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The theoretical study of fluid flows is
a vast area of research that involves
many different mathematical disciplines,
ranging from the theory of partial differ-
ential equations to dynamical systems
and differential geometry. More than
250 years after their formulation, the
Euler equations (which describe an
ideal incompressible fluid) and their
viscid counterpart, the Navier–Stokes
equations (introduced independently by
Claude-Louis Navier and Gabriel Stokes

during the first half of the XIX century) still contain a wealth of fun-
damental open problems. While there are numerous and excellent
monographs focusing on the analytic aspects of the equations that
govern fluid motions, until recently one can hardly find textbooks
on the geometric and topological aspects of fluid flows (which are
very rich and significant for understanding hydrodynamics). In 1998
this important gap was filled by the first edition of the book “Topo-
logical Methods in Hydrodynamics” by V. I. Arnold and B. Khesin.
It is difficult to overestimate the impact this monograph had on
those mathematicians who are interested in understanding the
equations of fluid mechanics from a geometric viewpoint, as it pro-
vides a comprehensive introduction to most of the more remarkable
achievements in the area. This includes Arnold’s geodesic formula-
tion of the Euler equations, the structure of steady Euler flows, the
topological interpretation of helicity and other asymptotic invari-
ants, the effects of the curvature of the group of volume-preserving
diffeomorphisms on hydrodynamic instabilities or the fast dynamo
problem. More than twenty years later this important book has
seen its second edition, the most remarkable novelty being the
addition of a very valuable fifty-page appendix that introduces the
most significant developments in the area since the publication of
the first edition of the book.

Arnold and Khesin’s book is the only monograph that presents
a thorough introduction to topological fluid mechanics, a young
area of research that flourished after the foundational works of
Arnold and Moffatt in the 1960’s. The interest in the topological
and geometric aspects of fluid dynamics probably dates back to
Lord Kelvin, who developed an atomic theory in which atoms were
understood as knotted vortex tubes in the ether and showed that
vorticity is transported by the fluid field in the context of ideal flows,
thus implying the preservation of all the vortex structures. In mod-
ern times, topological hydrodynamics was considerably developed
after the works of Arnold and Moffatt. Arnold realized that the
Euler equations of hydrodynamics can be understood as geodesic
motions on the infinite-dimensional group of volume-preserving
diffeomorphisms and Moffatt unveiled the connection between he-
licity and the entangledness and knottedness of the fluid. The book
under review covers a vast panorama of developments and results
in the area, and is an indispensable reference for any researcher
interested in fluid mechanics from the geometric, topological or
Hamiltonian perspectives. It is impossible to summarize the con-
tents of this book in a few lines, so next I aim to present its chapters,
highlighting some landmarks that are introduced in each chapter
(paying the price of losing many other interesting results in this
short presentation):

Chapter I. Group and Hamiltonian structures of fluid dynamics.
This chapter is mainly focused on the study of the Euler equations
of ideal fluids from the viewpoints of group theory and Hamiltonian
mechanics. A significant part is devoted to developing Arnold’s
theory relating the Euler equations with the geometry of the infinite-
dimensional Lie group of volume-preserving diffeomorphisms of
the fluid flow domain. In an important article published in 1966
Arnold showed that the dynamics of an ideal fluid flow can be
described by the geodesics on the aforementioned Lie group en-
dowed with the right-invariant metric given by the kinetic energy.
This chapter provides a detailed presentation of this result and
how it fits within the general framework of the Euler–Poincaré
equations for Hamiltonian systems on Lie groups whose action is
(right-)invariant, other remarkable examples being the dynamics of
the rigid body or the KdV equation. Using this geometric formula-
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tion, Ebin and Marsden proved in 1970 the local-in-time existence
of solutions to the Euler equations on compact manifolds, both in
Sobolev and Hölder classes. The chapter also deals with conserved
quantities of the Euler equations (mainly the Casimirs of the adjoint
action of the group of volume-preserving diffeomorphisms) and
the group setting of ideal magnetohydrodynamics.

Chapter II. Topology of steady fluid flows. This chapter is con-
cerned with the stationary solutions of the Euler equations. It
presents in a very detailed way two gems proved by Arnold in the
mid 1960s. The first one, nowadays known as Arnold’s structure
theorem, describes the topological and dynamical structure of an-
alytic 3D fluid steady states in bounded domains whose Bernoulli
function is not constant. Under these assumptions, this theorem
shows that the Euler flows exhibit the same properties as integrable
Hamiltonian systems with two degrees of freedom on an energy
hypersurface: presence of subdomains covered by invariant tori or
invariant cylinders supporting dynamics that is conjugate to a linear
one. In the context of 2D steady states, the second result presented
here is Arnold’s stability theorem, which provides a sufficient con-
dition for a planar stationary solution to be Lyapunov stable with
respect to the L2-norm of the vorticity. This remarkable result ex-
ploits a new variational characterization of steady states discovered
by Arnold (in terms of the critical points of the energy functional
on the coadjoint orbits of the group of volume-preserving diffeo-
morphisms) and the Hamiltonian formulation. The topology of the
famous Arnold–Beltrami–Childress (ABC) flows, properties of the
linearized Euler equations, and Nadirashvili’s surprising construc-
tion of wandering solutions to the 2D Euler equations on annular
regions are also discussed.

