
Ann. Inst. H. Poincaré
Anal. Non Linéaire 40 (2023), 133–156
DOI 10.4171/AIHPC/40

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

The inhomogeneous boundary Harnack principle for fully
nonlinear and p-Laplace equations

Mark Allen, Dennis Kriventsov, and Henrik Shahgholian

Abstract. We prove a boundary Harnack principle in Lipschitz domains with small constant for
fully nonlinear and p-Laplace-type equations with a right-hand side, as well as for the Laplace equa-
tion on nontangentially accessible domains under extra conditions. The approach is completely new
and gives a systematic approach for proving similar results for a variety of equations and geometries.

1. Introduction

This work is intended as a sequel to [3] by the first and third authors, where a boundary
Harnack principle (BHP) was established for the Laplace equation with right-hand side in
Lipschitz domains (with small Lipschitz norm). Here we extend the result to the case of
fully nonlinear as well as p-Laplace equations. The novel and very simple approach intro-
duced here also allows us to consider nontangentially accessible (NTA) domains when
there is an assumed lower bound on the growth of the solution from the boundary.

In lay terms, the main result in [3] states that (up to a multiplicative constant) a positive
harmonic function can dominate a superharmonic function close to a boundary point x0

of a domain D � Rn (n � 2), so long as both functions have zero boundary values in a
small neighborhood of x0. Throughout the paper we assume all domains are in Rn with
n � 2. See below Theorem 1.1 for an exact formulation of the general case in this paper.

The BHP with right-hand side can be used to prove the regularity of free boundaries,
for the obstacle problem (see [3]), and the thin obstacle problem (see [12]). Therefore,
further study and generalization of the BHP with right-hand side should be emphasized to
allow applications to more complicated free boundary problems. This work aims to make
progress in this direction.

The reader may find it useful to read the longer introduction and applications men-
tioned in [3], which we have chosen not to repeat here. Since then there has been some
further research on this topic, including [13], as well as [12] which we learned about in
the final stages of preparation of this work. The approach taken here is rather different and
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allows treatment of very general configurations (see Theorem 2.2); however, our results
do not entirely overlap with the above-mentioned references.

Our main results in this paper are the following theorems:

Theorem 1.1. Let� be a Lipschitz domain with Lipschitz constantL and assume 0 2 @�.
Let u; v � 0 with u D v D 0 on @� \ B1 and assume u.en=2/ D v.en=2/ D 1. Assume
the fully nonlinear operator F satisfies the structural conditions (3.1) and (3.2). There
exist constants C; "; � > 0 (depending on dimension and the ellipticity constants �;ƒ of
F ) such that if L < � and

�1 � F.D2u;ru/; F.D2v;rv/ � ";

then
v

u
� C in � \ B1=2:

For the p-Laplacian (defined in Section 4) we obtain a similar result for supersolu-
tions:

Theorem 1.2. Let � be a Lipschitz domain with Lipschitz constant L and assume 0 2
@�. Let u; v � 0 with u D v D 0 on @� \ B1 and assume u.en=2/ D v.en=2/ D 1. If
1 < p <1, then there exist constants C;� > 0 (depending on dimension and p) such that
if L � � and

�1 � �pv;�pu � 0;

then
v

u
� C in � \ B1=2:

The main ingredients in applying our method are the following:

(A) a boundary Harnack principle for solutions (to the homogeneous equation, with
no right-hand side);

(B) an appropriate lower bound on the growth of u, v from the boundary;

(C) a comparison principle for sub- and supersolutions;

(D) solvability of the Dirichlet problem (with continuous data).

Our theorems require a Lipschitz boundary for (A) and (B). However, for operators
such as the Laplacian �, one has a boundary Harnack principle for NTA domains [9].
Furthermore, for many free boundary problems a lower bound on the growth from the
free boundary is often obtained directly (using competitors, barriers, or other techniques).
In those cases (B) may be difficult or impossible to verify in general, but will be already
available for the specific functions being considered. To handle this situation, one may
apply our method on NTA domains and obtain the following conditional theorem, which
appears useful in practice:

Theorem 1.3. Let� be an NTA domain with 02 @�, and assume that for some x0 2�we
have u.x0/D v.x0/D 1 and u; v � 0 with uD v D 0 on @�\B1. If for some 0 < ˇ < 2
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and some c > 0 one has
u.x/; v.x/ � c.dist.x; @�//ˇ

then there exists a constant C0 (depending on ˇ, the NTA constants, and dist.x0; @B1/)
such that if

�1 � �u;�v � 1;

then
v

u
� C0 in � \ B1=2:

Unlike in Theorems 1.1 and 1.2, we do not assume that �u � " small here, nor that
the domain is somehow flat: the growth bound is all that is required, though it does carry
some indirect implications about the geometry of @� and �u.

2. A metatheorem

LetH� be a family of operators mapping C.�/�C.@�/! C.x�/ for any� 2Q withQ
a collection of open sets. The mapH should be thought of as a solution operator, mapping
boundary data and right-hand sides to solutions of an elliptic PDE. Fix a particular open
set U 2 Q. Let V � C. xU/ consist of some subset of functions u � 0 with HU Œf; u� D u
on U for some f (generally this may be interpreted as positive functions with f bounded
by 1, but only some specific properties below will be relevant; in fact, neither u � 0 nor
HU Œf; u�D u are used explicitly in the proof below). Assume the following properties for
H�, V , U , Q:

(P1) Localization: For every r > 0 and x 2 xU , there is a set Ux;r 2 Q such that
Ux;r � B2r .x/ and U \ Br .x/ D Ux;r \ Br .x/.

(P2) Homogeneity: H�Œ0; 0� D 0 for every � 2 Q.

(P3) Solvability: If � 2 Q, then H�Œf; g� D g on @� for any g 2 C.@�/.

(P4) Extension: If � � �0 are in Q, then H�Œf�;H�0 Œf; g�j@�� D H�0 Œf; g� on �.

(P5) Comparison:1 If f1 � f2 and g1 � g2, then H�Œf1; g1� � H�Œf2; g2�.

(P6) Approximation: For any set� D Ux;r from (P1) with r � 1
4

, x 2 B1=2 \ @Ux;r ,
and u 2 V , we have ju �H�Œ0; u�j � C1r� for some � > 1 on �.

1It is possible to replace this assumption with a homogeneous minimum principle: if g � 0, then
H�Œ0; g� � 0, though without the full comparison principle some of the remarks and typical applications
will not follow. In cases where lower-order terms interfere with the comparison principle, it may still be
possible to apply the results here by treating the lower-order terms as an inhomogeneity instead. For exam-
ple, when studying �u D ��u for � > 0, our theorem will apply if one first shows u is bounded, and then
sets �u D f D ��u, with f 2 Œ�C; 0�. Here H� should be set to the solution to the Laplace equation,
not to the eigenvalue problem.
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(P7) Harnack: For any u 2 V and B2r .x/ � U ,

sup
Br .x/

u � C2Œ inf
Br .x/

uC 1�:

(P8) Boundary Harnack: For any a 2 @U and � D Ua;r from (P1), let u1, u2 satisfy
H�Œ0; u1� D u1 and H�Œ0; u2� D u2. Assume, moreover, that u1; u2 � 0 on �
and u1; u2 D 0 on @U \ Br .a/. Then

u.x/

v.x/
�

�
1C C3

jx � yj˛

r˛

�u.y/
v.y/

for any x; y 2 U \ Br=2.a/.

