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Stability of the density patches problem with vacuum
for incompressible inhomogeneous viscous flows

Raphaël Danchin, Piotr Bogusław Mucha, and Tomasz Piasecki

Abstract. We consider the inhomogeneous incompressible Navier–Stokes system in a smooth two-
or three-dimensional bounded domain, in the case where the initial density is only bounded. Exis-
tence and uniqueness for such initial data was shown recently in Danchin and Mucha [Comm. Pure
Appl. Math. 72 (2019)], but the stability issue was left open. After having shown that the solutions
constructed therein have exponential decay, a result of independent interest, we prove the stabil-
ity with respect to initial data, first in Lagrangian coordinates, and then in the Eulerian frame. We
actually obtain stability in the energy space for the velocity and in a Sobolev space with negative
regularity for the density. Let us underline that, as opposed to prior works, our stability estimates are
valid even in the case of a vacuum. In particular, our result applies to the classical density patches
problem, where the density is a characteristic function.

1. Introduction

We are interested in the following inhomogeneous incompressible Navier–Stokes system:8̂̂<̂
:̂
%t C v � r% D 0 in RC ��;

%vt C %v � rv � ��v CrP D 0 in RC ��;

div v D 0 in RC ��:

(1.1)

This system describes the motion of incompressible fluids with constant positive viscos-
ity � and variable density, and originates from simplified models in geophysics. The
unknowns are the velocity v, the density % and the pressure P , depending on the time
variable t � 0 and on the space variable x 2 �, where the fluid domain � is a smooth
bounded subset of Rd in the physical dimensions d D 2; 3.

The system is supplemented with the initial data

%jtD0 D %0 and vjtD0 D v0: (1.2)

At the boundary, we prescribe the no-slip condition

vj@� D 0: (1.3)
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The existence of weak solutions to (1.1) is nowadays well understood and the state of
the art on this issue is rather similar to that of the classical incompressible Navier–Stokes
system (i.e. with constant density). The analysis goes back to the work of Kazhikhov
[28], who showed global existence of weak solutions for initial density bounded away
from zero. This constraint was removed by Simon [42]. Later, Lions [34] showed that the
density is a renormalized solution to the continuity equation, which in particular allowed
the case of density-dependent viscosity to be treated in [18]. Still in the framework of
weak solutions, Fanelli and Gallagher [20] recently investigated the fast rotation limit of
(1.1) supplemented with a Coriolis force.

Producing “strong solutions” (by strong, we mean solutions having the uniqueness
property) requires more constraints on the data: enough regularity and no vacuum, typi-
cally. Roughly speaking, according to the classical literature, for smooth enough data and
provided the density does not vanish, we have global existence of strong solutions even
for large data in dimension two, and, like for the constant density case, for small enough
initial velocity in dimension three. For such results in the bounded domain case, one can
refer to the pioneering work by Ladyzhenskaya and Solonnikov [29] (further extended to
less regular data by the first author in [9]).

A number of works have been dedicated to solving (1.1) in � D Rd in so-called
“critical regularity frameworks”. The underlying idea (which originates from Fujita and
Kato’s paper [22] for the constant density case) is that “optimal” functional spaces for
well-posedness of (1.1) have to share its scaling invariance, namely, for all ` > 0,

.%; v; P /.t; x/Ý .%; `v; `2P /.`2t; `x/ and .%0; v0/.x/Ý .%0; `v0/.`x/: (1.4)

Observing that the couple of homogeneous Besov space PB
d
2
2;1.R

d / � . PB
d
2�1

2;1 .Rd //d

indeed possesses this invariance, the first author proved in [8] the well-posedness of (1.1)
supplemented with initial velocity v0 in PB

d
2�1

2;1 .Rd / and initial density %0 close to some
positive constant in PB

d
2
2;1.R

d /. Note that, owing to the embedding PB
d
2
2;1.R

d / ,! Cb.R
d /,

this forces the density to be continuous. Subsequent improvements have been brought to
this approach (see e.g. [1]) but still the density has to be “almost” continuous. In particular,
one cannot consider initial densities that have a jump across an interface, even a smooth
one.

Toward considering less regular densities, a first breakthrough has been made by the
first two authors in [11, 12]: taking advantage of Lagrangian coordinates (which will be
presented below), they established well-posedness results for densities that are possibly
discontinuous along interfaces, provided the jump is small enough.

Then, in [38], using a totally different approach, Paicu, Zhang and Zhang succeeded
in proving the global existence in R2 for v0 2 H s , s > 0 and in R3 for v0 2 H 1 with
kv0k2krv0k2 sufficiently small, provided the initial density satisfies

0 < c0 � %0 � C0 <1:

In dimension three, this work was extended in [4] to initial velocities that are only in H s

for some s > 1=2. Still the density has to be bounded away from zero, and the solution
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in not time continuous with values in H s . Very recently, Zhang [44] achieved the critical
regularity PB1=22;1 for the initial velocity, but did not address the uniqueness issue in this
setting.

For more results where the initial density is allowed to be discontinuous but still
strictly positive, the reader may refer among others to [21,23,27] and to a recent result [3],
where an inflow boundary condition is considered. Let us also mention that global well-
posedness in the half-space RdC with initial density only bounded but close to a positive
constant was shown in [15].

All the above results require the strict positivity of the initial density. To our knowl-
edge, the existence of unique solutions in the presence of vacuum was first proved in [5]
for rather high regularity of the initial density and velocity, (namely %0 2 L3=2 \H 2 and
u0 2 H

2) and provided the following compatibility condition is satisfied:

� ��v0 CrP0 D
p
%0g for some g 2 L2 and P0 2 H 1: (1.5)

Global existence of unique solutions in a three-dimensional bounded domain or in R3

under the same compatibility condition and smallness of ku0k PH1=2 was shown in [7].
Condition (1.5) was removed in [30], where local well-posedness in a bounded domain

is shown, but still for sufficiently smooth initial density. Global existence in the whole
space R3, again under sufficient regularity of initial density, was proved recently in [25].

An important place in the theory of (1.1) is taken by the so-called density patch prob-
lem: assuming that

%0 D ˛1�A0 C ˛2��nA0 (1.6)

for some nonnegative constants ˛1, ˛2 and a measurable set A0, can we say that %.t/
has the same structure for all time, with persistence of the regularity of the interface?
This problem seems to have been first raised by Lions [34] in the specific case where
%0 D �A0 with A0 2R2, and

p
%0u0 2 L2. The original question was whether for all time

%.t/ D �A.t/ for some domain A.t/ with the same regularity as A0.
A positive answer has been obtained for C 1 regularity as a consequence of the works

of the first two authors in [11,12] if ˛1;˛2>0 are close to each other. Much more complete
results have been obtained in the two-dimensional case in [32] (case ˛1 � ˛2 small), and
then in [33] for any ˛1; ˛2 > 0. There, the authors actually establish the persistence of
high “striated” Sobolev regularity for the density. Similar results have been proved in the
three-dimensional case in [31]. The propagation of striated regularity has been adapted
to the case where the viscosity depends on the density in [37], where global existence
and uniqueness is shown provided the viscosity is close to 1. A two-fluid problem for
inhomogeneous incompressible fluids separated by a free interface with possibly different
densities and viscosities has been investigated in a recent paper [24], where the global
existence of unique solutions is shown provided the ratio of viscosities is close to 1.

Using a different approach, the persistence of Hölder continuity of the interface if ˛1,
˛2 are close to each other was shown in [16].
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Figure 1. Support of %.org/
0 D NA and support of %.per/

0 D NB.

Requiring that the initial density is away from zero precludes considering the original
Lions problem, namely the case when ˛2 D 0 in (1.6). Recently in [13], the first and
second authors proved the well-posedness of (1.1) for only bounded initial density

0 � %0 � %
� (1.7)

and initial velocity satisfying

v0 2 H
1
0 .�/; div v0 D 0: (1.8)

In the two-dimensional case, the solutions are global without any additional condition
while, in the three-dimensional case, v0 has to satisfy some smallness condition (as the
results of [13] are of particular importance for our analysis, they will be recalled precisely
below). As a by-product, the authors obtained a positive answer to Lions’ question in the
case %0 D �A0 : persistence of Hölder regularity C 1;˛ holds true for any 0 < ˛ < 1 in two
dimensions and 0 < ˛ < 1

2
in three dimensions.

However, the question concerning the stability of the solutions was left open in [13].
In fact, if the density is bounded away from zero then the stability can be proved in the
same way as uniqueness, but this is no longer the case if the initial density is allowed
to vanish (this has to do with the parabolic character of the momentum equation, which
degenerates if the density vanishes). This typically happens if we consider the following
model configuration (see Figure 1): the original density is %.org/

0 and the perturbation is
%
.per/
0 , that is,

%
.org/
0 D �A and %

.per/
0 D �B : (1.9)

The problem happens whenever

A 6D B but the measure of .A n B/ [ .B n A/ is small.

Then the perturbation is large in L1.�/ but small in Lp.�/ for all p <1. There is a
need for a special functional framework for stability that captures this situation.
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The goal of the present paper is to show the stability of solutions to the inhomogeneous
Navier–Stokes system (1.1) with respect to initial conditions of type (1.2), in a regularity
setting that includes the density patches problem (1.6) even if one of the parameters ˛1,
˛2 vanishes. In particular, we allow the density to be a characteristic function of some set.
In the most pathological case the supports of %.org/

0 and %.per/
0 can even be disjoint.

