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This paper is a survey of methods for solving smooth, (strongly)
monotone stochastic variational inequalities. To begin with, we
present the deterministic foundation from which the stochas-
tic methods eventually evolved. Then we review methods for
the general stochastic formulation, and look at the finite-sum
setup. The last parts of the paper are devoted to various recent
(not necessarily stochastic) advances in algorithms for variational
inequalities.

1 Introduction

In its long, more than half-century history of study (going back to
the classical article [113]), variational inequalities have become one
of the most popular and universal optimization formulations. Varia-
tional inequalities are used in various areas of applied mathematics.
Here we can highlight both classical examples from game theory,
economics, operator theory, convex analysis [6,19,106,110,113],
as well as newer and even more recent applications in optimization
and machine learning: non-smooth optimization [93], unsupervised
learning [9,22,36], robust/adversarial optimization [11], GANs [47]
and reinforcement learning [57,100]. Modern times present new
challenges to the community. The increase in scale of problems
and the need to speed up solution processes have sparked a huge
interest in stochastic formulations of applied tasks, including varia-
tional inequalities. This paper surveys stochastic methods for solving
variational inequalities.

Structure of the paper. In Section 2, we give a formal statement
of the variational inequality problem, basic examples, and main
assumptions. Section 3 deals with deterministic methods, from
which stochastic methods have evolved. Section 4 covers a variety
of stochastic methods. Section 5 is devoted to the recent advances
in (not necessarily stochastic) variational inequalities and saddle
point problems.

2 Problem: Setting and assumptions

Notation. We use ⟨x, y⟩ ≔ ∑d
i=1 xiyi to denote the standard in-

ner product of vectors x, y ∈ ℝd, where xi is the i-th component
of x in the standard basis of ℝd. It induces the ℓ2-norm in ℝd by
‖x‖2 ≔√⟨x, x⟩. We denote the ℓp-norm by ‖x‖p ≔ (∑d

i=1|xi|p)1/p

for p ∈ [1,∞), and ‖x‖∞ ≔ max1≤ i≤d|xi| for p = ∞. The dual
norm ‖⋅‖∗ corresponding to the norm ‖⋅‖ is defined by ‖y‖∗ ≔
max{⟨x, y⟩ ∣ ‖x‖ ≤ 1}. The symbol 𝔼[⋅] stands for the total math-
ematical expectation. Finally, we need to introduce the symbols 𝒪
and Ω to enclose numerical constants that do not depend on any
parameters of the problem, and the symbols �̃� and Ω̃ to enclose
numerical constants and logarithmic factors.

We study variational inequalities (VI) of the form

find z∗ ∈ 𝒵 such that ⟨F(z∗), z− z∗⟩ ≥ 0 ∀z ∈ 𝒵, (1)

where F ∶ 𝒵 → ℝd is an operator and 𝒵 ⊆ ℝd is a convex set.
To emphasize the extensiveness of formulation (1), we give

a few examples of variational inequalities arising in applied sciences.

Example 1 (Minimization). Consider the minimization problem

min
z∈𝒵

f(z). (2)

Let F(z) ≔ ∇f(z). Then, if f is convex, one can prove that z∗ ∈ 𝒵
is a solution of (1) if and only if z∗ ∈ 𝒵 is a solution of problem
(2).

Example 2 (Saddle point problem). Consider the saddle point
problem (SPP)

min
x∈𝒳

max
y∈𝒴

g(x, y). (3)

Suppose that F(z) ≔ F(x, y) = [∇xg(x, y),−∇yg(x, y)] and 𝒵 =
𝒳×𝒴 with 𝒳 ⊆ ℝdx , 𝒴 ⊆ ℝdy . Then, if g is convex-concave, one
can prove that z∗ ∈ 𝒵 is a solution of problem (1) if and only if
z∗ ∈ 𝒵 is a solution of problem (3).
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The study of saddle point problems is often associated with
variational inequalities.

Example 3 (Fixed point problem). Consider the fixed point problem

find z∗ ∈ ℝd such that T(z∗) = z∗, (4)

where T ∶ ℝd → ℝd is an operator. If we set F(z) = z− T(z), then
one can prove that z∗ ∈ 𝒵=ℝd is a solution of problem (1) if and
only if F(z∗) = 0, i.e., z∗ ∈ ℝd is a solution of problem (4).

For the operator F from (1) we assume the following.

Assumption 1 (Lipschitzness). The operator F is L-Lipschitz contin-
uous, i.e., for all u, v ∈ 𝒵, we have ‖F(u) − F(v)‖∗ ≤ L‖u− v‖.

In the context of problems (2) and (3), L-Lipschitzness of the
operator means that the functions f(z) and g(x, y) are L-smooth.

Assumption 2 (Strong monotonicity). The operator F is μ-strongly
monotone, i.e., for all u, v ∈ 𝒵, we have ⟨F(u) − F(v), u− v⟩ ≥
μ‖u− v‖22. If μ = 0, then the operator F is monotone.

In the context of problems (2) and (3), strong monotonicity
of F means strong convexity of f(z) and strong convexity-strong
concavity of g(x, y). In this paper we first focus on the strongly
monotone and monotone cases. But there are also various assump-
tions relaxing monotonicity and strong monotonicity (e.g., see [55]
and references therein).

We note that Assumptions 1 and 2 are sufficient for the exis-
tence of a solution to problem (1) (see, e.g., [37]).

Since we work on the set 𝒵, it is useful to introduce the
Euclidean projection onto 𝒵,

P𝒵(z) = argmin
v∈𝒵

‖z− v‖2.

