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Equivariant heat and Schrodinger flows from
Euclidean space to complex projective space

James Fennell

Abstract. We study the equivariant harmonic map heat flow, Schrodinger maps equation, and gen-
eralized Landau-Lifshitz equation from C” to CP". By means of a careful geometric analysis, we
determine a new, highly useful representation of the problem in terms of a PDE for radial functions
from C” to S2. Using this new representation, we are able to write explicit formulas for the har-
monic maps in this context, and prove that they all have infinite energy. We show that the PDEs admit
a family of self-similar solutions with smooth profiles; these solutions again have infinite energy,
and give an example of regularity breakdown. Then, using a variant of the Hasimoto transforma-
tion applied to our new equation for the dynamics, we prove a small-data global well-posedness
result when n = 2. This is, to the best of our knowledge, the first global well-posedness result for
Schrodinger maps when the complex dimension of the target is greater than 1.

In the final section we study a special case of the harmonic map heat flow corresponding to
initial data valued in one great circle. We show that the n = 2 case of this problem is a borderline
case for the standard classification theory for PDEs of its type.

1. Introduction

The harmonic map heat flow and the Schrodinger maps equations are natural generaliza-
tions of the linear heat and Schrodinger equations where the domain and range of the func-
tions considered are manifolds and the Euclidean partial derivatives are replaced by covari-
ant derivatives. In this article we will be exclusively discussing the setting when the base
space is some Euclidean space R? and the target is a Kihler manifold N with complex
structure J. The energy of a map u: R? — N is defined by & (u) = (1/2) [ra |dul>dV.
The Euler Lagrange operator t(u) corresponding to & is calculated, in coordinates, to
be T(u) = ZZ:l Dy 0xu, where the Dy operators are covariant derivatives on N. The
harmonic map heat flow is then the Cauchy problem given by

uy =t(u) = ZDkaku, u(0) = uy, €))
k
while the Schrodinger maps equation is the Cauchy problem given by
ug=Jtu) =J Y Didgu. u(0) = uo. )
k
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One can also consider the generalized Landau—Lifshitz (GLL) equation, defined for o €
[0,00) and B € R by

ur = (o +p)r(w) = @+ BJ) ) Didu,  u(0) = uo; 3)
k

this corresponds, when the range is C, to the PDE u; = (o 4 i) Au. Let us emphasize
that the linearity of the equations in the familiar case when the target is C is special: in
general these problems are non-linear because of curvature.

The harmonic map heat flow is a well-known and extensively studied problem. It was
introduced in [7] as a tool for studying the existence of harmonic maps. These are maps
which satisfy t(u) = Dydru = 0 and correspond to stationary solutions of all of the
problems above. Vast work has been done on the harmonic map heat flow in the subsequent
years; see, for example, [16] for a textbook treatment. We mention only that it has been
shown that for general N uniqueness of the harmonic map heat flow does not hold, and
that one way to demonstrate non-uniqueness is through studying self-similar solutions, as
is done in [9, 10]. This approach is used to prove a non-uniqueness result for the case of
the flow for maps from C? 2 R* to CP2; see Section 5 below.

As opposed to the harmonic map heat flow, the Schrédinger maps equation (2) has
been much less studied in general. For the setting we are considering here, that of the flow
for maps u: R? — N, local well-posedness in the Sobolev space H'(R?; N) for integer
I > d/2 + 1 is established in [17]. One can see by scaling that H%/2 is critical for the
problem, and significant work has been done on proving global well-posedness in this and
other critical spaces in the special case when the target is the sphere N = S? [1,3,4,13].

The case of the sphere is particularly attractive for two reasons. First, given the usual
embedding S? C R3, the Schrodinger maps equation becomes quite explicit. In this frame-
work, the complex structure at the point u is simply given by the cross product in R3,
Jw = u x w. The derivative term is calculated to be Y, Dgdgu = Au + [Vu|*u, where
A and V are the Laplacian and gradient operators for functions from R? to R3. The
Schrodinger maps equation thus becomes

u; = u x (Au + |Vul?u), x e RY, u(x) € S c R3. 4)

The second reason this case of the Schrodinger maps equation is appealing is that it is
physically relevant. Equation (4) is used to describe the dynamics of ferromagnetic spin
systems, and is known in the physics community as the Heisenberg model. It is a special
case of the equation

u; = (o + pux)(Au + |Vul*u), xe R?, )

which is the Landau—Lifshitz—Gilbert equation and is used to study the direction of mag-
netism in a solid. (The survey article [15] discusses the physical relevance of these equa-
tions.) Equation (5) corresponds precisely to the GLL equation (3) in the case of maps
u:R? — S2. The work on small-data existence and uniqueness in a critical space for the
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Schrodinger maps equation in this case of the sphere culminated in [3], which furnished a
global critical small-data well-posedness result in the Sobolev space H42,

A large body of work has been devoted to the sphere problem when the domain is
R2. The critical space is H', so the problem in this dimension is energy critical. It is
also tractable to study because one can make an equivariant ansatz and thereby study a
subproblem of the flow as a whole. The equivariant ansatz involves studying solutions of
the form u(r, 0) = e™?R f(r), where f(r) € R3,m € Z, and R is the generator of rotations
about the z-axis and given by the matrix

0 1 0
R=1-1 0 O
0 0 O

The overall picture that has developed can be described in terms of the harmonic maps,
which have finite energy in this context, and whose existence is generally seen as a bar-
rier to global well-posedness. In the case of radial maps, m = 0, there are no non-trivial
harmonic maps and a global existence result for arbitrarily sized data in H? has been
established [12]. In the case when m = 1, the lowest energy level of the non-trivial har-
monic maps is 4s; for initial data with energy strictly smaller than this, global existence
has been shown to hold [2]. On the other hand, in [18], a set of initial data with energy
arbitrarily close to 47 is constructed which generates finite time blow-up solutions. (This
paper resolved the long-standing question of whether finite energy initial data could lead
to finite time blowup.) Finite time blow-up solutions are also constructed in [19]. For
m > 3, it has been shown that if the initial data has energy close to that of the harmonic
maps then the solution is, in fact, global [12].

Still in dimension 2, the equivariant ansatz can be made under the more general
assumption that the target N is a complex surface with an S! symmetry. This was orig-
inally done in [5], where a critical well-posedness theory for equivariant data small in
H' was developed. Under the same equivariant ansatz, [11] do not pursue the Sobolev
theory, and instead study the self-similar solutions of the flow. These are solutions of the
form u(x,t) = ¥ (x/ \/m ) for a profile ¥. A family of such solutions with C *° profiles is
constructed, giving an example of regularity breakdown: these solutions are smooth at all
times ¢ # 0 but not smooth at = 0. The study of these self-similar solutions is supple-
mented with a global critical small-data well-posedness theorem in a Lorentz space that is
shown to include the self-similar data.

When the dimensions of the range and domain are larger than 2, but the same, it is
still possible to formulate an equivariant ansatz, as will be shown in detail below. For the
case of the Schrédinger maps equation for maps u: C* — CIP”, this equivariant ansatz is
considered in [6], where the existence of self-similar solutions is established.

The primary purpose of the present paper is to expand upon this previous work on
the equivariant C" to CPP" case, with a particular interest in establishing a global well-
posedness theorem. Our central result is a new equation for the dynamics in this case (7).
This new equation is similar in structure to the GLL equation for maps to the sphere (5),
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and thus immediately opens up the possibility of applying research ideas developed for
the sphere problem to the present context. Our global well-posedness result in Section 4
in the case n = 2 is an example of this in practice.

1.1. Overview of the results

1.1.1. The equivariant ansatz and derivation of the equation. We consider maps
v: C" — CP", where CP" is equipped with the Fubini-Study metric, for n > 2. The
n = 1 case is the usual problem of R? to the sphere because CIP! with the Fubini—Study
metric is isometric to S2. In what follows, 7 is the complex dimension and d = 2n is the
real dimension.

Recall that CP" can be viewed in terms of the homogeneous coordinates as points

(20. 21+ ..., zn) € C"*1 under the identification [z, z1, ..., zy] = [0zo, az1, ..., 0z,]
for all @ € C\{0}. Given a complex isometry A of C”" we can construct an isometry A
of CP” by the formula Alzo, z1, ..., zu] = [20, A(z1, ..., zn)]; that is, we let A act on

the last n coordinates in the homogeneous representation. A map v: C" — CP” is said
to be equivariant if v(Az) = Av(z) for all isometries A of C" and all points z € C".
This ansatz is formally conserved by the flow. This assumption is strong and, as we show,
implies that v is in fact of the form v(z) = v((z1,...,2zx)) = [20, f(F)z1, ..., f(r)zna],
where r = |z| and f:R* — C. We observe that for any x € R we have v((x,0,...,0)) =
[z0, f(r)x,0,...,0], or namely that

U(R+el) C {[20,21,0,...,0] 120,21 € (C} ~ CP!,

so the image of a real ray is contained in a complex line. The Fubini—Study metric of
CP" restricts to the Fubini—Study metric on this CP!, so in fact the image of v(R¥e;) is
contained in a manifold isometric to S. The idea, now, is to parameterize this sphere in
the usual embedding S? C R3 and determine an equation on u(r) = v(re;) € S2. From
the equivariant ansatz we can recover v from u.

