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Equivariant heat and Schrödinger flows from
Euclidean space to complex projective space

James Fennell

Abstract. We study the equivariant harmonic map heat flow, Schrödinger maps equation, and gen-
eralized Landau–Lifshitz equation from Cn to CPn. By means of a careful geometric analysis, we
determine a new, highly useful representation of the problem in terms of a PDE for radial functions
from Cn to S2. Using this new representation, we are able to write explicit formulas for the har-
monic maps in this context, and prove that they all have infinite energy. We show that the PDEs admit
a family of self-similar solutions with smooth profiles; these solutions again have infinite energy,
and give an example of regularity breakdown. Then, using a variant of the Hasimoto transforma-
tion applied to our new equation for the dynamics, we prove a small-data global well-posedness
result when n D 2. This is, to the best of our knowledge, the first global well-posedness result for
Schrödinger maps when the complex dimension of the target is greater than 1.

In the final section we study a special case of the harmonic map heat flow corresponding to
initial data valued in one great circle. We show that the n D 2 case of this problem is a borderline
case for the standard classification theory for PDEs of its type.

1. Introduction

The harmonic map heat flow and the Schrödinger maps equations are natural generaliza-
tions of the linear heat and Schrödinger equations where the domain and range of the func-
tions considered are manifolds and the Euclidean partial derivatives are replaced by covari-
ant derivatives. In this article we will be exclusively discussing the setting when the base
space is some Euclidean space Rd and the target is a Kähler manifold N with complex
structure J . The energy of a map uWRd ! N is defined by E.u/ D .1=2/

R
Rd jduj

2 dV .
The Euler Lagrange operator �.u/ corresponding to E is calculated, in coordinates, to
be �.u/ D

Pd
kD1Dk@ku, where the Dk operators are covariant derivatives on N . The

harmonic map heat flow is then the Cauchy problem given by

ut D �.u/ D
X
k

Dk@ku; u.0/ D u0; (1)

while the Schrödinger maps equation is the Cauchy problem given by

ut D J�.u/ D J
X
k

Dk@ku; u.0/ D u0: (2)
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One can also consider the generalized Landau–Lifshitz (GLL) equation, defined for ˛ 2
Œ0;1/ and ˇ 2 R by

ut D .˛ C ˇJ /�.u/ D .˛ C ˇJ /
X
k

Dk@ku; u.0/ D u0I (3)

this corresponds, when the range is C, to the PDE ut D .˛ C iˇ/�u. Let us emphasize
that the linearity of the equations in the familiar case when the target is C is special: in
general these problems are non-linear because of curvature.

The harmonic map heat flow is a well-known and extensively studied problem. It was
introduced in [7] as a tool for studying the existence of harmonic maps. These are maps
which satisfy �.u/ D Dk@ku D 0 and correspond to stationary solutions of all of the
problems above. Vast work has been done on the harmonic map heat flow in the subsequent
years; see, for example, [16] for a textbook treatment. We mention only that it has been
shown that for general N uniqueness of the harmonic map heat flow does not hold, and
that one way to demonstrate non-uniqueness is through studying self-similar solutions, as
is done in [9, 10]. This approach is used to prove a non-uniqueness result for the case of
the flow for maps from C2 Š R4 to CP2; see Section 5 below.

As opposed to the harmonic map heat flow, the Schrödinger maps equation (2) has
been much less studied in general. For the setting we are considering here, that of the flow
for maps uWRd ! N , local well-posedness in the Sobolev space H l .Rd IN/ for integer
l > d=2C 1 is established in [17]. One can see by scaling that PHd=2 is critical for the
problem, and significant work has been done on proving global well-posedness in this and
other critical spaces in the special case when the target is the sphere N D S2 [1, 3, 4, 13].

The case of the sphere is particularly attractive for two reasons. First, given the usual
embedding S2�R3, the Schrödinger maps equation becomes quite explicit. In this frame-
work, the complex structure at the point u is simply given by the cross product in R3,
Jw D u �w. The derivative term is calculated to be

P
kDk@kuD �uC jruj

2u, where
� and r are the Laplacian and gradient operators for functions from Rd to R3. The
Schrödinger maps equation thus becomes

ut D u � .�uC jruj
2u/; x 2 Rd ; u.x/ 2 S2 � R3: (4)

The second reason this case of the Schrödinger maps equation is appealing is that it is
physically relevant. Equation (4) is used to describe the dynamics of ferromagnetic spin
systems, and is known in the physics community as the Heisenberg model. It is a special
case of the equation

ut D .˛ C ˇu�/.�uC jruj
2u/; x 2 Rd ; (5)

which is the Landau–Lifshitz–Gilbert equation and is used to study the direction of mag-
netism in a solid. (The survey article [15] discusses the physical relevance of these equa-
tions.) Equation (5) corresponds precisely to the GLL equation (3) in the case of maps
uWRd ! S2. The work on small-data existence and uniqueness in a critical space for the
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Schrödinger maps equation in this case of the sphere culminated in [3], which furnished a
global critical small-data well-posedness result in the Sobolev space PHd=2.

A large body of work has been devoted to the sphere problem when the domain is
R2. The critical space is PH 1, so the problem in this dimension is energy critical. It is
also tractable to study because one can make an equivariant ansatz and thereby study a
subproblem of the flow as a whole. The equivariant ansatz involves studying solutions of
the form u.r;�/D em�Rf .r/, where f .r/2R3,m2Z, andR is the generator of rotations
about the z-axis and given by the matrix

R D

0@ 0 1 0

�1 0 0

0 0 0

1A :
The overall picture that has developed can be described in terms of the harmonic maps,
which have finite energy in this context, and whose existence is generally seen as a bar-
rier to global well-posedness. In the case of radial maps, m D 0, there are no non-trivial
harmonic maps and a global existence result for arbitrarily sized data in H 2 has been
established [12]. In the case when m D 1, the lowest energy level of the non-trivial har-
monic maps is 4� ; for initial data with energy strictly smaller than this, global existence
has been shown to hold [2]. On the other hand, in [18], a set of initial data with energy
arbitrarily close to 4� is constructed which generates finite time blow-up solutions. (This
paper resolved the long-standing question of whether finite energy initial data could lead
to finite time blowup.) Finite time blow-up solutions are also constructed in [19]. For
m � 3, it has been shown that if the initial data has energy close to that of the harmonic
maps then the solution is, in fact, global [12].

Still in dimension 2, the equivariant ansatz can be made under the more general
assumption that the target N is a complex surface with an S1 symmetry. This was orig-
inally done in [5], where a critical well-posedness theory for equivariant data small in
PH 1 was developed. Under the same equivariant ansatz, [11] do not pursue the Sobolev

theory, and instead study the self-similar solutions of the flow. These are solutions of the
form u.x; t/D  .x=

p
jt j/ for a profile  . A family of such solutions with C1 profiles is

constructed, giving an example of regularity breakdown: these solutions are smooth at all
times t ¤ 0 but not smooth at t D 0. The study of these self-similar solutions is supple-
mented with a global critical small-data well-posedness theorem in a Lorentz space that is
shown to include the self-similar data.

When the dimensions of the range and domain are larger than 2, but the same, it is
still possible to formulate an equivariant ansatz, as will be shown in detail below. For the
case of the Schrödinger maps equation for maps uWCn ! CPn, this equivariant ansatz is
considered in [6], where the existence of self-similar solutions is established.

The primary purpose of the present paper is to expand upon this previous work on
the equivariant Cn to CPn case, with a particular interest in establishing a global well-
posedness theorem. Our central result is a new equation for the dynamics in this case (7).
This new equation is similar in structure to the GLL equation for maps to the sphere (5),
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and thus immediately opens up the possibility of applying research ideas developed for
the sphere problem to the present context. Our global well-posedness result in Section 4
in the case n D 2 is an example of this in practice.

1.1. Overview of the results

1.1.1. The equivariant ansatz and derivation of the equation. We consider maps
vWCn ! CPn, where CPn is equipped with the Fubini–Study metric, for n � 2. The
n D 1 case is the usual problem of R2 to the sphere because CP1 with the Fubini–Study
metric is isometric to S2. In what follows, n is the complex dimension and d D 2n is the
real dimension.

Recall that CPn can be viewed in terms of the homogeneous coordinates as points
.z0; z1; : : : ; zn/ 2 CnC1 under the identification Œz0; z1; : : : ; zn� D Œ˛z0; ˛z1; : : : ; ˛zn�

for all ˛ 2 Cn¹0º. Given a complex isometry A of Cn we can construct an isometry QA
of CPn by the formula QAŒz0; z1; : : : ; zn� D Œz0; A.z1; : : : ; zn/�; that is, we let A act on
the last n coordinates in the homogeneous representation. A map vWCn ! CPn is said
to be equivariant if v.Az/ D QAv.z/ for all isometries A of Cn and all points z 2 Cn.
This ansatz is formally conserved by the flow. This assumption is strong and, as we show,
implies that v is in fact of the form v.z/ D v..z1; : : : ; zn// D Œz0; f .r/z1; : : : ; f .r/zn�,
where r D jzj and f WRC!C. We observe that for any x 2R we have v..x; 0; : : : ; 0//D
Œz0; f .r/x; 0; : : : ; 0�, or namely that

v.RCe1/ �
®
Œz0; z1; 0; : : : ; 0� W z0; z1 2 C

¯
' CP1;

so the image of a real ray is contained in a complex line. The Fubini–Study metric of
CPn restricts to the Fubini–Study metric on this CP1, so in fact the image of v.RCe1/ is
contained in a manifold isometric to S2. The idea, now, is to parameterize this sphere in
the usual embedding S2 � R3 and determine an equation on u.r/ D v.re1/ 2 S2. From
the equivariant ansatz we can recover v from u.

By a computation we determine that the energy of v is given in terms of uWCn ! S2

by the formula

E.u/ D
1

2

Z
R2n

�
jur j

2
C
u21 C u

2
2 C .2n � 2/ju � e3j

2

r2

�
dx; (6)

where ju� e3j is the Euclidean distance in R3 between u and the north pole of the sphere
e3, and jur j is the Euclidean norm in R3 of ur . Observe that in the case nD 1, we recover
the usual energy for the equivariant R2 ! S2 problem, as we would expect. (See, for
example, [2, p. 2].) For n � 2, one determines that any function u with finite energy is
continuous and has a limit as r !1; by inspecting the energy one sees that this limit
must be the north pole e3.

The harmonic map heat flow, the Schrödinger maps equation, and the GLL equation
for this equivariant case are now determined by calculating the variation of the energy. We
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find that the GLL equation is given by

ut D .˛P C ˇu�/
�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
; (7)

where P is the projection onto the tangent space TuS2 and u3 D hu; e3i. The harmonic
map heat flow corresponds to ˛ D 1 and ˇ D 0, while the Schrödinger maps equation
corresponds to ˛ D 0 and ˇ D 1. This representation of the problem appears to be new. Its
similarity to the corresponding equation for maps to the sphere is precisely what makes it
so useful: it immediately opens up the possibility of applying some of the techniques that
have been developed for the case of the sphere to the present setting too.

By taking the stereographic projection from the north pole f .r/D .u1.r/C iu2.r//=
.1C u3.r// we determine the stereographic representation of the problem

ft D .˛ C ˇi/
�
frr �

2 Nf f 2r
1C jf j2

C
2n � 1

r
fr �

2n � 1

r2
f C

1

r2
2jf j2f

1C jf j2

�
; (8)

where the function here is a radial map f WR2n ! C. From this representation we see
right away that the harmonic maps – that is, the stationary solutions – are given explicitly
in this context by f .r/ D ˛r for any ˛ 2 C. In the terms of the sphere coordinates, the
harmonic maps are given by a type of stereographic projection,

u.r/ D
1

1C j˛j2r2

�
2Re.˛/r; 2 Im.˛/r; 1 � j˛j2r2

�
: (9)

Again, this is consistent with the n D 1 case, where the equivariant harmonic maps from
R2 to S2 are known to be stereographic projections. What is remarkable is that the analytic
expressions for the harmonic maps are independent of n. This seems to suggest that, from
the perspective of the theory of harmonic maps, CPn is the natural higher-dimensional
analog of S2.