In addition, we will use the following concept of a 1-sided NTA (or uniform) domain:

Definition 2.1. A domain��Rn is a 1-sided NTA domain (with constantK) if it satisfies
the following two conditions:

(D1) For every x 2 @� and 0 < r < diam.�/, there exists a ball Br=K.y/ � � \
Br .x/.

(D2) For every x; y 2 �, there is a curve 
 W Œ0; 1�! � with 
.0/ D x, 
.1/ D y,
l.
.Œ0; 1�// � Kjx � yj, and min¹l.
.Œ0; t �//; l.
.Œt; 1�//º � Kd.
.t/; @�/ for
all t 2 Œ0; 1�. Here l denotes length.

Our main theorem can now be phrased as follows:

Theorem 2.2. Let Q, H�, V , and U satisfy (P1)–(P8), assume that U is a 1-sided NTA
domain with constant K, and 0 2 @U . Then there is a constant c� D c�.n; K/ such that
the following holds: let u1; u2 2 V with ui > 0 on U \B1, ui D 0 on @U \B1 (i D 1; 2),
and assume that for some ˇ 2 .0; �/, ui satisfies the growth condition

ui .x/ � C4d
ˇ .x; @U \ B1/ 8x 2 U: (2.1)

In addition, assume that u1.x0/ D 1 for some x0 2 Bc�.0/ with d.x0; @U / � c2�. Then

u1

u2
� C�

on Bc� \ U . The constant C� depends only on n, K, C1, C2, C3, C4, �, ˇ (where C1, C2,
C3; and � are constants from (P6)–(P8)).

Remark 2.3. While U being a 1-sided NTA domain suffices for our argument, verifying
property (P3), and possibly (P1), will often require making stronger assumptions. For the
Laplace equation, 2-sided NTA domains (where the complement of U also satisfies (D1))
do have these properties, and in particular (P1) may be found in [9]. If one is working on
Lipschitz graph domainsDL;r as we do below, some of the details here can be simplified,
and the Ux;r can simply be chosen to be U \ Br .x/. It is worth noting, however, that
(P8) does hold on 1-sided NTA domains at least for the Laplace equation [1], and this is
roughly the most general class of domains on which it might be expected to hold [2].
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Remark 2.4. Although we only assume that u1.x0/ D 1 in the above theorem, the lower
bound (2.1) automatically implies that u2.x0/ � c, while an upper bound for u2 is unnec-
essary. An abstract argument shows that for u1, (2.1) may be replaced with a growth
condition on the corresponding homogeneous equation, up to increasing the radii slightly:
first, if ui D HU Œfi ; ui �, let w D HU0;1 Œmin¹f1; 0º; u1� and use the comparison principle
to ensure u1 � w. Thus it suffices to prove w � C�u2. Then set h D HŒ0; u1�: this has
h � w, so a growth estimate for h implies the same for w. Growth estimates for solutions
to the homogeneous equation are equivalent to one another, from (P8); therefore in some
cases (e.g. f2 � 0) this estimate on u1 may be redundant or easily obtainable. On the other
hand, an inspection of the proof shows that if f2 D 0 (and if f2 � 0, after applying the
comparison principle), then (2.1) for u2 may be replaced with the condition u2.x0/ � 1:
the approximating function v2 is equal to u2, so (2.2) below is automatic.

Proof of Theorem 2.2. Let ¹rkº1kD0 be a decreasing sequence of numbers rk � 1
4
rk�1 to

be determined below, with r0 D
c2�
2

, and

Ak D
®
x 2 U \ B

c�C
rk�1
c�

W rk � d.x; @U / � rk�1
¯
; k � 1;

withA0 D ¹x 2 U \B2c� W d.x; @U /� r0º; the constant c� will be chosen below in terms
of only n and the NTA constant Kof U . Let

Mk D sup
Ak

u1

u2
I

as u, v are continuous and positive, we have Mk <1, for each k. Our main goal is to
estimate Mk in terms of Mk�1, but we first consider M0.

Applying (D2), if c� is sufficiently small in terms of the NTA constant K, any x; y 2
Bc� \ U may be connected by a curve as described there which is contained in B1=2.
Furthermore, from (D1) for any x 2 @U , and every r < 1, there is a ball Br=K.y/ �
U \ Br .x/; so long as c� � 1

2K
, Brc�=2.y/ has the same property. We now fix c� so that

these properties hold.
To estimate M0, we first observe that by the lower bound assumption (2.1) we have

u2 � C on A0. On the other hand, we know that u1.x0/ D 1, that x0 2 A0 and from
the NTA property, any other point x 2 A0 may be connected to x0 via a path in B1=2 of
bounded length. Furthermore, from (D2), if z lies on this path, then d.z; @U / �

min¹jx0 � zj; jx � zjº=K. Without loss of generality, assume jx0 � zj � jx � zj. From the
triangle inequality, we obtain r0 � d.x0; @U /� jx0 � zj C d.z; @U /� .K C 1/d.z; @U /.
Therefore, the path stays a distance at least c D r0=.K C 1/ from the boundary @U . This
path may be covered by finitely many balls of radius c=2, and applying the Harnack prin-
ciple (P7) to each ball consecutively gives that u1.x/ is bounded. Taking the supremum,
we see that M0 is bounded in terms of K and the constant C2 in (P7).

Now take any point x 2Ak , and let y 2 @U with jy � xj � rk�1. Use the NTA property
to find a ball Brk�1.z/ � U \ Brk�1=2c�.y/; then we have that d.z; @U / � rk�1, while

jzj � jz � yj C jy � xj C jxj �
rk�1

2c�
C rk�1 C c� C

rk�1

c�
� c� C

rk�2

c�
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if k � 2, using here that rk�1 � 1
4
rk�2. If k D 1, then using r0 D c2�=2 gives

jzj �
r0

2c�
C r0 C c� C

r0

c�
�

�1
4
C
c�

2
C 1C

1

2

�
c� � 2c�

instead. Consider the line segment connecting the points z and y: all points on this line
segment must lie inside B

c�C
rk�2
c�

and Brk�1=2c�.y/ as well, as both endpoints do and

balls are convex. As d.y; @U / D 0, d.z; @U / � rk�1, and the distance is continuous, we
may find some z1 on the line segment such that d.z1; @U / D rk�1. In particular, the two
important properties are that z1 2 Ak�1, while x; z1 2 Brk�1=2c�.y/.

