
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Number Theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.
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Consider two positive integers n ≥ 1 and a ≥ 2 such that

a2n + an + 1

is a prime. Prove that n is a power of 3.

Dorin Andrica and George Cătălin Ţurcaş
(Babeş-Bolyai University, Cluj-Napoca, Romania)
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The Collatz map is defined as follows:

Col(n) ∶=
⎧
⎨
⎩

n/2 if n is even,

3n+ 1 if n is odd.

Let

tm,x ≔ min(n > 0 ∶ Colm(n) ≥ x).

That is, tm,x is the smallest integer such that, if we apply the Collatz
map m times, the result is larger than x.
(a) Find t3,1000 and t4,1000.
(b) Show that, for x large enough (larger than (say) 1000), we have

t4,x ≡ 3 mod 4 or t4,x ≡ 6 mod 8.

(c) In general, for m odd and x large enough, there exists a con-
stant Xm,x such that tm,x is the smallest n > Xm,x such that
n ≡ cm mod Mm. Find Mm and relate cm to cm−1.

Christopher Lutsko (Department of Mathematics,
Rutgers University, Piscataway, USA)

271
The light-bulb problem: Alice and Bob are in jail for trying to divide
by 0. The jailer proposes the following game to decide their free-
dom: Alice will be shown an n× n grid of light bulbs. The jailer
will point to a light bulb of his choice and Alice will decide whether
it should be on or off. Then the jailer will point to another bulb of
his choice and Alice will decide on/off. This continues until the very
last bulb, when the jailer will decide whether this bulb is on or off.
So the jailer controls the order of the selection, and the state of
the final bulb. Alice is now removed from the room, and Bob is
brought in. Bob’s goal is to choose n bulbs such that his selection
includes the final bulb (the one determined by the jailer).

Is there a strategy that Alice and Bob can use to guarantee
success? What if Bob does not know the orientation in which Alice
saw the board (i.e., what if Bob does not know which are the rows
and which are the columns)?

Christopher Lutsko (Department of Mathematics,
Rutgers University, Piscataway, USA)
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Let p and q be coprime integers greater than or equal to 2. Let
invq(p) and invp(q) denote the modular inverse of p mod q and
q mod p, respectively. That is, invq(p)p≡ 1 mod q and invp(q)q≡
1 mod p.
(a) Show that

invp(q) ≤
p
2

if and only if invq(p) >
q
2
.

(b) Show by providing an example that, if 1 ≤ u < v are coprime
integers and α ≔ u/v, then the statement

invp(q) ≤ αp if and only if invq(p) > (1− α)q (1)

is not necessarily true.
(c) What additional assumption should p and/or q satisfy so that

the equivalence (1) holds?

Athanasios Sourmelidis (Institut für Analysis und
Zahlentheorie, Technische Universität Graz, Austria)
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Let cn(k) denote the Ramanujan sum defined as the sum of kth
powers of the primitive nth roots of unity. Show that, for any
integer m ≥ 1,

∑
[n,k]=m

cn(k) = φ(m),

where the sum is over all ordered pairs (n, k) of positive integers
n, k such that their lcm is m, and φ is Euler’s totient function.

László Tóth (University of Pécs, Hungary)
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Show that, for every integer n≥ 1, we have the polynomial identity

n

∏
k=1

(k,n)=1

(x(k−1,n) − 1) = ∏
d ∣n

Φd(x)φ(n)/φ(d),

where Φd(x) are the cyclotomic polynomials and φ denotes Euler’s
totient function.

László Tóth (Department of Mathematics,
University of Pécs, Hungary)

II Open problem

275*. Chowla’s conjecture and its relatives
by Terence Tao (UCLA, Department of Mathematics,
Los Angeles, USA)

Let λ∶ ℕ→ {−1,+1} denote the Liouville function. In [2], Chowla
conjectured that

∑
n≤ x

λ(n+ h1)⋯λ(n+ hk) = o(x) (1)

as x→∞, for any distinct natural numbers h1,…,hk (in fact, Chowla
made the more general conjecture that

∑
n≤ x

λ(P(n)) = o(x)

whenever P is a square-free polynomial mapping from ℕ to ℕ).
Chowla’s conjecture was extended to other bounded multiplica-
tive functions by Elliott [3] (see also a technical correction to the
conjecture in [8]).

