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A fractional Michael–Simon Sobolev inequality
on convex hypersurfaces

Xavier Cabré, Matteo Cozzi, and Gyula Csató

Abstract. The classical Michael–Simon and Allard inequality is a Sobolev inequality for functions
defined on a submanifold of Euclidean space. It is governed by a universal constant independent
of the manifold, thanks to an additional Lp term on the right-hand side which is weighted by the
mean curvature of the underlying manifold. We prove here a fractional version of this inequality
on hypersurfaces of Euclidean space that are boundaries of convex sets. It involves the Gagliardo
seminorm of the function, as well as its Lp norm weighted by the fractional mean curvature of the
hypersurface.

As an application, we establish a new upper bound for the maximal time of existence in the
smooth fractional mean curvature flow of a convex set. The bound depends on the perimeter of the
initial set instead of on its diameter.

1. Introduction

The Michael–Simon and Allard inequality is a Sobolev inequality on submanifolds of
Euclidean space which includes, on its right-hand side, an additionalLp integral weighted
by a power of the submanifold’s mean curvature norm. Remarkably, the presence of this
extra geometric term enables the inequality to hold with a universal constant independent
of the manifold. As a consequence, this classical result has important applications to the
regularity of surfaces with prescribed mean curvature [6,20] and to the theory of geometric
flows [26], among others.

In this article we establish a fractional version of the inequality on convex hypersur-
faces of Euclidean space – that is, hypersurfaces which are the boundary of an open convex
set. It involves the Gagliardo fractional seminorm of a function defined on the surface, as
well as an additional Lp norm weighted now by a power of the nonlocal mean curvature.
As for its classical counterpart, our inequality carries a universal constant. The validity of
a similar inequality in nonconvex surfaces is still an open question.

Prior to this work, the only available fractional Michael–Simon and Allard inequality
was established by the first two authors in [11] for functions defined on nonlocal minimal
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surfaces. It was conceived and used in [11] to derive a gradient estimate for nonlocal min-
imal graphs. Since nonlocal minimal surfaces are never convex (except for hyperplanes),
the result of [11] and the one presented here complement each other.

As an application of the functional inequalities developed in the current paper, we
obtain an upper bound on the maximal time of existence for the smooth fractional ˛-mean
curvature flow of a convex set. The fractional mean curvature flow was introduced by
Caffarelli and Souganidis [14] and by Imbert [31] in connection with diffusion phenomena
with long range interactions. Similarly to the standard motion by mean curvature, bounded
sets evolving according to this flow will become smaller after some time and ultimately
disappear in finite time. A bound from above for the maximal time of existence of the
smooth flow has been obtained in Sáez and Valdinoci [37, Corollary 7] by comparison
with shrinking spheres. It reads

T � 6 C diam.�0/1C˛;

where diam.�0/ is the diameter of the initial set�0 and the constant C depends only on n
and ˛.

Assuming the initial set to be convex, Chambolle, Novaga, and Ruffini [16] showed
that convexity is preserved along the flow. By combining this fact with our fractional
Michael–Simon-type inequalities, we are able to improve, in the case of smooth convex
evolutions, the aforementioned result of [37] to an estimate involving the area of the initial
surface. Specifically, we prove that if ¹�tºt>0 is a family of C 2 open subsets of RnC1

evolving by fractional ˛-mean curvature flow, with �0 convex, then the maximal time of
existence T � satisfies

T � 6 C j@�0j
1C˛
n ;

for some constant C depending only on n and ˛.

1.1. The classical Michael–Simon and Allard inequality

This inequality is an extension of the classical Sobolev inequality to m-dimensional sub-
manifolds of RnC1. It was proved in the seventies independently by Allard [4] and by
Michael and Simon [35] – the latter for a class of generalized submanifolds, the former
in an even broader varifold setting. The following is the statement in the context of C 2

hypersurfaces M � RnC1. It makes no assumption on the topology of M , in particular
whether it is compact or not. We denote the space of C 1 functions in M with compact
support by C 1c .M/, which agrees with C 1.M/ when M is compact.

Theorem 1.1 (Allard [4]; Michael and Simon [35]). Let n > 2 be an integer, p 2 Œ1; n/,
and M � RnC1 a C 2 hypersurface. Then there exists a constant C depending only on n
and p, such that

kukLp� .M/ 6 C
�
krMukLp.M/ C kHukLp.M/

�
for all u 2 C 1c .M/; (1.1)

where p� WD np=.n � p/, rM is the tangential gradient on M , and H is the mean cur-
vature of M .
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We refer the reader to the recent paper [12] by Miraglio and the first author where,
combining the ideas of [4,35], a quick and easy-to-read proof of Theorem 1.1 is provided.

Exactly as for the Euclidean Sobolev inequality, Theorem 1.1 can be deduced, using
the coarea formula and Hölder’s inequality, from the case when p D 1 and u D �E is the
characteristic function of a sufficiently regular subset E �M . For these choices, inequal-
ity (1.1) is an isoperimetric one and reads

jEj
n�1
n 6 C

�
PerM .E/C

Z
E

jH.x/j dx

�
; (1.2)

where jEj stands for the n-dimensional Hausdorff measure of E, dx indicates the restric-
tion of such a measure to M , and PerM .E/ denotes the perimeter of E in M .

We emphasize that the constant C does not depend on M and that therefore all the
information about the geometry of M is captured by its mean curvature H appearing on
the right-hand side of (1.1). In particular, if M is a minimal surface, i.e., if H D 0, then
estimate (1.1) holds true with only krMukLp.M/ appearing on its right-hand side, exactly
as in the Euclidean case. Such a universal Sobolev inequality on minimal surfaces was
first obtained by Bombieri, De Giorgi, and Miranda [5] – and consequently prior to that
of Michael–Simon and Allard.

Determining the best constant in (1.2) remained an open question for many years, even
when H � 0. In a very recent paper, Brendle [8] has proved that, in every minimal sur-
face, (1.2) holds true takingC to be the isoperimetric constant in Rn. Moreover, equality is
achieved only by flat n-dimensional balls. Brendle’s argument is a far-reaching extension
of the proof of the Euclidean isoperimetric inequality via the Aleksandrov–Bakelman–
Pucci method found by the first author – see, e.g., [10].

Another interesting class of hypersurfaces are those that are compact (with no bound-
ary). In this case, one can plug u � 1 into (1.1). This leads to an estimate from below for
the integral of the modulus of the mean curvature of M in terms of the measure of M :

jM j
n�1
n 6 C

Z
M

jH.x/j dx: (1.3)

For a convex hypersurface M – that is, when M D @� is the boundary of a convex
subset� of RnC1 – estimate (1.3) is a particular case of the Aleksandrov–Fenchel inequal-
ities. In this convex case, it is known to hold with the optimal constant – which is achieved
by all spheresM D @BR.x/. However, it is still an open problem to determine the optimal
constant for general compact hypersurfaces. See [1, 2] and also Chang and Wang [17] for
a recent survey on this topic.

1.2. A fractional Michael–Simon and Allard inequality on convex hypersurfaces

It is a well-known fact that an appropriate Sobolev embedding holds for Sobolev spaces
of fractional order in Euclidean space. Indeed, for every s 2 .0; 1/, every integer n > 1,
and every p 2 Œ1; n=s/, there exists a constant C depending only on n, p, and s, such that

kuk
Lp
�
s .Rn/

6 C Œu�W s;p.Rn/ for all u 2 W s;p.Rn/: (1.4)
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Here W s;p.Rn/ is the fractional Sobolev space of functions u 2 Lp.Rn/ for which the
Gagliardo seminorm

Œu�W s;p.Rn/ WD

�Z
Rn

Z
Rn

ju.x/ � u.y/jp

jx � yjnCsp
dx dy

� 1
p

(1.5)

is finite and
p�s WD

np

n � sp

is the relevant critical Sobolev exponent.
Historically, fractional Sobolev spaces were introduced to measure the smoothness

of functions defined on curved hypersurfaces of Euclidean spaces, with special interest in
boundaries of bounded open Lipschitz sets��RnC1. Indeed, Aronszajn [3], Slobodeckiı̆
and Babic̆ [40], and Gagliardo [28] showed that, for p > 1, the trace space of W 1;p.�/

isW .p�1/=p;p.@�/. The fractional Sobolev spaceW s;p.M/ on a hypersurfaceM �RnC1

can be defined, similarly to the Euclidean case, as the collection of Lp.M/ functions
having finite seminorm Œ � �W s;p.M/. This seminorm is defined as in (1.5) by replacing the
domain of integration Rn with M , writing dx to mean integration with respect to the n-
dimensional Hausdorff measure, and understanding jx � yj to be the standard Euclidean
distance in RnC1:

