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The Aronson–Bénilan estimate in Lebesgue spaces

Giulia Bevilacqua, Benoît Perthame, and Markus Schmidtchen

Abstract. In a celebrated three-page-long paper in 1979, Aronson and Bénilan obtained a remark-
able estimate on second-order derivatives for the solution of the porous media equation. Since its
publication, the theory of porous medium flow has expanded relentlessly with applications including
thermodynamics, gas flow, and groundwater flow, as well as ecological population dynamics. The
purpose of this paper is to clarify the use of recent extensions of the Aronson and Bénilan estimate
in Lp spaces and of some modifications and improvements, as well as to show certain limitations
of their strategy.

1. Introduction

The porous medium equation (PME) is, without a doubt, one of mathematics’ evergreens
as it typically occurs whenever a quantity, n.t; x/, evolves according to a continuity equa-
tion,

@n

@t
C div.nu/ D 0; (1)

where the velocity is given by Darcy’s law, cf. [27], i.e.,

u D �rp:

Here, p denotes the pressure. Since the equation, in its current form, is not closed, a
constitutive pressure law, also referred to as an equation of state, is chosen to close the
equation. Such a law relates the pressure directly to the quantity, n, affected by the pres-
sure, i.e., pD p.n/. As mentioned before, its practical applications are manifold, reaching
from problems related to groundwater flow [27], non-linear heat transfer [66], and popu-
lation dynamics, [42,46,54], to name just a few. For an extensive and elaborate treatise of
the porous medium equation, we refer the reader to the homonymous book by Vázquez
[65], and references therein.

One of the most fascinating properties of non-linear diffusion phenomena is the finite
speed of propagation. While solutions of the linear diffusion equation have an instant-
aneous regularising effect, i.e., solutions become positive and smooth after an arbitrarily
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short time, solutions of the porous medium equation exhibit behaviour quite different from
that of the linear case – solutions remain with limited regularity and compactly suppor-
ted if they were compactly supported initially, a phenomenon often referred to as finite
speed of propagation. In [55], the authors introduce a notion of weak solutions and give
an existence and uniqueness result for weak solutions to the filtration equation

@n

@t
D

@2

@x2
�.n/; (2)

for a certain class of functions �. Moreover, they show that the equation is satisfied in the
classical sense in neighbourhoods of points .t; x/, where n.t; x/ > 0, and that solutions,
emerging from compactly supported initial data, have compact support for all times.

In a later paper [48], more properties of the porous medium equation were shown.
In particular, invaded regions will remain covered with the density n for all times [48,
Lemma 2], every point in space will be invaded by the density after a sufficiently long
time [48, Lemma 3], and regions of vacuum do not fill up spontaneously [48, Lemma 3].

Intrigued by the fact that the support of any solution emanating from compactly sup-
ported initial data is bounded by two free boundaries, or interfaces (cf. [48]), Aronson
proved a characterisation of the free boundary speed which is directly related to the pres-
sure gradient which acts as the formal velocity in (1); see [5]. In this paper, it is assumed
that some initial data supported on an interval I D .a1; a2/ are given. In order to estab-
lish the aforementioned characterisation of the speed of the moving boundary, Aronson
remarks that some control of the quantity “pxx” is required for the analysis. However,
the author was able to construct a counterexample explaining that this type of regular-
ity cannot, in general, be expected, which was already known in the case of the explicit
Barenblatt–Pattle solution, discovered in 1952; cf. [8, 56]. In fact, in [4] he provides
smooth initial data (of C1-regularity) that exhibit blow-up of pxx in finite time. Assum-
ing a power law for the pressure, i.e.,

p D n
 ; (3)

Aronson investigates the behaviour of the following one-dimensional Cauchy problem:8<:
@p

@t
D 
ppxx C p

2
x ;

p.x; 0/ D cos2.x/;
(4)

and he proves that, in general, it is not possible to estimate the second derivatives of the
solution of (4) in terms of the bounds for the derivatives of the initial data. Indeed, he
obtains that the second derivative of the pressure behaves like

pxx D
2T

T � t
; where T D


 � 1

2
.
 � 1/
; (5)

which implies that it exceeds any bound in finite time; for more details one can refer
to [4, Theorem 1]. Moreover, a similar result can be obtained when the initial data has
compact support; cf. [4, p. 301, Example 2].
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Thus a different type of control is necessary. In [5, Lemma 2], Aronson proves that if

ess infI
@2p

@x2
.0; x/ � �˛; (6)

for some ˛ � 0, then
@2p

@x2
.t; x/ � �˛; (7)

for all .t; x/ such that n.t; x/ > 0. To the best of our knowledge, this is the first time this
type of lower bound on the Laplacian1 of the pressure has been obtained. At the same time,
this observation acts as the foundation for the more refined version with fewer restrictions
on the initial data, obtained in [6] in 1979.

The lower bound on the Laplacian of the pressure is achieved by regularising the initial
data in the following way:

pn0 .x/ D .kn ? p0/.x/C 2
2�nK; (8)

where K is the Lipschitz constant of p0 and kn is a sequence of smoothing kernels con-
verging to a Dirac delta. For the smoothened and strictly positive initial data, classical
solutions exist (cf. [55]) and an equation for the second derivative of the pressure, pxx ,
can be found. Aronson observes that the resulting equation for pxx can be cast in a form
whose parabolic operator satisfies the maximum principle presented in [45, Theorem 8].
Ultimately, this allows the uniform bound from below on the second derivative of the
pressure to be deduced.

Later, Aronson and Bénilan showed that a similar estimate (nowadays known as the
Aronson–Bénilan estimate, i.e., AB-estimate) could be obtained in the multidimensional
case (cf. [6]). Under no additional assumptions2 they showed that

�p � �
c

t
; (9)

for some constant c > 0. Let us note that the same result is mentioned in [5] as a note,
since the regularising effect was not the main focus in the derivation of the boundary speed
characterisation in one dimension. Later, in 2009 [52], Aronson–Bénilan-type estimates
were obtained for the PME on complete Riemann manifolds under the assumptions of a
lower bound of the Ricci curvature.

