y0//sC�
�«

Br .x0;y0/

U 2 d�

� 1
2

;

where C6 D C6.n;m; �/ � 1 and C7 D C7.n;m; �/ � 1. The claim now follows by com-
bining the last five displays, so that the proof is finished.

6.3. Off-diagonal good-� inequalities

In what follows, fix some " 2 .0; 1/ to be chosen small enough and set

N";q WD
CndCs;�Nd10

10n

"1=q
? ; (6.11)

whereNd DNd .n; s;�;q;ƒ/� 1 is given by Lemma 6.1,Cnd DCnd .n; s;�;ƒ;m;q/� 1
is given by Proposition 6.2 with m to be chosen and

1 � Cs;� WD

1X
kD1

2�k.s��/ <1: (6.12)
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Moreover, for all r 2 .0;
p
n

2
/ and all .x0; y0/ 2 Q1 we define

Q�.r; x0; y0/ WD
r

dist.B r
2
.x0/; B r

2
.y0//

: (6.13)

Lemma 6.3. For any � � �0, r 2 .0;
p
n

2
/ and any point .x0; y0/ 2 Q1 satisfying

jx0 � y0j � .3
p
nC 1/r and

�
�®
.x; y/ 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯�
� "�.B r

2
.x0; y0//; (6.14)

we have

B r
2
.x0; y0/ �

®
.x; y/ 2 B r

2
.x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯

[
®
.x; y/ 2 B r

2
.x0; y0/

ˇ̌
M�r;B4n

.U 2/.x; x/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.sC�/�2
¯

[
®
.x; y/ 2 B r

2
.x0; y0/

ˇ̌
M�r;B4n

.U 2/.y; y/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.sC�/�2
¯

[
®
.x; y/ 2 B r

2
.x0; y0/

ˇ̌
M�r;B4n

.Gq0/.x; x/ > 3nC2� Q�.r; x0; y0/
�q0.sC�/�q0

¯
[
®
.x; y/ 2 B r

2
.x0; y0/

ˇ̌
M�r;B4n

.Gq0/.y; y/ > 3nC2� Q�.r; x0; y0/
�q0.sC�/�q0

¯
:

Proof. Assume that (6.14) holds, but that the conclusion is false, so that there exists a
point .x0; y0/ 2 B r

2
.x0; y0/ such that

MB4n
.U 2/.x0; y0/ � �2;

M�r;B4n
.U 2/.x0; x0/ � 3nC2�N 2

d
Q�.r; x0; y0/

�2.sC�/�2;

M�r;B4n
.U 2/.y0; y0/ � 3nC2�N 2

d
Q�.r; x0; y0/

�2.sC�/�2

M�r;B4n
.Gq0/.x0; x0/ � 3nC2� Q�.r; x0; y0/

�q0.sC�/�q0 ;

M�r;B4n
.Gq0/.y0; y0/ � 3nC2� Q�.r; x0; y0/

�q0.sC�/�q0 :

Therefore, for any � � r we have«
B�.x0;y0/

�B4n
U 2 d� � �2; (6.15)«

B�.x0/

�B4n
U 2 d� � 3nC2�N 2

d
Q�.r; x0; y0/

�2.sC�/�2; (6.16)«
B�.x0/

�B4n
Gq0 d� � 3nC2� Q�.r; x0; y0/

�q0.sC�/�q0 : (6.17)

Of course, (6.16) and (6.17) hold also with x0 replaced by y0. Since for any � � r we have
B�.x0; y0/ � B2�.x

0; y0/ � B3�.x0; y0/, from (6.15) we deduce«
B�.x0;y0/

�B4n
U 2 d� �

�.B2�.x
0; y0//

�.B�.x0; y0//

«
B2�.x0/

�B4n
U 2 d�

�
�.B3�.x0; y0//

�.B�.x0; y0//
� 3nC2��2: (6.18)
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Note also that for any � � r we have B�.x0/ � B2�.x
0/. Together with (6.16) this obser-

vation yields «
B�.x0/

�B4n
U 2 d� �

�.B2�.x
0//

�.B�.x0//

«
B2�.x0/

�B4n
U 2 d�

� 6nC2�N 2
d
Q�.r; x0; y0/

�2.sC�/�2 (6.19)

and similarly «
B�.x0/

�B4n
Gq0 d� �

�.B2�.x
0//

�.B�.x0//

«
B2�.x0/

�B4n
Gq0 d�

� 6nC2� Q�.r; x0; y0/
�q0.sC�/�q0 : (6.20)

By the same reasoning, (6.19) and (6.20) clearly also hold with x0 replaced by y0. Next
we claim that®

.x; y/ 2 Bp
n
2 r
.x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯

�
®
.x; y/ 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB 3

p
n
2 r

.x0;y0/.U
2/.x; y/ > N 2

";q�
2
¯
: (6.21)

To see this, assume that

.x1; y1/ 2
®
x 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB 3

p
n
2 r

.x0;y0/.U
2/.x; y/ � N 2

";q�
2
¯
: (6.22)

For � <
p
nr , we have B�.x1; y1/ � Bpnr .x1; y1/ � B 3

p
n
2 r
.x0; y0/, so that together

with (6.22) we deduce«
B�.x1;y1/

U 2 d� �MB 3
p
n
2 r

.x0;y0/.U
2/.x1; y1/ � N

2
";q�

2:

On the other hand, for � �
p
nr we have B�.x1; y1/ � B3�.x

0; y0/ � B5�.x1; y1/, so
that (6.15) implies«

B�.x1;y1/

�B4n
U 2 d� �

�.B5�.x1; y1//

�.B�.x1; y1//

«
B3�.x0;y0/

�B4n
U 2 d� � 5nC2��2 � N 2

";q�
2:

Thus, we have

.x1; y1/ 2
®
.x; y/ 2 Br .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ � N 2
";q�

2
¯
;

which implies (6.21). As in the proof of Lemma 5.3, letm 2N be determined by 2m�1r <
p
n � 2mr ; note that m � 2. Then for any k < m, by (6.19) and (6.20) we have«

B
2k
3
p
n
2 r

.x0/

U 2 d� � 6nC2�N 2
d�

2 Q�.r; x0; y0/
�2.sC�/;

«
B
2k
3
p
n
2 r

.x0/

Gq0 d� � 6nC2��q0 Q�.r; x0; y0/
�q0.sC�/:

(6.23)
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Moreover, in view of (5.10), the inclusions B2k n2
.x0/�B

2kCm�1
3
p
n
2 r
.x0/�B2k 3n2

.x0/�

B2k4n and the fact that Q�.r; x0; y0/ � 1, we have

1X
kDm

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

U 2 d�

� 1
2

�

1X
kD1

2�k.s��/
�
�.B2k4n/

�.B2k n2
/

«
B
2k4n

U 2 d�

� 1
2

� 8
n
2C��0 � 8

n
2C��0 Q�.r; x0; y0/

�.sC�/: (6.24)

Together with (6.23) and the assumption that � � �0, we arrive at

1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

U 2 d�

� 1
2

�

m�1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

U 2 d�

� 1
2

C

1X
kDm

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

U 2 d�

� 1
2

� 8
n
2C�Cs;�N

2
d
Q�.r; x0; y0/

�.sC�/�: (6.25)

By similar reasoning to above, we note that estimate (6.24) also holds with U replaced by
G. Therefore, along with Hölder’s inequality we obtain

1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

G2 d�

� 1
2

�

m�1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

Gq0 d�

� 1
q0

C

1X
kDm

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

G2 d�

� 1
2

� 8
n
2C�Cs;� Q�.r; x0; y0/

�.sC�/�: (6.26)

Again, by the same arguments as above, (6.25) and (6.26) clearly also hold for x0 replaced
by y0. Therefore, together with the weak q?

2
–q

?

2
estimate for the Hardy–Littlewood max-

imal function, Proposition 6.2 withm D 1

3
p
n

, (6.18), (6.25), (6.20), (6.26) and (6.11), we
arrive at

�
�®
.x; y/ 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯�

� �
�®
.x; y/ 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB 3

p
n
2 r

.x0;y0/.U
2/.x; y/ > N 2

";q�
2
¯�

� N�q
?

";q ��q
?

Z
B 3
p
n
2 r

.x0;y0/

U q
?

d�
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� N�q
?

";q ��q
?

3q
?

C
q?

nd
�.B 3

p
n
2 r
.x0; y0//

�

"�«
B 3
p
n
2 r

.x0;y0/

U 2 d�

� q?

2

C

� 3
p
nr=2

dist.B 3
p
n
2 r
.x0/; B 3

p
n
2 r
.y0//

�q?.sC�/
�

 
1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

U 2 d�

� 1
2

C

�«
B3
p
nr .x0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.x0/

G2 d�

� 1
2

!q?

C

� 3
p
nr=2

dist.B 3
p
n
2 r
.x0/; B 3

p
n
2 r
.y0//

�q?.sC�/
�

 
1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.y0/

U 2 d�

� 1
2

C

�«
B3
p
nr .y0/

Gq0 d�

� 1
q0

C

1X
kD1

2�k.s��/
�«

B
2k
3
p
n
2 r

.y0/

G2 d�

� 1
2

!q?#
� N�q?";q ��q?3q

?

C
q?

nd
.3
p
n/nC2��.B r

2
.x0; y0//

�
�
3.

n
2C�/q

?

�q
?

C 6q
?

.9n/q
?.sC�/ Q�.r; x0; y0/

q?.sC�/8nq
?

C
q?

s;�
N
q?

d
Q�.r; x0; y0/

�q?.sC�/�q
?�

< "�.B r
2
.x0; y0//;

which contradicts (6.14) and thus finishes the proof.

Since we are going to use a Calderón–Zygmund cube decomposition, we next prove a
version of the previous Lemma with balls replaced by cubes. For notational convenience,
in analogy to the quantity Q�.r;x0;y0/ defined in (6.13), for any r 2 .0;

p
n

2
/ and all x0;y0 2

Rn with jx0 � y0j >
p
nr , we define the quantity

�.r; x0; y0/ WD
r

dist.Qr .x0/;Qr .y0//
: (6.27)

Note that sinceBr=2.x0/�Qr .x0/ andBr=2.y0/�Qr .y0/, the two quantities are related
by

Q�.r; x0; y0/ � �.r; x0; y0/: (6.28)
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Corollary 6.4. For any � � �0, r 2 .0;
p
n

2
/ and any point .x0; y0/ 2 Q1 satisfying

jx0 � y0j � .3
p
nC 1/r and

�
�®
.x; y/ 2 Qr .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯�
> "�.Qr .x0; y0//; (6.29)

we have

�.Qr .x0; y0//

� .
p
n/nC2�

�
�
�®
.x; y/2Qr .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/>�2
¯�

C �.r; x0; y0/
n�2�

� �
�®
.x; y/2Qr .x0/

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.r; x0; y0/

�2.�Cs/�2
¯�

C �.r; x0; y0/
n�2�

� �
�®
.x; y/2Qr .y0/

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.r; x0; y0/

�2.�Cs/�2
¯�

C �.r; x0; y0/
n�2�

� �
�®
.x; y/2Qr .x0/

ˇ̌
MB4n

.Gq0/.x; y/>�.r; x0; y0/
�q0.�Cs/�q0

¯�
C �.r; x0; y0/

n�2�

� �
�®
.x; y/2Qr .y0/

ˇ̌
MB4n

.Gq0/.x; y/>�.r; x0; y0/
�q0.�Cs/�q0

¯��
:

Proof. First of all, note that .x0; y0/ 2Q1 �Bp
n
2

. By assumption (6.29) and the fact that
Qr .x0; y0/ � Bp

n
2 r
.x0; y0/, we have

�
�®
.x; y/ 2 Bp

n
2 r
.x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q

¯�
� �

�®
.x; y/ 2 Qr .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q

¯�
> "�.Qr .x0; y0// � "�.Br=2.x0; y0//:

Therefore, assumption (6.14) from Lemma 6.3 is satisfied, so that by the volume doubling
property of �, Lemma 6.3 and the inclusion Br=2.x0; y0/ � Qr .x0; y0/, we obtain

�.Qr .x0; y0// � �.Bp
n
2 r
.x0; y0//

� .
p
n/nC2��.Br=2.x0; y0//

� .
p
n/nC2�

�
�
�®
.x; y/2Qr .x0; y0/

ˇ̌
MB4n

.U 2/.x; y/>�2
¯�

C �
�®
.x; y/2Br=2.x0; y0/

ˇ̌
M�r;B4n

.U 2/.x; x/>3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/�2
¯�

C �
�®
.x; y/2Br=2.x0; y0/

ˇ̌
M�r;B4n

.U 2/.y; y/>3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/�2
¯�

C �
�®
.x; y/2Br=2.x0; y0/

ˇ̌
M�r;B4n

.Gq0/.x; x/>3nC2� Q�.r; x0; y0/
�q0.�Cs/�q0

¯�
C �

�®
.x; y/2Br=2.x0; y0/

ˇ̌
M�r;B4n

.Gq0/.y; y/>3nC2� Q�.r; x0; y0/
�q0.�Cs/�q0

¯��
:
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We proceed by further estimating the second term on the right-hand side of the last display
and note that the last three terms can be estimated similarly. Set

F1 WD
®
x 2 Br=2.x0/

ˇ̌
M�r;B4n

.U 2/.x; x/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/�2
¯
:

We have

�
�®
.x; y/ 2 Br=2.x0; y0/

ˇ̌
M�r;B4n

.U 2/.x; x/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/�2
¯�

D �.F1 � Br=2.y0//

D

Z
F1

Z
Br=2.y0/

dy dx

jx � yjn�2�

� dist.Br=2.x0/; Br=2.y0//�.n�2�/jF1j jBr=2.y0/j

D dist.Br=2.x0/; Br=2.y0//�.n�2�/jF1j jBr=2.x0/j

� dist.Br=2.x0/; Br=2.y0//�.n�2�/rn�2�
Z
F1

Z
Br=2.x0/

dy dx

jx � yjn�2�

D Q�.r; x0; y0/
n�2��.F1 � Br=2.x0//

D Q�.r; x0; y0/
n�2�

� �
�®
.x; y/2Br=2.x0/

ˇ̌
M�r;B4n

.U 2/.x; x/>3nC2�N
q

d
Q�.r; x0; y0/

�2.�Cs/�2
¯�
:

In order to further estimate the right-hand side, we claim that for all x; y 2 Br=2.x0/ we
have

M�r;B4n
.U 2/.x; x/ � 3nC2�MB4n

.U 2/.x; y/: (6.30)

Indeed, for any � � r we have B�.x/ � B2�.x; y/ � B3�.x/ and therefore«
B�.x/

�B4n
U 2 d� �

�.B3�.x//

�.B�.x//

«
B2�.x;y/

�B4n
U 2 d� � 3nC2� zMB4n

.U 2/.x; y/;

which proves (6.30). By (6.30) and the display before that, we arrive at

�
�®
.x; y/ 2 Br=2.x0; y0/

ˇ̌
M�r;B4n

.U 2/.x; x/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/
¯�

� Q�.r; x0; y0/
n�2�

� �
�®
.x; y/ 2 Br=2.x0/

ˇ̌
M�r;B4n

.U 2/.x; x/ > 3nC2�N 2
d
Q�.r; x0; y0/

�2.�Cs/
¯�

� Q�.r; x0; y0/
n�2�

� �
�®
.x; y/ 2 Br=2.x0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d
Q�.r; x0; y0/

�2.�Cs/
¯�

� �.r; x0; y0/
n�2�

� �
�®
.x; y/ 2 Qr .x0/

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.r; x0; y0/

�2.�Cs/
¯�
;

where we used the inequality (6.28) and the inclusion Br=2.x0/ � Qr .x0/ in order to
obtain the last inequality. As mentioned, by observing that the last three terms on the
right-hand side in the second display of the proof can be estimated similarly, the proof is
finished.
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7. A covering argument

In order to proceed, we split the unit cube Q1 in Rn into dyadic cubes as follows. First,
we split Q1 into 2n cubes of sidelength 1

2
. Next we split each of the resulting cubes into

2n cubes of sidelength 1
22
D

1
4

and iterate this process. The resulting family of cubes are
called dyadic cubes. By using the same procedure with n replaced by 2n, we can also split
the unit cube Q1 D Q1 �Q1 in R2n into a family of dyadic cubes. We observe that any
dyadic cube K �Q1 of the resulting dyadic cubes can be written as K DK1 �K2, where
K1 and K2 are n-dimensional dyadic cubes contained in Q1. By construction, any such
dyadic cube K has sidelength 2�k.K/ for some nonnegative integer k.K/ � 0. Moreover,
for k � 1 any such dyadic cube K with sidelength 2�k.K/ is contained in exactly one
dyadic cube zK with sidelength 2�k.K/C1; we call zK the predecessor of K . We need
the following version of the Calderón–Zygmund decomposition, which roughly speaking
shows that a subset of Q1 with small enough density can be covered by a sequence of
dyadic cubes with density properties that are desirable for our purposes. For a proof we
refer to [8, Lemma 1.1], where the result is proved with respect to the Lebesgue measure
instead of �. However, the proof also works for the doubling measure � by taking into
account that the Lebesgue differentiation theorem (see Proposition 3.4) also holds with
respect to �.

Lemma 7.1. Let E � Q1 be a measurable set satisfying

0 < �.E/ < "�.Q1/ for some " 2 .0; 1/: (7.1)

Then there exists a countable family U� of dyadic cubes obtained from Q1 such that

�
�
E n

[
K2U�

K
�
D 0 (7.2)

and such that for any K 2 U� we have

�.E \K/ � "�.K/ (7.3)

and
�.E \ zK/ < "�. zK/; (7.4)

where zK denotes the predecessor of K .

Next, fix some � � �0 and consider the level set

E WD
®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯
: (7.5)

Provided that (7.1) is satisfied with respect to this E and some " 2 .0; 1/ which we will
choose later, by Lemma 7.1 there exists a countable family U� of dyadic cubes obtained
from Q1, such that (7.2), (7.3) and (7.4) are satisfied with respect to E.
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In order to treat the cubes of the family U� which are in some sense close enough to
the diagonal, we also construct an auxiliary diagonal cover consisting of balls as follows.
For x0 2 Q1 and r > 0, consider the quantity

‰�.x0; r/ WD �
�®
.x; y/ 2 Br .x0/ \Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 Br .x0/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�
;

where q0 is given by (5.8). Observe that since Nd � N";q , for any x0 2Q1 and any r > 0
we have

�.E \ Br .x0// � ‰�.x0; r/: (7.6)

Now fix � 2 .0; 1/ to be chosen later and consider the following subset of the diagonal in
Q1:

D�" WD
®
.x; x/ 2 Q1

ˇ̌
sup

0<r<
p
n=2

‰�.x; r/ � �"�.Br .x//
¯
:

By the weak 1–1 estimate for the Hardy–Littlewood maximal function (see Proposition
3.3) as well as using that � � �0, we obtain

�
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�

�
C1

N 2
d
�20

Z
B4n

U 2 d�C
C1

�
q0
0

Z
B4n

Gq0 d� < �"�.Q1/; (7.7)

where C1 D C1.n; s; �/ > 0 and the last inequality is obtained by choosing M0 large
enough in (5.10). SinceNd � N";q , (7.7) in particular implies condition (7.1) with respect
to the set E defined in (7.5), so that the family U� of dyadic cubes as stated above indeed
exists.

Since by (7.7) for any x 2 Q1 and any r �
p
n=2 we have

‰�.x; r/ � �
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�

< �"�.Q1/ � �"�.Br / D �"�.Br .x//; (7.8)

and by definition of D�" for any .x; x/ 2 D�" there exists some 0 < r <
p
n=2 such that

‰�.x; r/ � �"�.Br .x//;

we see that for any .x; x/ 2 D�" there exists some exit radius rx 2 .0;
p
n=2/ such that

‰�.x; rx/ � �"�.Brx .x// (7.9)

and
‰�.x; r/ � �"�.Br .x// for all r > rx : (7.10)
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Now we consider the diagonal covering ¹Brx .x/ j .x; x/ 2 D�"º. Since .R2n; k�k/ is a
separable metric space, by the Vitali covering lemma there exists a countable subset JD
of D�", such that the family of balls ¹Brx .x/º.x;x/2JD is disjoint and we have[

.x;x/2D�"

Brx .x/ �
[

.x;x/2JD

B5rx .x/: (7.11)

Next we classify the cubes from the family U� as follows. Let Ud
�

be the collection of all
cubes from U� that can be sucked up by the diagonal cover, that is,

Ud
� WD

®
K 2 U�

ˇ̌
K �

S
.x;x/2D�"

Brx .x/
¯
: (7.12)

Moreover, we define the family Und
�
WDU� nUd

�
, so that U� is the disjoint union of Ud

�

and Und
�

.
The following lemma reduces the problem of estimating the measure ofE with respect

to � to estimating the measures of the diagonal balls in the family JD and the measures
of the off-diagonal cubes in the family Und

�
.

Lemma 7.2. Let E be given by (7.5) and let " 2 .0; 1/. Then we have

�.E/ � C"

�
�

X
.x;x/2JD

�.Brx .x/ \Q1/C
X

K2Und
�

�.K/

�
; (7.13)

where C D C.n; �/ > 0.

Proof. Any K 2Und
�

can be written as K DQr .x0;y0/ for some r > 0 and some x0;y0 2
Rn. Since zK � Q3r .x0; y0/, we have

�. zK/ � �.Q3r .x0; y0// � �.B 3
p
n
2 r
.x0; y0// � .3

p
n/nC2��.B r

2
.x0; y0//

� .3
p
n/nC2��.K/: (7.14)

By (7.2), (7.11), (7.6), (7.10), (7.4), (7.14) and Lemma 3.2, we have

�.E/ � �

� [
K2U�

.K \E/

�
D �

� [
K2Ud

�

.K \E/

�
C �

� [
K2Und

�

.K \E/

�
� �

� [
.x;x/2D�"

.Brx .x/ \E/

�
C �

� [
K2Und

�

.K \E/

�
� �

� [
.x;x/2JD

.B5rx .x/ \E/

�
C �

� [
K2Und

�

. zK \E/

�
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�

X
.x;x/2JD

�.B5rx .x/ \E/C
X

K2Und
�

�. zK \E/

�

X
.x;x/2JD

‰�.x; 5rx/C
X

K2Und
�

�. zK \E/

�

X
.x;x/2JD

�"�.B5rx .x//C
X

K2Und
�

"�. zK/

D "

�
�5nC2�

X
.x;x/2JD

�.Brx .x//C
X

K2Und
�

�. zK/

�
� "

�
�.5
p
n/nC2�C1

X
.x;x/2JD

�.Brx .x/ \Q1/C .3
p
n/nC2�

X
K2Und

�

�.K/

�
;

where C1 D C1.n; �/ � 1. Thus, (7.13) holds with C D .5
p
n/nC2�C1.

7.1. Diagonal estimates

Our next goal is to use the results from Section 6 in order to further estimate the right-hand
side of (7.13). We start by estimating the first sum on the right-hand side of (7.13), i.e. we
are first dealing with the diagonal case, so that Lemma 6.1 is the crucial tool.