One can view (1) as a less difficult cousin of the notorious
Hardy–Littlewood prime tuples conjecture [4], which conjectures
an asymptotic of the form

∑
n≤ x

Λ(n+ h1)⋯Λ(n+ hk) = 𝔖x+ o(x) (2)

where the singular series 𝔖 is an explicit product over primes of
factors involving the numbers h1,…,hk. For k= 1, both conjectures
follow readily from the prime number theorem, but they remain
open for higher k. However, the analogue of (1) (and (2) for k ≤ 2)
were recently established in certain function fields [11], and are
also known to hold in the presence of a Siegel zero [1,5,6,15]. The
conjecture (1) is also known if one performs enough averaging in
the h1,…,hk variables [8].

The logarithmically averaged version

∑
n≤ x

λ(n+ h1)⋯λ(n+ hk)
n

= o(log x) (3)

turns out to be more tractable, as it can be analyzed by the “en-
tropy decrement method” [12], which has been successfully used
to establish the conjecture for k = 2 (see [12], building upon the
breakthrough work [7]) and for odd k (see [14, 16]). The conjec-
ture (3) for arbitrary k is also known to be equivalent [13] to the
(logarithmically averaged) Sarnak conjecture [10], which asserts
that

∑
n≤ x

λ(n)F(T nx0)
n

= o(log x)

whenever T∶ X→ X is a compact dynamical system of zero entropy,
x0 is a point in X, and F ∶ X → ℂ is continuous. Many special cases
of this conjecture are known, unfortunately too many to list here.

The conjecture (3) would also follow from a higher-order local
Fourier uniformity conjecture [12], which is somewhat complicated
to state in full generality here; however, the first unsolved special
case of this conjecture asserts that

∫
2X

X
sup

α∈ℝ/ℤ
| ∑
x≤n≤ x+H

λ(n)e(αn)|dx = o(XH) as X → ∞

whenever 1 ≤ H = H(X) ≤ X is such that H(X) → ∞ as X → ∞,
where e(θ) ≔ e2πiθ. This is currently only established in the regime
H ≥ X ε for a fixed ε > 0 (see [9]).
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III Solutions
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Let f ∶ [0,∞)→ℝ be a C 1-differentiable and convex function with
f(0) = 0.
(i) Prove that, for every x∈ [0,∞), the following inequality holds:

∫
x

0
f(t)dt ≤ x2

2
f ′(x).

(ii) Determine all functions f for which we have equality.

Dorin Andrica (“Babeş-Bolyai” University, Cluj-Napoca,
Romania) and Mihai Piticari (“Dragoş Vodă” National College,
Câmpulung Moldovenesc, Romania)

Solution by the proposers
(i) We have

∫
x

0
f(t)dt = ∫

x

0
( f(t) − f(0))dt.

By the Mean Value Theorem,

f(t) − f(0) = tf ′(ct)

for some ct ∈ (0, t) ⊂ [0, x]. Since f is convex, it follows that f ′ is
increasing; hence f ′(ct) ≤ f ′(x). Therefore, f(t) = tf ′(ct) ≤ tf ′(x),
and we obtain

∫
x

0
f(t)dt ≤ ∫

x

0
tf ′(x)dt = f ′(x)∫

x

0
t dt = x2

2
f ′(x).

(ii) We have to find all the solutions to the equation

∫
x

0
f(t)dt = x2

2
f ′(x).

Denoting

g(x) = ∫
x

0
f(t)dt, x ∈ [0,∞),

the above equation is equivalent to the second-order differential
equation

g(x) = x2

2
g″(x), x ∈ [0,∞).

Note that if g is a solution, then

g(x) + xg′(x) = x2

2
g″(x) + xg′(x),

whence

(xg(x))′ = (x
2

2
g′(x))

′
.