Next we fix Uy;s with s � rk�1
c�

to be chosen below, and use (P1) and (P3) to find v1, v2
which satisfy HUy;s Œ0; ui � D vi (recall that this is analogous to solving the homogeneous
equation on Uy;s with boundary data given by ui ). Note that by comparison (P5), with the
function 0, and homogeneity (P2), we have vi � 0 on Uy;s . There are two main estimates
we need for ui and vi . The first is from (P6): we have that jvi � ui j � C1s� on U \Bs.y/.
We may further combine it with the assumed growth estimate (2.1) to arrive at

jui � vi j � C1s
�
� ui

C1s
�

C4r
ˇ

k

(2.2)

on Bs.y/ \ .Ak [ Ak�1/, which may be rephrased as�
1 � C

s�

r
ˇ

k

�
ui � vi �

�
1C C

s�

r
ˇ

k

�
ui ; (2.3)

so after dividing �
1 � C

s�

r
ˇ

k

�
vi � ui �

�
1C C

s�

r
ˇ

k

�
vi (2.4)

on this region, so long as rˇ
k

is much larger than s� , which we will ensure below.
On the other hand, we may apply (P8), the homogeneous boundary Harnack principle,

to vi . We apply it specifically with r D s, a D y, x D x, and y D z1, to get

v1.x/ � v2.x/
v1.z

1/

v2.z1/

�
1C C

r˛
k�1

s˛

�
: (2.5)

Now, z1 2 Ak�1, so there we may argue as follows, using (2.3) and (2.4):

v1.z
1/

v2.z1/
�

�
1C C

s�

r
ˇ

k

�2u1.z1/
u2.z1/

�

�
1C C

s�

r
ˇ

k

�
Mk�1:

In the second inequality above we have used that s�=rˇ
k

will be small once s and rk are
appropriately chosen. The above inequality along with (2.5) gives

v1.x/

v2.x/
�

�
1C C

s�

r
ˇ

k

C C
r˛
k�1

s˛

�
Mk�1;
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and finally using (2.2) again but this time at x,

u1.x/

u2.x/
�

�
1C C

s�

r
ˇ

k

�2 v1.x/
v2.x/

�

�
1C C

s�

r
ˇ

k

C C
r˛
k�1

s˛

�
Mk�1:

This entire construction can be done at any x 2 Ak , so taking the supremum gives

Mk �

�
1C C

s�

r
ˇ

k

C C
r˛
k�1

s˛

�
Mk�1:

Now we must choose s and rk in an appropriate manner; we have already required
that s� � r

ˇ

k
, rk�1 � s, and rk � rk�1=4. To proceed, select a 
 > 1 such that ˇ
 < �,

and set rk D r



k�1
. This immediately implies that rk �

rk�1
4

. Next, choose a � < 1 with
�� > ˇ
 , and set s D r�

k�1
D r

�=


k
; this has the other two necessary properties. With these

choices, our recurrence relation may be rewritten as

Mk � .1C Cr
��=
�ˇ

k
C Cr

.1��/
˛

k
/Mk�1:

As rk � 1
4
rk�1, rk � r04�k , we will have

Mk � .1C C4
�ck/Mk�1 �

1Y
iD1

.1C C4�ci /M0:

This infinite product is finite, givingMk � CM0 for all k. As the union of theAk exhausts
Bc� \ U , we have shown that

sup
Bc�\U

u1

u2
� CM0:

This completes the proof.

Proof of Theorem 1.3. Set U D �, Q the collection of (2-sided, as in Remark 2.3) NTA
domains with constant at most K, and HUx;r Œf; g� the Perron solution to the Laplace
equation on Ux;r . Set V D ¹u 2 C. xU/ W u � 0; j�uj � A on U º, with A to be determined
in terms of c� and the given constants only. Then (P1), (P3), and (P8) follow from [9]
as long as K is taken to be a sufficiently large multiple of the NTA constant of �, while
(P2), (P4), (P5), and (P7) are classical. The approximation property (P6) follows from
an elementary barrier argument (as in Lemma 3.3 below). After applying the Harnack
inequality repeatedly, we have

C � u; v � c

on U \ B2 \ ¹d.x; @U / � c2�º. For any x1 a point in Bc�.x/ a distance at least c2� from
@U , if we define the functions u1 D u.�/=u.x1/, u2 D v.�/=v.x1/ on B1.x/, then j�ui j �
max¹ 1

u.x1/
; 1
v.x1/
º � c�1.

Applying Theorem 2.2 to u1, u2 on B1.x/ for every x 2 @U \ B1 gives

sup
B1\U\¹zWd.z;@U /<c�º

u

v
� C;

which implies the conclusion.
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3. Fully nonlinear equations

Let S.n/ be the set of symmetric n� nmatrices,ƒ � � > 0 andM � 0 be constants, and
P�
ƒ;�

, PC
ƒ;�

the extremal Pucci operators defined by

P�ƒ;�.R/ D �
X
ei>0

ei Cƒ
X
ei<0

ei ; PC
ƒ;�
.R/ D ƒ

X
ei>0

ei C �
X
ei<0

ei ;

where ei are the eigenvalues of R.
As our method requires that the boundary Harnack principle already holds for solu-

tions to the homogeneous equation, we will require the same structural conditions for fully
nonlinear equations as required in [6] where a boundary Harnack principle without right-
hand side is shown. We therefore assume that F W S.n/�Rn! R (the nonlinear operator
in our equation F.D2u;ru/ D f ) satisfies

P�ƒ;�.R � S/ �M jp � qj � F.R; p/ � F.S; q/ � P
C

ƒ;�
.R � S/CM jp � qj (3.1)

for R; S 2 S.n/ and p; q 2 Rn.
We also assume that F is positively homogeneous of degree 1, i.e.

F.
R; 
p/ D 
F.R; p/ for all 
 > 0; R 2 S.n/; p 2 Rn: (3.2)

We follow [5,6] when we write F.D2u;ru/ � .�/f in the viscosity sense for a con-
tinuous function f . The key property of viscosity solutions is the following comparison-
type fact: if F.D2u;ru/ � f and F.D2v;rv/ � g on a domain �, in the viscosity
sense, then P�

ƒ;�
.D2.v � u// �M jrv � ruj � g � f in the viscosity sense on �. The

proof is straightforward if one of v, u is C 2 from the definitions and (3.1), but the general
case may be derived from [5].

We recall the following notation from [3] for Lipschitz domains. We consider Lips-
chitz domains DL;R where

DL;R WD
®
.x0; xn/ 2 BR W xn > g.x

0/
¯
;

and g is a Lipschitz function with constant at mostL, that is, jg.x0/� g.y0/j �Ljx0 � y0j.
We will assume g.0/ D 0, and will write DL;1 if R D1.

3.1. Approximation and homogeneous boundary Harnack

We need the following classical boundary Harnack principle, which is [6, Lemma 2.4]:

Lemma 3.1. Let F.D2u;ru/ D F.D2v;rv/ D 0 in DL;1 (in the viscosity sense), with
u; v � 0, and u D v D 0 on @DL;1 \ B3=4. If u.en=2/ D v.en=2/ D 1, then there exists
C.ƒ; �;M;L; n/ such that

u

v
� C in DL;1=2:
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In our situation, it will be more convenient to apply the following slight variation of
Lemma 3.1.