By a computation we determine that the energy of v is given in terms of u: C* — S?
by the formula

1 u? +uZ + 2n —2)|u —ez)?
sw =y [ (wp+ Aol ©)
R27 r

where |u — es] is the Euclidean distance in R between u and the north pole of the sphere
e3, and |u,| is the Euclidean norm in R3 of u,. Observe that in the case n = 1, we recover
the usual energy for the equivariant R> — S? problem, as we would expect. (See, for
example, [2, p.2].) For n > 2, one determines that any function u with finite energy is
continuous and has a limit as » — oo; by inspecting the energy one sees that this limit
must be the north pole e3.

The harmonic map heat flow, the Schrodinger maps equation, and the GLL equation
for this equivariant case are now determined by calculating the variation of the energy. We
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find that the GLL equation is given by

Pu 2n—10u 2n—-24u
— —363)7 7

— (aP e
= (@ +'3ux)(8r2+ r 8r+ r2

where P is the projection onto the tangent space T;,S? and u3 = (u, e3). The harmonic
map heat flow corresponds to « = 1 and § = 0, while the Schrodinger maps equation
corresponds to @ = 0 and 8 = 1. This representation of the problem appears to be new. Its
similarity to the corresponding equation for maps to the sphere is precisely what makes it
so useful: it immediately opens up the possibility of applying some of the techniques that
have been developed for the case of the sphere to the present setting too.

By taking the stereographic projection from the north pole f(r) = (u1(r) +iua(r))/
(1 4+ u3(r)) we determine the stereographic representation of the problem

1 2|f1Pf

2f f2 2n—1 . 2n—1
21+ |f2

ryp s e St

fi =+ B (frr - ) ®
where the function here is a radial map f:R?" — C. From this representation we see
right away that the harmonic maps — that is, the stationary solutions — are given explicitly
in this context by f(r) = ar for any o € C. In the terms of the sphere coordinates, the
harmonic maps are given by a type of stereographic projection,

u(r) = (2Re(a)r, 2Im(a)r, 1 — |a|*r?). 9)

1+ |a|?r?
Again, this is consistent with the n = 1 case, where the equivariant harmonic maps from
R? to S? are known to be stereographic projections. What is remarkable is that the analytic
expressions for the harmonic maps are independent of n. This seems to suggest that, from
the perspective of the theory of harmonic maps, CPP” is the natural higher-dimensional
analog of S2.

However there is a difference for n > 2: observe that from (9) we have lim, o u(r) =
—ej3, and so we find, by previous remarks on the energy, that in this equivariant context all
of the non-trivial harmonic maps have infinite energy.

1.1.2. Self-similar solutions. After deriving the equation describing the dynamics, we
first study the self-similar solutions of the problem for n > 2, which are given by u(r,¢) =
¥ (r/+/t) for a profile ¥ (r) = u(r, 1). By substituting this ansatz into (7) we determine
the following ODE system on :

2n—1+r)8_1//+2n—2+1//3e3)’ (10)

32
0=(aP+,31//x)(8—;p+( 2)5, =
¥ (0) = es,

V' (0) = v = (v1,v2,0) € T,,S?.

As mentioned previously, the self-similar solutions for the Schrodinger maps equation in
this equivariant setting have already been studied in [6]. However, using the representation
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(10) we are able to simplify the analysis significantly. We are also able to extend the
analysis by gaining more information on the convergence of the self-similar profile, and
by treating the general GLL equation as well as the Schrodinger maps equation.

Theorem 1.1. Fixn >2,a > 0, and § € R. Foreveryv € TesS2 there is a unique global
solution to (10). The solution is smooth for r > 0. In the non-trivial case, when v # 0, the
solution has the following properties:

(1) Forallr > 0, ¥ (r) # es.
(2) Ifa > Othen || <1/r3. Ifa = 0 thenr|y,| — 0asr — oo.

(3) Ifv # 0, there exists a point Yoo € S?, Yoo # €3, such that lim, e ¥ (r) = Voo.
Consequently, & () = oo.

(4) The limit Yoo depends continuously on v; in particular, limy_.o Yoo = €3.

Our proof shows that the theorem also holds forn = 1 if ¢ > 0.

Because of the convergence, we see that u(r, ) = ¥ (r/+/t) is a solution of the GLL
flow corresponding to the initial data u(r, 0) = Vo.

Notice that in the case & > 0 — that is, when there is some dissipation — we are able to
prove faster convergence to 0 of 1,.. In the case of the Schrodinger maps equation (o = 0)
the rate of convergence of v, is insufficient to guarantee the convergence of ¥, so an
additional argument is needed.

1.1.3. Global critical well-posedness. We next illustrate how methods for proving well-
posedness of the Schrodinger maps equation for the sphere may be adapted to prove well-
posedness of (7). We specifically adapt the Hasimoto transformation method from [5]. For
a smooth solution u(r, ¢) of (7) and a fixed time ¢, the map r + u(r, ¢) defines a curve on
S? starting at e3. Choose any element e € T,,S? and consider the parallel transport e(r)
of this curve along r + u(r,t). Because the tangent space at the point u(r, ¢) of the sphere
is two-dimensional, it is spanned by e(r) and Je(r) = u x e(r). We may therefore define
a complex-valued function ¢ by the formula

Re(g)e(r) +1Im(g)Je(r) = qe(r) = uy, (11)

precisely as in [5]. This equation is known as the Hasimoto transformation. It is chosen
so that the function g will satisfy a “nice” non-linear Schrodinger equation, namely, an
equation where the non-linearity does not contain derivatives. We derive the equation on
q for all n, and in the case n = 2 — that is, for the equivariant GLL maps equation from
C?2 to CIP? — we provide the necessary estimates to prove the following small-data critical
global well-posedness result.

Theorem 1.2. Fix p € [1,2]. Define r by 1/r = 1/2 — 1/6p and the spaces X and X
by the norms

lglx = Vgl e, and lgllx, = le’"® (aq)x.
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where a(x) = x1/r. There exists & > 0 such that if ug: R?" — S? is radial, qq is defined
by (11), and |\qollx, < & there is a unique global solution of the GLL equation (7) for

B > 0 for n = 2 with the derivative term q in the space X.

Some remarks:

e This is, to the best of our knowledge, the first global well-posedness result for the
Schrodinger maps equation where the target manifold has complex dimension greater
than 1.

» The space X is at the scaling level of the equation.

* Because (3p, r) is an admissible exponent pair for the Strichartz estimates for the
Schrodinger equation, we have ||q|lx, < [V(ag)|L2 < [|[VgllL2 and hence data go
whose derivative is small in L? are included in the well-posedness result.

» Forn > 2 we are unable to provide the estimates to close the argument in an elementary
way. A global well-posedness result for arbitrary n, proved using the Hasimoto trans-
form or another method adapted from the research on the Schrodinger maps equation
for the sphere, would be very satisfactory.

1.1.4. The “real” heat flow case. We finally study an interesting subproblem of the
general equation (7) corresponding to the harmonic map heat flow with an additional
condition on the initial data. Recall that for the linear heat equation, if one starts with
real-valued data then the solution will be real valued for all time. On the other hand, if
one starts the linear Schrodinger equation with real-valued data then the solution will, in
general, be complex valued for future times. This shows that in the heat flow case there is
a lower-dimensional subproblem when one restricts to real-valued data.

In our context, the analogous fact is that if one starts the harmonic map heat flow (7)
with initial data valued in a great circle passing through the north pole, the solution will
continue to be valued on the same great circle for future times. For the GLL flow this is not
true: the solution will spread out to the whole sphere. For the harmonic map heat flow one
can thus fix a great circle and consider the problem for initial data valued on that circle.
One expects the analysis of this subproblem to be easier as the dimension of the problem
is reduced. However, because both the harmonic maps and the self-similar solutions are
solutions of this type, it is still an interesting case to consider.