In 1982, Crandall and Pierre generalised the AB-estimate for the initial-value problem
associated to the filtration equation (cf. (2)) given by´

@tn D ��.n/;

n.0; x/ D n0.x/;
(10)

1At this time, the results by Oleı̆nik, Kalashnikov, and Aronson only address the one-dimensional case.
2Indeed, the only assumption is for the exponents to be “large enough”; cf. their paper.
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for t > 0 and x 2 RN , where � is a non-negative, non-decreasing, continuous function
with �.0/D 0; cf. [25]. They prove that if � satisfies an inequality (cf. [25, Eq. (3)] which
formally controls the growth of �), the solution n of (10) satisfies

@t�.n/ �
K

t
.�.n/C a/; (11)

for some constants K > 0 and a � 0. In the power-law case, �.n/ D n
 , with a D 0 and

K �




 � 1C 2=N
;

obtained from the aforementioned inequality (cf. [25, Eq. (3)]), the solution n underlies
the same regularising effect as that of [6]. With this approach, they are able to extend the
AB-type estimate to cover a larger class of problems, including, for instance, the Stefan
problem (see [17]) which holds for a D 1, K D N=2. In their proof, they use a tech-
nique similar to the one adopted in this work: they study the evolution of the Laplacian
of the pressure,�p, which satisfies an appropriate parabolic inequality. Upon introducing
a suitable function h.p/ characterised a posteriori, they deduce the time estimate on the
solution n. Here, different from [25], first we extend the AB-estimate in all the interesting
Lebesgue spaces and then, in L1, we are able to weaken the condition on the function �,
i.e., we do not need to impose their equation (3). Precisely, our necessary conditions to get
the AB-type estimate are the same as those in [25]. There are two main differences: first
they are not addressing the incompressible limit and then, to assume their equation (3),
they are forced to select a specific form of the weight which also ensures that a specific
power of � is convex. In our paper, first we do not need any additional regularity on the
quantities involved and we do not have to specify the shape of the weight: it solves an
inequality, different from [25] where they impose the equality, and we just need to prove
that the weight is bounded from above and below. Finally, thanks to Theorem 3.2, we are
able to pass to the incompressible limit for all fields of pressure.

1.1. The Aronson–Bénilan estimate and regularity theory of the porous medium
equation

In [18], the authors prove that the unique generalised solution to the porous medium equa-
tion in two (or more) dimensions, a result due to [64], is continuous. Moreover, they give
an explicit expression for the modulus of continuity in space and time (cf. [18, Theorem
1.1]), thus extending the known one-dimensional result on Hölder regularity in space by
Aronson (cf. [3, Theorem, p. 465]). It is important to stress that the regularity theory of
Caffarelli and Friedman heavily relies on the AB-estimate. On the one hand, it allows
them, in some sense, to quantify how the density at the centre of small balls changes in
a small time instance (cf. [18, Lemmas 2.2, 2.3]), and to derive an explicit modulus of
continuity for the multidimensional porous medium equation. On the other hand, it allows
them to study the regularity of the free boundary in any dimension (cf. [20]), general-
ising the one-dimensional results of [5, 19]. In doing so, they need to quantify how fast
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the density begins to intrude into a previously unoccupied domain (cf. [20, Lemma 2.1],
which uses the multidimensional AB-estimate). One of the key findings in their paper
is the Hölder regularity of the free boundary, t D f .x/, which allows them to improve
the modulus of continuity solutions which are established to be Hölder continuous too
[18, Section 4]. Eight years later, in [21], the authors prove that the free boundary is in
fact Lipschitz continuous for all times larger than the first time that the solution contains
a ball which includes the initial data. For a smaller time instance, however, Hölder regu-
larity is optimal due to so-called focusing phenomena [2, 7, 21]. The focusing problem is
dedicated to understanding how areas of vacuum in the initial data are filled by the evolu-
tion of the porous medium equation. While solutions are Hölder continuous, the pressure
gradient can blow up in time; cf. [7].

A difficult problem is to perform a linear limit of the PME to recover the heat equation.
Indeed, the mentioned Hölder regularity for the solution of the PME cannot be obtained.
Only in the recent works [36, 37] have the authors proved that given initial data with low
regularity, the solution is Lp in time and belongs to a fractional Sobolev space in Rd with
d > 1. Moreover, using the Barenblatt solution, the authors prove that this result is the
optimal one.

1.2. Applications to modelling tissue growth

In the last few decades, the study of cancer development has improved due to new ana-
lytical tools and due to the introduction of new numerical methods [9–11, 32, 34, 51]. The
main difficulty in studying these phenomena is the vast biological complexity related to
the presence of different kinds of inter-specifically and intra-specifically interacting cells.
Describing the tumour at the macroscopic level, we can distinguish two categories. On
the one hand, we can devise partial differential equations (PDEs) to model tumour growth
[13, 15, 24, 41, 60, 63], in such a way that cells are represented by densities. On the other
hand, tissue growth can be described by a free boundary model [26, 35, 40], where tissue
growth is due to the motion of its boundary. Each of these approaches has its advantages:
the first approach, also called mechanical models, is widely studied with many numerical
and analytical tools. Regarding the second approach, it is closer to the biological vision
of the tissue and allows its motion and dynamics to be studied. There is a well-developed
technique to establish a link between the two approaches, the so-called incompressible
limit, which implies that the pressure becomes stiff [14, 23, 44, 49, 50, 53, 58, 59].

1.2.1. Population-based description of tissue growth. The simplest way to model tu-
mour growth is by introducing a single equation describing the evolution of the abnormal
cell density, n.x; t/, where x 2 Rd and t 2 RC, which evolves under pressure forces and
cell multiplication according to the equation [16, 58]

@n

@t
� div.nrp/ D nG.p/; (12)
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where p D p.n/ is the pressure field and G WD G.p/models the proliferation of cells and
is called the growth function. Suitable assumptions have to be imposed onG, for instance,

G0.p/ < 0 and G.pM / D 0; (13)

which imply that the increasing number of the cells is limited by the pressure p, and
pM > 0 is called the homeostatic pressure [16]. Concerning the pressure, in many papers
[14, 44, 49, 50, 58, 59] there is an explicit and assigned relation between p and n. In this
work, to be as general as possible, we only assume that

p D p.n/; p.0/ D 0; p0.n/ > 0; (14)

for n > 0. We have two examples in mind: the classical power-law case, where

p.n/ D n
 (15)

(see [14, 28, 57]), and the pressure used in [31] (called DHV throughout), where

p.n/ D "
n

1 � n
: (16)

For a general pressure law, the quantity p satisfies the evolution equation given by

@tp D jrpj
2
C qw; (17)

where
q.p/ WD np0.n/ and w WD �p CG.p/: (18)

The aforementioned examples give

q.p/ D 
p (polytropic law) and q.p/ D p
�
1C

p

"

�
(DHV law):

They differ deeply near p D 0 in their behaviours as " ! 0 and 
 ! 1 and this is a
major issue if one wants to study these limits and establish the Hele–Shaw free boundary
problem.