However there is a difference for n� 2: observe that from (9) we have limr!1 u.r/D

�e3, and so we find, by previous remarks on the energy, that in this equivariant context all
of the non-trivial harmonic maps have infinite energy.

1.1.2. Self-similar solutions. After deriving the equation describing the dynamics, we
first study the self-similar solutions of the problem for n� 2, which are given by u.r; t/D
 .r=

p
t / for a profile  .r/ D u.r; 1/. By substituting this ansatz into (7) we determine

the following ODE system on  :

0 D .˛P C ˇ �/
�@2 
@r
C

�2n � 1
r
C
r

2

�@ 
@r
C
2n � 2C  3

r2
e3

�
; (10)

 .0/ D e3;

 0.0/ D v D .v1; v2; 0/ 2 Te3S
2:

As mentioned previously, the self-similar solutions for the Schrödinger maps equation in
this equivariant setting have already been studied in [6]. However, using the representation
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(10) we are able to simplify the analysis significantly. We are also able to extend the
analysis by gaining more information on the convergence of the self-similar profile, and
by treating the general GLL equation as well as the Schrödinger maps equation.

Theorem 1.1. Fix n � 2, ˛ � 0, and ˇ 2 R. For every v 2 Te3S
2 there is a unique global

solution to (10). The solution is smooth for r > 0. In the non-trivial case, when v ¤ 0, the
solution has the following properties:

(1) For all r > 0,  .r/ ¤ e3.

(2) If ˛ > 0 then j r j . 1=r3. If ˛ D 0 then r j r j ! 0 as r !1.

(3) If v ¤ 0, there exists a point  1 2 S2,  1 ¤ e3, such that limr!1 .r/ D  1.
Consequently, E. / D1.

(4) The limit  1 depends continuously on v; in particular, limv!0  1 D e3.

Our proof shows that the theorem also holds for n D 1 if ˛ > 0.
Because of the convergence, we see that u.r; t/ D  .r=

p
t / is a solution of the GLL

flow corresponding to the initial data u.r; 0/ �  1.
Notice that in the case ˛ > 0 – that is, when there is some dissipation – we are able to

prove faster convergence to 0 of  r . In the case of the Schrödinger maps equation (˛ D 0)
the rate of convergence of  r is insufficient to guarantee the convergence of  , so an
additional argument is needed.

1.1.3. Global critical well-posedness. We next illustrate how methods for proving well-
posedness of the Schrödinger maps equation for the sphere may be adapted to prove well-
posedness of (7). We specifically adapt the Hasimoto transformation method from [5]. For
a smooth solution u.r; t/ of (7) and a fixed time t , the map r 7! u.r; t/ defines a curve on
S2 starting at e3. Choose any element e 2 Te3S

2 and consider the parallel transport e.r/
of this curve along r 7! u.r; t/. Because the tangent space at the point u.r; t/ of the sphere
is two-dimensional, it is spanned by e.r/ and Je.r/ D u � e.r/. We may therefore define
a complex-valued function q by the formula

Re.q/e.r/C Im.q/Je.r/ D qe.r/ D ur ; (11)

precisely as in [5]. This equation is known as the Hasimoto transformation. It is chosen
so that the function q will satisfy a “nice” non-linear Schrödinger equation, namely, an
equation where the non-linearity does not contain derivatives. We derive the equation on
q for all n, and in the case n D 2 – that is, for the equivariant GLL maps equation from
C2 to CP2 – we provide the necessary estimates to prove the following small-data critical
global well-posedness result.

Theorem 1.2. Fix p 2 Œ1; 2�. Define r by 1=r D 1=2 � 1=6p and the spaces X and X0
by the norms

kqkX D krqkL3pt Lrx
and kqkX0 D ke

it�.aq/kX ;
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where a.x/ D x1=r . There exists " > 0 such that if u0WR2n ! S2 is radial, q0 is defined
by (11), and kq0kX0 � ", there is a unique global solution of the GLL equation (7) for
ˇ > 0 for n D 2 with the derivative term q in the space X .

Some remarks:

• This is, to the best of our knowledge, the first global well-posedness result for the
Schrödinger maps equation where the target manifold has complex dimension greater
than 1.

• The space X is at the scaling level of the equation.

• Because .3p; r/ is an admissible exponent pair for the Strichartz estimates for the
Schrödinger equation, we have kqkX0 . kr.aq/kL2 . krqkL2 and hence data q0
whose derivative is small in L2 are included in the well-posedness result.

• For n>2we are unable to provide the estimates to close the argument in an elementary
way. A global well-posedness result for arbitrary n, proved using the Hasimoto trans-
form or another method adapted from the research on the Schrödinger maps equation
for the sphere, would be very satisfactory.

1.1.4. The “real” heat flow case. We finally study an interesting subproblem of the
general equation (7) corresponding to the harmonic map heat flow with an additional
condition on the initial data. Recall that for the linear heat equation, if one starts with
real-valued data then the solution will be real valued for all time. On the other hand, if
one starts the linear Schrödinger equation with real-valued data then the solution will, in
general, be complex valued for future times. This shows that in the heat flow case there is
a lower-dimensional subproblem when one restricts to real-valued data.

In our context, the analogous fact is that if one starts the harmonic map heat flow (7)
with initial data valued in a great circle passing through the north pole, the solution will
continue to be valued on the same great circle for future times. For the GLL flow this is not
true: the solution will spread out to the whole sphere. For the harmonic map heat flow one
can thus fix a great circle and consider the problem for initial data valued on that circle.
One expects the analysis of this subproblem to be easier as the dimension of the problem
is reduced. However, because both the harmonic maps and the self-similar solutions are
solutions of this type, it is still an interesting case to consider.

By parameterizing the great circle by its spherical distance from the north pole, one
finds that the “real” heat flow is given by the PDE

gt D
@2g

@r2
C
2n � 1

r

@g

@r
C
�.g/

r2
; (12)

where �.g/ D sin.2g/C .2n � 2/ sin.g/. Equations of this type, which arise in the study
of the equivariant harmonic map heat flow on spherically symmetric manifolds, have been
extensively studied [9, 10]. There is a general theorem which, based on the structure of
�, classifies the PDE into a uniqueness regime or a non-uniqueness regime. Our primary
purpose here is to show that for nD 2 – that is, the problem of maps from C2 to CP2 – the
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PDE (12) is a borderline case for this classification theorem. We find that the dynamics of
the PDE share some of features of the uniqueness regime, and some of the features of the
non-uniqueness regime, but ultimately that non-uniqueness holds.

Theorem 1.3. (i) For n D 2 there is a weak non-constant solution of (12) corre-
sponding to the initial data g0.r/ � � . This solution is distinct from the constant
solution g.r; t/ � � .

(ii) In the case n � 3, for each initial data in L1 and each T > 0, there is at most
one solution of (12) in L1.Œ0; T �; L1/.

2. The equivariant ansatz and derivation of the equation

2.1. The equivariant ansatz

We consider maps vWCn ! CPn. In order to rigorously describe the equivariant ansatz,
we recall more carefully the construction of CPn. One begins with vectors z D .z0;

z1; : : : ; zn/ 2 CnC1n¹0º and first identifies points z � �z where � 2 Rn¹0º. The result-
ing equivalence classes can be identified with points on the sphere S2nC1 � CnC1. This
sphere has the usual metric induced from CnC1. Now one defines the equivalence relation
z � ei�z for � 2R, and defines CPn D S2nC1=�. The Fubini–Study metric is the metric
induced from S2nC1.

To make the equivariant ansatz, we first construct a special class of isometries on CPn

in the following way. Take any complex isometry A of Cn, and define OAWCnC1 ! CnC1

by
OA.z0; z1; : : : ; zn/ D .z0; A.z1; : : : ; zn//I

that is, A acts on the last n coordinates of a point in CnC1. If A is a complex isometry of
Cn, then OA is clearly a complex isometry of CnC1. Now define a map QA on CPn through
the homogeneous coordinates by

QAŒz0; z1; : : : ; zn� D Œ OA.z0; z1; : : : ; zn/� D Œz0; A.z1; : : : ; zn/�: (13)

The map QA is well defined because A commutes with complex scalar multiplication.

Lemma 2.1. If A is a complex isometry of Cn then QA defined by (13) is an isometry of
CPn.

Proof. We have

dCPn. QAŒv�; QAŒw�/ D dCPn.Œ OAv�; Œ OAw�/ D min
˛;ˇ2Œ0;2��

dS2nC1.e
i˛ OAv; eiˇ OAw/

D min
˛;ˇ2Œ0;2��

2 arcsin
�
1
2
dCnC1.ei˛ OAv; eiˇ OAw/

�
D min
˛;ˇ2Œ0;2��

2 arcsin
�
1
2
dCnC1.ei˛v; eiˇw/

�
D dCPn.Œv�; Œw�/;
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where in the second to last equality we used that OA commutes with ei� and that OA is an
isometry of CnC1.

We say a map vWCn! CPn is equivariant if v.Az/ D QAv.z/ for all complex isome-
tries A of Cn. We now show that this assumption implies a strong rigidity on v. Take
any z 2 Cn and write v.z/ D Œw0; w� for some w0 2 C and w 2 Cn. Now consider any
isometry A that fixes z. By the equivariant ansatz and Az D z we have

Œw0; Aw� D QAu.z/ D u.Az/ D u.z/ D Œw0; w�;

which implies that Aw D w, so A also fixes w. Because A is an arbitrary isometry that
fixes z, we must in fact havewD f .z/z for some f .z/2C, and hence v.z/D Œw0;f .z/z�
for all z. Moreover, we have

Œw0; f .Az/Az� D v.Az/ D QAv.z/ D Œw0; A.f .z/z/� D Œw0; f .z/Az�;

so f .Az/D f .z/. Because this holds for all isometries A, f .z/ is in fact a radial function
and hence

v.z/ D Œw0; f .jzj/z� (14)

for some function f WRC ! C.
We now observe that if r 2 RC then v.re1/ D Œw0; f .r/r; 0; : : : ; 0�. In other words,

v.RCe1/ � ¹Œw0; w1; 0; : : : ; 0� W w0; w1 2 Cº ' CP1:

The Fubini–Study metric on CPn restricts to the Fubini–Study metric on CP1, and so
this CP1 is isometric to the sphere S2. Moreover, the complex structure of CPn restricts
to the standard complex structure of CP1. In the usual embedding S2 � R3 this is given,
as is well known, by Jw D u � w at the point u 2 S2 and for all w 2 TuS2. We next
parameterize this sphere and determine an equation for the function r 7! v.re1/ 2 S2.

2.2. Derivation of the energy

The isometric identification between CP1 (with the Fubini–Study metric) and S2 � R3

(with the metric from the standard embedding) can be made through the isometric invert-
ible map

S2 3 .a1; a2; a3/ 7!
1

p
2.1C a3/1=2

Œ1C a3; a1 C ia2� 2 CP1; (15)

where in this case the north pole e3 D .0; 0; 1/ is mapped to the point Œ1; 0� 2 CP1. In this
identification the complex structure on CP1 is mapped to the standard complex structure
on the sphere. Given an equivariant map vWCn ! CPn, we wish to write it in a form
so that v.re1/ 2 CP1 has the representation Œ1C a3; a1 C ia2; 0; : : : ; 0�. In fact, we can
write v in the form

v.z/ D
1

p
2.1C u3/1=2

h
1C u3; .u1 C iu2/

z

r

i
(16)
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for u.r/ D .u1.r/; u2.r/; u3.r// satisfying jujR3 D 1. When we substitute z D re1 we
recover essentially the representation in (15), and hence u parameterizes the sphere in the
correct, isometric, way.