Let us introduce the notation used in the paper. First, for all p 2 Œ1;1� and k 2 N,
Lp and W k

p designate Lebesgue and Sobolev spaces, respectively (the dependence with
respect to the fluid domain � is omitted, and we keep the same notation for vector-valued
functions). For the corresponding norms, we use the short notation

k � kp WD k � kLp ; k � kk;p WD k � kW k
p
:

Second, for any time interval I � R and Banach space X , we denote by Lp.I IX/ the
Bochner space of measurable functions � from I to X such that t 7! k�.t/kX lies in the
standard space Lp.I /. In some computations, we will agree that fp.t/ denotes a generic
function of time which is in Lp.RC/, and that fp;q.t/ stands for a function which is in
Lp.RC/ \ Lq.RC/. The precise form of these functions may vary from line to line, but
the property of integrability is preserved.

Before stating our main stability result, we have to recall the state of the art concerning
global well-posedness for (1.1) supplemented with general data satisfying (1.7) and (1.8).

In dimension d D 2, [13, Thm. 2.1] states the following result:

Theorem 1. Let � be a smooth bounded domain of R2, or a two-dimensional torus.
Let %0 2 L1.�/ satisfy (1.7) and let v0 satisfy (1.8). Then system (1.1) admits a unique
solution .%; v; P / such that

% 2 L1.RCIL1/; v 2 L1.RCIH
1/;

p
%vt ;r

2v;rP 2 L2.RCIL2/; rv 2 L1;loc.RCIL1/;
p
%v 2 C.RCIL2/ and % 2 C.RCILp/ for all 1 � p <1:

(1.10)

For arbitrarily large but finite time T > 0, these solutions satisfy in addition, for all 1 �
r < 2, 1 � m <1, s < 1=2 and 1 � p <1,

r.
p
tP /;r2.

p
tv/ 2 L1.0; T ILr / \ L2.0; T ILm/; v 2 H s.0; T ILp/;

p
t%vt 2 L1.0; T IL2/ and rvt 2 L2.0; T IL2/:

(1.11)

In the three-dimensional case, we know the following result from [13, Thm. 2.2]:

Theorem 2. Let� be a smooth bounded domain of R3, or a three-dimensional torus. Let
%0 2 L1.�/ satisfy (1.7) and v0 satisfy (1.8). There exists c > 0 such that if, in addition,

.%�/3=2k
p
%0v0k2krv0k2 � c�

2 with %� WD sup
x2�

%0.x/; (1.12)
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then system (1.1) admits a unique solution .%; v; P / satisfying (1.10) and, for any finite
T > 0, s < 1=2 and 1 � p <1,

r.
p
tP /;r2.

p
tv/ 2 L1.0; T IL2/ \ L2.0; T IL6/; v 2 H s.0; T ILp/;

p
t%vt 2 L1.0; T IL2/ and rvt 2 L2.0; T IL2/:

(1.13)

Although the above solutions are unique, the question of their stability remains open
so far. Here we aim to supplement the above statements with a stability result. In order
to obtain the most accurate information, it is natural to use Lagrangian coordinates since,
in this setting, the density is time independent (it only depends on the position of the
particles initially). Therefore, the problem is reduced to the control of the difference of
the velocities which, somehow, satisfies a parabolic equation.

Let us briefly recall how to define Lagrangian coordinates in our setting. First, we
introduce the flow X W .t; y/ 7! X.t; y/ of v, which is the unique solution of the ODE8<:

dX
dt
D v.t; X.t; y// in RC ��;

X.0; y/ D y in �:
(1.14)

Integrating (1.14) yields the following relation between the Eulerian “x” and Lagrangian
“y” coordinates:

x D X.t; y/ D y C

Z t

0

v.t 0; X.t 0; y// dt 0: (1.15)

By the standard theory of ODEs, the above change of coordinates is well defined whenever
v 2 L1;loc.RCIC 1;0/. In the coordinate system .t; y/, the unknown functions are named

u.t; y/ D v.t; X.t; y//; �.t; y/ D %.t; X.t; y//; Q.t; y/ D P.t; X.t; y//:

Let us denote

Au.t/ D
�dX

dy

��1
D

�
IdC

Z t

0

ryu.t
0; y/ dt 0

��1
D

�
cof
�

IdC
Z t

0

ryu.t
0; y/ dt 0

��T
; (1.16)

where cof.�/ denotes the cofactor matrix and, in the second equality, we used the fact that
detAu D 1 (see e.g. [13]). For a function f .t; x/, denote Qf .t; y/ D f .t; X.t; y//. Then,
owing to the chain rule,

rxf .t; x/ D A
T
ury

Qf .t; y/ DW ru Qf .t; y/;

@tf .t; x/C v.t; x/ � rxf .t; x/ D @t Qf .t; y/:
(1.17)

In order to transform the divergence operator, observe that Piola’s identity (see e.g. [2,6])
ensures that divy Au D 0 since detAu D 1. Therefore, for any vector field z.t; y/, one
may write

divy.Auz/ D ATu W ryz C z � divy.ATu / D A
T
u W ryz: (1.18)
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Hence, if we denote zw.t; y/ D w.t;X.t; y// for any vector field w.t; x/, we discover that

divx w.t; x/ D ATu W ry zw.t; y/ D divy.Au zw/ DW divu zw: (1.19)

Taking all the above into account we see that in coordinates .t; y/, system (1.1) reads8̂̂̂̂
<̂
ˆ̂̂:
�t D 0 in RC ��;

�ut � � divu ruuCruQ D 0 in RC ��;

divu u D 0 in RC ��;

ujtD0 D v0; �jtD0 D %0 in �:

(1.20)

The main achievement of this paper is the following stability result in the Lagrangian
coordinates setting.

Theorem 3. Let � be a smooth bounded domain of Rd with d D 2; 3. Let .%1; v1/ and
.%2; v2/ be two solutions of (1.1) with initial data .%10; v

1
0/ and .%20; v

2
0/, respectively, with

nonidentically zero bounded %10 and %20, and v10 , v20 in H 1
0 .�/, given either by Theorem 1

or by Theorem 2 (depending on the dimension). Denote by u1 and u2 the corresponding
velocities in Lagrangian coordinates. Finally, set ıu WD u2 � u1, ıv0 WD v20 � v

1
0 and

ı% WD %2 � %1.
Then there exists a positive constant  depending only on the shape of� (i.e. invariant

by dilation or isometric transformation of �), such that for all t � 0,

e
�t

%�d2 kmin
®p
%10;

p
%20
¯
ıu.t/k2 C �

1=2
ke

�t

%�d2 rıukL2.0;t IL2/

� C
�
k

p
%10ıv0k2 C kı%0k

1=2
2

�
; (1.21)

where d stands for the diameter of �, %� WD max¹k%10k1; k%
2
0k1º and C D C.�; d;

%10; %
2
0; u

1
0; u

2
0/.

Coming back from Lagrangian to Eulerian coordinates, we obtain the following corol-
lary:

Corollary 1. Under the assumptions of Theorem 3, we have

sup
t2RC

kı%.t/kW �1p C sup
t2RC

e
ˇ�t

%�d2 k.
p
%1ıv/.t/k2 C �

1=2
ke

ˇ�t

%�d2 rıvkL2.RC;L2/

� C0
�
k

p
%10ıv0k2 C kı%0k

1=2
2

�
for all 1 < p <1 if d D 2 and 1 < p � 6 if d D 3, where ıv WD v2 � v1 and v1, v2 are
the solutions with data .%10; v

1
0/ and .%20; v

2
0/ given by Theorems 1 or 2.

A key point in getting rid of any smallness condition is to first establish sufficiently
strong time decay of the solutions that have been constructed in Theorems 1 and 2.
This will be achieved in Section 3, where by means of rather classical energy arguments,
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we will even get exponential decay, owing to the boundedness of the fluid domain. Before
that, in Section 2 we will compare two global solutions satisfying a priori those decay
properties, and estimate their difference in Lagrangian coordinates in terms of the differ-
ence of the data, getting the result of Theorem 3. Finally, we will rewrite those estimates
in Eulerian coordinates to obtain Corollary 1.

In our low regularity setting, the key difficulty for proving stability of solutions to (1.1)
comes from the partially hyperbolic nature of the system. In fact, if writing the system
satisfied by the difference .ı%; ıv; ıP / of two solutions .%1; v1; P 1/ and .%2; v2; P 2/ of
(1.1), then the mass equation gives

.@t C v
2
� r/ı% D �ıv � r%1:

In our framework, where the density is only in L1.�/, this forces us to perform esti-
mates for ı% in a space with regularity index equal to �1. Following the duality approach
initiated by Hoff [26] and recently renewed in [14, 36] (for the related compressible
Navier–Stokes system), we will actually prove stability estimates for the density in W �1p ,
and in L2 for the velocity.