Œu�W s;p.M/ WD

�Z
M

Z
M

ju.x/ � u.y/jp

jx � yjnCsp
dx dy

� 1
p

:

In the current paper we study the existence of a version of the Michael–Simon and
Allard inequality for fractional Sobolev spaces on hypersurfaces of Euclidean space. Our
interest originates from the theory of nonlocal minimal surfaces. Given ˛ 2 .0; 1/, nonlo-
cal ˛-minimal surfaces are defined as being (the boundaries of) the critical points of the
fractional ˛-perimeter functional

RnC1 � � 7! Per˛.�/ WD
1

2
Œ���W ˛;1.RnC1/ D

Z
�

Z
RnC1n�

dx dy

jx � yjnC1C˛
: (1.6)

They were introduced by Caffarelli, Roquejoffre, and Savin in [13], and are related to
phase-transition models with strongly nonlocal interactions. Such critical points are char-
acterized by the equation

H˛Œ�� D 0 on @�;

where

H˛.x/ D H˛Œ��.x/ WD
˛

2
P:V:

Z
RnC1

�RnC1n�.y/ � ��.y/

jy � xjnC1C˛
dy (1.7)

D P:V:
Z
@�

.y � x/ � �.y/

jy � xjnC1C˛
dy for x 2 @� (1.8)
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is the so-called nonlocal (or fractional) ˛-mean curvature of � at the point x 2 @� and �
denotes the exterior unit normal vector to @�. Note that the last equality follows from the
divergence theorem. It is known that these surfaces satisfy a density estimate

jM \ BR.x0/j > c�R
n for all x0 2M WD @� and R > 0; (1.9)

as in the case of standard minimal surfaces. Here, the positive constant c� depends only
on n and ˛.

It was the study of nonlocal ˛-minimal surfaces that led to the first result on a frac-
tional Michael–Simon inequality, obtained by the first two authors. In [11] we obtained the
following new universal fractional Sobolev inequality on nonlocal ˛-minimal surfaces, as
well as on classical minimal surfaces. We established it by extending a beautiful proof of
the fractional Sobolev inequality in Euclidean space due to Brezis [9]. In [11], this result
played a central role in the proof of a gradient estimate for nonlocal minimal graphs.

Theorem 1.2 (Cabré and Cozzi [11]). Let n > 1 be an integer, s 2 .0; 1/, and p > 1 be
such that n > sp. Let M � RnC1 be either a nonlocal ˛-minimal surface or a classical
minimal surface – more generally, it suffices to assume thatM �RnC1 is a set with locally
finite n-dimensional Hausdorff measure that satisfies (1.9) for some positive constant c�.

Then there exists a constant C depending only on n, s, p, and c�, such that

kuk
Lp
�
s .M/

6 C Œu�W s;p.M/ for all u 2 W s;p.M/: (1.10)

Also recently, and independently from [11], inequality (1.10) has been obtained by
Dyda et al. [21] as part of a more general family of Hardy–Sobolev-type inequalities
for weighted fractional Sobolev spaces defined on metric measure spaces – see [21, Theo-
rem 5.3]. However, when restricted to a hypersurfaceM of Euclidean space, their inequal-
ities hold under stronger assumptions than the density estimate (1.9) – namely, a connec-
tivity-type hypothesis onM and the validity of quantitative doubling and reverse doubling
conditions on the n-dimensional Hausdorff measure restricted to M , in addition to (1.9).

In light of Theorem 1.2 and the classical Michael–Simon inequality, it is conceivable
that (1.10) could be extended to general hypersurfaces by including an additional remain-
der Lp-term involving the nonlocal mean curvature. The following result – which is the
main contribution of our paper – shows that this is indeed the case for convex hypersur-
faces. The question remains open in the nonconvex case.

In order to state our theorem, note first that if � � RnC1 is an open convex set,
then @� is a Lipschitz hypersurface and thus, by Rademacher’s theorem, differentiable
at almost every point x 2 @�. On the other hand, by either expression (1.7) or (1.8), we
see that H˛.x/ is a well-defined quantity in Œ0;C1�, since � is convex. Furthermore, by
Aleksandrov’s theorem, @� is (pointwise) twice differentiable at almost every x 2 @�. At
these points, the nonlocal mean curvature H˛.x/ is finite.

Note also that every bounded open convex set � � RnC1 has finite perimeter, that
is, j@�j < C1. This follows from the classical isodiametric inequality for the perimeter
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of convex sets, stated in Proposition 3.6 and proved in Appendix A. This fact will be
important within some of our proofs, to avoid the indetermination 0 � 1.

We also need to define the nonlocal ˛-perimeter functional on hypersurfaces, as the
natural generalization of the Euclidean nonlocal perimeter functional (1.6). Given a hyper-
surface M � RnC1 and a subset F �M , for s 2 .0; 1/ we define

PerM;s.F / WD
Z
F

Z
MnF

dx dy

jx � yjnCs
:

Theorem 1.3. Let n> 1 be an integer, ˛ 2 .0;1/, s 2 .0;1/, and p> 1 be such that n> sp.
Let��RnC1 be an open convex set. Then there exists a constant C depending only on n,
˛, s, and p, such that

kuk
Lp
�
s .@�/

6 C

�
1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy

C

Z
@�

H˛.x/
sp
˛ ju.x/jp dx

� 1
p

(1.11)

holds true for every u 2 W s;p.@�/, where p�s D np=.n � sp/.
As a consequence, taking p D 1 and u to be the characteristic function of a set E, we

have

jEj
n�s
n 6 C

�
Per@�;s.E/C

Z
E

H˛.x/
s
˛ dx

�
(1.12)

for every measurable subsetE � @� with finite measure, whereC is a constant depending
only on n, ˛, and s. In particular, if @� has finite measure, the choice E D @� leads to

j@�j
n�s
n 6 C

Z
@�

H˛.x/
s
˛ dx: (1.13)

Note that no relation between the parameters s and ˛ is assumed within the theorem.
Inequality (1.13) is a fractional extension of the classical Aleksandrov–Fenchel-type

inequality (1.3). In (1.13), it is still unknown what the best constant is. In addition, its
validity in nonconvex surfaces – after replacing H˛ by jH˛j – remains an open question.

Observe that neither is Theorem 1.2 a particular case of Theorem 1.3 (since the for-
mer makes no convexity assumption, and thus includes classical and nonlocal minimal
surfaces), nor can one deduce the latter from the former. Indeed, Theorem 1.3 holds not
only for unbounded convex sets but also for bounded ones, and in this last case, the den-
sity estimate (1.9) cannot hold because j@� \ BR.x0/j D j@�j for all sufficiently large
balls BR.x0/. Note also that, by convexity, the fractional mean curvatureH˛ is positive at
all points of @� except when @� is a hyperplane.

1.3. An application to the fractional mean curvature flow of convex sets

In Section 5 we give an application of our results to get a new bound on the maximal
time of existence for the smooth fractional mean curvature flow of convex hypersurfaces.



A fractional Sobolev inequality on convex hypersurfaces 191

For this, we will use the pointwise inequality (1.17) reported below – which is a key tool
within the proof of our main result, Theorem 1.3 – as well as the classical Michael–Simon
inequality.

Without entering into regularity issues, a family of open sets ¹�tºt>0 evolves by frac-
tional ˛-mean curvature if the inner normal velocity at a point x 2 @�t is equal to the
fractional ˛-mean curvature of �t at x. This flow has been investigated recently in sev-
eral works. The existence and uniqueness of viscosity solutions to the generalized level set
flow was obtained by Imbert [31]. Julin and La Manna [32] established that, if the initial
set�0 is bounded and of class C 2, then�t is smooth for sufficiently small times t . Thus,
the time

T � WD sup
®
t > 0 W �� is nonempty and has C 2 boundary for all � 2 Œ0; t/

¯
(1.14)

is positive. The sets�t will become empty in finite time, possibly developing singularities
prior to extinction. Indeed, Sáez and Valdinoci [37, Corollary 7] have shown that

T � 6 C diam.�0/1C˛ (1.15)

for some constant C depending only on n and ˛, whereas an example in which singu-
larities arise before extinction for a nonconvex initial datum has been produced by Cinti,
Sinestrari, and Valdinoci [18].1

When�0 is convex, then each�t is convex as well, as shown by Chambolle, Novaga,
and Ruffini [16]. Thanks to this observation, by combining the pointwise nonlocal esti-
mate (1.17) with the classical Michael–Simon inequality of Theorem 1.1, we establish the
following result.