Lemma 3.2. Let F.D2u;ru/ D F.D2v;rv/ D 0 (in the viscosity sense) in DL;1, with
u; v � 0, and u D v D 0 on @DL;1 \ B3=4. If u.x0/ D v.x0/ D 1 for some x0 2 DL;1=2,
then there exists C.ƒ; �;M;L; n/ such that u=v � C in DL;1=2.

Proof. We apply Lemma 3.1 to Qv, Qu in place of u, v, where

Qu WD
u.x/

u.en=2/
and Qv WD

v.x/

v.en=2/
;

and obtain

C �
Qv.x/

Qu.x/
D
v.x/

u.x/

u.en=2/

v.en=2/
D
u.en=2/

v.en=2/
:

Now apply Lemma 3.1 again to Qu, Qv in the opposite order to get that for any y 2 DL;1=2,

C �
Qu.y/

Qv.y/
D
u.y/

v.y/

v.en=2/

u.en=2/
�
u.y/

v.y/

1

C
:

This concludes the proof.

We will also need the following lemma.

Lemma 3.3. Let v satisfy �1 � F.D2v;rv/ � 1 in DL;R (in the viscosity sense), where
R � 1. If v D hC w where w solves´

F.D2w;rw/ D 0 in DL;R;

w D v on @DL;R;

then there exists a constant C D C.n; �;ƒ;M/ such that

jhj � CR2:

Proof. From earlier remarks we have that h D v � w satisfies

P�ƒ;�.D
2h/ �M jrhj � 1; � 1 � PC

ƒ;�
.D2h/CM jrhj (3.3)

in the viscosity sense.
Assume first that R � �n

2M
: we use

G.x/ WD
R2

�n

�
1 �
jxj2

R2

�
as an explicit barrier on BR. We have

PC
ƒ;�
.D2G/CM jrGj D �2C 2

MR

�n
� �1:
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Since h D 0 on @DL;R and G � 0 there, using the comparison principle with the right-
hand-side inequality in (3.3) we obtain that h � G � CR2.

On the other hand, if R � �n
2M

, we may use a barrier of the form

G.x/ D e2S � eS.x1C1/

where S � 0. Then G � 0 on DL;1, and

PC
ƒ;�
.D2G/CM jrGj D eS.x1C1/Œ�S2�C SM� � SŒ�S�CM� � �1;

for S large enough. This gives h � G � e2S � CR2 on DL;R after applying the compar-
ison principle for C D C.n; �;M/.

The opposite inequality follows by considering �h instead, using the other viscosity
inequality.

3.2. Growth estimates

Lemma 3.4. There is a number " D ".n; �;ƒ;M/ > 0 such that for every � < �0.n; �;
ƒ;M/, if u � 0 on DL;1, u.en=2/ � 1, u D 0 on @DL;1 \ B1,

�1 � F.D2u;ru/ � "

in the viscosity sense, and L � �, then

u.x/ � c�.xn � �/

on DL;1=16 for a c� D c�.n; �;ƒ;M/ (which does not depend on �).

Proof. We will show this using an explicit estimate with a barrier. The barrier argument
proceeds in two steps, but they use the same function.

Set �.x/ D jxj�q . Direct computation shows that for q sufficiently large in terms of
M , �, and ƒ, we have

P��;ƒ.D
2�/ �M jr�j � 1

for jxj � 1. Fix q to be such a value, this implies that F.D2�;r�/ � 1.
From the Krylov–Safonov Harnack inequality, we have that

inf
B�.en=2/

u � c sup
B�.en=2/

u � C�2 � c

for a small � � 3
8

, c depending only on the ellipticity constants. Consider the barrier
function

h.x/ D c
�.x � en=2/ � .3=8/

�q

��q � .3=8/�q

defined on the annulus A D B3=8.en=2/ n B�.en=2/. On the outer boundary, we have
h D 0, while on the inner boundary, h D c � u. On A we have

F.D2h;rh/ � P��;ƒ.D
2h/ �M jrhj �

c

��q � .3=8/�q
WD "1.n; �;ƒ;M/:
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So long as "< "1 (and �0 is small enough so thatA�DL;1), we may apply the comparison
principle to h and u to obtain u� h on A. In particular, take any point y a distance at most
1
32

from a point z on the region D D ¹.x0; xn/ W jxn � 1
2
j �

1
4
; jx0j < 1

10
º; then

jy � en=2j � jy � zj C jz � en=2j �
1

32
C

r�1
4

�2
C

� 1
16

�2
�
11

32
<
3

8
:

Hence u � h � c0 at any such point. To summarize, at any x 2 D, u � c0 on B1=32.x/.
Now we apply a similar argument around any x 2 D with xn D 1

4
, except slightly

more carefully. Fix �, and note that DL;1=16 contains the large region B1=16 \ ¹xn � �º.
Define r D 1

4
� �, the annulus Ax D Br .x/ nB 1

32 .x/
contained within this region, and the

barrier function

hx.y/ D c0
�.y � x/ � .r/�q

.1=32/�q � .r/�q

defined on Ax . As before, hx D 0 on the outer boundary, hx D c0 � u on the inner bound-
ary, and

F.D2hx ;rhx/ �
c0

.1=32/�q � .r/�q
�

c0

.1=32/�q
WD "2.n; �;ƒ;M/:

If " < "2 (which does not depend on �), we have u � hx on Ax . Using the explicit form
of hx ,

u.x0; t / � hx.x
0; t / � c1Œr � .xn � t /� D c1Œt � ��

for t 2 .�; 1
4
�

1
32
/, where c1 can be taken independent of �.

So far, we have shown that for any x0 with jx0j � 1
16

and any t 2 .�; 1
4
�

1
32
/,

u.x0; t / � c1Œt � ��:

For t � �, this inequality remains true automatically. In particular, this means that it holds
for all .x0; t / 2 DL;1=16, giving the conclusion.

Lemma 3.5. Let ˇ 2 .1; 2/. Then there are constants "; � > 0 such that if u � 0 onDL;1,
u.en=2/ � 1, u D 0 on @DL;1 \ B1,

�1 � F.D2u;ru/ � "

in the viscosity sense, and L � �, then

u.x/ � c1d
ˇ .x; @DL;1/

for x 2 DL;1=64.