(To see that v.z/ D Œw0; f .r/z� in (14) can be written as in (16), observe that by
scaling we can assume that .w0; g.r/z/ 2 S2nC1, which means jw0j2 C jg.r/j2r2 D 1.
We can also assume by scaling that w0 > 0. This means, in fact, that w0 2 Œ0; 1�, and
hence there is a unique u3.r/ 2 Œ�1; 1� such that

p
2.1C u3.r//

1=2 D w0. We then define
u1 C iu2 D rg.r/

p
2.1 � u3/

1=2, and substituting this in gives the representation above.
The condition jw0j2 C jg.r/r j2 D 1 translates into jujR3 D 1.)

Proposition 2.2. The energy is given in the u coordinates by

E.v/ D
1

2

Z
R2n

jdvj2 dx D
1

2

Z
R2n

h
jur j

2
C
1

r2
Œ1� u23 C 2.2n� 2/.1� u3/�

i
dx: (17)

Proof. In order to calculate the energy density jdvj2 of v.z/ we have to fix a basis for
TzCn, which will be 2n-dimensional, and calculate first derivatives of v with respect to
this basis. For concreteness we view v as being valued in the sphere S2nC1,

v.z/ D
1

p
2.1C u3/1=2

�
1C u3; .u1 C iu2/

z

r

�
2 S2nC1 � CnC1; (18)

and perform the computation there. The only adjustment needing to be made is as fol-
lows. Given a point p 2 S2nC1, all points ei�p are mapped to the same point Œp� 2 CPn.
By differentiating with respect to � , it is apparent that in TpS2nC1 the tangent direction
ip 2 TpS2nC1 is contracted under the identification p � ei�p. Hence when calculating
derivatives at the level of S2nC1 we take the usual Euclidean derivatives in CnC1, project
onto TpS2nC1, and then factor out the real subspace spanned by ip. In fact, the last two
parts of this process amount to taking the complex projection

Pw D w � hw;piCnC1p (19)

of derivative terms w. We have, of course, jPvj2 D jvj2 � jhv; pij2.
Let @=@zk and @=@zk be the usual basis for TzCn. For any vector w0 2 Cn define

@=@w0D
Pn
mD1w

m
0 @=@zm and @=@w0D

Pn
mD1w

m
0 @=@zm. If ¹wkºnkD1 is an orthonormal

basis of Cn then the derivatives ¹@=@wk ; @=@wkº are an orthogonal basis for the tangent
space and so, by the expression for jdvj2 local in coordinates,

jdvj2 D 4

nX
kD1

ˇ̌̌
P
@v

@wk

ˇ̌̌2
C

ˇ̌̌
P
@v

@wk

ˇ̌̌2
: (20)

One verifies the formulas at the point z 2 Cn:

@r

@w0
D
hw0; zi

2r
;

@r

@ Nw
D
hz; w0i

2r
;

@z

@w0
D

w0

jw0j
;

@z

@w0
D 0: (21)
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We then set w1 D z=jzj and define w2.z/; : : : ; wn.z/ locally so that ¹wk.z/ºnkD1 is an
orthonormal basis of Cn for each z. In this setup, w1 is the radial direction and wk deriva-
tives for k � 2 will be independent of radial terms.

Hence, for k � 2 we compute and find

@v

@wk
D

1
p
2.1C u3/1=2

�
0; .u1 C iu2/

wk

r

�
and

@v

@wk
D 0:

We see from (18) that @v=@wk is complex orthogonal to v and soˇ̌̌
P
@v

@wk

ˇ̌̌2
D

ˇ̌̌ @v
@wk

ˇ̌̌2
D

1

2.1C u3/

u21 C u
2
2

r2
D
1 � u3

2r2
;

where in the step we used u21 C u
2
2 C u

2
3 D 1.

We now differentiate with respect to w1 and w1. In this case the radial terms will also
be differentiated. We note, however, that when differentiating we can ignore the scaling
term 1=.

p
2.1C u3/

1=2/: when this is differentiated we simply get a scalar multiple of
v.z/, which disappears under the projection (19). Hence,

P
@v

@w1
D

1
p
2.1C u3/1=2

P
@

@w1

h
1C u3; .u1 C iu2/

z

r

i
D

1
p
2.1C u3/1=2

P
�
u03
1

2
; .u01 C iu

0
2/
z

2r
� .u1 C iu2/

z

2r2

�
;

and similarly,

P
@v

@w1
D

1
p
2.1C u3/1=2

P
�
u03
1

2
; .u01 C iu

0
2/
z

2r
C .u1 C iu2/

z

2r2

�
:

The difference in sign gives rise to the simplificationˇ̌̌
P
@v

@w1

ˇ̌̌2
C

ˇ̌̌
P
@v

@w1

ˇ̌̌2
D

1

4.1C u3/

hˇ̌̌
P
�
u03; .u

0
1 C iu

0
2/
z

r

�ˇ̌̌2
C

ˇ̌̌
P
�
0; .u1 C iu2/

z

r2

�ˇ̌̌2i
:

Finally, a computation using the relations u21Cu
2
2Cu

2
3D 1 and u1u01Cu2u

0
2Cu3u

0
3D 0

reveals thatˇ̌̌
P
�
u03; .u

0
1 C iu

0
2/
z

r

�ˇ̌̌2
D

ˇ̌̌�
u03; .u

0
1 C iu

0
2/
z

r

�ˇ̌̌2
�

ˇ̌̌D�
u03; .u

0
1 C iu

0
2/
z

r

�
;

1
p
2.1C u3/1=2

�
1C u3; .u1 C iu2/

z

r

�Eˇ̌̌2
D jur j

2
�

1

2.1C u3/
j.1C u3/u

0
3 C .u1 � iu2/.u

0
1 C iu

0
2/j

2
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D jur j
2
�

1

2.1C u3/
ju03 C i.u1u

0
2 � u

0
1u2/j

2

D jur j
2
�

1

2.1C u3/
Œ.u03/

2
C u21.u

0
2/
2
C .u01/

2u22 � 2u1u
0
1u2u

0
2�

D jur j
2
�

1

2.1C u3/
Œ.1 � u23/jur j

2� D
1C u3

2
jur j

2

and ˇ̌̌
P
�
0; .u1 C iu2/

z

r2

�ˇ̌̌2
D

ˇ̌̌
P
�
�1 � u3

r
; 0
�ˇ̌̌2

D
1

r2

h
.1C u3/

2
�

1

2.1C u3/
.1C u3/

4
i

D
.1C u3/.1 � u

2
3/

2r2
:

We have then, by substituting these expressions into (20),

jduj2 D
jur j

2

2
C
1

r2

h1 � u23
2
C 2.n � 1/.1 � u3/

i
;

and then

E.v/ D

Z
R2n

jdvj2 dx

D
1

2

Z
R2n

h
jur j

2
C
1

r2
Œ1 � u23 C 2.2n � 2/.1 � u3/�

i
dx;

which completes the computation.

By the relations 1� u23 D u
2
1C u

2
2 and ju� e3j2 D u21C u

2
2C .u3 � 1/

2 D 2.1� u3/,
we can equivalently write the energy in an L2 form as

E.v/ D
1

2

Z
R2n

h
jur j

2
C
1

r2
Œu21 C u

2
2 C .2n � 2/ju � e3j

2�
i
dx: (22)

With this representation we determine the following result.

Proposition 2.3. There holds kurk2L2 . E.u/ . kurk2L2 .

Proof. The lower bound is obvious. For the upper bound, we observe that u21 C u
2
2 �

ju � e3j
2 and hence that

E.u/ �
1

2

�
kurk

2
L2
C .2n � 1/




u � e3
r




2
L2

�
;

and the result follows from the Hardy inequality k�=rkL2 .k�rkL2 for functions �WRd!
R3 (see Theorem A.1 in the appendix).
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2.3. Variation of the energy, and the flow PDEs

In order to find the PDEs corresponding to the harmonic map heat flow, the Schrödinger
maps equation, and the GLL equation, we need to calculate the variation of the energy,
given by the formula Z

R2n

h�.u/; wiTuS2 dx D �
d

d"

ˇ̌̌
"D0

E.uC "w/

for all radial maps wWR2n ! TS2 such that w.r/ 2 TuS2.

Proposition 2.4. We have

�.u/ D PTuS2

�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
:

Proof. Using the representation (17) we find for w 2 TuS2,

d

d"

ˇ̌̌
"D0

E.uC "w/ D
1

2

Z
R2n

2hur ; wriR3 C
1

r2
Œ�2u3w3 C 2.2n � 2/.�w3/�

D �

Z
R2n

D
urr C

2n � 1

r
ur ; w

E
R3
C
1

r2
h.2n � 2C u3/e3; wiR3 dx

D �

Z
R2n

D
PTuS2

�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
; w
E
TuS2

dx;

and the formula follows.

In general, the harmonic map heat flow is given by ut D �.u/, the Schrödinger maps
equation is given by ut D J�.u/, where J is the complex structure on the target, and the
GLL equation is given by ut D .˛ C ˇJ /�.u/ for ˛ � 0 and ˇ 2 R. By the previous
proposition, �.u/ is determined, while as discussed above, the complex structure in the u
coordinates is precisely the usual complex structure on the sphere. We are therefore ready
to write down the flow PDEs.

Definition 2.1. The equivariant generalized Landau–Lifshitz (GLL) problem from Cn to
CPn is the Cauchy problem for uWR2n ! S2 given by

ut .r; t/ D .˛P C ˇu�/
�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
; (23)

u.r; 0/ D u0.r/ with u0.0/ D 0;

for ˛ � 0 and ˇ 2 R. We recall that P is the projection operator onto the tangent space
at u. The case ˛ D 1 and ˇ D 0 is the harmonic map heat flow. The case ˛ D 0 and ˇ D 1
is the Schrödinger maps equation.

Note, by rescaling time we can always assume that ˛2 C ˇ2 D 1, which we do from
now on.
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By taking the stereographic projection f .r/ D .u1 C iu2/=.1 C u3/, with inverse
given by

.u1; u2; u3/ D
1

1C jf j2
.2 Ref; 2 Imf; 1 � jf j2/; (24)

we can determine the stereographic representation of the problem. With this stereographic
projection, the north pole is mapped to the origin.

Proposition 2.5. The GLL equation is given in the stereographic coordinates by

ft D .˛ C iˇ/
h
frr �

2 Nf f 2r
1C jf j2

C
2n � 1

r
fr �

2n � 1

r2
f C

1

r2
2jf j2f

1C jf j2

i
: (25)

The proof involves substituting the expression for the stereographic projection (24)
into the PDE (23) and computing; we omit this standard computation.

2.4. Classification of the harmonic maps in this context

The equivariant harmonic maps from Cn to CPn are the time-independent solutions of
(23). Because the PDE has one space dimension, the time-independent problem is an
ODE. In all, � is harmonic if and only if

0 D � �
�d2�
dr2
C
2n � 1

r

d�

dr
C
.2n � 2/C �3

r2
e3

�
; (26)

with the boundary conditions given by �.0/ D e3 and �0.0/ D v D .v1; v2; 0/ 2 Te3S
2.