Lemma 7.3. Let ı D ı."; �; n; s; �;ƒ/ 2 .0; 1/ be given by Lemma 6.1. Then we haveX
.x;x/2JD

�.Brx .x/ \Q1/

� �
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C 2��1"�1�
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.Gq0/.x; y/ > ıq0�q0
¯�
: (7.15)

Proof. Fix some .x; x/ 2 JD , so that by (7.9) for the corresponding exit radius rx at least
one of the following two inequalities must hold:

�
�®
.x; y/ 2 Br .x/ \Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�
�
�"

2
�.Br .x//; (7.16)

�
�®
.x; y/ 2 Br .x/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�
�
�"

2
�.Br .x//: (7.17)

If (7.16) is satisfied, then Lemma 6.1 with � replaced by �=2 implies

Brx .x/ \Q1 �
®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯

[
®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > ıq0�q0
¯
: (7.18)

If on the other hand (7.17) is satisfied, then we directly obtain that

�.Brx .x/ \Q1/ � �.Brx .x//

� 2��1"�1�
�®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�

� 2��1"�1�
�®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > ıq0�q0
¯�
: (7.19)
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Therefore, in view of (7.18) and (7.19), for any .x; x/ 2 JD we have

�.Brx .x/ \Q1/

� �
�®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C 2��1"�1�
�®
.x; y/ 2 Brx .x/ \Q1

ˇ̌
MB4n

.Gq0/.x; y/ > ıq0�q0
¯�
:

Since the family of balls ¹Brx .x/º.x;x/2JD is disjoint, assertion (7.15) immediately follows
from the last display.

7.2. Off-diagonal estimates

In order to estimate the measures of the off-diagonal cubes of class Und
�

, we have ensure
that as our terminology suggests, such cubes are indeed sufficiently far away from the
diagonal in terms of their own sidelength.

Lemma 7.4. There exists � D �.n; �/ > 0 small enough, such that for any cube K D

K1 �K2 2 Und
�

of sidelength 2�k.K/, we have

dist.K1; K2/ � .3
p
nC 1/2�k.K/:

Proof. Let K DK1 �K2 2Und
�

and assume that dist.K1;K2/ < .3
p
nC 1/2�k.K/: Let

us show that in this case for � small enough we have K 2Ud
�

, leading to a contradiction.
Let x be the center of K1, y be the center of K2 and set z WD .x C y/=2. Then for r WD
.5
p
nC 1/2�k.K/, we have K � Br .z/: Moreover, we have

�.Br .z// D cr
nC2�

D c.5
p
nC 1/nC2� .2�k.K//nC2�

D c.5
p
nC 1/nC2� .2�k.K//�.n�2�/

Z
K1

Z
K2

dx dy

� c.5
p
nC 1/nC2� .5

p
nC 1/n�2�

Z
K1

Z
K2

dx dy

jx � yjn�2�

D c.5
p
nC 1/2n�.K/;

where c D c.n; �/ > 0. Now we assume that

� � c�1.5
p
nC 1/�2n: (7.20)

Together with (7.3) applied to the set E defined in (7.5), we obtain

‰�.z; r/ � �.E \K/ � "�.K/ � �"�.Br .z//: (7.21)

In particular, (7.21) implies that r <
p
n=2, since otherwise we get a contradiction to (7.8).

Therefore, we have
sup

0<r<
p
n=2

‰�.z; r/ � �"�.Br .z//;
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so that by definition of D�" we obtain that .z; z/ 2 D�". Moreover, in view of (7.10) we
deduce that r � rz , where rz is the exit radius at the point z determined in (7.9) and (7.10).
We therefore have

K � Br .z/ � Brz .z/ �
[

.x;x/2D�"

Brx .x/;

so that K 2 Ud
�

, which contradicts the assumption that K 2 Und
�

.

In what follows, we set

� WD min
®
c�1.5

p
nC 1/�2n; .6

p
n/�.nC2�/

¯
; (7.22)

where c is given as in (7.20), so that in particular, Lemma 7.4 is at our disposal.
For any cube K D K1 � K2 2 Und

�
, we write P1.K/ WD K1 � K1 and P2.K/ WD

K2 �K2. Furthermore, we write

�.K/ WD
2�k.K/

dist.K1; K2/
;

which matches the function �.r; x0; y0/ introduced in (6.27).
In view of Corollary 6.4 and Lemma 7.4, for any cube K 2 Und

�
we have

�.K/ D �.Qr .x0; y0//

� .
p
n/nC2�

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C �.K/n�2��
�®
.x; y/ 2 P1K

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.K/�2.�Cs/�2

¯�
C �.K/n�2��

�®
.x; y/ 2 P2K

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.K/�2.�Cs/�2

¯�
C �.K/n�2��

�®
.x; y/ 2 P1K

ˇ̌
MB4n

.Gq0/.x; y/ > �.K/�q0.�Cs/�q0
¯�

C �.K/n�2��
�®
.x; y/ 2 P2K

ˇ̌
MB4n

.Gq0/.x; y/ > �.K/�q0.�Cs/�q0
¯��

: (7.23)

For h D 1; 2, for simplicity of notation we define

Z
U;h
�
.K/ WD

®
.x; y/ 2 PhK

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯

and
Z
G;h
�
.K/ WD

®
.x; y/ 2 PhK

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯
:

In order to handle the diagonal level sets on the right-hand side of (7.23), for h D 1; 2 we
also define the subfamilies

G h� WD
®
K 2 Und

�

ˇ̌
�.Z

U;h
�
.K//C �.Z

G;h
�
.K// � "�.PhK/

¯
and

N h
� WD

®
K 2 Und

�

ˇ̌
�.Z

U;h
�
.K//C �.Z

G;h
�
.K// > "�.PhK/

¯
:
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Moreover, set
G� WD G 1� \ G 2� and N� WD N 1

� [N 2
� ;

so that we clearly have Und
�
D G� [N�, where the union is disjoint.

The following lemma shows that if K 2 G�, then the diagonal terms on the right-hand
side of (7.23) can be treated in a fairly straightforward manner.

Lemma 7.5. For " small enough, we haveX
K2G�

�.K/ � C�
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�
; (7.24)

where C D C.n; �/ > 0.

Proof. Since in view of Lemma 7.4 we have �.K/ � 1, together with (7.23), using that
�.P1K/ D �.P2K/, for any K 2 G� we obtain

�.K/ � .
p
n/nC2�

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C �.K/n�2�
�
�.Z

U;1
�
.K//C �.Z

U;2
�
.K//

C �.Z
G;1
�
.K//C �.Z

G;2
�
.K//

��
� .
p
n/nC2�

�
�
�®
.x; y/2K

ˇ̌
MB4n

.U 2/.x; y/>�2
¯�
C2�.K/n�2�"�.P1K/

�
:

Note that we have K DQr .x0;y0/ for r D 2�k.K/ and x0;y0 2Q1. In view of Lemma 7.4
we can argue in the same way as in (6.9) and (6.10) to obtain

2�2nk.K/

dist.K1; K2/n�2�
� 22nC1

.r=2/2n

dist.B r
2
.x0/; B r

2
.y0//n�2�

� 22nC1�.B r
2
.x0; y0// � 2

2nC1�.K/:

Since also
�.P1K/ � �.Bp

n
2 r
.x0// D C1r

nC2�
D C12

�.nC2�/k.K/

for some C1 D C1.n; �/ � 1, we deduce that

�.K/n�2� � C2
�.K/

�.P1K/
; (7.25)

where C2 D C2.n; �/ � 1. By connecting the previous display with the first one in the
proof and assuming that

" �
1

4.
p
n/nC2�C2

; (7.26)

we arrive at

�.K/ � .
p
n/nC2�

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�
C 2C2"�.K/

�
� .
p
n/nC2��

�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�
C
�.K/

2
;
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which by reabsorbing the last term on the right-hand side into the left-hand side implies

�.K/ � 2.
p
n/nC2��

�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�
:

Summing over K 2 G� and using that all cubes in the family U� and therefore also
all cubes in G� are disjoint and contained in Q1, we see that (7.24) holds with C D
2.
p
n/nC2� . This finishes the proof.

From now on, we will always assume that the restriction (7.26) on " holds, so that
estimate (7.24) from Lemma 7.5 holds.

It remains to also control the last four terms on the right-hand side of (7.23) in the more
involved case when K 2 N�, which requires a delicate combinatorial argument inspired
by [28]. In order to accomplish this, for h D 1; 2 we define the families

PhN� WD
®
PhK

ˇ̌
K 2 N h

�

¯
:

Since P1N� [ P2N� is a family of dyadic cubes, clearly there is a disjoint subfamily
PN� of P1N� [ P2N� such that[

H2PN�

H D
[

K2P1N�[P2N�

K: (7.27)

In other words, any cube in P1N� [ P2N� is contained in exactly one cube H 2 PN�.
The following lemma plays a crucial role in the mentioned combinatorial argument. It
shows that a cube of class N� is not only far away from the diagonal in terms of its own
sidelength as shown in Lemma 7.4, but also in terms of the sidelength of the larger cube
H 2 PN� in which its projection onto the diagonal is contained.

Lemma 7.6. Let K DK1 �K2 2N�, so that for some h 2 ¹1;2º,PhK belongs toPhN�.
Moreover, let H D H �H be the unique cube that belongs to PN� and contains PhK .
Then we have dist.K1; K2/ � 2�k.H/.

Proof. Without loss of generality we can assume that h D 1, since the case when h D 2
can be treated in the same way. We prove by contradiction. Assume that

dist.K1; K2/ < 2�k.H/ (7.28)

and denote by xH the center of the cubeH . Choose points x1 2 xH and y1 2 xK2 such that
dist. xH; xK2/ D jx1 � y1j and denote by y0 the center of K2. Then for any y 2 K2, we
have

jxH � yj � jx1 � y1j C jxH � xj C jy1 � y0j C jy0 � yj

< 2�k.H/
C

p
n

2
2�k.H/

C
p
n2�k.K/

� 3
p
n2�k.H/;

so that K2 � B3pn2�k.H/.xH /. Since by assumption K1 � H , we arrive at

K � B3
p
n2�k.H/.xH /: (7.29)
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Since H belongs to PN� and thus to P1N� [ P2N�, we have

�
�®
.x; y/ 2 H

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 H

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�
> "�.H /: (7.30)

Inequality (7.30) implies

‰�.xH ; 3
p
n2�k.H// D �

�®
.x; y/ 2 B3

p
n2�k.H/.xH /

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 B3

p
n2�k.H/.xH /

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�

� �
�®
.x; y/ 2 H

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�

2
¯�

C �
�®
.x; y/ 2 H

ˇ̌
MB4n

.Gq0/.x; y/ > �q0
¯�

> "�.H / � "�.B2�.k.H/C1/.xH //

�
1

.6
p
n/nC2�

"�.B3
p
n2�k.H/.xH // � �"�.B3

p
n2�k.H/.xH //;

where we also used (7.22) in order to obtain the last inequality. Therefore, in view of (7.9)
and (7.10) we have 3

p
n2�k.H/ � rxH

, where rxH
is the exit radius at the point xH . In

particular, we have
B3
p
n2�k.H/.xH / � BrxH

.xH /;

which together with (7.29) implies

K � BrxH
.xH /:

But then by definition of Ud
�

(see (7.12)), we obtain that K 2Ud
�

, which is a contradiction
since K 2 N� � Und

�
and Ud

�
\Und

�
D ;. Thus, the proof is finished.