Proof. We begin by ensuring that �, " are small enough and applying Lemma 3.4 to learn
that

u.x/ � c�Œxn � �� �
c�

2
xn (3.4)
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so long as xn � 2� and x 2 DL;1=16. Fix a point x 2 @DL;1 \ B1=64, and define

u1.y/ D
u.x C r1y/

u.x C r1en
2
/
;

where r1 D 64�. We claim that on B1, u1 satisfies all of the assumptions of Lemma 3.4
(usingD0L;1D .DL;1 � x/=r1). Indeed, most of the assumptions follow immediately: u1�
0 onD0L;1 and vanishes on the graphical boundary, has u1.en=2/D 1 by construction, and
D0L;1 has Lipschitz constant bounded by L � �. The main assumption we must check is
that it satisfies the relevant differential inequalities. For this, rescaling gives that (for an zF
which satisfies the same properties as F )

�
r21

u.x C r1en
2
/
� zF .D2u1;ru1/ �

r21
u.x C r1en

2
/
"; (3.5)

so we must show that u.x C r1en
2
/ � r21 . Note that x C r1=2en has nth component larger

than 2�, so by (3.4),

u
�
x C

r1en

2

�
�
c�

2

�
xn C

r1

2

�
�
c�

2

� r1
32
C
r1

2

�
�
c�

8
r1:

So long as c�=8 > 64� this is larger than r21 , so we may proceed so long as � is chosen
small enough.

Applying Lemma 3.4 to u1 gives that

u1.y/ �
c�

2
yn

for yn � 2�, which translates to

u.x0; t / �
c�

2
.t � xn/

u.x C r1en
2
/

r1
�
c�

16
.t � xn/

for t 2 .xn C 2�r1; xn C r1/. Note that from our choices, xn C r1 � 2�.
We may continue to apply Lemma 3.4 to uk around x, with rk D 64�rk�1, in a similar

manner, and we claim that this gives

u.x0; t / �
�c�
8

�k c�
2
.t � xn/

on t 2 .xnC 2�rk ;xnC rk/. Let us verify this claim by induction on k, with the kD 1 case
already complete. As before we must ensure that uk satisfies the differential inequalities,
which follows from

u
�
x C

rken

2

�
�

�c�
8

�k�1 c�
2

rk

2
� .64�/krk � r

2
k I

we are using here that rk=22 .2�rk�1; rk�1/ by construction and the inductive hypothesis.
After applying the lemma and scaling back, we obtain for t 2 .xn C 2�rk ; xn C rk/ that

u.x0; t / �
c�

2
.t � xn/

u.x C
rken
2
/

rk
�

�c�
8

�k c�
2
.t � xn/;

as claimed.
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Now fix t 2 .xn; 2�/, and find the largest k for which t 2 .xn C 2�rk ; xn C rk/. As
these intervals cover .xn; 2�/ this is well defined, and as rk D .64�/k , we have

k �
log.t � xn/

log 64�
� k C 1:

Using this with our estimate on u,

u.x0; t / �
�c�
8

�k c�
2
.t � xn/ � c.t � xn/

�c0= log�.t � xn/ � c.t � xn/
1�c0= log�;

where c, c0 only depend on c� and explicit numbers. Select � small enough that 1 �
c0= log � < ˇ.

Finally, we observe that if t � 2�, then from our very first estimate

u.x0; t / �
c�

2
t �

c�

4
.t � xn/;

as jxnj � � from the Lipschitz nature of DL;1. For any point z D .x0; t / as above,
d.z; @DL;1/ � .t � xn/ (as .x0; xn/ 2 @DL;1), so this reads

u.x0; t / � cdˇ ..x0; t /; @DL;1/

for .x0; t / 2 DL;1=64.

Proof of Theorem 1.1. We write � D DL;1, as above. Set U D DL;1, Q to be the collec-
tion of all sets of the form U \ Br .x/, and HU\Br .x/Œf; g� the Perron solution operator,
mapping right-hand side f and boundary data g to the unique viscosity solution. Then
properties (P1), (P2), and (P4) are immediate, while (P3) and (P5) follow from the viscos-
ity comparison principle (see [6]). Set V D ¹u 2 C. xU/ W u � 0; �A � F.D2u;ru/ �

A on U º with constant A to be chosen; then (P6) follows from Lemma 3.3. Finally, (P7)
is the Krylov–Safonov Harnack inequality, while (P8) may be found in [6, Lemma 2.4],
combined with Lemma 3.2 above.

Fix ˇ 2 .1; 2/ and apply Lemma 3.5 to u and v, selecting �, " sufficiently small. This
gives

u.x/; v.x/ � cdˇ .x; @U \ B1/

on B1=2 \U . This gives that if x0 D c�en=4, u.x0/; v.x0/ � c. On the other hand, apply-
ing the Harnack inequality on a region bounded away from @U and containing en=2; x0

gives that u.x0/;v.x0/�C . The functions u1.x/D u.x/=u.x0/ and u2.x/D v.x/=v.x0/
solve�C � F.D2ui ;rui /�C , so in particular in V ifA is chosen appropriately. Apply-
ing Theorem 2.2 gives

sup
U\Bc�=2

u

v
� C sup

Bc�=2\U

u1

u2
� C:

The statement as written (on U \ B1=2) then follows after a standard covering argu-
ment.
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4. p-Laplacian boundary Harnack

We now demonstrate the versatility of this approach by showing the same result for the
p-Laplacian .1 < p <1/ defined through div.jrujp�2ru/. The analogue of Lemma 3.2
(the boundary Harnack principle for the p-Laplace with right-hand side zero) is proven
in [11]. We will also need the analogues of Lemmas 3.3 and 3.5 for the p-Laplacian.
The analogue of Lemma 3.5 is proven in the same manner for the p-Laplacian. However,
proving Lemma 3.3 for the p-Laplacian is more difficult: to see why, note that a difference
u � v of two solutions to the (inhomogeneous) p-Laplacian does not satisfy a PDE of
the same type; rather, at best it satisfies a kind of linearized equation with coefficients
dependent onru andrv. Our approach here will be to establish bounds on these gradients
and then work with this linearized equation.

4.1. Growth estimates

Lemma 4.1. Let ˇ 2 .1; 2/. Then there are constants "; � > 0 such that if u � 0 onDL;1,
u.en=2/ � 1, u D 0 on @DL;1 \ B1,

�1 � �pu � ";

and L � �, then
u.x/ � c1d

ˇ .x; @DL;1/

for x 2 DL;1=64.

Proof. The proof follows that of Lemma 3.5 with minor modifications, which we explain
here. First, in the proof of Lemma 3.4 we used a barrier function �.x/D jxj�q which was
a subsolution to the equation on B1 n ¹0º. For large values of q (depending on p), this also
has �pu � 1. Indeed, the p-Laplacian is given by

�p� D jruj
p�2 Tr

h
I C .p � 2/

r� ˝r�

jr�j2

i
D2�;

where Tr is the trace operator. The matrix in square brackets is independent of the form of
� for any radial, radially decreasing function, and at the point ren the ij th entry is given by
ıij C ıinıjn.p � 2/. Computing D2� at this point, one may check that this is a diagonal
matrix in the ei basis with @i i� D �qr�q�2 for i < n and @nn� D q.q � 2/r�q�2. This
gives that at ren,

Tr
h
I C .p � 2/

r� ˝r�

jr�j2

i
D2� � c.p; n/q.q � 2/r�q�2

for all q sufficiently large enough. On the other hand, jr�j D qr�q�1, so

�p� � cq.q � 2/r
�q�2Œqr�q�1�p�2 � cqp�1.q � 2/r�ŒqC2C.p�2/.qC1/�:

As p > 1, the exponent in square brackets q C 2C .p � 2/.q C 1/ > 1, so

�p� � cq
p�1.q � 2/r�1 � 1

so long as q is chosen large enough in terms of c and p.
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The only other modification needed is in (3.5) in the proof of Lemma 3.5, where we
rescale uk.y/ D u.x C rky/=u.x C rken=2/ and compute the PDE. Here our equation is
different, but we still have

�puk.x/ D
r
p

k

up�1.x C rken=2/
.�pu/.x C rky/;

which implies �1 � �puk � " so long as u.x C rken=2/ � r
p
p�1

k
. This may be ensured

by replacing the condition c�=8 > 64� with c�=8 > .64�/
1
p�1 on �.