Writing the harmonic function � in the stereographic coordinates as g, the ODE is

0 D grr �
2 Ngg2r
1C jgj2

C
2n � 1

r
gr �

2n � 1

r2
g C

1

r2
2jgj2g

1C jgj2

and the boundary conditions are g.0/ D 0 and gr .0/ D v1 C iv2. Remarkably, we can
solve this ODE explicitly with the linear function g.r/D .v1C iv2/r . Moreover, because
it is an ODE for which we have a uniqueness theory, g.r/ D .v1 C iv2/r is the unique
solution. (See Theorem A.3 in the appendix for a local well-posedness theory for ODEs
of this type.) Using the stereographic projection we can write the harmonic map in the
sphere coordinates as

�.r/ D
1

1C jvj2r2
.2rv1; 2rv2; 1 � jvj

2r2/

D
1

1C jvj2r2
.2rv C .1 � jvj2r2/e3/I (27)

in fact, � is just a version of the stereographic projection itself. This is consistent with
the well-known fact that the harmonic maps in the sphere (n D 1) case are stereographic
projections; what is interesting is that when n is incremented in ODE (26), the new terms
still cancel under this expression.
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Qualitatively speaking, the harmonic maps in our context are quite simple: they start,
when r D 0, at the north pole and, as r increases, move monotonically away from the
north pole, converging to the south pole in the limit r !1. By way of comparison, in the
case of equivariant harmonic maps from the d -dimensional ball Bd to Sd the situation is
different [14]. For 3 � d � 6 the harmonic maps oscillate about the south pole, while for
d � 7 the harmonic maps approach the south pole monotonically, as here. In general, one
finds that the equivariant harmonic maps usually fall into either an oscillatory regime or a
monotonic regime [11].

Finally, we note that while the expressions above for the harmonic maps are indepen-
dent of n, there is a difference when n � 2. In the case of the sphere, n D 1, the energy
of the stereographic projection is 4� . (This may be verified by substituting (27) into the
energy (17) with n D 1, or by consulting [2].) However, for n � 2 the energy is infinite.
To see this it is sufficient to observe that limr!1 �.r/ D �e3 and to use the following
lemma.

Lemma 2.6. Suppose that E.u/ <1 and n � 2. Then limr!1 u.r/ exists and equals e3.

Proof. For any r2 > r1 > 0 we have

ju.r2/ � u.r1/j D

ˇ̌̌̌Z r2

r1

ur .r/ dr

ˇ̌̌̌
�

�Z r2

r1

jur j
2r2n�1 dr

�1=2�Z r2

r1

1

r2n�1
dr

�1=2
� CE.u/r�nC11 ;

which, because n � 2, shows that limr!1 u.r/ exists. This means that in the energy
(22), the rightmost term in the integrand, .1=r2/.2n � 2/ju.r/ � e3j2r2n�1 converges
as r !1. For the energy to be finite, the limit must be 0. As n � 2, this implies that
limr!1 u.r/ D e3.

Corollary 2.7. When n � 2, the equivariant harmonic maps from Cn to CPn all have
infinite energy.

3. Self-similar solutions for n � 2

In this section we study the self-similar solutions for n � 2, which are solutions of the
form u.r; t/ D  .r=

p
t / for a profile  .r/ D u.r; 1/.

To determine a convenient equation for the profile, we take the GLL flow PDE (23)
and multiply both sides by .˛u �CˇP /. Using the relationship

.˛u �CˇP /.˛P C ˇu�/ D .˛2 C ˇ2/u� D u�

(compare to .˛i C ˇ/.˛ C ˇi/ D i ) we may equivalently write the PDE as

˛u � ut C ˇut D u �
�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
: (28)

We now substitute in u.r; t/ D  .r=
p
t / to determine the ODE for the profile.
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Definition 3.1. The self-similar problem for the GLL flow is given by the ODE

�
r

2

�
˛ �  r C ˇ r

�
D  �

�@2 
@r2
C
2n � 1

r

@ 

@r
C
.2n � 2C  3/

r2
e3

�
; (29)

where  W Œ0;1/ ! S2, subject to the initial conditions  .0/ D e3 and  0.0/ D v D

.v1; v2; 0/ 2 Te3S
2.

In the following sequence of lemmas we will prove Theorem 1.1, as stated in the
introduction.

Lemma 3.1. For every v D .v1; v2; 0/ 2 Te3S
2 there is a unique global solution to (29).

For r > 0 this global solution is smooth and, if v ¤ 0, satisfies  .r/ ¤ e3.

Proof. Local existence and uniqueness in a neighborhood of the singular point r D 0

follows from Theorem A.3 in the appendix. For r > 0, ODE (29) is smooth and local
existence, uniqueness, and smoothness come from standard ODE theory. In order to prove
global existence we establish an a priori bound on the derivative of  .

Define the function A.r/ D r2j r j2. We have

A0.r/ D 2r j r j
2
C 2r2 rr �  r : (30)

In order to calculate  rr �  r , we take the inner product of ODE (29) with  �  r . Using
the fact that if v or w is orthogonal to u, then .u � v/ � .u � w/ D v � w, and also the
relation v � .u � v/ D 0, we determine that

�
˛r

2
j r j

2
D  rr �  r C

2n � 1

r
j r j

2
C
2n � 2C  3

r2
e3 �  r ;

and hence by solving for  rr �  r and substituting this into (30) we find

A0.r/ D 2r j r j
2
�

�2n � 1
r
C
˛r

2

�
2r2j r j

2
� 2.2n � 2C  3/. 3/r

D �

�2n � 2
r
C
˛r

2

�
2A.r/ �

d

dr
Œ.4n � 4/ 3 C  

2
3 �: (31)

Integrating this equation gives

A.r/C

Z r

0

�2n � 2
s
C
˛s

2

�
2A.s/ ds D .4n � 4/.1 �  3/C 1 � . 3/

2: (32)

To bound A.r/, we observe that the integral on the left-hand side is non-negative because
A.s/ � 0 and n � 2, and so the left-hand side is bounded below by A.r/. On the other
hand, we have  3 2 Œ�1; 1� and hence the right-hand side is bounded above by 8n. This
then gives A.r/ � 8n, and j r j � 4n=r . This proves global existence. (The constants 8n
and 4n are, of course, not optimal; they are noted merely to show that the constants may
be chosen independently of  .)
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To prove that  .r/¤ e3 for r > 0 we observe that the integral on the left-hand side in
(32) is increasing in r . In the non-trivial case v ¤ 0, it is strictly increasing in a neighbor-
hood of r D 0 because A0.r/ D r2j r j2 � "r2 in a neighborhood of r D 0. Hence in this
case the integral is strictly positive for r > 0. Because A.r/ � 0 we see that the left-hand
side of (32) is strictly positive and so

.4n � 4/.1 �  3/C 1 � . 3/
2 > 0

for r > 0. This gives  3.r/ ¤ 1, which means  .r/ ¤ e3.

Lemma 3.2. If ˛ > 0 we have j r j . 1=r3.

Proof. Recall the bound A.r/ � 4n. Using equation (31) we have

A0.r/ � �˛rA.r/ � 2.2n � 2C  3/. 3/r

� �˛rA.r/C 2
ˇ̌̌2n � 2C  3
r3=2

p
˛=2

ˇ̌̌
�
ˇ̌
r3=2

p
˛=2. 3/r

ˇ̌
� �˛rA.r/C

�8n3
r3˛
C
r3˛

2
j r j

2
�
D �

˛r

2
A.r/C

8n3

r3˛
:

Integrating this equation then givesA.r/.A.1/e�˛r
2=8C 1=r4 . 1=r4 and j r j. 1=r3.

(The details of how this integration may be performed are given in Proposition A.4 in the
appendix.)

Lemma 3.3. There exists a point  1 2 S2,  1 ¤ e3, such that limr!1 .r/D  1. We
have the convergence rate inequality j 1 �  .r/j � 40n2=r2. The profile  has infinite
energy.

Proof. For ˛ > 0, the bound j r j . 1=r3 implies convergence of  in the limit r !1.
In the case ˛ D 0, when there is no heat flow contribution, the decay on the derivative is
less strong, and so a different argument is needed. However, in the proof we consider the
general case as it is useful to know that the constant in the rate of convergence equation
may be chosen independently of  .

We first multiply ODE (29) by .�˛ �CˇP /. We have the relations .�˛ �CˇP /
.˛ �CˇP / D .˛2 C ˇ2/P D P and . �/. �/ D �P (compare to .�˛i C ˇ/.˛i C
ˇ/ D 1 and .i/.i/ D �1). We can thus write the equation as

�
r

2
 r D .˛P C ˇ �/

�
 rr C

2n � 1

r
 r C

2n � 2C  3

r2
e3

�
;

D .˛ C ˇ �/
� 1

r2n�1
@

@r
.r2n�1 r /C j r j

2 C
2n � 2C  3

r2
Pe3

�
;

where in the second equality we have moved the projection P inside and expanded
P rr D  rr C j r j

2 . We divide through by r and integrate over Œr1; r2� to determine
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that

�
1

2
. .r2/ �  .r1//

D

Z r2

r1

.˛ C ˇ �/
� 1

r2n
@

@r
.r2n�1 r /C

j r j
2 

r
C
2n � 2C  3

r3
Pe3

�
dr:

Now integrating by parts in the first term yields

�
1

2
. .r2/ �  .r1// D

Œ˛ C ˇ .r2/�� r .r2/

r2
�
Œ˛ C ˇ .r1/�� r .r1/

r1

�

Z r2

r1

.˛ C ˇ �/
�
�2n

r2nC1
r2n�1 r

�
dr

C

Z r2

r1

�
˛
j r j

2 

r
C
2n � 2C  3

r3
.˛P C ˇ �/e3

�
dr:

Now using the bounds j .r/j D 1 and j r .r/j � 2n=r yields

1

2
j .r2/ �  .r1/j �

2n

r22
C
2n

r21
C

Z r2

r1

4n2

r3
dr C

Z r2

r1

�
˛
4n2

r3
C
2n

r3

�
dr �

20n2

r21
;

which implies the solution converges with the rate given in the statement of the lemma.
To see that the limit  1 cannot be e3 we consider equation (32) again. As discussed

previously, the integral in (32) is strictly positive and non-increasing for r > 0. If ı > 0
denotes the value of the integral at r D 1 we then have, for all r > 1,

ı �

Z r

0

�2n � 2
s
C
˛s

2

�
2A.s/ ds � .4n � 4/.1 �  3.r//C 1 � . 3.r//

2:

We therefore have

ı � .4n � 4/.1 �  3.1//C 1 � . 3.1//
2;

which gives  1 ¤ e3.
Because the limit is not e3, the profile has infinite energy by Lemma 2.6.

Lemma 3.4. When ˛ D 0 we have limr!1 r j r j D 0.

Proof. It is sufficient to show that limr!1 A.r/ D 0. In the ˛ D 0 case, equation (32)
reads

A.r/C

Z r

0

�2n � 2
s

�
2A.s/ ds D .4n � 4/.1 �  3/C 1 � . 3/

2:

We know from the previous lemma that  3 converges as r !1. The integral also con-
verges simply because it is non-decreasing; moreover, because it is bounded above (by 4n)
it converges to a real number. We then have that A.r/ converges as r !1. By examining
the integral, which is finite in the limit, we see that we must have limr!1A.r/ D 0.
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Lemma 3.5. The limit  1 is a continuous function of the initial data v. In particular, as
v ! 0 we have  1 ! e3.

Proof. For convenience we will denote the self-similar profile corresponding to initial
data v by  v.r/, and we will let  v.1/ denote its limit as r !1.

The ODE local existence results give that for any r0 > 0 the map v 7!  v.r0/ is
continuous.

