
Hydrodynamic limits: The emergence of fractional boundary conditions

Patrícia Gonçalves

In these notes, I describe some recent developments concerning
the hydrodynamic limit for some stochastic interacting particle
systems that have been investigated by a group of researchers
working under the research project funded by the ERC Starting
Grant no. 715734. The treatment is focused on stochastic systems
with an open boundary, for which one can obtain partial differ-
ential equations with boundary conditions; or stochastic systems
with long-range interactions, for which fractional equations ap-
pear in the scaling limits of those models. This is by no means an
extensive review about the subject; the topics chosen reflect the
personal perspective of the author.

1 Introduction

The rigorous derivation of the evolution equations of classical
fluid mechanics from the large-scale description of the conserved
quantities in Newtonian particle systems is a long-standing prob-
lem in mathematical physics. More precisely, we are referring to
the area of statistical mechanics dedicated to understanding the
emergence of evolution laws from the kinetic description of the un-
derlying system of particles. To attack this problem, we can assume
that the motion of particles is random. We introduce two scales:
a macroscopic scale, where the systems’ thermodynamical quanti-
ties, such as, e.g., density, pressure, temperature, etc. (denote them
by 𝜚 ≔ (𝜚1,…,𝜚n)) are analyzed. The other one, the microscopic
scale, is the scale at which the particles of the system are analyzed
as a whole. As a possible scenario, one can be interested in under-
standing the physical evolution of a gas confined to a finite volume.
The number of molecules is of the order of Avogadro’s number;
therefore, one cannot give a precise description of the microscopic
state of the system; rather, the goal is to describe the macroscopic
behavior from the random movement of the molecules.

Understanding the connection between macro/micro-spaces is
one of the goals in statistical mechanics. According to one of the
creators of this area, Ludwig Boltzmann, first we should determine
the stationary states of the system under investigation (denote
them by μ), and then we should characterize these states in terms
of the thermodynamical quantities of interest 𝜚, resulting in μ𝜚.

Finally, we can analyze the evolution of the system out of equilib-
rium. To formalize this problem from the mathematical point of
view, consider a macroscopic space Λ and fix an arbitrary point u
and a small neighborhood 𝒱u around it, in such a way that it is
macroscopically small, yet big enough to contain infinitely many
molecules. Due to the strong interaction between molecules, we
can assume that the system is locally in equilibrium so that its state
at the point u should be close to μ𝜚(u). Observe that this local equi-
librium is characterized by the thermodynamical quantities 𝜚 that
now depend on the position u. We let time evolve, and we assume
that the local equilibrium persists at a longer time. Later on, we
stop the system at some time τ, and now the local equilibrium will
be given in terms of 𝜚(τ,u), depending both on time and space,
i.e., the state of the system should be close to μ𝜚(t,u). The function
𝜚(t, u) should then evolve according to some PDE, the so-called
hydrodynamic equation.

u

𝜚(τ,u)

As mentioned above, treating this problem from the mathemat-
ical point of view is challenging, and some simplifying assumptions
are usually introduced. A possible approach is to consider that the
dynamics of particles is random, which leads to the commonly
known stochastic interacting particle systems (SIPS), which are ran-
dom systems typically used in statistical mechanics to attack this
sort of problems. Back in the 1970s, these systems were introduced
in the mathematics community by Spitzer in [50], but were already
known to physicists and biophysicists since the seminal article of
MacDonald, Gibbs and Pipkin [47]. The dynamics of these systems
conserves a certain number of quantities. At the micro-level one
assumes that each molecule behaves as a continuous-time random
walk evolving in a proper discretization of the macroscopic space Λ;
this allows for a probabilistic analysis of the discrete system. For de-
tails on the formal definition of SIPS, we refer to the seminal book
of Liggett [46]. The obtained evolution of molecules is Markovian,
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i.e., their future evolution conditioned to their past depends only
on the knowledge of the present. We can discretize the volume Λ
according to a scaling parameter ε > 0. At each site of the discrete
set, we can place randomly a certain number of particles and re-
peat this independently of all the other sites. In this way, we have
just fixed the initial state of the system. Each one of these particles
waits an exponentially distributed time, after which one of them
jumps to some other site if the dynamical rules allow for it. Once
the dynamics is fixed, according to Boltzmann, one should find the
stationary measures and characterize them in terms of the relevant
thermodynamical quantities.

The goal, in the hydrodynamic limit, is to obtain the PDEs that
govern the space-time evolution of each conserved quantity of the
system studied [45,51]. The macroscopic and microscopic spaces
will be connected by means of the scaling parameter ε so that
the typical distance between particles is of order ε. At the end, ε
will be taken to 0. To observe a non-trivial macroscopic impact of
the particles’ motion, one has to look at the system on a longer
time scale τ(ε), which depends on the scaling parameter ε and
on the dynamical rules. If the dynamical rules allow a strong long-
range interaction, then the time needed for a macroscopic effect
is shorter compared to a dynamics that allows very short-range
interactions.

2 Hydrodynamic limit

In order to exhibit PDEs that can be obtained for some SIPS, in the
next subsections, we describe the hydrodynamic limit for a system
with a single conservation law, and then we discuss the case with
more conservation laws.