Proving the exponential decay estimates of Section 3 can be achieved by means of
a remarkably simple energy method that is performed directly on the nonlinear problem.
This is in sharp contrast with the proof of decay estimates for compressible Navier–Stokes
and related models which requires a refined analysis of the linearized system combined
with a perturbation argument (see among others [17,19,39,41] and the references therein).

When comparing Theorem 3 with results of [13], a remark is in order concerning the
domain. Although Theorems 1 and 2 hold both for a bounded domain with homogeneous
Dirichlet conditions or a torus, here we restricted our analysis to the case of a bounded
domain to avoid further technical complications. In fact, in the case of Dirichlet boundary
conditions, we have the basic Poincaré inequality at hand, which is very helpful to close
the estimates globally in time. In the torus case, the corresponding Poincaré inequality
has an additional term (namely the total momentum of the solution, see [13, Lem. A.1])
which, although probably harmless, entails serious complications in the proof of decay
estimates. Therefore, we leave the torus case for future research.

2. Stability under given decay properties

Throughout this section, we are given two solutions .%1; v1;P 1/ and .%2; v2;P 2/ pertain-
ing to data .%10; v

1
0/ and .%20; v

2
0/, and satisfying the following properties for some ˇ0 > 0:

p
%eˇ0tvit 2 L2.RC; L2/; (2.1a)

eˇ0trvi 2 L1.RCIL1/ \ L4.RCIL3/ \ L2.RCIL6/; (2.1b)
p
teˇ0tvi 2 L1.RCIL1/ \ L1.RCIL1/; (2.1c)
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p
teˇ0t .r2vi ;rP i / 2 L2.RCIL6/; (2.1d)

p
teˇ0tvit 2 L4=3.RCIL6/; (2.1e)

eˇ0tvi 2 L1.RCIL6/ \ L1.RCIL6/; (2.1f)
p
teˇ0trvi 2 L2.RCIL1/; (2.1g)

eˇ0tr2vi 2 L1.RCILr / for some r > d: (2.1h)

We denote by .�i ; ui ; Qi / the corresponding solutions in Lagrangian coordinates (hence
�i D %i0).

Lemma 1. Let .%; v; P / solve (1.1) and satisfy conditions (2.1a)–(2.1h). Then the corre-
sponding Lagrangian solution .�; u;Q/ also satisfies (2.1a)–(2.1h).

Proof. The properties involving only the velocity and its first-order space derivatives fol-
low directly from the corresponding ones for v, and from the fact that the matrix A�1u is
bounded. It remains to prove the properties involving second-order space derivatives and
the time derivative.

To prove (2.1a), we start from the identity

p
�eˇ0tut D

p
% ıX.t; � /eˇ0t .vt C v � rv/ ıX.t; � /:

As X.t; � / is measure preserving, the term with vt may be bounded by means of (2.1a).
To bound the other term, it suffices to observe that

keˇ0t
p
% ıX.t; � /.v � rv/ ıX.t; � /kL2.RC��/

� %�keˇ0t=2vkL1.RCIL6/ke
ˇ0t=2rvkL2.RCIL3/:

The first term of the right-hand side may be bounded thanks to (2.1f) and the second one
according to (2.1b) and to the boundedness of �.

To prove (2.1e), one can again use ut D .vt C v � rv/ ıX.t; � / and properties (2.1e)–
(2.1g) for v.

In order to prove (2.1h), we differentiate the identity

ryu.t; y/ D
T.Au/

�1
rxv.t; X.t; y//

with respect to y. By the chain rule we obtain

kr
2
yukL1.0;T ILr /

� Ckr2xvkL1.0;T ILr / C Ckry.Au/
�1
kL1.0;T ILr /krxvkL1.0;T IL1/; (2.2)

which, differentiating (1.15), implies (2.1h) for u due to (2.1h) for v and to (2.1b) for u. In
order to prove (2.1d) we proceed similarly, rewriting (2.2) with L1 norm in time replaced
by L2, and Lr in space replaced by L6.
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In the rest of this section, we aim to estimate

ıu WD u2 � u1 and ıQ WD Q2
�Q1

in terms of the difference of the data. Obviously, denoting �u WD divu ru and ıv0 D
v20 � v

1
0 , the couple .ıu; ıQ/ satisfies

%10ıut � ��u1ıuCru1ıQ D �.�u2 ��u1/u
2
� .ru2 � ru1/Q

2
� ı%0u

2
t ;

divu1 ıu D .divu1 � divu2/u
2;

ıujtD0 D ıv0:

(2.3)

Note that
ı%0 WD %

2
0 � %

1
0 D �

2
� �1:

By (1.20)1, functions �i are constant in time, so that the perturbation of the density is time
independent. As a matter of fact, it is the main motivation for our choosing the Lagrange
coordinates approach to deal with the stability issue of system (1.1).

2.1. The case of a nice control of vacuum

Compared to the proof of uniqueness that has been performed in [13], the troublemaker
is the term ı%0u

2
t in (2.3) since Theorems 1 or 2 only provide us with an information onp

%2v2t (hence on
p
%20u

2
t ) while we do not necessarily have

supp ı%0 � supp %20: (2.4)

In this part, we assume that the initial densities satisfy

kı%0kX WD kı%0=
p
%20k4 <1 (2.5)

and derive a differential inequality which is crucial for proving Theorem 3. The general
case, when (2.4) is not valid, is postponed to the next subsection.

The idea is to decompose ıu into

ıu D w C z; (2.6)

where w stands for a suitable solution to the divergence equation

divu1 w D .divu1 � divu2/u
2
D

TıA W ru2 D div.ıA u2/; wj@� D 0; (2.7)

with
ıA WD A1 � A2 and Ai WD Aui : (2.8)

Since by (1.16) we have ıA D 0 initially, we put w D 0 at t D 0. Although matrices
A1 and A2 need not be close to Id, they are invertible and uniformly bounded in time.
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Lemma 2. Let u1, u2 satisfy (2.1a)–(2.1h) and let ıA be defined in (2.8). Then there exists
a solution w to (2.7) such that

keˇ0tw.t/k2 � f1;1.t/

�Z t

0

krıu.�/k22 d�
�1=2

;

keˇ0trw.t/k2 � f2.t/

�Z t

0

krıu.�/k22 d�
�1=2

;

keˇ0twt .t/k3=2 � f4=3.t/

�Z t

0

krıu.�/k22 d�
�1=2

C f4.t/krıu.t/k2;

(2.9)

where the notation fp.t/ and fp;q.t/ was explained at the end of Section 1.

Proof. The vector w will be sought in the form w D .A1/�1A1w D .A1/�1 xw, where xw
is given as a solution to

div xw D div.A1w/ D divu1 w D .divu1 � divu2/u
2
D

TıA W ru2 D div.ıA u2/: (2.10)

As a first step in the proof of our claim, let us establish the following bounds:

keˇ0t xwkL4.0;T IL2/ � Cke
ˇ0tıA u2kL4.0;T IL2/;

keˇ0tr xwkL2.0;T IL2/ � Cke
ˇ0t TıA W ru2kL2.0;T IL2/

and keˇ0t xwtkL4=3.0;T IL3=2/ � Cke
ˇ0t .ıA u2/tkL4=3.0;T IL3=2/:

(2.11)

The existence of a vector field xw satisfying (2.10)–(2.11) is ensured by the following
lemma:

Lemma 3. Let A be a matrix-valued function with detA � 1. Consider the following
divergence equation in a bounded domain with smooth boundary:

div b D f in RC ��; b D 0 on RC � @�;

where, for some matrix-valued function d , f D AT W rd D div.Ad/ and the average of
f equals 0.

Then there exists a constant C such that for any ˇ � 0, there exists a solution b to the
above equation, such that for all t � 0, we have

keˇtb.t/k2 � Cke
ˇtA.t/d.t/k2;

keˇtrb.t/k2 � Cke
ˇtA.t/Trd.t/k2;

keˇtbt .t/k3=2 � Cke
ˇt .Ad/t .t/k3=2:

Lemma 3 has been proved without exponential weight by the first two authors in
[10] (see also [13, Lem. A.3]). In their proof, the function b is given by an explicit for-
mula where the time variable does not come into play. Consequently, a time weight can
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be treated as a multiplicative parameter (the norms in Lemma 3 only involve the space
variable).

Now let us bound the right-hand sides of (2.11). In order to emphasize that we do not
need any smallness of

R t
0
ryu d� , let us derive an explicit formula for ıA.

In the two-dimensional case, starting from (1.16), we immediately obtain

ıA.t/ D

" R t
0
ıu2;y2 dt 0 �

R t
0
ıu1;y2 dt 0

�
R t
0
ıu2;y1 dt 0

R t
0
ıu1;y1 dt 0

#
: (2.12)

For d D 3, one can also use (1.16) to determine ıA. As an example, let us compute its
first entry. We have

.Aiu/11.t/ D

�
1C

Z t

0

ui2;y2 dt 0
��
1C

Z t

0

ui3;y3 dt 0
�

�

Z t

0

ui3;y2 dt 0
Z t

0

ui2;y3 dt 0 for i D 1; 2:

Therefore,

.ıA.t//11 D

Z t

0

ıu2;y2 dt 0 C
Z t

0

ıu3;y3 dt 0 C
Z t

0

ıu2;y2 dt 0
Z t

0

u23;y3 dt 0

C

Z t

0

ıu3;y3 dt 0
Z t

0

u12;y2 dt 0 �
Z t

0

ıu3;y2 dt 0
Z t

0

u22;y3 dt 0

�

Z t

0

ıu2;y3 dt 0
Z t

0

u13;y2 dt 0:

The other entries have a similar structure, namely

.ıA.t//ij D
X

1�k;l�3

a
ij

kl

Z t

0

ıuk;yl dt 0

C

X
1�k;l;m;n�3
s2¹1;2º

b
ij

k;l;m;n;s

Z t

0

ıuk;yl dt 0
Z t

0

usm;yn dt 0; (2.13)

where aij
kl
; b
ij

k;l;m;n;s
2 ¹0; 1º.