We have previously established the bound, for r1 < r2, j v.r2/� v.r1/j � 60n2=r21 .
This shows that the map v 7!  v.r/ converges to the map v 7!  v.1/ uniformly, and
hence that the map v 7!  v.1/ is continuous.

Finally, we note that 0.r/� 0, 0.1/D 0, and so limv!0 v.1/D 0, by continuity.

With this lemma, the proof of Theorem 1.1 is complete.

4. Global critical well-posedness in dimension 2

In this section we prove a global critical small-data well-posedness theorem for the Schrö-
dinger maps equation for equivariant maps from Cn to CPn when n D 2. The equation
may be written in the sphere coordinates as

ut .r; t/ D u �
�@2u
@r2
C
2n � 1

r

@u

@r
C
2n � 2C u3

r2
e3

�
; (33)

or equivalently as

� u � ut .r; t/ D
@2u

@r2
C jur j

2uC
2n � 1

r

@u

@r
C
2n � 2C u3

r2
Pue3; (34)

where Pue3 is the projection of the vector e3 D .0; 0; 1/ onto the tangent space at u.
Our proof relies on techniques that have been developed for the Schrödinger maps

equation for the sphere. Because of the structural similarity between that equation and
(34), such techniques can be adapted here. We first use a form of the Hasimoto transform
to determine an equation on a derivative term of u that has a simpler non-linearity. We
then formulate the fixed point argument, and determine necessary estimates on the non-
linearity for the fixed point argument to be carried through. We conclude by proving these
estimates in the case n D 2, thereby establishing Theorem 1.2.

We present our work in terms of the Schrödinger maps equation .˛ D 0/; however,
our proof is valid for the general GLL case when ˇ > 0 because all the same estimates (in
particular the Strichartz estimates) still apply.

4.1. Derivation of the PDE through the Hasimoto transform

The Hasimoto transform is an extensively used tool for proving well-posedness of the
Schrödinger maps equations when the target is the sphere or a general complex surface.
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In geometric terms, it arises as follows. For fixed t , a smooth solution of (33) will satisfy
u.0; t/D e3. The function r 7! u.r; t/ thus defines a curve in S2 starting at e3 at r D 0. If
one fixes a unit tangent vector e.0/ 2 Te3S

2, one can consider the parallel transport e.r/ of
this vector along the curve r 7! u.r; t/; the function e.r/ satisfiesDre.r/Drur e.r/D 0.
Now, because the tangent space at any point is two-dimensional, the vectors e.r/ and
Je.r/ give a basis for the tangent space Tu.r/S2. Any derivative of u, or other element
of the tangent space, can be expressed in terms of this basis. In our case, we define a
complex-valued function q by the formula

qe D .Re q C Im q J /e D ur : (35)

We then determine an equation on q. The right-hand side is chosen so that q will satisfy a
Schrödinger equation with a non-linearity that is easier to handle than that of (34).

Lemma 4.1. The function q satisfies the PDE

iqt D qrr C
2n � 1

r
qr �

2n � 1

r2
q CN.q/; (36)

where the non-linear term N.q/ is given by

N.q/ D
d

dr

�
�
2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds

�
C ˛q; (37)

for a real-valued function ˛ satisfying

˛r D Re
�
Nqqr C

jqj2

r
� Nq

2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds

�
: (38)

Proof. First, we recall that in the embedding S2 � R3 the covariant derivative of a vector
field v.r/ 2 Tu.r/S2 is given byDrv D vr C hur ; viu, where the inner product here is the
usual inner product on R3.

Now let p and q satisfy pe D ut and qe D ur . We will determine three equations
relating p, q, and u.

(1) Because e satisfies Dre D 0 we have

qre D Dr .qe/ D Dr .ur / D urr C jur j
2u; (39)

which are the first two terms in the right-hand side of (34). The next term in (34)
is ..2n � 1/=r/qe. For the projection term we calculate, using Dre D 0,

d

dr
hPue3; ei D

d

dr
he3 � hu; e3iu; ei D hDr .e3 � hu; e3iu/; ei

D

D d
dr
.e3 � hu; e3iu/C hur ; e3 � hu; e3iuiu; e

E
D h�hur ; e3iu � hu; e3iur C hur ; e3iu; ei

D �u3hur ; ei D �u3.r/Re q.r/:
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Using the fact that u.0; t/ D e3, so that Pue3 D 0 at r D 0, we have

hPue3; ei D �

Z r

0

u3.s/Re q.s/ ds: (40)

An identical calculation for hPue3; Jei gives, in total,

Pue3 D �

�Z r

0

u3.s/q.s/ ds

�
e.r/:

Plugging (39) and (40) into (34) then gives

ip D qr C
2n � 1

r
q �

2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds: (41)

(2) From the identity Drut D Dtur we find

pre D Dr .pe/ D Drut D Dtur D Dt .qe/ D qte C qDte: (42)

Because e is a parallel transport vector field, jej2 D 1 and so 0 D .d=dt/jej2 D
hDte; ei. The vector Dte is thus orthogonal to e. Because the tangent space is
spanned by e and Je, we must have Dte D ˛Je for some real-valued function ˛.
Substituting this into (42), we get pre D qte C q˛Je, or

pr D qt C i˛q: (43)

(3) To determine an equation on ˛ we use the curvature relationDtDre DDrDteC

R.ut ; ut /e, where R is the Riemann curvature tensor. On the sphere, R.v;w/z D
hJv;wiJ z. Therefore, also using Dre D 0, we find

0 D Dr .˛Je/C hJut ; uriJe D ˛rJe C hpJe; qeiJe;

which gives ˛r D � Im.p Nq/. Substituting the formula for p in (41) gives equa-
tion (38).

To determine an equation only on q we differentiate (41) with respect to r , to find

ipr D qrr C
2n � 1

r
qr �

2n � 1

r2
q C

d

dr

�
�
2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds

�
:

Substituting the expression for pr in (43) gives equations (36) and (37).

4.2. Formulating the fixed point argument

We recall Theorem 1.2 from the introduction.

Theorem (Theorem 1.2). Fix p 2 Œ1; 2� and define

1

r
D
1

2
�
1

6p
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and the spaces X and X0 given by the norms

kqkX D krqkL3pt Lrx
and kqkX0 D ke

it�.aq/kX ;

where a.x/ D x1=r . There exists " > 0 such that if kq0kX0 � " there is a unique global
solution of (36) for n D 2 in the space X .

We begin by determining a convenient Duhamel representation for the problem. Our
Duhamel representation will be valid for all n, though we carry out the well-posedness
argument for n D 2 only. In the following we will rely heavily on the Hardy inequalities
given in Theorem A.1 and (70) in the appendix.

First, we absorb the linear term �.2n� 1/q=r2 into the Laplacian. To do this, we fix a
function aWS2n�1 ! C that satisfies �S2n�1a D �.2n � 1/a. We may concretely choose
a.x/D x1. To see this, extend a to a function on all of R2n by a.x=jxj/. On the one hand,
we have

�R2n.ra.x=jxj// D �R2n.x1/ D 0:

Then, using the polar representation,�R2n D @rr C ..2n� 1/=r/@r C .1=r
2/�S2n�1 , we

see that

0 D
h
@rr C

2n � 1

r
@r C

1

r2
�S2n�1

i
.ra.x=jxj//

D

h
0C

2n � 1

r

i
a.x=jxj/C

r

r2
�S2n�1a.x=jxj/;

and so
�S2n�1a.x=jxj/ D �.2n � 1/a.x=jxj/:

Now defining w.x; t/ D q.r; t/a.x=jxj/, we see that

�R2nw D
@2q

@r2
aC

2n � 1

r

@q

@r
a �

2n � 1

r2
qa: (44)

This is exactly the Laplacian term in the PDE (36) multiplied by a.
In terms of estimates, we have the pointwise estimate jraj � 1=r , which is determined

from a calculation. For Lebesgue estimates we have

kwk
p
Lp D kqak

p
Lp D

Z 1
0

�
jq.r/jp

Z
rS2n�1

ja.x=jxj/jp dx

�
dr

D

Z 1
0

�
jq.r/jpr2n�1

Z
S2n�1

ja.x=jxj/jp dx

�
dr

D Ckqk
p
Lp ;

where C D kakLp.S2n�1/=jS2n�1j <1. We also have

krqkLp � krrqkLp � krr .aq/kLp . krr .aq/kLp C kr� .aq/kLp � krwkLp ;
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while

krwkLp � kr.a/qkLp C karrqkLp .



1
r
q




Lp
C krrqkLp . krqkLp ;

so in conclusion krqkLp � krwkLp .
In the next lemma we rather carefully verify that we can recover solutions to the PDE

for q from solutions to the PDE for w.

Lemma 4.2. The PDE on w is given by

wt D �w CN.q/a (45)

or in Duhamel form by

w.x; t/ D eit�w.x; 0/C i

Z r

0

ei.t�s/�N.q.r; s//a.x=jxj; s/ ds: (46)

If the solutionw.x; t/ corresponding to initial data of the formw.x;0/Dq.r/a.x=jxj/
is unique, then the solution is of the formw.x; t/D q.r; t/a.x=jxj/, where q satisfies (36).

Proof. To determine equation (45) for w we simply multiply the PDE for q (36) by a, and
use expression (44) for �w. The Duhamel representation is standard.

We now show how solutions of (36) may be recovered from solutions of the equation
for w. Let w be a solution of (46) and define zw D �.1=.2n � 1//�S2n�1w. Assum-
ing uniqueness we will show that zw D w. We take the spherical Laplacian �.1=.2n �
1//�S2n�1 of (45), noting that it commutes both with � D �R2n and N.q/, as N.q/ is
radial. We then find that zw satisfies the same PDE (45) as w. Moreover, we have

zw.x; 0/ D �
1

2n � 1
�S2n�1w.x; 0/ D �

1

2n � 1
�S2n�1 Œq.r/a.x=jxj/� D w.x; 0/;

and so by uniqueness, zw.x; t/D�.1=.2n� 1//�S2n�1w.x; t/Dw.x; t/. This means that
w is a radial function times an eigenfunction of the Laplacian of the sphere of S2n�1 with
eigenvalue �.2n � 1/.

Let Tk WR2n ! R2n be the linear map that multiplies the kth component of x 2 R2n

by �1 and leaves the other components fixed. From the representation of a we see that
for k D 1 we have w0.Tkx/ D �w0.x/ while for k � 2 we have w0.Tkx/ D w0.x/. By
uniqueness, x 7! w.x; t/ inherits these properties also. But now the only eigenfunction
of the Laplacian on the sphere with eigenvalue �.2n � 1/ with these symmetries is pre-
cisely a. Therefore w.x; t/ D q.r; t/a.x=jxj/. Substituting this expression into the PDE
(45) for w yields the PDE (36) for q.

By virtue of this lemma, we can perform the fixed point argument on w. The next
lemma describes sufficient estimates for this fixed point argument to hold, and in the proof
the fixed point argument is described.
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4.3. Well-posedness when n D 2

For the remainder of this section we fix n D 2.
Before stating the lemma we fix some index notation. In the course of the proof we

will need to handle Lebesgue space norms of quantities like q, qr , q2, qqr , and other
quantities which scale like these. We are led to define the index

1

s.i; j /
D
i C j

4
�

i

6p
: (47)

We will put items that scale like the product of i copies of q with a total of j derivatives in
the spaceLs.i;j /x . For example, we will put q inLs.1;0/x , we will put q2 inLs.2;0/x and qqr in
L
s.2;1/
x . In this way, critical scaling is maintained throughout as, for example, kqqrkLs.2;1/x

is invariant under scaling.
The Strichartz inequality we will use is



Z t

0

ei.t�s/�G ds






L
3p
t L

r
x

. kGk
L
p
t L

s.3;1/
x
I

this is classical: see, for example, [21]. The Hölder inequality is

kfgk
L
s.iCk;jCm/
x

� kf k
L
s.i;j /
x
� kgk

L
s.k;m/
x

;

and the Sobolev, for k < l , is

kr
kf k

L
s.i;j /
x

. krlf k
L
s.i;jCl�k/
x

:

One verifies that these inequalities hold by checking the relevant exponent conditions.
Finally, note that s.1; 1/ D r .