To characterize the convergence of the methods for monotone
variational inequalities we introduce the gap function,

GapVI(z) ≔ sup
u∈𝒵

[⟨F(u), z− u⟩]. (5)

Such a gap function, regarded as a convergence criterion, is more
suitable for the following variational inequality problem:

find z∗ ∈ 𝒵 such that ⟨F(z), z∗ − z⟩ ≤ 0 for z ∈ 𝒵.

Such a solution is also called weak or Minty (whereas the solution
of (1) is called strong or Stampacchia). However, in view of As-
sumption 1, F is single-valued and continuous on 𝒵, meaning that
actually the two indicated formulations of the variational inequality
problem are equivalent [37].

For the minimization problem (2), the functional distance to the
solution, i.e., the difference f(z)− f(z∗), can be used instead of (5).

For saddle point problems (3), a slightly different gap function is
used, namely,

GapSPP(z) ≔ gap(x, y) = max
y′ ∈𝒴

f(x, y′) − min
x′ ∈𝒳

f(x′, y). (6)

For both functions (5) and (6) it is crucial that the feasible set is
bounded (in fact it is not necessary to take the whole set 𝒵, which
can be unbounded – it suffices to take a bounded convex subset 𝒞
which contains some solution, see [95]). Therefore it is necessary
to define a distance on the set 𝒵. Since this survey covers methods
not only in the Euclidean setup, let us introduce a more general
notion of distance.

Definition 1 (Bregman divergence). Let ν(z) be a function that is
1-strongly convex w.r.t. the norm ‖⋅‖ and differentiable on 𝒵. Then
for any two points z, z ′ ∈ 𝒵 the Bregman divergence (or Bregman
distance) V(z, z ′) associated with ν(z) is defined as

V(z, z ′) ≔ ν(z ′) − ν(z) − ⟨∇ν(z), z ′ − z⟩.

We denote the Bregman diameter of the set 𝒵 w.r.t. the di-
vergence V(z, z ′) as D𝒵,V ≔ max{√2V(z, z ′) ∣ z, z ′ ∈ 𝒵}. In the
Euclidean case, we simply write D𝒵 instead of D𝒵,V. Using the
definition of V, we introduce the so-called proximal operator as
follows:

proxx(y) = argmin
z∈𝒵

{⟨y, z⟩ + V(z, x)}.

3 Deterministic foundation: Extragradient and
other methods

The first and the simplest method for solving the variational in-
equality (1) is the iterative scheme (also known as the Gradient
method)

zk+1 = P𝒵(zk − γF(zk)), (7)

where γ > 0 is a step size. Note that using the proximal operator
associated with the Euclidean Bregman divergence this method
can be rewritten in the form

zk+1 = proxzk(γF(zk)).

The basic result asserts the convergence of the method to the
unique solution of (1) for strongly monotones and L-Lipschitz
operators F; it was obtained in the papers [19,106,110].

Theorem 1. If Assumptions 1 and 2 hold and 0 < γ < 2μ/L2, then
after k iterations method (7) converges to z∗ with a linear rate:

‖zk − z∗‖22 = 𝒪(R2
0q

k), with q = (1− 2γμ+ γ2L2)

and R0 denotes (here and everywhere in the sequel) the norm
‖z0 − z∗‖2. For γ = μ/L2, we have q = (1− 1/κ2), κ = L/μ, thus
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the upper bound on the number of iterations needed to achieve
the ε-solution (i.e., ‖z k − z∗‖22 ≤ ε) is 𝒪(κ2 log(R2

0/ε)).

Various extensions of this statement (for the case when F is
not Lipschitz, but with linear growth bounds, or when the values
of F are corrupted by noise) can be found in [10, Theorem 1].

When F is a potential operator (see Example 1) method (7)
coincides with the gradient projection algorithm. It converges for
strongly monotone F. Moreover, the bounds for the admissible step
size are less restrictive (0 < γ < 2/L) and the relevant complexity
estimates are better (O(κ log(R2

0/ε))) than in Theorem 1; see [104,
Theorem 2 in Section 1.4.2].

However, in the general monotone, but not strongly monotone
case (for instance, for the convex-concave SPP, Example 2) conver-
gence fails. The original statements on the convergence of Uzawa’s
method (a version of (7)) for saddle point problems [6] were wrong;
there are numerous well-known examples where method (7) for F
corresponding to a bilinear SPP diverges, see, e.g., [104, Figure 39].

There have been many other attempts to recover the conver-
gence of gradient-like methods, not for VIs, but for saddle point
problems. One of them is based on the transition to modified
Lagrangians when g(x, y) is a Lagrange function, see [45, 104].
However, we focus on the general VI case. A possible approach
is based on the idea of regularization. Instead of the monotone
variational inequality (1) one can deal with a regularized inequality,
in which the monotone operator F is replaced by strongly mono-
tone one F+ εkT, where T(z) is a strongly monotone operator and
εk > 0 is a regularization parameter. If we denote by z k the solution
of the regularized VI, then one can prove that z k converges to z∗

as εk → 0 (see [10]). However, usually the solution z k is not easily
available. To address this problem, an iterative regularization tech-
nique is proposed in [10], where one step of the basic method (7)
is applied for the regularized problem. Step sizes and regularization
parameters can be adjusted to guarantee convergence.

Another technique is based on the Proximal Point Method
proposed independently by B. Martinet in [84] and by T. Rockafellar
in [107]. At each iteration this methods requires the solution of
the VI with the operator F+ cI, where c > 0 and I is the identity
operator. This is an implicit method (similar to the regularization
method), however there exist numerous implementable versions
of Proximal Point. For instance, some methods discussed below
can be considered from this point of view.