By parameterizing the great circle by its spherical distance from the north pole, one
finds that the “real” heat flow is given by the PDE

_0%g  2n—10g | n(g)
T or2 r o or r2’

81 (12)
where 7(g) = sin(2g) + (2n — 2) sin(g). Equations of this type, which arise in the study
of the equivariant harmonic map heat flow on spherically symmetric manifolds, have been
extensively studied [9, 10]. There is a general theorem which, based on the structure of
n, classifies the PDE into a uniqueness regime or a non-uniqueness regime. Our primary
purpose here is to show that for n = 2 — that is, the problem of maps from C? to CPP? —the
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PDE (12) is a borderline case for this classification theorem. We find that the dynamics of
the PDE share some of features of the uniqueness regime, and some of the features of the
non-uniqueness regime, but ultimately that non-uniqueness holds.

Theorem 1.3. (i) For n = 2 there is a weak non-constant solution of (12) corre-
sponding to the initial data go(r) = . This solution is distinct from the constant
solution g(r,t) = m.

(ii) In the case n > 3, for each initial data in L*° and each T > 0, there is at most
one solution of (12) in L*°([0, T, L*®).

2. The equivariant ansatz and derivation of the equation

2.1. The equivariant ansatz

We consider maps v: C" — CIPP”. In order to rigorously describe the equivariant ansatz,
we recall more carefully the construction of CPP”. One begins with vectors z = (zo,
Z1,...,2,) € C*TI\{0} and first identifies points z ~ Az where A € R\{0}. The result-
ing equivalence classes can be identified with points on the sphere S2**! ¢ C"*!. This
sphere has the usual metric induced from C"*!, Now one defines the equivalence relation
z ~ ez for @ € R, and defines CP" = S2"*!/ ~. The Fubini-Study metric is the metric
induced from S2"+1,

To make the equivariant ansatz, we first construct a special class of isometries on CP”
in the following way. Take any complex isometry A of C”, and define A:Crtl o cntl
by

/f(zo, Z1, ..., 2n) = (20, A(21, ..., Zn));
that is, A acts on the last n coordinates of a point in C"*1. If A is a complex isometry of

C", then A is clearly a complex isometry of C"*!. Now define a map A on CPP" through
the homogeneous coordinates by

/I[Z(),Zl, e Zn] = [ff(zo, Z1, ..., Zn)] = [20, A(21, - .., Zn)]- (13)
The map A is well defined because A commutes with complex scalar multiplication.

Lemma 2.1. If A is a complex isometry of C" then A defined by (13) is an isometry of
CP".
Proof. We have
depr (A[v], A[w]) = depr ([Av], [Aw]) = min  dgznr1 (€% Av, e Aw)
a,B€[0,27]

= min 2arcsin(Ldgnsi (e Av, e Aw
a,B€[0,27] (3dcr( )

= min Zarcsin(%dcnﬂ(ei“v, P w)) = depr ([v], [w]),
«o,Bel0,27]
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where in the second to last equality we used that A commutes with ¢ and that A is an
isometry of C"*1, m

We say a map v: C" — CP" is equivariant if v(Az) = Av(z) for all complex isome-
tries A of C". We now show that this assumption implies a strong rigidity on v. Take
any z € C" and write v(z) = [wy, w] for some wy € C and w € C". Now consider any
isometry A that fixes z. By the equivariant ansatz and Az = z we have

[wo, Aw] = Au(z) = u(Az) = u(z) = [wo, w],

which implies that Aw = w, so A also fixes w. Because A is an arbitrary isometry that
fixes z, we must in fact have w = f(z)z for some f(z) € C, and hence v(z) = [wy, f(2)z]
for all z. Moreover, we have

[wo, f(Az)Az] = v(Az) = Av(z) = [wo, A(f(2)2)] = [wo, f(2)Az],

so f(Az) = f(z). Because this holds for all isometries A, f(z) is in fact a radial function
and hence

v(z) = [wo, f(|z])z] (14)
for some function f:R* — C.
We now observe that if » € R™ then v(rey) = [wo, f(r)7,0,...,0]. In other words,

v(RTey) C {[wo, w1,0,...,0] : wo, w; € C} ~ CPL.

The Fubini-Study metric on CPP” restricts to the Fubini-Study metric on CPP!, and so
this CP! is isometric to the sphere S2. Moreover, the complex structure of CP” restricts
to the standard complex structure of CIP!. In the usual embedding S? C R? this is given,
as is well known, by Jw = u x w at the point u € S? and for all w € T,,S?. We next
parameterize this sphere and determine an equation for the function r — v(re;) € S2.

2.2. Derivation of the energy

The isometric identification between CP! (with the Fubini—Study metric) and S? C R3
(with the metric from the standard embedding) can be made through the isometric invert-
ible map

S2 5 (al,az,a3)r—>m[l+a3,a1 +ias] € CP!, (15)
where in this case the north pole e3 = (0,0, 1) is mapped to the point [1,0] € CP!. In this
identification the complex structure on CP! is mapped to the standard complex structure
on the sphere. Given an equivariant map v: C* — CIP", we wish to write it in a form
so that v(re;) € CP! has the representation [ + a3, a; + ia», 0, ..., 0]. In fact, we can
write v in the form

v(z) = 1+ us, +iu2)§] (16)

1
\/5(1 + u3)1/2[
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for u(r) = (u1(r), ua(r), us(r)) satisfying |u|grs = 1. When we substitute z = re; we
recover essentially the representation in (15), and hence u parameterizes the sphere in the
correct, isometric, way.

(To see that v(z) = [wog, f(r)z] in (14) can be written as in (16), observe that by
scaling we can assume that (w, g(r)z) € S?"*!, which means |wg|? + |g(r)|?r? = 1.
We can also assume by scaling that wg > 0. This means, in fact, that wy € [0, 1], and
hence there is a unique u3(r) € [—1, 1] such that ~/2(1 + u3(r))'/? = wy. We then define
uy + iup = rg(r)~/2(1 — u3)'/2, and substituting this in gives the representation above.
The condition |wg|? + |g(r)r|?> = 1 translates into |u|gs = 1.)

Proposition 2.2. The energy is given in the u coordinates by

1 1 1

E(v) = -/ |dv|* dx = -[ [|u,|2 + = —u?+22n—-2)(1 - u3)]] dx. (17)
2 R27 2 R2n r2

Proof. In order to calculate the energy density |dv|? of v(z) we have to fix a basis for

T,C", which will be 2n-dimensional, and calculate first derivatives of v with respect to

this basis. For concreteness we view v as being valued in the sphere S?"+1,

v(z) (1 +us, (un + iuz)f) e s+l ¢ ol (18)

1
B \/5(1 + U3)1/2

and perform the computation there. The only adjustment needing to be made is as fol-
lows. Given a point p € S2**1_all points ¢’? p are mapped to the same point [p] € CP”.
By differentiating with respect to 6, it is apparent that in 7,S?"*! the tangent direction
ip € T,S*"*1 is contracted under the identification p ~ ¢'? p. Hence when calculating

S27+1 we take the usual Euclidean derivatives in C* 1, project

derivatives at the level of
onto 7,S?"*1 and then factor out the real subspace spanned by i p. In fact, the last two

parts of this process amount to taking the complex projection

Pw=w—(w, p)cn+1p (19)
of derivative terms w. We have, of course, |Pv|? = [v|?> — (v, p)|?.

Let d/0z and 0/0zx be the usual basis for 7,C”". For any vector wy € C" define
/0w =Y p—y wE'd/0zp and 8/0Wo = Y,y w{' 0/ 0Zy. If {wy }} _, is an orthonormal
basis of C” then the derivatives {d/0dwy, d/dwy} are an orthogonal basis for the tangent
space and so, by the expression for |dv|? local in coordinates,

n
dv |2 v |2
dv|? =4 (P— ‘P— . 20
ol =43 |Pa-| +|P o (20)
k=1
One verifies the formulas at the point z € C”:
9 : d : d d
2 en X _Gwy 2 M X, @1
dwg 2r ow 2r dwg |lwe| dwg
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We then set wy = z/|z| and define wz(2), ..., w,(z) locally so that {wg(z)}}_, is an
orthonormal basis of C” for each z. In this setup, w; is the radial direction and wy deriva-
tives for k > 2 will be independent of radial terms.

Hence, for k > 2 we compute and find

v 1 W v
— = —10, [ Up)— d —=0.
owe  V2(1 + u3)1/2( ey +iuz) r ) an 0w
We see from (18) that dv/dwy, is complex orthogonal to v and so
) ) ‘ I ui+uy 1-us
8wk Jwy 2(1 +u3) r2 2r2

where in the step we used u% + u% + u% =1

We now differentiate with respect to w; and wj. In this case the radial terms will also
be differentiated. We note, however, that when differentiating we can ignore the scaling
term 1/(~/2(1 + u3)'/?): when this is differentiated we simply get a scalar multiple of
v(z), which disappears under the projection (19). Hence,

v 1 9
ow! :m})aw [1~|—u3 (uy +iuz)= ]
= ! U ’ .oy 2 ) z
- mp<”3§’(”l i) 5~ + i) 35 ).

and similarly,
v 1
wl  V2(1 4 u3)t/?
The difference in sign gives rise to the simplification
dv dv
A P=
dw!

ow!
Up(ug, o + iu’z)é)’z + ‘P(O, (uy + iuz)rz—z)ﬂ.