Now, if u1, u2 satisfy (2.1b) then, by the Hölder inequality, we obtain

kt�1=2ıA.t/k2 � C

t�1=2 Z t

0

rıu d�

2

� C

�Z t

0

krıuk22 d�
�1=2

: (2.14)

Therefore, by (2.1g), we have

keˇ0t TıA W ru2.t/k2 � kt
�1=2ıA.t/k2ke

ˇ0t t1=2ru2k1

� Cf2.t/

�Z t

0

krıuk22 d�
�1=2

; (2.15)

which implies (2.9) for kr xwk2.
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Similarly, by (2.1c) and (2.14),

keˇ0tıA u2k2 � kt
�1=2ıAk2ke

ˇ0t t1=2u2k1 � f1;1.t/

�Z t

0

krıu.�/k22 d�
�1=2

;

whence, applying (2.11) gives

keˇ0t xw.t/k2 � f1.t/

�Z t

0

krıu.�/k22 d�
�1=2

: (2.16)

In order to bound xwt , it suffices to derive an appropriate estimate in L4=3.0; T IL3=2/ for

.ıA u2/t D ıA u
2
t C .ıA/tu

2:

For the first term, thanks to (2.1e) and (2.14) we have

keˇ0tıA u2t k3=2 � kt
�1=2ıAk2ke

ˇ0t t1=2u2t k6 � f4=3.t/

�Z t

0

krıu.�/k22 d�
�1=2

:

The other term can be bounded as

keˇ0t .ıA/tu
2
k3=2 � k.ıA/tk2ke

ˇ0tu2k6:

Differentiating (2.13) with respect to t and using (2.1g) for u1 and u2, we see that

kıAt .t/k2 � C

�
krıu.t/k2

C

t�1=2 Z t

0

rıu.�/ d�

2

.kt1=2ru1.t/k1 C kt
1=2
ru2.t/k1/

�
:

In the two-dimensional case, owing to (2.12), one can skip the second term on the right-
hand side of the above inequality. Thus, thanks to (2.1f), for both d D 2; 3 we conclude
that

kıAtu
2.t/k3=2 � f4=3.t/

�Z t

0

krıu.�/k22 d�
�1=2

C f4.t/krıu.t/k2;

which, by (2.11), implies (2.9) for k xwtk3=2. Altogether, this gives the thesis of Lemma 2
for xw, but not yet for w.

In order to get (2.9) for w from the estimates of xw, we first observe that

sup
t�T

k.A1/�1.t/k1 � C.1C kru
1
kL1.0;T IL1//: (2.17)

Therefore, as w D .A1/�1 xw, we get

keˇ0twkL4.0;T IL2/ � Cke
ˇ0t xwkL4.0;T IL2/:
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In order to estimate krwkL2.0;T IL2/ we proceed as follows:

keˇ0t xwr..A1/�1/kL2.0;T IL2/

� kr..A1/�1/kL1.0;T ILr /ke
ˇ0t xwkL2.0;T ILr�/

� Ckr2u1kL1.0;T ILr /ke
ˇ0t xwkL2.0;T ILr�/ with

1

2
D
1

r
C

1

r�
;

where in the last passage we used (1.16). Therefore, by (2.1b) and (2.1h), we have

keˇ0trwkL2.0;T IL2/ � ke
ˇ0t .A1/�1r xwkL2.0;T IL2/ C ke

ˇ0t xwr..A1/�1/kL2.0;T IL2/

� C Œkeˇ0tr xwkL2.0;T IL2/ C ke
ˇ0t xwkL2.0;T ILr� /�:

Since, in (2.1h), one can take r > d , one can always ensure that r� < 6.
Finally, we have

k..A1/�1/t xwk3=2 � k..A
1/�1/tk6k xwk2 � kru

1
k6k xwk2;

which together with (2.17) implies

keˇ0twtkL4=3.0;T IL3=2/ � Ck.A
1/�1k1ke

ˇ0t xwtkL4=3.0;T IL3=2/

C Ckru1kL2.0;T IL6/ke
ˇ0t xwkL4.0;T IL2/

� C.keˇ0t xwtkL4=3.0;T IL3=2/ C ke
ˇ0t xwkL4.0;T IL2//;

which completes the proof of Lemma 2.

Let us restate equations (2.3) in terms of .z; ıQ/ as follows (assuming that � D 1 for
simplicity):8̂̂<̂

:̂
%10zt ��u1z Cru1ıQ

D .�u2 ��u1/u
2 C .ru1 � ru2/Q

2 � %10wt C�u1w � ı%0 u
2
t ;

divu1 z D 0; zjtD0 D ıv0; zj@� D 0:

(2.18)

Observe that for a vector field z and functions f , g defined in Lagrangian coordinates we
have, according to (1.17) and integration by parts,

�

Z
�

f divu z dy D �
Z
�

f div.Auz/ dy D
Z
�

Auz � ryf dy

D

Z
�

z � ATuryf dy D
Z
�

z � ruf dy; (2.19)

which implies

�

Z
�

f�ug dy D �
Z
�

f divu.rug/ dy D
Z
�

ruf � rug dy: (2.20)
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These identities allow us to test (2.18) by z, while (2.19) implies the following crucial
property, thanks to which one does not need to care about the difference of the pressures:Z

�

.ru1ıQ/ � z dy D �
Z
�

divu1 zıQ dy D 0: (2.21)

Therefore, also using (2.20), we obtain

1

2

d
dt

Z
�

%10jzj
2 dx C

Z
�

jru1zj
2 dx D

5X
kD1

Ik ; (2.22)

where

I1 WD

Z
�

..�u2 ��u1/u
2/ � z dy; I2 WD

Z
�

..ru1 � ru2/Q
2/ � z dy;

I3 WD �

Z
�

%10wt � z dy; I4 W D

Z
�

.�u1w/ � z dy;

I5 WD �

Z
�

ı%0u
2
t � z dy:

In order to bound I1, we combine (2.1g) and (2.14) to write, for all " > 0,

jI1j D

ˇ̌̌̌Z
�

div
�
..ıA/TA2 C .A1/T ıA/ru2

�
� z dy

ˇ̌̌̌
�

Z
�

j.ıAT /A2 C .A1/T ıAj jru2j jrzj dx

� Ckt�1=2ıAk2kt
1=2
ru2k1krzk2

� "krzk22 C C"
�1
kt1=2ru2k21

�Z t

0

krıuk22 d�
�
: (2.23)

Next, by the Hölder inequality,

jI2.t/j �

ˇ̌̌̌Z
�

ıArQ2
� z dx

ˇ̌̌̌
� Ckt�1=2ıAk2kt

1=2
rQ2

k4kzk4:

Therefore, according to (2.1d), (2.14) and to the Sobolev embedding H 1
0 ,! L4, combin-

ing the Poincaré and Young inequalities yields, for all " > 0,

I2.t/ � "krzk
2
2 C C"

�1
kt1=2rQ2

k
2
4

�Z t

0

krıuk22 d�
�
: (2.24)

Note that from the Hölder inequality and the Sobolev embedding H 1.�/ ,! L6.�/, we
have

k.%10/
1=4zk3 � k

p
%10zk

1=2
2 kzk

1=2
6 � Ck

p
%10zk

1=2
2 kzk

1=2

H1 :

Therefore, using the Hölder inequality, one can write that

I3.t/ � kwtk3=2jk%
1
0zk3 � Ckwtk3=2jk.%

1
0/
1=4zk3

� kwtk3=2k
p
%10zk

1=2
2 krzk

1=2
L2
: (2.25)
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Next, integrating by parts, we get for all " > 0,

I4 �

Z
�

jru1wj jru1zj dx � "kru1zk
2
2 C C"

�1
kru1wk

2
2: (2.26)

Our “nice control of vacuum” hypothesis (2.5) comes into play only for handling I5:
combining the Hölder and Young inequalities, as well as the embedding H 1

0 ,! L4, we
write that

I5 �

ˇ̌̌̌Z
�

ı%0
p
%20

p
%20u

2
t z dy

ˇ̌̌̌
�

 ı%0p
%20


4
k

p
%20u

2
t k2kzk4

� C"�1k
p
%20u

2
t k
2
2kı%0k

2
X C "krzk

2
2; (2.27)

where kı%0kX is defined in (2.5).
In the end, plugging (2.23), (2.24), (2.25), (2.26) and (2.27) in (2.22), we obtain