The breakthrough in methods for solving (non-strongly) mono-
tone variational inequalities was made by Galina Korpelevich [64].
She exploited the idea of extrapolation for the gradient method.
How this works can be explained for the simplest example of a two-
dimensional min-max problem with g(x, y) = xy and 𝒵 = ℝ2. It
has the unique saddle point z = 0, and in any point z k the direc-
tion F(z k) is orthogonal to z k; thus, the iteration (7) increases the
distance to the saddle point. However, if we perform the step (7)
and get the extrapolated point z k+1/2, the direction −F(z k+1/2) is

attracted to the saddle point. Thus, the Extragradient method for
solving (1) reads

zk+1/2 = P𝒵(zk − γF(zk)),

zk+1 = P𝒵(zk − γF(zk+1/2)).

Theorem 2. Let F satisfy Assumptions 1 and 2 (with μ = 0) and
let 0 < γ < 1/L. Then the sequence of iterates z k generated by the
Extragradient method converges to z⋆.

For the particular cases of the zero-sum matrix game or the
general bilinear problem with g(x, y) = y⊤Ax− b⊤x+ c⊤y, the
method converges linearly, provided that the optimal solution is
unique (see [64, Theorem 3]). In this case, the rate of convergence
is equal to 𝒪(κ log(R2

0/ε)) with κ = λmax(AA⊤)/λmin(AA⊤). More
general upper bounds for the Extragradient method can be found
in [119] and in the recent paper [87]. In particular, for the strongly
monotone case the estimate O(κ log(R2

0/ε)) with κ = L/μ holds
true (compare with the much worse bound O(κ2 log(R2

0/ε)) for
the Gradient method). An adaptive version of the Extragradient
method (no knowledge of L is required) is proposed in [61].

Another version of the Extragradient method for finding saddle
points is provided in [65]. Considering the setup of Example 2, we
can exploit just one extrapolating step for the variables y:

yk+1/2 = P𝒴(yk + γ∇yg(xk, yk)),

xk+1 = P𝒳(xk − γ∇xg(xk, yk+1/2),

yk+1 = yk + q(yk+1/2 − yk),

(8)

with 0 < γ < 1/(2L) and 0 < q < 1. This method converges to the
solution and if g(x, y) is linear in y, then the rate of convergence is
linear. If we set q = 1 in method (8), then yk+1 = yk+1/2 and we
get the so-called Alternating Gradient Method (alternating descent-
ascent). In [123], it was proved that this method has local linear
convergence with complexity O(κ log(R2

0/ε)), where κ = L/μ.
L. Popov [105] proposed a version of extrapolation scheme

(sometimes this type of scheme is referred to as optimistic or single-
call):

zk+1/2 = P𝒵(zk − γF(zk−1/2)),

zk+1 = P𝒵(zk − γF(zk+1/2)).
(9)

It requires the single calculation of F at each iteration vs two calcu-
lations in the Extragradient method. As shown in [105], method (9)
converges for 0< γ< 1/(3L). Rates of convergence for this method
were derived recently in [41,87], i.e., O(κ log(R2

0/ε)) with κ = L/μ
for the strongly monotone case and κ = λmax(AA⊤)/λmin(AA⊤)
for the bilinear case. Note that in the general strongly monotone
case this estimate is optimal [124], but for the bilinear problem the
upper bounds available in the literature for both the Extragradient
and optimistic methods are not tight [56]. Meanwhile, optimal
estimates O(√κ log(R2

0/ε)) with κ = λmax(AA⊤)/λmin(AA⊤) can
be achieved using approaches from [4,7].
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An extension of the above schemes to an arbitrary proximal
setup was obtained in the work of A. Nemirovsky [92]. He proposed
the Mirror-Prox method for VIs, exploiting the Bregman divergence:

zk+1/2 = proxzk(γF(zk)),

zk+1 = proxzk(γF(zk+1/2)).
(10)

This yields the following rate-of-convergence result.

Theorem 3. Let F satisfy Assumptions 1 and 2 (with μ = 0 ), and
let

̂zk = 1
k

k

∑
i=1

z i+1/2, (11)

where z i+1/2 are generated by algorithm (10) with γ = 1/(√2L).
Then, after k iterations,

GapVI( ̂zk) = 𝒪(
LD2

𝒵,V

k
). (12)

Numerous extensions of these original versions of iterative
methods for solving variational inequalities were published later.
One can highlight Tseng’s Forward-Backward Splitting [120], Nes-
terov’s Dual Extrapolation [95], Malitsky and Tam’s Forward-Re-
flected-Backward [83]. All methods have convergence guaran-
tees (12). It turns out that this rate is optimal [101].

4 Stochastic methods: Different setups and assumptions

In this section, we move from deterministic to stochastic methods,
i.e., we consider problem (1) with an operator of the form

F(z) = 𝔼ξ∼𝒟[Fξ(z)], (13)

where ξ is a random variable, 𝒟 is some (typically unknown) prob-
ability distribution and Fξ ∶ 𝒵 → ℝd is a stochastic operator. In this
setup, calculating the value of the full operator F is computationally
expensive or even intractable. Therefore, one has to work mainly
with stochastic realizations Fξ.

4.1 General case
The stochastic formulation (13) for problem (1) was first consid-
ered by the authors of [60]. They proposed a natural stochastic
generalization of the Extragradient method (more precisely, of the
Mirror-Prox methods):

zk+1/2 = proxzk(γFξ k(zk)),

zk+1 = proxzk(γFξ k+1/2(zk+1/2)).
(14)

Here it is important to note that the variables ξ k and ξ k+1/2 are
independent and Fξ(z) is an unbiased estimator of F(z). Moreover,
Fξ(z) is assumed to satisfy the following condition.

Assumption 3 (Bounded variance). The unbiased operator Fξ has
uniformly bounded variance, i.e., for all ξ ∼𝒟 and u∈ 𝒵, we have
𝔼‖Fξ(u) − F(u)‖2∗ ≤ σ2.