P(ug%( +zu2) +(u1+lu2) )

1
41 4 u3)

Finally, a computation using the relations u% + u3 + u3 = 1 and uyu/y + uoub, +uzus =0
reveals that

/ ! . ! E ‘2
‘P(u3,(u1+lu2)r)

_ / / 1N ‘2

= )(u3,(u1 +zu2)r>

ot ) (s )

1
\/5(1 + u3)1/2

- mm +us)uly + (ug —iuz) (U] + iuh)?
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1 .

= |u,|* - m“‘é + i (uyuhy — ujuz)|?
1

= |u,|* - m[(“g)z + ut(uy)® + Wh)u3 — 2uquuzul)
1 1+ us

= |u,|* — m[(l —u)|u,|’] = > up |?

and

2 -1-— 2
o a2 = [r(*520)

_ b 2 b 4
=2 [(1 + u3) 2 +u3)(1 + usz) ]

(4 un)(1— 1)
B 2r2 '

We have then, by substituting these expressions into (20),

r2 1r1— 2
du? = —[—”3 2 —1)( —u3)],

2 r2L 2
and then
8(1)):/ |dv|* dx
R2n
1 2, 1 2
— = [|u,| +—[1—u?+22n—2)(1 - u3)]] dx,

2 R27 r2

which completes the computation. ]

By the relations 1 —u3 = u? + u2 and |u — e3)?> = u$ + u3 + (u3 — 1)> =2(1 —u3),
we can equivalently write the energy in an L? form as

_ 1 2, L5 2 . 2
E@) = E/Rz”[””' + 504} + 13 + 2n = 2)lu — 3] dx. (22)

With this representation we determine the following result.
Proposition 2.3. There holds ||u, |7, < &) < |lur|7..

Proof. The lower bound is obvious. For the upper bound, we observe that u? + u3 <
|u — e3|? and hence that

2

LZ)’

and the result follows from the Hardy inequality ||¢p /7| .2 < ||¢ || .2 for functions ¢: R4 —
R3 (see Theorem A.1 in the appendix). ]

u—es

g) < 3 (Iher s + 2n = 1)

r
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2.3. Variation of the energy, and the flow PDEs

In order to find the PDEs corresponding to the harmonic map heat flow, the Schrédinger
maps equation, and the GLL equation, we need to calculate the variation of the energy,
given by the formula

d
/ (t(u), w)p,s2dx = ——— E(u + ew)
R2n dele=0

for all radial maps w: R?" — T'S? such that w(r) € T,,S>.

Proposition 2.4. We have

82u+2n—18u 2n—2 + us )
— es).
or2 ro or r2 3

T(u) = Pr,s2 (

Proof. Using the representation (17) we find for w € T,,S?,

d 1 1
— _08(7/1 +ew) = 5/ 2(ur, wy)grs + r—z[—2M3w3 +2(2n —2)(—w3)]

dele R2n

2n — 1 1
= —[ <u,r + Ur, w> + = (@2n —2 +uz)es, w)gs dx
R2n r R3 r

Pu 2n—10u 2n—2+u;
= _/1;2'1(1)7"1452(87 + — + 83), w)TuSZ dx,

r or r2

and the formula follows. [ ]

In general, the harmonic map heat flow is given by u; = 7(u), the Schrédinger maps
equation is given by u; = Jt(u), where J is the complex structure on the target, and the
GLL equation is given by u; = (o + fJ)t(u) for « > 0 and B € R. By the previous
proposition, t(u) is determined, while as discussed above, the complex structure in the u
coordinates is precisely the usual complex structure on the sphere. We are therefore ready
to write down the flow PDEs.

Definition 2.1. The equivariant generalized Landau—Lifshitz (GLL) problem from C” to
CP" is the Cauchy problem for u: R?" — S? given by

(23)

Pu 2n—10u 2n—2+4u
u,(r,t):(aP—i—,Bux)(a?—i— — + 363),

u(r,0) = up(r) withug(0) =0,

roor r2

for « > 0 and B € R. We recall that P is the projection operator onto the tangent space
atu. The case @« = 1 and B = 0 is the harmonic map heat flow. The case« =0 and f = 1
is the Schrodinger maps equation.

Note, by rescaling time we can always assume that o> + 82 = 1, which we do from
now on.
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By taking the stereographic projection f(r) = (u; + iuz)/(1 + u3z), with inverse
given by

1
(U1, Uz, U3) = m(z Re f,.21Im £, 1—|f]?), (24)

we can determine the stereographic representation of the problem. With this stereographic

projection, the north pole is mapped to the origin.

Proposition 2.5. The GLL equation is given in the stereographic coordinates by

2f fF =1 2n—] lmﬂw}

Ty G a Ak S

fi=@+iB)| frr - (25)

The proof involves substituting the expression for the stereographic projection (24)
into the PDE (23) and computing; we omit this standard computation.

2.4. Classification of the harmonic maps in this context

The equivariant harmonic maps from C” to CP" are the time-independent solutions of
(23). Because the PDE has one space dimension, the time-independent problem is an
ODE. In all, ¢ is harmonic if and only if

¢ 2n—1d_¢>+(2n—2)+¢3e>
dr? rodr r2 )

0=¢x( (26)

with the boundary conditions given by ¢(0) = e3 and ¢'(0) = v = (v1, v2,0) € T,,S>.
Writing the harmonic function ¢ in the stereographic coordinates as g, the ODE is
2gg? 2n —1 2n —1 1 2lgl*g

+ 8&r

0=gr—
S PR P 2 P21+ g

and the boundary conditions are g(0) = 0 and g,(0) = v; + iv,. Remarkably, we can
solve this ODE explicitly with the linear function g(r) = (vy + iv2)r. Moreover, because
it is an ODE for which we have a uniqueness theory, g(r) = (vq + iv;)r is the unique
solution. (See Theorem A.3 in the appendix for a local well-posedness theory for ODEs
of this type.) Using the stereographic projection we can write the harmonic map in the
sphere coordinates as

1 2.2
o(r) = TP (2rvy,2rva, 1 — |v|°r%)
1 2.2\, 4.

= Tx P2 2rv+ (1 —[v[*r7)es); (27)

in fact, ¢ is just a version of the stereographic projection itself. This is consistent with
the well-known fact that the harmonic maps in the sphere (n = 1) case are stereographic
projections; what is interesting is that when 7 is incremented in ODE (26), the new terms
still cancel under this expression.
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Qualitatively speaking, the harmonic maps in our context are quite simple: they start,
when r = 0, at the north pole and, as r increases, move monotonically away from the
north pole, converging to the south pole in the limit 7 — oco. By way of comparison, in the
case of equivariant harmonic maps from the d-dimensional ball B? to S? the situation is
different [14]. For 3 < d < 6 the harmonic maps oscillate about the south pole, while for
d > 7 the harmonic maps approach the south pole monotonically, as here. In general, one
finds that the equivariant harmonic maps usually fall into either an oscillatory regime or a
monotonic regime [11].

Finally, we note that while the expressions above for the harmonic maps are indepen-
dent of n, there is a difference when n > 2. In the case of the sphere, n = 1, the energy
of the stereographic projection is 4. (This may be verified by substituting (27) into the
energy (17) with n = 1, or by consulting [2].) However, for n > 2 the energy is infinite.
To see this it is sufficient to observe that lim,_, ¢(r) = —e3 and to use the following
lemma.

Lemma 2.6. Suppose that &(u) < oo andn > 2. Then lim, o u(r) exists and equals e3.

ry 1/2 ry 1 1/2
< (/ [u, 2Pt dr) (/ T dr)
1 rn T

which, because n > 2, shows that lim,_, o, u(r) exists. This means that in the energy
(22), the rightmost term in the integrand, (1/r2)(2n — 2)|u(r) — e3|>r?"~! converges
as r — oo. For the energy to be finite, the limit must be 0. As n > 2, this implies that
limy o0 u(r) = e3. ]

Proof. For any r, > r; > 0 we have

r
/ ur(rydr
r1

<C&r;"*,

lu(r2) —u(r)| =

Corollary 2.7. When n > 2, the equivariant harmonic maps from C" to CP" all have
infinite energy.

