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Hypocoercivity for kinetic linear equations in bounded
domains with general Maxwell boundary condition

Armand Bernou, Kleber Carrapatoso, Stéphane Mischler, and
Isabelle Tristani

Abstract. We establish the convergence to the equilibrium for various linear collisional kinetic
equations (including linearized Boltzmann and Landau equations) with physical local conservation
laws in bounded domains with general Maxwell boundary condition. Our proof consists in estab-
lishing an hypocoercivity result for the associated operator; in other words, we exhibit a convenient
Hilbert norm for which the associated operator is coercive in the orthogonal of the global conserva-
tion laws. Our approach allows us to treat general domains with all types of boundary conditions in
a unified framework. In particular, our result includes the case of vanishing accommodation coeffi-
cient and thus the specific case of the specular reflection boundary condition.
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1. Introduction

1.1. The problem

In this paper we study a linear collisional kinetic equation in a bounded domain with gen-
eral Maxwell boundary condition. More precisely, we consider a smooth enough bounded
domain � � Rd , d > 2, and we denote by O WD � � Rd the interior set of phase space
and by † WD @� � Rd the boundary set of phase space. For a (variation of a) density
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function f D f .t; x; v/, t > 0, x 2 �, v 2 Rd , we then look at the following equations:

@tf D Lf WD �v � rxf C Cf in .0;1/ �O; (1.1)


�f D R
Cf on .0;1/ �†; (1.2)

where 
˙f denote the trace of f at the boundary set (
C corresponding to outgoing
velocities and 
� to incoming velocities) and where C and R stand for two linear colli-
sional operators, all of which will be described in detail below. Our goal is to investigate
the long-time behavior of solutions to this linear equation. In order to do so, we will prove
a hypocoercivity result using a general and robust approach inspired by previous works
on L2-hypocoercivity.

Motivation. We first briefly explain the motivation to study this problem. We consider a
system of particles confined in � whose state is described by the variations of the density
of particles F D F.t; x; v/ > 0 which at time t > 0 and at position x 2 � move with
velocity v 2 Rd . We suppose that collisions between particles are for instance described
by the Boltzmann or the Landau bilinear collision operator. It leads us to consider the
following equations:

@tF D �v � rxF CQ.F; F / in .0;1/ �O; (1.3)


�F D R
CF on .0;1/ �†; (1.4)

where Q is for instance the Boltzmann or the Landau collision operator. The standard
(normalized and centered) Maxwellian

� D �.v/ WD .2�/�d=2e�jvj
2=2 (1.5)

is a global equilibrium of this equation. In order to study this type of problem in a close-
to-equilibrium regime, we write the distribution F as the following perturbation of the
global equilibrium �: F D �C f . If F solves (1.3)–(1.4), then the linearized equation
(throwing away the quadratic term) satisfied by f is nothing but (1.1)–(1.2) with

Cf WD Q.�; f /CQ.f;�/:

The assumptions (A1)–(A2)–(A3) made below on the collisional operator C are met by
the linearized Boltzmann and Landau equations for the so-called hard potentials and thus
including the Boltzmann hard spheres case (see for instance [5, 73] and the references
therein for the spectral gap estimates (A2)). It is worth noting that by a straightforward
adaptation of our method, we can also treat linear operators preserving only mass such as
the Fokker–Planck operator or the relaxation operator. We believe that our analysis is also
new in this setting. In Section 4 we present more general assumptions that allow us to deal
with linearized Boltzmann and Landau operators corresponding to softer potentials.
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The boundary condition. Let us now describe the boundary condition (1.2). For that
purpose, we need to introduce regularity hypotheses on @� and some notation. We assume
that the boundary @� is smooth enough so that the outward unit normal vector n.x/ at
x 2 @� is well defined, as well as d�x the Lebesgue surface measure on @�. The precise
regularity on @� that we will need is that the signed distance ı defined by

ı.x/ WD

´
�d.x; @�/ if x 2 �;

d.x; @�/ if x 2 �c ;

so that � D ¹x 2 Rd ; ı.x/ < 0º satisfies ı 2 W 3;1.Rd / and rı.x/ ¤ 0 for x 2 @�,
so that rı=jrıj coincides with the outward unit normal vector n on �. We then define
†x
˙
WD ¹v 2 Rd I˙v � n.x/ > 0º the sets of outgoing (†xC) and incoming (†x�) velocities

at the point x 2 @�, as well as

†˙ WD
®
.x; v/ 2 †I ˙n.x/ � v > 0

¯
D
®
.x; v/I x 2 @�; v 2 †x˙

¯
:

We denote by 
f the trace of f on †, and by 
˙f D 1†˙
f the traces on †˙. The
boundary condition (1.2) thus takes into account how particles are reflected by the wall
and takes the form of a balance between the values of the trace 
f on the outgoing and
incoming velocities subsets of the boundary. We assume that the reflection operator acts
locally in time and position, namely

.R
Cf /.t; x; v/ D Rx.
Cf .t; x; �//.v/

and more specifically it is a possibly position-dependent Maxwell boundary condition
operator

Rx.g.x; �//.v/ D .1 � ˛.x//g.x;Rxv/C ˛.x/Dg.x; v/ (1.6)

for any .x; v/ 2 †� and for any function gW†C ! R. Here ˛W @�! Œ0; 1� is a Lipschitz
function called the accommodation coefficient, Rx is the specular reflection operator

Rxv D v � 2n.x/.n.x/ � v/;

and D is the diffusive operator

Dg.x; v/ D c��.v/ Qg.x/; Qg.x/ D

Z
†xC

g.x;w/n.x/ � w dw; (1.7)

where the constant c� WD .2�/1=2 is such that c� Q�D 1 and we recall that � stands for the
standard Maxwellian (1.5). The boundary condition (1.6) corresponds to the pure specular
reflection boundary condition when ˛ � 0 and it corresponds to the pure diffusive bound-
ary condition when ˛ � 1. It is worth emphasizing that when 
f satisfies the boundary
condition (1.2)–(1.6), for any test function ' D '.v/ and any x 2 @�,Z

Rd

f 'n.x/ � v dv

D

Z
†xC


Cf n.x/ � vŒ' � .1 � ˛.x//' ıRx � ˛.x/c�C' ıRx�/� dv: (1.8)
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As a consequence, whatever the accommodation coefficient ˛ is, making the choice ' D 1
so that ' ıRx D c�C' ıRx� D 1, we getZ

Rd

f n.x/ � v dv D 0; (1.9)

which means that there is no flux of mass at the boundary (no particle goes out nor enters
the domain). Now assuming ˛ � 0, making the choice '.v/ D jvj2 and observing that
jRxvj

2 D jvj2, we get Z
Rd

f jvj2n.x/ � v dv D 0; (1.10)

which means that there is no flux of energy at the boundary in the case of the pure specular
reflection boundary condition.

The collisional operator. Let us now describe the hypotheses made on the collisional lin-
ear operator C involved in the linear evolution equation (1.1). We assume that the operator
acts locally in time and position, namely

.Cf /.t; x; v/ D C.f .t; x; �//.v/;

that the operator has mass, velocity and energy conservation laws, namelyZ
Rd
.Cg/.v/'.v/ dv D 0 (1.11)

for ' WD 1, vi , jvj2, i 2 ¹1; : : : ; dº, and for any nice enough function g, and that the oper-
ator has a spectral gap in the classical Hilbert space associated to the standard Maxwellian
�. In order to be more precise, we introduce the Hilbert space

L2v.�
�1/ WD

®
f WRd ! R

ˇ̌ R
Rd f

2��1 dv < C1
¯

endowed with the scalar product

.f; g/L2v.��1/ WD

Z
Rd
fg��1 dv

and the associated norm k � kL2v.��1/. We assume that the operator C is a closed operator
with dense domain Dom.C/ in L2v.�

�1/ which satisfies the following assumptions:

(A1) Its kernel is given by

ker.C/ D span
®
�; v1�; : : : ; vd�; jvj

2�
¯

and we denote by �f the projection onto ker.C/ given by

�f D

�Z
Rd
f dw

�
�C

�Z
Rd
wf dw

�
� v�

C

�Z
Rd

jwj2 � d
p
2d

f dw
�
jvj2 � d
p
2d

�: (1.12)
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(A2) The operator is self-adjoint on L2v.�
�1/ and negative .Cf; f /L2v.��1/ 6 0, so

that its spectrum is included in R�, and (1.11) holds true for any g 2 Dom.C/.
We assume furthermore that C satisfies a coercivity estimate, more precisely that
there is a positive constant � > 0 such that for any f 2 Dom.C/ one has

.�Cf; f /L2v.��1/ > �kf ?k2
L2v.��1/

; (1.13)

where f ? WD f � �f .

(A3) For any polynomial function � D �.v/WRd ! R of degree 6 4, there holds
�� 2 Dom.C/, so that there exists a constant C� 2 .0;1/ such that

kC.��/kL2v.��1/ 6 C� :

1.2. Conservation laws

Without loss of generality, we will assume hereafter that the domain � verifies

j�j D

Z
�

dx D 1 and
Z
�

x dx D 0: (1.14)

One easily obtains from (1.11), the Stokes theorem and (1.9) that any solution f to
equations (1.1)–(1.2) satisfies the conservation of mass

d
dt

Z
O

f dv dx D
Z

O

.Cf � v � rxf / dv dx D 0:

In the case of the specular reflection boundary condition, that is, (1.2) with ˛ � 0,
some additional conservation laws appear. On the one hand, one also has the conservation
of energy

d
dt

Z
O

jvj2f dv dx D
Z

O

jvj2.Cf � v � rxf / dv dx D 0;

because of (1.11), the Stokes theorem again and (1.10). On the other hand, if the domain
� possesses rotational symmetry, we also have conservation of the corresponding angular
momentum. More precisely, we define the set of all infinitesimal rigid displacement fields,

R WD
®
x 2 � 7! Ax C b 2 Rd I A 2Ma

d .R/; b 2 Rd
¯
; (1.15)

where Ma
d
.R/ denotes the set of skew-symmetric .d � d/-matrices with real coefficients,

as well as the linear manifold of centered infinitesimal rigid displacement fields preserv-
ing �,

R� D
®
R 2 R

ˇ̌
b D 0; R.x/ � n.x/ D 0 8x 2 @�

¯
: (1.16)

We observe here that, thanks to assumption (1.14), we can work only with centered
infinitesimal rigid displacement fields preserving �. Indeed, if R is an infinitesimal rigid
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displacement field preserving�, that is,R.x/DAxC b 2R is such thatR.x/ � n.x/D 0
on @�, then

jbj2 D

Z
�

r.b � x/ � .Ax C b/ dx

D �

Z
�

.b � x/ div.Ax C b/ dx C
Z
@�

.b � x/.Ax C b/ � n.x/ d�x D 0;

and thus b D 0. When the set R� is not reduced to ¹0º, that is, when � has rotational
symmetries, then one deduces the conservation of angular momentum

d
dt

Z
O

R.x/ � vf dv dx D 0 8R 2 R�:

Indeed, ifR 2R�, there exists A 2Ma
d
.R/ such thatR.x/D Ax for any x 2�. We then

compute, using integration by parts,

d
dt

Z
O

R.x/ � vf dv dx D
Z

O

Ax � v.�v � rxf C Cf / dv dx

D

Z
O

@xk .Ax � v/vkf dv dx

�

Z
†

Ax � v
f n.x/ � v dv d�x

D �

Z
†

Ax � v
f n.x/ � v dv d�x ;

thanks to the velocity conservation law (1.11) and the fact that A is skew-symmetric. For
the boundary term, using (1.8) with '.x; v/ WD Ax � v and ˛ � 0, we getZ

†

Ax � v 
f n.x/ � v dv d�x D
Z
†C

Ax � .v �Rxv/
Cf jn.x/ � vj dv d�x

D 2

Z
†C

.Ax � n.x//
Cf jn.x/ � vj
2 dv d�x D 0;

because v �Rxv D 2.n.x/ � v/n.x/ and R 2 R�.

1.3. Main results

Define the position- and velocity-dependent Hilbert space

H D L2x;v.�
�1/ WD

®
f WO ! R

ˇ̌ R
O
f 2��1 dv dx < C1

¯
endowed with the scalar product

hf; giH WD

Z
O

fg��1 dv dx
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and the associated norm k � kH . For f 2 H , we also introduce the following conditions:Z
O

f dx dv D 0; (C1)Z
O

jvj2f dx dv D 0; (C2)Z
O

R.x/ � vf dx dv D 0 8R 2 R�: (C3)

We are now able to state our main hypocoercivity result:

Theorem 1.1. There exists a scalar product hh� ; �ii on the space H so that the associated
norm jjj � jjj is equivalent to the usual norm k � kH , and for which the linear operator L

satisfies the following coercivity estimate: there is a positive constant � > 0 such that

hh�Lf; f ii > �jjjf jjj2

for any f 2 Dom.L/ satisfying the boundary condition (1.2), assumption (C1) and fur-
thermore assumptions (C2)–(C3) in the specular reflection case (˛ � 0 in (1.2)).

This result improves existing results regarding hypocoercivity in a bounded domain
for the linearized Boltzmann and Landau equations (and consequently for their long-time
stability, see Theorem 1.2) in three regards:

• We consider a general, smooth enough, convex or non-convex domain.