2.1 A classical SIPS: The exclusion process
The model. One of the most classical SIPS is the exclusion process,
whose dynamics can be described as follows. Recall that ε is the
scaling parameter connecting the macroscopic space Λ and the
microscopic space Λε. Assume that, at each site of Λε, there can
be at most one particle (the so-called exclusion rule) so that if η is
a configuration, then ηx(t) denotes the number of particles at site x
and at time t, and ηx(t) ∈ {0,1}. To each bond {x,y} of Λε, there is
attached a Poisson process of rate one. The trajectories of Poisson
processes are discontinuous, and at each site where a discontinuity
occurs, we say that there is a mark of the Poisson process. Poisson
processes attached to different bonds are independent. This means
that particles have to wait for a random time which is exponentially
distributed with mean one, and when there is a mark of the Poisson
process associated to a bond {x ′, y ′}, the particles at that bond
exchange positions at the rate p(y ′ − x ′), where p∶ ℤ → [0, 1] is
a transition probability. The jump occurs if and only if the exclusion
rule is obeyed; otherwise, the particles wait for another mark of

one Poisson process. The number of particles in the system is fixed
by its initial state, and since this dynamics only exchanges particles
along the microscopic space, the density is a conserved quantity.

xηε(t)

The state space is {0,1}Λε , and when jumps are allowed only to
nearest neighbors, the process is said to be simple. First, we explain
phenomena observed in the case of nearest-neighbor jumps, and
then we treat the extension to the long-jumps case. To that end,
for now, we assume that p(−1) = 1− p(1) and p(1) = p+ Eεκ,
where p∈ [0,1] and E,κ≥ 0. If E = 0 and p= 1/2, we obtain the
extensively studied symmetric simple exclusion process (SSEP); if
E= 0, but p≠ 1/2, we get the asymmetric simple exclusion process
(ASEP); and if E ≠ 0 and p = 1/2, we get the weakly asymmetric
simple exclusion process (WASEP). Observe that the parameter κ
rules the strength of the asymmetry. The infinitesimal generator of
the described process is given on f ∶ {0,1}Λε →ℝ and η∈ {0,1}Λε
by

ℒexf(η) = ∑
x∈Λε

{p(1)ηx(1− ηx+ε)

+ p(−1)ηx+ε(1− ηx)}∇x,x+ε f(η),

where ∇x,x+ε f(η) = f(ηx,x+ε) − f(η)) and ηx,x+ε is the configura-
tion obtained from η by swapping the occupation variables at x
and x+ ε. We can think of ℒex as a differential operator that, when
testing functions defined on the state space of the process, gives
a weight which is the product between the jump rate and the dif-
ference between the values of the function f at the configurations
after and before the jump. This operator corresponds to the time
derivative of the semigroup St of the process via the formula

ℒexf(η) ≔ lim
t→0

St f(η) − f(η)
t

.

Now let us speed the system in the time scale tτ(ε) = tε−a,
where a > 0 will be chosen ahead in order to see a non-trivial
macroscopic evolution. The system conserves a single quantity: the
number of particles∑x∈Λε ηx. Next, we should obtain the stationary
measures of this process and parametrize them by a constant
density 𝜚. By this, we mean that if we denote by ν𝜚 a stationary
measure of the process, then if the initial process has distribution
ν𝜚, i.e., the law of η0 is given by ν𝜚, then at any time t, the same
holds, i.e., the law of ηt is given again by ν𝜚. For the exclusion
processes defined above, the space-time invariant measures are
Bernoulli product measures of parameter 𝜚 ∈ [0, 1]:

ν𝜚(dη) = ∏
x∈Λε

𝜚ηx(1− 𝜚)1−ηx, (1)

and in fact, these measures are reversible for some choices of p(⋅).
The latter means that the adjoint generator (ℒex)∗ in the Hilbert
space 𝕃2(ν𝜚) coincides with ℒex.
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Hydrodynamic limit of exclusion processes. The empirical measure
associated to the number of particles is given on η ∈ {0, 1}Λε by

πε(η,du) ≔ ε ∑
x∈Λε

ηxδx(du), (2)

where δx is a Dirac mass at x. Observe that, for a given configuration
η, the measure πε(η,du) gives weight ε to each particle. We define
the process of empirical measures as πε

t (η,du) = πε(η(tτ(ε)),du).
The rigorous statement of the hydrodynamic limit is that, given

a measurable profile 𝜚(0,u), if the process starts from a probability
measure με for which a Law of Large Numbers (LLN) for πε

0(du)
holds, i.e.,

πε
0 → 𝜚(0,u)du as ε → 0,

then the same holds at any time t, i.e.,

πε
t → 𝜚(t,u)du as ε → 0,

where 𝜚(t,u) is the solution (in some sense) of the hydrodynamic
equation. Observe that the assumption above says that the random
measure πε

0(du) converges weakly, as ε → 0, to the deterministic
measure 𝜚(0, u)du. This means that, for any given continuous
function f, one has

lim
ε→0

|∫
Λ
f(u)πε

0(η,du) − ∫
Λ
f(u)𝜚(0,u)du| = 0.

But we still need to say in which sense the convergence holds
because the left-hand side of the last display is still random. We
will assume that the convergence is in probability with respect to
με, i.e., for any δ > 0, one has

lim
ε→0

με(η ∶ |∫
Λ
f(u)πε

0(η,du) − ∫
Λ
f(u)𝜚(0,u)du| > δ) = 0.

And this will be a restriction on the set of initial measures for which
the result will be derived.

Hydrodynamic equations. To provide an intuition of which equa-
tions can be derived from SIPS, we give now a heuristic argument
for the exclusion processes defined above. Recall that, for these
processes, the invariant measures are the Bernoulli product with
marginals given in (1). Consider the discrete profile

𝜚n
t (x) = 𝔼[ηt(x)].

From Kolmogorov’s equation, we have that ∂t𝜚n
t (x)=𝔼[ℒexηx(t)],

and a simple computation shows that

ℒexη(x) = jx−1,x(η) − jx,x+1(η),

where jx,x+1(η) denotes the instantaneous current at the bond
{x, x+ 1}. Assume now that the process at hand is the SSEP. Then

jx,x+1(η) = ηx(1− ηx+1) − ηx+1(1− ηx) = ηx − ηx+1.

Since jx,x+1 is the gradient of ηx, we get ∂t𝜚n
t (x) = 𝔼[Δnηx], where

Δn denotes the discrete Laplacian. Here the expectation 𝔼 is with
respect to the Bernoulli product measure given in (1), but with a pa-
rameter given by 𝜚n

t (⋅). Now, if we assume that limn→∞ 𝜚n
t (x) =

𝜚t(x/n) for all x, then the evolution of the density is given by the
heat equation ∂t𝜚t(u) = Δ𝜚t(u). Of course, we worked under the
local equilibrium assumption made above, but this heuristic ar-
gument can be made rigorous by certain methods and for many
different models.