Lemma 4.3. For Theorem 1.2 to be true, it is sufficient that the following bounds hold:

krN.q/k
L
s.3;1/
x

. krqk3
L
s.1;1/
x

; (48)

kr.N.q1/ �N.q2//kLs.3;1/x
. kr.q1 � q2/kLs.1;1/x

.krq1k
2

L
s.1;1/
x

C krq2k
2

L
s.1;1/
x

/: (49)

Proof. Well-posedness follows by a fixed point argument for the operator

Tw D eit�w.x; 0/C i

Z t

0

ei.t�s/�N.q.r; s//a.x; s/ ds:

We will show that T is a contraction mapping on a small ball around 0.
We first show that T maps a ball to itself. We have the bound

kTwkX � kw0kX0 C





Z t

0

ei.t�s/�r.N.q/a/ ds






L
3p
t L

r
x

. kw0kX0 C kr.N.q/a/kLpt Ls.3;1/x
:
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Considering the space norm of the integral, we have, by Hölder and Sobolev, and then
conditions (48),

kr.N.q/a/k
L
s.3;1/
x

. kr.N /ak
L
s.3;1/
x
C kNrak

L
s.3;1/
x

� kr.N /k
L
s.3;1/
x
C




1
r
N




L
s.3;1/
x

� kr.N /k
L
s.3;1/
x

. krqk2
L
s.1;1/
x

. krwk3
L
s.1;1/
x

;

and hence, as r D s.1; 1/,

kTwkX � kw0kX0 C Ckwk
3
X :

Now choose "0 so that C"20 � 1=2, and let " � "0. Then, if kw0kX0 � "=2 and kwkX � ",
we have

kTwkX �
"

2
C C"3 �

"

2
C .C"20/" � ";

and so T maps every " ball into itself, for " sufficiently small, assuming the initial data
satisfies the bound kw0kX0 � "=2.

We next show that T is a contraction in a sufficiently small ball around 0. Let w1 and
w2 be two solutions, with radial parts q1 and q2 respectively. We have

Tw1 � Tw2 D

Z t

0

ei.t�s/�.r.N.q1/a/ � r.N.q2/a// ds;

which gives, using (49),

kr.N.q1/a/ � r.N.q2/a/kLs.3;1/x

. kr.N.q1/ �N.q2//akLs.3;1/x
C k.N.q1/ �N.q2//rakLs.3;1/x

. kr.N.q1/ �N.q2//akLs.3;1/x
C




1
r
.N.q1/ �N.q2//





L
s.3;1/
x

. .krq1k
2

L
s.1;1/
x

C krq2k
2

L
s.1;1/
x

/kr.q1 � q2/kLs.1;1/x

. .krw1k
2

L
s.1;1/
x

C krw2k
2

L
s.1;1/
x

/kr.w1 � w2/kLs.1;1/x
;

and so
kTw1 � Tw2kX . .kw1k

2
X C kw2k

2
X /kw1 � w2kX ;

and hence by choosing the ball small enough, T is a contraction.

Lemma 4.4. When n D 2 the bounds (48) and (49) hold.

Proof. Write

N D
d

dr

�
�
2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds

�
C ˛q DW N1 CN2;
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and recall

˛r D Re
�
qr Nq C

jqj2

r
� Nq

2n � 2C u3

r2

Z r

0

u3.s/q.s/ ds

�
: (50)

We will prove the bounds for N1 first.
We have

krN1ks.3;1/ .




r2��2n � 2C u3r2

Z r

0

u3.s/q.s/ ds

�




L
s.3;1/
x

.




.r2u3/ 1r2

Z r

0

u3.s/q.s/ ds






L
s.3;1/
x

C





�2n � 2C u3r2
1

r2

Z r

0

u3.s/q.s/ ds






L
s.3;1/
x

C




�2n � 2C u3
r2

r.u3.r/q.r// ds




L
s.3;1/
x

DW AC B C C

From the equation urr C jur j2u D qre, we have jurr j � jqj2 C jqj pointwise. There-
fore, for A,

A �





.jqj2 C jqr j/ 1r2
Z r

0

u3.s/q.s/ ds






L
s.3;1/
x

D kqk
L
s.1;0/
x




q
r





L
s.1;1/
x





1r
Z r

0

u3.s/q.s/ ds






L
s.1;0/
x

C kqrkLs.1;1/x





 1r2
Z r

0

u3.s/q.s/ ds






L
s.2;0/
x

D kqk
L
s.1;0/
x
kq=rk

L
s.1;1/
x
ku3.s/q.s/kLs.1;0/x

C kqrkLs.1;1/x




1
r
u3.s/q.s/ ds





L
s.2;0/
x

. kqk2
L
s.1;0/
x

kqrkLs.1;1/x
C kqrks.1;1/




1
r
u3.r/q.r/





L
s.2;0/
x

. kqk2
L
s.1;0/
x

kqrkLs.1;1/x
C kqrks.1;1/




u3
r





L
s.1;0/
x

kq.r/k
L
s.1;0/
x

. kqrk3
L
s.1;1/
x

: (51)

For B , we have

B .



2n � 2C u3

r





L
s.1;0/
x





 1r3
Z r

0

u3.s/q.s/ ds






L
s.2;1/
x

. kurkLs.1;0/x




 1
r2
u3.r/q.r/





L
s.2;1/
x

. kurkLs.1;0/x




u3.r/
r





s.1;0/




q.r/
r





L
s.1;1/
x

. kurk2
L
s.1;0/
x

kqrkLs.1;1/x
. kqrk3

L
s.1;1/
x

: (52)
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For C , we have

C .



2n � 2C u3

r2
r.u3.r/q.r// ds





L
s.3;1/
x

.



2n � 2C u3

r





L
s.1;0/
x

�


1
r
r.u3/q





L
s.2;1/
x

C




1
r
.u3/rq





L
s.2;1/
x

�
. kqk

L
s.1;0/
x

�
kru3kLs.1;0/x




q
r





L
s.1;1/
x

C




u3
r





L
s.1;0/
x

krqk
L
s.1;1/
x

�
. kqrk3s.1;1/: (53)

The three estimates (51), (52), and (53) together give the estimate krN1kLs.3;1/x
.

kqrk
3

L
s.1;1/
x

.

As for N2, we have

kr.˛q/k
L
s.3;1/
x

. k˛rqkLs.3;1/x
C k˛qrkLs.3;1/x

. k˛rkLs.2;1/x
kqk

L
s.1;0/
x
C k˛k

L
s.2;0/
x
kqrkLs.1;1/x

. k˛rkLs.2;1/x
kqrkLs.1;1/x

: (54)

Then, using the expression for ˛r in (50) and the fact that u3 2 L1,

k˛rks.2;1/ . kqqrkLs.2;1/x
C




q2
r





L
s.2;1/
x

C





2n � 2C u3r2
q

Z r

0

u3.s/q.s/ ds






s.2;1/

. kqk
L
s.1;0/
x

�
kqrkLs.1;1/x

C




q
r





L
s.1;1/
x

�
C




q
r





L
s.1;1/
x





1r
Z r

0

u3.s/q.s/ ds






L
s.1;0/
x

. kqrk3
L
s.1;1/
x

C




q
r





L
s.1;1/
x

kqk
L
s.1;0/
x

. kqrk3
L
s.1;1/
x

: (55)

Estimates (54) and (55) give krN2kLs.3;1/x
. kqrk3

L
s.1;1/
x

and hence (48). Estimate (49)

follows from an identical argument.

Theorem 1.2 is thus established.

5. The “real” heat flow case

In this section we will discuss what might be termed the “real” equivariant heat flow from
Cn to CPn. In the case when ˛ D 1 and ˇ D 0, that is, for the harmonic map heat flow, it
is possible to make an ansatz which further reduces the problem. In terms of the spherical
coordinates,

ut D urr C ujur j
2
C
2n � 1

r
ur C

2n � 2C u3

r2
.e3 � uhu; e3i/; (56)

u.r; 0/ D v.r/ D .v1.r/; v2.r/; 0/ 2 Te3S
2;
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e3
v0

w D v0 � e3

Figure 1. In the case of the harmonic map heat flow, if the initial data takes values in one great circle
(here the great circle spanned by v0 and e3), then the solution will be valued in the same great circle
for future times. Both the harmonic maps and the self-similar solutions constructed in Section 3 are
of this type.

this ansatz involves assuming that the initial data is valued in one great circle passing
through the north pole; that is, the initial data is of the form c.r/e3 C d.r/v0. (See Fig-
ure 1.) In this case, for t > 0 the solution will continue to be valued in the same great
circle. To see this, let w0 D v0 � e3 and let a.r; t/ D u.r; t/ � w0. By taking the inner
product of equation (56) with aw0 we have

aat D aarr � a
2
jur j

2
C
2n � 1

r
aar C

2n � 2C u3

r2
.�a2u3/

� aarr C
2n � 1

r
aar C

2n � 2

r2
a2:

We next integrate this equation. For n � 2 we use the Hardy inequality with best constant
4=d2 D 4=.2n � 2/2 to determine that

d

dt

1

2

Z
Cn

.a/2 dx � �2n�1

Z 1
0

a
@

@r
.r2n�1ar / dr C .2n � 2/




a
r




2
L2

D ��2n�1

Z 1
0

.ar /
2r2n�1 dr C .2n � 2/

4

.2n � 2/2
kark

2
L2
� 0;

and hence a.r; t/ D 0 for all time. For n D 1 we obtain the same inequality because the
last term is 0. The solution is therefore a linear combination of v0 and e3.

In terms of the stereographic representation of the problem,

ft D frr �
2 Nf f 2r
1C jf j2

C
2n � 1

r
fr .r/C

2n � 1

r2
f .r/C

2jf j2f

1C jf .r/j2
;

f .r; 0/ D f0.r/;

the ansatz is that the initial data is of the form f .r; 0/ D b.r/ei� for some real-valued
function b.r/ and a constant � . The solution will then be of the form f .r; t/ D b.r; t/ei�
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for the same constant � and for some real-valued function b.r; t/. This motivates the
terminology “real heat flow”.

It is not surprising that this problem is simpler to analyze, and in fact with this assump-
tion we are able to say more about the dynamics of the problem. On the other hand, this
problem is still interesting because both the harmonic maps and the self-similar solutions
constructed in Section 3 fit into this context. In fact, the harmonic maps are given in stere-
ographic coordinates by f .r; t/D ˛r D j˛jrei� . The initial data for a self-similar solution
is just a point, so the initial data is valued in the great circle passing through that point and
the north pole.

We will now describe how, based on the ansatz just described, a simpler PDE on
the solution may be determined. As the solution is valued on a great circle we can per-
form a change of variables, u.r; t/D cos.g/e3 C sin.g/v0, for an unknown real-valued g.
Geometrically, g is the spherical distance between u.r; t/ and e3. We calculate ur D
gr .� sin.g/e3 C cos.g/v0/ and

urr D grr .� sin.g/e3 C cos.g/v0/C g2r .� sin.g/e3 � cos.g/v0/

D grr .� sin.g/e3 C cos.g/v0/ � ujur j2:

Substituting these into (56) gives

gt .� sin.g/e3 C cos.g/v0/ D
�
grr C

2n � 1

r
gr

�
.� sin.g/e3 C cos.g/v0/

C
2n � 2C cos.g/

r2
.e3 � cos.g/.cos.g/e3 C sin.g/v0//:

Taking the inner product of this equation with � sin.g/e3 C cos.g/v0 then yields the
equation on g.