For G � 0, Aronson and Bénilan build their estimate on the observation that one can
obtain an equation for w [6]. Their argument can be extended to include G and leads to
the equation

@tw D 2

NX
i;jD1

.@2ijp/
2
C 2rp � rw �G0.p/jrpj2 C�.qw/CG0.p/qw:

Because

2

NX
i;jD1

.@2ijp/
2
�
2

N
.�p/2 D

2

N
.w �G/2;

and since we assume G0 � 0, i.e., (13), we may also write

@tw �
2

N
w2 C 2rp � rw C�.qw/C

h
G0.p/q �

4

N
G
i
w: (19)

This inequality, which is self-contained when G � 0, is the very basis of estimates on
jwj� D max.0;�w/ which we analyse in different Lp spaces.



The Aronson–Bénilan estimate in Lebesgue spaces 265

1.2.2. Free-boundary-based description of tissue growth. Besides its huge impact on
the regularity theory of solutions to the porous medium equation and the free boundar-
ies thereof, the AB-estimate proves to be a crucial tool for building a bridge between a
density-based description and a geometric description of tissue growth. The link between
the two models is established through a rigorous study of the incompressible limit of the
porous medium pressure equation, cf. (17), as the pressure law becomes stiffer and stiffer,
i.e., 
 !1 or "! 0, in the respective pressure law ((15), (16)). As a result an incom-
pressible model is obtained, satisfying two relations. The first, p.n � 1/ D 0, implies the
absence of any pressure in zones that are not saturated (¹n < 1º), while the second one,
also referred to as the complementarity relation, yields an equation satisfied by the pres-
sure on ¹p > 0º, which is of the form

p.�p CG.p// D 0:

It is immediately apparent that strong regularity is needed to obtain such an expression,
which is provided by (adaptations) of the AB-estimate – bounds on the Laplacian of the
pressure are enough to infer strong compactness of the pressure gradient. This was first
observed in [58] to be equivalent to being able to pass to the limit in the porous medium
pressure equation and obtain the incompressible limit.

1.2.3. Extension to two species. Let us highlight that the mathematical theory of the
limit for equations like (12) is well studied both with G ¤ 0 [31, 49, 58] and without G
[12, 38, 39], as well as in the case where nutrients and viscosity are included [28–30, 59].
The limit model turns out to be a free boundary model of Hele–Shaw type.

The model of a single evolution equation, which describes the tumour cell distribution,
can be complemented by another species consisting of healthy tissue, and it is given by

@n.i/

@t
� div.n.i/rp/ D n.1/F .i/.p/C n.2/G.i/.p/; (20)

where i D 1;2, n.1/, n.2/ denote the population densities, andG.i/,F .i/ model the reaction
or growth phenomena, which are assumed to depend exclusively on the pressure according
to experimental observations [16, 62]. The system structure of (20) causes serious analyt-
ical difficulties, cf. [14, 22, 33, 43, 61], due to its hyperbolic flavour. The careful study of
the pressure equation helps in proving the existence of solutions and obtaining uniform
estimates with respect to the stiffness parameter, i.e., 
 in the classical power-law case
p D n
 [43, 53, 57]. Due to the insufficient regularity of the pressure, the incompressible
limit can be achieved just in one dimension using Sobolev embeddings. For the DHV
pressure law, i.e., assuming that the pressure blows up at a finite threshold, cf. [23,31,44],
similar mathematical difficulties arise: in order to pass to the limit, strong restrictions have
to be imposed.

While the incompressible limit for multiple species remains an interesting open prob-
lem for the Darcy law, including viscosity of cells in the model, i.e., altering the velocity
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u in (1), changes the analytical properties of the model drastically. In the case of the so-
called Brinkman law [1], the model reads8̂<̂

:
@n.i/

@t
� div.n.i/rW / D n.1/F .i/.p/C n.2/G.i/.p/;

���W CW D p;

(21)

where i D 1; 2 and � is the viscosity parameter. On the one hand, the idea to couple the
two equations for the individual species through Brinkman’s law changes the behaviour
dramatically as mentioned before, i.e., classical techniques used in the one-species model
fail [59], but on the other hand the pressure field gains regularity and some mathematical
difficulties can be overcome. Recently, two results have been obtained in this direction:
in [30], the authors are able to establish the incompressible limit in the one-dimensional
case by establishing uniform BV-bounds for the two species; then in [29], since the BV-
strategy fails in higher dimensions, by employing a non-local compactness criterion [47],
the passage to the incompressible limit can be accomplished.

1.3. Plan of the paper

The paper is organised as follows. In Section 2 we derive theL1-estimate without and with
a reaction termG and we show the advantages and limitations of adding a weight h. Then,
in Section 3, we conduct similar computations and calculations in the L1 space proving
that the additional weight helps in generalising the AB-type estimate for all pressure laws.
In Section 4 we perform an L2-estimate showing that it can be closed just for a particular
class of pressure laws. Finally, in Section 5 we add few concluding remarks.

2. L1-type estimate

The form of (19) is well adapted to perform L1-estimates of the second-order quantity w
because it generates, thanks to the Kato inequality, the inequality

@t jwj� � �
2

N
jwj2� C 2rp � rjwj� C�.qjwj�/C

h
G0.p/q �

4

N
G
i
jwj�: (22)

It turns out that further manipulations lead to restrictions which are more demanding than
expected. To explain that, we first treat the case G � 0. The extension to the case G � 0
is stated in the second corresponding subsection.