It follows that

(xg(x) − x2

2
g′(x))

′
= 0,

and so

x2

2
g′(x) − xg(x) = C1, x ∈ [0,∞),

where C1 is an arbitrary constant. This last equation is equivalent
to

x2g′(x) − 2xg(x)
x4

= 2C1
x4

, x ∈ (0,∞),

or

(g(x)
x2

)
′
= 2C1

x4
, x ∈ (0,∞).

Consequently,

g(x)
x2

= −2C1
3x3

+ C2, x ∈ (0,∞),

and we get

g(x) = −2C1
3x

+ C2x2, x ∈ (0,∞).

On the other hand, g is continuous and g(0) = 0. This implies
that C1 = 0 and g(x) = C2x2. We conclude that the sought-for
functions are necessarily of the form f(x) = g′(x) = 2C2x, i.e.,
f(x) = Ax, where A is an arbitrary real constant.
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Let y(x) be the unknown function of the following fractional-order
derivative Cauchy problem:

⎧
⎨
⎩

Dαy = f(x, y), 0 < α < 1,

y(0) = y∗.
(1)

Find the solution of this problem by solving an equivalent first-
order ordinary Cauchy problem, with a solution independent of
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)

Solution by the proposer
Before we give the solution of (1), let us make some preliminary
remarks about the most popular definitions of fractional derivatives.

The Riemann–Liouville integral of fractional order ν ≥ 0 of
a function f(x) is defined as

(Jνf)(t) =
⎧⎪
⎨⎪
⎩

1
Γ(ν)

∫
t

0
(t − τ)ν−1f(τ)dτ, ν > 0,

f (t), ν = 0.

The corresponding Riemann–Liouville fractional derivative of order
α > 0 is defined as

Dα
RL f(t) =

dn

dtn
Jn−αf(t), n ∈ ℕ, n− 1 < α ≤ n. (2)

The main problem with this derivative is that it assigns a nonzero
value to a constant function. To avoid this issue, people often use
the so-called order-α Caputo fractional derivative, defined as

Dα
C f(x) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

dnf(x)
dxn

, 0 < α ∈ ℕ,

1
Γ(n− α)

∫
x

0

f (n)(τ)
(x− τ)α−n+1 dτ, t > 0,

0 ≤ n− 1 < α < n,

where n is an integer, x > 0, and f ∈ 𝒞n.
Riemann–Liouville (RL) and Caputo (C) derivatives are the most

popular and have been used in many applications; nevertheless,
they both have some drawbacks. For this reason, many authors
have introduced some more flexible fractional operators. The most
general fractional derivative with a given kernel K(x,α) is defined as

Dαf(x) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

dnf(x)
dxn

, 0 < α ∈ ℕ,

∫
x

0
f (n)(τ)K(x − τ,α)dτ, t > 0,

0 ≤ n− 1 < α < n.

(3)

The kernel should be chosen in a such a way that at least the
following two conditions are satisfied:

lim
α→0

K(x− τ,α) = 1 and lim
α→1

K(x− τ,α) = δ(x− τ).

Moreover, to ensure that one is dealing with a non-singular kernel,
one requires that

lim
x→ τ

K(x− τ,α) ≠ 0 ∀α.

Although several definitions of fractional derivatives are avail-
able, they all depend on the proposed kernel, thus implying a sub-
jective and a priori unjustified choice of the fractional operator
each time one studies a fractional differential problem. This issue
can be avoided by using the following simple definition, which is
based on an intuitive interpolation.

Limiting ourselves to the case n = 1, the general structure of
the Caputo-type fractional derivative

Dα
C f(x) = ∫

x

0
f ′(τ)K(x− τ,α)dτ, 0 < α < 1,

is based on the kernel K(x − τ, α), which is a positive function
that decays at infinity (to ensure convergence), while according
to (2), the general structure of the Riemann–Liouville first-order
derivative is

Dα
RL f(x) =

1
Γ(1− α)

d
dx

∫
x

0
f(τ)(x− τ)−α dτ, 0 < α ≤ 1.