• The L2 estimates that we establish are constructive, which means that they depend
constructively of some collisional constants (that appear in the estimates (A2)–(A3)
satisfied by the collisional operator C) and some geometrical constants depending on
the domain� (that appear in some Poincaré and Korn inequalities which can be made
explicit, at least for a domain with simple geometry).

• Our method encompasses the three boundary conditions (pure diffusive, specular
reflection and Maxwell) in a single treatment. In particular, we can solve the Maxwell
boundary condition in the case where the accommodation coefficient ˛ vanishes every-
where or on some subset of the boundary.

Our proof is based on an L2-hypocoercivity approach. The challenge of hypocoerciv-
ity is to understand the interplay between the collision operator that provides dissipativity
in the velocity variable and the transport one which is conservative, in order to obtain
global dissipativity for the whole problem. There are two main hypocoercivity meth-
ods: H 1 and L2. The H 1-hypocoercivity approach was first introduced for hypoelliptic
operators by Hérau–Nier [57] and Eckmann–Hairer [44], further developed by Helffer–
Nier [55] and Villani [80] and extended to more general kinetic operators in Villani [80]
and Mouhot–Neumann [72]. It is also reminiscent of the work by Desvillettes–Villani
[33, 35] on the trend to global equilibrium for spatially inhomogeneous kinetic systems
and of the high-order Sobolev energy method developed by Guo [49] and subsequently.
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In summary, the idea consists in endowing the H 1 space with a new scalar product which
makes the considered operator coercive and whose associated norm is equivalent to the
usual H 1 norm. In order to be adapted to more general operators and geometries, the L2-
hypocoercivity technique for a one-dimensional space of collisional invariants was next
introduced by Hérau [56] and developed by Dolbeault–Mouhot–Schmeiser [38, 39]. The
L2-hypocoercivity technique for a space of collisional invariants of dimension larger than
1 (including the Boltzmann and Landau cases) was introduced by Guo [50], and developed
further mainly by Guo, collaborators and students. Again, the idea consists in endowing
the L2 space with a new scalar product which makes the considered operator coercive and
whose associated norm is equivalent to the usual L2 norm.

We present hereafter the line of reasoning of this last approach that will be ours. It
heavily relies on the micro–macro decomposition of the solution of the equation f D
f ? C �f , where f ? denotes the microscopic part and �f the macroscopic part defined
in (1.12). The coercive estimate (1.13) on the collision operator C already gives a control
on f ? but not on the macroscopic term �f . Then, in order to control the macroscopic
part, we construct a new scalar product on H by adding, step by step, new terms in order
to control the missing terms appearing on the macroscopic part �f . Roughly speaking,
the scalar product that we cook up takes the following form:

hhf; gii WD hf; giH � �h Q�f;r�
�1�giL2x.�/ � �hr�

�1�f; Q�giL2x.�/;

choosing � > 0 small enough, and where the moments operator Q� WH ! .L2x.�//
d and

the inverse Laplacian type operator��1 have to be suitably defined (see Sections 2 and 3).
Our proof is a variant of previous proofs of the same type but differs from them in

several aspects:

(i) The order between the r operator and the ��1 operator is the one from Guo’s
approach [18, 50] rather than the one from Dolbeault–Mouhot–Schmeiser’s
approach [38,39]. This is important in order to handle the rather singular operator
involved by the boundary condition.

(ii) The choice of the mean operator Q�f differs from the one used in [17, 18, 50, 62]
but looks very much like the one in [25,40,41]. It allows us to deal with a general
Maxwell boundary condition (and the possibility that ˛ vanishes somewhere or
everywhere) but leads to a first natural control of the symmetric gradient of the
momentum component of the macroscopic partrsm, instead of the full derivative
rm as in Guo’s approach.

(iii) The definition of the ��1 operator has to be chosen wisely in order to handle
the general Maxwell boundary condition and the mean operator Q�f . We thus
need to establish natural H�1 ! H 1 and L2 ! H 2 regularity estimates for
some classical elliptic problems but associated with somehow unusual boundary
conditions.

Let us give a few more details about (iii). First, we will introduce an auxiliary Poisson
equation with Robin or Neumann boundary conditions, which are devised in order to
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control mass and energy terms of �f . This result is stated in Theorem 2.2 and is based
on Poincaré-type inequalities. Next we will introduce a tailored Lamé-type system with
mixed Robin-type boundary conditions in order to deal with the momentum component of
the macroscopic part �f . The corresponding result is presented in Theorem 2.11 and is
based on Korn-type inequalities, which are discussed in Section 2.2. For more information
on Korn inequalities we refer to the fundamental result of Duvaut–Lions [43, Theorem 3.2,
Chap. 3], and to the variant introduced by Desvillettes–Villani [34]. For further references
and a recent treatment of Korn’s inequality, we refer to Ciarlet–Ciarlet [28]. For more
details concerning the regularity issue for similar elliptic equations and systems we refer
to [29, 48, 77] and the references therein.

Let us now point out that our hypocoercivity result obtained in Theorem 1.1 enables
us to deduce an exponential stability result for our equation (1.1) supplemented with the
boundary condition (1.2).

Theorem 1.2. Let fin 2 H satisfy assumption (C1) and furthermore assumptions (C2)
and (C3) in the specular reflection case (˛ � 0 in (1.2)). There exist positive constants
�;C > 0 such that for any solution f to (1.1)–(1.2) associated to the initial data fin there
holds

kf .t/kH 6 Ce��tkfinkH 8t > 0:

This result is a first step towards the global existence and the study of the long-
time behavior of solutions to the non-linear problem (1.3)–(1.4) in a close-to-equilibrium
regime that will be the object of a forthcoming work.

Here, we briefly mention some similar coercivity estimates or exponential stability
results established in the last decade for linear kinetic equations (mainly for the linearized
Boltzmann equation) in a bounded domain. These have then been used for proving global
existence of solutions to non-linear equations in a close-to-equilibrium regime and conver-
gence to the equilibrium in the long-time asymptotic. As already mentioned, Guo [50] first
proved an L2x;v coercivity estimate for the cutoff Boltzmann equation with hard poten-
tials or hard spheres by using a non-constructive technique in two cases: the specular
reflection boundary condition with strictly convex and analytic domains � and the pure
diffusive boundary condition assuming the domain� is smooth and convex. These results
have been generalized by Briant–Guo [18] who derived constructive exponential stabil-
ity estimates in L2x;v for any positive and constant accommodation coefficient ˛ 2 .0; 1/,
with no more convexity assumptions on �. For the same equation endowed with specu-
lar reflection boundary condition, a still non-constructive L2 estimate was derived in the
convex setting, without analyticity assumptions on the domain, by Kim–Lee [61]. The
authors then extended their results to a periodic cylindrical domain with non-convex ana-
lytic cross-section [62].

Furthermore, the only results we are aware of in the case of long-range interaction, that
is, for non-cutoff Boltzmann and Landau collision operators in a bounded domain, are the
very recent works of Guo–Hwang–Jang–Ouyang [51] (see also [52]) for the Landau equa-
tion with specular reflection boundary condition, and Duan–Liu–Sakamoto–Strain [42]
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for non-cutoff Boltzmann and Landau equations in a finite channel with inflow or specular
reflection boundary conditions. However, as far as we understand, the arguments presented
in [51] seem to be constructive only when @� is flat, while the arguments presented in [52]
are again non-constructive.

It is also worth mentioning that an alternative existence of solutions framework to
the above quite strong but close-to-equilibrium regime framework has been introduced by
DiPerna–Lions who proved in [36, 37, 67] the existence of global weak (renormalized)
solutions of arbitrary amplitude to the Boltzmann equation in the case of the whole space,
for initial data satisfying only the physically natural condition that the total mass, energy
and entropy are finite. The extension to the case of a bounded domain with reflection
conditions (including specular reflection, pure diffusive reflection and Maxwell reflection)
was then obtained in [4, 53, 69, 71]. We must emphasize that our treatment of boundary
terms bears some similarity with the analysis made in [71] in order to take advantage of
the information provided by Darrozès–Guiraud’s inequality [30].

To end this introduction, we point out that in Section 4, we broaden our study to the
case where the linearized operator only enjoys a weak coercivity estimate to obtain results
of weak hypocoercivity and subexponential stability in Theorems 4.1 and 4.2.

Also, in Section 5, we extend our study to a rescaled version of (1.1) which naturally
arises in the analysis of hydrodynamical limit problems, and we obtain hypocoercivity
and stability results uniformly with respect to the rescaling parameter in Theorems 5.1
and 5.2.

2. Elliptic equations

We present some functional estimates associated to some elliptic problems related to the
macroscopic quantities. In this section we denote the classical norm on L2x.�/ by k � k
and the associated scalar product by .� ; �/. We also write

hf i WD

Z
�

f dx;

the mean of f (recall our normalization assumption (1.14)). The operators that we con-
sider only act on the position variable x, so that, in order to lighten the notation, we will
not mention it in our proofs. For the same reason, we often write @i for @xi , i 2 ¹1; : : : ; dº.

2.1. Poincaré inequalities and the Poisson equation

We consider the following Poisson equation:´
��u D � in �;

.2 � ˛.x//ru � n.x/C ˛.x/u D 0 on @�;
(2.1)

for a scalar source term �W� ! R. Note that when ˛ � 0 then (2.1) corresponds to
the Poisson equation with homogeneous Neumann boundary condition. Otherwise, (2.1)
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corresponds to the Poisson equation with homogeneous Robin (or mixed) boundary con-
dition.

We define the Hilbert spaces

V1 WD H
1.�/;

V0 WD
®
u 2 H 1.�/I

R
�
u dx D 0

¯
endowed with the H 1.�/-norm, and next

V˛ WD

´
V1 if ˛ 6� 0;

V0 if ˛ � 0:

On V˛ we define the bilinear form

a˛.u; v/ WD

Z
�

ru � rv dx C
Z
@�

˛

2 � ˛
uv d�x :

We start with a result on Poincaré-type inequalities:

Proposition 2.1. There hold

8u 2 V0; kuk . kruk (2.2)

and

8u 2 V1; kuk
2 . a˛.u; u/: (2.3)

The first inequality is nothing but the classical Poincaré–Wirtinger inequality. For the
second inequality (which is probably also classical), we have no precise reference for a
constructive proof. For the sake of completeness and because we will need to repeat that
kind of argument in the next section, we give a sketch of a non-constructive proof by
contradiction based on a compactness argument.

Proof of (2.3). Assuming that (2.3) is not true, there exists a sequence .un/n2N inH 1.�/

such that

1 D kunk
2 > n

�
krunk

2
C




r ˛

2 � ˛
un




2
L2.@�/

�
:

As a consequence, up to the extraction of a subsequence, there exists u 2H 1.�/ such that
un * u weakly in H 1.�/ and un ! u strongly in L2.�/. From the above estimate we
deduce that kruk6 lim infn!1 krunkD 0, so that uDC is a constant. On the one hand,
we have k

p
˛=.2 � ˛/ukL2.@�/ D limn!1 k

p
˛=.2 � ˛/unkL2.@�/ D 0 so that C D 0.

On the other hand, we get kuk D limn!1 kunk D 1, which implies that C 6D 0 and thus
a contradiction.

We now state a result on the existence, uniqueness and regularity of solutions to (2.1).
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Theorem 2.2. For any given � 2 L2.�/, there exists a unique u 2 V˛ , a solution to the
variational problem

a˛.u;w/ D .�; w/ 8w 2 V˛: (2.4)

Assuming furthermore that h�i D 0 when ˛ � 0, there holds u 2 H 2.�/, u verifies the
elliptic equation (2.1) a.e. and

kukH2.�/ . k�k: (2.5)

We give a sketch of the proof of Theorem 2.2 which is very classical, except maybe the
way we handle the H 2 regularity estimate. The proof will be taken up again in the next
section where we deal with an elliptic system of equations associated to the symmetric
gradient.

Proof of Theorem 2.2. We split the proof into four steps. The first one is dedicated to the
application of the Lax–Milgram theorem. The last three are devoted to the proof of theH 2

regularity estimate: in Step 2 we develop a formal argument which leads to a directional
regularity estimate supposing that the variational solution u is a priori smooth; we then
make it rigorous in Step 3 by not supposing any smoothness assumption on u, and in Step 4
we end the proof of (2.5).