2.1. L1-estimates when G � 0

When G � 0, w D �p and a simple integration of (19) yield

d
dt

Z
RN

jwj� dx � 2
N � 1

N

Z
RN

jwj2� dx:



The Aronson–Bénilan estimate in Lebesgue spaces 267

Because of the quadratic growth of the right-hand side, this inequality provides us with
an L1 control only in dimension N D 1. We thus adopt a different strategy. By adding a
positive weight function h D h.p/, we aim to study whether or not it helps improve the
above result. We shall establish the following theorem:

Theorem 2.1 (Case G � 0, L1-theory). Assume the pressure law is such that for p > 0,

˛1.p/ WD

Z p

0

h
q.�/h0.�/C

1

N
h.�/

i
d� > 0; with h.p/ WD

Z p

0

e
R �
�
1
q d�: (23)

Then the following a priori estimates hold true:Z
RN

h.p/j�p.t/j� dx C 2
Z t

0

Z
RN

˛1.p.s//j�p.s/j
2
� dx ds

�

Z
RN

h.p/j�p.0/j� dx; (24)

and, for all t � T ,Z
RN

h.p/j�p.t/j� dx �
A.T /

t
with A D

1

2
sup
0�t�T

Z
RN

h.p/2

˛1.p/
dx: (25)

Estimate (24) also holds when N D 1 with h � 1 and ˛1 � 0.

Notice that, because q0.p/p0.n/ D p0.n/C np00.n/, the condition ˛1 > 0 is satisfied
when, for instance, p.n/ is a convex function.

However, it turns out that the result of this theorem is rather weak compared to the
L1-type estimate. Indeed, the calculation forces us to choose h.0/ D 0, and therefore the
estimate is weak near the free boundary ¹p D 0º. However, for the pressure laws we have
introduced before, when 
 is large or " is small, the decay rate scales correctly with 
 or
", and this allows for a uniform control of @tp. To see this we may give the corresponding
expressions for ˛1, h, A, explicitly:

• For the power law, we have q.p/ D 
p and

h.p/ D




 C 1
p

C1

 ; ˛1.p/ D 


h
1 �

N � 1

N

1


 C 1

i
p

C1

 > 0;

and A D O.
�1/.

• For the DHV law, the situation is similar and we find

h.p/ D "p � "2 ln
�
1C

p

"

�
; ˛1.p/ D p

2
C "

N � 1

N

h
" ln

�
1C

p

"

�
� p

i
> 0;

and A D O."2/.

Proof of Theorem 2.1. Integrating over RN , we get

d
dt

Z
RN

h.p/jwj� dx D
Z

RN

�
h0.p/jwj�

�@p
@t

�
C h.p/

�@jwj�
@t

��
dx
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�

Z
RN

h0.p/jrpj2jwj� dx �
Z

RN

h0.p/q.p/jwj2� dx �
Z

RN

2h

N
jwj2� dx

C

Z
RN

h.p/�.q.p/jwj�/ dx„ ƒ‚ …
I1

C 2

Z
RN

h.p/rp � rjwj� dx„ ƒ‚ …
I2

: (26)

We next estimate the integral terms I1 and I2 separately. Beginning with I1, integrating
by parts twice, we obtain

I1 D

Z
RN

q.p/jwj��h.p/ dx

D

Z
RN

q.p/h00.p/jrpj2jwj� dx �
Z

RN

h0.p/q.p/jwj2� dx:

As for the second term I2, we integrate by parts once, which yields

I2 D �2

Z
RN

h0.p/jrpj2jwj� dx � 2
Z

RN

h.p/jwj2� dx:

Substituting the expressions for the two integral terms I1 and I2 into (26), we obtain

d
dt

Z
RN

h.p/jwj� dx � �2
Z

RN

˛1jwj
2
� dx C

Z
RN

ˇ1jwj�jrpj
2 dx; (27)

where
˛1 WD h

0q � h
�
1 �

1

N

�
and ˇ1 WD qh

00
� h0: (28)

In dimension N D 1 we can choose h D 1, ˛1 D ˇ1 D 0 which provides us with an
L1-estimate of j�pj� and proves the last statement of Theorem 2.1.

In higher dimensions, we are unable to do that and we solve ˇ1.p/D 0 instead, which
gives the expressions for h and ˛1 in (23). Then, integrating (27) in t gives the announced
estimate (24).

To obtain estimate (25) we use the Cauchy–Schwarz inequality to write�Z
RN

hjwj�

�2
dx � A

Z
RN

˛1jwj
2
� dx; A WD

1

2

Z
RN

h2

˛1
dx:

Substituting this information into (27), we get

d
dt

Z
RN

h.p/jwj� dx � �A�1
�Z

RN

hjwj� dx
�2
:

Since U.t/ D A
t

is a solution, we conclude thatZ
RN

h.p/jwj� dx � A=t;

which proves statement (25) and concludes the proof of Theorem 2.1.
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2.2. L1-estimates with G ¤ 0

With the notation of Theorem 2.1 we define

Nı1 D max
0�p�pM

°
G
h
2
N � 2

N
�
h0q

h

i
CG0q

±
:

Theorem 2.2 (Case G0 � 0, L1-theory). With the notation and assumptions of Theorem
2.1, G0 � 0 and Nı1 as above, the following a priori estimates hold true:Z

RN

h.p/jw.t/j� dx C
Z t

0

e
Nı1.t�s/

Z
RN

˛1.p/jwj
2
� dx ds

� e
Nı1t

Z
RN

h.p/jw.0/j� dx (29)

and Z
RN

h.p/jw.t/j� dx � A
Nı1e
Nı1t

e
Nı1t � 1

; (30)

with A as in (25). Estimate (29) also holds when N D 1 with h � 1 and ˛1 � 0.

Notice that the sign of Nı1 does not play a role here.

Proof. Still building on inequality (19) and using a positive weight, h D h.p/, the evolu-
tion in time of the quantity hw is given by

@t .hjwj�/ D h
0
jwj�@tp C h@t jwj�

� h0jwj�.jrpj
2
C qw/

C h
°
�
2

N
jwj2� C 2rp � rjwj� C�.qjwj�/C

h
G0.p/q �

4

N
G
i
jwj�

±
:

Integrating, we get

d
dt

Z
RN

hjwj� dx �
Z

RN

h0jrpj2jwj� dx �
Z

RN

h0qjwj2� dx �
Z

RN

2h

N
jwj2� dx

C

Z
RN

h�.qjwj�/ dx C 2
Z

RN

hrp � rjwj� dx

�

Z
RN

h 4
N
G �G0q

i
hjwj� dx

�

Z
RN

h0jrpj2jwj� dx �
Z

RN

h2h
N
C h0q

i
jwj2� dx

�

Z
RN

h 4
N
G �G0q

i
hjwj� dx

C

Z
RN

qjwj��h dx„ ƒ‚ …
I1

�2

Z
RN

Œrh � rp C h�p�jwj� dx„ ƒ‚ …
I2

:
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Integrating by parts twice, the term I1 can be rewritten as