We now estimate the measures of the cubes of class N�. The main tools are (7.23) and
the above Lemma 7.6, which allow the projected diagonal cubes to be classified in a way
that enables us to control the diagonal terms in (7.23).

Lemma 7.7. We haveX
K2N�

�.K/ �
C

�2

Z
Q1\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
C

�q0

Z
Q1\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�; (7.31)

where C D C.n; s; �/ > 0.

Proof. Step 1: A combinatorial argument. For any H 2 PN� and h 2 ¹1; 2º, we define
the family of cubes

N h
� .H / WD

®
K 2 N�

ˇ̌
PhK � H

¯
:
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Since the family PN� is a disjoint covering of the family P1N� [ P2N�, we can decom-
pose N h

�
into mutually disjoint subfamilies as

N h
� D

[
H2PN�

N h
� .H /; (7.32)

in the sense that we have N h
�
.H1/ \ N h

�
.H2/ D ; whenever H1 ¤ H2. Since for any

H 2 PN� and any K 2 N h
�
.H / we have k.K/ D k.P1K/ � k.H /, we can decompose

N h
�
.H / into the classes

ŒN h
� .H /�i WD

®
K 2 N h

� .H /
ˇ̌
k.K/ D i C k.H /

¯
; i 2 N0; h 2 ¹1; 2º:

More precisely, we have the decomposition into mutually disjoint subfamilies

N h
� .H / D

[
i�0

ŒN h
� .H /�i ; (7.33)

in the sense that ŒN h
�
.H /�i \ ŒN

h
�
.H /�j D ; whenever i ¤ j .

Next, for h 2 ¹1; 2º and i; j 2 N0 we define further subfamilies by

ŒN h
� .H /�i;j WD

®
K D K1 �K2 2 ŒN

h
� .H /�i

ˇ̌
2j�k.H/

� dist.K1; K2/ < 2jC1�k.H/
¯
:

Since by Lemma 7.6 for any K D K1 �K2 2 N h
�
.H / we have 2�k.H/ � dist.K1; K2/,

we have the disjoint decomposition

N h
� .H / D

[
i;j�0

ŒN h
� .H /�i;j ; (7.34)

in the sense that ŒN h
�
.H /�i1;j1 \ ŒN

h
�
.H /�i2;j2 D ; whenever .i1; j1/ ¤ .i2; j2/.

Therefore, by combining (7.32) and (7.34), we arrive at the following decomposition
of mutually disjoint subfamilies:

N h
� D

[
H2PN�

[
i;j�0

ŒN h
� .H /�i;j : (7.35)

Now fix some H D H � H 2 PN�. Our next goal is to prove that for h 2 ¹1; 2º the
following inequality holds:X
K2N h

�
.H/

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.K/�2.�Cs/�2

¯�
C

X
K2N h

�
.H/

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.Gq0/.x; y/ > �.K/�q0.�Cs/�q0
¯�

� C0

�
1

�2

Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
1

�q0

Z
H\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

�
; (7.36)
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where C0 D C0.n; s/ > 0. By definition of the class ŒN h
�
.H /�i;j , for any K DK1 �K2 2

ŒN h
�
.H /�i;j we have

�.K/ D
2�k.K/

dist.K1; K2/
D

1

2i
2�k.H/

dist.K1; K2/
�

1

2iCj
:

By using Chebychev’s inequality, (7.34) and then the last display, we obtainX
K2N h

�
.H/

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.K/�2.�Cs/�2

¯�
�

1

N 2
d
�2

X
K2N h

�
.H/

�.K/nC2s
Z
PhK\¹MB4n

.U 2/>N 2
d
�2º

MB4n
.U 2/ d�

�
1

�2

1X
i;jD0

X
K2ŒN h

�
.H/�i;j

�.K/nC2s
Z
PhK\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

�
1

�2

1X
i;jD0

� 1

2iCj

�nC2s X
K2ŒN h

�
.H/�i;j

Z
PhK\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d� (7.37)

and similarly by additionally using that nC .q0 � 2/� C q0s � nC 2s,X
K2N h

�
.H/

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.Gq0/.x; y/ > �.K/�2.�Cs/�2
¯�

�
1

�q0

X
K2N h

�
.H/

�.K/nC.q0�2/�Cq0s
Z
PhK\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

�
1

�q0

1X
i;jD0

X
K2ŒN h

�
.H/�i;j

�.K/nC.q0�2/�Cq0s
Z
PhK\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

�
1

�q0

1X
i;jD0

� 1

2iCj

�nC2s X
K2ŒN h

�
.H/�i;j

Z
PhK\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�: (7.38)

In order to proceed, we need to further decompose the families ŒN h
�
.H /�i;j . For any i � 0,

H contains exactly 2ni disjoint diagonal cubes Hm
i DH

m
i �H

m
i ,m 2 ¹1; : : : ; 2niº, with

sidelength 2�i�k.H/. In particular, the disjointness of these cubes implies

2niX
mD1

Z
Hm
i \¹MB4n

.U 2/>�2º

MB4n
.U 2/ d� �

Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d� (7.39)

and

2niX
mD1

Z
Hm
i \¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/d��

Z
H\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/d�: (7.40)
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For h 2 ¹1; 2º, i; j � 0 and m 2 ¹1; : : : ; 2niº, define the families

ŒN h
� .H /�i;j;m WD

®
K 2 ŒN h

� .H /�i;j
ˇ̌
PhK D Hm

i

¯
and observe that we have the disjoint decomposition

ŒN h
� .H /�i;j D

2ni[
mD1

ŒN h
� .H /�i;j;m: (7.41)

For a moment, let us focus on the case when h D 1. Note that since N 1
�

is a family of
dyadic cubes, we have P2K1 \ P2K2 D ; for all cubes K1;K2 2 ŒN

1
�
.H /�i;j;m with

K1 ¤ K2, since otherwise K1 and K2 would coincide. Therefore, we observe that the
cubes in ŒN 1

�
.H /�i;j;m are all contained in the family F 1

i;j;m.H / consisting of all distinct
dyadic cubes of the form K D Hm

i � K with K � Q1 and sidelength 2�i�k.H/ that
additionally satisfy

2j�k.H/
� dist.Hm

i ; K/ < 2
jC1�k.H/: (7.42)

Then in view of a combinatorial consideration, we have the estimate

#ŒN 1
� .H /�i;j;m � #F 1

i;j;m.H / � C12
n.iCj /; (7.43)

where C1 D C1.n/ > 0. Thus, in view of (7.41), (7.43), (7.39) and (7.40), we obtainX
K2ŒN 1

�
.H/�i;j

Z
PhK\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

D

2niX
mD1

X
K2ŒN 1

�
.H/�i;j

Z
Hm
i \¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

� C12
n.iCj /

2niX
mD1

Z
Hm
i \¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

� C12
n.iCj /

Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

and by the same reasoning,X
K2ŒN 1

�
.H/�i;j

Z
PhK\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

� C12
n.iCj /

Z
H\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�:
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In addition, by arguing similarly, the last two displays clearly also hold for ŒN 1
�
.H /�i;j

replaced by ŒN 2
�
.H /�i;j . Therefore, for h 2 ¹1; 2º we deduce

1X
i;jD0

� 1

2iCj

�nC2s X
K2ŒN h

�
.H/�i;j

Z
PhK\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

� C1

1X
i;jD0

� 1

2iCj

�2s Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

� C0

Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�;

where C0 D C1. 1
1�2�2s

/2 <1. Similarly, we also have

1X
i;jD0

� 1

2iCj

�nC2s X
K2ŒN h

�
.H/�i;j

Z
PhK\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

� C0

Z
H\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�:

By combining the last two displays with (7.37) and (7.38), we finally arrive at estimate
(7.36) with respect to C0.

Step 2: Summation. For any K 2 N�, we either have K 2M1
�
\N 2

�
, K 2M2

�
\N 1

�
or

K 2 N 1
�
\N 2

�
. If K 2M1

�
\N 2

�
, then in a similar way to the proof of Lemma 7.5, by

using (7.23) and taking into account (7.25), we have

�.K/ � .
p
n/nC2�

�

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�
C C2"�.K/

C �.K/n�2��
�®
.x; y/2P2K

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.K/�2.�Cs/�2

¯�
C �.K/n�2��

�®
.x; y/2P2K

ˇ̌
MB4n

.Gq0/.x; y/>�.K/�q0.�Cs/�q0
¯��

;

so that in view of the restriction (7.26) imposed on ", reabsorbing the second term on the
right-hand side into the left-hand side of the previous display yields

�.K/ � C3

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C �.K/n�2��
�®
.x; y/2P2K

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.K/�2.�Cs/�2

¯�
C �.K/n�2��

�®
.x; y/2P2K

ˇ̌
MB4n

.Gq0/.x; y/>�.K/�q0.�Cs/�q0
¯��
;
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where C3 D C3.n; �/ > 0. By a similar argument, we also obtain that for any K 2M2
�
\

N 1
�

, we have

�.K/ � C3

�
�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C �.K/n�2��
�®
.x; y/2P1K

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.K/�2.�Cs/�2

¯�
C �.K/n�2��

�®
.x; y/2P1K

ˇ̌
MB4n

.Gq0/.x; y/>�.K/�q0.�Cs/�q0
¯��
:

By combining the last two displays with the fact that for any K 2 N 1
�
\ N 2

�
we have

estimate (7.23), we arrive atX
K2N�

�.K/

� C4

 X
K2N�

�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

C

2X
hD1

� X
K2N h

�

�.K/n�2�

� �
�®
.x; y/2PhK

ˇ̌
MB4n

.U 2/.x; y/>N 2
d�.K/�2.�Cs/�2

¯��
C

2X
hD1

� X
K2N h

�

�.K/n�2�

� �
�®
.x; y/2PhK

ˇ̌
MB4n

.Gq0/.x; y/>�.K/�q0.�Cs/�q0
¯��!

;

where C4 D C4.n; s; �/ > 0. Using the disjointness of the cubes K 2N� and then Cheby-
chev’s inequality, for the first term on the right-hand side of the previous display, we
deduce X

K2N�

�
�®
.x; y/ 2K

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

� �
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > �2
¯�

�
1

�2

Z
Q1\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�:

Moreover, in view of (7.32), (7.36) and the disjointness of the cubes H 2 PN� for h 2
¹1; 2º, we obtain thatX
K2N h

�

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.U 2/.x; y/ > N 2
d�.K/�2.�Cs/�2

¯�
C

X
K2N h

�

�.K/n�2��
�®
.x; y/ 2 PhK

ˇ̌
MB4n

.Gq0/.x; y/ > �.K/�q0.�Cs/�2
¯�
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D

X
H2PN�

X
K2N h

�
.H/
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� �
�®
.x; y/2PhK

ˇ̌
MB4n
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¯�
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K2N h

�
.H/
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�®
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ˇ̌
MB4n

.Gq0/.x; y/>�.K/�q0.�Cs/�q0
¯�

� C0
X

H2PN�

�
1
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Z
H\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
1

�q0

Z
H\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

�
D C0

�
1

�2

Z
Q1\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
1

�q0

Z
Q1\¹MB4n

.Gq0 />�q0 º

MB4n
.Gq0/ d�

�
:

The estimate (7.31) now follows directly by combining the last three displays.

7.3. Level set estimate

By combining the above results, we are finally able to estimate the measure of the level
set of MB4n

.U 2/ in the whole cube Q1.

Corollary 7.8. Under all the assumptions made above, for any � � �0 we have

�
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯�

� C

�
"

�2

Z
Q1\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
1

ıq0�q0

Z
Q1\¹MB4n

.Gq0 />ıq0�q0 º

MB4n
.Gq0/ d�

�
;

where C D C.n; s; �/ > 0 and ı D ı."; n; s; �;ƒ/ 2 .0; 1/ is given by Lemma 6.1.