Under this assumption, the following result was established
in [60].

Theorem 4. Let Fξ satisfy Assumptions 1, 2 (with μ= 0) and 3, and
let ̂zk be defined as in (11), where z i+1/2 are generated by algo-
rithm (14) with γ = min{ 1

√3L ,D𝒵,V√
1

7kσ2 }. Then, after k iterations,
one can guarantee that

𝔼[GapVI( ̂zk)] = 𝒪(
LD2

𝒵,V

k
+ D𝒵,V√

σ2

k
). (15)

In [17], the authors carried out an analysis of algorithm (14) for
strongly monotone VIs in the Euclidean case. In particular, under
Assumptions 1, 2 and 3 one can guarantee that after k iterations
of method (14) one has that (here and below we omit numerical
constants in the exponential multiplier)

𝔼‖zk − z∗‖22 = �̃�(R2
0 exp(−

μk
L
)+ σ2

μ2k
). (16)

Also in [17], the authors obtained lower complexity bounds for solv-
ing VIs satisfying Assumptions 1, 2 and 3 with stochastic methods.
It turns out that the conclusions of Theorem 4 in the monotone
case and estimate (16) are optimal and meet lower bounds up to
numerical constants.

Optimistic-like (or single-call) methods were also investigated in
the stochastic setting. The work [41] applies the following update
scheme:

zk+1/2 = P𝒵(zk − γFξ k−1/2(zk−1/2)),

zk+1 = P𝒵(zk − γFξ k+1/2(zk+1/2)).
(17)

For this method, in the monotone Euclidean case, the authors
proved an estimate similar to (15). In the strongly monotone case,
method (17) was investigated in the paper [54], but the estimates
obtained there do not meet the lower bounds. The optimal esti-
mates for this scheme were obtained later in [14].

The work [66] deals with a slightly different single-call approach
in the non-Euclidean case:

zk+1 = proxzk(γkFξ k(zk) + γkαk[Fξ k(zk) − Fξ k−1(zk−1)]). (18)

This update rule is a modification of the Forward-Reflected-Back-
ward approach, namely, here αk is a parameter, while in [83], αk ≡ 1.
The analysis of method (18) gives optimal estimates in both the
strongly monotone and monotone cases.
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The theoretical results and guarantees discussed above rely in
significant manner on the bounded variance assumption (Assump-
tion 3). This assumption is quite restrictive (especially when the
domain is unbounded) and does not hold for many popular ma-
chine learning problems. Moreover, one can even design a strongly
monotone variational inequality on an unbounded domain such
that method (14) diverges exponentially fast [26]. The authors of
[48, 55] consider a relaxed form of the bounded variance condi-
tion and assume that 𝔼‖Fξ(u) − F(u)‖22 ≤ σ2 + δ‖u− z∗‖22 with
δ ≥ 0 in the Euclidean case. Under this condition and Assump-
tions 1 and 2, it is proved in [48] that after k iterations of algorithm
(14) (when 𝒵 = ℝd) it holds that

𝔼‖zk − z∗‖22 = 𝒪(κR2
0 exp(−

k
κ
)+ σ2

μ2k
), (19)

where κ = max{ δ
μ2 ;

L+√δ
μ }. The same assumption on stochastic

realizations was considered in [67], where method (18) was used,
yielding the estimate

𝔼‖zk − z∗‖22 = 𝒪(R2
0 exp(−

μk
L
)+

σ2 + δ2D2
𝒵

μ2k
). (20)

Estimates (19) and (20) are competitive: the former is superior in
terms of the stochastic term (second term), while the latter is supe-
rior in terms of the deterministic term (first term). However, none
of these results deals completely with the issue of bounded noise,
because the condition considered above is not general. The key to
avoiding the bounded variance assumption on Fξ lies in the way
how stochasticity is generated in method (14). Method (14) is some-
times called Independent Samples Stochastic Extragradient (I-SEG).
To address the bounded variance issue, K. Mishchenko et al. [86]
proposed another stochastic modification of the Extragradient
algorithm, called Same Sample Stochastic Extragradient (S-SEG):

zk+1/2 = zk − γFξ k(zk),

zk+1 = zk − γFξ k(zk+1/2).

For simplicity, we present the above method for the case when
𝒵=ℝd (F(x∗) = 0), and refer the reader to [86] for a more general
case of regularized VIs. In contrast to I-SEG, S-SEG uses the same
sample ξ k for both steps at iteration k. Although such a strategy
cannot be implemented in some scenarios (streaming oracle), it
can be applied to finite-sum problems, which have been gaining
an increasing attention in the recent years. Moreover, S-SEG relies
in significant manner on the following assumption.

Assumption 4. The operator Fξ(z) is L-Lipschitz and μ-strongly
monotone almost surely in ξ, i.e., ‖Fξ(z) − Fξ(z ′)‖2 ≤ L‖z− z ′‖2
and ⟨Fξ(z)− Fξ(z ′),z− z ′⟩ ≥ μ‖z− z ′‖22 for all z,z ′ ∈ℝd, almost
surely in ξ.

The evident difference between the I-SEG and S-SEG setups can
be explained through the connection between the Extragradient

and the Proximal Point (PP) methods [84,107]. In the rest of this
subs-section we assume that 𝒵 = ℝd (F(z∗) = 0). In this setup, PP
has the update rule

zk+1 = zk − γF(zk+1).

The method converges for any monotone operator F and any γ > 0.
However, the update rule of PP is implicit and in many situations it
cannot be computed efficiently. The Extragradient method can be
seen as a natural approximation of PP that substitutes z k+1 in the
right-hand side by one gradient step from z k:

zk+1 = zk − γF(zk − γF(zk)).