For the exclusion process introduced above, we can get the
following hydrodynamic equations [19,43,45]:
a. SSEP with a = 2, the heat equation

∂t𝜚 = 1
2
Δ𝜚; (3)

b. WASEP with κ = 1,a = 2, the viscous Burgers equation

∂t𝜚 = 1
2
Δ𝜚+ E∇F(𝜚); (4)

c. ASEP with a = 1, the inviscid Burgers equation

∂t𝜚 = E∇𝜚(1− 𝜚).

For symmetric p(⋅), i.e., such that p(z) = p(−z) for all z ∈ ℤ,
allowing long jumps with infinite variance, e.g.,

p(z) = cγ|z|−(1+γ)1z≠0. (5)

we obtain a fractional heat equation, namely,

∂t𝜚 = −(−Δγ/2)𝜚

for γ ∈ (0, 2); see [42]. Note that the infinite variance case corre-
sponds to γ ∈ (0, 2) since, in this range, ∑z z

2p(z) = ∞. When
p(⋅) is asymmetric, one can obtain an integro-PDE [49]. All these
equations can be supplemented with several types of boundary
conditions by superposing the dynamics described above with
another one, for example, by

1. Considering the exclusion process evolving on the lattice

Λε = {0, ε, 2ε,…, ε−1ε = 1}

and adding at the boundary points x= 0 and x= 1 a dynamics that
injects particles (at rate αεθ and βεθ at the left and right reservoir

αεθ
βεθ

1/2

Figure 1. Symmetric exclusion with open boundary.
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Figure 2. Long-jumps symmetric exclusion with a slow barrier.

respectively) or removes particles (at rate (1− α)εθ and (1− β)εθ

at the left and right reservoir respectively) in the system.
The parameters satisfy α,β ∈ [0, 1] and θ ∈ ℝ. Note that the

conservation law is violated in this case, but inside the system, it
still holds.

2. Considering the exclusion process with a dynamics that
blocks the passage of particles between certain regions of the
microscopic space Λε (the conservation law is maintained in this
case). For instance, assume that the exchange rate of particles
in a certain number of bonds is given by a transition probability
p(⋅), while in some other bonds, this rate is multiplied by a factor
that makes it slower compared to the rate in all other bonds. In
Figure 2, particles jump everywhere in Λε = εℤ, but the jump rate
for bonds in εℤ+ or in εℤ− is given by p(⋅), whereas the jump rate
between sites in εℤ+ and εℤ− is given by p(⋅)αεβ, where now the
parameters satisfy α > 0 and β ≥ 0.

Under this choice, we are creating a slow barrier at the macro-
scopic level, and the goal is to understand how these local micro-
scopic defects propagate to the macroscopic level. Here we do
not have a superposition of two dynamics; as in the previous case,
we are just slowing down the dynamics in certain places of the
microscopic space.

For recent results on 1., we refer to [3,20,22,23,26] for the SSEP
in contact with slow/fast boundary reservoirs. In that case, the heat
equation is supplied with boundary conditions of Dirichlet, Robin,
or Neumann type, depending on the intensity of the reservoirs’
dynamics. More precisely, we can get the heat equation (3) with
the following boundary conditions:
(I) Dirichlet: 𝜚t(0) = α, 𝜚t(1) = β if θ < 1.
(II) Robin: ∂u𝜚t(0) = 𝜚t(0) − α, ∂u𝜚t(1) = β− 𝜚t(1) if θ = 1.
(III) Neumann: ∂u𝜚t(0) = ∂u𝜚t(1) = 0 if θ > 1.
For the WASEP, one can get the viscous Burgers equation (4) with
Dirichlet conditions as in (I) or with Robin boundary conditions, but
in this case, the boundary conditions are nonlinear; see [14]. For
the ASEP, the parabolic equations obtained above are replaced by
hyperbolic laws with several types of boundary conditions [2,54].

For the dynamics defined in 1., but in the case of long jumps,
we refer to [4, 9, 10], where the authors consider the transition

κβp(−5)εθ

κ(1− β)p(1)εθκ(1− α)p(−2)εθ

καp(8)εθ

Figure 3. Long-jumps symmetric exclusion with a slow boundary.

probability (5), superposed with a dynamics that injects and re-
moves particles in the system and that acts everywhere in Λε with
a strength regulated again by a parameter θ ∈ ℝ; see Figure 3.

Depending on whether the variance of the transition probability
p(⋅) is finite or not and on the strength of the Glauber dynamics,
the variety of results for the hydrodynamic limit is extremely rich:
indeed, different operators arise at the macro-level, and the corre-
sponding equations come equipped with several types of boundary
conditions of fractional form.

When the transition probability p(⋅) has finite variance, i.e.,
∑z z

2p(z) < +∞, which holds for γ > 2, the hydrodynamic equa-
tion for a= 2 is the heat equation with various boundary conditions.
When γ = 2, the variance diverges as log(ε), and to compensate
for this, we have to take the time scale ε−2/ log(ε) to obtain again
the heat equation with several kinds of boundary conditions.

When γ ∈ (0, 2), the variance is infinite and the system be-
comes superdiffusive. Consequently, the resulting equation is writ-
ten in terms of a fractional Laplacian operator rather than the
ordinary Laplacian. Since the solutions of the equation are defined
on the interval [0, 1], one deals, in fact, with a regional fractional
Laplacian. Now the boundary conditions involve fractional deriva-
tives. For a summary of the regimes where the boundary conditions
are shown, see Figure 4.

Frac. reac. diff.
& Dir. b.c.

Frac. reac. diff. Reac. diff. &
Dir. b.c.

Heat & Rob. b.c.

Fra
c. d

iff.
& fra

c. R
ob
. b
.c.

Heat
& Neumann b.c.

Heat
& Dir. b.c.

Frac. diff. & frac. Neu. b.c.

Frac. diff.
& Dir. b.c.

Reaction & Dir. b.c.