3. Self-similar solutions for n > 2

In this section we study the self-similar solutions for n > 2, which are solutions of the
form u(r,t) = Y (r/~/t) for a profile ¥ (r) = u(r, 1).
To determine a convenient equation for the profile, we take the GLL flow PDE (23)
and multiply both sides by (¢u x +BP). Using the relationship
(au x +BP)(aP + Bux) = (@ + B?ux = ux

(compare to (ai + B)(« + Bi) = i) we may equivalently write the PDE as

Pu  2n—10u  2n—2+4us3
auxut—i—ﬂu,:ux(——i— — + e3>.
or2 r or r2

We now substitute in u(r,t) = ¥ (r/+/t) to determine the ODE for the profile.

(28)
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Definition 3.1. The self-similar problem for the GLL flow is given by the ODE

Gt pu) (s AR B,

or2 r or r2 29

where ¥: [0, 00) — S?2, subject to the initial conditions ¥(0) = e3 and ¥’/(0) = v =
(U] , U2, 0) € Te382.

In the following sequence of lemmas we will prove Theorem 1.1, as stated in the
introduction.

Lemma 3.1. For every v = (v1,v2,0) € T,,S? there is a unique global solution to (29).
For r > 0 this global solution is smooth and, if v # 0, satisfies ¥ (r) # es.

Proof. Local existence and uniqueness in a neighborhood of the singular point r = 0
follows from Theorem A.3 in the appendix. For r > 0, ODE (29) is smooth and local
existence, uniqueness, and smoothness come from standard ODE theory. In order to prove
global existence we establish an a priori bound on the derivative of ¥.

Define the function A(r) = r2|y,|2. We have

Ay =2r |y > + 282 - Yy (30)

In order to calculate v, - ¥, we take the inner product of ODE (29) with ¥ x .. Using
the fact that if v or w is orthogonal to u, then (¥ X v) - (u X w) = v - w, and also the
relation v - (u x v) = 0, we determine that

2n —
’

1 2n—=2+Y
[y 1> + r—23€3'¢r,

ar 5
_7|Wr| =Yrr - Yr +
and hence by solving for ¥, - ¥, and substituting this into (30) we find

2n—1

Ay =2rly 2= (
_(211 -2

+ %)2r2|¢,|2 —2@2n =24+ v3)(¥3)-

d
+ 5)2A() = - [(4n — 4y + Y3, (3D

Integrating this equation gives

A(r) + /r(zn =2 Vauds = n -1 -y +1- )% (D)
0 N 2

To bound A(r), we observe that the integral on the left-hand side is non-negative because
A(s) > 0 and n > 2, and so the left-hand side is bounded below by A(r). On the other
hand, we have ¥/3 € [—1, 1] and hence the right-hand side is bounded above by 8n. This
then gives A(r) < 8n, and |y,| < 4n/r. This proves global existence. (The constants 8n
and 4n are, of course, not optimal; they are noted merely to show that the constants may
be chosen independently of v.)



Equivariant heat and Schrodinger flows 355

To prove that ¥ (1) # e3 for r > 0 we observe that the integral on the left-hand side in
(32) is increasing in r. In the non-trivial case v # 0, it is strictly increasing in a neighbor-
hood of r = 0 because A’(r) = r?|y,|?> > er? in a neighborhood of r = 0. Hence in this
case the integral is strictly positive for » > 0. Because A(r) > 0 we see that the left-hand
side of (32) is strictly positive and so

(4n—4(1—y3)+1—(¥3)*>>0
for r > 0. This gives ¥3(r) # 1, which means v (r) # es. |
Lemma 3.2. Ifa > 0 we have |y,| < 1/r3.

Proof. Recall the bound A(r) < 4n. Using equation (31) we have
A'(r) < —arA(r) =2(2n — 2 + y3)(Y3)r
-2+
< —arA(r) + 2‘ 1//3 ‘ | 32 /2(93), |

8n3 8n3
< —arA(r) + (rS— + T|1/f,|2) = —TA(r) + 5

—(ZI‘Z

Integrating this equation then gives A(r) < A(1)e B y1/r*<1/r*and |y, < 1/73.
(The details of how this integration may be performed are given in Proposition A.4 in the
appendix.) ]

Lemma 3.3. There exists a point Yoo € S?, Yoo # €3, such that lim, oo ¥ (r) = Voo. We
have the convergence rate inequality | Voo — W ()| < 40n2/r2. The profile \ has infinite
energy.

Proof. For a > 0, the bound || < 1/r3 implies convergence of ¥ in the limit r — oo.
In the case ¢ = 0, when there is no heat flow contribution, the decay on the derivative is
less strong, and so a different argument is needed. However, in the proof we consider the
general case as it is useful to know that the constant in the rate of convergence equation
may be chosen independently of .

We first multiply ODE (29) by (—ay x +BP). We have the relations (—ay x +P)
(@ x +BP) = (a? + B?)P = P and (' x)(¥x) = —P (compare to (—ai + B) (i +
B) = land (i)(i) = —1). We can thus write the equation as

2n—1 2n—2
—gwr=(aP+ﬂwx>(wrr+ Tl 2,

2
= @+ 800 (e ) + Py L2 ),

where in the second equality we have moved the projection P inside and expanded
PV, = Yy + |¥r|?>¥. We divide through by r and integrate over [ry, ] to determine
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that

W)~ Y )

|wr| 14 2"—2+W3P63) dr.

r3

= [t b0 (g0 +

Now integrating by parts in the first term yields

[ + BY (r2)X|¥r (r2) [ + By (r) X[ (r1)

r 3

2
- [ oo () ar
, —2
+/r1 (a'wr'w—i- +w3(P+,31ﬂ><)e3)
Now using the bounds | (r)| = 1 and | (r)| < 2n/r yields

1 2n  2n "2 4p2 "2, 4pn?2  2n 20n?
§|W(r2)—1ﬂ(r1)|§g+¥+/; —d —|—/1 (ar_3+r_3)dr§ .,

1 r

S~ Y =

which implies the solution converges with the rate given in the statement of the lemma.

To see that the limit Yo, cannot be e3 we consider equation (32) again. As discussed
previously, the integral in (32) is strictly positive and non-increasing for r > 0. If § > 0
denotes the value of the integral at r = 1 we then have, for all » > 1,

5= f0<2ns_ 2+ %)M(S) ds < (4n — 4)(1 = y3(r)) + 1 — (Y3(r))*.
‘We therefore have

§ < (4n —4)(1 = Y3(00)) + 1 = (Y3(c0))?,

which gives Voo # e3.
Because the limit is not es, the profile has infinite energy by Lemma 2.6. ]

Lemma 3.4. When o = 0 we have lim, oo 7'|| = 0.

Proof. 1t is sufficient to show that lim, o, A(r) = 0. In the @ = 0 case, equation (32)

reads r oo
n J—
A(r)+/ (
0

We know from the previous lemma that 13 converges as r — oco. The integral also con-
verges simply because it is non-decreasing; moreover, because it is bounded above (by 4n)
it converges to a real number. We then have that A(r) converges as r — co. By examining
the integral, which is finite in the limit, we see that we must have lim; 00 A(r) =0. =

2)2A(s) ds = (4n —H)(1 = ¥3) + 1 — (¥3)>.
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Lemma 3.5. The limit Y is a continuous function of the initial data v. In particular, as
v — 0 we have Yoo — €3.

Proof. For convenience we will denote the self-similar profile corresponding to initial
data v by ¥, (r), and we will let ¥, (c0) denote its limit as r — oo.

The ODE local existence results give that for any ro > 0 the map v + ¥, (ro) is
continuous.

We have previously established the bound, for ry < ra, | (r2) — ¥y (r1)| < 60n2/r?.
This shows that the map v — ¥, (r) converges to the map v — V¥, (c0) uniformly, and
hence that the map v — ¥, (c0) is continuous.

Finally, we note that Yo (r) =0, ¥ (00) = 0, and so lim,_, ¢ ¥, (c0) = 0, by continuity.

L]

With this lemma, the proof of Theorem 1.1 is complete.

4. Global critical well-posedness in dimension 2
In this section we prove a global critical small-data well-posedness theorem for the Schro-

dinger maps equation for equivariant maps from C” to CP" when n = 2. The equation
may be written in the sphere coordinates as

Pu 2n—10u 2n—2+u;
us(r,t) =ux (m P + 2 €3>, (33)
or equivalently as
0%u 2n—10u 2n—2+4u
—uxu(r,t) = —2+|ur|2u+ —+ > 2 Pyes, (34)
ar ar r

where P, ej is the projection of the vector ez = (0, 0, 1) onto the tangent space at u.

Our proof relies on techniques that have been developed for the Schrédinger maps
equation for the sphere. Because of the structural similarity between that equation and
(34), such techniques can be adapted here. We first use a form of the Hasimoto transform
to determine an equation on a derivative term of u that has a simpler non-linearity. We
then formulate the fixed point argument, and determine necessary estimates on the non-
linearity for the fixed point argument to be carried through. We conclude by proving these
estimates in the case n = 2, thereby establishing Theorem 1.2.