1

2

d
dt
k

p
%10z.t/k

2
2 C kru1zk

2
2

� "krzk22 C .kt
1=2
ru2k21 C kt

1=2
rQ2

k
2
4/

Z t

0

krıuk22 dt

C k

p
%20u

2
t k
2
2kı%0k

2
X C Ckru1wk

2
2 C kwtk3=2k

p
%10zk

1=2
2 krzk

1=2
2 :

Since ru1z D .A1/Trz, we have

kru1zk2 � k.A
1/�1k�11 krzk2:

Hence, taking " small enough, the above inequality implies for some c0 > 0,

d
dt
k

p
%10z.t/k

2
2 C c0krzk

2
2

� .kt1=2ru2k21 C kt
1=2
rQ2

k
2
4/

Z t

0

krıuk22 dt C k
p
%20u

2
t k
2
2kı%0k

2
X

C Ckru1wk
2
2 C kwtk3=2k

p
%10zk

1=2
2 krzk

1=2
2 : (2.28)

Now, using the fact that krıuk22 � 2.krzk
2
2 C krwk

2
2/, multiplying (2.28) with e2ˇt

(with ˇ � ˇ0) and adding the second inequality of (2.9), we arrive at

d
dt
keˇt

p
%10z.t/k

2
2 C .ke

ˇt
rzk22 C ke

ˇt
rwk22/

� 2ˇe2ˇtk
p
%10z.t/k

2
2

C .keˇt t1=2ru2k21 C ke
ˇt t1=2rQ2

k
2
4 C f1.t//

Z T

0

.krzk22 C krwk
2
2/ dt

C keˇt
p
%20u

2
t k
2
2kı%0k

2
X C ke

ˇtwtk3=2ke
ˇt
p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2 : (2.29)
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For small ˇ one can absorb the first term on the right-hand side due to the Poincaré
inequality. By (2.1), provided ˇ � ˇ0 we have

keˇt t1=2ru2k21 C ke
ˇt t1=2rQ2

k
2
4 C ke

ˇt
p
%20u

2
t k
2
2 � f1.t/; (2.30)

while, by Lemma 2,

keˇtwtk3=2ke
ˇt
p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2

�

�
f4=3.t/

�Z t

0

krıuk22 d�
�1=2

C f4.t/krıuk2

�
keˇt

p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2 :

Taking advantage of Young’s inequality we bound the right-hand side of the above
inequality as

f4=3.t/

�Z t

0

krıuk22 d�
�1=2
keˇt

p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2

� f
4=3

4=3
.t/

Z t

0

krıuk22 d� C f 2=3
4=3

.t/keˇt
p
%10zk2ke

ˇt
rzk2;

whence

f4=3.t/

�Z t

0

krıuk22 d�
�1=2
keˇt

p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2

� f1.t/

Z t

0

krıuk22 d� C "keˇtrzk22 C f1.t/ke
ˇt
p
%10zk

2
2; (2.31)

and

f4.t/krıuk2ke
ˇt
p
%10zk

1=2
2 ke

ˇt
rzk

1=2
2

� "krıuk22 C f
2
4 .t/ke

ˇt
p
%10zk2ke

ˇt
rzk2

� f1.t/ke
ˇt
p
%10zk

2
2 C ".ke

ˇt
rzk22 C krwk

2
2/: (2.32)

The " terms coming from (2.31) and (2.32) can again be absorbed by the left-hand side of
(2.29). Then, plugging (2.30)–(2.32) into (2.29) we obtain

d
dt
e2ˇtk

p
%10z.t/k

2
2 C e

2ˇt .krzk22 C krwk
2
2/

� f1.t/

�
e2ˇtk

p
%10z.t/k

2
2 C

Z t

0

e2ˇs.krzk22 C krwk
2
2/ ds

�
C f1.t/kı%0k

2
X : (2.33)

Denoting

G.t/ D e2ˇtk
p
%10z.t/k

2
2 C

Z t

0

e2ˇs.krzk22 C krwk
2
2/ ds;
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we rewrite (2.33) as
d
dt
G.t/ � f1.t/G.t/C f1.t/kı%0kX : (2.34)

We have G.0/ D k
p
%10ıv0k

2
2, therefore (2.34) yields

G.t/ � k
p
%10ıv0k

2
2e
R t
0 f1.�/ d�

C kı%0kX

Z t

0

e
R t
s f1.�/ d�f1.s/ ds: (2.35)

Notice that the first inequality of (2.9) implies that

e2ˇtkw.t/k22 � f1;1.t/

Z t

0

krıu.�/k22 d� � f1;1.t/G.t/: (2.36)

Combining (2.35) and (2.36), we obtain the following result:

Lemma 4. Assume that (2.4) holds. Then there exist a positive constant ˇ < ˇ0 and C0
depending only on the data such that

sup
t2Œ0;1/

e2ˇtk
p
%10ıuk

2
2 C �

Z 1
0

e2ˇtkrıuk22 dt

� C0.k
p
%10ıv0k

2
2 C C2kı%0k

2
X /: (2.37)

2.2. The general case

Estimate (2.37) has been obtained under assumption (2.5). It may happen however that
the denominator of (2.5) is zero on a subset with positive measure, while the numerator is
not. To overcome this obstacle, instead of comparing solutions emanating from .%10; v

1
0/

and .%20; v
2
0/ directly we compare each of them to an appropriate intermediate solution

satisfying (2.5).
To proceed, let us denote by .%3=2; v3=2; P 3=2/ the solution to (1.1) emanating from

.1
2
.%10 C %

2
0/; v

2
0/ and by .�3=2; u3=2; Q3=2/ the corresponding solution in Lagrangian

coordinates. Then we look at the following differences between solutions (recall that the
density component of the solution in Lagrangian coordinates is constant in time):

.ı%I; ıuI/ WD
�1
2
.%10 C %

2
0/ � %

1
0; u

3=2
� u1

�
and .ı%II; ıuII/ WD

�1
2
.%10 C %

2
0/ � %

2
0; u

3=2
� u2

�
:

Clearly, we have

ı%I
D �ı%II

D
1

2
.%20 � %

1
0/ and ıu D ıuI

� ıuII; (2.38)

and condition (2.4) is fulfilled in both cases, i.e.

supp ı%I;II
0 � supp

1

2
.%10 C %

2
0/:
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Let us define

kı%I
0kX WD

 ı%I
0

p
%10 C %

2
0


4
D

 ı%II
0

p
%10 C %

2
0


4
:

Note that, obviously,ˇ̌̌ %10 � %20
p
%10 C %

2
0

ˇ̌̌2
D j%10 � %

2
0j

ˇ̌̌ %10 � %20
%10 C %

2
0

ˇ̌̌
� j%10 � %

2
0j;

whence
kı%I

0kX � k%
1
0 � %

2
0k
1=2
2 : (2.39)

Still assuming that � D 1 for simplicity and denoting ıQI WD Q3=2 �Q1, we obtain8̂̂̂̂
<̂
ˆ̂̂:
%10ıu

I
t ��u1ıu

I Cru1ıQ
I

D .�u3=2 ��u1/u
3=2 � .ru3=2 � ru1/Q

3=2 � ı%Iu
3=2
t ;

divu1 ıuI D .divu1 � divu3=2/u
3=2;

ıuIjtD0 D ıv0:

(2.40)

Setting ıQII D Q3=2 �Q2, we see that .ıuII; ıQII/ satisfies an analogous system with
.%10; u

1; ı%I/ replaced by .%20; u
2; ı%II/ and with the initial condition ıuIIjtD0 D 0.

Let us consider the decompositions

ıuI
D zI

C wI and ıuII
D zII

C wII;

where the components are defined by (2.7) and (2.18) with obvious replacements of u1,
u2. Then one can repeat the estimates from the previous subsection. In the end, defining

GI.t/ D e2ˇtk
p
%10z

I.t/k22 C

Z t

0

e2ˇs.krzI.s/k22 C krw
I.s/k22/ ds;

GII.t/ D e2ˇtk
p
%20z

II.t/k22 C

Z t

0

e2ˇs.krzII.s/k22 C krw
II.s/k22/ ds;

(2.41)

one obtains the following analogs of (2.35) (recall that ı%I
0 D �ı%

II
0 and that the velocity

component of the initial data for ıvII is zero) for some f I; f II 2 L1.RC/:

GI.t/ � k
p
%10ıv0k

2
2e
R t
0 f

I.�/ d�
C kı%I

0k
2
X

Z t

0

e
R t
s f

I.�/ d�f I.s/ ds;

GII.t/ � kı%I
0k
2
X

Z t

0

e
R t
s f

II.�/ d�f II.s/ ds:

Summing the above inequalities and using (2.38) and (2.39) we obtain

sup
t2RC

®
eˇt

�
k

p
%10z

I.t/k2 C k
p
%20z

II.t/k2
�¯
C keˇtrıukL2.RC;L2/

� C.k
p
%10ıv0k2 C kı%0k

1=2
2 /:
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Combining this estimate with analogs of (2.36), where .w; ıu; G/ has been replaced by
.wI; ıuI;GI/ and .wII; ıuII;GII/, we obtain (1.21), which completes the proof of Theorem
3 except for the precise form of the exponent ˇ, which is deduced from the results of
Section 3.