We have an elementary Harnack principle at the boundary:

Lemma 4.2. Assume L � 1
100

. Let u � 0 on DL;1 and satisfy �1 � �pu � 1. Assume,
moreover, that u D 0 on @DL;1 \ B1, the graph part of the boundary, and u.en=2/ D 1.
Then there is a constant C D C.n; p/ such that

sup
DL;1=2

u � C:

Proof. The proof is standard, and we follow the outline in [4, Theorem 11.5], highlight-
ing the differences for including a right-hand side. The first tool is the interior Harnack
inequality (see for instance [8, Theorem 7.10])

sup
Br=2

u � C1
�

inf
Br=2

uC C2r

1
�

for some positive constants C1, C2, 
1 as long as Br � DL;1. From utilizing the interior
Harnack inequality on a chain of balls, one obtains for a large enough 
2 > 0 that

u.x/ � s�
2 whenever d.x; @DL;1/ � s and x 2 B3=4: (4.1)

The second main tool follows from extending u to be zero on B1 nDL;1 and noting that
u is then a subsolution on all of B1 to �pw.x/ D f .x/1DL;1.x/. Applying the oscillation
decay estimate for subsolutions ([8, Chapter 7]) leads to

sup
Br=2

u � � sup
Br

uC C3r

3 (4.2)

for constants 0 < � < 1 and C3; 
3 > 0. We now let M D supB1=2 u: we will show that
if M is chosen large enough, then supB3=4 u D C1, contradicting that u is continuous.
We first choose M large enough so that M � C3r
3 � M.1C �/=2. This in turn would
imply that if supBr=2 u �M , then by (4.2) we have

sup
Br

u �
1C �

2�
sup
Br=2

u: (4.3)

We set T WD .1C�/=.2�/> 1. Now letM D u.x0/, and y0 2 @DL;1 such that xi D yi for
1� i � n� 1. From (4.1) we haveM D u.x0/� d.x0; @DL;1/�
2 , so that d.x0; @DL;1/�
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M�1=
2 . Utilizing the Lipschitz constantLwe have d0 WD jx0 � y0j � C1d.x0; @DL;1/�
C1M

�1=
2 . Applying (4.3) we have supB2d0 u D u.x
1/ � TM . Next we define y1 in a

similar way as y0 was defined, and apply the same reasoning as before, so that by (4.1)
we have d1 WD jx1 � y1j � C1.TM/�1=
2 . Applying (4.3) we obtain u.x2/ � T 2M .
Repeating the process inductively, we get a sequence of points xk satisfying

(i) u.xk/ � T kM ,

(ii) jxk � ykj � C.T kM/�1=
2 ,

(iii) jxk � xk�1j � 4C.T kM/�1=
2 .

Choosing M large enough, we have by (iii) that
P1
kD1 jx

k � xk�1j � 1=16, so that each
xk 2 B3=4. From (i) it then follows that supB3=4 u D C1 which contradicts that u is
continuous on compact subsets of B1.

We use the following Liouville-type result.

Lemma 4.3. If u;v� 0 and u, v satisfy�pu;�pvD 0 onDL;1, with u;vD 0 on @DL;1,
then u D cv for some constant c.

Proof. We assume that u, v are both not identically zero. We use the classical boundary
Harnack principle from [10] to show that u=v is uniformly Hölder continuous up to the
boundary on any compact subset of Rn. We normalize u so that limx!0 u.x/=v.x/ D 1,
and let x0 2 DL;1. The rescaled functions

uR.x/ WD
u.Rx/

u.Ren/
; vR WD

v.Rx/

v.Ren/

are also p-harmonic. Furthermore, we have that limx!0 uR.x/=vR.x/ D 1, and that
uR=vR is Hölder continuous on DL;2 with norms independent of R. Then by continu-
ity of the quotient, for any " > 0 there exists R large enough, so thatˇ̌̌uR.x0=R/

vR.x0=R/
�
uR.0/

vR.0/

ˇ̌̌
� C

�
jx0j

R

�ˇ
< ":

We note that
uR.x

0=R/

vR.x0=R/
D
u.x0/

v.x0/

v.Ren/

u.Ren/
;

and therefore limR!1 v.Ren/=u.Ren/ D u.x
0/=v.x0/, and this limit is independent of

the chosen x0, so u.x/=v.x/ is constant. Combining with the normalization u.0/=v.0/ D
1, we conclude u D v.

As a consequence, on DL;1 D RnC we have u D c.xn/C in the configuration above.
We will exploit this fact below and later.
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Lemma 4.4. Let ˇ 2 .0; 1/. Then there is a constant � > 0 such that if u � 0 on DL;1,
u.en=2/ D 1, u D 0 on @DL;1 \ B1,

�1 � �pu � 1;

and L � �, then
u.x/ � C1d

ˇ .x; @DL;1=2 \ B1/

for x 2 DL;1=64.

Proof. We start by considering the solution wL to´
�pwL D �1 in CL;2;

wL D � on @CL;2;

where CL;2 WD ¹.x
0;xn/2B2 j xn ��Ljx

0jº. Here � is a continuous function with �.x/D
0 for xn D �Ljx0j and �.x/D xn � xL for xn � �Ljx0j where xLD

p
4L2=.L2 C 1/. As

in the proof of Lemma 4.2, by extending wL to be zero on B2 n CL;2, we have that wL is
a subsolution, and we can therefore apply the 1-sided oscillation decay estimate to obtain
that wL is Hölder continuous of order ˛ up to the boundary.

Now fix ˇ 2 .0; 1/. We wish to first prove that wL.ten/ � Mtˇ for small enough L.
Suppose this is not true; then there exists Lk ! 0 and tk ! 0, such that wLk .tken=2/ >
2�ˇwLk .tken/. By rescaling withwk DwLk .tkx/=wk.tken=2/, we have thatwk.en=2/D
1 and j�pwkj � Ct

p�ˇ1
k

where ˇ1 is the exponent from Lemma 4.1. Choosing L small
enough we have that p > ˇ1. Using C2w2;2 as a universal barrier at the boundary, we have
that wk ! w with w � 0, �pw D 0 in ¹xn > 0º, w D 0 on ¹xn D 0º, w.en/ D 1, and
w.en=2/ � 2

�ˇ . From Lemma 4.3 we have that w D 2xCn , but this contradicts the fact
that w.en/ � 2ˇ . Thus, there is an �1 > 0 such that if L � �1, then our claim for wL is
true.