Proof. In view of Lemmas 7.2, 7.3, 7.5, 7.7 and Chebychev’s inequality, we obtain

�
�®
.x; y/ 2 Q1

ˇ̌
MB4n

.U 2/.x; y/ > N 2
";q�

2
¯�

� C1"

�
�

X
.x;x/2JD

�.Brx .x/ \Q1/C
X

K2G�

�.K/C
X

K2N�

�.K/

�
� C

�
"

�2

Z
Q1\¹MB4n

.U 2/>�2º

MB4n
.U 2/ d�

C
1

ıq0�q0

Z
Q1\¹MB4n

.Gq0 />ıq0�q0 º

MB4n
.Gq0/ d�

�
;

where all constants depend only on n, s and � . This finishes the proof.
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8. Lp estimates for U

We first prove the estimate we are interested in on a fixed scale in the form of an a priori
estimate and under the additional assumption that U satisfies estimate (6.8). In order to
do this, we use the following standard alternative characterization of the Lp norm which
follows from Fubini’s theorem in a straightforward way.

Lemma 8.1. Let � be a � -finite measure on Rn and let hW�! Œ0;C1� be a �-measurable
function in a domain � � Rn. Then for any 0 < ˇ <1 we haveZ

�

hˇ d� D ˇ

Z 1
0

�ˇ�1�
�®
x 2 �

ˇ̌
h.x/ > �

¯�
d�:

Proposition 8.2. Let q 2 Œ2; p/ and Qq 2 .q0; q?/, where q0 is given by (5.8). Then there
exists some small enough ı D ı.n; s; �;ƒ; q; Qq/ > 0 such that if A 2L0.ƒ/ is ı-vanishing
in B4n and g 2 W s;2.Rn/ satisfies G 2 L Qq.B4n; �/, then for any weak solution u 2
W s;2.Rn/ of the equation LˆAu D .��/sg in B4n that satisfies U 2 L Qq.B4n; �/ and
estimate (6.8) in any ball contained in B4n with respect to q, we have�«

B1=2

U Qq d�

� 1
Qq

� C

� 1X
kD1

2�k.s��/
�«

B
2k4n

U 2 d�

� 1
2

C

�«
B4n

G Qq d�

� 1
Qq

C

1X
kD1

2�k.s��/
�«

B
2k4n

G2 d�

� 1
2
�
;

where C D C.n; s; �;ƒ; q; Qq; p/ > 0.

Proof. Let " be chosen small enough and consider the corresponding ıD ı.";n; s; �;ƒ/ >
0 given by Lemma 6.1. Then by using Lemma 8.1 multiple times, first with

ˇ D Qq; h DMB4n
.U 2/

1
2 ; d� D d�;

then with

ˇ D Qq � 2; h DMB4n
.U 2/

1
2 ; d� DMB4n

.U 2/ d�;

and also with

ˇ D Qq � q0; h DMB4n
.Gq0/

1
q0 ; d� DMB4n

.Gq0/ d�;

a change of variables, Corollary 7.8 and the definition of N";q from (6.11), we obtainZ
Q1

.MB4n
.U 2//

Qq
2 d�

D Qq

Z 1
0

� Qq�1�
�
Q1 \

®
MB4n

.U 2/ > �2
¯�
d�



S. Nowak 118

D QqN Qq";q
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Qq
0 C C1 QqCndCs;�Nd10

10n"1�Qq=q
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Qq
2 d�

C C1 QqN
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";qı
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Z
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Qq
q0 d�;

where C1 D C1.n; s; �/ � 1. Now we set

" WD min
®
.4.
p
n/nC2�C2/

�1; .2C1 QqCndCs;�Nd10
10n/

�
q?

q?�Qq
¯
;

so that " satisfies the restriction (7.26) and, moreover, we have

C1 QqCndCs;�Nd10
10n"1�Qq=q

?

�
1
2
:

Since, in addition, by assumption we have U 2 L Qq.B4n; �/, by Proposition 3.3 we haveZ
Q1

.MB4n
.U 2//

Qq
2 d� <1;

so that we can reabsorb the second-to-last term on the right-hand side of the first display
of the proof in the left-hand side, which yieldsZ

Q1

.MB4n
.U 2//

Qq
2 d� � 2 QqN Qq";q�.Q1/�

Qq
0 C 2C1 QqN

Qq
";qı
�q0

Z
Q1

.MB4n
.Gq0//

Qq
q0 d�:

Now, in view of Corollary 3.5 and Proposition 3.3, taking into account the definition of
�0 from (5.10) and using Hölder’s inequality, we obtain«
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� C4

� 1X
kD1

2�k.s��/
�«

B
2k4n

U 2 d�

� 1
2

C

1X
kD1

2�k.s��/
�«

B
2k4n

G2 d�

� 1
2
� Qq

C C4

«
B4n

G Qq d�;

where all constants depend only on n, s, � ,ƒ, q, Qq and p. This proves the desired estimate
with C D C 1= Qq4 .

Corollary 8.3. Consider some q 2 Œ2; p/ and some Qq 2 .q0; q?/. Then there exists some
small enough ı D ı.n; s; �;ƒ; q; Qq/ > 0 such that if A 2 L0.ƒ/ is ı-vanishing in B1 and
g 2 W s;2.Rn/ satisfies G 2 L Qq.B1; �/, then for any weak solution u 2 W s;2.Rn/ of the
equation LˆAu D .��/

sg in B1 that satisfies U 2 L Qq.B1; �/ and estimate (6.8) in any
ball contained in B1 with respect to q, we have the estimate�«

B1=2

U Qq d�

� 1
Qq

� C

� 1X
kD1

2�k.s��/
�«

B
2k

U 2 d�

� 1
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G Qq d�

� 1
Qq

C

1X
kD1

2�k.s��/
�«

B
2k

G2 d�

� 1
2
�
;

where C D C.n; s; �;ƒ; q; Qq; p/ > 0.

Proof. There exists some small enough radius r1 2 .0; 1/ such that

B4nr1.z/ b B1 (8.1)

for any z 2 B1=2. Now fix some z 2 B1=2 and consider the scaled functions uz ; gz 2
W s;2.Rn/ given by

uz.x/ WD u.r1x C z/; gz.x/ WD g.r1x C z/; Az.x; y/ WD A.r1x C z; r1y C z/:

Since A is ı-vanishing in B1, we see that Az clearly is ı-vanishing in B 1
4nr1

.�z/ � B4n.
Furthermore, in view of (8.1), uz is a weak solution ofLˆAzuz D .��/

sgz inB 1
4nr1

.�z/�

B4n. Now fix some r > 0 and some x0 2 Rn such that Br .x0/ � B4n. Then again in view
of (8.1), we clearly have

Br1r .r1x0 C z/ � B1;

so that by the assumption that estimate (6.8) holds for any ball contained in B1, estimate
(6.8) holds with respect to the ball Br1r .r1x0 C z/. Together with changes of variables, a
simple computation now shows that the functions

Uz.x; y/ WD
juz.x/ � uz.y/j

jx � yjsC�
; Gz.x; y/ WD

jgz.x/ � gz.y/j

jx � yjsC�
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satisfy �«
Br=2.x0/

U qz d�

� 1
q
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� 1X
kD1
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G2z d�

� 1
2
�
; (8.2)

where C1 D C1.q; n; s; �;ƒ/ > 0. Therefore, we see that Uz and Gz satisfy estimate (6.8)
in any ball that is contained inB4n. Since, in addition, the assumption that U 2L Qq.B1;�/

clearly implies that Uz 2 L Qq.B 1
4nr1

.�z/; �/ � L
Qq.B4n; �/, by Proposition 8.2 we obtain

�«
B1=2

U Qqz d�

� 1
Qq

� C2

� 1X
kD1

2�k.s��/
�«

B
2k4n

U 2z d�

� 1
2

C

�«
B4n

G Qqz d�

� 1
Qq

C

1X
kD1

2�k.s��/
�«

B
2k4n

G2z d�
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2
�
;

where C2 D C2.n; s; �; ƒ; q; Qq; p/ > 0. By combining the last display with changes of
variables, it is now straightforward to deduce that�«
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2
�
; (8.3)

whereC3DC3.q; Qq;p;n; s;�;ƒ/ > 0. Since ¹Br1=2.z/ºz2B1=2 is an open covering of xB1=2
and xB1=2 is compact, there is a finite subcover ¹Br1=2.zj /º

m
jD1 of xB1=2 and hence also of

B1=2. In particular, ¹Br=2.zj /º
m
jD1 is a finite subcover of B1=2. Therefore, by summing

the above estimates, we obtain�«
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;

where C4 D C4.n; s; �; ƒ; q; Qq; p/ > 0. Since in addition m and r1 depend only on B1=2
and thus only on n, the proof is finished.

Corollary 8.4. Let r > 0 and z 2Rn and consider some q 2 Œ2;p/ and some Qq 2 .q0; q?/.
Then there exists some small enough ı D ı.n; s; �; ƒ; q; Qq/ > 0 such that if A 2 L0.ƒ/

is ı-vanishing in Br .z/ and g 2 W s;2.Rn/ satisfies G 2 L Qq.Br .z/; �/, then for any
weak solution u 2 W s;2.Rn/ of the equation LˆAu D .��/sg in Br .z/ that satisfies
U 2 L Qq.Br .z/;�/ and estimate (6.8) in any ball contained in Br .z/ with respect to q, we
have the estimate�«

Br=2.z/

U Qq d�
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2�k.s��/
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2
�
; (8.4)

where C D C.n; s; �;ƒ; q; Qq; p/ > 0.

Remark 8.5. It is essential that the constant C in (8.4) does not depend on r and z.

Proof of Corollary 8.4. Consider the scaled functions u1; g1 2 W s;2.Rn/ given by

u1.x/ WD u.rx C z/; g1.x/ WD g.rx C z/

and also
A1.x; y/ WD A.rx C z; ry C z/:

SinceA is ı-vanishing in Br .z/,A1 clearly is ı-vanishing inB1. Also, in view of a change
of variables, forU1.x;y/ WD

u1.x/�u1.y/

jx�yjsC�
we clearly haveU1 2L Qq.B1;�/. Moreover, since

u and g satisfy estimate (6.8) in any ball contained in Br .z/, by a straightforward scaling
argument we deduce that u1 and g1 satisfy estimate (6.8) in any ball contained in B1. In
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addition, u1 is a weak solution of LˆA1u1 D .��/
sg1 in B1. Therefore, u1 and A1 satisfy

all assumptions from Corollary 8.3, so that the estimate from Corollary 8.3 is satisfied by
u1 and g1. The desired estimate (8.4) now follows by rescaling.

Proposition 8.6. Let r > 0, z 2 Rn, s 2 .0; 1/ and p 2 .2;1/. Then there exists some
small enough ı D ı.n; s; �; ƒ; p/ > 0 such that if A 2 L0.ƒ/ is ı-vanishing in Br1.z/

and g 2W s;2.Rn/ satisfiesG 2 Lp.Br .z/;�/, then for any weak solution u 2W s;2.Rn/
of the equation LˆAu D .��/

sg in Br .z/ that satisfies U 2 Lp.Br .z/; �/, we have the
estimate�«
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�
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where C D C.n; s; �;ƒ; p/ > 0.