Theorem 1.4. Let n > 1, ˛ 2 .0; 1/, and �0 � RnC1 be a bounded open convex set
with C 2 boundary. Let ¹@�tº be the flow of hypersurfaces moving by fractional mean
curvature H˛ . Then the maximal time T � defined by (1.14) satisfies

T � 6 C j@�0j
1C˛
n ; (1.16)

for some constant C depending only on n and ˛.

The corresponding estimate for the classical mean curvature flow (where ˛ D 1) was
established by Evans and Spruck [26] – see Evans [24, Section F.2] for a simpler proof

1We stress that T � is the maximal time for which the fractional ˛-mean curvature flow originating
from a C 2 convex set �0 remains C 2. Due to the possible formation of singularities, this time might be in
principle smaller than the extinction time Te WD sup¹t > 0 W �t is nonemptyº of the generalized level set
flow considered, e.g., in [16,31]. Since, for�0 convex, this possibility has not been ruled out at the current
time (in contrast with the case of convex sets evolving by classical mean curvature flow [26, 30]), we keep
this distinction. We also point out that, via results and ideas from [15,31], the upper bound on T � provided
by [37] can actually be improved to an estimate on the extinction time Te , regardless of the convexity of
the initial datum.
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in the case of a smooth flow. Both arguments make crucial use of the Michael–Simon
inequality.

We stress that Theorem 1.4 assumes @�t to be a C 2 hypersurface for all t 2 Œ0; T �/.
Hence, our result must be understood as an estimate for the maximal time of existence
of the C 2 flow, and not as a bound on the true extinction time Te . As commented in
footnote 1, it is still not known whether for a convex C 2 initial surface @�0 the flow
remains C 2 for all times prior to extinction and there is no formation of singularities, such
as, for instance, corners or edges of a polytope.

Note that Theorem 1.4 improves estimate (1.15) from [37] (when restricted to convex
evolutions) in the dependence on �0. Indeed, any bounded convex set �0 satisfies the
nontrivial inequality j@�0j 6 C.n/ diam.�0/n – see Proposition 3.6 below for its sharp
version, in which C.n/ D 2�nj@B1j D 2�njSnj. On the other hand, for n > 2 one can
produce examples of convex sets with diameter equal to 1 and arbitrarily small surface
area – e.g., shrinking tubular neighborhoods of a segment.

1.4. Sketch of the proof of Theorem 1.3

Our analysis stems from the following observation. If � � RnC1 is an open convex set,
then

j@�j�
˛
n 6 CH˛.x/ for a.e. x 2 @�; (1.17)

for some universal constant C depending only on n and ˛. This pointwise inequality for
convex sets cannot hold for general domains – after replacing H˛ by jH˛j. Indeed, one
can easily construct a smooth bounded domain � with 0 2 @� and H˛.0/ D 0; we will
then have jH˛j 6 " in a set of positive measure (a small neighborhood of 0 on @�), for
every " > 0. It also has no counterpart in the local setting, since @� may have flat parts
where the standard mean curvature vanishes. The proof of (1.17) will be rather simple but,
in any case, at the end of this section we will discuss how we originally found it in the
plane, that is, when � � R2.

The next step in proving the main theorem is to consider subsets E � @� and
a dichotomy argument. We will distinguish, vaguely speaking, between two situations:
either @� has, at some well-chosen scales depending on jEj, small density around x, or it
does not. In the former case of points x of low density – occurring, say, where @� has a
tentacle-like shape – the proof of (1.17) still carries through and one obtains

jEj�
˛
n 6 CH˛.x/

at such points x. In the latter case when x has high density, we take advantage of the other
term in the right-hand side of our fractional Michael–Simon inequality (in this exposition
we take s D ˛ to simplify) and prove that

jEj�
˛
n 6 C

Z
@�nE

dy

jx � yjnC˛
:
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This second case is what happens for nonlocal minimal surfaces (Theorem 1.2), where
every point has high density. Either way, the following pointwise inequality will hold
true:

jEj�
˛
n 6 C

�Z
@�nE

dy

jx � yjnC˛
CH˛.x/

�
for every E � @� and a.e. x 2 E: (1.18)

Inequality (1.18) – see Proposition 3.1 – is the key step towards the main theorem. It
turns out to be the nonflat version of the pointwise estimate established in Rn by Savin
and Valdinoci [39, Appendix A]. Their estimate states that

jEj�
˛
n 6 C

Z
RnnE

dy

jx � yjnC˛
for all x 2 Rn and E � Rn; (1.19)

for some constant C depending only on n and ˛. This is a rearrangement inequality that
follows immediately from the observation that integrating over the complement of the
ball B�.x/, with jB�j D jEj, instead of Rn n E does not increase the right-hand side
of (1.19).

Integrating (1.18) over E, we are led to the fractional isoperimetric inequality

jEj
n�˛
n 6 C

�
Per@�;˛.E/C

Z
E

H˛.x/ dx

�
:

This is our fractional Sobolev inequality (1.11) for s D ˛, p D 1, and characteristic func-
tions – i.e., inequality (1.12). To extend it to any p > 1 and arbitrary functions we follow
the strategy devised by Di Nezza, Palatucci, and Valdinoci in [19, Section 6] to deduce
the Euclidean fractional Sobolev inequality (1.4) from the pointwise inequality (1.19). As
we will see later, when p D 1 a fractional Sobolev inequality can be established more
easily using the corresponding fractional isoperimetric inequality in combination with the
fractional coarea formula of Visintin [41] – see Lemma 4.1 below. This is true both in
the Euclidean framework and in the context of hypersurfaces. However, to the best of our
knowledge, it is not known whether one can then derive the fractional Sobolev inequality
for p > 1 from the case p D 1 (even in the Euclidean case), in contrast with the case of
Sobolev inequalities of integer order.

Finally, the following is an elementary proof of the pointwise lower bound (1.17) on
the nonlocal mean curvature for bounded and strictly convex sets of R2. This was the
starting point of our work. Up to a rigid movement, we may assume that x D 0 2 @� and
that � � R2C D ¹y 2 R2 W y2 > 0º. As � is strictly convex, it can be parametrized by a
function y W Œ0;��! @��R2 of the form y.�/D r.�/.cos�; sin�/, with r > 0 in .0;�/
and r.0/ D r.�/ D 0. In this parametrization, for y D y.�/ and r D r.�/, it holds that

y � �.y/ D
r2

p
r2 C Pr2

and
y � �.y/

jyj2C˛
D

1

r˛
p
r2 C Pr2

: (1.20)

From the fact that r=
p
r2 C Pr2 6 1 one obtains

� D

Z �

0

d� 6
Z �

0

� r
p
r2 C Pr2

�� ˛
1C˛

d�
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D

Z �

0

r�
˛
1C˛
�p
r2 C Pr2

� ˛
1C˛ d�

6
�Z �

0

d�

r˛

� 1
1C˛
�Z �

0

p
r2 C Pr2 d�

� ˛
1C˛

: (1.21)

From representation (1.8) for the fractional ˛-mean curvature and the second identity
in (1.20) it follows that

R �
0
r�˛ d� DH˛.0/. Hence we proved that �1C˛ 6H˛.0/j@�j

˛ ,
which is precisely (1.17) for n D 1.

1.5. Plan of the paper

We shall prove Theorem 1.3 in increasing order of generality, using in each section the
previous less general results or the main ingredients of their proofs.

In Section 2 we prove the pointwise lower bound (1.17) for H˛ , as well as its integral
consequence (1.13). This is the last statement of Theorem 1.3.

In Section 3 we extend the pointwise inequality (1.17) to proper subsets E of @� –
i.e., we prove the pointwise lower bound (1.18).

In Section 4 we deduce Theorem 1.3 in its full generality from the pointwise lower
bound (1.18).

In Section 5 we apply the pointwise inequality (1.17) to the fractional mean curvature
flow and establish Theorem 1.4.

In Appendix A we provide a simple proof of a known isodiametric inequality for the
perimeter of convex sets.