Step 1. We first observe that there exists � > 0 such that

a˛.u; u/ > �kuk2
H1.�/

8u 2 V˛;

and thus a˛ is coercive. The above estimate is a direct consequence of the Poincaré–
Wirtinger inequality (2.2) in the case when ˛ � 0 and the variant of the classical Poincaré
inequality given in (2.3) when ˛ 6� 0. Because � 2 L2.�/ � V 0˛ , we may use the Lax–
Milgram theorem and we get the existence and uniqueness of u 2 V˛ satisfying (2.4) as
well as

kukH1.�/ . k�k: (2.6)

For the remainder of the proof, we furthermore assume h�i D 0 when ˛ � 0. We claim
that (2.4) can be improved into the following new formulation: there exists a unique u2 V˛
satisfying

a˛.u;w/ D .�; w/ 8w 2 H
1.�/: (2.7)

When ˛ 6� 0, formulation (2.7) is nothing but (2.4). In the case ˛� 0 so that V˛ 6DH 1.�/,
we remark that for any w 2 H 1.�/, we have w � hwi 2 V0 and therefore

a˛.u;w/ D a˛.u;w � hwi/

D

Z
�

�w dx �
Z
�

�hwi dx D
Z
�

�w dx;

where we have used formulation (2.4) and the condition h�i D 0 so that
R
�
�hwi dx D 0

in the second line.
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Step 2. A priori directional estimate. For any small enough open set ! � �, we fix a
vector field a 2 C 2.x�/ such that jaj D 1 on ! and a � nD 0 on @�, and we setX WD a � r
the associated differential operator. For a smooth function u, we compute

krXuk2 D .ru;X�rXu/C .Œr; X�u;rXu/

D .ru;rX�Xu/C .ru; ŒX�;r�Xu/C .Œr; X�u;rXu/;

where we have used that

.Xf; g/ D .f;X�g/; X�g WD � div.ag/; (2.8)

because a � n D 0 on @�. On the other hand, we compute formallyZ
@�

.Xu/2
˛

2 � ˛
d�x D

Z
@�

˛

2 � ˛
u.X�Xu/ d�x �

Z
@�

�
X

˛

2 � ˛

�
u.Xu/ d�x : (2.9)

In the next step of the proof, we will work with a discrete version of the operator X which
will allow us to make rigorous computations. Now assuming furthermore that u 2 V˛
satisfies (2.7) and that X�Xu 2 H 1.�/, we may use (2.7) with w WD X�Xu and we
deduce

krXuk2 C

Z
@�

˛

2 � ˛
.Xu/2 d�x D .�; X�Xu/C .ru; ŒX�;r�Xu/C .Œr; X�u;rXu/

�

Z
@�

�
X

˛

2 � ˛

�
u.Xu/ d�x :

We easily compute for i D 1; : : : ; d ,

Œ@i ; X� D .@ia/ � r; ŒX�; @i � D @i .div a/C .@ia/ � r;

so that for some constant C D C.kakW 2;1.�// and any function w 2 H 1.�/ , we have

kŒr; X�wk 6 Ckrwk; kŒX�;r�wk 6 CkwkH1.�/:

We then deduce that for some constant C D C.kakW 2;1.�/; k˛kW 1;1.�//, we have

krXuk2 6 k�k kX�Xuk C Ckruk kXukH1.�/

C Ckruk krXuk C CkukL2.@�/kXukL2.@�/:

Recalling (2.6) and observing that kX�wkC kXwkC kwkL2.@�/ . kwkH1.�/, we obtain

krXuk2 . k�k krXuk C k�k2;

and we conclude that
krXuk . k�k: (2.10)
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Step 3. Rigorous directional estimate. When we are not dealing with an a priori smooth
solution, but just with a variational solution u 2 V˛ satisfying (2.7), we have to modify
the argument in the following way. We define ˆt W x� ! x�, the flow associated to the
differential equation

Py D a.y/; y.0/ D x; (2.11)

so that ˆt .x/ WD y.t/, .t; x/ 7! ˆt .x/ is C 1 and ˆt is a diffeomorphism on both �
and @� for any t 2 R. We next define

Xhu.x/ WD
1

h

�
u.ˆh.x// � u.x/

�
;

so that Xhu 2 H 1.�/ if u 2 V˛ . Repeating the argument of Step 1, we get the identity

krXhuk2 C

Z
@�

˛

2 � ˛
.Xhu/2 d�x

D .�; Xh�Xhu/C .ru; ŒXh�;r�Xhu/C .Œr; Xh�u;rXhu/

�

Z
@�

u.ˆh.x//
�
.Xhu/Xh

� ˛

2 � ˛

��
.x/ d�x ; (2.12)

where we denote

Xh�w.x/ WD
1

h

�
w.ˆ�h.x//j detDˆ�h.x/j � w.x/

�
:

Notice here that we used a discrete version of the integration by parts leading to (2.9) and
it only relies on a change of variable on @�, which makes our computation fully rigorous.
As in the second step of the proof, we are now going to bound each term of the right-hand
side of (2.12). First, notice that for jhj 6 1 we have, for some jh0j 6 1,

Xhu.x/ D
X
j

@ju.ˆh0.x//aj .ˆh0.x//;

so that there exists C D C.kakW 1;1.�// such that for any jhj 6 1, we have kXhuk 6
Ckruk. We can estimate kXh�wk in a similar way using that

Xh�w.x/ D
1

h
Œw.ˆ�h.x// � w.x/�jdetDˆ�h.x/j

C
1

h
w.x/ŒjdetDˆ�h.x/j � jdetDˆ0.x/j�:

Consequently, we deduce that there exists C D C.kakW 2;1.�// such that for jhj 6 1,

kXh�wk C kXhwk C kwkL2.@�/ 6 CkwkH1.�/: (2.13)

For i D 1; : : : ;d , for jhj6 1, x 2 x�, writingˆh.x/D .ˆh;1.x/; : : : ;ˆh;d .x//, we compute

Œ@i ; X
h�w.x/ D

1

h

X
j¤i

@jw.ˆh.x//@iˆh;j .x/C
1

h
@iw.ˆh.x//.@iˆh;i .x/ � 1/

D
1

h

X
j

@jw.ˆh.x//.@iˆh;j .x/ � @iˆ0;j .x//
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and similarly

ŒXh�; @i �w.x/ D
1

h

X
j

@jw.ˆ�h.x//.@iˆ0;j .x/ � @iˆ�h;j .x//j detDˆ�h.x/j

�
1

h
w.ˆ�h.x//@i j detDˆ�h.x/j:

As previously, we can easily bound Œ@i ;Xh�w and the first term in ŒXh�; @i �w by Ckrwk
with C D C.kakW 1;1.�// for any jhj6 1. The second term of ŒXh�; @i �w can be bounded
by Ckwk with C D C.kakW 2;1.�// for any jhj6 1 since, for any j , we have @ijˆ0.x/D
0. This implies that there existsC DC.kakW 2;1.�// such that for jhj6 1 and any function
w in H 1.�/, we have

kŒ@i ; X
h�wk 6 Ckrwk; kŒXh�; @i �wk 6 CkwkH1.�/:

We deduce that for some C D C.kakW 2;1 ; k˛kW 1;1/, we have for any jhj 6 1,

krXhuk2 6 k�k kXh�Xhuk C Ckruk kXhukH1.�/

C Ckruk krXhuk C CkukL2.@�/kX
hukL2.@�/

and then, using kXhuk . kruk, (2.13) and (2.6),

krXhuk . k�k:

Passing to the limit h! 0, we recover (2.10).

Step 4. Proof of (2.5). Consider a small enough open set ! � �, so that we may fix
a1; : : : ; ad a family of smooth vector fields such that it is an orthonormal basis of Rd at
any point x 2 ! and a1.x/ D n.x/ for any x 2 @� \ @!. In order to see that it indeed
holds true, we may argue as follows. If @�\ @! D ;, we may take aj WD ej the canonical
basis of Rd . Otherwise we fix x0 2 @� \ @!. Because rı.x0/ ¤ 0, we may first fix
i 2 ¹1; : : : ; dº such that @xi ı.x0/ ¤ 0 and thus @xi ı.x/ ¤ 0 for any x 2 !, for ! small
enough. We then define b1 WD rı, bj WD ej�1 for any j 2 ¹2; : : : ; iº and bj WD ej for any
j 2 ¹i C 1; : : : ; dº. Finally, we apply the Gram–Schmidt process to .b1.x/; : : : ; bd .x//
to obtain .a1.x/; : : : ; ad .x//. Now we set Xi WD ai � r. From the third step we have

krXiuk . k�k 8i D 2; : : : ; d: (2.14)

As a consequence of our previous construction, the matrix A WD .a1; : : : ; ad / is orthonor-
mal. We thus have ık` D ak � a` D ak � a`, where we denoted by am the mth line vector
of the matrix A. As a consequence we haveX

i

X�i Xiu D �
X
i;k;`

@k.a
i
ka
i
`@`u/ D �

X
k;`

@k.ak � a`@`u/ D ��u; (2.15)
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from which we deduce
X�1X1u D � �

X
i¤1

X�i Xiu:

Because of (2.14), the above identity and ŒX�1 ; X1�u D .a
1 � r div.a1//u, we get

kX21uk
2
D .X�1X1u;X

�
1X1u/C .X1u; ŒX

�
1 ; X1�X1u/

. k�k2 C
X
i¤1

.krXiuk k�k C krXiuk
2/C kuk2

H1.�/
. k�k2:

Together with (2.14) again, we have then established

kXiXjuk . k�k 8i; j D 1; : : : ; d: (2.16)

Recalling that A D .a1; : : : ; ad /, we have @i D .AX/i . As a consequence we may write

@i@ju D
X
m;`

AimXmAj`X`u

D

X
m;`

.AimAj`XmX`uC AimŒXm; Aj`�X`u/;

where the last operator is of order 1. Together with the starting point estimate (2.6)
and (2.16), we conclude that

k@i@juk . k�k 8i; j D 1; : : : ; d;

which ends the proof of (2.5). We can now conclude the proof of Theorem 2.2. Indeed,
because u 2 H 2.�/, we may compute from (2.4) and the Stokes formula,Z

@�

°@u
@n
C

˛u

2 � ˛

±
w d�x D

Z
�

�uw dx C
Z
�

ru � rw dx C
Z
@�

˛

2 � ˛
uw d�x

D

Z
�

.�uC �/w dx

for any w 2 V˛ . Considering first w 2 C 1c .�/ and next w 2 C 1.x�/, we get that u satisfies
both equations in (2.1).

2.2. Korn inequalities and the associated elliptic equation

For a vector field M D .mi /16i6d W�! Rd , we define its symmetric gradient through

r
s
xM WD

1

2
.@jmi C @imj /16i;j6d ;

as well as its skew-symmetric gradient by

r
a
xM WD

1

2
.@jmi � @imj /16i;j6d :
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Throughout this section, in order to lighten the notation we will write rs for rsx , and ra

for rax . We consider the system of equations8̂̂<̂
:̂
� div.rsU/ D „ in �;

U � n D 0 on @�;

.2 � ˛/ŒrsUn � .rsU W n˝ n/n�C ˛U D 0 on @�;

(2.17)

for a vector-field source term „W�! Rd . Because

div.rsU/ D �U Cr divU;

we see that (2.17) is nothing but a Lamé-type system with a kind of homogeneous Robin
(or mixed) boundary condition.

We define the Hilbert spaces

V1 WD
®
W W�! Rd

ˇ̌
W 2 H 1.�/; W � n.x/ D 0 on @�

¯
and

V0 WD
®
W W�! Rd

ˇ̌
W 2 H 1.�/; W � n.x/ D 0 on @�; P�hraW i D 0

¯
;

where P� denotes the orthogonal projection onto the set A� D ¹A 2Ma
d
.R/I Ax 2R�º

of all skew-symmetric matrices giving rise to a centered infinitesimal rigid displacement
field preserving � (see (1.16) for the definition of R�). Both spaces are endowed with
the H 1.�/ norm. We then denote

V˛ WD

´
V1 if ˛ 6� 0;

V0 if ˛ � 0:

We also define on V˛ the bilinear form

A˛.U;W / WD

Z
�

r
sU W rsW dx C

Z
@�

˛.x/

2 � ˛.x/
U �W d�x ;

where M W N WD
P
ij mijnij for two matrices M D .mij /, N D .nij /.

The coercivity of the bilinear form A˛ is related to Korn-type inequalities that we
present below. We start by stating a first classical version of Korn’s inequality:

Lemma 2.3. For any vector field U 2 H 1.�/, we have

inf
R2R
kr.U �R/k2 . krsU k2; (2.18)

where we recall that R is the space of all infinitesimal rigid displacement fields defined
in (1.15), or equivalently, we have

krU k2 . krsU k2 C jhraU ij2: (2.19)
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For the statement of (2.18) and its proof, we refer to [34, Eq. (1)] where Friedrichs [45,
Eq. (13), Second case] and Duvaut–Lions [43, Eq. (3.49)] are quoted, as well as [28,
Theorem 2.2] and the references therein.

In the following lemma, we prove an estimate on jhraU ij in the case ˛ 6� 0.

Lemma 2.4. Supposing ˛ 6� 0, we have

jhr
aU ij2 . krsU k2 C




r ˛

2 � ˛
U



2
L2.@�/

(2.20)

for any vector field U 2 H 1.�/.