We present our work in terms of the Schrodinger maps equation (¢ = 0); however,
our proof is valid for the general GLL case when 8 > 0 because all the same estimates (in
particular the Strichartz estimates) still apply.

4.1. Derivation of the PDE through the Hasimoto transform

The Hasimoto transform is an extensively used tool for proving well-posedness of the
Schrodinger maps equations when the target is the sphere or a general complex surface.
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In geometric terms, it arises as follows. For fixed ¢, a smooth solution of (33) will satisfy
u(0,1) = e3. The function r +> u(r,t) thus defines a curve in S? starting at e3 at r = 0. If
one fixes a unit tangent vector ¢(0) € T,,S?, one can consider the parallel transport e(r) of
this vector along the curve r — u(r, t); the function e(r) satisfies D,e(r) = Vy, e(r) = 0.
Now, because the tangent space at any point is two-dimensional, the vectors e(r) and
Je(r) give a basis for the tangent space T, (-)S?. Any derivative of u, or other element
of the tangent space, can be expressed in terms of this basis. In our case, we define a
complex-valued function ¢ by the formula

ge = (Req +Imgq J)e = u,. (35)

We then determine an equation on g. The right-hand side is chosen so that g will satisfy a
Schrodinger equation with a non-linearity that is easier to handle than that of (34).

Lemma 4.1. The function q satisfies the PDE

. 2n—1 2n—1
g =qrr + ——4r = — 54+ N@). (36)

where the non-linear term N(q) is given by

d[ 2n — 2 + us

M) = 4[5 [ ds |+ a7

for a real-valued function o satisfying
- 2 2n—2+4us [T
ar =Re(ar + 1~ 20 [0 ds ). (8)
0

Proof. First, we recall that in the embedding S? ¢ R3 the covariant derivative of a vector
field v(r) € Ty()S? is given by D,v = v, + (u,, v)u, where the inner product here is the
usual inner product on R3.

Now let p and g satisfy pe = u; and ge = u,. We will determine three equations
relating p, g, and u.

(1) Because e satisfies D,e = 0 we have
gre = Dy(qe) = Dy(ur) = upr + Jur[*u, (39)

which are the first two terms in the right-hand side of (34). The next term in (34)
is ((2n — 1)/ r)qe. For the projection term we calculate, using D,e = 0,

L (Pues.e) = ey — fu.expu.e) = (Dy(es — . exp).
r dr

= <di(e3 — (u,e3)u) + (ur, ez — (u,e3)u)u,e>
,

= (_<ur’ €3>u - (ua €3>ur + (ur»e?’)u,e)

= —us{u,,e) = —us(r)Req(r).
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Using the fact that (0, ¢) = es, so that P,e3 = 0 at r = 0, we have
r
(Pucscel = = [ ua(s)Reqs) ds. (40)
0
An identical calculation for (P,es, Je) gives, in total,
r
Pye; = —([ us(s)q(s) ds)e(r).
0

Plugging (39) and (40) into (34) then gives

) 2n —1 2n—2+4+u r
ip=gr+ 2 1g : / u3()q(s) ds. 1)
0

r r2
From the identity D,u; = D,u, we find
pre = D,(pe) = Dyuy = Dyu, = Di(qe) = qre + gDqe. (42)

Because e is a parallel transport vector field, |¢|> = 1 and so 0 = (d/dt)|e|? =
(D;e, e). The vector D;e is thus orthogonal to e. Because the tangent space is
spanned by e and Je, we must have D;e = aoJe for some real-valued function .
Substituting this into (42), we get pre = g:e + qaJe, or

o= qi +iag. 43)

To determine an equation on o« we use the curvature relation D;D,e = D, De +
R(u;,us)e, where R is the Riemann curvature tensor. On the sphere, R(v, w)z =
(Jv,w)J z. Therefore, also using D,e = 0, we find

0= D(aJe) + (Jus,u)Je = a,Je + (pJe,qe)Je,

which gives o, = —Im(pg). Substituting the formula for p in (41) gives equa-
tion (38).

To determine an equation only on g we differentiate (41) with respect to r, to find

) 2n — 1 2n — 1 d 2n—2+u r
iPr = Grr + Ty — g+ [——3/ zm(s)q(s)ds]
0

r2 dr r2

Substituting the expression for p, in (43) gives equations (36) and (37).

4.2. Formulating the fixed point argument
We recall Theorem 1.2 from the introduction.
Theorem (Theorem 1.2). Fix p € [1,2] and define

111
- =

2 6p
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and the spaces X and Xg given by the norms
lglx = Vgl 3, and liglx, = e (@q)llx.

where a(x) = x1/r. There exists ¢ > 0 such that if ||qo||x, < € there is a unique global
solution of (36) for n = 2 in the space X.

We begin by determining a convenient Duhamel representation for the problem. Our
Duhamel representation will be valid for all n, though we carry out the well-posedness
argument for n = 2 only. In the following we will rely heavily on the Hardy inequalities
given in Theorem A.l and (70) in the appendix.

First, we absorb the linear term —(2n — 1)g/r? into the Laplacian. To do this, we fix a
function a: S?"~! — C that satisfies Agzn-1a = —(2n — 1)a. We may concretely choose
a(x) = x;. To see this, extend a to a function on all of R?” by a(x/|x|). On the one hand,
we have

Ag2n(ra(x/|x])) = Agan(x1) = 0.

Then, using the polar representation, Agzn = 0, + ((2n — 1)/7)d, + (1/7%) Agan-1, we
see that

2n

—1 1
0=1[d, + - a,+r—2AS2H](ra<x/|x|>>

= [0+ = Jate/bxh + 5 Agarrate/lx,
and so
Agzn-ra(x/|x]) = =(2n — Da(x/|x]).
Now defining w(x,t) = q(r,t)a(x/|x|), we see that

0%g 2n—19q¢ 2n-—1
21, A,
ar? ror r2

This is exactly the Laplacian term in the PDE (36) multiplied by a.
In terms of estimates, we have the pointwise estimate |Va| < 1/r, which is determined
from a calculation. For Lebesgue estimates we have

lwl?, = lgall?, = / (|q(r>|" f |a<x/|x|)|1’dx) dr
0 rS2n-1

= [oo(|4(r)|p"2"_1/ Ia(x/|x|)|”dx) dr
0 §2n—1

=CliqlZ,.

Aganw = qa. (44)

where C = ||a||Lp(§2n71)/|Szn_1| < 00. We also have

IVglie ~ IVrqlie ~ IVr(@@)liLr S IVr@@)llLr + [Vo@g)llLr ~ [IVwllze.
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while
1
IVler ~ IV@dler +1aVrglize < | ~a| , +1Vrale S [Valles,

so in conclusion ||Vq|Le ~ ||Vw|Lz.
In the next lemma we rather carefully verify that we can recover solutions to the PDE
for ¢ from solutions to the PDE for w.

Lemma 4.2. The PDE on w is given by
w; = Aw + N(q)a (45)

or in Duhamel form by
r
w(x,t) = e Pw(x,0) +i / ECIANG(r, s))a(x/|x], s) ds. (46)
0

If the solution w(x,t) corresponding to initial data of the form w(x,0)=q(r)a(x/|x|)
is unique, then the solution is of the form w(x,t) = q(r,t)a(x/|x|), where q satisfies (36).

Proof. To determine equation (45) for w we simply multiply the PDE for ¢ (36) by a, and
use expression (44) for Aw. The Duhamel representation is standard.

We now show how solutions of (36) may be recovered from solutions of the equation
for w. Let w be a solution of (46) and define w = —(1/(2n — 1)) Agzn—1w. Assum-
ing uniqueness we will show that 0 = w. We take the spherical Laplacian —(1/(2n —
1)) Ag2n—1 of (45), noting that it commutes both with A = Ag2. and N(g), as N(q) is
radial. We then find that @ satisfies the same PDE (45) as w. Moreover, we have

w(x,0) = — Agen1w(x,0) = — Agn-1[g(r)a(x/|x])] = w(x,0),

2n—1 2n—1

and so by uniqueness, W(x,t) = —(1/(2n — 1)) Agzn—1w(x,t) = w(x,?). This means that
w is a radial function times an eigenfunction of the Laplacian of the sphere of S2”~! with
eigenvalue —(2n — 1).

Let Ty: R?" — R2" be the linear map that multiplies the kth component of x € R?"
by —1 and leaves the other components fixed. From the representation of a we see that
for k = 1 we have wo(Trx) = —wo(x) while for k > 2 we have wo(Txx) = we(x). By
uniqueness, x — w(x, t) inherits these properties also. But now the only eigenfunction
of the Laplacian on the sphere with eigenvalue —(2n — 1) with these symmetries is pre-
cisely a. Therefore w(x,t) = q(r,t)a(x/|x|). Substituting this expression into the PDE
(45) for w yields the PDE (36) for g. [

By virtue of this lemma, we can perform the fixed point argument on w. The next
lemma describes sufficient estimates for this fixed point argument to hold, and in the proof
the fixed point argument is described.
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4.3. Well-posedness when n = 2

For the remainder of this section we fix n = 2.