1.6. Notation

Throughout the paper, the word measurable refers to the n-dimensional Hausdorff mea-
sure Hn on a hypersurface M of RnC1, if not stated explicitly otherwise. The measure of
a set E � M will be denoted by jEj and the integration element simply by dx, instead
of dHn.x/. Open balls are understood as balls in the ambient space RnC1, i.e., BR.x/ D
¹y 2 RnC1 W jy � xj < Rº and jy � xj is the Euclidean distance in RnC1. If x D 0 we
write BR D BR.0/, while Sn D @B1 is the n-dimensional unit sphere in RnC1.

2. A lower bound on the nonlocal mean curvature

We start by proving the last bound (1.13) of Theorem 1.3, which is the simplest statement
within the theorem. It will follow from the pointwise inequality

j@�j�
˛
n 6 CH˛.x/ for a.e. x 2 @�, where C D

� 2

jSnj

� nC˛
n
: (2.1)

Here, ˛ 2 .0; 1/ and � is any bounded open convex set of RnC1.
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The proof of (2.1) relies on the following two simple lemmas. The first one extends
the first identity in (1.21) to higher dimensions. It is a well-known result in the theory of
double layer potentials (it is sometimes called Gauss’s law) and does not require convex-
ity; see, e.g., [27, Proposition 3.19]. Later we will use the lemma with �b D � \ BR.x/
for some radius R, where � is our convex set and x 2 @�.

Lemma 2.1. Let �b � RnC1 be a bounded domain with Lipschitz boundary. Then

P:V:
Z
@�b

.y � x/ � �.y/

jy � xjnC1
dy D

jSnj

2

holds true in the principal value sense at every point x 2 @�b at which @�b is differen-
tiable.

Proof. Let ˆ be the fundamental solution of the Laplacian centered at x, i.e., ��ˆ D ıx
in RnC1. We have that rˆ.y/D �jSnj�1jy � xj�n�1.y � x/ for every y ¤ x. Let " > 0
be sufficiently small. By applying the divergence theorem in �b n xB".x/, a Lipschitz
domain, we get

0 D

Z
�bn xB".x/

�ˆ.y/ dy D

Z
@.�bn xB".x//

rˆ.y/ � �.y/ dy

D
1

jSnj

²
�

Z
@�bn xB".x/

.y � x/ � �.y/

jy � xjnC1
dy C

j�b \ @B".x/j

"n

³
:

The claim follows by letting "! 0C and noticing that "�nj�b \ @B".x/j ! jSnj=2, since
@� is differentiable at x. This shows in particular that the principal value in the statement
exists.

The second lemma is an extension of the inequalities in (1.21) to any dimension n> 1.
For the proof of (2.1) we will only need the next lemma for E D @�, but in Section 3
we will require the estimate for general subsets E � @�. Here it is useful to recall the
comments made before Theorem 1.3 on the differentiability properties of open convex
sets � and the definition (1.8) of H˛.x/ for x 2 @�.

Lemma 2.2. Let ˛ 2 .0; 1/ and � � RnC1 be an open convex set. ThenZ
E

.y � x/ � �.y/

jy � xjnC1
dy 6 jEj

˛
nC˛H˛.x/

n
nC˛

for every measurable subset E � @� and almost every point x 2 @�. Here, the integral
is well defined in Œ0;C1� since its integrand is a nonnegative function.

Proof. Using that 06 .y � x/ � �.y/=jy � xj6 1 for almost every x and y on @�, together
with Hölder’s inequality, we see thatZ

E

.y � x/ � �.y/

jy � xjnC1
dy D

Z
E

.y � x/ � �.y/

jy � xj

dy

jy � xjn

6
Z
E

� .y � x/ � �.y/
jy � xj

� n
nC˛ dy

jy � xjn
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D

Z
E

� .y � x/ � �.y/
jy � xjnC1C˛

� n
nC˛
dy

6 jEj
˛
nC˛

�Z
E

.y � x/ � �.y/

jy � xjnC1C˛
dy

� n
nC˛

:

The claim follows from this inequality and expression (1.8) forH˛.x/, combined with the
fact that .y � x/ � �.y/ > 0 for almost every x and y on @� since � is convex.

Proofs of inequalities (2.1) and (1.13). Since Lemma 2.1 requires the domain to be boun-
ded, while (1.13) is claimed for convex sets with finite perimeter, we first point out that an
open convex set is bounded if and only if it has finite perimeter.2

Now, from Lemmas 2.1 and 2.2 applied with �b D � and E D @�, respectively,
we obtain (2.1). By raising (2.1) to the power s=˛ and integrating over @�, we infer the
validity of (1.13).

3. A fractional Michael–Simon-type isoperimetric inequality

In this section we shall prove the key pointwise inequality involved in the proof of Theo-
rem 1.3. This is the content of the following proposition.

Proposition 3.1. Let ˛ 2 .0; 1/, s 2 .0; 1/, p > 0, and � � RnC1 be an open convex set.
Then, for every E � @� with finite positive measure and a.e. x 2 E, it holds that

jEj�
sp
n 6 C

�Z
@�nE

dy

jx � yjnCsp
CH˛.x/

sp
˛

�
(3.1)

for some constant C depending only on n, ˛, s, and p.

The proof of this result relies on the following ingredients:

(i) A classical rearrangement result, Lemma 3.2, which reduces the proof of (3.1)
for a general set E to the case E D @� \ BR.x/.

(ii) The double layer potential identity of Lemma 2.1, and the localized pointwise
inequality that will follow from it, Lemma 3.4.

(iii) A dichotomy argument. We will essentially distinguish between two cases,
depending on whether R�nj@� \ BR.x/j is smaller or larger than a certain
constant for some appropriate radii R which depend on jEj.

2This follows from the monotonicity of the perimeter of open convex sets with respect to inclusion
(see Appendix A for the proof of this classical result). Using this fact, one part of the claim is obvious,
while the other is checked as follows. Any unbounded open convex set contains a ball, and hence also the
convex cones generated by a vertex going to infinity and the ball. Note finally that such convex cones have
arbitrarily large perimeter.
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(iv) A kind of reverse perimeter-energy estimate for convex sets, Lemma 3.5 (reverse
here is meant in comparison with the natural upper bound on the perimeter that
holds for minimizing minimal surfaces).

(v) A known isodiametric inequality for the perimeter of convex sets, Proposi-
tion 3.6.

We start with (i) – the rearrangement result – which is the content of the next lemma.
From it, it will be enough to prove Proposition 3.1 for sets of the form E D @�\BR.x/.
Indeed, the lemma states that replacingE by @�\BR.x/, with jEjD j@�\BR.x/j, does
not increase the right-hand side of (3.1). This elementary observation does not require any
convexity assumption on �, nor that the hypersurface @� is a boundary in the first place.
In addition, all that is needed for the exponent nC sp appearing in the statement is to be
larger than n. This is why we allow p > 0 in the lemma – though we will use it always
with p > 1.

Lemma 3.2. Let s 2 .0; 1/, p 2 .0;C1/, and M � RnC1 be a set of locally finite n-
dimensional Hausdorff measure. Let E � M be a set with positive measure and x 2 E.
Assume that

jEj D jM \ BR.x/j (3.2)

for some R > 0.
Then Z

MnE

dy

jx � yjnCsp
>
Z
MnBR.x/

dy

jx � yjnCsp
:

Proof. By assumption (3.2) we have

jE \ BR.x/j C j.M nE/ \ BR.x/j D jE \ BR.x/j C jE n BR.x/j;

and thus
j.M nE/ \ BR.x/j D jE n BR.x/j:

By using this identity we see thatZ
MnE

dy

jy � xjnCsp
D

Z
.MnE/\BR.x/

dy

jy � xjnCsp
C

Z
.MnE/nBR.x/

dy

jy � xjnCsp

> R�n�spj.M nE/ \ BR.x/j C

Z
.MnE/nBR.x/

dy

jy � xjnCsp

D R�n�spjE n BR.x/j C

Z
.MnE/nBR.x/

dy

jy � xjnCsp

>
Z
EnBR.x/

dy

jy � xjnCsp
C

Z
.MnE/nBR.x/

dy

jy � xjnCsp

D

Z
MnBR.x/

dy

jy � xjnCsp
:

This proves the lemma.
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The next lemma is of a technical nature and we will use it twice. Within the proof of
Proposition 3.1 it will guarantee that, under appropriate assumptions onM and for almost
every x 2 E �M , hypothesis (3.2) is actually satisfied for some radiusR depending on x
– a property that may not be satisfied by all x 2 E, as we will see.