We now choose �D �1=2. By employing Lemma 4.2, we have that u� C 0w�1.xC z/
onDL;1=2 at every point of @DL;1=2. The conclusion then follows from the Hölder growth
of w�1 .

4.2. Derivative lower bounds

Theorem 4.5. There exist constants C; "; �; r > 0 depending only on n and p such that if
L < �, 8̂̂̂̂

<̂
ˆ̂̂:
�1 � �pu � " on DL;2;

u D 0 on @DL;2 \ B2;

u.en/ D 1;

u � 0 in DL;2;

then
1

C

u.x/

d.x; @DL;2/
� jru.x/j � C

u.x/

d.x; @DL;2/
whenever x 2 Br :
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Proof. Suppose by way of contradiction that the theorem is not true. Then there exist uk ,
Dk
Lk ;2

, "k satisfying the assumptions with "k ! 0 and xk 2 Brk and satisfying either

jruk.x
k/j �

1

C

uk.x
k/

d.xk ; @Dk
Lk ;2

/
or jruk.xk/j � C

uk.x
k/

d.xk ; @Dk
Lk ;2

/
: (4.4)

Apply Lemma 4.1 to uk to obtain (for some c > 0)

cdˇ1.z; @Dk
Lk ;2

/ � uk.z/

on B1=32 for a ˇ1 > 1 to be chosen. Set yk D .x0
k
; gk.x

0
k
// 2 @Dk

Lk ;2
, the projection of

xk onto the graphical part of the boundary ofDk
Lk ;2

and sk D jxk � ykj � rk . We rescale
with

Quk.x/ WD
uk.y

k C skx/

uk.yk C sken/
:

Note that yk C sken D xk .
Let us verify the differential inequalities satisfied by Quk : if Ak D

.2sk/
p

u
p�1
k

.ykCsken/
, then

�Ak � �p Quk � Ak"k

on zDk
Lk ;1=sk

D .Dk
Lk ;2
� yk/=sk \ B1=sk . We claim that Ak ! 0. Indeed,

Ak �
.2sk/

p

cs
ˇ1.p�1/

k

� Cr
p�ˇ1.p�1/

k
;

which converges to 0 so long as ˇ1 < p=.p � 1/.
Next, fix any large R. We have Quk � 0 and Quk.en/ D 1 by construction. Applying

Lemma 4.4 a finite number of times to Quk on progressively larger balls which exhaust
zDk
Lk ;R

, we obtain

Quk.z/ � C.R/d
ˇ2.z; @ zDk

Lk ;2
/ (4.5)

for a fixed ˇ2 < 1. Meanwhile, on any U D BR \ ¹xn > ıº, which lies entirely inside
zDk
Lk ;1=sk

for k large, from standard interior C 1;˛ estimates we have

k QukkC 1;˛.U / � C:

We may extract a subsequence along which Quk converges in C 1;˛.U / for every set U to a
limiting function u � 0 on RnC. From (4.5), we have that u is continuous up to ¹xn D 0º
and vanishes along that set. The PDE passes to the limit to give �pu D 0. We also have
u.en/ D 1, and

ruk.x
k/

uk.xk/
D r Quk.en/! ru.en/;

meaning that jru.en/j … Œ 1C ; C �. Applying Lemma 4.3, however, gives that u.x/ D xn
(using u.en/ D 1 here), so this is impossible.
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4.3. The approximation lemma

Lemma 4.6. Let u be an H 1
0 function on DL;1, L � 1

10
, which satisfiesZ

DL;1

Aru � r� �

Z
DL;1

�

for all nonnegative � 2 C 10 .DL;1/, where A is a measurable matrix-valued function with

�d ".x; @DL;1 \ B1/I � A � �
�1d�".x; @DL;1 \ B1/I:

Then if " < "0 small enough, we have

sup
DL;1

u � C.�/:

Proof. Let uk D .u � lk/C, where ¹lkº is a strictly increasing sequence of real numbers.
A straightforward approximation argument shows that uk may be used as test functions,
i.e. Z

�d "jrukj
2
�

Z
Aru � ruk �

Z
uk ; (4.6)

where d.x/ D d.x; @DL;1 \ B1/. Applying the Hölder inequality,Z
jrukj

2˛
D

Z
jrukj

2˛ d
"˛

d "˛
�

�Z
d "jrukj

2

�˛�Z
d "˛=.˛�1/.x/

�.1�˛/
:

For any ˛ < 1, we may choose " small enough that the rightmost factor is bounded. Now
from the Sobolev embedding,

kukk
L

2˛n
n�2˛
� CkrukkL2˛ � C

�Z
d "jrukj

2

� 1
2

:

Choose ˛ < 1 so the exponent q WD 2˛n
n�2˛

> 2. Applying (4.6) to the right-hand side and
raising to the qth power,Z

u
q

k
� C

�Z
d "jrukj

2

�q=2
� C

�Z
uk

�q=2
:

In particular, applying Hölder’s inequality to the right-hand side and dividing givesZ
u
q

k
� C: (4.7)

Alternatively, we can obtain the recursion formulaZ
ukC1 �

Z
uk>lkC1�lk

uk �
1

.lk � lk�1/q�1

Z
u
q

k
�

C

.lk � lk�1/q�1

�Z
uk

�q=2
: (4.8)
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Next, select lk D 2k : for any K > 2, choosing m so that 2m � K � 2mC1 and then
combining (4.7) and (4.8) givesZ

.u �K/C �

Z
.u � 2m/C D

Z
um �

C

2.m�1/.q�1/

�Z
um�1

�q=2
�

C

Kq�1
: (4.9)

Now we make a different selection of lk : lk D K C 1 � 2�k with K > 2 large. From
(4.8), Z

ukC1 � C2
k.q�1/

�Z
uk

�q=2
:

If
R
u0 � ı for some ı depending on C and q here, the sequence ¹

R
ukº
1
kD1

converges to
0, which would give that u � K C 1. Using (4.9), though,Z

u0 D

Z
.u �K/C �

C

Kq�1
� ı

if K is chosen large enough in terms of C and q. Thus for a large enough K, u � K C 1,
which implies the conclusion.

Lemma 4.7. There exist constants �, ", r small such that if L � �, u � 0 on DL;1, u D 0
on @DL;1 \ B1, u.e1=2/ D 1, and �A0 � �pu � A0" on DL;1 for some A0 � 1, the
following holds: if w satisfies ´

�pw D 0 on DL;r ;

w D u on @DL;r ;

then jw � uj � CA0.