2.3. Back to the Euler perspective

In this part, we want to translate the stability result obtained in Theorem 3 in terms of
Eulerian coordinates, proving Corollary 1. As already pointed out in the introduction,
in the case of only bounded initial densities, getting relevant information on %1.t; �/ �
%2.t; �/ in some Lp space (even for p D 1) is hopeless; it is more suitable to compare
functions along two different characteristic fields. Here we want to adopt the language of
kinetic theory, considering quantities along characteristics/trajectories, defined in terms of
Wasserstein metrics like in e.g. [35, 40].

More precisely, denote by X1 and X2 the flows defined by (1.14) for, respectively,
v1 and v2, and take a smooth function �W�! R. Then we consider, for each t � 0, the
quantity

I�.t/ WD

Z
�

.%1.t; x/ � %2.t; x//�.x/ dx:

Using the change of variables (of Jacobian 1) x D X1.t; y/ and x D X2.t; y/ for %1 and
%2, respectively, yields

I�.t/ D

Z
�

�
%10.y/�.X

1.t; y// � %20.y/�.X
2.t; y//

�
dy

D

Z
�

.%10.y/ � %
2
0.y//�.X

1.t; y// dy„ ƒ‚ …
A1.t/

C

Z
�

%20.y/.�.X
1.t; y// � �.X2.t; y/// dy„ ƒ‚ …

A2.t/

: (2.42)

In order to find the right level of regularity for �, let us first examine the term A2.t/. For
suitable functions �, we set

�1.t;x/ WD �.t;Y 1.t;x// and �2.t;x/ WD �.t;Y 2.t;x// with Y i .t; �/ WD .X i .t; �//�1:

Then, again using the fact that X1 and X2 are measure preserving, we have

k�1.t/ � �2.t/kW �1p

D sup
®R
�
.�1.t; x/ � �2.t; x//�.t; x/ dx W � 2 W 1

p0.�/; k�kW 1
p0
� 1

¯
D sup

®R
�
�.y/Œ�.X1.t; y// � �.X2.t; y//� dy W � 2 W 1

p0.�/; k�kW 1
p0
� 1

¯
: (2.43)
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Following [43], in order to handle the term �.X1.t; y// � �.X2.t; y//, we consider the
family of intermediate measure-preserving flows .X s/1�s�2 between X1 and X2 defined
as

dX s

dt
.t; y/ D .2 � s/v1.t; X s.t; y//C .s � 1/v2.t; X s.t; y//; X s.0; y/ D y: (2.44)

By the chain rule and the definition of X s , we have

�.X2.t; y// � �.X1.t; y// D

Z 2

1

d
ds
�.X s.t; y// ds

D

Z 2

1

� d
ds
X s.t; y/

�
� r�.X s.t; y// ds:

From the definition of X s , we discover that

d
dt

d
ds
X s.t; y/ D

�
v2.t; X s.t; y// � v1.t; X s.t; y//

�
C
�
.2 � s/Dv1.t; X s.t; y//C .s � 1/Dv2.t; X s.t; y//

� d
ds
Xs.t; y/;

whence, performing a time integration, taking the Lp.�/ norm and using that X s.t; �/ is
measure preserving, we get d

ds
X s.t; �/


p
�

Z t

0

kıv.t 0; �/kp dt 0

C

Z t

0

max.kDv1.t 0; �/k1; kDv2.t 0; �/k1/
 d

ds
X s.t 0; �/


p

dt 0:

In the end, using Grönwall lemma and taking advantage of (2.1b) implies that d
ds
X s.t; �/


p
� C

Z t

0

kıvkp dt 0 for all 1 � p <1: (2.45)

Furthermore, as said before, X s.t; �/ is measure preserving, and thus kr�.X s.t; �//kp D
kr�kp . Finally, using the embedding H 1

0 ,! Lp for all 1 � p < 1 if d D 2, and all
1 � p � 6 if d D 3, we obtain for these values of p and all t � 0,

A2.t/ � Ck%
2
0k1

�Z 1
0

e2ˇtkrıvk22 dt
�1=2
k�k1;p0 : (2.46)

The above inequality reveals that one can take the functions � in the space

� 2 W 1
1C
.�/ if d D 2 and � 2 W 1

6=5.�/ if d D 3:

Bounding the term A1.t/ is simpler. Under the above assumptions on p, we have W 1
p0 ,!

L2. Hence, again using that X1 is measure preserving, we may write by the Cauchy–
Schwarz inequality,

A1.t/ � kı%0k2k�k2 � Ckı%0k2k�k1;p0 : (2.47)
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Altogether, by (2.42), (2.43), (2.46), (2.47) and (1.21), we get for any finite p > 1 if d D 2
and for p � 6 if d D 3,

sup
t2RC

kı%.t; �/kW �1p � C

�
k%20k1

�Z 1
0

e2ˇtkrıvk22 dt
�1=2

C kı%0k2

�
: (2.48)

Next, let us turn to the velocity estimates. We start from the relation

ıu.t; y/ D v2.t; X2.t; y// � v1.t; X1.t; y//; (2.49)

which implies that

ryıu.t; y/ D ryX
2.t; y/ � rxv

2.t; X2.t; y// � ryX
1.t; y/ � rxv

1.t; X1.t; y//:

Hence, denoting ıX WD X2 �X1, we may write

ryıu.t; y/ D ryıX.t; y/ � rxv
2.t; X2.t; y//CryX

1.t; y/ � rxıv.t; X
2.t; y//

CryX
1.t; y/ �

�
rxv

1.t; X2.t; y// � rxv
1.t; X1.t; y//

�
DW K1 CK2 CK3:

First, we observe that
rıv.t; X2.t; y// D .A1u/

TK2:

Hence, taking the L2.�/ norm, and using that X2.t; �/ is measure preserving, we get

krıvk2 � kA
1
uk1kK2k2 � kA

1
uk1.krıuk2 C kK1k2 C kK3k2/: (2.50)

Next, from the definition of X1 and X2 in terms of the Lagrangian velocity, we have

kK1k2 � Ct
1=2

�Z t

0

krıuk22 dt 0
�1=2
krv2k1:

To bound K3, we first notice that by the mean value theorem and the definition of the
intermediate flow X s , we have

K3 D ryX
1.t; y/ �

�Z 2

1

r
2v1.t; X s.t; y// ds

�
�

� d
ds
X s.t; y/

�
:

Hence, since X s is measure preserving, using the Hölder inequality and (2.45) allows us
to get

kK3k2 � kryX
1.t; � /k1

Z 2

1

kr
2v1.t; X s.t//k3

 d
ds
X s.t; � /


6

ds

� CkryX
1.t; � /k1kr

2v1.t/k3

Z t

0

kıv.t 0/k6 dt 0

� CkryX
1.t; � /k1kt

1=2
r
2v1.t/k3

�Z t

0

krıvk22 dt 0
�1=2

:
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Altogether, remembering (2.50), we obtain for all t � 0,

krıv.t/k22 � C

�
krıu.t/k22 C kt

1=2
rv2k21

Z t

0

krıuk22 dt 0

C kt1=2r2v1k23

Z t

0

krıvk22 dt 0
�
:

First multiplying both sides by e2ˇt , next integrating in time and using Theorem 3 com-
bined with the properties (2.1), and finally applying the Grönwall lemma, we obtain for
all t � 0,Z t

0

e2ˇt
0

krıvk22 dt 0 � C0.k
p
%10ıv0k

2
2 C kı%0k2/ exp

�
C

Z t

0

e2ˇt
0

kt 01=2r2v1k23 dt 0
�
:

The term in the exponential may be bounded thanks to (2.1d), which leads to the desired
inequality for rıv.

In order to estimate %10ıu.t; �/ in L2, we may again use the intermediate flow X s

defined in (2.44) to write thatp
%10.y/ıu.t; y/ D

p
%1.t; X1.t; y//ıv.t; X1.t; y//

C

p
%1.t; X1.t; y//

�
v2.t; X2.t; y// � v2.t; X1.t; y//

�
D

p
%1.t; X1.t; y//ıv.t; X1.t; y//

C

p
%1.t; X1.t; y//

Z 2

1

d
ds

�
v2.t; X s.t; y//

�
ds

D

p
%1.t; X1.t; y//ıv.t; X1.t; y//

C

p
%1.t; X1.t; y//

Z 2

1

Dv2.t; X s.t; y//
d
ds
X s.t; y/ ds:

Taking the L2 norm and using the Hölder inequality as well as (2.45) with p D 3 and,
finally, remembering that X1.t; �/ is measure preserving, this implies that for all t � 0, we
have

k.
p
%1ıv/.t/k2 � k

p
%10ıu.t/k2 C C

p
%�kDv2.t/k6

Z t

0

kıv.t 0/k3 dt 0:

Hence, multiplying both sides by eˇt and using Sobolev embedding, we discover that

eˇtk.
p
%1ıv/.t/k2 � e

ˇt
k

p
%10ıu.t/k2 C C

p
%�teˇtkDv2.t/k6krıvkL2.RCIL2/:

The term with rıv may be bounded according to our previous estimate. We claim that
one may find ˇ > 0 so that supt2RC

p
teˇtkDv2.t/k6 is bounded. Indeed, again using

Sobolev embedding, we may write that

kDv2k6 � Ckrv
2
kH1 ;
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while the maximal regularity properties of the Stokes system ensure that we have

sup
t2RC

p
teˇtkrv2.t/kH1 � C

p
%� sup

t2RC

p
teˇtk.

p
% Pv2/.t/kL2 ;

where Pv2 WD v2t C v
2 � rv2. Obviously, we have

p
teˇtk.

p
% Pv2/.t/kL2 �

p
teˇtk.

p
%v2t /.t/kL2 C

p
%�k
p
teˇtv2.t/k1krv

2.t/k2:

Lemma 7 allows us to bound the supremum on RC of the first term on the right-hand side,
while the last one is bounded thanks to (2.1c) (if ˇ � ˇ0) and (3.4). This completes the
proof of Corollary 1.