Usually, to find the solution of (1), we should first choose the
kernel of the fractional operator and then solve the fractional prob-
lem by using a suitable numerical method, which roughly consists
in constructing and solving an equivalent algebraic/differential (of
integer order) problem. In any case, the solution will depend not
only on the independent variable x and the initial condition y∗,
but also on the kernel and on the fractional-order parameter:

y(x, y∗,K(x− τ),α).

The dependence on the fractional parameter α is essential in solv-
ing fractional-order problems. However, the dependence on the
kernel leads to an inessential “struggle” about the best choice
of the kernel and about its physical/mathematical meaning – an
obviously subjective and non-unique choice. Because of this lack
of uniqueness, fractional calculus is missing a strong mathematical
motivation. On the other hand, there exist many useful mathemat-
ical tools, important for the solution of differential problems, that
require making choices, such as wavelets, orthogonal polynomials,
integral transforms, and many more. Therefore, one can either
ignore the uniqueness problem, or try to defend a specific choice
by using some reasoning that may still be not sufficient to convince
the mathematics community. In the following, we give a solution
which is both independent of the choice of the kernel and can
be analytically obtained by reduction to an equivalent ordinary
differential problem having the same solution as (1).

We search the solution by assuming that the fractional deriva-
tive is obtained by linear interpolation between a function and its
first-order derivative; consequently, we do not need the integral
definition (3) and the accompanying choice of kernel. This is an
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acceptable assumption, based on the original simple idea in the
fundamentals of fractional calculus that the fractional parameter
describes a family of interpolation curves. Thus, we set

Dαy = (1− α)(y− y∗) + α
dy
dx

so that the initial value problem (1) becomes

α
dy
dx

+ (1− α)y = (1− α)y∗ + f(x, y).

Now, for 0 < α < 1, we easily obtain the following ordinary
differential problem that is equivalent to (1):

⎧⎪⎪
⎨⎪⎪⎩

dy
dx

− (1− 1
α
)y = −(1− 1

α
)y∗ + 1

α
f(x, y),

y(0) = y0.
(4)

For the moment, we can suppose that the initial conditions
of (1) and (4) do not necessarily coincide, i.e., y∗ ≠ y0. However,
some further assumptions can be made when the function f(x, y)
is given explicitly. In particular, to achieve a perfect equivalence
between (1) and (4), we can set y∗ = (1− α)τ+ αy0∀τ∈ℝ, and
then let α → 1.

262
Let y(x) be the unknown function of the following Bernoulli frac-
tional-order Cauchy problem:

⎧
⎨
⎩

Dαy = g(x)yβ, 0 < α < 1, β ≠ 0, 1,

y(0) = y∗,
(1)

where g(x) is a continuous function in the interval I = [0,∞).
Find the solution of this problem by solving an equivalent first-

order ordinary Cauchy problem, with a solution independent of
the kernel of the fractional operator.

Carlo Cattani (Engineering School, DEIM,
University “La Tuscia”, Viterbo, Italy)

Solution by the proposer
We search the solution by simply assuming that the fractional deriva-
tive is a linear interpolation between a function and its first-order
derivative so that we do not need the usual integral definition of
the fractional operator which requires us to choose the underlying
kernel.

Thus, we set

Dαy = (1− α)(y− y∗) + α
dy
dx

(2)

so that (1) becomes

α
dy
dx

+ (1− α)y = (1− α)y∗ + g(x)yβ. (3)

Then taking 0 < α < 1 and using equations (2) and (3), we easily
get the following ordinary differential problem equivalent to (1):

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

dy
dx

− (1− 1
α
)y = −(1− 1

α
)y∗ + 1

α
g(x)yβ,

β ≠ {0, 1},
y(0) = y0.

(4)

For the moment, we search a general solution of (1) by assum-
ing that y∗ ≠ y0. Solving separately the two equations

dy
dx

− (1− 1
α
)y = −(1− 1

α
)y∗,

dy
dx

− (1− 1
α
)y = 1

α
g(x)yβ, β ≠ {0, 1},

we obtain the respective solutions

y(x) = y∗ + k1e(1− 1
α )x,

y(x)1−β = e(1−β)(1− 1
α )x[k2 +

1− β
α

∫
x

0
g(ξ)e

1−β
α ξ dξ],

β ≠ {0, 1}.