Proof. Define iteratively a sequence ¹qiº1iD1 of real numbers by

q1 WD 2; qiC1 WD min
®
.qi C .qi /

?/=2; p
¯
;

where, as in (5.7), we let

.qi /
?
D

8<:
nqi

n � sqi
if n > sqi ;

2p if n � sqi :

Since for any i with n > sqiC1 we have�
qi C

nqi

n � sqi

�
=2 � qi D

nqi

2.n � sqi /
�
qi

2
�

4s

2.n � s/
> 0;

there clearly exists some ip 2N such that qip D p. Since estimate (6.8) is trivially satisfied
for q D q1 D 2, and in view of the additional assumption that U 2 Lp.Br .z/; �/ we in
particular have U 2 Lq2.Br .z/; �/, if we choose ı small enough such that Corollary 8.4
is applicable with q D 2 and Qq D q2, then all assumptions of Corollary 8.4 are satisfied
with respect to q D q1 D 2 and Qq D q2 2 .q1; .q1/?/, so that we obtain�«

Br=2.z/

U q2 d�

� 1
q2

� C1

� 1X
kD1

2�k.s��/
�«

B
2kr.z/

U 2 d�

� 1
2

C

�«
Br .z/

Gq2 d�

� 1
q2

C

1X
kD1

2�k.s��/
�«

B
2kr
.z/

G2 d�

� 1
2
�
; (8.6)

where C1 D C1.n; s; �;ƒ; p/ > 0. If ip D 2, then q2 D p and the proof is finished. Oth-
erwise, we note that since r and z are arbitrary, estimate (8.6) also holds in any ball
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that is contained in Br .z/, which means that estimate (6.8) is satisfied with respect to
q D q2 in any ball contained in Br .z/. Since also U 2 Lp.Br .z/; �/ � L

q3.Br .z/; �/,
if we choose ı smaller if necessary such that Corollary 8.4 is applicable with q D q2 and
Qq D q3, then all assumptions of Corollary 8.4 are satisfied with respect to q D q2 and
Qq D q3 D .qi C .qi /

?/=2 2 .q2; .q2/
?/, so that we obtain the estimate�«

Br=2.z/

U q3 d�

� 1
q3

� C2

� 1X
kD1

2�k.s��/
�«

B
2kr.z/

U 2 d�

� 1
2

C

�«
Br .z/

Gq3 d�

� 1
q3

C

1X
kD1

2�k.s��/
�«

B
2kr
.z/

G2 d�

� 1
2
�
;

where C2 D C2.n; s; �;ƒ; p/ > 0. By iterating this procedure ip � 1 times and using that
qip D p, we finally arrive at estimate (8.5).

9. Proofs of the main results

We are now in the position to prove our main results.

Theorem 9.1. Let � � Rn be a domain, s 2 .0; 1/, ƒ � 1, R > 0 and p 2 .2;1/.
Moreover, fix some t such that

s < t < min
°
2s
�
1 �

1

p

�
; 1 �

2 � 2s

p

±
: (9.1)

Then there exists some small enough ı D ı.p; n; s; t; ƒ/ > 0, such that if A 2 L0.ƒ/ is
.ı; R/-BMO in � and if ˆ satisfies conditions (1.5) and (1.6) with respect to ƒ, then for
any weak solution u 2 W s;2.Rn/ of the equation

LˆAu D f in �;

we have the implication

f 2 L
np

nC.2s�t/p

loc .�/) u 2 W
t;p

loc .�/:

Moreover, for all relatively compact bounded open sets �0 b �00 b �, we have the esti-
mate

Œu�W t;p.�0/ � C
�
Œu�W s;2.Rn/ C kf k

L
np

nC.2s�t/p .�00/

�
; (9.2)

where C D C.n; s; t; ƒ;R; p;�0; �00/ > 0.

Remark 9.2. Note that in view of Proposition 2.6, the conclusion that u 2 W t;p
loc .�/ for

some p 2 .2;1/ and for any t in the range (9.1) also implies that u 2 W t;p0
loc .�/ for any

p0 2 .1; p�.
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Proof of Theorem 9.1. Fix relatively compact bounded open sets �0 b �00 b �. Let ı D
ı.p;n; s;�;ƒ/ > 0 be given by Proposition 8.6. There exists some small enough r1 2 .0;1/
such that 2r1 � R and B2r1.z/ b �00 for any z 2 �0. Now fix some z 2 �00. Since A is
.ı;R/-BMO in�, we obtain thatA is ı-vanishing inB2r1.z/. Let ¹ mº1mD1 be a sequence
of standard mollifiers in Rn with the properties

 m 2 C
1
0 .B1=m/;  m � 0;

Z
Rn

 m.x/ dx D 1 for all m 2 N: (9.3)

In addition, for any m 2 N we define

Am.x; y/ WD

Z
Rn

Z
Rn

A.x � x0; y � y0/ m.x
0/ m.y

0/ dy0 dx0:

Clearly, Am is symmetric and belongs to L0.ƒ/ for any m 2 N. In addition, there exists
some large enough m0 2 N such that

1

m0
< min

®
r1; dist.B2r1.z/;�/

¯
:

Fix r > 0 and x0; y0 2 Br1.z/ with Br .x0/ � Br1.z/, Br .y0/ � Br1.z/. Then for any
m�m0 and all x0;y0 2B1=m, we haveBr .x0 � x0/�B2r1.z/ andBr .y0 � y0/�B2r1.z/.
Therefore, since A is ı-vanishing in B2r1.z/, for anym � m0 and x0; y0 2 B1=m, we have«

Br .x0�x0/

«
Br .y0�y0/

jA.x; y/ � NAr;x0�x0;y0�y0 j dy dx � ı:

Therefore, together with changes of variables, Fubini’s theorem and (9.3), we obtain«
Br .x0/

«
Br .y0/

jAm.x; y/ � .Am/r;x0;y0 j dy dx

�

Z
B 1
m

Z
B 1
m

«
Br .x0/

«
Br .y0/

ˇ̌̌̌
A.x � x0; y � y0/

�

«
Br .x0/

«
Br .y0/

A.x1 � x
0; y1 � y

0/ dy1 dx1

ˇ̌̌̌
dy dx

�  m.x
0/ m.y

0/ dy0 dx0

D

Z
B 1
m

Z
B 1
m

�«
Br .x0�x0/

«
Br .y0�y0/

jA.x; y/ � NAr;x0�x0;y0�y0 j dy dx

�
�  m.x

0/ m.y
0/ dy0 dx0

� ı

Z
B 1
m

Z
B 1
m

 m.x
0/ m.y

0/ dy0 dx0 D ı;

so that we conclude that Am is ı-vanishing in Br1.z/ for any m � m0. Now define

QAm.x; y/ WD

´
Am.x; y/ if .x; y/ 2 B2r1.z/;

A.x; y/ if .x; y/ … B2r1.z/:
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Since A 2 L1.Rn/ � L1loc.R
n/, by standard properties of mollifiers we have

QAm
m!1
����! A in L1.B2r1.z// (9.4)

and also QAm.x; y/ 2 C1.B2r1.z//. In particular, QAm is continuous inside B2r1.z/ �
B2r1.z/.

Next, for any m 2 N and x 2 �m WD ¹x 2 � j dist.x; @�/ > 1=mº, define

fm.x/ WD

Z
�

f .y/ m.x � y/ dy:

Since f 2 L
np

nC.2s�t/p

loc .�/ and B2r1.z/ b �, again by standard properties of mollifiers we
have

fm
m!1
����! f in L

np
nC.2s�t/p .B2r1.z// (9.5)

and fm 2 C1.B2r1.z// � L
1.B 3

2 r1
.z//. Next, for any m � m0 we let um 2 W s;2.Rn/

be the unique weak solution of the Dirichlet problem´
Lˆ
QAm
um D fm in B2r1.z/;

um D u a.e. in Rn n B2r1.z/:
(9.6)

Since 2? D 2n
nC2s

< np
nC.2s�t/p

, we can choose the number �0 > 0 from Theorem 4.3 small
enough such that

2? C �0 �
np

nC .2s � t /p
:

Then by Proposition 5.2, (6.12), Hölder’s inequality, (9.4) and (9.5), for wm WD u � um
we obtainZ

Rn

Z
Rn

.wm.x/ � wm.y//
2

jx � yjnC2s
dy dx

� C1!.A � QAm; 2r1; x0/

n� �.Br1.z//

� 1X
kD1

2�k.s��/
�«

B
2kr1

.z/

U 2 d�

� 1
2
�2

C C1!.A � QAm; 2r1; z/

n� r

2.s��/
1 �.Br1.z//

�«
B2r1 .z/

jf j2?C�0 dx

� 2
2?C�0

C C1r
2.s��/
1 �.Br1.z//

�«
B2r1 .z/

jf � fmj
2? dx

� 2
2?

� C2

�
kA � QAmk


n�

L1.B2r1 .z//
Œu�2

W s;2.Rn/
C kA � QAmk


n�

L1.B2r1 .z//
kf k2

L
np

nC.2s�t/p .B2r1 .z//

C kf � fmk
2

L
np

nC.2s�t/p .B2r1 .z//

�
k!1
����! 0;
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where C1 D C1.n; s; �;ƒ; �0/ > 0 and C2 D C2.n; s; �;ƒ; �0; r1/ > 0. Thus, we deduce

lim
m!1

Œum�W s;2.Rn/ D Œu�W s;2.Rn/: (9.7)

Next, for any m 2 N, let gm 2 W s;2.Rn/ be the unique weak solution of the Dirichlet
problem ´

.��/sgm D fm in B2r1.z/;

gm D 0 a.e. in Rn n B2r1.z/:
(9.8)

Then by Proposition 5.2, we have the estimate

Œgm�W s;2.Rn/ � C3kfmkL2? .B2r1 .z//
� C4kfmk

L
np

nC.2s�t/p .B2r1 .z//
; (9.9)

where C3 D C3.n; s; r1/ > 0 and C4 D C4.n; s; t; p; r1/ > 0. In addition, by Theorem 4.4
we have the estimate

kgmk
H
2s;

np
nC.2s�t/p .Br1 .z//

� C5kfmk
L

np
nC.2s�t/p .B2r1 .z//

; (9.10)

where C5 D C5.n; s; t; p/ > 0. Also, by Proposition 2.5, we have

Œgm�W t;p.Br1 .z//
� C6kgmk

H
2s;

np
nC.2s�t/p .Br1 .z//

; (9.11)

where C6 D C6.n; s; t; p/ > 0. In view of (9.6) and (9.8), um is a weak solution of the
equation

Lˆ
QAm
um D .��/

sgm in B2r1.z/:

Define

Um.x; y/ WD
jum.x/ � um.y/j

jx � yjsC�
; Gm.x; y/ WD

jgm.x/ � gm.y/j

jx � yjsC�
:

Since QAm is continuous inB2r1.z/�B2r1.z/ and fm 2L1.B 3
2 r1
.z//, by Theorem 4.1 we

have um 2 C sC� .Br1.z// and therefore Um 2 L1.Br1.z/; �/ � L
p.Br1.x0/; �/. There-

fore, by Proposition 8.6, (6.12), (9.9), (9.11) and (9.10), we have�«
Br1=2

.z/

U pm d�

� 1
p

� C7

� 1X
kD1

2�k.s��/
�«

B
2kr1

.z/

U 2m d�

� 1
2

C

�«
Br1 .z/

Gpm d�

� 1
p

C

1X
kD1

2�k.s��/
�«

B
2kr1

.z/

G2m d�

� 1
2
�

� C8
�
Œum�W s;2.Rn/ C Œgm�W t;p.Br1 .z//

C Œgm�W s;2.Rn/

�
� C9

�
Œum�W s;2.Rn/ C kfmk

L
np

nC.2s�t/p .B2r1 .z//

�
;
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where all constants depend only on n, s, t , � ,ƒ, p and r1. Combining the previous display
with Fatou’s lemma (which is applicable after passing to a subsequence if necessary), (9.7)
and (9.5), we conclude that�«