Before stating the lemma we fix some index notation. In the course of the proof we
will need to handle Lebesgue space norms of quantities like ¢, g, g2, ¢q,, and other
quantities which scale like these. We are led to define the index

LA @7
s(@, J) 4 op
We will put items that scale like the product of i copies of g with a total of j derivatives in
the space L") For example, we will put ¢ in LS?, we will put g2 in L5®® and ¢g, in
L5V In this way, critical scaling is maintained throughout as, for example, |g¢; ||, sc.n
is invariant under scaling. )
The Strichartz inequality we will use is

t
i(t—s)A .
/0 RIGOLYCPR S UG s

L}PLL
this is classical: see, for example, [21]. The Holder inequality is
I fgll psarkiem < 1F N s - gl psaem,
and the Sobolev, for k < [, is
vk ) S IV i
IVE £l s < IV F 1l st
X X

One verifies that these inequalities hold by checking the relevant exponent conditions.
Finally, note that s(1,1) = r.

Lemma 4.3. For Theorem 1.2 to be true, it is sufficient that the following bounds hold:

IVN@Ilse0 < ||V61||ii(1,1), (48)
IVIN(g1) = N(g2) [l jsen < V(g —612)||L;(1,1)(||V621||ii(1,1) + ||V612||2Li(1,1))- (49)

Proof. Well-posedness follows by a fixed point argument for the operator
t

Tw = e w(x,0) +i [ S CIAN(G(r, $))a(x, s) ds.
0

We will show that T is a contraction mapping on a small ball around 0.
We first show that 7" maps a ball to itself. We have the bound

t
ITwlx < wollx, + H / e "IAY(N(q)a) ds
0

L{PLL
< llwollxy + IVIN(@ , p 560
t Lix
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Considering the space norm of the integral, we have, by Holder and Sobolev, and then
conditions (48),

IVN@)]| e S IV(N)all s + INVal] e

1
< IVl o + ||

Li(S’l)
3
= IVl o S 1V 0 S IV0I 0,
and hence, as r = s(1, 1),
3
Twlx < llwolx, + Cllwllx-

Now choose &g so that Ce2 < 1/2, and let & < &g. Then, if |wo|lx, < &/2 and [w|x <e,
we have . ]
ITwllx =3+ Ce? < 5+ (Ce2)e <,

and so T maps every ¢ ball into itself, for ¢ sufficiently small, assuming the initial data
satisfies the bound ||wo||x, < &/2.

We next show that T is a contraction in a sufficiently small ball around 0. Let w; and
w, be two solutions, with radial parts ¢, and ¢, respectively. We have

t
Twy = Tw, = / FIA(T(N(g1)a) — V(N(g2)a)) ds.
0
which gives, using (49),

IV(N(g1)a) = V(N(g2)a) | sen
S IVIN(q1) = N(g2))all san + [[(N(g1) = N(g2)) Vall se

< IVN () ~ N@)al o + ||+ (V@) — N(ga)|

< UVl o + IVE2 07 ) IV (@1 = g2l san

Li@’l)

< (IIlellii(l,n + IIszlliia,n)IIV(wl —w2)| s,
and so
ITwy — Twallx S (lwillx + lw2ll3)wi — walx,

and hence by choosing the ball small enough, 7 is a contraction. ]
Lemma 4.4. When n = 2 the bounds (48) and (49) hold.

Proof. Write

N=—

d 2n —2 + us
dr

p / uz(s)q(s) ds) +oaqg =: Ny + N,
0
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and recall 5 .
2n—2+4u
o =Re( g7+ 110 - g5 [N s ), (50)
0
We will prove the bounds for N; first.
We have

[VN1lls@a,1) <

2n—2 r
VZ(_”—;—”?’/ u3(s)q(s) ds) H
r 0 Lfc(S’l)

‘ (V)5 / w3 ($)q(s) ds

2n—2+usz 1 r
+—H ——————————3;7- us3(5)q(s) ds

A

L;(3s1)

r2 L;(3s1)
2n —2 + us
H_—V(l&(")qo’)) ds L3GD

From the equation u,, + |u,|?u = ¢,e, we have |u,,| < |¢q|*> + |g| pointwise. There-
fore, for A,

1 r
+lah [ g6 ds

|
riL

= ]O u3(5)g(s) ds

Li(3,1)

1 r
> e as

= ”‘”'Li“"’)

1,
s L300

+ llgrll san

L;(Z,O)

}u3(s>q(s) ds

= gl saollg/rll sanlus()g) sao + llgrll san

L;(Z,O)

1
191200141 00 + s s | Sus()a ()|

Li(z’o)

2 us 3
<191 a4 300 + 1l | 2] oo 14O 00 < a1 0 5D

For B, we have

B < H2n—2+u3‘

r

1 r
» /O u3(5)q(s) ds

5(1,0) -
Ly Lfc( ,1)

= ||Mr|| $(1,0) M3(’”)f](”)

s(2,l)
us(r) ”q(r)‘
r 5(1,0)

< ||ur”is(1,o)||Qr” s(,) X ||Qr|| JACE (52)
X

s ”urIlLi(l’O) s(l 1)
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For C, we have

2n—2+ us
C 5 ” r—ZV(u;;(r)C](V)) ds Ls(3,l)
20 —2+us 1 !
<[ (] ] )
q Us
< ||q||Li(1,0)(||Vu3||L§(1’°) ;’ san T ‘T’ S(I:O)HV‘]”Liﬂ,l))
S llgr 3,y -

The three estimates (51), (52), and (53) together give the estimate |V Ny || JRERIS

llg- ”is(l,l)'
X
As for N,, we have

V@I e = llergllsen + lagrllsen
S llerll sewllgl soo + el seo gl san

< oy ”Li(z’l) lgr ”Lfc(l’l)' (54)

Then, using the expression for a; in (50) and the fact that u3 € L,

2
4q
o sty 5 gl g + | L

2n —2 4+ us r
s +‘—q | o) ds
L r? 0 52,1)
< q q L
Slall oo (larlgon + [ o) + [T oo |7 fr20a@ds]
q
S1ar By + | 2] 19l 200 S 1071200 (55)

Estimates (54) and (55) give [VNa|l,sen < ”qr”i“l*” and hence (48). Estimate (49)

follows from an identical argument. |

Theorem 1.2 is thus established.

5. The ““real” heat flow case

In this section we will discuss what might be termed the “real” equivariant heat flow from
C" to CP”. In the case when o = 1 and B = 0, that is, for the harmonic map heat flow, it
is possible to make an ansatz which further reduces the problem. In terms of the spherical
coordinates,

2n —1 2n—2+4+u
Uy =y + ulur® + U+ = 2 (e3 —u(u, e3)), (56)

u(r,0) = v(r) = (v1(r), v2(r), 0) € T, S?,
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’ W = Vg X e3

Figure 1. In the case of the harmonic map heat flow, if the initial data takes values in one great circle
(here the great circle spanned by vg and e3), then the solution will be valued in the same great circle
for future times. Both the harmonic maps and the self-similar solutions constructed in Section 3 are
of this type.

this ansatz involves assuming that the initial data is valued in one great circle passing
through the north pole; that is, the initial data is of the form c¢(r)es + d(r)vg. (See Fig-
ure 1.) In this case, for # > 0 the solution will continue to be valued in the same great
circle. To see this, let wg = v X e3 and let a(r,t) = u(r,t) - wo. By taking the inner
product of equation (56) with awy we have

2 5 n—1 2n—2+ us
aa; = adapr —a-|uy|© + aa, +
r

n—1 2n—-2 ,
<adpr + aar + > a.
r r

> (—a”us3)

We next integrate this equation. For n > 2 we use the Hardy inequality with best constant
4/d? = 4/(2n — 2)? to determine that

d 1

(o] 8 _ a
Ei Cn(a)deSUZn—I/() aﬁ("zn 1ar)dr+(2n_2)H;‘

2
L2

o0
= —0an—1 / (a)*r*Ydr + 2n —2) ||ar||i2 <0,
0

(2n —2)2
and hence a(r,t) = 0 for all time. For n = 1 we obtain the same inequality because the
last term is 0. The solution is therefore a linear combination of vo and e3.

In terms of the stereographic representation of the problem,

2f f2 2n
fﬁ2+
L+ f]

2n —
2

21f12f

1
T TR

ft = frr -
f(r,0) = fo(r).

the ansatz is that the initial data is of the form f(r,0) = b(r)e’? for some real-valued
function b(r) and a constant 6. The solution will then be of the form f(r,t) = b(r, t)e'?