Consequently, the solution of problem (4), which is also the solution
of problem (1), takes the forms listed below.
1. Let y0 ≠ y∗ and β ≠ {0, 1}. Then

y(x) = y∗ + 1
2
(y0 − y∗)e(1− 1

α )x

+ e(1−β)(1− 1
α )x[1

2
(y0 − y∗) + 1− β

α
∫

x

0
g(ξ)e

1−β
α ξ dξ].

2. Let y0 = y∗ and β ≠ {0, 1}. Then

y(x) = y∗ + e(1−β)(1− 1
α )x[1− β

α
∫

x

0
g(ξ)e

1−β
α ξ dξ].

3. Let y0 = 0, y∗ ≠ 0 and β ≠ {0, 1}. In this case, note that, in
order to solve the given fractional-order Cauchy problem (1)
via an equivalent ordinary differential problem, we can simply
set y0 = 0 in (4) and thus obtain the solution

y(x) = y∗ − 1
2
y∗e(1− 1

α )x

+ e(1−β)(1− 1
α )x[−1

2
y∗ + 1− β

α
∫

x

0
g(ξ)e

1−β
α ξ dξ].

4. Let y0 = y∗ = 0 and β ≠ {0, 1}. Then

y(x) = 1− β
α

e(1−β)(1− 1
α )x∫

x

0
g(ξ)e

1−β
α ξ dξ.

263
Let g be a real-valued C 2-function defined on (0,∞), strictly increas-
ing, such that g(x) > 1 for all x ∈ (0,∞) and g(2) < 4. Consider
the boundary value problem

y″ = −g(x)y, y(0) = 1, y′(0) = 0.
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Prove that the solution y has exactly one zero in (0,π/2), i.e., there
exists a unique point x0 ∈ (0,π/2) such that y(x0) = 0, and give
a positive lower bound for x0.

Luz Roncal (BCAM – Basque Center for Applied Mathematics,
Bilbao, Spain, Ikerbasque Basque Foundation for Science,
Bilbao, Spain and Universidad del País Vasco/Euskal Herriko
Unibertsitatea, Bilbao, Spain)

Solution by the proposer
First suppose that y(x) > 0 for x ∈ (0,π/2). The function z(x) =
cos x is the solution to the auxiliary initial value problem

z″ = −z, z(0) = 1, z ′(0) = 0.

Therefore,

y″z− yz″ = (1− g(x))zy.

Integrating this equality over the interval (0,π/2), we obtain

∫
π/2

0
(1− g(x))zy dx = ∫

π/2

0
(y″z− yz″)dx

= (y′z− yz ′)|π/20 = y(π/2),

and y(π/2) ≥ 0 by the continuity of y. But

(1− g(x))zy < 0 in (0,π/2),

so we reached a contradiction. Thus, y has at least one zero in
(0,π/2).

Next, observe that π/2 < 2 and by assumption g(2) < 4. Con-
sider the functionw(x)= cos(2x), which is a solution to the second
auxiliary initial value problem

w″ = −4w, w(0) = 1, w′(0) = 0

and satisfiesw(x) > 0 for x∈(0,π/4). Suppose that y has (at least)
one zero in (0,π/4). Denote the smallest such zero by x1. Then
y(x) is positive for x ∈ (0, x1) (recall that y(0) = 1) and y(x1) = 0;
hence y ′(x1) ≤ 0. An argument analogous to the one above shows
that

∫
x1

0
(g(x) − 4)wydx = ∫

π/2

0
(w″y−wy″)dx

= (w′y−wy′)|x10 = −w(x1)y′(x1).

Note that−w(x1)y ′(x1) ≥ 0, but the integrand (g(x)− 4)wy< 0,
so again we reached a contradiction. Thus, y has no zero in (0,π/4),
so π/4 is a positive lower bound for the zeros of y.