Proof. In order to establish (2.20), we argue by contradiction. We assume thus that (2.20)
is not true, so that there exists a sequence .Un/n2N in H 1.�/ satisfying

1 D jhraUnij
2 > n

�
kr

sUnk
2
C




r ˛

2 � ˛
Un




2
L2.@�/

�
:

Together with (2.19) and (2.3) applied to each component of Un, we obtain that .Un/n2N

is bounded in H 1.�/. As a consequence, up to the extraction of a subsequence, there
exists U 2H 1.�/ such that Un*U weakly inH 1.�/ and Un! U strongly in L2.�/.
Passing to the limit in the above estimates satisfied by .Un/n2N, we get jhraU ij2 D 1,
k
p
˛=.2 � ˛/U k2

L2.@�/
D 0 and krsU k D 0. From rsU D 0, we first deduce that there

exist an antisymmetric matrix A and a constant vector b 2 Rd such that U.x/ D Ax C b
on �, and, thanks to the estimate k

p
˛=.2 � ˛/U k2

L2.@�/
D 0, we deduce that

Ax C b D 0 on � WD
®
x 2 @�; ˛.x/ > 0

¯
;

which has positive measure j�j > 0 using that ˛ is a Lipschitz function. We fix Nx, an
interior point of � . As in the fourth step of the proof of Theorem 2.2, we consider a family
of smooth vector fields a1; : : : ; ad such that it is an orthonormal basis of Rd and such that
for any x 2 @�, a1.x/ D n.x/. We then introduce the flow .ˆit /t>0 associated to ai for
i D 2; : : : ; d . For t small enough, ˆit . Nx/ is still in the interior of � so that

Aai . Nx/ D
d
dt
.Aˆit . Nx/C b/ D 0:

Therefore, for any i > 2, one has, using that A Nx C b D 0 so that b D �A Nx,

ai . Nx/ � U.x/ D ai . Nx/ � .Ax C b/ D �Aai . Nx/ � x C Aai . Nx/ � Nx D 0

for any x 2�, or, in other words, U.x/ 2 R Nn for any x 2�, with Nn WD n. Nx/. We may thus
writeU.x/D �.x/ Nn, with �W�!R an affine function, so that �.x/D k � xC k0, k 2Rd ,
k0 2 R. There exists next at least one index i0 2 ¹1; : : : ; dº such that Nni0 6D 0 because
j Nnj D 1. Using again the fact that rsU D 0 on � and observing that .rU/ij D ki Nnj ,
we deduce first ki0 D 0 because ki0 Nni0 D .r

sU/i0i0 D 0 and next ki D 0 for any i 6D i0
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because ki Nni0 D 2.r
sU/i0i D 0. We have thus established that U D n0 WD k0 Nn on � for

some constant n0 2 Rd . We may alternatively prove that rU D 0 and U is constant again
by using just the claim [34, Eq. (3)]. Anyway, both arguments lead to the fact that U D 0
because of the boundary condition on � which is in contradiction with jhraU ij2 D 1.
That ends the proof of (2.20).

Gathering (2.19) and (2.20), we have then established the (probably classical) follow-
ing Korn-type inequality:

Lemma 2.5. Assume ˛ 6� 0. For any vector field U 2 H 1.�/, there holds

krU k2 . krsU k2 C



r ˛

2 � ˛
U



2
L2.@�/

: (2.21)

For later reference, we also mention that a similar argument (and even a bit simpler,
see also [34, Eq. (2)] and [28, Theorem 2.1]) leads to the following variant of Korn’s
inequality:

Lemma 2.6. For any vector field U 2 H 1.�/, there holds

krU k2 . krsU k2 C kU k2: (2.22)

It is worth emphasizing that we also have the following Poincaré inequality:

Lemma 2.7. For any U 2 H 1.�/ such that U.x/ � n.x/ D 0 on @�, there holds

kU k2 . krU k2: (2.23)

Proof. As before, we may argue by contradiction, assuming that (2.23) is not true, so that
there exists a sequence .Un/n2N in H 1.�/ satisfying Un � n.x/ D 0 on @� and such that

1 D kUnk
2 > nkrUnk

2:

We immediately deduce that there exists U 2 H 1.�/ such that rU D 0, kU k2 D 1 and
U � n.x/ D 0 which gives our contradiction.

Gathering (2.21) and (2.23), we may state a final version of our first Korn inequality:

Proposition 2.8. Suppose that ˛ 6� 0. For any U 2 H 1.�/ such that U.x/ � n.x/ D 0

on @�, there holds

kU k2
H1.�/

. krsU k2 C



r ˛

2 � ˛
U



2
L2.@�/

: (2.24)

On the other hand, a less classical Korn inequality has been established by Desvillettes–
Villani [34]:
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Lemma 2.9. For any vector field U 2 H 1.�/ verifying U � n.x/ D 0 on @�, one has

inf
R2R�

kr.U �R/k2 . krsU k2; (2.25)

where we recall that R� stands for the space of centered infinitesimal rigid displacement
fields defined in (1.16), or equivalently one has

krU k2 . krsU k2 C jP�hraU ij2; (2.26)

where we recall thatP� stands for the orthogonal projection onto the space A� as defined
before.

In the case when R� D ¹0º, that is, when � has no axisymmetry, (2.25) is nothing
but the inequality stated in [34, Theorem 3] and for which a detailed constructive proof
is provided therein. The proof of (2.25) in the three-dimensional case is also alluded to in
[34, Section 5]. We do not explain how the analysis developed in [34] makes it possible
to get a constructive proof of (2.25) in the general case (whatever the dimension d is), but
rather briefly explain how (2.26) may be established thanks to a compactness argument.

Proof of (2.26). We first claim that for any vector fieldU 2H 1.�/ such thatU � n.x/D 0
on @�, one has

kU k2 . krsU k2 C jP�hraU ij2: (2.27)

Assume indeed by contradiction that (2.27) is not true, so that there exists a sequence
.Un/n2N satisfying Un � n.x/ D 0 on @� such that

1 D kUnk
2 > n.krsUnk

2
C jP�hr

aUnij
2/:

Together with the Korn inequality (2.22), we deduce that there exists U 2 H 1.�/ sat-
isfying U � n.x/ D 0 on @� such that (up to the extraction of a subsequence) Un * U

weakly in H 1.�/ and Un ! U strongly in L2.�/. Passing to the limit in the estimates
satisfied by .Un/n2N, we first get rsU D 0 which implies that U D Ax C b 2 R. More-
over, we obtain U � n.x/ D .Ax C b/ � n.x/ D 0 on @� and thus, thanks to the remark
after (1.16) using assumption (1.14), we obtain that b D 0 and hence A 2 A� or equiv-
alently Ax 2 R�. Finally, we also have P�hraU i D P�A D 0 which implies A 2 A?�
and thus A D 0. We therefore obtain U D 0 which is in contradiction with the fact that
kU k2 D 1. That ends the proof of (2.27). The proof of (2.26) follows by gathering (2.22)
and (2.27).

Gathering (2.26) with (2.27), we finally obtain the following Korn-type inequality:

Proposition 2.10. For any vector field U 2 H 1.�/ such that U � n.x/ D 0 on @�, there
holds

kU k2
H1.�/

. krsU k2 C jP�hraU ij2: (2.28)

We can now state our result concerning the existence, uniqueness and regularity of
solutions to the elliptic system (2.17).
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Theorem 2.11. For any given „ 2 L2.�/, there exists a unique solution U 2 V˛ to the
variational problem associated to (2.17), namely

A˛.U;W / D .„;W / 8W 2 V˛: (2.29)

If furthermore „ satisfies the condition h„;Axi D 0 for any Ax 2R� when ˛ � 0, then
the variational solution U to (2.17) satisfies U 2 H 2.�/ with

kU kH2.�/ . k„k;

and moreover U verifies (2.17) a.e.

The proof of Theorem 2.11 follows the same steps as the proof of Theorem 2.2. We
briefly present it below.

Proof of Theorem 2.11. We split the proof into four steps, the last three being devoted to
the proof of the H 2 regularity estimate.

Step 1. Thanks to the above Korn-type inequalities, more precisely (2.24) for the case
˛ 6� 0 and (2.28) for the case ˛ � 0, we deduce that the bilinear form A˛ is coercive in
V˛ , that is, there is a constant � > 0 such that

8U 2 V˛; �.kU k2 C krU k2/ 6 A˛.U; U /:

One can therefore apply the Lax–Milgram theorem, which gives us the existence and
uniqueness of U 2 V˛ satisfying (2.29).

For the remainder of the proof, we additionally assume that h„; Axi D 0 for any
Ax 2 R� when ˛ � 0. We then claim that (2.29) can be improved to the following new
variational formulation: there exists a unique U 2 V˛ verifying

A˛.U;W / D .„;W / 8W 2 V1: (2.30)

In the case ˛ 6� 0 or ˛ � 0 with a non-axisymmetric domain �, that is, R� D ¹0º, equa-
tion (2.30) is nothing but (2.29) since in these cases V˛ D V1. When ˛ � 0 and � has
rotational symmetry, that is, R� ¤ ¹0º, for anyW 2 V1 we haveW � P�hraW ix 2 V0
and therefore

A˛.U;W / D A˛.U;W � P�hr
aW ix/

D

Z
�

„ �W dx �
Z
�

„ � .P�hr
aW ix/ dx

D

Z
�

„ �W dx;

where we have used that rs.P�hraW ix/ D 0 in the first line, formulation (2.29) in
the second line, and the condition h„; Axi D 0 for any Ax 2 R� in the third line,
since P�hraW ix 2 R� by definition.
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Step 2. For any small enough open set ! � �, we fix a vector field a 2 C 2.x�/ such
that jaj D 1 on ! and a � n D 0 on @�, and we set X WD a � r the associated differential
operator. For a smooth solution U to (2.30) we compute

kr
sXU k2 D .rsU;X�rsXU/C .Œrs; X�U;rsXU/

D .rsU;rsX�XU/C .rsU; ŒX�;rs�XU /C .Œrs; X�U;rsXU/;

where we have used (2.8). On the other hand, we have the following formal equality:Z
@�

.XU / � .XU /
˛

2 � ˛
d�x D

Z
@�

˛

2 � ˛
U � .X�XU/ d�x

�

Z
@�

�
X

˛

2 � ˛

�
U � .XU / d�x :

We define

.AW /ij WD
1

2

�
Œ@i ; X�Wj C Œ@j ; X�Wi

�
;

.BW /ij WD
1

2

�
ŒX�; @i �Wj C ŒX

�; @j �Wi
�
:

Supposing the additional regularity assumption X�XU 2 V1, then using .rs/�rs D
� div.rs �/ and making the choice W WD X�XU in the variational equation (2.29), we
obtain

kr
sXU k2 C

Z
@�

.XU / � .XU /
˛

2 � ˛
d�x

D .„;X�XU/C .rsU;BXU/C .AU;rsXU/ �

Z
@�

�
X

˛

2 � ˛

�
U � .XU / d�x :

From the Korn inequalities (2.21) (when ˛ 6� 0) and (2.22) (when ˛ � 0), we first deduce

krXU k2 . k„k kX�XU k C krU k kBXU k C kAU k krXU k
C kU kL2.@�/kXU kL2.@�/ C kXU k

2:

Then, since

Œ@i ; X� D .@ia/ � r; ŒX�; @i � D @i .div a/C .@ia/ � r;

we deduce that
kAW k C kBW k . kW kH1.�/ 8W 2 V1:

We also have the elementary estimates

kX�W k C kXW k . kW kH1.�/ 8W 2 V1:

Thanks to the already established estimate kU kH1.�/ . k„k, we are then able to deduce
that

krXU k2 . k„k krXU k C k„k2;
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and finally
krXU k . k„k: (2.31)

Note that as in the proof of Theorem 2.2, the multiplicative constants involved in our
estimates depend on kakW 2;1.�/ and k˛kW 1;1.�/.

Step 3. When we are not dealing with an a priori smooth solution, but just with a solution
U 2 V˛ to (2.30), we modify the argument in the following way.

We consider a small enough open set ! 2 �, so that we may fix a1; : : : ; ad a family
of smooth vector fields such that .a1; : : : ; ad / is an orthonormal basis of Rd at any point
x 2 ! and a1.x/D n.x/ for any x 2 @�\ @!. The construction of such a family is given
in Step 4 of the proof of Theorem 2.2. We set AD .a1; : : : ; ad /. Let k 2 ¹2; : : : ; dº. Then
a D ak is as in Step 2 and we define ˆt the associated flow introduced in (2.11).

We define J h.x/ WD A.ˆh.x//A.x/�1 so that, in particular, J h.x/n.x/ D n.ˆh.x//
for any h. We next define

XhU.x/ WD
1

h

�
TJ h.x/U.ˆh.x// � U.x/

�
;

so that XhU 2 V1 if U 2 V˛ . Repeating the argument of Step 2 we get

kr
sXhU k2 D .rsU;rsXh�XhU/C .rsU;BhXhU/C .AhU;rsXhU/;

where we denote

Xh�M.x/ WD
1

h
Œj detDˆ�h.x/jJ h.ˆ�h.x//M.ˆ�h.x// �M.x/�;

.AhW /ij WD
1

2

�
Œ@i ; X

h�Wj C Œ@j ; X
h�Wi

�
;

.BhW /ij WD
1

2

�
ŒXh�; @i �Wj C ŒX

h�; @j �Wi
�
:

On the other hand, we haveZ
@�

˛

2 � ˛
.x/U.x/ �Xh�XhU.x/ d�x D

Z
@�

˛

2 � ˛
.ˆh.x//.X

hU/.x/ � .XhU/.x/ d�x

C

Z
@�

U.x/ �XhU.x/Y h
� ˛

2 � ˛

�
.x/ d�x ;

where
Y hM.x/ WD

1

h

�
M.ˆh.x// �M.x/

�
:

We also have that if U 2 V˛ then Xh�XhU 2 V1 too. Indeed, we compute

Xh�XhU.x/ D
1

h2
j detDˆ�h.x/jJ h.ˆ�h.x//

��
TJ h.ˆ�h.x//

�
U.x/ � U.ˆ�h.x//

�
�
1

h2

�
TJ h.x/U.ˆh.x// � U.x/

�
DW T1.x/C T2.x/;



A. Bernou, K. Carrapatoso, S. Mischler, and I. Tristani 310

the last equality standing for a definition of T1 and T2. As already noticed, if U 2 V˛ , then
XhU.x/ � n.x/ D 0 so that T2.x/ � n.x/ D 0. Concerning T1, we first have

J h.ˆ�h.x//
�
TJ h.ˆ�h.x//

�
U.x/ � n.x/ D U.x/ � n.x/ D 0:

Then we remark that J h.ˆ�h.x// D TJ�h.x/, so that

J h.ˆ�h.x//U.ˆ�h.x// � n.x/ D U.ˆ�h.x// � J
�h.x/n.x/

D U.ˆ�h.x// � n.ˆ�h.x// D 0:

Using this and the fact that U is a solution of (2.30), we deduce that

kr
sXhU k2 C

Z
@�

˛

2 � ˛
.ˆh.x//.X

hU/.x/ � .XhU/.x/ d�x

D .„;Xh�XhU/C .rsU;BhXhU/C .AhU;rsXhU/

�

Z
@�

U � .XhU/
�
Y h

˛

2 � ˛

�
d�x :

Similarly to the proof of Theorem 2.2, one can prove the following elementary estimate:

kXhW k C kXh�W k C kAhW k C kBhW k . kW kH1.�/ 8W 2 V1:

Using these bounds combined with the already established estimate kU kH1.�/ . k„k and
the Korn inequality, we deduce, as in the Poisson case, that

krXhU k . k„k 8jhj 6 1:

Passing to the limit h! 0, we then get

krX0U k . k„k;

withX0Uj D a � rUj CA.a � rA�1/Uj for j D 1; : : : ;d . Note that as in the Poisson case,
the multiplicative constants are uniform in jhj 6 1 and depend on kakW 2;1 and k˛kW 1;1 .
We then recover (2.31) by observing that we have kA.a � rA�1/U kH1 . k„k.