Lemma 3.3. Let M � RnC1 be a set of locally finite n-dimensional Hausdorff measure.
Then the following statements hold true.

(a) The set

D WD
®
x 2M W there exists Rx > 0 such that jM \ @BRx .x/j > 0

¯
is at most countable.

(b) For every x 2M , the function

Ax W .0;C1/! Œ0;C1/; defined by Ax.R/ WD jM \ BR.x/j for R > 0;

is nondecreasing and continuous from the left. Furthermore, it is continuous if
and only if x 2M nD.

Proof. Consider, for j; k 2 N, the sets Mj WDM \ Bj and

Dj;k WD
®
x 2Mj W there exists Rx > 0 such that jMj \ @BRx .x/j > 1

k

¯
:

It is clear that D D
S
j;k2N Dj;k . Note that, if x and y are two distinct points in Dj;k ,

then j.Mj \ @BRx .x// [ .Mj \ @BRy .y//j D 0. Moreover, as M has locally finite n-
dimensional measure, we have that jMj j < C1. From the last two facts we deduce that
each Dj;k contains no more than kjMj j points. Hence, D is at most countable and (a) is
proved.

We now address point (b). The monotonicity of the function Ax is obvious, while its
left-continuity follows from BR.x/ being open. The last statement is a consequence of the
fact that jM \ @BR.x/j D lim�!RC Ax.�/ �Ax.R/ for every x 2 M and R > 0. We
stress that for the last two claims we took advantage of the Hn-measurability of M and
of standard formulas for the measure of increasing unions and decreasing intersections of
sets.

In the following result we apply the double layer potential identity of Lemma 2.1
with �b D � \ BR.x/. This allows us to obtain a localized version of Lemma 2.2.

Lemma 3.4. Let ˛ 2 .0; 1/ and � � RnC1 be an open convex set. Then

jSnj

2
D

Z
@�\BR.x/

.y � x/ � �.y/

jy � xjnC1
dy C

j� \ @BR.x/j

Rn

6 j@� \ BR.x/j
˛
nC˛H˛.x/

n
nC˛ C

j� \ @BR.x/j

Rn

for every R > 0 and almost every x 2 @�.
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Proof. First, recall that, as� is convex, its boundary is Lipschitz and has therefore locally
finite n-dimensional Hausdorff measure. Hence, we may apply Lemma 3.3(a) and deduce
that, for all but a countable number of points x 2 @�, it holds that j@�\ @BR.x/j D 0 for
every R > 0. Moreover, @� is differentiable at almost all such points.

Consider the convex set �b D � \ BR.x/. Its boundary @�b is therefore Lipschitz
and, in addition, it is equal, up to a set of measure zero, to the disjoint union of the two
sets @� \ BR.x/ and � \ @BR.x/ – we used here the fact, noted earlier, that j@� \
@BR.x/j D 0. Applying the double layer potential identity of Lemma 2.1, we get

jSnj

2
D

Z
@�b

.y � x/ � �.y/

jy � xjnC1
dy

D

Z
@�\BR.x/

.y � x/ � �.y/

jy � xjnC1
dy C

Z
�\@BR.x/

.y � x/ � �.y/

jy � xjnC1
dy:

As .y � x/ � �.y/ D jy � xj D R for all y on @BR.x/, the first identity in the lemma is
proved. The second inequality follows from Lemma 2.2, applied to the set E D @� \

BR.x/.

When @� has low density around a point x at a certain scale, we will absorb the last
term in the inequality of Lemma 3.4 within its left-hand side. For this we will need the
following reverse perimeter-energy estimate.

Lemma 3.5. Let � � RnC1 be an open convex set, x 2 @�, and R > 0. Then

j� \ @BR.x/j 6
Cn

R
j@� \ BR.x/j

nC1
n

for some constant Cn > 1 depending only on n.

Proof. Of course, we can assume that � 6� BR.x/, since otherwise there is nothing to
prove. Let C be the open cone of vertex x spanned by�\ @BR.x/. By the coarea formula
and the homogeneity of cones (here HnC1 denotes the .n C 1/-dimensional Lebesgue
measure in RnC1),

HnC1.C \ BR.x// D

Z R

0

jC \ @B�.x/j d� D
jC \ @BR.x/j

Rn

Z R

0

�n d�

D
jC \ @BR.x/jR

nC 1
:

Moreover, as�\BR.x/ is convex, we have that C\BR.x/��\BR.x/. Consequently,

j� \ @BR.x/j D jC \ @BR.x/j D .nC 1/
HnC1.C \ BR.x//

R

6 .nC 1/
HnC1.� \ BR.x//

R
:
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Now, by the relative isoperimetric inequality in Euclidean balls (see, e.g., [34, Propo-
sition 12.37 and Remark 12.38]),

min
®
HnC1.� \ BR.x//;H

nC1.BR.x/ n�/
¯

6 CI j@� \ BR.x/j
nC1
n

for some constant CI depending only on n. Using again the convexity of � to ensure that
the minimum on the left-hand side is HnC1.� \ BR.x//, we conclude that

j� \ @BR.x/j 6
Cn

R
j@� \ BR.x/j

nC1
n ;

where Cn D .nC 1/CI .

To deal with the second case in the dichotomy (iii), where the point x 2 @� has
large density for some radii R, we will need the following isodiametric inequality for
the perimeter of convex sets.

Proposition 3.6 (Rosenthal–Szász-type inequality; see, e.g., [7]). Let � � RnC1 be a
bounded open convex set. Then

j@�j

diam.�/n
6

j@B1j

diam.B1/n
D
jSnj

2n
: (3.3)

As a consequence,
j@� \ BR.x/j 6 jSnjRn (3.4)

for every open convex set � � RnC1, x 2 @�, and R > 0.

The Rosenthal–Szász inequality (3.3) is classical and probably well known to expert
readers. It is stated in [7, Section 44] as inequality (6) and proved in that monograph over
several sections. Since we could not find a reference with a short proof of the inequality,
we will include it in Appendix A. Estimate (3.4) is immediately deduced by applying (3.3)
to the bounded open convex set�\BR.x/ and using that @�\BR.x/� @.�\BR.x//.

Observe that (3.3) carries the optimal constant. For our purposes, we only need (3.4),
and we do not need it with its best constant. That is, we will only use that j@�\BR.x/j6
CRn, for some dimensional constant C , for every open convex set �. We also include in
Appendix A a simple proof of this nonoptimal inequality.

We have now all the preliminary results to prove Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality we can take E to be bounded, by
proving the proposition first for Ek WD E \Bk.x/, k 2 N, and then letting k!C1. To
this aim, notice thatˇ̌̌̌Z

@�nEk

dy

jx � yjnCsp
�

Z
@�nE

dy

jx � yjnCsp

ˇ̌̌̌
D

Z
EnBk.x/

dy

jx � yjnCsp
6
jEj

knCsp
! 0

as k !C1, since jEj < C1.
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Since now E is bounded, we can assume, using Lemmas 3.2 and 3.3, that E is of the
form

E D @� \ BR.x/; (3.5)

for someR > 0. Indeed, by Lemma 3.3(b), the functionR 7! j@�\BR.x/j is continuous
for almost every x 2 @�. Thus, we can clearly choose a radius R > 0, depending on x,
such that j@� \ BR.x/j D jEj. Now, Lemma 3.2 says that, replacing E by @� \ BR.x/,
the right-hand side of (3.1) does not increase, while its left-hand side remains unaltered.
We can therefore take E to be given by (3.5).

We now distinguish between three cases, involving different assumptions on the den-
sity of @� around x. We will compare the density ��nj@�\B�.x/j with the dimensional
constant

ı WD min
°
jSnj;

�
jSnj

4Cn

� n
nC1
±

at the two different scales � D R and � D TR, where Cn > 1 is the constant from Lem-
ma 3.5 and

T WD
�2jSnj

ı

� 1
n
> 1:

Case 1. Assume that
j@� \ BR.x/j 6 ıRn: (3.6)

Using Lemma 3.4 we deduce that

jSnj

2
6 j@� \ BR.x/j

˛
nC˛H˛.x/

n
nC˛ C

j� \ @BR.x/j

Rn
:

We estimate the second term on the right with the aid of Lemma 3.5, assumption (3.6),
and the definition of ı, getting that

j� \ @BR.x/j

Rn
6 Cnı

nC1
n 6

jSnj

4
:

The combination of the previous two inequalities leads us to

jSnj

4
6 j@� \ BR.x/j

˛
nC˛H˛.x/

n
nC˛ ; (3.7)

which, recalling (3.5), establishes (3.1) in this first case.