I1 D

Z
RN

Œh00jrpj2 C h0�p�qjwj� dx

D

Z
RN

h00qjrpj2jwj� dx �
Z

RN

h0qjwj2� dx �
Z

RN

h0qGjwj� dx:

Next we simplify the term I2. Integrating by parts and using the chain rule we obtain

I2 D

Z
RN

h0jrpj2jwj� dx �
Z

RN

hjwj2� dx �
Z

RN

hGjwj� dx:

Substituting I1 and I2 back into our main inequality we get

d
dt

Z
RN

hjwj� dx � �2
Z

RN

˛h1 jwj
2
� dx C

Z
RN

ˇh1 jwj�jrpj
2 dx C

Z
RN

ıh1hjwj� dx;

where

˛h1 D h
0q � h

N � 1

N
; ˇh1 D h

00q � h0; and ıh1 D G
h
2
N � 2

N
�
h0q

h

i
CG0q � Nı1:

To control the terms on the right-hand side, we argue as in the case G � 0. In dimension
N D 1, we can choose h D 1, ˛h1 D ˇ

h
1 D 0. Otherwise, it is sufficient to impose that

˛h1 .p/ > 0 and ˇh1 .p/ D 0;

as chosen in Theorem 2.1.
We rewrite the inequality, after using the Cauchy–Schwarz inequality, as

d
dt

Z
RN

hjwj� dx � �A�1
�Z

RN

hjwj�

�2
dx C Nı1

Z
RN

hjwj� dx:

It remains to observe that

A
Nı1e
Nı1t

e
Nı1t � 1

is a solution and we obtain the statements of Theorem 2.2.

3. L1-type estimate

The other extreme Lp-space is that used in the original paper, and establishes a bound in
L1 of jwj�. It uses the strong form of the equation satisfied by w. Namely, starting from
(19), we can write

@tw �
2

N
w2 C 2r.p C q/ � rw C q�w C w�q C

h
G0.p/q �

4

N
G
i
w:



The Aronson–Bénilan estimate in Lebesgue spaces 271

Using that

�q D q00.p/jrpj2 C q0.p/�p D q00.p/jrpj2 C q0.p/.w �G/;

we find

@tw �
h
q0 C

2

N

i
w2 C 2r.p C q/ � rw C q00jrpj2w C q�w

C

h
G0q �

� 4
N
C q0

�
G
i
w: (31)

A first result that can be deduced directly from this calculation is the following:

Theorem 3.1 (Lower bound on �p, special case). Assume that q00 � 0 and assume there
are constants Nı 2 R, ˛0 > 0 such that G0q � . 4

N
C q0/G � Nı and q0 C 2

N
� ˛0; then we

have

�p CG � �
1

˛0

Nıe
Nıt

e
Nıt � 1

:

This result applies to homogeneous pressure laws q.p/ D 
p and ˛0 D O.
/ and
matches that of [58] (see [58, Eqs. (2.14)]). It also applies to the DHV law, qDpC "�1p2,
q0 D 1C 2"�1p, and q00 D 2"�1, but then ˛0 DO.1/ (when p � 0) does not give uniform
decay as 1

"
as needed to study the Hele–Shaw limit.

To treat more general pressure laws we can refine the argument and, as in the L1-case,
we begin with the porous medium equation and then we include the growth term.

3.1. L1-estimates when G � 0

We begin by estimating the Laplacian of the pressure, w D �p, when G � 0. We are
going to prove the following theorem.

Theorem 3.2 (Lower bound on �p, G � 0). (1) Assume that� q
p

�0
� 0 and Q̨0 WD min

0�p�pM

pq0.p/

q.p/
> 0I

then
q.p/

p
�p � �

1

Q̨0t
:

(2) Assume that q0.p/ > �1 for p 2 Œ0; pM �, and

Q̨0 D
min0�p�pM q

0.p/

1Cmax0�p�pM q0.p/
C
2

N

1C q0.0/

.1Cmax0�p�pM q0.p//2
> 0:

Then we have �
1C min

0�p�pM
q0.r/

�
�p � �

1

Q̨0t
:
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With the first set of assumptions, the estimate is compatible with the Hele–Shaw
asymptotics in the two examples of the power law (then Q̨0 D 1 and q

p
D 
 ) and DHV

law (then Q̨0 D 1 and q
p
D

pC"
"

). The second set of assumptions is an explicit example
motivated by [25].

To understand whether there is some slack in the estimate, we compute the evolution
of the quantity hw, where hD h.p/ is assumed to be a positive weight function. We obtain

@.hw/

@t
D wh0

@p

@t
C h

@w

@t

� wh0.jrpj2 C qw/

C h
�h
q0 C

2

N

i
w2 C q00jrpj2w C 2r.p C q/ � rw C q�w

�
;

where we used the equation satisfied by the pressure, (17), and (31) for w. Upon rearran-
ging the terms we get

@.hw/

@t
� w2

h
hq0 C qh0 C

2

N

i
C wjrpj2.h0 C q00h/

C q h�w„ƒ‚…
I1

C 2h.1C q0/rp � rw„ ƒ‚ …
I2

: (32)

The terms involving the linear operators have to be rewritten in terms of the new quantity
hw rather than w. Therefore, from the first term we get

I1 D �.hw/ � w�h � 2rh � rw

D �.hw/ � w.h00jrpj2 C h0w/ � 2h0rp � rw

D �.hw/ � w.h00jrpj2 C h0w/ � 2
h0

h
rp � .r.hw/ � wrh/

D �.hw/ � 2
h0

h
rp � r.hw/ � w.h00jrpj2 C h0w/C 2.hw/

.h0/2

h2
jrpj2

D �.hw/ � 2
h0

h
rp � r.hw/C wjrpj2

�
2
.h0/2

h
� h00

�
� h0w2:

For the second one we have

I2 D 2r.p C q/ � hrw

D 2r.p C q/ � .r.hw/ � h0wrp/

D 2r.p C q/ � r.hw/ � 2.1C q0/h0wjrpj2:

Substituting the simplified expressions for I1 and I2 into (32), we have

@.hw/

@t
� ˛h1.hw/

2
C ˇh1.hw/jrpj

2
CLh

1.hw/; (33)

where

˛h1 D
q0

h
C

2

Nh2
and ˇh1 D q

00
�
qh00

h
C 2

q.h0/2

h2
� 2

q0h0

h
�
h0

h
;
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as well as

Lh
1.hw/ D q�.hw/C 2

�
1C q0 �

qh0

h

�
rp � r.hw/:

In order to find a subsolution and to close the estimate, it is enough to ensure that

˛h1 D
q0

h
C

2

Nh2
� ˛0 > 0;

ˇh1
h
D

�q
h

�00
C

�1
h

�0
� 0; (34)

where ˛0 is a constant. We propose two strategies to fulfill these requirements.