γ
=
2

γ
=
1

γ
=
0

θ = 2− γ

Figure 4. Variety of hydrodynamic limits.
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For recent results on 2., we refer the reader to [27,28] for the
SSEP with a slow bond on the torus

𝕋ε = {0, ε, 2ε,…, ε−1},

to [29] for the SSEP with a slow site on 𝕋ε, and to [16,17] for the
SSEP on εℤ with a slow barrier blocking the passage of particles.

We note that, in the case of a slow barrier, the variety of
hydrodynamic limits is also very rich. When the intensity of the
barrier is equal to αεβ and slows down the passage of particles
between negative and positive sites on εℤ, an interesting behavior
appears (contrarily to the slow bond case of [27]) when β = 0:
(i) For α = 1, in [42], the author obtains the fractional heat equa-

tion.
(ii) For α ≠ 1, the fractional Laplacian is replaced by a regional

fractional Laplacian, but defined on an unbounded domain.
In this case, since there are infinitely many slow bonds at the
microscopic level, the impact of their slowed dynamics (which
differs from the dynamics of other bonds only by a constant) is
felt at the macroscopic level.

(iii) For α > 0 and β = γ− 1, one can get linear-fractional Robin
boundary conditions.

(iv) For α > 0 and β > γ − 1, one can get fractional Neumann
boundary conditions.

Note that, while above we arrived at the heat equation or the
fractional heat equation, it is possible to obtain a nonlinear version
of those equations of the form ∂t𝜚 = 𝒫𝜚m, where m ∈ ℕ and
𝒫 = Δ or 𝒫 = −(−Δ)γ/2, i.e., the porous medium equation and
its fractional version. For details, we refer the reader to [13,15,21].
To arrive at these PDEs, one can simply start with an exclusion
dynamics where the jump rate depends on the number of particles
in the vicinity of the point where particles exchange positions; see
[13,15,38].

2.2 Two conservation laws
In this subsection, we review the hydrodynamic limit for two dif-
ferent models with more than one conservation law. The analysis
of the asymptotic behavior of the relevant quantities is much more
intricate than for models with just one conserved quantity, such as
the exclusion process described above.

2.2.1 The ABC model
Themodel. The ABCmodel consists of a system of particles of three
species α ∈ {A,B,C}, with exchanges only to neighboring sites on
the torus𝕋ε and in the presence of a driving force, so the interaction
rate depends on the type of particles involved. As in the exclusion
process explained previously, at each site, there is at most one
particle. The total number of particles of each species is conserved.
This is a continuous-time Markov process with state space Ω̃ε =
{A, B, C}𝕋ε . To properly define its hydrodynamic limit, we introduced
the occupation number of the species α as ξ α ∶ Ω̃ε → {0, 1}𝕋ε,

which acts on configurations by the rule ξ α
x (η) = 1{α}(ηx). Its

infinitesimal generator acts on functions f ∶ Ω̃ε → ℝ as

̃ℒεf(η) = ∑
x∈𝕋ε

cx(η)[f(ηx,x+ε) − f(η)].

Here the rates cx(η) are defined by

cx(η) = ∑
α,β

cαβx ξ αx ξ α+1
x+1 ,

where a configuration (α,β) on the bond {x, x+ ε} is exchanged
to (β,α) at the rate

cαβx = 1+ εγ(Eα − Eβ)
2

,

for α,β ∈ {A,B,C}, with Eα ≥ 0. The role of γ in this model is to
tune the strength of the driving force. This model generalizes the
one introduced in [24, 25]. The system will be considered in the
diffusive time scale a = 2. We can think of this model as a two-
species particle system, of species A and B, since the type C can
be easily recovered from A and B.

We introduce the empirical measure (defined similarly to (2))
for each one of the conserved quantities ξ A

x , ξ B
x and ξ C

x , i.e., for
each α ∈ {A,B,C}, we define

πε,α(ηt,du) = ε ∑
x∈𝕋ε

ξ αx (ηt) δx(du).

Hydrodynamic limit of ABC. In the diffusive time scaling a= 2 and
for γ = 1, for any t, the empirical measure

(πε,A(ηt,du),πε,B(ηt,du))

converges as ε → 0 to the deterministic measure

(πA
t (du),πB

t (du)) = (𝜚A
t (u)du,𝜚B

t (u)du),

where the densities (𝜚A
t (u),𝜚B

t (u)) solve the following system of
(parabolic) equations [12]:

⎧
⎨
⎩

∂t𝜚A = Δ𝜚A −∇[F(𝜚A)(EA − EC) − 𝜚A𝜚B(EB − EC)],

∂t𝜚B = Δ𝜚B −∇[F(𝜚B)(EB − EC) − 𝜚A𝜚B(EA − EC)];
(6)

here F(𝜚)=𝜚(1−𝜚), and for α∈{A,B,C}, 𝜚α denotes the density
of particles of type α in the system. The equation for the species C
can easily be obtained by using the identity 𝜚C = 1− 𝜚A − 𝜚B. In
this case, the hydrodynamic limit is given by a system of coupled
equations since the evolution of particles of one species is affected
by the particles of the other species. One can also consider this
model in contact with slow/fast reservoirs, extending the model
defined above. Consider, for example, the dynamics described in
Figure 5.

The rates satisfy rA + rB + rC = 1 and ̃rA + ̃rB + ̃rC = 1, and
can be interpreted as density reservoirs. For this model, the hydro-
dynamic equation is similar to (6), and it is supplemented with
boundary conditions that can be of Dirichlet type or Robin type [39].
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rB(εδ − ̃βεθ/2)
̃rC(εδ + ̃βεθ/2)

1− βε/2 1+ βε/2

Figure 5. Dynamics of the ABC model with reservoirs at x = 0 and x = 1.
Particles of species A, B and C.

2.2.2 Interface models
The models. Next, we describe another collection of models with
two conservation laws. These systems were introduced in [11];
they consist of perturbations of Hamiltonian dynamics with a con-
servative noise and exhibit strong analogies with the standard
chains of oscillators. The dynamics of these fluctuating interface
models, denoted by {ηx(t)}t≥0, depends on an interaction po-
tential V ∶ ℝ → [0,+∞) and evolves in the state space Ω̂ε ≔ ℝ𝕋ε

(these variables now are continuous and unbounded). The dynamics
conserves two quantities:

energy ∑
x
V(ηx) and volume ∑

x
ηx,

and in [11], it is proved that these are the only conserved quantities.
Here ηx stands for the height of the interface at the site x.