Finally, suppose that y has more than one zero in (π/4,π/2),
namely, there exist at least two points x2, x3 ∈ (π/4, π/2) such
that x2 < x3 and y(x2) = y(x3) = 0. Take the function

v(x) = a cos(2x+ b),

where a, b are chosen in such a way that v(x2) = 0 and v(x) is
negative for x ∈ (x2, x3); see Figure 1.

x2 x3

1

yHxL
vHxL

Figure 1. Assuming y has more than one zero in (π/4,π/2)

We have v″ = −4v, so y″v− yv″ = (4− g(x))yv, which is
positive on the interval (x2, x3). Therefore,

∫
x3

x2
(y″v− yv″)dx > 0.

On the other hand,

∫
x3

x2
(y″v− yv″)dx = (y′v− yv′)|x3x2 = y′(x3)v(x3),

and the right-hand side is negative since y(x3) = 0 and y(x) < 0
for x ∈ (x2, x3).
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We propose an interesting stochastic-source scattering problem
in acoustics. The stochastic nature for such problems forces us to
deal with stochastic partial differential equations (SPDEs), rather
than partial differential equations (PDEs) which hold for the corre-
sponding deterministic counterparts. In particular, the results of our
proposed model will be applied to establish existence and unique-
ness for the stochastic solution of a finite element approximation
of the stochastic-source Helmholtz equation.

Consider the following approximation problem of a stochastic-
source Helmholtz equation:

Δu+ k2u = f in D, (1)

u = 0, x ∈ ∂D,

where f = ∑a faHa is a generalized stochastic source. For the
stochastic problem (1), we use the equations

u = ∑
a
uaHa, f = ∑

a
faHa,

and we get the collection of deterministic problems

Δua + k2ua = fa in D, (2)

ua = 0, x ∈ ∂D.
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Assume that ua ∈ H1
0(D) solves problem (2). Then prove that, for

all v ∈ H1
0(D), the solution ua ∈ H1

0(D) satisfies

−∫
D
∇ua ⋅ ∇v dx+∫

D
k2uav dx = ∫

D
fav dx.

George Kanakoudis, Konstantinos G. Lallas and Vassilios
Sevroglou (Department of Statistics and Insurance Science,
University of Piraeus, Greece)

Solution by the proposers
We decompose our problem into a hierarchy of deterministic
evolution (BVPs), and we give their corresponding variational for-
mulations.

For |a| = 0, we get

⎧
⎨
⎩

Δu0 + k2u0 = f0 in D,

u0 = 0 on ∂D.
(3)

The estimation of a solution of problem (3) is

‖u0‖H1(D) ≤ c0‖f0‖L2(D).

For |a| = 1, we get

Δu1 + k2u1 = f1 in D, (4)

u1 = 0 on ∂D.

We take an arbitrary v ∈ H1
0(D) and multiply equation (4) by v.

Then we get

(Δu1)v+ k2u1v = f1v (5)

and integrate over D. Every term is integrable since ua ∈ H1
0(D),

and hence we have Δu1 ∈ H1
0(D) and v ∈ H1

0(D), so

(Δu1)v ∈ H1
0(D), k2 ∈ L∞(D), u1 ∈ H1

0(D), v ∈ H1
0(D).

Therefore, k2u1v ∈ H1
0(D) and f1 ∈ L2(D), so f1v ∈ H1

0(D). We
obtain

∫
D
(Δu1)v dx+∫

D
k2u1v dx = ∫

D
f1v dx.

We use Green’s formula according to which

∫
D
(Δu1)v dx = −∫

D
∇u1 ⋅ ∇v dx+∫

∂D
γ1(u1)γ0(v)dΓ

since v ∈ H1
0(D) is equivalent to γ0(v) = 0.

Let H1
0(D) be a stochastic Hilbert space. If we now assume the

bilinear form on H1
0(D) × H1

0(D),

a(u1, v) = ∫
D
(−∇u1 ⋅ ∇v+ k2u1v)dx,

and the linear functional on H1
0(D),

ℓ(v) = ∫
D
f1v dx,

then the variational formulation of problem (5) is

a(u1, v) = ℓ(v) ∀v ∈ H1
0(D). (6)

The estimation of a solution of problem (6) is

‖u1‖H1(D) ≤ c1‖f1‖L2(D).