Br1=2
.z/

U p d�

� 1
p

� lim inf
m!1

�«
Br1=2

.z/

U pm d�

� 1
p

� C10 lim
m!1

�
Œum�W s;2.Rn/ C kfmk

L
np

nC.2s�t/p .B2r1 .z//

�
D C10

�
Œu�W s;2.Rn/ C kf k

L
np

nC.2s�t/p .B2r1 .z//

�
; (9.12)

where C10 D C10.n; s; t; �;ƒ; p; r1/ > 0.
Since ¹Br1=2.z/ºz2�0 is an open covering of�0 and�0 is compact, there exists a finite

subcover ¹Br1=2.zi /º
N
iD1 of �0 and hence of �0. Now summing over i D 1; : : : ; N and

using estimate (9.12) for any i , we arrive at�Z
�0��0

U p d�

� 1
p

�

NX
iD1

�Z
Br1=2

.zi /

U p d�

� 1
p

�

NX
iD1

C11
�
Œu�W s;2.Rn/ C kf k

L
np

nC.2s�t/p .B2r1 .zi //

�
� C11N

�
Œu�W s;2.Rn/ C kf k

L
np

nC.2s�t/p .�00/

�
; (9.13)

where C11 D C11.n; s; t; �;ƒ;p; r1/ > 0. Clearly, for any t in the range (9.1), there exists
some 0 < � < min¹s; 1� sº such that t D s C �.1� 2

p
/, so that by choosing this � in our

definition of �, we arrive at

Œu�W t;p.�0/ D

�Z
�0��0

U p d�

� 1
p

� C
�
Œu�W s;2.Rn/ C kf k

L
np

nC.2s�t/p .�00/

�
;

where C D C.n; s; t;ƒ;p;�0;�00/ > 0. Here we also used that r1 depends only on R,�0

and �00 and that � depends only on s, p and t . This proves estimate (9.2).
Next, let us prove that u 2 Lploc.�/. For any q 2 .2; p�, we fix some

s < tq < min
°
2s
�
1 �

1

q

�
; 1 �

2 � 2s

q

±
and define

q? WD

8<:min
° nq

n � tqq
; p
±

if tqq < n;

p if tqq � n:

Since u 2 W s;2.Rn/, by the Sobolev embedding (Proposition 2.3) we have u 2 L2
?

loc.�/,
where 2? WD min¹ 2n

n�2s
; pº. If p D 2?, the proof is finished. Otherwise, together with
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estimate (9.2) with p replaced by 2?, we conclude that u 2 W t2? ;2
?

loc .�/. Again by Propo-
sition 2.3, we then obtain that u 2 L2

??

loc .�/. If p D 2?
?
, the proof is finished. Otherwise,

iterating this procedure also leads to the conclusion that u 2 Lploc.�/ at some point, so that
u 2 W

t;p
loc .�/. This finishes the proof.

Proof of Theorem 1.1. Let us first handle the case when t > s. Since A is assumed to be
VMO in �, for any ı > 0, there exists some R > 0 such that A is .ı; R/-BMO in �.
Therefore, in this case Theorem 1.1 follows directly from Theorem 9.1. This finishes the
proof in the case when t > s.

In the case when t D s, fix some small enough " > 0 such that Qs WD s C " belongs to
the range (9.1) and Qp WD np

nC"p
> 2. Then by assumption and an elementary computation,

we have

f 2 L
np
nCsp

loc .�/ D L
n Qp

nC.2s�Qs/ Qp

loc .�/:

By applying the previous case when t > s with t D Qs and with p replaced by Qp, we obtain
that u 2 W Qs; Qploc .�/, which by Proposition 2.5 leads to u 2 W s;p

loc .�/. Thus, the proof is
finished.

Proof of Theorem 1.3. Fix some t such that s � t < 1. First, we assume that t satisfies
(1.11). Then we have n> .2s � t /q and set p WD nq

n�.2s�t/q
, so that we have qD np

nC.2s�t/p

and thus f 2 L
np

nC.2s�t/p

loc .�/. Then in view of (1.11) and elementary computations, we
obtain that p > 2 and

s � t < min
°
2s
�
1 �

1

p

�
; 1 �

2 � 2s

p

±
so that by Theorem 1.1 we obtain u 2 W t;p

loc .�/ D W
t;

nq
n�.2s�t/q

loc .�/.
Next, suppose that t D 2s � n

q
. Since t < 1, in this case we have 2s � n

q
< 1. Using

the latter inequality, a direct computation shows that there exists some t 0 � s such that

2s �
n

q
< t 0 < min

°
2s
�
1 �

n

.nC 2s/q

�
; 1 �

.2 � 2s/.nC q � 2sq/

.nC 2 � 2s/q

±
: (9.14)

Then by the previous case, we obtain that u 2 W
t 0;

nq

n�.2s�t 0/q

loc .�/, which by Propositions
2.5 and 2.6 implies that u 2 W

2s� nq ;p

loc .�/ D W
t;p

loc .�/ for any p 2 .1;1/.
Finally, if we have 2s � n

q
> t , then there exists some " > 0 such that 2s � n

q
>

t C ". Then for any p > 1, we have q � np
nC.2s�t�"/p

and therefore f 2 L
np

nC.2s�t�"/p

loc .�/.
Furthermore, for p > max¹ 2s

2s�t
; 2�2s
1�t
º, we see that

s � t C " < min
°
2s
�
1 �

1

p

�
; 1 �

2 � 2s

p

±
;

so that by Theorem 1.1 we obtain that u 2 W tC";p
loc .�/ for any p > max¹ 2s

2s�t
; 2�2s
1�t
º,

which by Proposition 2.6 implies that u 2 W t;p
loc .�/ for any p 2 .1;1/, which finishes

the proof.
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Proof of Theorem 1.4. First of all, we remark that by the assumption that q > n
2s

, we
always have 2s � n

q
> 0: Moreover, by a simple computation we have q > 2n

nC2.2s�t/
for

any t < 1. Now consider the case when 0 < 2s � n
q
< 1. Then, as in (9.14), there exists

some t � s such that

2s �
n

q
< t < min

°
2s
�
1 �

n

.nC 2s/q

�
; 1 �

.2 � 2s/.nC q � 2sq/

.nC 2 � 2s/q

±
;

so that by Theorem 1.3, for p WD nq
n�.2s�t/q

we obtain that u 2W t;p
loc .�/. Since in addition

we have

t �
n

p
D t �

n.n � .2s � t /q/

nq
D 2s �

n

q
> 0;

by the Sobolev embedding (Proposition 2.3) we conclude that u 2 C
2s� nq
loc .�/.

Next, consider the case when 2s � n
q
� 1. In this case, by Theorem 1.3 we obtain

u 2 W
t;p

loc .�/ for any s � t < 1 and any p 2 .1;1/, which by the Sobolev embedding
implies that u 2 C ˛loc.�/ for any ˛ 2 .0; 1/. This finishes the proof.

Remark 9.3. Our main results remain valid for another large class of coefficients A that
in general might not be VMO. Namely, the conclusions of Theorems 1.1, 1.3 and 1.4
remain true if we replace the assumption that A is VMO with the following assumption
used, for example, in [35]: namely, our main results remain true if there exists some small
" > 0 such that

lim
h!0

sup
x;y2K

jx�yj�"

jA.x C h; y C h/ � A.x; y/j D 0 for any compact set K � �: (9.15)

This is because by [35, Theorem 1.1], the Hölder estimate from Theorem 4.1 remains
valid under assumption (9.15). Therefore, in contrast to the case when A is VMO, under
assumption (9.15) the above proof can be executed without the need to freeze the coeffi-
cient A, so that the proof actually simplifies in this case. Condition (9.15) is for example
satisfied in the case when A is translation invariant in �, that is, if there exists a measur-
able function aWRn! R such that A.x;y/D a.x � y/ for all x;y 2�. Since in this case
A is otherwise not required to satisfy any additional smoothness assumption, A might not
be VMO in � but still satisfies (9.15).
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tion.

References

[1] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems. Duke Math.
J. 136 (2007), no. 2, 285–320 Zbl 1113.35105 MR 2286632

https://zbmath.org/?q=an:1113.35105
https://mathscinet.ams.org/mathscinet-getitem?mr=2286632


S. Nowak 130

[2] A. K. Balci, L. Diening, R. Giova, and A. Passarelli di Napoli, Elliptic equations with degen-
erate weights. SIAM J. Math. Anal. 54 (2022), no. 2, 2373–2412 Zbl 1496.35128
MR 4410267

[3] U. Biccari, M. Warma, and E. Zuazua, Local elliptic regularity for the Dirichlet fractional
Laplacian. Adv. Nonlinear Stud. 17 (2017), no. 2, 387–409 Zbl 1360.35033 MR 3641649

[4] L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional p-Laplace equation in
the superquadratic case. Adv. Math. 304 (2017), 300–354 Zbl 1364.35055 MR 3558212

[5] L. Brasco, E. Lindgren, and A. Schikorra, Higher Hölder regularity for the fractional p-
Laplacian in the superquadratic case. Adv. Math. 338 (2018), 782–846 Zbl 1400.35049
MR 3861716

[6] S.-S. Byun, Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Amer. Math.
Soc. 357 (2005), no. 3, 1025–1046 Zbl 1087.35027 MR 2110431

[7] L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation.
Arch. Ration. Mech. Anal. 200 (2011), no. 1, 59–88 Zbl 1231.35284 MR 2781586

[8] L. A. Caffarelli and I. Peral, On W 1;p estimates for elliptic equations in divergence form.
Comm. Pure Appl. Math. 51 (1998), no. 1, 1–21 Zbl 0906.35030 MR 1486629

[9] L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and reg-
ularity. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), no. 3, 767–807
Zbl 1381.35211 MR 3489634

[10] J. Chaker and M. Kassmann, Nonlocal operators with singular anisotropic kernels. Comm.
Partial Differential Equations 45 (2020), no. 1, 1–31 Zbl 07143800 MR 4037095

[11] J. Chaker and M. Kim, Regularity estimates for fractional orthotropic p-Laplacians of mixed
order. Adv. Nonlinear Anal. 11 (2022), no. 1, 1307–1331 Zbl 1487.35149 MR 4399827

[12] M. Cozzi, Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii
spaces. Ann. Mat. Pura Appl. (4) 196 (2017), no. 2, 555–578 Zbl 1371.35312
MR 3624965

[13] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations. J. Dif-
ferential Equations 267 (2019), no. 1, 547–586 Zbl 1412.35041 MR 3944281

[14] A. Di Castro, T. Kuusi, and G. Palatucci, Local behavior of fractional p-minimizers. Ann. Inst.
H. Poincaré C Anal. Non Linéaire 33 (2016), no. 5, 1279–1299 Zbl 1355.35192
MR 3542614

[15] G. Di Fazio, Lp estimates for divergence form elliptic equations with discontinuous coeffi-
cients. Boll. Un. Mat. Ital. A (7) 10 (1996), no. 2, 409–420 Zbl 0865.35048 MR 1405255

[16] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev
spaces. Bull. Sci. Math. 136 (2012), no. 5, 521–573 Zbl 1252.46023 MR 2944369

[17] H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients.
Arch. Ration. Mech. Anal. 196 (2010), no. 1, 25–70 Zbl 1206.35249 MR 2601069

[18] H. Dong and D. Kim, On Lp-estimates for a class of non-local elliptic equations. J. Funct.
Anal. 262 (2012), no. 3, 1166–1199 Zbl 1232.35182 MR 2863859