3. Decay estimates

The goal of this section is to show that the solutions provided by Theorems 1 and 2 indeed
satisfy properties (2.1a)–(2.1h). This will be an immediate consequence of Lemmas 6, 7
and 8 below.

Before tackling the proof, we need to recall elementary properties of the solutions to
(1.1). The first one is the conservation of anyLp norm of the density, a consequence of the
divergence-free property of the velocity field: we have k%.t/kp Dk%0kp for all p 2 Œ1;1�.

Of course, as v in H 1
0 .�/, we have the Poincaré inequality:

kvk2 � CP krvk2: (3.1)

3.1. Decay of space derivatives

The starting point is the following decay estimate, which is a direct consequence of diffu-
sion and the Poincaré inequality:

Lemma 5. Let .%; v/ be a solution to (1.1) given either by Theorem 1 or by Theorem 2.
Then

for all t � 0;
Z
�

%.t/jv.t/j2 dx � e�2ˇ1t
Z
�

%0jv0j
2 dx; where ˇ1 D

�

%�C 2P
: (3.2)

Proof. The proof is independent of the space dimension. We start with the classical energy
estimate that is obtained testing the momentum equation by v, namely

1

2

d
dt

Z
�

%jvj2 dx C �
Z
�

jrvj2 dx D 0: (3.3)

Hence, remembering (3.1), we get

C 2P
2�

d
dt

Z
�

%jvj2 dx C
Z
�

jvj2 dx � 0:
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Multiplying both sides by %� and using the obvious fact that %�jvj2 � %jvj2, we obtain

%�C 2P
2�

d
dt

Z
�

%jvj2 dx C
Z
�

%jvj2 dx � 0;

from which we conclude (3.2).

Our next aim is to establish a decay estimate for the gradient of the velocity.

Lemma 6. Let .%; v/ be a solution to (1.1) given either by Theorem 1 or by Theorem 2.
Then there exist positive constants C0 and C0;p depending only on the data (and on p for
the second one), and1 ˇ2 < ˇ1 such that for all t � 0, we have

krv.t/k2 � C0e
�ˇ2t ; (3.4)

kv.t/kp � C0;pe
�ˇ2t ; (3.5)Z 1

0

e2ˇ2t
�
k
p
%.t/vt .t/k

2
2 C kr

2v.t/k22 C krP.t/k
2
2

�
dt � C0; (3.6)

where, in (3.5), one can take any p 2 Œ1;1/ if d D 2, and any p 2 Œ1; 6� if d D 3.

Proof. Performing a suitable time, space, density and velocity rescaling reduces the proof
to the case %� D � D 1, in a domain of diameter 1. Hence, we will only prove the lemma
in this case for notational simplicity, since reverting to the original variables will lead to
the form of ˇ2 announced in the footnote. Now, testing the momentum equation by vt
yields

1

2

d
dt

Z
�

jrvj2 dx C
Z
�

%jvt j
2 dx D �

Z
�

%vt � .v � rv/ dx

�
1

2

Z
�

%jvt j
2 dx C

1

2

Z
�

%jv � rvj2 dx:

The classical theory for the Stokes system yields, for some C� depending only on the
shape of �,

kr
2vk22 C krP k

2
2 � C�.k%v � rvk

2
2 C k%vtk

2
2/:

Hence we have (remember that %� D 1)

d
dt

Z
�

jrvj2 dx C
1

2

Z
�

�
%jvt j

2
C

1

C�
.jr2vj2 C jrP j2/

�
dx

�
3

2

Z
�

%jv � rvj2 dx: (3.7)

1One can take ˇ2 in the form ˇ2 D c��=.%
�d2/, where d stands for the diameter of � and c depends

only on the shape of �.
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Adding this inequality to (3.3) yields

d
dt

Z
�

h
jrvj2 C

1

2
%jvj2

i
dx C

Z
�

h
jrvj2 C

1

2
%jvj2

i
dx

C
1

2

Z
�

�
%jvt j

2
C

1

C�
.jr2vj2 C jrP j2/

�
dx

�
3

2

Z
�

%jv � rvj2 dx C
1

2

Z
�

%jvj2 dx: (3.8)

In order to estimate the first term on the right-hand side in the two-dimensional case, we
first write Z

�

%jv � rvj2 dx � k
p
%vk2kvk1krvk

2
4:

Hence, using the two interpolation inequalities

kzk4 � Ckzk
1=2
2 krzk

1=2
2 ;

kzk1 � Ckzk
1=2
2 kr

2zk
1=2
2

(3.9)

and remembering that %� D 1, we get

3

2

Z
�

%jv � rvj2 dx � Ck
p
%vk2kvk

1=2
2 krvk2kr

2vk
3=2
2

�
1

4C�
kr

2vk22 C Ck
p
%vk42kvk

2
2krvk

4
2:

The first term can be absorbed by the left-hand side of (3.8) and one can bound kvk2 from
(3.1). Hence, taking advantage of inequality (3.2), we get for some C0 > 0 depending only
on k
p
%0v0k2,

d
dt

Z
�

h
jrvj2 C

1

2
%jvj2

i
dx C

Z
�

h
jrvj2 C

1

2
%jvj2

i
dx

C
1

2

Z
�

�
%jvt j

2
C

1

2C�
.jr2vj2 C jrP j2/

�
dx

� C0e
�2ˇ1t Œ1C krvk62�: (3.10)

The crucial observation is that krv.t/k2 may bounded uniformly in time in terms of the
data (see [13, Props. 3.1 & 3.3]). Therefore, we obtain

d
dt

Z
�

h
jrvj2 C

1

2
%jvj2

i
dx

C

Z
�

�
jrvj2 C

1

2
%jvj2 C

1

2
%jvt j

2
C

1

4C�
.jr2vj2 C jrP j2/

�
dx

� C0e
�2ˇ1t : (3.11)
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This leads for any 1 2 R to

d
dt

�
e21t

Z
�

�
jrvj2 C

1

2
%jvj2

�
dx
�

C .1 � 21/

Z
�

e21t
�
jrvj2 C

1

2
%jvj2 C

1

2
%jvt j

2
C

1

4C�
.jr2vj2 C jrP j2/

�
dx

� C0e
�2.ˇ1�1/t : (3.12)

In the three-dimensional case, the only difference is the slightly more complicated
treatment of the right-hand side of (3.8). Nevertheless, by using the Hölder inequality and
the Gagliardo–Nirenberg inequality, we arrive (still using that %� D 1) atZ

�

%jv � rvj2 � k%1=4vk24krvk
2
4 � Ck

p
%vk

1=2
2 kvk

3=2
6 krvk

1=2
2 kr

2vk
3=2
2

� Ck
p
%vk

1=2
2 krvk

2
2kr

2vk
3=2
2

�
1

2C�
kr

2vk22 C Ck
p
%vk22krvk

8
2

�
1

2C�
kr

2vk22 C C0e
�2ˇ1t ;

where in the last passage we have used (3.2) and the uniform boundedness of krv.t/k2.
Again, the first term can be absorbed by the left-hand side of (3.8) and we obtain (3.12).

Now, choosing e.g. 1 D min.1=4; ˇ1=2/ and integrating (3.12) on Œ0; t � yields

e21t
�
krv.t/k22 C

1

2
k
p
%.t/v.t/k22

�
C
1

2

Z t

0

e21s
�
krvk22 C

1

2
k
p
%vk22 C

1

2
k
p
%vtk

2
2 C

1

4C�
.kr2vk22 C krP k

2
2/
�

ds

�
C0

ˇ1 � 1
C krv0k

2
2 C

1

2
k
p
%0v0k

2
2;

which readily gives (3.4) and (3.6). As for (3.5), it just results from the Poincaré inequality
and Sobolev embedding.

3.2. Decay of time derivatives

Here we estimate time and time-space derivatives.