In addition, when F is L-Lipschitz, one can estimate how good
the approximation is. Consider z k+1 = z k − γF(z k − γF(z k)) (the
Extragradient step) and ̃zk+1 = z k − γF( ̃zk+1) (the PP step). Then
‖z k+1 − ̃zk+1‖2 can be estimated as follows [86]:

‖zk+1 − ̃zk+1‖2 = γ‖F(zk − γF(zk)) − F( ̃zk+1)‖2

≤ γL‖zk − γF(zk) − ̃zk+1‖2 = γ2L‖F(zk) − F( ̃zk+1)‖2

≤ γ2L2‖zk − ̃zk+1‖2 = γ3L2‖F( ̃zk+1)‖2

≤ γ3L3‖ ̃zk+1 − z∗‖2.

That is, the difference between the Extragradient and PP steps is of
the order 𝒪(γ3) rather than 𝒪(γ2). Since the latter corresponds
to the difference between PP and the simple gradient step (7), the
Extragradient method approximates PP better than gradient steps,
which are known to be non-convergent for general monotone
Lipschitz variational inequalities. This approximation feature of the
Extragradient method is crucial for its convergence and, as the
above derivation implies, the approximation argument significantly
relies on the Lipschitzness of the operator F.

Let us go back to the differences between I-SEG and S-SEG. In
S-SEG, the k-th iteration can be regarded as a single Extragradient
step for the operator Fξ k(z). Therefore, Lipschitzness and mono-
tonicity of Fξ k(z) (Assumption 4) are important for the analysis of
S-SEG. In contrast, I-SEG uses different operators for the extrapo-
lation and update steps. In this case, there is no effect from the
Lipschitzness/monotonicity of individual Fξ(z)s. Therefore, the anal-
ysis of I-SEG naturally relies on the Lipschitzness and monotonicity
of F(z) as well as on the closeness (on average) of Fξ(z) and F(z)
(Assumption 3).

The convergence of I-SEG was discussed earlier in this section.
Regarding S-SEG, one has the following result [86].

Theorem 5. Let Assumption 4 hold. Then there exists a choice of
step size γ (see [48]) such that the output of S-SEG after k iterations
satisfies

𝔼‖zk − z∗‖22 = 𝒪(LR
2
0

μ
exp(−μk

L
)+ σ2

∗
μ2k

),

where σ2
∗ = 𝔼‖Fξ(z∗)‖22.
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This rate is similar to the one known for I-SEG, with the fol-
lowing differences. First, instead of the uniform bound on the
variance σ2, the rate depends on σ2

∗, which is the variance of Fξ
measured at the solution. In many cases, σ2 =∞, while σ2

∗ is finite.
From this perspective, S-SEG enjoys a better rate of convergence
than I-SEG. However, this comes at a price: while the rate of I-SEG
depends on the Lipschitz and strong-monotonicity constants of F,
the rate of S-SEG depends on the worst constants of Fξ, which can
be much worse than those for F. In particular, consider the finite-
sum setup with uniform sampling of ξ: F(x) = 1

n ∑
n
i=1 Fi(x), where

Fi is Li-Lipschitz and μi-strongly monotone, and ℙ{ξ= i} = 1
n . Then

Assumption 4 holds with L = max1≤ i≤n Li and μ = min1≤ i≤n μi
and these constants appear in the rate from Theorem 3. The au-
thors of [48] tighten this rate. In particular, they prove that for
S-SEG with different step sizes for the extrapolation and update
steps one has that

𝔼‖zk − z∗‖22 = 𝒪(LR
2
0

μ
exp(−μk

L
)+ σ2

∗
μ2k

),

where σ2
∗ = 1

n ∑
n
i=1‖Fi(z∗)‖22 and μ= 1

n ∑
n
i=1 μi. Since μ is (some-

times considerably) larger than μ, the improvement is noticeable.
Moreover, when the constants {Li}ni=1 are known, one can con-
sider the so-called importance sampling [52]: ℙ{ξ = i} = Li/(nL),
where L= 1

n ∑
n
i=1 Li. As the authors of [48] show, importance sam-

pling can be combined with S-SEG by allowing the extrapolation
and update step sizes at the k-th iteration to depend on the sample
ξ k. In particular, for the proposed modification of S-SEG they derive
the estimate

𝔼‖zk − z∗‖22 = 𝒪(LR
2
0

μ
exp(−μk

L
)+ ̂σ2

∗
μ2k

),

where ̂σ2
∗ = 1

n ∑
n
i=1

L
Li
‖Fi(z∗)‖22. The exponentially decaying term

is always better than the corresponding one for S-SEG with uniform
sampling. This usually implies faster convergence during the initial
stage. Next, typically, a larger norm of Fi(z∗) implies larger Li, e.g.,
‖Fi(z∗)‖22 ∼ L2i . In this case, ̂σ2

∗ ≤ σ2
∗, because

̂σ2
∗ ∼ (L)2 and σ2

∗ ∼ L2 = 1
n

n

∑
i=1

L2i ≥ (L)2.

Moreover, one can allow other sampling strategies and cover the
case when some μi are negative, see [48] for the details.

4.2 Finite-sum case
As noted earlier, when we deal with problem (13), it is often the
case (especially in practical problems) that the distribution 𝒟 is
unknown, but nevertheless some samples from 𝒟 are available.
Then one can replace problem (13) by a finite-sum approximation:

F(z) = 1
n

n

∑
i=1

Fi(z).

This approximation is sometimes also called Monte Carlo approxi-
mation. For machine learning problems the term empirical risk is
often encountered. Although calls of the full operator are now
tractable, they remain expensive in practice. Therefore, it is worth
avoiding frequent computation of F and mainly use calls to single
Fi operators or small batches of them.