Step 4. Now we set Xi WD ai � r. From the second step we have

krXiU k . k„k 8i D 2; : : : ; d: (2.32)

We first notice that
@j D

X
i

aijXi D �
X
i

X�i .a
i
j �/:

Combining this with (2.15), we deduce that

„j D ��Uj � @j .divU/

D

X
i

X�i XiUj C
X
i;`;m

X�i .a
i
ja
m
` XmU`/
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D X�1X1Uj C
X
`

X�1 .a
1
j a
1
`X1U`/C

X
i¤1

X�i XiUj

C

X
.i;m/¤.1;1/

X
`

X�i .a
i
ja
m
` XmU`/:

We notice that X�i .fg/ D .X
�
i f /g � f .Xig/. Then using (2.32) combined with the fact

that for i D 1; : : : ; d we have ai 2 W 2;1.�/, we deduce

X�1X1Uj C
X
`

a1j a
1
`X
�
1X1U` D Rj .U;„/ with kRj .U;„/k . k„k: (2.33)

Multiplying the equality in (2.33) by a1j and then summing it over j , we get

2
X
`

a1`X
�
1X1U` D

X
j

a1jRj .U;„/;

and thus
ka1 �X�1X1U k . k„k: (2.34)

Coming back to (2.33) and using once more that ıj` D aj � a`, so that

X�1X1Uj D
X
`;m

amj a
m
` X
�
1X1U`; (2.35)

we obtain X
m¤1;

`2¹1;:::;dº

amj a
m
` X
�
1X1U` D Rj .U;„/ � 2

X
`

a1j a
1
`X
�
1X1U`:

Together with (2.34) and the fact that kRj .U;„/k . k„k, it yields



 X
`;m¤1

amj a
m
` X
�
1X1U`





 . k„k: (2.36)

Finally, using (2.35), (2.34) and (2.36) again implies

kX�1X1Uj k . k„k:

Recalling that ŒX1; X�1 �u D .a1 � r div.a1//u, because kU kH1.�/ . k„k, the above
inequality implies

kX21U k . k„k;

and then, together with (2.32), we have established

kXiXjU k . k„k 8i; j D 1; : : : ; d:

We can then conclude the proof of Theorem 2.11 in the same way as Theorem 2.2.
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3. Proof of Theorem 1.1

Consider the operator L defined in (1.1). For any f 2 H we decompose f D �f C f ?

with the macroscopic part �f given by

�f .x; v/ D %.x/�.v/Cm.x/ � v�.v/C �.x/
.jvj2 � d/
p
2d

�.v/;

where the mass, momentum and energy are defined respectively by

%.x/ D

Z
Rd
f .x; v/ dv; m.x/ D

Z
Rd
vf .x; v/ dv; �.x/ D

Z
Rd

.jvj2 � d/
p
2d

f .x; v/ dv:

Remark that
kf k2H D kf

?
k
2
H C k�f k

2
H

and
k�f k2H D k%k

2
L2x.�/

C kmk2
L2x.�/

C k�k2
L2x.�/

:

The focus of the remainder of this section will be the proof of Theorem 1.1 (note
that Theorem 1.2 is a direct consequence of Theorem 1.1). As explained in Section 1.3,
in Theorem 1.1 the construction of the scalar product hh� ; �ii on the space H begins with
the usual scalar product, which gives us a control of the microscopic part f ?, and after
that, step by step, new terms are added to it in order to control all components of the
macroscopic part �f . The construction of each of these terms is performed in Sections 3.1
through 3.5, and then in Section 3.6 we will complete the proof of Theorem 1.1.

We consider hereafter f satisfying the conditions of Theorem 1.1, namely f 2

Dom.L/ satisfying the boundary condition (1.2), so that in particular (1.9) holds, which
translates into

m.x/ � n.x/ D 0 for x 2 @�; (3.1)

and satisfying assumption (C1), which means

h%i D

Z
�

% dx D 0:

In the specular reflection case (˛� 0 in (1.2)), the additional assumptions (C2)–(C3) hold,
which correspond to

h�i D

Z
�

� dx D 0 and hR �mi D

Z
�

R �m dx D 0 8R 2 R�: (3.2)

For simplicity we introduce the notation f˙ WD 
˙f , D? WD Id � D, where D is
given by (1.7) and @HC WDL2.†CI��1.v/n.x/ � v/. It is worth emphasizing that because
f 2 Dom.L/, the trace functions f˙ are well defined. We refer the interested reader to
[6, 27] for the classical definition of the trace of a solution to a transport equation, as well
as to [15, 69, 70] for a more modern approach.
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3.1. Microscopic part

We start with the following result, giving a control of the microscopic part f ? and a
boundary term.

Lemma 3.1. There exists � > 0 such that

h�Lf; f iH > �kf ?k2H C
1

2



p˛.2 � ˛/D?fC

2@HC :
Proof. We write

h�Lf; f iH D h�Cf; f iH C hv � rxf; f iH :

Thanks to (1.13) one has
h�Cf; f iH > �kf ?k2H :

For the second term, we first get, thanks to an integration by parts,

hv � rxf; f iH D

Z
O

.v � rxf /f�
�1 dx dv D

1

2

Z
†


f 2��1n.x/ � v d�x dv:

Writing 
f 2 D f 2C1†C C f 2�1†� and using the boundary condition (1.2), we thus obtain

hv � rxf; f iH

D
1

2

Z
†C

f 2C�
�1
jn.x/ � vj d�x dv �

1

2

Z
†�

f 2��
�1
jn.x/ � vj d�x dv

D
1

2

Z
†C

f 2C�
�1
jn.x/ � vj d�x dv

�
1

2

Z
†�

®
.1 � ˛.x//fC.x;Rxv/C ˛.x/DfC.x; v/

¯2
��1jn.x/ � vj d�x dv:

We apply the change of variables v 7! Rxv, so that †� transforms into †C, which yields

hv � rxf; f iH D
1

2

Z
†C

f 2C�
�1
jn.x/ � vj d�x dv

�
1

2

Z
†C

®
.1 � ˛.x//fC C ˛.x/DfC

¯2
��1jn.x/ � vj d�x dv;

since DfC.x;Rxv/ D DfC.x; v/ and jn.x/ �Rxvj D jn.x/ � vj. Writing fC D D?fC C
DfC, one hasZ

†C

f 2C�
�1n.x/ � v d�x dv D

Z
†C

.DfC/
2��1n.x/ � v d�x dv

C

Z
†C

.D?fC/
2��1n.x/ � v d�x dv;
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since DfC ? D?fC in @HC. Altogether we conclude that

hv � rxf; f iH

D
1

2

Z
†C

®
.DfC/

2
C .D?fC/

2
� Œ.1 � ˛.x//D?fC CDfC�

2
¯
��1n.x/ � v d�x dv

D
1

2

Z
†C

®
Œ1 � .1 � ˛.x//2�.D?fC/

2
� 2.1 � ˛.x//DfCD

?fC
¯
��1n.x/ � v d�x dv

D
1

2

Z
†C

˛.x/.2 � ˛.x//.D?fC/
2��1n.x/ � v d�x dv:

We finish the proof by gathering previous estimates.

3.2. Boundary terms

We start by stating a technical lemma which will be useful to treat the boundary terms in
what follows.

Lemma 3.2. Let �WRd ! R. For any x 2 @�, there holdsZ
Rd
�.v/
f .x; v/n.x/ � v dv D

Z
†xC

�.v/˛.x/D?fCn.x/ � v dv

C

Z
†xC

¹�.v/ � �.Rxv/º.1 � ˛.x//D
?fCn.x/ � v dv

C

Z
†xC

¹�.v/ � �.Rxv/ºDfCn.x/ � v dv:

Proof. We first write, thanks to the decomposition 
f D fC1†C C f�1†� ,Z
Rd
�.v/
f .x; v/n.x/ � v dv D

Z
†xC

�.v/fCn.x/ � v dv �
Z
†x�

�.v/f�jn.x/ � vj dv:

Applying the boundary condition (1.2) and then the change of variables v 7! Rxv, we
hence obtainZ

†x�

�.v/f�jn.x/ � vj dv

D

Z
†x�

�.v/
®
.1 � ˛.x//fC.x;Rxv/C ˛.x/DfC.x; v/

¯
jn.x/ � vj dv

D

Z
†xC

�.Rxv/
®
.1 � ˛.x//fC.x; v/C ˛.x/DfC.x; v/

¯
jn.x/ � vj dv;

sinceDfC.x;Rxv/DDfC.x; v/ and jn.x/ �Rxvj D jn.x/ � vj. We write fC DD?fCC
DfC and thusZ

Rd
�.v/
f .x; v/n.x/ � v dv

D

Z
†xC

®
�.v/fC � �.Rxv/.1 � ˛.x//fC � �.Rxv/˛.x/DfC

¯
n.x/ � v dv
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D

Z
†xC

�.v/˛.x/D?fCn.x/ � v dv

C

Z
†xC

¹�.v/ � �.Rxv/º.1 � ˛.x//D
?fCn.x/ � v dv

C

Z
†xC

¹�.v/ � �.Rxv/ºDfCn.x/ � v dv;

which concludes the proof.

3.3. Energy

In this subsection we construct a functional in order to control the energy component of
the macroscopic part �f . We denote

�Œg� WD

Z
Rd

.jvj2 � d/
p
2d

g dv;

so that � D �Œf �. We define uŒ�� as the solution to the elliptic equation (2.1) associated
to � D � 2 L2x.�/ given by Theorem 2.2, in particular

kuŒ��kH2
x .�/

. k�kL2x.�/: (3.3)

It is worth noticing that in the specular reflection case, that is, when ˛ � 0 in (1.2), we
have h�i D 0 from (3.2), so that the solution uŒ�� to the Poisson equation with Neumann
boundary condition is well defined.

We also introduce the vector p D .pi /16i6d defined by

pi .v/ WD vi
.jvj2 � d � 2/
p
2d

;

and the associated moment functional MpŒg� D .Mpi Œg�/16i6d given by

Mpi Œg� D

Z
Rd
vi
.jvj2 � d � 2/
p
2d

g dv: (3.4)

Lemma 3.3. One has

�ŒLf � D �

r
2

d
rx �m � rx �MpŒf � (3.5)

and
MpŒf � DMpŒf

?�: (3.6)

As a consequence, from Theorem 2.2, the unique variational solution uŒ�ŒLf �� to (2.1)
associated to � D �ŒLf � satisfies

kuŒ�ŒLf ��kH1
x .�/

. kmkL2x.�/ C kf
?
kH C



p˛.2 � ˛/D?fC

@HC : (3.7)
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Proof. We start by proving (3.5). By writing Lf D �v � rxf C Cf ? we have �ŒLf � D
�Œ�v � rxf �. We then compute

�Œ�v � rxf � D �rx �

Z
Rd

.jvj2 � d/
p
2d

vf dv

D �

r
2

d
rx �

Z
Rd
vf dv � rx �

Z
Rd

.jvj2 � d � 2/
p
2d

vf dv;

and this concludes the proof of (3.5). Moreover, using the decomposition

f D %�Cm � v�C �
jvj2 � d
p
2d

�C f ?; (3.8)

a straightforward computation gives

MpŒf � D %

Z
Rd
p.v/� dv Cmi

Z
Rd
vip.v/� dv

C �

Z
Rd
p.v/

�
jvj2 � d
p
2d

�
� dv CMpŒf ?�:

We conclude (3.6), since
R

Rd p.v/�dv D
R

Rd vip.v/�dv D
R

Rd .jvj
2 � d/p.v/�dv D 0.