(1) Assume .
q

p
/0 � 0. With this assumption we can simply choose

h D
q

q0.0/p
;

�q
h

�0
D q0.0/;

because 1
h

is non-increasing. Then we compute

˛0 WD q
0.0/ ' min

0�p�pM

hpq0.p/
q.p/

C
2

N

q0.0/p2

q.p/2

i
;

and this gives our first statement in Theorem 3.2 after simplifying a coefficient q0.0/.

(2) Assume q0.p/ > �1. Then we impose, from (34),�q
h

�0
C
1

h
D 1C q0.0/ and h.0/ D 1: (35)

Because of the degeneracy at p D 0, the condition h.0/ D 1 is imposed since we can
compute

1C q0.0/ D
q0.0/

h.0/
C q.0/.h�1/0.0/C

1

h.0/
D
q0.0/C 1

h.0/
:

We can analyse the differential equation (35).

Lemma 3.3. Assume that q0.p/ > �1 for p 2 Œ0; pM �. Then the solution of (35) satisfies

1Cmin0�r�p q0.r/
1C q0.0/

� h.p/ �
1Cmax0�r�p q0.r/

1C q0.0/
8p 2 .0; pM /:

Remark 3.4 (Power law, DHV pressure, general pressure laws). Notice that if q is smooth
as in DHV, q0.0/D 1, but for the power law, q0.0/D 
 . As a matter of fact, for the power-
law pressure and the singular pressure we are able to provide explicit expressions for h,
i.e.,

h
 .p/ D 1 and h".p/ D 1C p � " log.p C "/C " log ": (36)

However, we also emphasise that the bounds established in the preceding theorem allow
us to prove an Aronson–Bénilan-type estimate for more general pressure laws p D p.n/,
under rather weak assumptions on q, thus extending the known cases.
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Proof of Lemma 3.3. First, we change variables and set, in (35),

u.p/ WD
1

h.p/
:

In the new variable, it becomes

qu0 C .q0 C 1/u D 1C q0.0/; (37)

with u.0/ D 1. The rest of the argument, i.e., the proof of the upper and lower bounds on
h, is by contradiction. To this end, we define

U.p/ D a
1C q0.0/

1Cmax0�r�p q0.r/
:

By construction, it is a non-increasing function and it satisfies u.0/ D 1 > U.0/ D a.
Assume there exists a point p� 2 .0; pM /, that we can choose to be minimal, such that

u.p�/ D U.p�/: (38)

Therefore, at this point we have to have u0.p�/ � 0, as well as .1 C q0.p�//u.p�/ D
.1C q0.p�//U.p�/. Revisiting (37), we see that

1C q0.0/ D .qu/0.p�/C u.p�/

D q.p�/u0.p�/C .q.p�/C 1/u.p�/

� .1C q.p�//U.p�/

� a.1C q0.0//;

having used the fact that qu0.p�/ � 0 and the definition of U . It is clear that this is a
contradiction, since 0 < a < 1, and proves that u > aU . Finally, taking a! 1, we obtain
the upper bound. The lower bound is obtained in the same way.

The derivation of Theorem 3.2 is now as usual because � 1
˛0t

is a subsolution of (33)
and, using Lemma 3.3, we can choose

˛0 D min
0�p�pM

q0.p/
1C q0.0/

1Cmax0�p�pM q0.p/

C
2

N

� 1C q0.0/

1Cmax0�p�pM q0.p/

�2
:

Then, using Lemma 3.3 a second time,

1Cmin0�r�p q0.r/
1C q0.0/

w � min
p
h.p/w � �

1

˛0t
;

which gives the result of Theorem 3.2.
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3.2. L1-estimates when G ¤ 0

Next we proceed by incorporating reaction terms, cf. (12), and prove the following the-
orem:

Theorem 3.5 (Lower bound on �p, general G). With the assumptions and notation of
Theorem 3.2, we have, with the constant ıh1 defined below,�

1C min
0�p�pM

q0.r/
�
.�p CG/ � �

1

Q̨0

Nıh1e
Nıh1t

e
Nıh1t � 1

:

Still using (31), we compute the evolution of the quantity hw, i.e.,

@.hw/

@t
� h0jrpj2w C

�h0q
h2

�
.hw/2 C hq00jrpj2w C

�q0
h

�
.hw/2

C 2hr.p C q/ � rw„ ƒ‚ …
I1

Cq h�w„ƒ‚…
I2

C.hw/
�
G0q �

� 4
N
C q0

�
G
�
: (39)

Next, we rewrite the terms I1 and I2 using the new variable, hw. The first term, I1,
becomes

I1 D 2r.p C q/ � r.hw/ � 2wjrpj
2.1C q0/h0:

Regarding the second one, we obtain

I2 D �.hw/ � w�h � 2rh � rw

D �.hw/ � w.h00jrpj2 C h0�p/ � 2h0rp � rw

D �.hw/ � w.h00jrpj2 C h0w � h0G/ � 2
h0

h
rp � .r.hw/ � wh0rp/

D �.hw/ � 2
h0

h
rp � r.hw/C wjrpj2

�
2
h02

h
� h00

�
� .hw/2

� h0
h2

�
C .hw/

�h0G
h

�
:

Substituting the terms I1 and I2 back into (39), we get

@.hw/

@t
� ˛h1.hw/

2
C ˇh1jrpj

2w CLh
1.hw/C ı

h
1.hw/; (40)

where ˛h1, ˇh1, and Lh
1.hw/ are as in inequality (33), and

ıh1.p/ WD G
0q �

� 4
N
C q0

�
G C

qh0G

h
� Nı1 <1: (41)

In order to close the L1-type bound, it suffices to apply a slight variation of the proof
of Theorem 3.2 incorporating additional terms related to the growth. Again, we have to
require that

˛h1 � ˛0 > 0 and ˇh1 D 0; (42)

which are identical to the conditions given by (34), (35).
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Therefore Theorem 3.5 follows as in Section 2.2 because

�
1

Q̨0

Nıh1e
Nıh1t

e
Nıh1t � 1

is a subsolution of the corresponding equation.