Before presenting the results, let us introduce the appropriate
analogue of the Lipschitzness assumption.

Assumption 5 (Lipschitzness in the mean). The operator F is Lavg-
Lipschitz continuous in mean, i.e., for all u, v ∈ 𝒵, we have

𝔼[‖Fξ(u) − Fξ(v)‖2∗] ≤ L2avg‖u− v‖2.

For example, if Fi is Li-Lipschitz for all i and we draw the index
ξ = i with probability pi = Li/∑j Lj, then

Lavg = 1
n ∑

j

Lj.

The study of finite-sum problems in stochastic optimization
is connected, first of all, with classical methods for minimization
problems such as SVRG [59] and SAGA [29]. For the saddle point
problems, these methods were adopted in [102] (in fact, these
results are also valid for variational inequalities). The authors con-
sidered strongly convex-strongly concave saddles in the Euclidean
case and proved the following estimates for SVRG and SAGA:

𝔼‖zk − z∗‖22 = 𝒪(R2
0 exp(−min{1

n
,
μ2

L2avg
}k)).

Since this last bound is not tight in terms of Lavg/μ, the authors pro-
posed accelerating SVRG and SAGA via the Catalyst envelope [76].
In this case, they obtain the bound

𝔼‖zk − z∗‖22

= 𝒪(R2
0 exp(−min{1

n
;

μ
√nLavg

} k
log[Lavg/μ]

)). (21)

The same estimates for methods for saddle point problems based
on accelerating envelopes were also presented in [118].

An important step in the study of the finite-sum stochastic
setup was taken in the work [25], which is primarily focused on
bilinear games. For this class of problems, the authors improved
estimate (21) and removed the additional logarithmic factor. For
general problems (saddle point and variational inequalities) the
results of [25] are very similar to those in (21) and also include
an additional logarithmic factor. The authors also considered the
convex-concave/monotone case in the non-Euclidean setting and
found that for their method after k iterations it holds that

𝔼[GapVI( ̂zk)] = �̃�(√nLavgD2
𝒵,V

k
). (22)
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The issue of the additional logarithmic factor was resolved in [2],
where the following modification of the Extragradient method was
proposed:

zk+1/2 = P𝒵(zk + τ(wk − zk) − γF(wk)),

Δk = Fξ k(zk+1/2) − Fξ k(wk) + F(wk),

zk+1 = P𝒵(zk + τ(wk − zk) − γΔk)

wk+1 =
⎧
⎨
⎩

z k+1, with probability p,

w k, with probability 1− p.

(23)

This algorithm is a combination of the extra step technique from
the theory of VIs and the loopless approach [73] for finite-sum prob-
lems. An interesting ingredient of the method is the randomized
negative momentum: τ(wk − z k). While for minimization prob-
lems it is usual to apply a positive/heavy-ball momentum, the
opposite approach proves useful for saddle point problems and
variational inequalities. This effect was noticed earlier [3,42,122]
and and is encountered now in the theory of stochastic methods
for VIs. Also, in [2], the authors presented modifications for the
Forward-Backward, Forward-Reflected-Backward as well as for the
Extragradient methods in the non-Euclidean case.

As we noted earlier, the results of [2] give estimates (21) and
(22), but without additional logarithmic factors. That is, to achieve

𝔼‖zk − z∗‖22 ≤ ε in the strongly monotone case,

𝔼[GapVI( ̂zk)] ≤ ε in the monotone case,

the methods from [2] require

𝒪(max{n; √
nLavg
μ

} log
R2
0

ε
) (24)

and

𝒪(√nLavgD2
𝒵,V

ε
) (25)

stochastic oracle calls, respectively. It remains to discuss the effect
of batching on the method from (23), i.e., see how the oracle
complexity bounds change if instead a single sample Fξ k at each
iteration we use but a batch size of b: 1

b ∑i∈ Sk Fi, where Sk ⊆
{1,…,n} is the set of cardinality b of indices in the mini-batch. In
this case, the methods from [2] give estimates (24) and (25), but
multiplied by an additional factor √b. This extra multiplier issue
was resolved in [69] using the following method:

Δk = 1
b ∑

i∈ Sk
[Fi(zk) − Fi(wk−1)

+ α(Fi(zk) − Fi(zk−1))] + F(wk−1),

zk+1 = P𝒵(zk + τ(wk − zk) − γΔk),

wk+1 =
⎧
⎨
⎩

z k+1, with probability p,

w k, with probability 1− p.

The authors proved that in the strongly monotone case this method
gives estimate (24), i.e., without additional logarithmic factors and
without factors depending on b.

The only issue that remains to be understood is whether the
current state-of-the-art methods with best complexities from [2,
69] are optimal. The lower bounds from [53] claim that under
Assumptions 5 and 2, the methods above are optimal. However,
under Lmax-Lipschitzness of all Fi, i ∈ {1,…,n} and Assumption 2,
the lower bound from [53] is

𝔼‖zk − z∗‖22 = Ω(R2
0 exp(−min{1

n
,

μ
Lmax

}k)).

The question whether this lower bound is tight remains open.

4.3 Cocoercivity assumption
In some papers, the following assumption is used instead of As-
sumption 1.

Assumption 6 (Cocoercivity). The operator F is ℓ-cocoercive, i.e.,
for all u, v ∈ 𝒵, we have ‖F(u) − F(v)‖22 ≤ ℓ⟨F(u) − F(v),u− v⟩.