From Theorem 2.2, there exists a unique variational solution u WD uŒ�ŒLf �� to (2.1)
associated to � D �ŒLf �. Thanks to Step 1 in the proof of Theorem 2.2, this solution
satisfies

�kuk2
H1
x .�/

6 krxuk2L2x.�/ C



r ˛

2 � ˛
u



2
L2x.@�/

(3.9)

for some constant � > 0. Moreover, thanks to the variational formulation (2.4), one has

krxuk
2
L2x.�/

C




r ˛

2 � ˛
u



2
L2x.@�/

D �

Z
�

�r 2

d
rx �mCrx �MpŒf �

�
u dx

D

Z
�

�r 2

d
mCMpŒf �

�
� rxu dx �

Z
@�

�r 2

d
mCMpŒf �

�
� n.x/u d�x ;

where we have performed one integration by parts in the second equality. As a conse-
quence, we have

krxuk
2
L2x.�/

C




r ˛

2 � ˛
u



2
L2x.@�/

D

Z
�

�r 2

d
mCMpŒf

?�
�
� rxu dx �

Z
@�

MpŒf � � n.x/u d�x ; (3.10)

where we have used (3.6) and that m � n D 0 as noticed in (3.1). For the boundary term
appearing in the last equation, we observe that thanks to Lemma 3.2 and because
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jvj2 D jRxvj
2, for any x 2 @�, we have

MpŒf � � n.x/ D

Z
Rd

jvj2 � d � 2
p
2d

f n.x/ � v dv

D ˛.x/

Z
†xC

jvj2 � d � 2
p
2d

D?fCn.x/ � v dv;

and thereforeˇ̌̌̌Z
@�

MpŒf � � n.x/u d�x

ˇ̌̌̌
.


p˛.2 � ˛/D?fC

@HC


r ˛

2 � ˛
u




L2x.@�/

:

Remarking that
kMpŒf

?�kL2x.�/ . kf ?kH ;

we finally obtain (3.7) by gathering the above estimate on the boundary term together with
(3.9) and (3.10), and using the Cauchy–Schwarz inequality.

We next establish the following result, which gives us a control of the energy � .

Lemma 3.4. There are constants �1; C > 0 such that

h�rxuŒ��;MpŒLf �iL2x.�/ C h�rxuŒ�ŒLf ��;MpŒf �iL2x.�/

> �1k�k
2
L2x.�/

� CkmkL2x.�/kf
?
kH � Ckf

?
k
2
H � C



p˛.2 � ˛/D?fC

2@HC :
Proof. Using (3.7) and (3.6), one has

jh�rxuŒ�ŒLf ��;MpŒf
?�iL2x.�/j . krxuŒ�ŒLf ��kL2x.�/kf

?
kH

. kmkL2x.�/kf
?
kH C kf

?
k
2
H

C


p˛.2 � ˛/D?fC

2@HC ;

which allows us to bound the second term on the left-hand side of the estimate of the
statement. For the first term, writing MpŒLf � DMpŒ�v � rxf �CMpŒCf ?� one obtains

h�rxuŒ��;MpŒLf �iL2x.�/ D T1 C T2

with

T1 WD

�
@xiuŒ��; @xj

Z
Rd
pi .v/vjf dv

�
L2x.�/

and

T2 WD

�
�rxuŒ��;

Z
Rd
p.v/Cf ? dv

�
L2x.�/

:

For the term T2, we remark thatZ
Rd
p.v/Cf ? dv D .f ?;C.p�//L2v.��1/;
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so that from the property (A3) on C and (3.3) we get

jT2j . krxuŒ��kL2x.�/kf
?
kH . k�kL2x.�/kf

?
kH :

For the term T1 we write

T1 D �

�
@xj @xiuŒ��;

Z
Rd
pi .v/vjf dv

�
L2x.�/

C

Z
@�

@xiuŒ��nj .x/

�Z
Rd
pi .v/vj 
f dv

�
d�x

DW AC B:

Using the decomposition (3.8) we getZ
Rd
pi .v/vjf dv D ıij

�
1C

2

d

�
� C

Z
Rd
pi .v/vjf

? dv:

As a consequence, we obtain

A D
�
1C

2

d

�
h��xuŒ��; �iL2x.�/ �

�
@xj @xiuŒ��;

Z
Rd
pi .v/vjf

? dv
�
L2x.�/

D

�
1C

2

d

�
k�k2

L2x.�/
�

�
@xj @xiuŒ��;

Z
Rd
pi .v/vjf

? dv
�
L2x.�/

;

since by definition of uŒ�� we have ��xuŒ�� D � . Because of (3.3), we obtainˇ̌̌̌�
@xj @xiuŒ��;

Z
Rd
pi .v/vjf

? dv
�
L2x.�/

ˇ̌̌̌
. kr2xuŒ��kL2x.�/kf

?
kH

. k�kL2x.�/kf
?
kH :

Thanks to Young’s inequality, we thus get

A >
1

2

�
1C

2

d

�
k�k2

L2x.�/
� Ckf ?k2H :

We now investigate the boundary term B . Thanks to Lemma 3.2 we have

B D

Z
†

rxuŒ�� � p.v/.
f /n.x/ � v dv d�x

D

Z
†C

rxuŒ�� � p.v/˛.x/D
?fCn.x/ � v dv d�x

C

Z
†C

rxuŒ�� � Œp.v/ � p.Rxv/�.1 � ˛.x//D
?fCn.x/ � v dv d�x

C

Z
†C

rxuŒ�� � Œp.v/ � p.Rxv/�DfCn.x/ � v dv d�x

DW B1 C B2 C B3:
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We remark that

p.v/ � p.Rxv/ D 2n.x/.n.x/ � v/
.jvj2 � d � 2/
p
2d

and thus

rxuŒ�� � Œp.v/ � p.Rxv/� D 2rxuŒ�� � n.x/.n.x/ � v/
.jvj2 � d � 2/
p
2d

:

Thanks to the boundary condition satisfied by uŒ��, in the case ˛ � 0, we already obtain
that B D 0. Otherwise, when ˛ 6� 0, recalling (1.7), we first obtain for the term B3 that

B3 D
2c�
p
2d

Z
†C

rxuŒ�� � n.x/�.v/.jvj
2
� d � 2/ Qf .x/.n.x/ � v/2 dv d�x

D
2c�
p
2d

Z
@�

rxuŒ�� � n.x/ Qf .x/

�Z
†xC

.jvj2 � d � 2/�.v/.n.x/ � v/2 dv
�

d�x ;

and the integral in v vanishes, thusB3D 0. For the termB1, the Cauchy–Schwarz inequal-
ity and (3.3) give

jB1j . krxuŒ��kL2x.@�/k˛D
?fCk@HC

. krxuŒ��kH1.�/k˛D
?fCk@HC

. k�kL2x.�/k˛D
?fCk@HC :

For the term B2, the boundary condition satisfied by uŒ�� implies

rxuŒ�� � Œp.v/ � p.Rxv/�.1 � ˛.x// D �
1 � ˛.x/

2 � ˛.x/
˛.x/uŒ��2.n.x/ � v/

.jvj2 � d � 2/
p
2d

;

hence we obtain

jB2j D 2

ˇ̌̌̌Z
†C

uŒ��
.jvj2 � d � 2/
p
2d

˛.x/
1 � ˛.x/

2 � ˛.x/
D?fC.n.x/ � v/

2 dv d�x

ˇ̌̌̌
. kuŒ��kL2x.@�/k˛D

?fCk@HC

. k�kL2x.�/k˛D
?fCk@HC :

We complete the proof by gathering the previous estimates, using Young’s inequality and
remarking that

p
˛.2 � ˛/ > ˛.

3.4. Momentum

In this subsection we construct a functional that is devised to control the momentum com-
ponent of the macroscopic part �f . We denote

mŒg� WD

Z
Rd
vg dv;
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so thatmDmŒf �. We defineU Œm� as the solution to the elliptic equation (2.17) associated
to „ D m 2 L2x.�/ given by Theorem 2.11, whence

kU Œm�kH2
x .�/

. kmkL2x.�/: (3.11)

It is worth noting that in the specular reflection case (˛ � 0 in (1.2)), the condition (3.2)
holds, and therefore the solution U Œm� is indeed well defined.

Considering the matrix qij D .qij /16i;j6d given by

qij .v/ D vivj � ıij ;

we define the associated moment functional MqŒg� D .Mqij Œg�/16i;j6d as

Mqij Œg� D

Z
Rd
.vivj � ıij /g dv: (3.12)

Lemma 3.5. There holds

mŒLf � D �rx% � rx �MqŒf � (3.13)

and

MqŒf � D

r
2

d
�Id CMqŒf

?�: (3.14)

As a consequence of Theorem 2.11, the unique variational solution U ŒmŒLf �� to (2.29)
associated to „ D mŒLf � satisfies

kU ŒmŒLf ��kH1
x .�/

. k%kL2x.�/ C k�kL2x.�/ C kf
?
kH

C


p˛.2 � ˛/D?fC

@HC : (3.15)

Proof. Writing Lf D �v � rxf C Cf ? we already obtain that mŒLf � D mŒ�v � rxf �.
We hence compute, for i 2 ¹1; : : : ; dº,

mi Œ�v � rxf � D �@xj

Z
Rd
vivjf dv

D �@xi

Z
Rd
f dv � @xj

Z
Rd
.vivj � ıij /f dv

D �@xi% � @xjMqij Œf �;

which gives (3.13). Thanks to the decomposition (3.8) we also obtain, for i; j 2 ¹1; : : : ;dº,

Mqij Œf � D %

Z
Rd
.vivj � ıij /� dv Cmk

Z
Rd
.vivj � ıij /vk� dv

C �

Z
Rd
.vivj � ıij /

�
jvj2 � d
p
2d

�
� dv CMqij Œf

?�;
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which gives (3.14) sinceZ
Rd
.vivj � ıij /� dv D

Z
Rd
.vivj � ıij /vk� dv D 0

and Z
Rd
.vivj � ıij /

�
jvj2 � d
p
2d

�
� dv D

r
2

d
ıij :

Now let U WD U ŒmŒLf �� be the unique variational solution to (2.29) associated to
„ D mŒLf � from Theorem 2.11. From Step 1 of the proof of Theorem 2.11, one has

�kU k2
H1
x .�/

6 krsU k2
L2x.�/

C




r ˛

2 � ˛
U



2
L2x.@�/

(3.16)

for some � > 0. Moreover, from (2.29), we obtain

kr
sU k2

L2x.�/
C




r ˛

2 � ˛
U



2
L2x.@�/

D �

Z
�

.rx%Crx �MqŒf �/ � U dx

D

Z
�

%Id W rU dx C
Z
�

MqŒf � W rU dx

�

Z
@�

%n.x/ � U d�x �
Z
@�

MqŒf �n.x/ � U d�x

D

Z
�

%Id W r
sU dx C

Z
�

�r 2

d
�Id CMqŒf

?�
�
W r

sU dx

�

Z
@�

MqŒf �n.x/ � U d�x ; (3.17)

where we have performed an integration by parts in the second equality, and used that
U � n.x/ D 0 since U 2 V˛ and (3.14) in the last one. We now deal with the boundary
term in the last equation. We have, for any x 2 @�,

MqŒf �n.x/ � U D

Z
Rd
vivjf nj .x/Ui dv �

Z
Rd
f ni .x/Ui dv

D

Z
Rd
f .v � U/.n.x/ � v/ dv

D ˛.x/

Z
†xC

D?fC.v � U/.n.x/ � v/ dv

C

Z
†xC

.v �Rxv/ � U.1 � ˛.x//D
?fC.n.x/ � v/ dv

C

Z
†xC

.v �Rxv/ � UDfC.n.x/ � v/ dv;
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using that U � n.x/D 0 and Lemma 3.2 in the last line. Observe now that, for any x 2 @�,
we have

.v �Rxv/ � U D 2.n.x/ � U/.n.x/ � v/ D 0

by using again that the solution verifies U � n.x/ D 0. We hence finally getˇ̌̌̌Z
@�

MqŒf �n.x/ � U d�x

ˇ̌̌̌
.


p˛.2 � ˛/D?fC

@HC


r ˛

2 � ˛
U ŒmŒLf ��





L2x.@�/

:

We conclude (3.15) by gathering this last estimate together with (3.16) and (3.17),
applying the Cauchy–Schwarz inequality and remarking that

kMqŒf
?�kL2x.�/ . kf ?kH :

We now deduce the following result, which gives a control of the momentum m.