There are some potentials that have been explored in the liter-
ature. Below, we focus on two of them, namely, the exponential
potential and the quadratic potential; see [1, 5–8]. Fix a positive
real parameter b > 0 and define the Kac–van Moerbeke potential
Vb ∶ ℝ → [0,+∞) by

Vb(u) = e−bu − 1+ bu.

The corresponding infinitesimal generator is given by

̂ℒ = αεκ𝒜b + γ𝒮, (7)

where γ, κ > 0, α ∈ ℝ and the operators 𝒜b and 𝒮 act on differ-
entiable functions f by the rules

(𝒜bf)(η) = ∑
x∈𝕋ε

(V ′
b(ηx+ε) − V ′

b(ηx−ε))(∂ηx f)(η),

(𝒮f)(η) = ∑
x∈𝕋ε

( f(ηx,x+ε) − f(η)).

The configuration ηx,x+ε represents the swapping of particles as
described above. For more details on the definition of these models,
we refer to [5,11,53]. The parameter αεκ regulates the intensity
of the Hamiltonian dynamics in the system in terms of the scaling
parameter ε. The role of the parameter γ is to regulate the intensity
of the stochastic noise. Note that, when γ = 0 (i.e., in the absence
of noise), this system is completely integrable. We will speed it up
in the time scale tε−a with a > 0.

As mentioned above, the system has two conserved quantities:
energy ∑Vb(ηx) and volume ∑ηx, but of course, since the gener-
ator is a linear operator, any linear combination (plus constants) of
energy and volume is also conserved, e.g., ∑x ξx with ξx = V ′

b(ηx).
Let us describe the space-time evolution of the relevant quantities
of the system.

Hydrodynamic limit for interface models. We define the empirical
measures associated with the energy and the volume as in (2) by

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

πε,e(η,du) = ε ∑
x∈𝕋ε

Vb(ηx) δx(du),

πε,v(η,du) = ε ∑
x∈𝕋ε

ηx δx(du).

In [11], for a = 1 and in the strong asymmetric regime, it was
proved that (before the appearance of shocks) the hydrodynamic
equations (of hyperbolic type) are given by

⎧
⎨
⎩

∂te− αb2∇(e− bv)2 = 0,

∂tv+ 2αb∇(e− bv) = 0.

As for the ABC model, the hydrodynamics is given by a system of
coupled equations, but instead of parabolic equations, here we
have hyperbolic equations.

We conclude by noting that, for the models described above,
we obtained a variety of PDEs with several types of boundary con-
ditions. The exploration of other types of boundary conditions and
more general PDEs is certainly important and deserves attention.
Moreover, we believe that, with the knowledge of the underlying
SIPS, we can get information on the notion of weak solutions to
some PDEs in a probabilistic way.

3 Equilibrium fluctuations

In the last section, we analyzed a Law of Large Numbers for the
empirical measure in SIPS with one or more conservation laws. The
limit considered in the hydrodynamic limit is deterministic, and we
know what is the typical profile that we should observe at any
time t. The question that we can address now is related to the
corresponding Central Limit Theorem, i.e., providing a description
of the fluctuations around the hydrodynamic limit. Typically, the
study of non-equilibrium fluctuations is very intricate since it re-
quires deep knowledge about the correlations of variables, and this
can be quite challenging for the majority of the dynamics. What
one is searching for, in the equilibrium scenario in e.g., exclusion
processes, is the fluctuations around the constant hydrodynamical
profile; see Figure 6.

We start by describing what can happen for systems with
a single conservation law and then address the case of more
conservation laws.
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Figure 6. Fluctuations around the typical behavior.

3.1 Fluctuations for systems with a single conservation law:
The exclusion process

As above, first we focus on a system with a single conservation
law, the exclusion process, and from now on, we assume that it
starts from the stationary state, the Bernoulli product measure of
parameter 𝜚 ∈ (0, 1) given in (2). We define the empirical field
associated to the density, which is the linear functional defined on
functions f ∶ Λ → ℝ (belonging to a suitable space) as

𝒴ε
t (f) = √ε ∑

x∈Λε

f(x)(ηx(tε−a) − 𝜚). (8)

This expression is obtained by first integrating the test function f
with respect to the empirical measure in (2), then removing the
mean with respect to (2), and finally dividing the result by √ε. The
question that arises now is to understand the limit in distribution, as
ε→ 0, of𝒴ε

t , denoted by𝒴t. For the exclusion processes introduced
above, one can get several different limits.

A. For the SSEP and in the diffusive scaling a= 2, the Ornstein–
Uhlenbeck (OU) process is given by

d𝒴t =
1
2
Δ𝒴t dt+√F(𝜚)∇�̇�t. (9)

B. For the WASEP with a weak asymmetry, i.e., κ > 1/2 and
in the diffusive scaling a = 2, one gets the same as (9), while
for κ = 1/2, one gets the Kardar–Parisi–Zhang (KPZ) equation
(introduced in [44]) or its companion, the stochastic Burgers (SB)
equation, respectively, for the height field ht or for the density
field 𝒴t,

dht =
1
2
Δht dt+ 4E(∇ht)2dt+√F(𝜚)�̇�t,

d𝒴t =
1
2
Δ𝒴t dt+ 4E∇𝒴2

t dt+√F(𝜚)∇�̇�t.

Here �̇�t stands for the standard space-time white noise.
The height field can be defined analogously to the density

field, but the relevant quantity for this field is the net flux Jx,x+1 of
particles through the bond {x, x+ 1}; the definition of the field
is as in (8), but with ηx and its average replaced by Jx,x+1 and the
corresponding average.

The results described above were obtained and analyzed in [18,
31–33,36,37,40,41] and were extended to many other stationary

models in stationarity; recently, some of them have been extended
to the non-equilibrium scenario; see [55].