Cocoercivity is stronger than monotonicity + Lipschitzness, i.e.,
not all monotone Lipschitz operators are cocoercive. Note, for in-
stance, that the operator for the bilinear SPP (minxmaxy x⊤Ay) is
not cocoercive. However, if F is L-Lipschitz and μ-strongly mono-
tone, then it is (L2/μ)-cocoercive. Moreover, the operator cor-
responding to a convex L-smooth minimization problem is L-co-
coercive.

There is no need to use an Extragradient for cocoercive opera-
tors. One can apply the iterative scheme (7) and its modifications
for the stochastic case. In spite of this, the first work on coco-
ercive operators in the stochastic cases used the Extragradient
as the basic method [26]. In this paper, the authors investigated
methods for finite-sum problems. The subsequent results from
[15,81] give an almost complete picture of stochastic algorithms
based on method (7) for operators under Assumption 6. In partic-
ular, the work [15] provides a unified analysis for a large number
of popular stochastic methods currently known for minimization
problems [51].

4.4 High-probability convergence
Up to this point, we focused on convergence-in-expectation guar-
antees for stochastic methods, i.e., bounds on 𝔼[GapVI( ̂zk)] and/or
𝔼‖z k − z∗‖22. However, high-probability convergence guarantees,
i.e., bounds on GapVI( ̂zk) and/or ‖z k − z∗‖22 that hold with prob-
ability at least 1− β for a given confidence level β ∈ (0, 1), reflect
the real behavior of the methods more accurately [50]. Despite
this fact, high-probability convergence of stochastic methods for
solving VIs is studied only in a couple of works.
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It is worth mentioning that one can always deduce the high-
probability bound from the in-expectation one via Markov’s in-
equality. However, in this case, the derived rate of convergence will
have a negative-power dependence on β−1. Such guarantees are
not desirable and the goal is to derive the rates that have a (poly-)
logarithmic dependence on the confidence level, i.e., β should
appear only in the 𝒪(poly(log( 1β ))) factor.

The first, and for many years the only high-probability guar-
antees of this type for solving stochastic VIs were derived in [60].
The authors assume that F is monotone and L-Lipschitz, the un-
derlying domain is bounded, and Fξ is an unbiased estimator with
sub-Gaussian (light) tails of the distribution:

𝔼[exp(
‖Fξ(x) − F(x)‖22

σ2 )] ≤ exp(1).

The above condition is much stronger than Assumption 3. Un-
der the listed assumptions, the authors of [60] prove that after k
iterations of Mirror-Prox with probability at least 1− β (for any
β ∈ (0, 1)) the following inequality is in force:

GapVI( ̂zk) = 𝒪(
LD2

𝒵
k

+ σD𝒵 log(1/β)
√k

).

Up to the logarithmic factor this result coincides with in-expectation
one and, thus, it is optimal (up to the logarithms). However, the
result is derived under the restrictive light-tails assumption.

This last limitation was recently addressed in [49], where the
authors derive the high-probability rates for the considered problem
under just the bounded variance assumption. In particular, they
consider the clipped-SEG for problems with 𝒵 = ℝd:

zk+1/2 = zk − γ ⋅ clip(Fξ k(zk),λk),

zk+1 = zk − γ ⋅ clip(Fξ k+1/2(zk+1/2),λk+1/2),

where clip(x,λ) =min{1,λ/‖x‖2}x is the clipping operator, a pop-
ular tool in deep learning [46,103]. In the setupwhen F is monotone
and L-Lipschitz and Assumption 3 holds, in [49] it is proved that
after k iterations of clipped-SEG with probability at least 1− β (for
any β ∈ (0, 1)) the following inequality holds:

GapVI( ̂zk) = 𝒪(LR
2
0 log(k/β)

k
+ σR0√log(k/β)

√k
).

Up to the differences in logarithmic factors, the definition of σ,
and the difference between D𝒵 and R0, the rate coincides with the
one from [60], but it was derived without the light-tails assump-
tion. The key algorithmic tool that allows removing the light-tails
assumption is clipping: with a proper choice of the clipping level
λ the authors cut heavy tails without making the bias too large.
It is worth mentioning that the result for clipped-SEG is derived
for the unconstrained case and the rate depends on R0, while in
[60], the analysis relies on the boundedness of the domain, the
diameter of which appears explicitly in the rate obtained. To re-
move the dependence on the diameter of the domain, the authors

of [48] show that with high probability the iterates produced by
clipped-SEG stay in the ball around x∗ with a radius proportional
to R0. Using this trick, they also show that it is sufficient that all the
assumptions (monotonicity and Lipschitzness of F and bounded
variance) hold just on this ball. Such a degree of generality allows
them to cover problems that are non-Lipschitz on ℝd (e.g., for
certain monotone polynomially growing operators) and also the
situation when the variance is bounded only on a compact set,
which is common for many finite-sum problems. Finally, [48] con-
tains high-probability convergence results for strongly monotone
VIs and VIs with structured non-monotonicity.

5 Recent advances

In this section, we report briefly on a few recent theoretical ad-
vances with practical impacts.

5.1 Saddle point problems with different constants of strong
convexity and strong concavity

Saddle point problems with different constants of strong convexity
and strong concavity started gaining interest a few years ago, see
e.g., [4,77]. However, even for the particular case

min
x∈ℝdx

max
y∈ℝdy

g(x, y) = f(x) + y⊤Ax− h(y),

where the function f is μx-strongly convex (μx > 0) and Lx-smooth,
and the function h is μy-strongly convex (μy > 0) and Ly-smooth,
optimal algorithms have been proposed only recently [58,72,116].
These algorithms have the convergence rates

𝒪((
√

Lx
μx

+
√

λmax(A⊤A)
μxμy

+
√

Ly
μy

) log
1
ε
)

and attain the lower bound, which was obtained in [56, 124]
(here one needs to assume that λmin(A⊤A) ≤ √μxμy; without this
assumption no optimal methods are known).