Lemma 3.6. There are constants �2; C > 0 such that

h�r
s
xU Œm�;MqŒLf �iL2x.�/ C h�r

s
xU ŒmŒLf ��;MqŒf �iL2x.�/

> �2kmk
2
L2x.�/

� Ckf ?kHk%kL2x.�/ � Ck�kL2x.�/k%kL2x.�/

� Ck�k2
L2x.�/

� Ckf ?k2H � C


p˛.2 � ˛/D?fC

2@HC :

Proof. Thanks to (3.14) and (3.15), we haveˇ̌̌D
�r

s
xU ŒmŒLf ��;

r
2

d
�Id CMqŒf

?�
E
L2x.�/

ˇ̌̌
. krsxU ŒmŒLf ��kL2x.�/.k�kL2x.�/ C kf

?
kH /

.
�
k%kL2x.�/ C k�kL2x.�/ C kf

?
kH C



p˛.2 � ˛/D?fC

@HC�
� .k�kL2x.�/ C kf

?
kH /;

which allows us to bound the second term on the left-hand side of the estimate of the
statement. For the first term we write MqŒLf � DMqŒ�v � rxf �CMqŒCf

?� to obtain

h�r
s
xU Œm�;MqŒLf �iL2x.�/ D T1 C T2;

with

T1 WD

�
.rsxU Œm�/ij ; @xk

Z
Rd
qij .v/vkf dv

�
L2x.�/

and

T2 WD

�
�r

s
xU Œm�;

Z
Rd
q.v/Cf ? dv

�
L2x.�/

:

Observing that Z
Rd
q.v/Cf ? dv D .f ?;C.q�//L2v.��1/;
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we get from (3.11) that

jT2j . krsxU Œm�kL2x.�/kf
?
kH . kmkL2x.�/kf

?
kH :

For the term T1, thanks to an integration by parts, we may write

T1 D �

�
@xk .r

s
xU Œm�/ij ;

Z
Rd
qij .v/vkf dv

�
L2x.�/

C

Z
@�

.rsxU Œm�/ijnk.x/

�Z
Rd
qij .v/vk
f dv

�
d�x

DW AC B:

Thanks to the decomposition (3.8) we getZ
Rd
qij .v/vkf dv D ıjkmi C ıikmj C

Z
Rd
qij .v/vkf

? dv;

and hence

A D 2h� divx.rsxU Œm�/;miL2x.�/ �
�
@xk .r

s
xU Œm�/ij ;

Z
Rd
qij .v/vkf

? dv
�
L2x.�/

D 2kmk2
L2x.�/

�

�
@xk .r

s
xU Œm�/ij ;

Z
Rd
qij .v/vkf

? dv
�
L2x.�/

;

since � divx.rsxU Œm�/ D m by definition of U Œm�. Using (3.11) we haveˇ̌̌̌�
@xk .r

s
xU Œm�/ij ;

Z
Rd
qij .v/vkf

? dv
�
L2x.�/

ˇ̌̌̌
. kr2xU Œm�kL2x.�/kf

?
kH

. kmkL2x.�/kf
?
kH :

We thus obtain, thanks to Young’s inequality,

A > kmk2
L2x.�/

� Ckf ?k2H :

We now investigate the boundary term B . Thanks to Lemma 3.2 we have

B D

Z
†

r
s
xU Œm� W q.v/
f n.x/ � v dv d�x

D

Z
†C

r
s
xU Œm� W q.v/˛.x/D

?fCn.x/ � v dv d�x

C

Z
†C

r
s
xU Œm� W Œq.v/ � q.Rxv/�.1 � ˛.x//D

?fCn.x/ � v dv d�x

C

Z
†C

r
s
xU Œm� W Œq.v/ � q.Rxv/�DfCn.x/ � v dv d�x

DW B1 C B2 C B3;
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and we remark that

q.v/ � q.Rxv/ D 4Œ.n.x/˝ v/
sym
� n.x/˝ n.x/.n.x/ � v/�.n.x/ � v/;

where, for any matrix M 2Md .R/, we set .M sym/ij D
1
2
.Mij CMj i /, so that

r
s
xU Œm� W Œq.v/ � q.Rxv/�

D 4
®
r
s
xU Œm� W .n.x/˝ v/

sym
� r

s
xU Œm� W n.x/˝ n.x/.n.x/ � v/

¯
.n.x/ � v/:

Taking the scalar product with v in the boundary condition satisfied by U Œm�, we see that
we already have B D 0 in the case ˛ � 0. Otherwise, when ˛ 6� 0, we first obtain for the
term B3, making a change of variables v 7! Rxv, using also that .Rxv � n/ D �.v � n/,
and recalling that Df.x; v/ D c��.v/ Qf .x/, that

B3 D 2c�

Z
†

r
s
xU Œm� W q.v/�.v/

Qf .x/n.x/ � v dv d�x

D 2c�

Z
@�

.rsxU Œm�/ijnk.x/
Qf .x/

�Z
Rd
qij .v/vk�.v/ dv

�
d�x D 0;

since the integral in v vanishes. For the term B1, the Cauchy–Schwarz inequality and
(3.11) give

jB1j . krsxU Œm�kL2x.@�/k˛D
?fCk@HC

. kmkL2x.�/k˛D
?fCk@HC :

For the term B2, the boundary condition satisfied by U Œm� implies

r
s
xU Œm� W Œq.v/ � q.Rxv/�.1 � ˛.x// D �

1 � ˛.x/

2 � ˛.x/
4˛.x/.U Œm� � v/.n.x/ � v/;

hence we obtain

jB2j D 4

ˇ̌̌̌Z
†C

.U Œm� � v/
1 � ˛.x/

2 � ˛.x/
˛.x/D?f .n.x/ � v/2 dv d�x

ˇ̌̌̌
. kU Œm�kL2x.@�/k˛D

?fCk@HC

. kmkL2x.�/k˛D
?fCk@HC :

The proof is then completed by gathering previous estimates, using Young’s inequality
and observing that

p
˛.2 � ˛/ > ˛.

3.5. Mass

In this subsection we introduce the last functional, which is built in order to control the
mass component of the macroscopic part �f . We denote

%Œg� WD

Z
Rd
g dv;
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so that % D %Œf �. We consider uNŒ%� the solution to the Poisson equation (2.1) with
Neumann boundary condition associated to � D % 2 L2x.�/ constructed in Theorem 2.2,
namely uNŒ%� satisfies a.e. ´

��xuNŒ%� D % in �;

rxuNŒ%� � n.x/ D 0 on @�;
(3.18)

which is indeed well defined since h%i D 0. In particular, we have

kuNŒ%�kH2
x .�/

. k%kL2x.�/: (3.19)

Lemma 3.7. There holds
%ŒLf � D �rx �m: (3.20)

As a consequence of Theorem 2.2, the unique variational solution uNŒ%ŒLf �� to (2.4) with
Neumann boundary condition associated to � D %ŒLf � satisfies

kuNŒ%ŒLf ��kH1
x .�/

. kmkL2x.�/: (3.21)

Proof. Since Lf D �v � rxf C Cf ?, one has

%ŒLf � D %Œ�v � rxf � D �rx �

Z
Rd
vf dv;

which gives (3.20). Now let u WD uNŒ%ŒLf �� be the unique variational solution to (2.1)
with Neumann boundary condition associated to � D %ŒLf � given by Theorem 2.2. From
the variational formulation (2.4) we have, thanks to an integration by parts,

krxuk
2
L2x.�/

D �

Z
�

.rx �m/u dx

D

Z
�

m � rxu dx �
Z
@�

m � n.x/u d�x

D

Z
�

m � rxu dx;

where we have used that m � n.x/ D 0 in the last equality. We therefore obtain (3.21)
thanks to the Cauchy–Schwarz inequality.

We now establish the following result, which gives a control of the mass %.

Lemma 3.8. There are constants �3; C > 0 such that

h�rxuNŒ%�;mŒLf �iL2x.�/ C h�rxuNŒ%ŒLf ��;mŒf �iL2x.�/

> �3k%k
2
L2x.�/

� C.kmk2
L2x.�/

C k�k2
L2x.�/

C kf ?k2H /

� C


p˛.2 � ˛/D?fC

2@HC :
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Proof. From (3.21) we have

jh�rxuNŒ%ŒLf ��;mŒf �iL2x.�/j . krxuNŒ%ŒLf ��kL2x.�/kmkL2x.�/ . kmk2
L2x.�/

;

which allows us to bound the second term on the left-hand side of the estimate of the
statement. For the first term, writing mŒLf � D mŒ�v � rxf � C mŒCf

?� and observing
that mŒCf ?� D 0, we obtain

h�rxuNŒ%�;mŒLf �iL2x.�/ D

�
@xiuNŒ%�; @xj

Z
Rd
vivjf dv

�
L2x.�/

:

We then write�
@xiuNŒ%�; @xj

Z
Rd
vivjf dv

�
L2x.�/

D �

�
@xj @xiuNŒ%�;

Z
Rd
vivjf dv

�
L2x.�/

C

Z
@�

@xiuNŒ%�nj .x/

�Z
Rd
vivj 
f dv

�
d�x

DW AC B:

Thanks to the decomposition (3.8) we getZ
Rd
vivjf dv D ıij%C ıij

r
2

d
� C

Z
Rd
vivjf

? dv;

and hence

A D h��xuN Œ%�; %iL2x.�/ C

r
2

d
h��xuN Œ%�; �iL2x.�/

�

�
@xj @xiuN Œ%�;

Z
Rd
vivjf

? dv
�
L2x.�/

D k%k2
L2x.�/

C

r
2

d
h��xuN Œ%�; �iL2x.�/

�

�
@xj @xiuN Œ%�;

Z
Rd
vivjf

? dv
�
L2x.�/

;

since ��xuN Œ%� D % by definition of uN Œ%�. Using (3.19) we haveˇ̌̌̌�
@xj @xiuN Œ%�;

Z
Rd
vivjf

? dv
�
L2x.�/

ˇ̌̌̌
. kr2xuN Œ%�kL2x.�/kf

?
kH

. k%kL2x.�/kf
?
kH ;

from which it follows, thanks to Young’s inequality, that

A >
1

2
k%k2

L2x.�/
� Ck�k2

L2x.�/
� Ckf ?k2H :
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We now investigate the boundary term B . Thanks to Lemma 3.2 we have

B D

Z
†

rxuNŒ%� � v
f n.x/ � v dv d�x

D

Z
†C

rxuNŒ%� � v˛.x/D
?fCn.x/ � v dv d�x

C

Z
†C

rxuNŒ%� � Œv �Rxv�.1 � ˛.x//D
?fCn.x/ � v dv d�x

C

Z
†C

rxuNŒ%� � Œv �Rxv�DfCn.x/ � v dv d�x

DW B1 C B2 C B3;

and we remark that
v �Rxv D 2n.x/.n.x/ � v/;

so that
rxuNŒ%� � Œv �Rxv� D 2rxuNŒ%� � n.x/.n.x/ � v/:

Therefore, thanks to the boundary condition satisfied by uNŒ%� in (3.18), we already
obtain B2 D B3 D 0.

In the case ˛ � 0, we also have B1 D 0. Otherwise, when ˛ 6� 0, the Cauchy–Schwarz
inequality and (3.19) yield

jB1j . krxuNŒ%�kL2x.@�/k˛D
?fCk@HC

. k%kL2x.�/k˛D
?fCk@HC :

The proof is then completed by gathering all the previous estimates, using Young’s in-
equality and observing again that

p
˛.2 � ˛/ > ˛.

3.6. Proof of Theorem 1.1

We define the scalar product hh� ; �ii on H by

hhf; gii WD hf; giH

C �1h�rxuŒ�Œf ��;MpŒg�iL2x.�/ C �1h�rxuŒ�Œg��;MpŒf �iL2x.�/

C �2h�r
s
xU ŒmŒf ��;MqŒg�iL2x.�/ C �2h�r

s
xU ŒmŒg��;MqŒf �iL2x.�/

C �3h�rxuNŒ%Œf ��; mŒg�iL2x.�/ C �3h�rxuNŒ%Œg��; mŒf �iL2x.�/

with 0� �3 � �2 � �1 � 1, and where we recall that the moments Mp and Mq are
defined respectively in (3.4) and (3.12); uŒ�Œf �� is the solution of the Poisson equa-
tion (2.1) with data �Œf �; U ŒmŒf �� is the solution to the elliptic system (2.17) with
data mŒf �; uNŒ%Œf �� is the solution to the Poisson equation with homogeneous Neumann
boundary condition (3.18) with data %Œf �, and similarly for the terms depending on g. We
denote by jjj � jjj the norm associated to the scalar product hh� ; �ii, and we observe that

kf kH . jjjf jjj . kf kH :
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Let f satisfy the assumptions of Theorem 1.1. Recalling that we denote % D %Œf �,
m D mŒf � and � D �Œf �, noting that

p
˛.2 � ˛/ > ˛ since ˛ takes values in Œ0; 1�, and

gathering Lemmas 3.1, 3.4, 3.6 and 3.8, one has

hh�Lf; f ii > �kf ?k2H C
1

2



p˛.2 � ˛/D?fC

2@HC
C �1

�
�1k�k

2
L2x.�/

� CkmkL2x.�/kf
?
kH

� Ckf ?k2H � C


p˛.2 � ˛/D?fC

2@HC�

C �2
�
�2kmk

2
L2x.�/

� Ck%kL2x.�/kf
?
kH � Ck%kL2x.�/k�kL2x.�/

� Ck�k2
L2x.�/

� Ckf ?k2H � C


p˛.2 � ˛/D?fC

2@HC�

C �3
�
�3k%k

2
L2x.�/

� Ckmk2
L2x.�/

� Ck�k2
L2x.�/

� Ckf ?k2H � C


p˛.2 � ˛/D?fC

2@HC�:

Thanks to Young’s inequality we have

�1CkmkL2x.�/kf
?
kH 6

�

4
kf ?k2H C C�

2
1kmk

2
L2x.�/

;

�2Ck%kL2x.�/kf
?
kH 6

�

4
kf ?k2H C C�

2
2k%k

2
L2x.�/

;

�2Ck%kL2x.�/k�kL2x.�/ 6
�1�1

2
k�k2

L2x.�/
C C

�22
�1
k%k2

L2x.�/
:

We thus obtain

hh�Lf; f ii >
��
2
� �1C � �2C � �3C

�
kf ?k2H

C

�1
2
� �1C � �2C � �3C

�

p˛.2 � ˛/D?fC

2@HC
C

��1�1
2
� �2C � �3C

�
k�k2

L2x.�/

C .�2�2 � �
2
1C � �3C/kmk

2
L2x.�/

C

�
�3�3 � �

2
2C �

�22
�1
C
�
k%k2

L2x.�/
:

We now choose �1 WD �, �2 WD �
3
2 , �3 WD �

7
4 , and we deduce

hh�Lf; f ii >
��
2
� �C

�
kf ?k2H C

�1
2
� �C

�

p˛.2 � ˛/D?fC

2@HC
C �

��1
2
� �

1
2C
�
k�k2

L2x.�/
C �

3
2 .�2 � �

1
4C/kmk2

L2x.�/

C �
7
4 .�3 � �

1
4C/k%k2

L2x.�/
:



Hypocoercivity in bounded domains 329

Choosing 0 < � < 1 small enough, we get

hh�Lf; f ii > �.kf ?k2H C k%k
2
L2x.�/

C kmk2
L2x.�/

C k�k2
L2x.�/

/

C �0


p˛.2 � ˛/D?fC

2@HC

for some constants �; �0 > 0. We conclude the proof of Theorem 1.1 since

kf ?k2H C k%k
2
L2x.�/

C kmk2
L2x.�/

C k�k2
L2x.�/

D kf k2H

and k � kH is equivalent to jjj � jjj.