[19] M. M. Fall, Regularity estimates for nonlocal Schrödinger equations. Discrete Contin. Dyn.
Syst. 39 (2019), no. 3, 1405–1456 Zbl 1407.35209 MR 3918224

[20] M. M. Fall, Regularity results for nonlocal equations and applications. Calc. Var. Partial Dif-
ferential Equations 59 (2020), no. 5, Paper No. 181 Zbl 1450.35093 MR 4153907

[21] G. F. Foghem Gounoue, M. Kassmann, and P. Voigt, Mosco convergence of nonlocal to local
quadratic forms. Nonlinear Anal. 193 (2020), 111504 Zbl 1437.49027 MR 4062977

https://zbmath.org/?q=an:1496.35128
https://mathscinet.ams.org/mathscinet-getitem?mr=4410267
https://zbmath.org/?q=an:1360.35033
https://mathscinet.ams.org/mathscinet-getitem?mr=3641649
https://zbmath.org/?q=an:1364.35055
https://mathscinet.ams.org/mathscinet-getitem?mr=3558212
https://zbmath.org/?q=an:1400.35049
https://mathscinet.ams.org/mathscinet-getitem?mr=3861716
https://zbmath.org/?q=an:1087.35027
https://mathscinet.ams.org/mathscinet-getitem?mr=2110431
https://zbmath.org/?q=an:1231.35284
https://mathscinet.ams.org/mathscinet-getitem?mr=2781586
https://zbmath.org/?q=an:0906.35030
https://mathscinet.ams.org/mathscinet-getitem?mr=1486629
https://zbmath.org/?q=an:1381.35211
https://mathscinet.ams.org/mathscinet-getitem?mr=3489634
https://zbmath.org/?q=an:07143800
https://mathscinet.ams.org/mathscinet-getitem?mr=4037095
https://zbmath.org/?q=an:1487.35149
https://mathscinet.ams.org/mathscinet-getitem?mr=4399827
https://zbmath.org/?q=an:1371.35312
https://mathscinet.ams.org/mathscinet-getitem?mr=3624965
https://zbmath.org/?q=an:1412.35041
https://mathscinet.ams.org/mathscinet-getitem?mr=3944281
https://zbmath.org/?q=an:1355.35192
https://mathscinet.ams.org/mathscinet-getitem?mr=3542614
https://zbmath.org/?q=an:0865.35048
https://mathscinet.ams.org/mathscinet-getitem?mr=1405255
https://zbmath.org/?q=an:1252.46023
https://mathscinet.ams.org/mathscinet-getitem?mr=2944369
https://zbmath.org/?q=an:1206.35249
https://mathscinet.ams.org/mathscinet-getitem?mr=2601069
https://zbmath.org/?q=an:1232.35182
https://mathscinet.ams.org/mathscinet-getitem?mr=2863859
https://zbmath.org/?q=an:1407.35209
https://mathscinet.ams.org/mathscinet-getitem?mr=3918224
https://zbmath.org/?q=an:1450.35093
https://mathscinet.ams.org/mathscinet-getitem?mr=4153907
https://zbmath.org/?q=an:1437.49027
https://mathscinet.ams.org/mathscinet-getitem?mr=4062977


Regularity theory for nonlocal equations with VMO coefficients 131

[22] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of �-
transmission pseudodifferential operators. Adv. Math. 268 (2015), 478–528 Zbl 1318.47064
MR 3276603

[23] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefficients.
J. Anal. Math. 74 (1998), 183–212 Zbl 0909.35039 MR 1631658

[24] M. Kassmann, A priori estimates for integro-differential operators with measurable kernels.
Calc. Var. Partial Differential Equations 34 (2009), no. 1, 1–21 Zbl 1158.35019
MR 2448308

[25] M. Kassmann, T. Mengesha, and J. Scott, Solvability of nonlocal systems related to peridy-
namics. Commun. Pure Appl. Anal. 18 (2019), no. 3, 1303–1332 Zbl 1470.74010
MR 3917708

[26] J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coeffi-
cients. Comm. Partial Differential Equations 24 (1999), no. 11-12, 2043–2068
Zbl 0941.35026 MR 1720770

[27] T. Kuusi, G. Mingione, and Y. Sire, Nonlocal equations with measure data. Comm. Math. Phys.
337 (2015), no. 3, 1317–1368 Zbl 1323.45007 MR 3339179

[28] T. Kuusi, G. Mingione, and Y. Sire, Nonlocal self-improving properties. Anal. PDE 8 (2015),
no. 1, 57–114 Zbl 1317.35284 MR 3336922

[29] T. Leonori, I. Peral, A. Primo, and F. Soria, Basic estimates for solutions of a class of nonlocal
elliptic and parabolic equations. Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 6031–6068
Zbl 1332.45009 MR 3393266

[30] A. Maugeri, D. K. Palagachev, and L. G. Softova, Elliptic and parabolic equations with dis-
continuous coefficients. Mathematical Research 109, Wiley-VCH, Berlin, 2000
Zbl 0958.35002 MR 2260015

[31] T. Mengesha and T. Phan, Weighted W 1;p estimates for weak solutions of degenerate elliptic
equations with coefficients degenerate in one variable. Nonlinear Anal. 179 (2019), 184–236
Zbl 1404.35195 MR 3886630

[32] T. Mengesha, A. Schikorra, and S. Yeepo, Calderon-Zygmund type estimates for nonlocal PDE
with Hölder continuous kernel. Adv. Math. 383 (2021), Paper No. 107692 Zbl 1462.35117
MR 4233278

[33] G. Mingione, The singular set of solutions to non-differentiable elliptic systems. Arch. Ration.
Mech. Anal. 166 (2003), no. 4, 287–301 Zbl 1142.35391 MR 1961442

[34] S. Nowak, H s;p regularity theory for a class of nonlocal elliptic equations. Nonlinear Anal.
195 (2020), 111730 Zbl 1440.35337 MR 4046549

[35] S. Nowak, Higher Hölder regularity for nonlocal equations with irregular kernel. Calc. Var.
Partial Differential Equations 60 (2021), no. 1, Paper No. 24 Zbl 07309168 MR 4201647

[36] S. Nowak, Higher integrability for nonlinear nonlocal equations with irregular kernel. In Anal-
ysis and partial differential equations on manifolds, fractals and graphs, pp. 459–492, Adv.
Anal. Geom. 3, De Gruyter, Berlin, 2021 Zbl 1476.35068 MR 4320100

[37] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to
the boundary. J. Math. Pures Appl. (9) 101 (2014), no. 3, 275–302 Zbl 1285.35020
MR 3168912

[38] X. Ros-Oton and J. Serra, Regularity theory for general stable operators. J. Differential Equa-
tions 260 (2016), no. 12, 8675–8715 Zbl 1346.35220 MR 3482695

[39] D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975),
391–405 Zbl 0319.42006 MR 377518

https://zbmath.org/?q=an:1318.47064
https://mathscinet.ams.org/mathscinet-getitem?mr=3276603
https://zbmath.org/?q=an:0909.35039
https://mathscinet.ams.org/mathscinet-getitem?mr=1631658
https://zbmath.org/?q=an:1158.35019
https://mathscinet.ams.org/mathscinet-getitem?mr=2448308
https://zbmath.org/?q=an:1470.74010
https://mathscinet.ams.org/mathscinet-getitem?mr=3917708
https://zbmath.org/?q=an:0941.35026
https://mathscinet.ams.org/mathscinet-getitem?mr=1720770
https://zbmath.org/?q=an:1323.45007
https://mathscinet.ams.org/mathscinet-getitem?mr=3339179
https://zbmath.org/?q=an:1317.35284
https://mathscinet.ams.org/mathscinet-getitem?mr=3336922
https://zbmath.org/?q=an:1332.45009
https://mathscinet.ams.org/mathscinet-getitem?mr=3393266
https://zbmath.org/?q=an:0958.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=2260015
https://zbmath.org/?q=an:1404.35195
https://mathscinet.ams.org/mathscinet-getitem?mr=3886630
https://zbmath.org/?q=an:1462.35117
https://mathscinet.ams.org/mathscinet-getitem?mr=4233278
https://zbmath.org/?q=an:1142.35391
https://mathscinet.ams.org/mathscinet-getitem?mr=1961442
https://zbmath.org/?q=an:1440.35337
https://mathscinet.ams.org/mathscinet-getitem?mr=4046549
https://zbmath.org/?q=an:07309168
https://mathscinet.ams.org/mathscinet-getitem?mr=4201647
https://zbmath.org/?q=an:1476.35068
https://mathscinet.ams.org/mathscinet-getitem?mr=4320100
https://zbmath.org/?q=an:1285.35020
https://mathscinet.ams.org/mathscinet-getitem?mr=3168912
https://zbmath.org/?q=an:1346.35220
https://mathscinet.ams.org/mathscinet-getitem?mr=3482695
https://zbmath.org/?q=an:0319.42006
https://mathscinet.ams.org/mathscinet-getitem?mr=377518


S. Nowak 132

[40] A. Schikorra, Nonlinear commutators for the fractional p-Laplacian and applications. Math.
Ann. 366 (2016), no. 1-2, 695–720 Zbl 1351.35255 MR 3552254

[41] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional
Laplace. Indiana Univ. Math. J. 55 (2006), no. 3, 1155–1174 Zbl 1101.45004
MR 2244602

[42] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals. Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993
Zbl 0821.42001 MR 1232192

[43] H. Triebel, Theory of function spaces. IV. Monogr. Math. 107, Birkhäuser/Springer, Cham,
2020 Zbl 1445.46002 MR 4298338

[44] S. Yeepo, W. Lewkeeratiyutkul, S. Khomrutai, and A. Schikorra, On the Calderon-Zygmund
property of Riesz-transform type operators arising in nonlocal equations. Commun. Pure Appl.
Anal. 20 (2021), no. 9, 2915–2939 Zbl 1477.45007 MR 4315490

Received 14 June 2021; revised 19 October 2021; accepted 22 October 2021.

Simon Nowak
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany;
simon.nowak@uni-bielefeld.de

https://zbmath.org/?q=an:1351.35255
https://mathscinet.ams.org/mathscinet-getitem?mr=3552254
https://zbmath.org/?q=an:1101.45004
https://mathscinet.ams.org/mathscinet-getitem?mr=2244602
https://zbmath.org/?q=an:0821.42001
https://mathscinet.ams.org/mathscinet-getitem?mr=1232192
https://zbmath.org/?q=an:1445.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=4298338
https://zbmath.org/?q=an:1477.45007
https://mathscinet.ams.org/mathscinet-getitem?mr=4315490
mailto:simon.nowak@uni-bielefeld.de

	1. Introduction
	1.1. Setting
	1.2. Main results
	1.3. Local elliptic equations with VMO coefficients
	1.4. Previous results
	1.5. Approach
	1.6. Outline of the paper
	1.7. Some definitions and notation

	2. Fractional Sobolev spaces
	3. The measure µ
	3.1. Basic properties of µ
	3.2. The Hardy–Littlewood maximal function

	4. Some preliminary estimates
	4.1. Higher Hölder regularity
	4.2. Higher integrability of U for small exponents
	4.3. H^{2s,p} estimates for the fractional Laplacian

	5. Comparison estimates
	6. Good-λ inequalities
	6.1. Diagonal good-λ inequalities
	6.2. Off-diagonal reverse Hölder inequalities
	6.3. Off-diagonal good-λ inequalities

	7. A covering argument
	7.1. Diagonal estimates
	7.2. Off-diagonal estimates
	7.3. Level set estimate

	8. L^p estimates for U
	9. Proofs of the main results
	References