For |a| = n, we get

⎧
⎨
⎩

Δun + k2un = fn in D,

un = 0 on ∂D.
(7)

The estimation of a solution of problem (7) is

‖un‖H1(D) ≤ cn‖fn‖L2(D).

Via the above variational formulations and taking into account
u = ∑a uaHa, we can prove that the solution u of the stochastic
boundary value problem (1) satisfies the following inequality:

‖u‖H1(D) ≤ c0‖f0‖L2(D) + c1‖f1‖L2(D) +⋯+ cn‖fn‖L2(D),

where ci, i = 0, 1,…, n, are considered to be in agreement with
appropriate built-in weights. The solution u belongs to the space
{H1(D), Ω, F, μ} which is a stochastic Hilbert space with μ the
probability measure defined by Ha(ω).

265
For a Newtonian incompressible fluid, the Navier–Stokes momen-
tum equation, in vector form, reads [4]

ρ(∂u
∂t

+ u ⋅ ∇u) = −∇p+ μ∇2u+ F,

u = u(x, t), u∶ Rn × (0,∞) → Rn.
(1)

Here, ρ is the fluid density, u is the velocity vector field, p is the
pressure, μ is the viscosity, and F is an external force field.

(i) Assuming that both the pressure drop ∇p and the external
field F are negligible, it is easy to show that equation (1) reduces to

∂u
∂t

+ u ⋅ ∇u = ν∇2u, (2)

and finally to equation (3), where ν = μ
ρ is the so-called kinematic

viscosity [5].
(ii) Regarding the one-dimensional viscous Burgers equation

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

, u = u(x, t), (3)

prove that an analytical solution can be obtained by means of the
Tanh Method [2,3,5] as

u(x, t) = λ[1− tanh( λ
2ν

(x− λt))], λ > 0.

M.A. Xenos and A. C. Felias (Department of Mathematics,
University of Ioannina, Greece)
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Solution by the proposers
Notice that, for ∇p = F = 0, equation (1) becomes

ρ(∂u
∂t

+ u ⋅ ∇u) = μ∇2u. (4)

Since, for an incompressible fluid, ρ is a nonzero constant, one can
divide both sides of equation (4) by ρ and thus obtain equation (2).
Now consider the motion of a one-dimensional viscous fluid with
fluid velocity u along the x-axis as time passes, u = u(x, t). In
this case, equation (2) transforms into equation (3). Introduce the
transformation of u given by

⎧
⎨
⎩

u(x, t) = u(ζ),

ζ = μ(x− λt), μ > 0, λ ≠ 0,
(5)

with μ representing the wave number and λ the velocity. Then
transformation (5) reduces equation (3) to the following ODE
for u(ζ ):

−λu′(ζ) + u(ζ)u′(ζ) − νμu″(ζ) = 0. (6)

Integrating equation (6) and taking the integration constant to be
zero, we obtain

−λu(ζ) + 1
2
u2(ζ) − νμu′(ζ) = 0. (7)

The idea behind the Tanh method uses a key property of the func-
tional derivatives all being written in terms of the Tanh function
[2,3]. The following identity is used:

sech2ζ = 1− tanh2 ζ, ζ ∈ ℝ. (8)

This transforms equation (6) into a polynomial equation for succes-
sive powers of the Tanh function. Introducing the new variable

y = tanh ζ, (9)

solution(s) can be sought in the form

u(y) =
N

∑
n=0

an yn. (10)

Chain differentiation yields

d
dζ

= d
dy

dy
dζ

= sech2ζ
d
dy

=
(8)

(1− tanh2ζ) d
dy

=
(9)

(1− y2) d
dy

. (11)

The positive integer value of N is determined after substitut-
ing expressions (10) and (11) into equation (7) and balancing the
resulting highest-order terms.

Once N is determined, substituting expression (10) in equa-
tion (7), one obtains an algebraic system for the coefficients an,
n = 0, 1,…,N. Depending on the problem under consideration,
μ is either determined or not, while λ is always a function of μ.