4. Weakly coercive operators

In this section we extend our method to the case in which the collision operator C is weakly
coercive, that is, it satisfies assumption (A20) below which is weaker than the coercive
estimate of assumption (A2) in Section 1.1.

In this situation we do not expect to obtain an exponential decay but only a subex-
ponential decay supposing further integrability/regularity properties of the initial data; in
other words, the semigroup associated to the full linear operator L is not uniformly expo-
nentially stable but only strongly stable.

These weakly coercive operators arise naturally in several classes of evolution PDEs.
In the setting of control theory and wave-type equations we refer to the works [2, 20,
64–66] and the references therein, in which the energy of the equation is shown to decay
with non-exponential rate. These results then inspired an abstract theory for strongly stable
semigroups. We refer to [10–12] and the references therein, where such a line of research
is developed.

In the framework of kinetic equations, the works [21, 22] have established the subex-
ponential decay of the semigroup associated to the linearized cutoff Boltzmann equation
with soft potentials. We also refer to [78,79] which establish decay estimates for the non-
cutoff Boltzmann and Landau equations with very soft potentials, as well as [26] for the
Landau equation. All these results are established in the torus or the whole space, and, to
the best of our knowledge, the only works concerning domains with boundary conditions
are the recent results of [51] for the Landau equation with specular reflection boundary
condition, and [42] for non-cutoff Boltzmann and Landau equations in a finite channel
with specular reflection or inflow boundary conditions. Concerning Fokker–Planck equa-
tions and kinetic Fokker–Planck equations we mention [60, 75] and [24], as well as the
references therein. We also mention the results concerning degenerate linear transport
equations [13, 23, 32], as well as degenerate linear Boltzmann equations [54]. Finally, the
free transport equation with diffusive or Maxwell boundary condition has been tackled in
[3, 14, 63] for instance.
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We assume in this section that the operator C satisfies (A1) on L2v.�
�1/, as well as the

following properties:

(A20) The operator is self-adjoint on L2v.�
�1/ and negative .Cf; f /L2v.��1/ 6 0, so

that its spectrum is included in R�, and (1.11) holds true for any g 2 Dom.C/.
We assume further that C satisfies a weak coercivity estimate: there is a posi-
tive constant � > 0 and a radially symmetric function !0WRd ! Œ1;1/ with
limjvj!1 !0.v/ D1 such that for any f 2 Dom.C/ one has

.�Cf; f /L2v.��1/ > �kf ?k2
L2v.!

�1
0 ��1/

;

where f ? WD f � �f .

(A30) For any polynomial function � D �.v/WRd ! R of degree 6 4, one has �� 2
Dom.C/ with

kC.��/kL2v.!0��1/ <1;

and, for some positive constant C > 0, for all f 2 Dom.C/,ˇ̌̌̌Z
Rd
�.v/f ? dv

ˇ̌̌̌
6 Ckf ?kL2v.!�10 ��1/:

(A4) There exists a radially symmetric function!1WRd! Œ1;1/with limjvj!1!1.v/
D1 and a positive constant C > 0 such that for any f 2 Dom.L/ one has

hLf; f iL2x;v.!1��1/ 6 Ckf k2
L2x;v.!

�1
0 ��1/

:

We recall that H D L2x;v.�
�1/ and in this section we will also use the following

notation: H0 WD L
2
x;v.!

�1
0 ��1/ and H1 WD L

2
x;v.!1�

�1/. We now remark that we have

kf ?k2H0
C k�f k2H0

. kf k2H0
. kf ?k2H0

C k�f k2H0

and
k�f k2H0

. k%k2
L2x.�/

C kmk2
L2x.�/

C k�k2
L2x.�/

. k�f k2H0
:

Repeating the proof of Theorem 1.1 with the above assumptions we obtain the follow-
ing theorem:

Theorem 4.1. There exists a scalar product hh� ; �iiH on the space H so that the associated
norm jjj � jjjH is equivalent to the usual norm k � kH , and for which the linear operator L
satisfies the following weak coercivity estimate: there is a positive constant � > 0 such
that one has

hh�Lf; f iiH > �kf k2H0

for any f 2 Dom.L/ satisfying the boundary condition (1.2), assumption (C1) and fur-
thermore assumptions (C2)–(C3) in the specular reflection case (˛ � 0 in (1.2)).

As a consequence of the weak coercivity estimate for L, we obtain the following result
of subexponential decay to equilibrium.
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Theorem 4.2. Let fin 2H1 satisfy condition (C1) and furthermore (C2)–(C3) in the spec-
ular reflection case (˛� 0 in (1.2)). There exist a positive constantC >0 and a decreasing
function # WRC ! RC with limt!1 #.t/ D 0 such that for any solution f to (1.1)–(1.2)
(with C satisfying (A1)–(A20)–(A30)–(A4) above) associated to the initial data fin, there
holds

kf .t/kH 6 C#.t/kfinkH1
8t > 0:

Proof. Let f be a solution to (1.1)–(1.2) associated to fin 2 Dom.L/; the general case
when fin 2H1 is then deduced by the usual density argument. Thanks to Theorem 4.1 we
have

d
dt
jjjf .t/jjj2H D hhLf .t/; f .t/iiH 6 ��kf .t/k2H0

: (4.1)

Note that for any R > 0 we have the following interpolation inequality:

kgk2H 6 !0.R/kgk
2
H0
C

1

!1.R/
kgk2H1

: (4.2)

Moreover, we claim that there is a constant C > 0 such that

kf .t/kH1
6 CkfinkH1

: (4.3)

Indeed, for ı > 0 small enough, we define the following scalar product on H1

hhf; giiH1
WD ıhf; giH1

C hhf; giiH :

Gathering (A4) and Theorem 4.1 we obtain

hhLf; f iiH1
6 .ıC � �/kf k2H0

6 0;

which implies the claim by observing that the norm associated to hh� ; �iiH1
is equivalent to

the standard norm on H1.
From (4.1), (4.2) and (4.3), we therefore deduce

d
dt
jjjf .t/jjj2H 6 �

�

!0.R/
kf .t/k2H C

�

!0.R/!1.R/
kf .t/k2H1

6 �
c�

!0.R/
jjjf .t/jjj2H C

�C

!0.R/!1.R/
kfink

2
H1

for some constant c > 0, where in last line we have used that jjj � jjjH and k � kH are
equivalent, and the above claim. From the above inequality it follows that

jjjf .t/jjj2H 6 exp
�
�

c�

!0.R/
t
�
jjjfinjjj

2
H C

C

c!1.R/
kfink

2
H1

6
°

exp
�
�

c�

!0.R/
t
�
C

C

c!1.R/

±
kfink

2
H1
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for any R > 0. Defining

#.t/ WD
�

inf
R>0

°
exp

�
�

c�

!0.R/
t
�
C

C

c!1.R/

±� 1
2
;

we hence obtain
jjjf .t/jjjH 6 #.t/kfinkH1

;

which concludes the proof, using again that jjj � jjjH and k � kH are equivalent.

5. Hydrodynamic limits

In this part we study the following rescaled problem:

@tf D L"f WD �
1

"
v � rxf C

1

"2
Cf in .0;1/ �O; (5.1)


�f D R
Cf on .0;1/ �†; (5.2)

with " 2 .0; 1�, C satisfying assumptions (A1), (A2) and (A3) introduced in Section 1.1
and the boundary condition (5.2) being the same as (1.2) described in Section 1.1. The
motivation to study this problem comes from the issue of deriving the incompressible
Navier–Stokes–Fourier system from kinetic equations. Indeed, it is well known (see [8])
that in order to reach this goal, we introduce the dimensionless Knudsen number " and the
problem reduces to the analysis of the equation

@tF
"
D L"F

"
C
1

"
Q.F "; F "/ (5.3)

with
L"f D �

1

"
v � rxf C

1

"2
Cf; Cf WD Q.�; f /CQ.f;�/:

Then, in order to derive the incompressible Navier–Stokes–Fourier limit from kinetic
equations, the purpose is to prove that, as " goes to 0, a solution F " to (5.3) converges
towards some limit that depends on time and space variables only through macroscopic
quantities that are solutions to the incompressible Navier–Stokes–Fourier system. The
starting point of this study is the analysis of the linearized problem (5.1) and our method
is robust enough to treat this rescaled problem. More precisely, we are able to provide a
result of large time stability for the linear problem (5.1)–(5.2) uniformly with respect to
the parameter " > 0.

The problem of deriving the incompressible Navier–Stokes equation from the Boltz-
mann equation has been largely studied in the framework of weak solutions (renormalized
for the Boltzmann equation and Leray type for the Navier–Stokes one) in the torus, the
whole space or bounded domains. We do not make an extensive presentation here of this
type of result but just mention [7, 8] in which this program has been initiated and [47]
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in which the first complete proof of convergence has been obtained in the whole space.
We also mention [58, 68, 76] in which the problem has been treated in bounded domains
starting from the renormalized solutions constructed in [71].

Concerning the case of strong solutions, we mention [9,31] and the more recent [1,16,
19,46,59,74], which are all framed in the torus and/or the whole space. To our knowledge,
no derivation result is available for strong solutions in a bounded domain. The study of
this derivation will be the subject of a forthcoming work. We focus here on the study of
the linearized rescaled problem (5.1)–(5.2).

We give here an adapted version of Theorem 1.1 in our new rescaled framework:

Theorem 5.1. There exists a scalar product hh� ; �ii" on the space H so that the associated
norm jjj � jjj" is equivalent to the usual norm k � kH uniformly in "2 .0;1�, and for which the
linear operator L" satisfies the following coercivity estimate: there is a positive constant
� > 0 such that for any " 2 .0; 1�, one has

hh�L"f; f ii" > �jjjf jjj2" C
�

"2
kf ?k2H

for any f 2 Dom.L/ satisfying the boundary condition (5.2), assumption (C1) and fur-
thermore assumptions (C2)–(C3) in the specular reflection case (˛ � 0 in (1.2)).

Sketch of the proof of Theorem 5.1. Using the same notation as in Section 3.6, we intro-
duce the following scalar product on H :

hhf; gii" WD hf; giH

C �1"h�rxuŒ�Œf ��;MpŒg�iL2x.�/ C �1"h�rxuŒ�Œg��;MpŒf �iL2x.�/

C �2"h�r
s
xU ŒmŒf ��;MqŒg�iL2x.�/ C �2"h�r

s
xU ŒmŒg��;MqŒf �iL2x.�/

C �3"h�rxuNŒ%Œf ��; mŒg�iL2x.�/ C �3"h�rxuNŒ%Œg��; mŒf �iL2x.�/;

with 0� �3� �2� �1� 1 chosen as in the proof of Theorem 1.1. We denote by jjj � jjj"
the norm associated to the scalar product hh� ; �ii", and we observe that

kf kH . jjjf jjj" . kf kH ;

where the multiplicative constants are uniform in " 2 .0; 1�. The norms k � kH and jjj � jjj"
are thus equivalent independently of " 2 .0; 1�. Repeating the proof of Theorem 1.1, we
obtain the desired result.

Using this equivalence of norms once more, we are able to prove the following stability
result for our equations (5.1)–(5.2) uniformly in " 2 .0; 1�:

Theorem 5.2. Let f "in 2H satisfy condition (C1) and furthermore (C2)–(C3) in the spec-
ular reflection case (˛ � 0 in (1.2)). There exist positive constants �; C > 0 independent
of " 2 .0; 1� such that for any solution f " to (5.1)–(5.2) associated to the initial data f "in ,
for any " 2 .0; 1� and for any t > 0, there holds

kf ".t/kH 6 Ce��tkf "inkH and
1

"2

Z 1
0

k.f "/?.s/k2He
2�s ds 6 Ckf "ink

2
H :
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Remark 5.3. Notice that we can perform the same analysis to extend the result of this
section to operators that satisfy a weak coercivity estimate as in Section 4. Namely, one can
obtain subexponential decay of the solution f " to (5.1)–(5.2), that is uniform in " 2 .0; 1�,
when the collision operator C involved in (5.1) satisfies assumptions (A1), (A20), (A30)
and (A4) of Section 4.
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