Chapter III. Topological properties of magnetic and vorticity fields.
In this chapter the authors review several results on the topology
of solenoidal fields and how it affects energy relaxation in physical
processes, such as ideal MHD evolution. This topology is described
using functionals on the space of vorticity fields, most of them
of “asymptotic type,” which means that the functional is defined
using a knot invariant, the integral curves of the field and suitable
averages. The chapter presents the helicity functional and its topo-
logical interpretation in terms of the linking number discovered
by Moffatt in 1969, as well as the connection with the asymp-
totic linking number introduced by Arnold in 1973. Arnold proved
a beautiful theorem asserting that these two apparently very dif-
ferent quantities (the former defined using the Riemannian metric
and differential forms, and the latter using the flow of the field
and a limit process) coincide, thus extending Moffatt’s topologi-
cal interpretation to arbitrary solenoidal fields. Other remarkable
theorems covered in this chapter include lower bounds on energy
under ideal relaxation using the helicity and Freedman–He’s asymp-
totic crossing number, and Freedman’s remarkable proof of the
Sakharov–Zeldovich energy minimization conjecture.

Chapter IV. Differential geometry of diffeomorphism groups. This
chapter deals with the geometry (from a Riemannian viewpoint) of
the infinite-dimensional group of volume-preserving diffeomor-
phisms, endowed with the right-invariant metric given by the
L2-norm of the velocity field. It pays special attention to the curva-
ture of the group and how it is related to instabilities of the Euler
dynamics. Under suitable assumptions, the curvature of the group
of volume-preserving diffeomorphisms is negative along many di-
rections, which in view of the geodesic nature of the Euler flow
on that group leads to exponential separation of the Lagrangian
trajectories of the fluid. An appealing consequence of this claim is
that the weather forecast becomes unreliable after a sufficiently
long time, a striking consequence of the Riemannian geometry of
the diffeomorphism group! Other interesting studies, such as the
existence of conjugate points on the aforementioned Lie group,
Shnirelman’s description of the diameter of the diffeomorphism
group, and Brenier’s theory of generalized flows are also discussed.

Chapter V. Kinematic fast dynamo problems. This chapter deals
with the equation describing the evolution of magnetic fields
in magnetohydrodynamics, i.e., the kinematic dynamo equation.
When the fluid is a perfect conductor, the magnetic diffusivity is
zero and the magnetic field is transported by the velocity-field flow;
in the general case the diffusivity appears as a diffusion term of
heat type. The chapter describes several results on the existence of
fast dynamos (both for the dissipative and non-dissipative models),
which are solenoidal fields that give rise to exponential growth in
time of the L2-norm of the magnetic field. This includes a thorough
presentation of the connections between the exponential dynamo
growth and the Lyapunov exponents, the topological entropy and
homoclinic intersections of the velocity field. The authors also
present some discrete models (mainly area-preserving diffeomor-
phisms on surfaces) of fast dynamos, highlighting a very detailed
discussion of Arnold’s cat map (a paradigmatic model of an Anosov
diffeomorphism on the 2-torus). The antidynamo theorem proved
by Cowling and some of its generalizations are also discussed.

Chapter VI. Dynamical systems with hydrodynamic background.
The final chapter of the first edition of the book is a survey of various
partial differential equations that can be studied from the group-
theoretic viewpoint presented in Chapter I, i.e., as geodesics of an
infinite-dimensional Lie group of symmetries endowed with a right-
invariant metric. This includes the KdV equation (related to the
Virasoro group), the equations of gas dynamics and compressible
fluids, and the filament and nonlinear 1D Schrödinger equations.
While the material covered in this chapter is not directly related
to the Euler or Navier–Stokes equations, it is very valuable in the
sense that it shows the power of the general framework of geodesic
motions on Lie groups for studying the evolution of some PDEs.
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Appendix. Recent developments in topological hydrodynamics.
This chapter is the main new addition to the second edition of
Arnold–Khesin’s book. It contains an update of the new develop-
ments in the area of topological fluid mechanics since 1999 (so we
can strictly speak about XXI century mathematics). The material
covered by this chapter is huge, so necessarily not very detailed,
but with a vast number of references and indications that certainly
help the reader to find further results on each subject. The chapter
summarizes new remarkable achievements in all the topics of previ-
ous chapters, a non-exhaustive list including: the recently obtained
classification of Casimirs for 2D and 3D vorticities, the extension of
Arnold’s geodesic framework to the context of weak solutions of
the Euler equations (exhibiting vortex sheets), the realization theo-
rems for knotted vortex lines and tubes in Beltrami flows, a KAM
type approach to study ergodicity and mixing properties of the
Euler flow, and the connection between problems of optimal mass
transport and the evolution of ideal fluids.

Overall Arnold and Khesin’s book is a beautiful and extensive
introduction to fluid mechanics from a geometric viewpoint. It is
a pleasure to read and each chapter contains very valuable material
not only for those mathematicians working with the equations of
hydrodynamics, but for any researcher interested in the connec-
tions between analysis, geometry and topology. I am sure that any
professional mathematician can find food for thought in some of
the gems that are presented in this monograph. Certainly this was
my case as a graduate student in Madrid twenty years ago.
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