Note that the algorithm from [58] is built upon a technique
related to the analysis of primal-dual Extragradient methods via
relative Lipschitzness [28, 115]. As a by-product, this technique
makes it possible to obtain Nesterov’s accelerated method as
a particular case of primal-dual Extragradient method with relative
Lipschitzness [28].

For the non-bilinear SPP, optimal methods, based on the accel-
erated Monteiro–Svaiter proximal envelope, were developed only
in the non-composite case [24,71]. For the non-bilinear SPP with
composite terms, there is a poly-logarithmic gap between the lower
bound and the best known upper bounds [118]. A gap also ap-
pears for the SPP with stochastic finite-sum structure [58,82,118].
The stochastic setting with bounded variance was considered in
[32,85,125].
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Further deterministic “cutting-plane” improvements are con-
nected with the additional assumptions about small dimension of
the involved vectors x or/and y (see [43,44,91]) or with different
structural (e.g., SPP on balls in 1- or∞-norms) and sparsity assump-
tions, see e.g., [21,111,112] and references therein. Here lower
bounds are mostly unknown.

In this subsection we mentioned many works dealing with
(sub-)optimal algorithms for different variants of SPP. We note that,
in contrast to convex optimization, where the oracle call is uniquely
associated with the gradient call ∇f(x), for SPP we have two crite-
ria: the number of ∇xg(x, y)-calls and that of ∇yg(x, y)-calls (and
more variants for SPP with composites). “Optimality” in the most
of the aforementioned papers means that the method is optimal
according to the worst of the criteria. In [4,118], the authors con-
sider these criteria separately. However, the development of the
lower bounds and optimal methods for a multi-criterion setup is
still an open problem.

5.2 Adaptive methods for VI and SPP
Interest in adaptive algorithms for stochastic convex optimization
mainly arose in 2011 after the development of the AdaGrad (adap-
tive gradient) [33] and Adam (adaptive moment estimation) [63]
algorithms. For variational inequalities and saddle point problems,
people became interested in adaptive methods only in the last few
years, see, e.g., [8,40] (see also [61]). Currently, this area of research
is well developed. One can mention here works devoted to both
adaptive step sizes [5,34,35,114,117] and adaptive scaling/pre-
conditioning [12,31,80]. Approaches from the second group are
based on the idea of a proper combination of AdaGrad/Adam with
Extragradient or its modifications. All of the mentioned adaptive
methods have no better (typically the same) theoretical rates of
convergence than their non-adaptive analogues, but require less
input information or demonstrate better performance in practice.

5.3 Quasi-Newton and tensor methods for VI and SPP
Quasi-Newton methods for solving nonlinear equations (uncon-
strained VI) and SPP are proposed in [75,121] and [79], respectively.
In these papers, local superlinear rates of convergence are derived
for the modifications of the Broyden-type methods for solving
nonlinear equations with Lipschitz Jacobian and SPP with Lipschitz
Hessian. Stochastic versions of these methods for VI and SPP still
await to be developed.

Tensor methods for convex optimization problems are currently
quite well developed. In particular, starting with [99] it has been
shown that optimal second- and third-order methods can be im-
plemented with almost the same complexity of each iteration as
the Newton method [39,89,97]. Moreover, optimal p-order meth-
ods (which use p-order derivatives) significantly reduce the rate of
convergence from k−2 to k−(3p+1)/2 (see [23,70]). For VI and SPP,

the study was initiated in [88, 94] and optimal p-order methods
reduce the rate of convergence from k−1 to k−(p+1)/2 (see [1,78])
(for k−1, see Theorem 3). However, in contrast to convex optimiza-
tion, the use of tensor methods for sufficiently smooth monotone
VIs and convex-concave saddle point problems is not expected
to be as effective. Note that in [1, 78] one can also find optimal
rates for strongly monotone VIs and strongly convex-concave SPP.
Stochastic tensor methods for variational inequalities and saddle
point problems still await to be developed.

5.4 Convergence in terms of the gradient norm for SPP
Several recent advances in the development of optimal algorithms
are based on accelerated proximal envelopes with proper stopping
rules for inner loop algorithms [68,70,71,109]. Such rules are built
upon the norm of the gradient calculated for the target function
of the inner problem.

For smooth convex optimization problems, Yu. Nesterov in
2012 posed the problem of making the gradient norm small with
the same rate of convergence as a gap in the function values, i.e.,
proportional to k−2 (see [96]). To address this problem, in [96]
he proposed an optimal (up to a logarithmic factor) algorithm.
This question was further investigated, leading to optimal results
without additional logarithmic factors [62, 98] (see also [30] for
explanations and a survey). In the stochastic case, algorithms were
presented in [38].

For smooth convex-concave saddle point problems an optimal
algorithm with ‖∇x,yf(xk, yk)‖2 proportional to k−1 was proposed
in [122] (see also [30] and [71] for monotone inclusion). For the
stochastic case, see [20,27,74].

5.5 Decentralized VI and SPP
In practice, in order to solve a variational inequality problem more
efficiently and quickly, one usually resorts to distributed methods.
In particular, methods that work on arbitrary (possibly time-varying)
decentralized communication networks between computing de-
vices are popular.

While the field of decentralized algorithms for minimization
problems has been extensively investigated, results for broader
classes of problems have only begun to appear in recent years.
Such works are primarily focused on saddle point problems [16–18,
90,108], but we note that most of these results can easily be ex-
tended to variational inequalities. Let us emphasize two works that
were from the outset devoted to VIs. In [13], the authors proposed
a decentralized method with local steps, and [69] presented opti-
mal decentralized methods for stochastic (finite-sum) variational
inequalities on fixed and varying networks.
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