4. L2-type estimate

We now investigate theL2 space which has been used in situations where theL1 estimate
cannot be applied because the growth term depends on other quantities and cannot be
differentiated with uniform control. As we shall see, the advantage of working in L2 is to
provide additional dissipation terms which do not appear in L1 or L1, while keeping an
estimate compatible with the free boundary in opposition to L1.

We proceed again by departing from (19) which we write as

@t
jwj2�
2
� �

2

N
jwj3� Crp � rjwj

2
� C jwj��.qjwj�/C

h
G0q �

4

N
G
i
jwj2�: (43)

We distinguish the two cases G � 0 or not.

4.1. L2-estimates when G � 0. No weight

We are going to prove the following theorem:

Theorem 4.1. Assume inf0�p�pM .
2
N
� 1C q0

2
/ DW ˛0 � 0 and q00 � 0; thenZ

RN

jw.t/j2� dx C 2
Z t

0

Z
RN

� 2
N
� 1C

q0

2

�
jw.s/j3� dx ds �

Z
RN

jw.t D 0/j2� dx:

When, for t 2 Œ0; T �, we have ˛0 > 0, for solutions with compact support in x, it holds
that Z

RN

jw.t/j2� dx �
C.T /

t2
8t 2 Œ0; T �:

For the power law, q0 D 
 , we recover the condition obtained in [43], that is,


 � 2 �
4

N
:

In the case of the DHV pressure, cf. (16), the assumption q00 � 0 is not met.
Notice also that the argument can be localised, see [28], and this allows us to remove

the compact support assumption.

Proof of Theorem 4.1. Integrating (43), and using two integration by parts, we obtain

d
dt

Z
RN

jwj2�
2

dx � �
2

N

Z
RN

jwj3� dx C
Z

RN

jwj3� dx�
Z

RN

rjwj�r.qjwj�/ dx„ ƒ‚ …
I

: (44)
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Integrating by parts, the first term, I , can be rewritten, i.e.,

I D �

Z
RN

jwj�rq � rjwj� dx �
Z

RN

qjrjwj�j
2 dx

D
1

2

Z
RN

�qjwj2� dx �
Z

RN

qjrjwj�j
2 dx

D
1

2

Z
RN

q00jrpj2jwj2� dx �
1

2

Z
RN

q0jwj3� dx �
Z

RN

qjrjwj�j
2 dx;

where we used the chain rule �q D q00jrpj2 C q0w.
Substituting the simplified expressions for I into (44), we obtain

d
dt

Z
RN

jwj2�
2

dx � �
Z

RN

� 2
N
� 1C

q0

2

�
jwj3� dx C

1

2

Z
RN

q00jrpj2jwj2� dx

�

Z
RN

qjrjwj�j
2 dx:

Since q � 0, this ensures that the estimate can be closed if q0 > 2� 4
N

for all p 2 .0; pM /
and q00 � 0. Indeed, we deduce the inequalityZ

RN

jw.t/j2� dx � �
Z

RN

˛0jw.t/j
3
�: (45)

The conclusions of the theorem follow by time integration (first estimate) or using a sub-
solution C.T /

t2
(second estimate with regularising effect).

It is interesting to investigate whether adding a weight can help us to include more
general pressure laws.

4.2. L2-estimates when G � 0. With weights

In order to be as general as possible, we add a weight h D h.p/.

Theorem 4.2. Assume there exists a positive weight 0 < c � h.p/ � c�1 such that the
two differential inequalities

˛h2 WD
4

N
C
2h0q

h
� 2C q0 � 0 and ˇh2 WD

h00q C q00h � h0

h
� 0

are met. ThenZ
RN

hjwj2�.t/ dx C
Z t

0

Z
RN

˛h2hjwj
3
� dx dt �

Z
RN

hjwj2�.0/ dx:

Note that the same regularisation effect as in Theorem 4.1 can be obtained if ˛h2 > ˛0
for some constant ˛0 > 0.
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Proof. Using the equation satisfied by the pressure, (17), and (43) for jwj2�, we compute
the evolution in time of hjwj2�:

@

@t
.hjwj2�/ D h

0
jwj2�.jrpj

2
C qw/C h@t jwj

2
�

� h0jrpj2jwj2� � h
0qjwj3�

C 2h
�
�
2

N
jwj3� C 2jwj�rp � rjwj� C jwj��qjwj�

�
: (46)

Integrating over RN and with an integration by parts for the last two terms, we get

d
dt

Z
RN

.hjwj2�/ dx �
Z

RN

h0jrpj2jwj2� dx �
Z

RN

� 4
N
C
h0q

h

�
hjwj3� dx

C 4

Z
RN

hjwj�rp � rjwj� dx � 2
Z

RN

r.hjwj�/r.qjwj�/ dx

� �

Z
RN

h0jrpj2jwj2� dx �
Z

RN

� 4
N
� 2C

h0q

h

�
hjwj3� dx

� 2

Z
RN

r.hjwj�/r.qjwj�/ dx„ ƒ‚ …
I

: (47)

Next we need to address the term I . We compute

I D

Z
RN

Œh0rpjwj� C hrjwj�� � Œq
0
rpjwj� C qrjwj�� dx

D

Z
RN

h
h0q0jrpj2jwj2� C

h0q C hq0

2
rp � rjwj2� C hqjrjwj�j

2
i

dx

D

Z
RN

h
h0q0jrpj2jwj2� C

h0q C hq0

2
jwj3�

�

hh0q C hq0
2

i0
jrpj2jwj2� C hqjrjwj�j

2
i

dx: (48)

Reorganising the terms, we get

I D

Z
RN

hh0q C hq0
2

jwj3� �
h00q C hq00

2
jrpj2jwj2� C hqjrjwj�j

2
i

dx:

Finally, substituting I into (47), we obtain

d
dt

Z
RN

.hjwj2�/ dx � �
Z

RN

˛h2hjwj
3
� dx C

Z
RN

ˇh2 jrpj
2hjwj2� dx

� 2

Z
RN

hqjrjwj�j
2 dx;

where

˛h2 D
4

N
C
2h0q

h
� 2C q0 and ˇh2 D

h00q C q00h � h0

h
:
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By the assumption
˛h2 � 0 and ˇh2 � 0; (49)

the statement holds true.