Case 2. We assume now that

j@� \ BR.x/j > ıR
n and j@� \ BTR.x/j 6 ı.TR/n: (3.8)

Arguing exactly as for (3.7), but now with R replaced by TR, we obtain that

jSnj

4
6 j@� \ BTR.x/j

˛
nC˛H˛.x/

n
nC˛ :
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The two inequalities in (3.8) give that j@� \ BTR.x/j 6 T nj@� \ BR.x/j D T njEj.
Hence,

jSnj

4
6 T

n˛
nC˛ jEj

˛
nC˛H˛.x/

n
nC˛ ;

which yields (3.1) with a new constant C .

Case 3. Finally, we assume that

j@� \ BR.x/j > ıR
n and j@� \ BTR.x/j > ı.TR/

n:

Taking advantage of the perimeter bound (3.4), we see that

j@� \ .BTR.x/ n BR.x//j D j@� \ BTR.x/j � j@� \ BR.x/j

> ı.TR/n � jSnjRn D jSnjRn:

Consequently, we find thatZ
@�nE

dy

jy � xjnCsp
>
Z
@�\.BTR.x/nBR.x//

dy

jy � xjnCsp
>
j@� \ .BTR.x/ n BR.x//j

.TR/nCsp

>
jSnj

T nCsp
R�sp >

jSnjı
sp
n

T nCsp
j@� \ BR.x/j

�
sp
n D

jSnjı
sp
n

T nCsp
jEj�

sp
n ;

which yields (3.1) once again for some constant C .
As this was the last case, the proof of Proposition 3.1 is finished.

4. Fractional Michael–Simon inequality for functions

In this section we establish our main result, inequality (1.11) of Theorem 1.3. Namely, for
every measurable function u 2 W s;p.@�/ it holds that

kuk
Lp
�
s .@�/

6 C

�
1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy

C

Z
@�

H˛.x/
sp
˛ ju.x/jp dx

� 1
p

; (4.1)

where C is a constant depending only on n, ˛, s, and p.
We first give a proof when p D 1. This is simple and based on the fractional coarea

formula of Visintin [41]. This first proof gives the same constant in (4.1) as the one in the
isoperimetric inequality (1.12) of Theorem 1.3, which also agrees with the constant in the
pointwise inequality of Proposition 3.1.

It is important to point out that in contrast with the local case, for p > 1 it is not known
how to derive a fractional Sobolev inequality from a corresponding fractional isoperimet-
ric inequality, even in Euclidean space. Thus we give a second proof of our fractional
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Sobolev inequality that is valid for all p > 1. For p D 1, it gives a worse constant than the
one found via the coarea formula. This second argument follows very closely the slicing
procedure of Savin and Valdinoci [38] and Di Nezza, Palatucci, and Valdinoci [19, Sec-
tion 6], with the necessary modifications to cope with the term involving H˛ .

For the first proof, we will need the following version of the fractional coarea formula.

Lemma 4.1 (Fractional coarea formula on manifolds). Let M � RnC1 be a Lipschitz
hypersurface, s 2 .0; 1/, and uWM ! R be a measurable function. Then

1

2

Z
M

Z
M

ju.x/ � u.y/j

jx � yjnCs
dx dy D

Z C1
�1

PerM;s.¹u > tº/ dt:

Proof. Using the layer cake representation, one writes

u.x/ � u.y/ D

Z C1
�1

�¹u>tº.x/�¹u6tº.y/ dt if u.x/ > u.y/: (4.2)

If u.x/ 6 u.y/ then the right-hand side of (4.2) vanishes. Therefore

ju.x/ � u.y/j D

Z C1
�1

�
�¹u>tº.x/�¹u6tº.y/C �¹u6tº.x/�¹u>tº.y/

�
dt:

Now, an application of Fubini’s theorem on R �M givesZ
M

Z
M

ju.x/ � u.y/j

jx � yjnCs
dx dy D 2

Z C1
�1

�Z
M

Z
M

�¹u>tº.x/�¹u6tº.y/

jx � yjnCs
dx dy

�
dt:

SinceZ
M

Z
M

�¹u>tº.x/�¹u6tº.y/

jx � yjnCs
dx dy D

Z
¹u>tº

Z
Mn¹u>tº

dy dx

jx � yjnCs
D PerM;s.¹u > tº/;

we conclude the claim of the lemma.

We can now give the following proof:

First proof of Theorem 1.3 for p D 1. Without loss of generality we may assume u to be
nonnegative. Indeed, the general case will then follow from this, by applying (4.1) to juj
and noticing that j ju.x/j � ju.y/j j 6 ju.x/ � u.y/j. We may also suppose that u has
compact support – see the final argument in the proof of Theorem 1.3 for p > 1, presented
later in this section, for details of how to remove this assumption.

From the expression

u.x/ D

Z C1
0

�¹u>tº.x/ dt;

we use Minkowski’s integral inequality to obtain

kuk
L

n
n�s .@�/

D





Z C1
0

�¹u>tº dt






L

n
n�s .@�/

6
Z C1
0

k�¹u>tºkL
n
n�s .@�/

dt D

Z C1
0

j¹u > tºj
n�s
n dt:
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We now apply the inequality of Proposition 3.1 withE WD ¹u>tº – observe that j¹u>tºj<
C1 as u has compact support. Integrating it over E we see that

j¹u > tºj
n�s
n 6 C

�
Per@�;s.¹u > tº/C

Z
¹u>tº

H˛.x/
s
˛ dx

�
:

By combining the last two estimates we get

kuk
L

n
n�s .@�/

6 C

Z C1
0

�
Per@�;s.¹u > tº/C

Z
¹u>tº

H˛.x/
s
˛ dx

�
dt: (4.3)

Finally, by Fubini’s theorem we haveZ C1
0

�Z
¹u>tº

H˛.x/
s
˛ dx

�
dt D

Z
@�\¹u>0º

H˛.x/
s
˛ ju.x/j dx:

Plugging this into (4.3) and using Lemma 4.1 we deduce

kuk
L

n
n�s .@�/

6 C

�
1

2

Z
@�

Z
@�

ju.x/ � u.y/j

jx � yjnCs
dx dy C

Z
@�

H˛.x/
s
˛ ju.x/j dx

�
:

This settles the theorem for p D 1.

We now present an adaptation of the slicing procedure of [38]. It will lead to the proof
of Theorem 1.3 in the general case p > 1.

We first introduce some notation. Let uW @�! R be a bounded and nonnegative mea-
surable function with compact support. For i 2 Z we write

Ai WD ¹u > 2
i
º; ai WD jAi j;

Di WD Ai n AiC1 D ¹2
i < u 6 2iC1º; and di WD jDi j:

We have that the sets Di are pairwise disjoint:

¹u D 0º [
[
j2Z
j6i

Dj D @� n AiC1;
[
j2Z
j>i

Dj D Ai ; and ai D
X
j2Z
j>i

dj :

We will need the following auxiliary lemma – see [19, Lemma 6.2] for its proof, which
is very short and only uses Hölder’s inequality. Note that, as u is bounded, nonnegative,
and has compact support, our sequence ¹aiº satisfies the hypotheses of the lemma for
some N 2 Z.

Lemma 4.2. Let s 2 .0; 1/, p > 1 such that sp < n, and N 2 Z. Suppose ¹aiºi2Z is a
bounded, nonnegative, and nonincreasing sequence with

ai D 0 for all i > N:

Then X
i2Z

2pia
.n�sp/=n
i 6 2p

�
s

X
i2Z
ai¤0

2pia
�sp=n
i aiC1:
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Note that, from the hypotheses made on the sequence ¹aiº in the lemma, clearly both
series are convergent. The same happens for the series in the following inequality, which
is taken from the proof of [19, Lemma 6.3] and that we will use later:X

i2Z
ai�1¤0

2pia
�sp=n
i�1 aiC1 6

1

2

X
i2Z

ai�1¤0

2pia
�sp=n
i�1 ai : (4.4)

Its proof is simple:X
i2Z

ai�1¤0

2pia
�sp=n
i�1 aiC1 D

X
i2Z

ai�1¤0;aiC1¤0

2pia
�sp=n
i�1 aiC1 D

X
i2Z
ai¤0

2pia
�sp=n
i�1 aiC1

6
X
i2Z
ai¤0

2pia
�sp=n
i aiC1 D

1

2p

X
j2Z
aj�1¤0

2pja
�sp=n
j�1 aj

6
1

2

X
j2Z
aj�1¤0

2pja
�sp=n
j�1 aj :

The next lemma is the core of the proof and the analogue of [19, Lemma 6.3].