Definition 5.1. The real heat flow problem is the Cauchy problem

gt D grr C
2n � 1

r
gr �

1

r2

h
.2n � 2/ sin.g/C

1

2
sin.2g/

i
(57)

subject to the initial condition g.r; 0/ D g0.r/.

For convenience we let �.x/ D .2n � 2/ sin.x/C sin.2x/=2.

Definition 5.2. The stationary real heat flow problem is the ODE

0 D  00˛ .r/C
2n � 1

r
 0˛.r/ �

1

r2
�. ˛/; (58)

subject the initial conditions  ˛.0/ D 0 and  0˛.0/ D ˛ > 0.

In the spherical coordinates the stationary solutions – that is, the harmonic maps – are
given explicitly in (27). By transforming these solutions into the coordinates g, one finds
that the unique solutions to the stationary real heat flow problem are

 ˛.r/ D 2 arctan.˛r/;
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which may be verified by substitution into (58). In light of later results, what will be most
notable about the explicit solution is that it is independent of n.

5.1. Uniqueness of solutions to the PDE problem in the n � 3 case

PDEs of the type

ut D urr C
d � 1

r
ur �

�.u/

r2
; (59)

with

�.0/ D �.�/ D �.2�/; �.x/ > 0 for x 2 .0; �/; �.x/ < 0 for x 2 .�; 2�/;

arise naturally in the study of the equivariant harmonic map heat flow from Rd to spher-
ically symmetric manifolds. There is a general theorem classifying when there is unique-
ness of solutions and when there is not uniqueness [9]. It states that if

�0.�/ < �
.d � 2/2

4
(60)

then there is non-uniqueness – that is, two distinct solutions with the same initial data –
while if

�0.x/ � �
.d � 2/2

4
(61)

for all x then for every initial data there is at most one solution in L1t L
1
x . We offer the

following new proof of the latter case.

Proposition 5.1. Suppose that �0.x/ � �.d � 2/2=4 for all x. There there is at most one
solution to (59) in L1t L

1
x .

Proof. First we observe that condition (61) implies the one-sided Lipschitz inequality

�.u/ � �.v/

u � v
� min
x2Œ0;2��

�0.x/ � �
.d � 2/2

4
:

Now consider two solutions u and v of (59) with the same initial data u0 and set
� D u � v. We will assume that u0 2 L2 \ L1; the argument to upgrade this to L2 is
standard [9]. Under this assumption we calculate

1

2

d

dt
k�k2

L2
D
1

2

d

dt
�d�1

Z 1
0

j�.r; t/j2rd�1 dr

D �d�1

Z 1
0

�
h
�rr C

2n � 1

r
�r �

�.u/ � �.v/

r2

i
r2n�1 dr

D �k�rk
2
L2
� �d�1

Z 1
0

�2

r2

h�.u/ � �.v/
u � v

i
r2n�1 dr

� �k�rk
2
L2
C
.d � 2/2

4




�
r




2
L2

� �k�rk
2
L2
C
.d � 2/2

4

4

.d � 2/2
k�rk

2
L2
� 0; (62)
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where in the last line we have used Hardy’s inequality with the best constant 4=.d � 2/2.
This implies that � � 0, and hence that u D v.

In this context of the real equivariant heat flow from Cn to CPn, this implies the
following result (given as Theorem 1.3(ii) in the introduction).

Proposition 5.2. Let n � 3. For a given initial data there is at most one solution to (57)
in L1t L

1
x .

Proof. Here d D 2n and �.x/ D .2n � 2/ sin.x/C sin.2x/=2. We calculate

�0.x/ D .2n � 2/ cos.x/C 2 cos2.x/ � 1

D .2n � 6/ cos.x/C 2.cos.x/C 1/2 � 3 � .2n � 6/.�1/C 0 � 3 D �.2n � 3/;

where the last inequality holds because n� 3 and so .2n� 6/� 0. Now using the inequal-
ity �.2n � 3/ � �.n � 1/2 (which is equivalent to 3 � �.nC 1/2) gives condition (61)
and hence the result.

5.2. The CP 2 case: Breakdown of uniqueness

The n D 2 case is the most interesting. From the expression �0.x/ D 2 cos.x/C cos.2x/,
we see that �0.�/D �1, which is precisely the threshold �.d � 2/2=4D �1 in the condi-
tions (60) and (61). The condition that would imply non-uniqueness, (60), does not hold.
However we find that

�00.�/ D �2 sin.�/ � 4 sin.2�/ D 0

and
�000.�/ D �2 cos.�/ � 8 cos.2�/ D �2.�1/ � 8.C1/ D �6 < 0;

so in fact, by the second derivative test, � is a local maximum of �0.x/. This means that the
condition that would imply uniqueness, (61), does hold either. Hence the case of the real
equivariant heat flow from C2 to CP2 is a borderline case not covered by the classification
theorem of [10]. (Plots of � in the n D 2 and n D 3 cases are given in Figure 2, which
make the difference clear.)

Then the question is does uniqueness hold or not? First, we see that the proof of
uniqueness presented in the last section clearly breaks down: because the derivative goes
below the threshold value �.d � 2/2=4, a Lipschitz inequality of the form �.u/ � �.v/=

.u � v/ � �.d � 2/2=4 cannot hold.
On the other hand, inspecting the proof in [10] of non-uniqueness in the case (60) we

see that it relies critically on the following fact: if condition (60) holds, then the station-
ary solutions (that is, the harmonic maps) of the PDE problem oscillate around the fixed
point � as they converge to it. In our case, the harmonic maps are given explicitly by
 ˛.r/ D 2 arctan.˛r/ and are clearly not oscillatory, and so that proof of non-uniqueness
will not hold. In fact, what is interesting is that the harmonic maps being monotonic is
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�1

�0 2�

�2

1

2

3

�.n � 1/2 threshold �4

�2

2

4

6

0 � 2�

�.n � 1/2 threshold

Figure 2. Plots of the function �0.x/ in the case of the real equivariant heat flow from Cn to CPn in
the cases nD 2 (left) and nD 3 (right). For the nD 3 case, we easily see that � satisfies condition (61)
with d D 2n, and hence that uniqueness in L1t L

1
x holds. For the nD 2 case, we see that both (60)

and (61) do not hold, so the case does not fit into the general classification theory.

ordinarily a sign that there is uniqueness (if the uniqueness condition (61) holds, then the
harmonic maps are necessarily monotonic.) However, by using an alternative method in
[10] we are able to show that uniqueness for the problem from C2 to CP2 does not hold.
The original theorem requires some background to state, so we state a special version
adapted to our setting.

Theorem ([10, Theorem 2.2]). Suppose that the “equator map” u.r; t/ � � (which is a
time-independent solution of the PDE) does not minimize the energy

E.f / D

Z 1

0

h
jf 0j2 C


.f /

r2

i
rd�1 dr;

where 
 0.x/ D �.x/. Then there exists a self-similar weak solution of the initial value
problem (59) that is not constant in time and that has the same initial data as the equator
map, u0.r/ � � .

Using this, we prove part (i) of Theorem 1.3.

Proposition 5.3. For the case n D 2 there is non-uniqueness of problem (57): there are
two distinct solutions with initial data u0.r/ � � .

Proof. The key aspect of the proof is capturing the fact that in the nD 2 case, the condition
�0.x/��.d � 2/2=4D�1 in (61) is violated. If the non-uniqueness condition �0.�/ <�1
in (60) held, this would be easy. However because �0.�/ D �1, we need to do a higher-
order expansion of �0.x/ around � to show this. Once we establish that the condition
�0.x/ � �1 is violated, we follow [20] and construct h based on a function which almost
saturates that Hardy inequality.
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Let u D � denote the equator map and h be any function. We have

E.h/ �E.u/ D

Z 1

0

h
jh0j2 C


.h/ � 
.�/

r2

i
rd�1 dr; (63)

where 
 0.x/ D �.x/. One calculates


 0.�/ D �.�/ D 0; 
 00.�/ D �0.�/ D �1;


 000.�/ D �00.�/ D 0; 
 0000.�/ D �000.�/ D �6:

Therefore by a Taylor expansion, if we choose ı small then there exists a constant C > 0

such that

.x/ � 
.�/ � �.x � �/2 � C.x � �/4 (64)

for all x 2 Œ� � ı; � C ı�. The constant C is positive because 
 .4/.�/ < 0.
To use inequality (64) in the energy expression (63), we need to choose h valued in

Œ� � ı; � C ı�.
Following [20], we define, for any " > 0, the function f"W Œ0; 1�! R by

f".r/ D

8̂̂<̂
:̂
"�1 for 0 � r � ";

r�1 for " � r � 1=2;

4.1 � r/ for 1=2 � r � 1:

(65)

One verifies that f .r/ satisfiesZ 1

0

ˇ̌̌f
r

ˇ̌̌2
r3 dr �

Z 1

0

jf 0j2r3 dr �
�
1C

B

j log."/j

� Z 1

0

ˇ̌̌f
r

ˇ̌̌2
r3 dr (66)

for some B > 0 independent of ". That is, f is close to saturating the Hardy inequality,
which in this case has best constant 4=.d � 2/2 D 1. Then set

h.r/ D � � ı
f".r/

kf kL1
D � � ı

f".r/

2
:

We observe that h.r/ 2 Œ� � ı; � C ı� for all r .
We then have

E.h/ �E.u/ D

Z 1

0

h
jh0j2 C


.h/ � 
.�/

r2

i
rd�1 dr

�

Z 1

0

h
jh0j2 C

�.h � �/2 � C.h � �/4

r2

i
rd�1 dr

D

Z 1

0

hı2
4
jf 0" j

2
�
ı2

4

ˇ̌̌f"
r

ˇ̌̌2
� C

ı4

16

ˇ̌̌f"
r

ˇ̌̌2
jf"j

2
i
rd�1 dr:

Now using bound (66) we determine that

E.h/ �E.u/ �
ı2

4

Z 1

0

ˇ̌̌f"
r

ˇ̌̌2� B

j log "j
� C

ı2

4
jf"j

2
�
r3 dr;

and by choosing " sufficiently small we may make the right-hand side negative.
We thus determine that E.h/ < E.u/, and hence there are two solutions.



J. Fennell 372

5.3. The n � 3 case: Precise dynamics of the self-similar solutions

We finally present some results on the dynamics of the self-similar solutions in the real
heat flow case when n � 3. The methods of analysis here are not original, and our results
are based on analogous results elsewhere. Our motivation in presenting them here is to
show how, in this special case, one can determine precise dynamics of the self-similar
solutions; it would be very satisfactory to extend these results to the general case of the
GLL equation.

We first recall the self-similar problem.

Definition 5.3. The self-similar real heat flow problem is the ODE

0 D �00ˇ .r/C
�2n � 1

r
C
r

2

�
�0ˇ .r/ �

1

r2
�.�ˇ /

subject the initial conditions �ˇ .0/ D 0 and �0
ˇ
.0/ D ˇ > 0.

From Proposition 5.2 we know that for every ˇ > 0 there is a unique global solution
to this problem and that there exists �ˇ .1/ 2 R such that limr!1 �ˇ .r/ D �ˇ .1/.

Proposition 5.4. Let �ˇ be the solution of the self-similar problem and  ˇ the solution
of the stationary problem.

(i) We have the bound �ˇ .r/ �  ˇ .r/.

(ii) The function �ˇ is monotonically increasing and �ˇ .r/ < � .