C. For the ASEP, i.e., E = 0, p ≠ 1/2 and in the hyperbolic
scaling a = 1,

d𝒴t = (1− 2𝜚)(1− 2p)∇𝒴t dt.

Note that if, in this expression, we take 𝜚 = 1/2, we get a trivial
evolution for the density field. The same is true if instead we rede-
fine the field in a frame with the velocity (1− 2𝜚)ε1−a. Therefore,
to get a non-trivial behavior, we have to speed up the time, and
for the choice a = 3/2, the limit field is given in terms of the so-
called KPZ fixed point, which was constructed in [48]. In [30], it
was proved that, up to the time scale tε4/3, there is no evolution
of the density field, and its law coincides with the law of the initial
field 𝒴0. Nevertheless, beyond that time scale, the limit is not yet
known, but it should be given in terms of the KPZ fixed point.
The results of [30] applied to WASEP show that, below the line
a = (4/3)(κ+ 1), there is no time evolution, but in fact, the trivial
evolution should go up to the line a = (3/2)(κ+ 1); see the gray
region on Figure 7.

a
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2

0

3
2

4
3

2
OU

KPZ
fixe

d p
oin

t

??

SB

no evolution

Figure 7. Fluctuations of the density in WASEP.

For a transition probability allowing long jumps, the limit behavior
can be Gaussian, or given in terms of a fractional OU (when the sym-
metry dominates) or of the fractional SB equation (when symmetry
and asymmetry have exactly the same strength); see [34,35].

In the case of exclusion processes given by a general transition
probability, we have already seen possible laws, given as solutions
to stochastic PDEs (SPDEs) governing the fluctuations of the unique
conserved quantity, the number of particles. The way to connect
one solution to the other could be either by changing the nature
of the tail of the transition probability or the symmetry/asymmetry
dominance phase of the transition probability. The nature of the
SPDE is very much related to the underlying SIPS, but the same
equation can be obtained from a variety of different particle models,
and in that sense, it is universal.
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3.2 Fluctuations for multi-component systems
We observe that the results described in the last subsection are for
systems with (only) one conservation law, and for these, there is
no ambiguity concerning the choice of the fields that one should
look at – the only choice is the field associated to the conserved
quantity. When systems have more than one conserved quantity,
and their evolution is coupled, as is the case for the ABC model
or the interface models that we described above, we have to be
careful when we define those fields. Moreover, a special feature
of multi-component models is that different time scales coexist,
which never occurs for systems with only one conserved quantity.

In [52], with a focus on anharmonic chains of oscillators, the
nonlinear fluctuating hydrodynamics theory (NLFH) for the equilib-
rium time-correlations of the conserved quantities of that model
was developed and analytical predictions were done based on
a mode-coupling approximation. Roughly speaking, Spohn’s ap-
proach starts at the macroscopic level, i.e., one assumes that
a hyperbolic system of conservation laws governs the macroscopic
evolution of the empirical conserved quantities. Then a diffusion
term and a dissipation term are added to the system of coupled
PDEs and one linearizes the system at second order with respect to
the equilibrium averages of the conserved quantities. A fundamen-
tal role is played by the normal modes, i.e., the eigenvectors of the
linearized equation. These modes evolve with different velocities
and in different time scales. They might be described by different
forms of superdiffusion or standard diffusion processes, and this
description depends on the values of certain coupling constants.
From this approach, many other universality classes arise, besides
the Gaussian or the KPZ, already seen in systems with only one
conservation law. Despite all the complications that one might face
when dealing with multi-component systems, there is a choice of
the potential V for the interface models described above, for which
all the diagram for the fluctuations of its conserved quantities has
been obtained. Now we quickly describe it.

The harmonic potential. Consider the generator given in (7), but
with the quadratic potential V(x) = x2/2, the harmonic potential.
The invariant measures μv,β are explicitly given by

μv,β(dη) = ∏
x∈Λε

( β
2π

)
1/2

exp{−β
2
(ηx − v)

2
}dηx,

where v ∈ ℝ and β > 0. In this case, the system conserves two
quantities, the energy ∑x η

2
x and the volume ∑x ηx; note that

the average with respect to μv,β of ηx and η2x is equal to v and
v2 + (1/β), respectively. According to NLFH, the quantities that
one should analyze are now

𝒰1 = ηx and 𝒰2 = 2vηx + η2x .

For a random variable X, we let ̄X denote the centered random
variable. Note that, for v = 0, we simply get 𝒰1 and 𝒰2 as the
volume and energy, respectively. The corresponding fields should
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Figure 8. Fluctuations for 𝒰1.
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Figure 9. Fluctuations for 𝒰2.

be taken on a frame with velocity v1 ≔ 2αε and v2 ≔ 0. According
to NLFH, in the strong asymmetric regime (κ = 0), 𝒰1 should
behave diffusively and 𝒰2 should behave as a Lévy process with
exponent 3/2. For the volume, i.e., the quantity𝒰1, when we take
the fluctuation field with velocity equal to 0, we get a process that
is linearly transported in time (see the light-blue line in Figure 8),
while if we take it with the velocity v1, we get an OU process
without drift (see the magenta line).

For 𝒰2 with velocity v = 0, i.e., the energy (recall that v2 = 0),
we have the results summarized in Figure 9.

In Figure 8, the light-blue line corresponds to a = κ+ 1, while
the purple line in Figure 9, where we see the Lévy process with
exponent 3/2, corresponds to a = (3/2)(κ+ 1). Note that this
diagram is complete, but the method that was employed to derive
these results relies heavily on the specific form of the dynamics.

There is still much work to do in this direction, and we believe
that one should analyze the action of the generator on other rel-
evant quantities and keep track of those that give a non-trivial
contribution to the limit. There are several equations that one can
obtain from this procedure by using many different microscopic
forms of dynamics, and for this reason, they are said to be univer-
sal. Understanding how to connect universality classes is a major
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problem in the field of SIPS. There is much to do regarding this
problem, and hopefully, in the next years, large steps will be made
in this direction.