Remark 4.3. For the condition ˛h2 � 0, the weight h does not help when it is positive
because the term generated by the weight, 2h

0q

h3
, vanishes for p D 0. However, choosing

h D p should improve the range of parameters but we will lose the estimate near the free
boundary. For the power law we reach the conditions

˛h2 D
4

p2N
C
3


p2
�
2

p2
� 0;

which is less restrictive than when h D 1, while the condition ˇh2 � 0 is fulfilled.
It is unclear to us how to choose the weight h for the DHV law in L2.

Adding the reaction term G, we do not gain anything. Precisely, without the weight h,
we obtain the same conditions on q0 and q00 as those in Theorem 4.1. Since G is bounded
and decreasing, cf. (13), the term which involves G can always be controlled. We have
decided not to report all the calculations because they can be derived easily from those in
Section 4.1.

To conclude the paper, we have decided to add the reaction term G > 0 and we can
derive the L2-estimate for hjwj�.

4.3. L2-estimates when G ¤ 0. With weights

This section is dedicated to proving the following theorem.

Theorem 4.4. Assume there exists a positive weight 0 < c � h.p/ � c�1 such that the
two differential inequalities ˛h2 � 0, ˇh2 � 0 are satisfied, with ˛h2 and ˇh2 defined as in
Theorem 4.2.

Then there holdsZ
RN

hjwj2�.t/ dx C
Z t

0

Z
RN

˛h2hjwj
3
� dx dt

�

Z
RN

hjwj2�.0/ dx C
Z t

0

Z
RN

Nıh2hjwj
2
� dx dt;

where
Nıh2 D sup

0�p�pM

°
2G0q CG

�
2
�
1 �

4

N

�
�
h0q C q0h

h

�±
:

As before, the same regularisation effect as in Theorem 4.1 is obtained if we can
guarantee that ˛h2 > ˛0 for a positive constant ˛0 > 0. Theorem 4.4 proves that adding the
reaction, the estimate does not gain anything.
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Proof of Theorem 4.4. Starting from (46) and including the additional growth terms G,
the evolution of hjwj2� becomes

@

@t
.hjwj2�/ � h

0
jrpj2jwj2� � h

0qjwj3�

C 2h
�
�
2

N
jwj3� Crp � rjwj

2
� C jwj��.qjwj�/

�
C 2h

�
G0q �

4

N
G
�
jwj2�: (50)

Integrating in space and by an integration by parts, we get

d
dt

Z
RN

hjwj2� dx � �
Z

RN

� 4
N
C
qh0

h
� 2

�
hjwj3� dx �

Z
RN

h0jwj2�jrpj
2 dx

� 2

Z
RN

r.hjwj�/ � r.qjwj�/ dx„ ƒ‚ …
I

C 2

Z
RN

hjwj2�

�
G0q CG

�
1 �

4

N

��
dx: (51)

Using (48) and the definition of w, cf. (18), the term I simplifies to

I D
1

2

Z
RN

.h0q C hq0/jwj3� dx �
1

2

Z
RN

.h00q C hq00/jrpj2jwj2� dx

C
1

2

Z
RN

.h0q C hq0/Gjwj2� dx C
Z

RN

hqjrjwj�j
2 dx: (52)

Substituting everything into (51), we obtain

d
dt

Z
RN

hjwj2�
2

dx � �
Z

RN

˛h2hjwj
3
� dx C

Z
RN

jrpj2ˇh2hjwj
2
� dx C

Z
RN

ıh2hjwj
2
� dx;

where

˛h2 D
4

N
C
2qh0

h
� 2C q0 and ˇh2 D

h00q C q00h � h0

h
;

as well as

ıh2 D 2G
0q CG

�
2
�
1 �

4

N

�
�
h0q C q0h

h

�
� Nı2 <1;

where Nı2 is as in the statement. By the assumption,

˛h2 � 0 and ˇh2 � 0; (53)

and the statement holds true.

Remark 4.5. Different techniques have been used to perform an L2-bound. For instance,
in [28] the authors compute exactly the square of the expression .w � G/ and then they
apply Young’s inequality to the term

2
�
1 �

2

N

�
Gjwj2�:
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This choice allows them to get an additional small constant � > 0 in the expression for
˛h2 , which can help in getting a weaker condition to close the estimate. However, there is
an additional term which involves the growth term, i.e.,

C

Z
RN

G2jwj� dx;

with C > 0 a constant. Now the estimate can only be closed by assuming the standard con-
ditions on G, cf. (13), plus an additional condition on the domain. Finally, the expression
for ıh2 changes a bit, i.e.,

.ıh2 /Y D
2G0q

h
�G

�h0q C q0h
h2

�
� Qı2 <1;

which can be bounded by controlling h0.

Remark 4.6. In the power-law case, regarding the conditions on ˛h2 and ˇh2 , we can refer
to Remark 4.3. The last one, substituting q D p
 and h.p/ D c1 C p, ıh2 becomes

ıh2 D 
p.2G
0
� c1G/ � .p C c1/.G
 C 2G/ <1: (54)

Note that this expression is always non-positive for non-negative and decreasing growth
terms; cf. (13).

5. Conclusions

The Aronson–Bénilan estimate has proven to be a fundamental tool for studying regularity
and asymptotics in several problems related to the porous media equation. Even if it has
been used mainly to control the Laplacian of the pressure from below by a term such as
�p.t/ � �C

t
, one may use it in other Lebesgue spaces. We have systematically studied

the restrictions on the parameters and the conclusions that one can draw in L1, L2, and
L1 (original work of Aronson and Bénilan). In particular, we considered two specific
forms of the pressure law: the power law and DHV law.

Our conclusions are that the L1 setting provides the widest range of parameters,
generating the strongest estimate. For instance, it can be applied to both pressure laws.
On the other hand, the L2 estimate requires restrictions on the parameters (which exclude
the DHV law), but is enough to estimate the Laplacian of the pressure for the power law.
Because of integration by parts, and because a dissipation term occurs explicitly, it is
however useful for some strongly coupled problems where L1 bounds are not possible.
The L1 estimate turns out to be the simplest but is only useful in space dimension N D 1.

When weights are included in order to treat more general equations of state, we
improve the results in [25] and we obtain estimates correctly scaled with respect to the
Hele–Shaw limit, which, with our notation, is expressed as jwj� � 0 for 
 � 1 or "� 1.
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If one wishes to estimate the quantity p�p.t/, losing regularity near the free boundary,
then one can drastically extend the range of possible pressure laws.
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