Lemma 4.3. Let s 2 .0; 1/, p > 1 such that n > sp, and � � RnC1 be an open convex
set. Let u 2 L1.@�/ be a nonnegative function with compact support. Then

1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy C

Z
@�

H˛.x/
sp
˛ u.x/p dx > c

X
i2Z

ai�1¤0

2pia
�sp=n
i�1 ai ;

for some constant c > 0 depending only on n, ˛, s, and p.

Proof. Throughout the proof, we will use the notation D�1 WD ¹u D 0º. Moreover, for
any k 2 Z, we write j 6 k to indicate that j is either an integer smaller than or equal to k
or that j D �1.

Let i 2Z and x 2Di . For every j 6 i � 2 and y 2Dj we have that u.x/�u.y/> 2i�1
and thereforeX

j6i�2

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy > 2p.i�1/

X
j6i�2

Z
Dj

dy

jx � yjnCsp

D 2p.i�1/
Z
@�nAi�1

dy

jx � yjnCsp
: (4.5)

Suppose now that Ai�1 has positive measure. From Proposition 3.1 we have that

a
�sp=n
i�1 6 C

�Z
@�nAi�1

dy

jx � yjnCsp
CH˛.x/

sp
˛

�
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for a.e. x 2 Ai�1. As a consequence, using (4.5),X
j6i�2

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy > 2p.i�1/

�a�sp=ni�1

C
�H˛.x/

sp
˛

�
for a.e. x 2 Di � Ai�1. Integrating over Di , this givesX

j6i�2

Z
Di

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy dx C 2p.i�1/

Z
Di

H˛.x/
sp
˛ dx

>
2pia

�sp=n
i�1 di

2pC
D
2pia

�sp=n
i�1 .ai � aiC1/

2pC
:

We now take the sum over all i 2 Z such that ai�1 ¤ 0 and use (4.4) to deduceX
i2Z

ai�1¤0

X
j6i�2

Z
Di

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy dx C

X
i2Z

ai�1¤0

2p.i�1/
Z
Di

H˛.x/
sp
˛ dx

>
1

2pC

1

2

X
i2Z

ai�1¤0

2pia
�sp=n
i�1 ai : (4.6)

Now, by symmetry,

1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy >

X
i2Z

X
j6i�1

Z
Di

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy dx

>
X
i2Z

ai�1¤0

X
j6i�2

Z
Di

Z
Dj

ju.x/ � u.y/jp

jx � yjnCsp
dy dx: (4.7)

Since u.x/p > 2pi > 2p.i�1/ for x 2 Di , we haveZ
Di

H˛.x/
sp
˛ u.x/p dx > 2p.i�1/

Z
Di

H˛.x/
sp
˛ dx:

Thus, Z
@�

H˛.x/
sp
˛ u.x/p dx >

X
i2Z

ai�1¤0

Z
Di

H˛.x/
sp
˛ u.x/p dx

>
X
i2Z

ai�1¤0

2p.i�1/
Z
Di

H˛.x/
sp
˛ dx:

It now follows from this, (4.7), and (4.6) that

1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dxdyC

Z
@�

H˛.x/
sp
˛ u.x/p dx>

1

2pC1C

X
i2Z

ai�1¤0

2pia
�sp=n
i�1 ai ;

which concludes the proof of the lemma.
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Proof of Theorem 1.3. As for the proof in the case p D 1 presented previously, we may
assume u to be nonnegative. Using truncations, we can also take u to be bounded. In
addition, we suppose for the moment that u has compact support. We will show at the end
of the proof that this hypothesis can be removed.

Under these assumptions we have

kuk
p�s

Lp
�
s .@�/

D

X
i2Z

Z
Di

u.x/p
�
s dx 6

X
i2Z

Z
Di

.2iC1/p
�
s dx 6

X
i2Z

2p
�
s .iC1/ai :

From this and the elementary inequality .
P
i mi /

� 6
P
i m

�
i for every sequence mi > 0

and � 2 Œ0; 1�, taking here � WD p=p�s D .n � sp/=n 2 .0; 1/, one concludes that

kuk
p

Lp
�
s .@�/

6 2p
�X
i2Z

2p
�
s iai

�p=p�s
6 2p

X
i2Z

2pia
.n�sp/=n
i :

Now using Lemmas 4.2 and 4.3 we get

kuk
p

Lp
�
s .@�/

6 2pCp
�
s

X
i2Z
ai¤0

2pia
�sp=n
i aiC1 D 2

p�s
X
i2Z

ai�1¤0

2pia
�sp=n
i�1 ai

6 C

�
1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy C

Z
@�

H˛.x/
sp
˛ u.x/p dx

�
;

which proves the theorem under the assumption that u has compact support.
We now show that the compactness of supp.u/ is not needed. LetR> 1 and consider a

cutoff function �2C1c .R
nC1/ satisfying 06 �6 1 in RnC1, �D 1 inBR, supp.�/�B2R,

and jr�j6 2=R. Given u 2W s;p.@�/, we define v WD �u. By the inequality that we have
just proved and since v has compact support, we have

kuk
p

Lp
�
s .@�\BR/

6 kvkp
Lp
�
s .@�/

6 C

�
1

2

Z
@�

Z
@�

jv.x/ � v.y/jp

jx � yjnCsp
dx dy C

Z
@�

H˛.x/
sp
˛ jv.x/jp dx

�
6 C

�
1

2

Z
@�

Z
@�

ju.x/ � u.y/jp

jx � yjnCsp
dx dy C

Z
@�

H˛.x/
sp
˛ ju.x/jp dx

C

Z
@�

ju.x/jp
�Z

@�

j�.x/ � �.y/jp

jx � yjnCsp
dy

�
dx

�
; (4.8)

where for the last inequality we used that

jv.x/ � v.y/jp 6 2p�1
�
ju.x/ � u.y/jp C ju.x/jpj�.x/ � �.y/jp

�
for a.e. x; y 2 @�:

To control the last term in (4.8) we adapt some techniques from [11, Section 3.2]. First,
using the Lipschitz property of � we haveZ

@�

j�.x/ � �.y/jp

jx � yjnCsp
dy 6

2p

Rp

Z
@�\BR.x/

dy

jx � yjn�.1�s/p

C

Z
@�nBR.x/

dy

jx � yjnCsp
: (4.9)
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To estimate the second term on the right, we argue similarly to [11, Lemma 3.3]. Taking
advantage of the perimeter estimate (3.4), we deduceZ

@�nBR.x/

dy

jx � yjnCsp
D

C1X
jD1

Z
@�\.B

2jR
.x/nB

2j�1R
.x//

dy

jx � yjnCsp

6
C1X
jD1

j@� \ B2jR.x/j

.2j�1R/nCsp

6
2nCspjSnj

Rsp

C1X
jD1

2�spj 6
C

Rsp
:

As the first term on the right-hand side of (4.9) can be dealt with using [11, Lemma 3.4] –
observe that [11, hypothesis (3.3)] is fulfilled thanks to our (3.4) – we infer thatZ

@�

j�.x/ � �.y/jp

jx � yjnCsp
dy 6

C

Rsp
:

By plugging this into (4.8) and letting R!C1, we conclude that u satisfies (1.11). The
proof is thus complete.

5. Application to the fractional mean curvature flow

In this section we study the evolution of convex sets under fractional mean curvature
flow. Using the pointwise inequality (2.1) in conjunction with the classical Michael–
Simon inequality, we provide an upper bound for the maximal time of existence for the
smooth fractional mean curvature flow of convex hypersurfaces. Namely, we prove The-
orem 1.4. As in the classical local case, the argument is simple, once the appropriate
Michael–Simon-type inequality is known.

We denote by �0 � RnC1 a bounded open convex set with C 2 boundary, and by �t
its evolution by fractional ˛-mean curvature flow. That is, the inner normal velocity is, at
every point, the fractional ˛-mean curvature. The unit outer normal to�t is denoted by �t
and we take the mean curvature H of � (i.e., the sum of its principal curvatures) with the
sign convention to be nonnegative for convex sets.