(iii) For fixed r > 0, the function ˇ 7! �ˇ .r/ is strictly increasing, �0.r/ D 0, and
limˇ!1 �ˇ .r/ D � .

(iv) The function ˇ 7! �ˇ .1/ is strictly increasing, �0.1/D 0, and limˇ!1 �ˇ .1/

D � .

�

2:5

0:25

0:5

1

2

Figure 3. Plots of �ˇ .r/ for r 2 Œ0; 2:5� and ˇ D 0:25, 0:5, 1, 2, 4:5, 10, 30, and 100.
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The content of this proposition may be seen at a glance in Figure 3. Note that in light
of the non-uniqueness theorem for n D 2, we do not expect the same dynamics in the
n D 2 case: in fact, we expect a self-similar profile whose asymptotic limit is � .

Lemma 5.5. Suppose that for all r 2 Œ0; R�, we have �ˇ .r/ < � . Then �ˇ is increasing
on Œ0; R�.

Proof. Because ˇ > 0, the solution is initially increasing. For a contradiction, let r0 be the
first critical point in Œ0;R�. Because �ˇ is initially increasing, r0 must be a local maximum.
However, from the ODE we have

�00ˇ .r0/ D �
�2n � 1

r
C
r

2

�
�0ˇ .r0/C �.�ˇ .r0// D �.�ˇ .r0// > 0;

where �.�ˇ .r0// > 0 because �ˇ .r0/ 2 .0; �/. The condition �00
ˇ
.r0/ > 0 contradicts r0

being a maximum. Hence �ˇ is increasing on Œ0; R�.

Proof of Proposition 5.4(i). Let " > 0 and consider the functions �ˇ and  ˇC".r/. Define

f .r/ D r2. ˇC".r/ � �ˇ .r//:

We will show that f .r/ � 0 for all r . Letting "! 0 will then give the result.
By continuity of derivatives given by the well-posedness theory, there is an initial

interval Œ0; ı/ on which ˇC".r/� �ˇ .r/ is increasing, and hence, as r2 is also increasing,
the function f is increasing on this interval.

Now suppose that f has a critical point. Let r0 be the first critical point. Because f is
initially increasing, this critical point must be a local maximum. Because f is increasing
on .0; r0/, we have f .r0/ > 0.

We then calculate

f 00.r/ D r2. 00ˇC".r/ � �
00
ˇ .r//C 4r. 

0
ˇC".r/ � �

0
ˇ .r//C 2. ˇC".r/ � �ˇ .r//

D
4 � .2n � 1/

r
f 0 C

2.2n � 1/ � 6

r2
f C

r3

2
�0ˇ C �. ˇC"/ � �.�ˇ /: (67)

First, we have the Lipschitz bound

�. ˇC".r0// � �.�ˇ .r0// � �.2n � 3/. ˇC".r0/ � �ˇ .r0//;

where we have used the fact that f .r0/ D  ˇC".r0/ � �ˇ .r0/ > 0 to multiply across by
 ˇC".r0/ � �ˇ .r0/.

Second, because f .r0/ > 0, �ˇ .r0/ <  ˇC".r0/ < � , and hence by the lemma, �ˇ is
increasing on Œ0; r0�. Therefore �0

ˇ
.r0/ � 0.

Using both of these inequalities, as well as f 0.r0/ D 0, in (67) yields

f 00.r0/ � C
2.2n � 1/ � 6

r20
f .r0/C 0 �

2n � 3

r20
f .r0/

D
2n � 5

r20
f .r0/ > 0;
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which contradicts r0 being a local maximum. Hence f has no critical points; it is increas-
ing for all r . In particular, it is always positive, so �ˇ .r/ <  ˇC".r/ for all r . Taking the
limit "! 0 then gives �ˇ .r/ �  ˇ .r/.

Proof of Proposition 5.4(ii). The previous bound gives �ˇ .r/ �  ˇ .r/ < � for all r .
Hence by the lemma, �ˇ .r/ is always increasing.

Proof of Proposition 5.4(iii). Set ˛ < ˇ. We wish to show that �˛.r/ < �ˇ .r/, which
follows from a maximum principle analysis ofg.r/ D r2.�ˇ .r/� �˛.r//. The analysis is
similar to the proof of item (ii). The function g is initially increasing. If r0 denotes the
first critical point, which must be a maximum, one calculates

g00.r0/ D
h4n � 8

r2
C 1

i
g.r0/C

�ˇ .r0/ � �˛.r0/

r2

�

h4n � 8
r2

C 1
i
g.r0/ �

2n � 3

r2
g.r0/ D

h2n � 5
r2

C 1
i
g.r0/ � 0;

a contradiction. Therefore g is increasing for all r , and in particular is positive, and hence
 ˇ .r/ >  ˛.r/.

Proof of Proposition 5.4(iv). The proof follows from a similar maximum principle argu-
ment as in the previous proof to show that the function h.r/ D .r=.2 C r//2. ˇ .r/ �

 ˛.r// is increasing. One then has, for r > 1,� r

2C r

�2
. ˇ .r/ �  ˛.r// �

1

9
. ˇ .1/ �  ˛.1// > 0;

and hence on taking limits . ˇ .1/ �  ˛.1// � .1=9/. ˇ .1/ �  ˛.1// > 0, which is
what we wanted to prove.

A. Some standard results

A.1. Hardy inequalities

Theorem A.1 (Generalized radial Hardy inequality). Suppose that f WRd ! R is radial.
Then for all p � 1 and k � 0 such that p < d=.k C 1/ there holds


 f

rkC1





Lp
�

p

d � p.k C 1/




fr
rk





Lp
: (68)

Proof. We suppose that f is smooth and compactly supported. The result for arbitrary f
then follows from a standard density argument.

We have
d

dr

� f
rk

�
D �k

f

rkC1
C
fr

rk
:
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Multiplying this equation by .f =rkC1/p�1rd�1 and integrating over Œ0;1/ yieldsZ 1
0

d

dr

�f .r/
rk

�� f

rkC1

�p�1
rd�1 D �

k

s.d/




 f

rkC1




p
Lp
C

Z 1
0

fr

rk

� f

rkC1

�p�1
rd�1;

where s.d/ is the measure of the unit sphere in Rd . Now performing integration by parts
on the term on the left we findZ 1

0

d

dr

� f
rk

�� f

rkC1

�p�1
rd�1 D �

Z 1
0

� f
rk

� d
dr

h� f

rkC1

�p�1
rd�1

i
dr

C

h� f

rkC1

�p
rd
iˇ̌̌rD1
rD0

: (69)

The boundary term corresponding to r D 1 is 0 because f is compactly supported. For
the r D 0 term we find

lim
r!0

� f

rkC1

�p
rd D lim

r!0
f .r/prd�p.kC1/ D 0

if d � p.k C 1/ > 0. We therefore haveZ 1
0

d

dr

� f
rk

�� f

rkC1

�p�1
rd�1

D �

Z 1
0

� f
rk

� d
dr

h
f .r/p�1rd�1�.p�1/.kC1/

i
dr

D �

Z 1
0

� f
rk

�h
.d � 1 � .p � 1/.k C 1//f .r/p�1rd�2�.p�1/.kC1/

C .p � 1/f .r/p�2fr .r/r
d�1�.p�1/.kC1/

i
dr

D �
.d � p.k C 1/C k/

s.d/




 f

rkC1




p
Lp
� .p � 1/

Z 1
0

fr

rk

� f

rkC1

�p�1
rd�1:

Substituting this into (69) and combining terms we get

.d �p.kC 1//



 f

rkC1




p
Lp
D�s.d/p

Z
Rd

fr

rk

� f

rkC1

�p�1
dx �p




 fr

rkC1





Lp




 f

rkC1




p�1
Lp

;

which upon dividing through by the norm of f=rkC1 gives the result.

Corollary A.2. Suppose that f WRd ! X is radial with X D C or X D Rm. Then for all
p � 1 and k � 0 such that p < d=.k C 1/, there is a constant C.d; p;X/ such that


 f

rkC1





Lp
� C.d; p;X/




fr
rk





Lp
: (70)

Proof. Take X D C and write f as f .r/ D a.r/C ib.r/ for real-valued functions a and
b. Using that kukLp � kReukLp C k ImukLp , we have


 f

rkC1





Lp

.



 a

rkC1





Lp
C




 b

rkC1





Lp

.



ar
rk





Lp
C




br
rk





Lp

.



fr
rk





Lp
:

A similar argument holds forX DRm writing f in terms of its real-valued coordinate
functions.
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A.2. Local well-posedness for a class of singular ODEs

Theorem A.3. Consider the Cauchy problem

f 00.r/ D A.f 0.r/; f .r/; r/ � k
�f 0.r/

r
�
f .r/

r2

�
C
1

r2
B.f .r//; (71)

f .0/ D 0;

f 0.0/ D ˛ 2 C;

where

• k > 0,

• A.z1; z2; r/ is a smooth function with A.˛; 0; 0/ D 0,

• B.z/ is a smooth function such that jB.z/j � C jzj3 in a neighborhood of 0, and
.@B=@z/.0/ D .@B=@ Nz/.0/ D 0.

There exists r0 > 0 such that there is a unique solution among all functions f W Œ0; r0�!C
satisfying

jf .r/jL1.Œ0;r0�/ C
ˇ̌̌f 0.r/ � f 0.0/

r

ˇ̌̌
L1.Œ0;r0�/

<1: (72)

The unique solution in this space is second differentiable at r D 0 and satisfies f 00.0/D 0.

Let us make two remarks on the conditions in the theorem.

• Condition (72) on f is equivalent to both f and f 0 belonging toL1 and f 0 satisfying
a Lipschitz condition at r D 0.

• The assumptions on B ensure that its behavior as r ! 0 is non-singular; indeed, one
readily verifies that, for smooth f , B.f .r//=r2 ! 0 as r ! 0. With this formulation
of the Cauchy problem the singular behavior occurs only in the term �.f 0.r/=r �

f .r/=r2/.

The proof of the theorem involves a standard, if delicate, fixed point argument; details
may be found in [8].

A.3. An integration inequality

Proposition A.4. Suppose thatA0.r/C c1rA.r/� c2r�k for c1 > 0. Then for any r0 > 0,
A.r/ � C.c1; r0/.A.r0/e

�c1r
2=4 C c2r

�kC1/.

Proof. We may write the equation as

d

dr
.ec1r

2=2A.r// �
c2

rk
ec1r

2=2;

which on integration gives

A.r/ � ec1.r
2
0�r

2/=2A.1/C c2e
�c1r

2=2

Z r

r0

1

sk
ec1s

2=2 ds
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D ec1.r
2
0�r

2/=2A.1/C c2
1

rk�1

�
1

r�kC1ec1r
2=2

Z r

r0

1

sk
ec1s

2=2 ds

�
:

To prove the result we show that the term in the brackets is bounded independently of r .
This term is clearly a continuous function of r . Moreover, we have from the condition
c1 > 0,

lim
r!1

r�kC1ec1r
2=2
D1 and lim

r!1

Z r

r0

1

sk
ec1s

2=2
D1;

which means, by l’Hopital’s rule, that

lim
r!1

�
1

r�kC1ec1r
2=2

Z r

r0

1

sk
ec1s

2=2 ds

�
D lim
r!1

� 1

.�k C 1/r�kec1r
2=2 C c1r�kC2ec1r

2=2
�
1

rk
ec1r

2=2
�

D lim
r!1

1

�k C 1C c1r2
D 0:

We thus have for all r 2 Œr0;1/,�
1

r�kC1ec1r
2=2

Z r

r0

1

sk
ec1s

2=2 ds

�
� C.r0; c1/;

which completes the proof.
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