Lemma 7. Let .%; v/ be a solution to (1.1) given either by Theorem 1 or by Theorem 2.
Then there exists a positive constant ˇ3 < ˇ2 (still of the form ˇ3 D c��=.%

�d2/) such
that

sup
t2RC

Z
�

te2ˇ3t%jvt j
2 dx C

Z 1
0

e2ˇ3t
�
k
p
trvtk

2
2 C k

p
tvtk

2
2

�
dt � C0 (3.13)

for some positive constant C0 depending only on the data.
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Proof. We keep the assumption d D � D %� D 1. Now differentiating the momentum
equation in time and multiplying by

p
teˇt , we obtain

%.
p
teˇtvt /t C

p
teˇt%tvt �

1

2
p
t
eˇt%vt � ˇ

p
teˇt%vt C

p
teˇt%tv � rv

C
p
teˇt%vt � rv C

p
teˇt%v � rvt ��.

p
teˇtvt /Cr.

p
teˇtPt / D 0: (3.14)

Testing (3.14) with
p
teˇtvt yields

1

2

d
dt

Z
�

te2ˇt%jvt j
2 dx C

Z
�

te2ˇt jrvt j
2 dx D

5X
iD1

Ii ; (3.15)

where, using %t D � div.%v/ in the third term on the left-hand side of (3.14), we have

I1 D
1

2

Z
�

e2ˇt%jvt j
2 dx;

I2 D �

Z
�

.
p
teˇt%tv � rv/ � .

p
teˇtvt / dx;

I3 D �

Z
�

.
p
teˇt%vt � rv/ � .

p
teˇtvt / dx;

I4 D

Z
�

%v � rj
p
teˇtvt j

2 dx;

I5 D ˇ

Z
�

te2ˇt%jvt j
2 dx:

Now we estimate the right-hand side of (3.15). From the continuity equation, we have

I2 D

Z
�

te2ˇt div.%v/.v � rv/ � vt dx D �
Z
�

te2ˇt%v � rŒ.v � rv/ � vt � dx:

Therefore,

jI2j �

Z
�

te2ˇt%jvj
�
jrvj2jvt j C jvj jr

2vj jvt j C jvj jrvj jrvt j
�

dx

DW I21 C I22 C I23:

For I21 in the two-dimensional case, we have

jI21j �

Z
�

.
p
t%jvj jrvj2

p
t%jvt je

2ˇt / dx � kvk21k
p
t%eˇtvtk

2
2 C te

2ˇt
krvk44;

so using (3.9) and (3.4) we get

jI21j � kvk
2
1k
p
t%eˇtvtk

2
2 C tkrvk

2
2e
2ˇt
kr

2vk22

� kvk21k
p
t%eˇtvtk

2
2 C Ce

�2ˇ2tkeˇtr2vk22: (3.16)
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In the three-dimensional case we do not have (3.9), but using the Hölder inequality
and the embedding H 1

0 ,! L6 we can write

jI21j �
p
te2ˇt

Z
�

p
t%jvt j jvj jrvj

2 dx

�
p
te2ˇtk

p
t%vtk4kvk6krvk

2
24=7

�
p
teˇtk

p
t%vtk

1=4
2 k
p
teˇtvtk

3=4
6 kvk6krvk

2
24=7

�
1

10
k
p
teˇtrvtk

2
2 C Ct

4=5e8ˇt=5k
p
t%vtk

2=5
2 krvk

16=5

24=7
krvk

8=5
2 :

Then, using the Gagliardo–Nirenberg inequality krvk16=5
24=7
� Ckrvk

6=5
2 kr

2vk22 and
(3.4), we discover that

jI21j �
1

10
k
p
teˇtrvtk

2
2 C t

4=5e�4ˇt=5k
p
t%eˇtvtk

2=5
2 krvk
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2 keˇtr2vk22

�
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15
k
p
teˇtrvtk

2
2 C C0e

�.4ˇC14ˇ2/t=5keˇtr2vk22k
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2 :

Therefore, there exists c > 0 such that

jI21j �
1

10
k
p
teˇtrvtk

2
2 C C0e

�ct
keˇtr2vk22.1C k

p
t%eˇtvtk

2
2/: (3.17)

The remaining two parts of I2 are simpler: we have

I22 D

Z
�

p
t%eˇt jr2vj jvj2

p
t%eˇt jvt j dx

� k
p
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teˇtr2vk2krvk

2
2k
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teˇtrvtk2

�
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15
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p
teˇtrvtk

2
2 C C0e

�4ˇ2tk
p
teˇtr2vk22 (3.18)

and

I23 � k
p
t%eˇtrvtk2kvk

2
6k
p
t%eˇtrvk6

� Ck
p
teˇtrvtk2krvk

2
2k
p
teˇtr2vk2

�
1

15
k
p
teˇtrvtk

2
2 C C0e

�4ˇ2tk
p
teˇtr2vk22: (3.19)

Hence, putting (3.17), (3.18) and (3.19) together, we obtain for some c > 0,

I2 �
1

5
k
p
teˇtrvtk

2
2 C C0e

�ct
keˇtr2vk22.1C k

p
t%eˇtvtk

2
2/: (3.20)
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Next we estimate I3 as follows:

I3 � krvk2k
p
t%eˇtvtk
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p
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2
2 (3.21)

and
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p
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�
1

10
k
p
teˇtrvtk

2
2 C Ckvk
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2
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Finally, as (3.1) also applies to vt , one may write for sufficiently small ˇ,

I5 �
1

10
k
p
teˇtrvtk

2
2: (3.23)

Combining (3.15), (3.20), (3.21), (3.22) and (3.23) we arrive at

1

2

d
dt

Z
�

te2ˇt%jvt j
2 dx C

1

2

Z
�

te2ˇt jrvt j
2 dx

� C0.e
�ct
keˇtr2vk22 C kvk

2
1/k
p
t%eˇtvtk

2
2

C C0.k
p
%eˇtvtk

2
2 C e

�ct
keˇtr2vk22/: (3.24)

By virtue of Lemma 6, the last line is integrable on RC for any ˇ � ˇ2, as well as the
prefactor of the second line (observe that H 2 ,! L1). Hence, the Grönwall inequality
ensures that

sup
t2RC

Z
�

te2ˇt%jvt j
2 dx C

Z
RC

e2ˇtk
p
trvtk

2
2 dt <1: (3.25)

Now the Poincaré inequality implies the bound for keˇt
p
tvtkL2.RCIL2/, which completes

the proof.

3.3. Shift of integrability and control of krvk1

Using the decay estimates we have proved so far will finally enable us to establish similar
properties for higher-order norms:
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Lemma 8. Let .%; v/ be a solution to (1.1) given either by Theorem 1 or by Theorem 2.
Then the following properties hold true:

p
teˇ2t .r2v;rP / 2 Lp.RCILs.�// 2 � s � 6 and p D

4s

3s � 6
if d D 3; (3.26)

p
teˇ2t .r2v;rP / 2 Lp.RCILs.�// 2 � s <1 and p D

2s

s � 2
if d D 2; (3.27)

eˇ4tr2v 2 L1.RCILr .�// for some r > d; (3.28)

eˇ4trv 2 L1.RCIL1.�//; (3.29)

for some 0 < ˇ4 D
c�

%�d2
< ˇ2, where ˇ2 is defined in Lemma 6.

Proof. We multiply (1.1)1 by
p
teˇt , where ˇ D ˇ2, and rewrite it as the Stokes system

��
p
teˇtv Cr

p
teˇtP D �

p
teˇt%vt �

p
teˇt%v � rv; div

p
teˇtv D 0: (3.30)

We start by proving (3.26). By the interpolation inequality

kf kq � kf k
.6�q/=2q
2 kf k

.3q�6/=2q
6 ; 2 � q � 6;

it is enough to prove
p
teˇt .r2v;rP / 2 L1.RCIL2.�// \ L2.RCIL6.�//: (3.31)

By (3.13) and Sobolev embedding, we have

p
%teˇtvt 2 L1.RCIL2.�// \ L2.RCIL6.�//: (3.32)

Therefore, the elliptic regularity of (3.30) implies

k
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:

So, by the Young inequality and (3.5), we get

k
p
teˇt .r2v;rP /kL1.RCIL2/ � C0: (3.33)

Similarly, starting from (3.30) and thanks to inequality (3.13) and the embedding H 1
0 ,!

L6, we have

k
p
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p
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In the three-dimensional case we have

k
p
teˇt=2vkL1.RCIL1/ � Ck

p
teˇt=2rvk
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k
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which implies
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where in the first passage we have used (3.6) and Sobolev embedding to estimate
keˇt=2rvkL2.RCIL6/.

Therefore, by (3.4) and (3.33), choosing ˇ small enough, we obtain

k
p
teˇt .r2v;rP /kL2.RCIL6/ � C0:

This completes the proof of (3.31), and thus also of (3.26). The easier two-dimensional
case (that is, (3.27)) is left to the reader.

In order to show the next part of the lemma, we note that for ˇ4; ı > 0 such that
ˇ4 C ı < ˇ2 we haveZ C1

1

eˇ4tkr2vkLs dt �
�Z C1

1

e�ıp
0t dt

�1=p0�Z C1
1
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For small times we can writeZ 1

0

kr
2v.t/kr dt �

�Z 1
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t�˛p
0

dt
�1=p0 Z 1
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We can choose for instance p D 8
5

, which corresponds to s D 4 in (3.26), then ˛ D 5
16

so
that ˛p D 1

2
and ˛p0 < 1, so the first integral is again finite. This completes the proof of

(3.28).
As for (3.29), it results directly from (3.4) and (3.28) owing to a suitable Gagliardo–

Nirenberg inequality that yields

keˇ4trvkL1.RCIL1/ � C.ke
ˇ4trvkL1.RCIL2/ C ke

ˇ4tr
2vkL1.RCILr //:

The right-hand side is finite whenever ˇ4 < ˇ2.
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