Proof. Set d.x/ D d.x; @DL;1 \ B1/ below. Let f solve the following PDE:´
�pf D �1 on DL;1;

f D u on @DL;1:

From the maximum principle, f � u and f � w. In particular, C � f .e1=2/ � 1, with
the upper bound from the Harnack inequality, so applying Lemma 4.4 to f=f .e1=2/ gives

u.x/; w.x/ � f .x/ � Cdˇ1.x/

on DL;1=64 for ˇ1 < 1 fixed.
Apply Lemmas 4.1 and 4.5 to u for ˇ2 > 1 fixed, choosing � and " so the assumptions

are satisfied regardless of A0. Set r to the smaller of the r in Theorem 4.5 and 1=64; then
we have

cdˇ2.x/ � u.x/

and

jru.x/j �
u.x/

d.x/
;
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so
cdˇ2�1.x/ � jru.x/j � Cdˇ1�1.x/

for x 2 DL;r . Now, take any x 2 DL;r and Bd.x/=2.x/: on this ball, we may apply either
the boundary or interior form of the C 1;˛ estimate for p-harmonic functions [7] to give
that

jrw.x/j � C
max¹d

p
p�1 .x/; supBd.x/=2 wº

d.x/
� Cdˇ1�1.x/:

Next, set

a.x/ D

Z 1

0

jru.x/t Crw.x/.1 � t /jp�2 dt:

The quantities ru, rw are locally bounded on the set DL;r , so when p � 2 this is well
defined on this region. When p < 2, note thatru¤ 0, and so the integrand is an integrable
function regardless of the value of rw, meaning a is still well defined. In a similar vein,
we estimate a from above and below. If p � 2, then

a.x/ � C Œjru.x/jp�2 C jrw.x/jp�2� � Cd .ˇ1�1/.p�2/ � Cd�˛

so long as ˇ1 is chosen large enough relative to ˛, which will be determined below. When
p < 2, the same computation instead gives

a.x/ � Œjru.x/j C jrw.x/j�p�2 � cd .ˇ1�1/.p�2/ � cd˛:

On the other hand, we have

jru.x/t Crw.x/.1 � t /j � t jruj � .1 � t /jrwj �
1

4
jruj

for t � 3
4

if jrwj � jruj. If instead jrwj � jruj, we get

jru.x/t Crw.x/.1 � t /j � .1 � t /jrwj � t jruj �
1

4
jrwj �

1

4
jruj

for t < 1
4

. In either case this holds on an interval of length 1
4

, so if p > 2,

a.x/ � cjrujp�2 � cd .ˇ2�1/.p�2/.x/ � cd˛.x/

if ˇ2 is small enough. Finally, for p < 2 one may check thatZ 1

0

jru.x/t Crw.x/.1 � t /jp�2 dt � C jrujp�2 � Cd .ˇ2�1/.p�2/ � Cd�˛

by directly computing the integral. To summarize, we have shown that

cd˛ � a.x/ � Cd�˛:
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Now consider the matrix

aij .x/ D

Z 1

0

jru.x/t Crw.x/.1 � t /jp�2mtij dt;

where

mtij D ıij C .p � 2/
.ui t C wi .1 � t //.uj t C wj .1 � t //

jru.x/t Crw.x/.1 � t /j2
:

For any fixed t and � 2 Rn, the sum mtij �i�j is

mtij �i�j D j�j
2
C .p � 2/

jhr.ut C w.1 � t //; �ij2

jru.x/t Crw.x/.1 � t /j2
;

so we have .p � 1/j�j2 �mtij �i�j � j�j
2 for 1 < p � 2, and j�j2 �mtij �i�j � .p � 1/j�j

2

for p > 2. Now let �D p � 1 for 1 < p � 2 and ��1 D p � 1 for 2 < p <1. Using this,

aij .x/�i�j D

Z 1

0

jru.x/t Crw.x/.1 � t /jp�2mtij �i�j dt � a.x/�j�j
2;

and similarly aij .x/ � ��1j�j2a.x/.
The point of this aij is that, if F.z/ D jzjp�2z,

Fi .ru/ � Fi .rw/ D

Z 1

0

@tF.ru.x/t Crw.x/.1 � t // dt D aij .x/.uj � wj /:

Setting h D u � w, we have shown that

�pu ��pw D divŒF .ru/ � F.rw/� D @i .aijhj /

on DL;r (in the distributional sense). In particular,

�A0 � @i .aijhj / � A0

from the equations on u and w. Apply Lemma 4.6 to˙h.r �/
A0

, using our bounds on aij and
choosing ˛ small enough, to get that

jhj � CA0

on DL;1. This completes the argument.

We may reformulate this approximation lemma in a more helpful way:

Lemma 4.8. For every ˛ > 0, there exist constants �, ", r0 small such that if L� �, u� 0
onDL;1, u D 0 on @DL;1 \B1, u.e1=2/ D 1, and �1 � �pu � " onDL;1, the following
holds: if w satisfies ´

�pw D 0 on DL;r ;

w D u on @DL;r ;

with r � r0, then jw � uj � Cr2�˛ .
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Proof. First, apply Lemma 4.1 to u to obtain that cdˇ .x/� u.x/ for a ˇ to be determined
shortly on DL;r0 . Set

u1.y/ D
u.sy/

u.sen=2/
;

where s D r
r1

, where we set r1 to be the r in Lemma 4.7’s conclusion and ask that r0 � r21 .

Set w1.y/ D
w.sy/
u.sen=2/

. Let us check the equation satisfied by u1 on D0L;1 (the rescaled
domain):

�pu1.y/ D
sp

up�1.sen=2/
�pu.y=s/ WD A0�pu.y=s/:

We wish to arrange to have A0 � 1. This may be done, as

up�1.sen=2/ � cs
.p�1/ˇ

� sp�
1
2 ;

where we choose ˇ sufficiently close to 1, and then r0 small enough so as to have s� r0=r1
absorb the constant. Apply Lemma 4.7 to deduce that

ju1 � w1j � CA0;

which scales back to

ju � wj � CA0u.sen=2/ � C
sp

up�2.sen=2/
:

As before, we may estimate

up�2.sen=2/ � cs
.p�2/ˇ

� csp�2C˛;

by choosing ˇ close to 1, so that

ju � wj � Cs2�˛ � Cr2�˛:

Proof of Theorem 1.2. We apply Theorem 2.2 with H the solution mapping for the p-
Laplacian, U our Lipschitz graph domain DL;1, Ux;r D U \ Br .x/, and V the set of all
u with u > 0 on U , u D 0 on @U , u.en=2/ D 1, and �1 � �pu � " for " small. Then
all of the properties (P1)–(P5) and (P7)–(P8) follow in a standard way. For property (P6),
we apply Lemma 4.8 to u 2 V to see that at least it is valid when centered at x D 0 and
r < r0. For r � r0, the property is automatic from the bound in Lemma 4.2 instead. For
other x 2 @U \ B1=2, it then follows from a simple translation argument.

Lemma 4.1 ensures that the growth assumptions on u, v hold, so we may apply Theo-
rem 2.2 to u; v 2 V . The rest follows as in the proof of Theorem 1.3 or 1.1.
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