4 Final comments

Some of the problems described above were among the goals of
the research project titled HyLEF, Hydrodynamic Limits and Equi-
librium Fluctuations: universality from stochastic systems, one of
the projects funded by the European Research Council (ERC) in the
2016 edition of the ERC Starting Grants. This is the first and so far
the only ERC grant awarded in Portugal in the field of mathematics,
and it is headed by the author of this article, Patrícia Gonçalves,
now a full professor at the mathematics department of Instituto
Superior Técnico (IST) of the University of Lisbon. It is a grant of
nearly 1.2 million euros for 5 years (extended to 7 years due to the
pandemic period) which started on the 1st of December, 2016.

The budget allowed creating a team composed of 4 post-
doctoral researchers (2 years each), 2 Ph.D. students (4 years each),
and 2 master students (1 year each). This was the first team in
Portugal working in the field of SIPS. The budget also allowed
organizing conferences and inviting external collaborators to work
with the team at IST in Portugal.

I would like to thank the ERC and all the members of the
Panel PE1 (Mathematics) who, by selecting my project for funding,
have all contributed to a big change in my life and the lives of all
the people involved in this project. If HyLEF was not funded by the
ERC, the creation of this team under national funds would have
been completely impossible.

The group of collaborators of this project includes several re-
searchers, some of them working at the host institution and others
working abroad, mainly at IMPA and at the Universities of Arizona,
Juelich, Lyon, Nice, among others. Below is a photomontage of
some of these members, to whom I am truly grateful for making
the last years at IST extremely exciting, not only research-wise, but
also personally. I will certainly remember them for a long time.

References

[1] R. Ahmed, C. Bernardin, P. Gonçalves and M. Simon, A microscopic
derivation of coupled SPDE’s with a KPZ flavor. Ann. Inst. Henri
Poincaré Probab. Stat. 58, 890–915 (2022)

[2] C. Bahadoran, Hydrodynamics and hydrostatics for a class of
asymmetric particle systems with open boundaries. Comm. Math.
Phys. 310, 1–24 (2012)

[3] R. Baldasso, O. Menezes, A. Neumann and R. R. Souza, Exclusion
process with slow boundary. J. Stat. Phys. 167, 1112–1142 (2017)

[4] C. Bernardin, P. Cardoso, P. Gonçalves and S. Scotta, Hydrodynamic
limit for a boundary driven super-diffusive symmetric exclusion,
preprint, arXiv:2007.01621 (2021)

[5] C. Bernardin and P. Gonçalves, Anomalous fluctuations for a per-
turbed Hamiltonian system with exponential interactions. Comm.
Math. Phys. 325, 291–332 (2014)

[6] C. Bernardin, P. Gonçalves and M. Jara, 3/4-fractional superdiffusion
in a system of harmonic oscillators perturbed by a conservative
noise. Arch. Ration. Mech. Anal. 220, 505–542 (2016)

[7] C. Bernardin, P. Gonçalves and M. Jara, Weakly harmonic oscil-
lators perturbed by a conservative noise. Ann. Appl. Probab. 28,
1315–1355 (2018)

[8] C. Bernardin, P. Gonçalves, M. Jara and M. Simon, Nonlinear
perturbation of a noisy Hamiltonian lattice field model: Universality
persistence. Comm. Math. Phys. 361, 605–659 (2018)

[9] C. Bernardin, P. Gonçalves and B. Jiménez-Oviedo, Slow to fast
infinitely extended reservoirs for the symmetric exclusion process
with long jumps. Markov Process. Related Fields 25, 217–274
(2019)

[10] C. Bernardin, P. Gonçalves and B. Jiménez-Oviedo, A microscopic
model for a one parameter class of fractional Laplacians with
Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 239, 1–48
(2021)

[11] C. Bernardin and G. Stoltz, Anomalous diffusion for a class of sys-
tems with two conserved quantities. Nonlinearity 25, 1099–1133
(2012)

[12] L. Bertini, N. Cancrini and G. Posta, On the dynamical behavior of
the ABC model. J. Stat. Phys. 144, 1284–1307 (2011)

[13] L. Bonorino, R. de Paula, P. Gonçalves and A. Neumann, Hydrody-
namics of porous medium model with slow reservoirs. J. Stat. Phys.
179, 748–788 (2020)

[14] P. Capitão and P. Gonçalves, Hydrodynamics of weakly asymmetric
exclusion with slow boundary. In From particle systems to partial
differential equations, Springer Proc. Math. Stat. 352, Springer,
Cham, 123–148 (2021)

[15] P. Cardoso, R. De Paula and P. Gonçalves, A microscopic model for
the fractional porous medium equation; to appear in Nonlinearity

[16] P. Cardoso, P. Gonçalves and B. Jiménez-Oviedo, Hydrodynamic
behavior of long-range symmetric exclusion with a slow barrier:
Diffusive regime; to appear in Ann. Inst. Henri Poincaré Probab.
Stat.

[17] P. Cardoso, P. Gonçalves and B. Jiménez-Oviedo, Hydrodynamic
behavior of long-range symmetric exclusion with a slow barrier:
Superdiffusive regime; accepted for publication in Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5)

EMS MAGAZINE 127 (2023) 13

https://arxiv.org/abs/2007.01621


[18] I. Corwin, The Kardar–Parisi–Zhang equation and universality class.
Random Matrices Theory Appl. 1, Article ID 1130001 (2012)

[19] A. De Masi, E. Presutti and E. Scacciatelli, The weakly asymmetric
simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 25,
1–38 (1989)

[20] A. De Masi, E. Presutti, D. Tsagkarogiannis and M. E. Vares, Current
reservoirs in the simple exclusion process. J. Stat. Phys. 144,
1151–1170 (2011)

[21] R. De Paula, P. Gonçalves and A. Neumann, Energy estimates and
convergence of weak solutions of the porous medium equation.
Nonlinearity 34, 7872–7915 (2021)

[22] C. Erignoux, P. Gonçalves and G. Nahum, Hydrodynamics for SSEP
with non-reversible slow boundary dynamics: Part I, the critical
regime and beyond. J. Stat. Phys. 181, 1433–1469 (2020)

[23] C. Erignoux, P. Gonçalves and G. Nahum, Hydrodynamics for SSEP
with non-reversible slow boundary dynamics: Part II, below the
critical regime. ALEA Lat. Am. J. Probab. Math. Stat. 17, 791–823
(2020)

[24] M. R. Evans, Y. Kafri, H. M. Koduvely and D. Mukamel, Phase
separation in one-dimensional driven diffusive systems. Phys. Rev.
Lett. 80, 425–429 (1998)

[25] M. R. Evans, Y. Kafri, H. M. Koduvely and D. Mukamel, Phase
separation and coarsening in one-dimensional driven diffusive
systems: Local dynamics leading to long-range Hamiltonians. Phys.
Rev. E (3) 58, 2764–2778 (1998)

[26] C. Franceschini, P. Gonçalves and B. Salvador, Hydrodynamical
behavior for the generalized symmetric exclusion with open
boundary; to appear in Math. Phys. Anal. Geom.