As in (1.14), we consider

T � WD sup
®
t > 0 W �� is nonempty and has C 2 boundary for all � 2 Œ0; t/

¯
:

In view of the results of [32], �� has boundary of class C 2 – actually, C1 – for every
small � . Hence, T � > 0. On the other hand, through comparison with shrinking balls
in [37] it is proved that T � 6 C diam.�0/1C˛ for some constant C depending only on n
and ˛. These two results hold regardless of the convexity of �0. Here, we show that,
when �0 is convex, the bound on T � can be improved to (1.16).
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First, we recall a general first variation formula. In our situation, we will apply it
with 't D �H˛Œ�t �. Note that, throughout this section, we emphasize the dependence of
the classical and fractional mean curvatures on the set � by writing H.x/ D HŒ��.x/

and H˛.x/ D H˛Œ��.x/ for x 2 @�.

Lemma 5.1 (See, e.g., [22, Remark 4.2] or [29, Proposition 4]). Let �t � RnC1 be a
one-parameter family of open sets with C 2 boundary and with j@�t j < C1 for all t 2
.�a; a/ and some a > 0. Assume that, corresponding to each point p0 2 @�0, there is
a differentiable curve t 7! p.t/ with p.0/ D p0, p.t/ 2 @�t for all t 2 .�a; a/, and
satisfying

d

dt
p.t/ D 't .p.t//�t .p.t// for all t 2 .�a; a/;

for some continuous function 't W @�t ! R.
Then

d

dt
j@�t j D

Z
@�t

'tHŒ�t � dx:

We can now give the following proof:

Proof of Theorem 1.4. Recall that �t remains convex, thanks to [16]. Using Lemma 5.1
we see that

d

dt
j@�t j D �

Z
@�t

H˛Œ�t �H Œ�t � dx: (5.1)

By inequality (2.1) proved in Section 2, we know that

j@�t j
� ˛n 6 C1H˛Œ�t �.x/ for all x 2 @�t ;

for some constant C1 > 0 depending only on n and ˛. Multiplying this inequality by
HŒ�t �.x/ and integrating in x 2 @�t , we get

j@�t j
� ˛n

Z
@�t

HŒ�t � dx 6 C1

Z
@�t

H˛Œ�t �H Œ�t � dx: (5.2)

We now use the classical Michael–Simon inequality (Theorem 1.1) with u� 1D p if n>
2, or the Gauss–Bonnet formula for curves: 2� D

R
@�t

HŒ�t �.x/dx if nD 1. Either way,
we have

j@�t j
n�1
n 6 C2

Z
@�t

HŒ�t � dx (5.3)

for some constant C2 > 0 depending only on n.
Finally, using (5.3), (5.2), and (5.1), we deduce that

j@�t j
n�.1C˛/

n D j@�t j
n�1
n j@�t j

� ˛n 6 C2j@�t j
� ˛n

Z
@�t

HŒ�t � dx

6 C1C2

Z
@�t

H˛Œ�t �H Œ�t � dx D �C1C2
d

dt
j@�t j:



X. Cabré, M. Cozzi, and G. Csató 210

That is, d
dt
j@�t j

1C˛
n 6 �ı, for some constant ı > 0 depending only on n and ˛. By

integrating this relation, we obtain that j@�t j
1C˛
n 6 j@�0j

1C˛
n � ıt . This shows that the

maximal time of existence must satisfy T � 6 ı�1j@�0j
1C˛
n , as claimed by the theorem.

A. Proof of the Rosenthal–Szász-type inequality

In this section we denote by Bn1 the open unit ball of Rn centered at the origin, that
is Bn1 WD ¹x 2 Rn W jxj < 1º. Here we give a proof of the first inequality in Proposition 3.6
(the isodiametric inequality for perimeter), which states that

j@�j 6 jSnj
diam.�/n

2n
for every bounded convex set � � RnC1: (A.1)

Observe that the inequality is optimal, i.e., there is equality for balls. This inequality
was first proved by Rosenthal and Szász [36] in the plane. The version in higher dimen-
sions can be found in [7, Section 44] as inequality (6). The proof however is scattered over
several sections of [7], of which many steps are in greater generality than actually needed
to prove (A.1), making the proof unnecessarily long and complicated if one is only inter-
ested in the Rosenthal–Szász inequality. We have not found a better reference and, thus,
we present a quick proof here. It is based on two better-known results: Cauchy’s surface
area formula (Proposition A.2 below) and the isodiametric inequality for volume. This last
result – see, e.g., [25, Theorem 1 in Section 2.2] – states that

jEj 6 jBn1 j
diam.E/n

2n
; (A.2)

where j � j indicates the n-dimensional Lebesgue measure and E � Rn is any measurable
set – here convexity is not needed. In [25] it is proved using Steiner symmetrizations. As
for (A.1), in (A.2) equality is achieved for balls. Observe that the isodiametric inequality
for perimeter does not hold in general if the convexity assumption is relaxed. Consider
for example a domain with oscillating boundary – giving an arbitrarily large perimeter –
contained in a ball of a given diameter.

If one does not need the best constant in the Rosenthal–Szász inequality (A.1) –
as in our case – then a weaker inequality follows more easily from the inclusion � �
xBdiam.�/.x/, where x is any point in x�, and the monotonicity of the perimeter with respect
to the inclusion of convex sets. This monotonicity property follows, for instance, from
Cauchy’s surface area formula, stated later in Proposition A.2. Given our statement of this
result, one also needs to approximate the convex set by polytopes, as we do in the proof
of Proposition 3.6 below.

For the proof of (A.1) we need to introduce the notion of polytopes. A bounded open
set K � RnC1 is called a polytope if its boundary @K is the finite union of sets Pi ,
for i D 1; : : : ; mK , with each Pi being contained in an n-dimensional affine hyperplane.
The Pi are the n-dimensional faces of K. In this section K � RnC1 always denotes a
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convex polytope. Now, given a unit vector � 2 Sn, let K� be the projection of K onto the
hyperplane orthogonal to � . Obviously, we have

j@Kj D

mKX
iD1

jPi j: (A.3)

Denote by �i a unit normal vector on Pi . Note that projecting the n-dimensional faces Pi
onto the hyperplane orthogonal to � and then taking the union over i also coincides
with K� . At the same time, by the convexity of K, the preimage of a.e. x 2 K� under
this projection consists of exactly two points lying on two different faces. Thus, we obtain
the identity

2jK� j D

mKX
iD1

jPi j jh�i ; �ij: (A.4)

We will use the following lemma.

Lemma A.1. Let � 2 Sn be a unit vector in RnC1. ThenZ
Sn
jh�; �ij d� D 2jBn1 j:

Proof. After a rotation, we can assume � D enC1 D .0; : : : ; 0; 1/. Using the parametriza-
tion 'WBn1 ! Sn, given by '.x1; : : : ; xn/ D .x1; : : : ; xn;

p
1 � jxj2/, we see thatZ

Sn
jh�; �ij d� D 2

Z
Sn\¹�nC1>0º

�nC1 d� D 2

Z
Bn1

p
1 � jxj2

p
1C jr'nC1.x/j2 dx:

The claim follows as
p
1C jr'nC1.x/j2 D 1=

p
1 � jxj2 for every x 2 Bn1 .

As a result of the previous considerations, we have the following identity for the
perimeter of K, which is known as Cauchy’s formula (see for instance [23, page 89]).

Proposition A.2 (Cauchy’s surface area formula). Let K � RnC1 be a convex polytope.
Then it holds that

j@Kj D
1

jBn1 j

Z
Sn
jK� j d�:

Proof. Integrate (A.4) with respect to � over Sn, then apply Lemma A.1 (with � D �i ),
and finally use (A.3).

We can finally give the following proof:

Proof of Proposition 3.6. To prove (A.1) we can assume by approximation that � is a
convex polytope K (see for instance [33, Section 22] on approximations by polytopes).
For any direction � 2 Sn it follows from the isodiametric inequality for volume (A.2) that

jK� j 6 jBn1 j
diam.K� /n

2n
:
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Now using that diam.K� / 6 diam.K/ and Proposition A.2, we get

j@Kj 6
�Z

Sn
d�

�
diam.K/n

2n
D jSnj

diam.K/n

2n
;

and the proposition is proved.
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