Figure 2. Different right-moving, kink-shaped solutions of the viscous
Burgers equation, for ν ∈ {0.05, 0.2, 0.5, 1} and λ = 0.5, on the interval
x ∈ [−10, 10] and with t ∈ {0, 5}. Small viscosity effects lead to
a steeper waveform, whereas larger viscosity effects lead to smoother
and wider waveforms.

In the present case, N is found to be equal to 1; hence substi-
tuting expression (10) in equation (7) and setting the coefficients
of the like powers of y equal to zero leads to the algebraic system

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

a21
2

+ a1νμ = 0,

a0a1 − a1λ = 0,
a20
2

− a0λ− a1νμ = 0,

the solution of which is

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

μ = λ
2ν

, λ > 0,

a0 = λ,

a1 = −λ.

(12)

Combining (12) and (10) and using expression (9), one obtains

u(ζ) = λ(1− Tanh ζ),

and finally

u(x, t) = λ[1− Tanh( λ
2ν

(x− λt))].
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Figure 2 displays right-moving analytical solutions of the viscous
Burgers equation for different values of the kinematic viscosity ν.

References
[1] L. C. Evans, Partial differential equations. Graduate Studies in

Mathematics 19, American Mathematical Society, Providence (1998)

[2] W. Malfliet and W. Hereman, The tanh method. I. Exact solutions of
nonlinear evolution and wave equations. Phys. Scripta 54, 563–568
(1996)

[3] A.-M. Wazwaz, The tanh method for traveling wave solutions of
nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004)

[4] M. A. Xenos, An Euler–Lagrange approach for studying blood flow in
an aneurysmal geometry. Proc. A. 473, Article ID 20160774 (2017)

[5] M. A. Xenos and A. C. Felias, Nonlinear dynamics of the KdV-B
equation and its biomedical applications. In Nonlinear Analysis,
Differential Equations, and Applications, Springer Optim. Appl. 173,
Springer, Cham, 765–793 (2021)

We wait to receive your solutions to the proposed problems and
ideas on the open problems. Send your solutions to Michael
Th. Rassias by email to mthrassias@yahoo.com.

We also solicit your new problems with their solutions for
the next “Solved and unsolved problems” column, which will be
devoted to Probability Theory.

New EMS Press book

EMS Press is an imprint of the European Mathe-
matical Society – EMS – Publishing House GmbH

Straße des 17. Juni 136 | 10623 Berlin | Germany

https://ems.press | orders@ems.press

Elements of Graph Theory 
From Basic Concepts to  
Modern Developments

Alain Bretto (Université de  
Caen Normandie, France),
Alain Faisant and  
François Hennecart (both 
Université de Lyon – Université 
Jean Monnet Saint-Étienne, 
France)

Translated by Leila Schneps

EMS Textbooks in Mathematics

ISBN 978-3-98547-017-4 
eISBN 978-3-98547-517-9

2022. Hardcover. 502 pages 
€ 59.00*

This book is an introduction to graph theory, presenting 
most of its elementary and classical notions through an 
original and rigorous approach, including detailed proofs 
of most of the results.

It covers all aspects of graph theory from an algebraic, 
topological and analytic point of view, while also devel-
oping the theory’s algorithmic parts. The variety of topics 
covered aims to lead the reader in understanding graphs 
in their greatest diversity in order to perceive their power 
as a mathematical tool.

The book will be useful to undergraduate students in 
computer science and mathematics as well as in engi-
neering, but it is also intended for graduate students. It 
will also be of use to both early-stage and experienced 
researchers wanting to learn more about graphs.

*20  % discount on any book purchases for individual members 
of the EMS, member societies or societies with a reciprocity 
agreement when ordering directly from EMS Press.

E M S  T E X T B O O K S  I N  M A T H E M A T I C S

Alain Bretto
Alain Faisant
 François Hennecart

 Elements of Graph Theory
 From Basic Concepts to Modern Developments

ADVERTISEMENT

EMS MAGAZINE 127 (2023) 61

mailto:mthrassias@yahoo.com