[27] T. Franco, P. Gonçalves and A. Neumann, Hydrodynamical behavior
of symmetric exclusion with slow bonds. Ann. Inst. Henri Poincaré
Probab. Stat. 49, 402–427 (2013)

[28] T. Franco, P. Gonçalves and A. Neumann, Phase transition of a heat
equation with Robin’s boundary conditions and exclusion process.
Trans. Amer. Math. Soc. 367, 6131–6158 (2015)

[29] T. Franco, P. Gonçalves and G. M. Schütz, Scaling limits for the
exclusion process with a slow site. Stochastic Process. Appl. 126,
800–831 (2016)

[30] P. Gonçalves, Central limit theorem for a tagged particle in asym-
metric simple exclusion. Stochastic Process. Appl. 118, 474–502
(2008)

[31] P. Gonçalves and M. Jara, Crossover to the KPZ equation. Ann.
Henri Poincaré 13, 813–826 (2012)

[32] P. Gonçalves and M. Jara, Nonlinear fluctuations of weakly asym-
metric interacting particle systems. Arch. Ration. Mech. Anal. 212,
597–644 (2014)

[33] P. Gonçalves and M. Jara, The Einstein relation for the KPZ equation.
J. Stat. Phys. 158, 1262–1270 (2015)

[34] P. Gonçalves and M. Jara, Stochastic Burgers equation from
long range exclusion interactions. Stochastic Process. Appl. 127,
4029–4052 (2017)

[35] P. Gonçalves and M. Jara, Density fluctuations for exclusion
processes with long jumps. Probab. Theory Related Fields 170,
311–362 (2018)

[36] P. Gonçalves, M. Jara and S. Sethuraman, A stochastic Burgers
equation from a class of microscopic interactions. Ann. Probab. 43,
286–338 (2015)

[37] P. Gonçalves, M. Jara and M. Simon, Second order Boltzmann–
Gibbs principle for polynomial functions and applications. J. Stat.
Phys. 166, 90–113 (2017)

[38] P. Gonçalves, C. Landim and C. Toninelli, Hydrodynamic limit for
a particle system with degenerate rates. Ann. Inst. Henri Poincaré
Probab. Stat. 45, 887–909 (2009)

[39] P. Gonçalves, R. Misturini and A. Occelli, Hydrodynamics for the
ABC model with slow/fast boundary; to appear in Stochastic
Process. Appl.

[40] M. Gubinelli and M. Jara, Regularization by noise and stochastic
Burgers equations. Stoch. Partial Differ. Equ. Anal. Comput. 1,
325–350 (2013)

[41] M. Gubinelli and N. Perkowski, Energy solutions of KPZ are unique.
J. Amer. Math. Soc. 31, 427–471 (2018)

[42] M. Jara, Hydrodynamic limit of particle systems with long jumps,
preprint, arXiv:0805.1326 (2008)

[43] L. Jensen and H.-T. Yau, Hydrodynamical scaling limits of simple
exclusion models. In Probability theory and applications (Princeton,
NJ, 1996), IAS/Park City Math. Ser. 6, Amer. Math. Soc., Providence,
167–225 (1999)

[44] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing
interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

[45] C. Kipnis and C. Landim, Scaling limits of interacting particle
systems. Grundlehren Math. Wiss. 320, Springer, Berlin (1999)

[46] T. M. Liggett, Interacting particle systems. Grundlehren Math. Wiss.
276, Springer, New York (1985)

[47] C. MacDonald, J. Gibbs and A. Pipkin, Kinetics of biopolymerization
on nucleic acid templates. Biopolymer 6, 1–25 (1968)

[48] K. Matetski, J. Quastel and D. Remenik, The KPZ fixed point. Acta
Math. 227, 115–203 (2021)

[49] S. Sethuraman and D. Shahar, Hydrodynamic limits for long-range
asymmetric interacting particle systems. Electron. J. Probab. 23,
Paper No. 130 (2018)

[50] F. Spitzer, Interaction of Markov processes. Advances in Math. 5,
246–290 (1970) (1970)

[51] H. Spohn, Large scale dynamics of interacting particles. Texts and
Monographs in Physics, Springer, Berlin (1991).

[52] H. Spohn, Nonlinear fluctuating hydrodynamics for anharmonic
chains. J. Stat. Phys. 154, 1191–1227 (2014)

[53] H. Spohn and G. Stoltz, Nonlinear fluctuating hydrodynamics in
one dimension: The case of two conserved fields. J. Stat. Phys. 160,
861–884 (2015)

[54] L. Xu, Hydrodynamics for one-dimensional ASEP in contact with
a class of reservoirs. J. Stat. Phys. 189, Paper No. 1 (2022)

[55] K. Yang, Stochastic Burgers equation via energy solutions from
non-stationary particle systems, preprint, arXiv:1810.02836 (2018)

Patrícia Gonçalves is a full professor in the mathematics department
of Instituto Superior Técnico, University of Lisbon, Portugal.

pgoncalves@tecnico.ulisboa.pt

14 EMS MAGAZINE 127 (2023)

https://arxiv.org/abs/0805.1326
https://arxiv.org/abs/1810.02836
mailto:pgoncalves@tecnico.ulisboa.pt