_lfr(r)+
’
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for the same constant 6 and for some real-valued function b(r, t). This motivates the
terminology “real heat flow”.

It is not surprising that this problem is simpler to analyze, and in fact with this assump-
tion we are able to say more about the dynamics of the problem. On the other hand, this
problem is still interesting because both the harmonic maps and the self-similar solutions
constructed in Section 3 fit into this context. In fact, the harmonic maps are given in stere-
ographic coordinates by f(r,t) = ar = |a|re'?. The initial data for a self-similar solution
is just a point, so the initial data is valued in the great circle passing through that point and
the north pole.

We will now describe how, based on the ansatz just described, a simpler PDE on
the solution may be determined. As the solution is valued on a great circle we can per-
form a change of variables, u(r,t) = cos(g)es + sin(g)vy, for an unknown real-valued g.
Geometrically, g is the spherical distance between u(r, t) and e;. We calculate u, =
gr(—sin(g)es + cos(g)vg) and

Urr = grr(—sin(g)es + cos(g)vo) + g7 (—sin(g)es — cos(g)vo)
= grr(—sin(g)es + cos(g)vo) — u|ur|2~
Substituting these into (56) gives

ge(=sin(g)es + cos(@)v0) = (877 + g, ) (= sin(g)es + cos(g)vo)

2n — 2 + cos
n i (g)

(e3 — cos(g)(cos(g)es + sin(g)vo)).

Taking the inner product of this equation with — sin(g)es + cos(g)vg then yields the
equation on g.

Definition 5.1. The real heat flow problem is the Cauchy problem
2n —1

1 . 1.
§1 = 8 + ———gr — | @n —2)sin(g) + 5 sin(2g) | (57)
subject to the initial condition g(r, 0) = go(r).
For convenience we let n(x) = (2n — 2) sin(x) + sin(2x)/2.

Definition 5.2. The stationary real heat flow problem is the ODE

2n—1
r

1
0= yg(r) + Vo (r) = 1), (58)
subject the initial conditions ¥4 (0) = 0 and ¥/, (0) = o > 0.

In the spherical coordinates the stationary solutions — that is, the harmonic maps — are
given explicitly in (27). By transforming these solutions into the coordinates g, one finds
that the unique solutions to the stationary real heat flow problem are

Y (r) = 2arctan(ar),
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which may be verified by substitution into (58). In light of later results, what will be most
notable about the explicit solution is that it is independent of n.

5.1. Uniqueness of solutions to the PDE problem in the n > 3 case
PDEs of the type

d—-1 n(u)
Ur — 20

Ur = Ury + (59)

with
n(0) = n(xw) = n2x), n(x) >0 forx € (0,7), n(x) <0 forx € (mw,2n),

arise naturally in the study of the equivariant harmonic map heat flow from R to spher-
ically symmetric manifolds. There is a general theorem classifying when there is unique-
ness of solutions and when there is not uniqueness [9]. It states that if

(d —2)?

n'(mw) < S (60)

then there is non-uniqueness — that is, two distinct solutions with the same initial data —
while if
(d —2)°

n(x) > S— (61)

for all x then for every initial data there is at most one solution in L°L$°. We offer the
following new proof of the latter case.

Proposition 5.1. Suppose that n/(x) > —(d — 2)?/4 for all x. There there is at most one
solution to (59) in LY LY.

Proof. First we observe that condition (61) implies the one-sided Lipschitz inequality
— d —2)?
n(u) —n(v) > min n'(x) > ( >
u-—v x€[0,27] 4

Now consider two solutions u and v of (59) with the same initial data uy and set
¢ = u —v. We will assume that ug € L? N L™; the argument to upgrade this to L? is
standard [9]. Under this assumption we calculate

1 d 2 1d * 2 .d—1
EE”‘P”U = 5@@1-1/0 lp(r,0)|°r dr
*° 2n —1 u)— v _
=0d—1/ ¢[¢rr + ¢r — n0) 277( )]rZ" Vdr
0 r r
00 42
— 2 ¢ ) — ()7 2p—y
=0l —oas [ G[HOI gy
gz @228
<ol + L2 2P
d-22 4
= —lgrlz> + g2, <0, (62)

4 (d-22
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where in the last line we have used Hardy’s inequality with the best constant 4 /(d — 2)2.
This implies that ¢ = 0, and hence that u = v. ]

In this context of the real equivariant heat flow from C” to CP”, this implies the
following result (given as Theorem 1.3(ii) in the introduction).

Proposition 5.2. Let n > 3. For a given initial data there is at most one solution to (57)
in LS°LY.

Proof. Here d = 2n and n(x) = (2n — 2) sin(x) + sin(2x)/2. We calculate

n'(x) = (2n —2) cos(x) + 2cos?(x) — 1
= (2n — 6) cos(x) + 2(cos(x) + )2 =3 > 2n —6)(—=1) + 0 —3 = —(2n — 3),

where the last inequality holds because n > 3 and so (2n — 6) > 0. Now using the inequal-
ity —(2n — 3) > —(n — 1)? (which is equivalent to 3 > —(n + 1)?) gives condition (61)
and hence the result. ]

5.2. The CPP? case: Breakdown of uniqueness

The n = 2 case is the most interesting. From the expression ' (x) = 2 cos(x) + cos(2x),
we see that )’ (r) = —1, which is precisely the threshold —(d — 2)?/4 = —1 in the condi-
tions (60) and (61). The condition that would imply non-uniqueness, (60), does not hold.
However we find that

0" () = —2sin(r) — 4sin(27) = 0

and
n"(mw) = —2cos(w) — 8cos(2mw) = —2(—1) — 8(+1) = —6 < 0,

so in fact, by the second derivative test, 7 is a local maximum of 1’ (x). This means that the
condition that would imply uniqueness, (61), does hold either. Hence the case of the real
equivariant heat flow from C2 to CP? is a borderline case not covered by the classification
theorem of [10]. (Plots of 7 in the n = 2 and n = 3 cases are given in Figure 2, which
make the difference clear.)

Then the question is does uniqueness hold or not? First, we see that the proof of
uniqueness presented in the last section clearly breaks down: because the derivative goes
below the threshold value —(d — 2)?/4, a Lipschitz inequality of the form n(u) — n(v)/
(u — v) > —(d — 2)?/4 cannot hold.

On the other hand, inspecting the proof in [10] of non-uniqueness in the case (60) we
see that it relies critically on the following fact: if condition (60) holds, then the station-
ary solutions (that is, the harmonic maps) of the PDE problem oscillate around the fixed
point 7 as they converge to it. In our case, the harmonic maps are given explicitly by
Yo (r) = 2arctan(ar) and are clearly not oscillatory, and so that proof of non-uniqueness
will not hold. In fact, what is interesting is that the harmonic maps being monotonic is
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34 6
21 4
11 21

—(n — 1)? threshold

Figure 2. Plots of the function 7’(x) in the case of the real equivariant heat flow from C” to CP” in
the cases n = 2 (left) and n = 3 (right). For the n = 3 case, we easily see that 7 satisfies condition (61)
with d = 2n, and hence that uniqueness in L L$° holds. For the n = 2 case, we see that both (60)
and (61) do not hold, so the case does not fit into the general classification theory.

ordinarily a sign that there is uniqueness (if the uniqueness condition (61) holds, then the
harmonic maps are necessarily monotonic.) However, by using an alternative method in
[10] we are able to show that uniqueness for the problem from C2 to CP? does not hold.
The original theorem requires some background to state, so we state a special version
adapted to our setting.

Theorem ([10, Theorem 2.2]). Suppose that the “equator map” u(r,t) = w (which is a
time-independent solution of the PDE) does not minimize the energy

5= [ 172+ XL,

where y'(x) = n(x). Then there exists a self-similar weak solution of the initial value
problem (59) that is not constant in time and that has the same initial data as the equator
map, ug(r) = m.

Using this, we prove part (i) of Theorem 1.3.

Proposition 5.3. For the case n = 2 there is non-uniqueness of problem (57): there are
two distinct solutions with initial data uy(r) = 7.

Proof. The key aspect of the proof is capturing the fact that in the n = 2 case, the condition
7' (x) > —(d —2)?/4 = —1in(61) is violated. If the non-uniqueness condition ' () < —1
in (60) held, this would be easy. However because n'() = —1, we need to do a higher-
order expansion of 7’(x) around 7 to show this. Once we establish that the condition
n'(x) > —1 is violated, we follow [20] and construct / based on a function which almost
saturates that Hardy inequality.
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Let u = 7 denote the equator map and % be any function. We have

1
E(h)— E(u) = /0 [|h’|2 + M]rd_l dr, (63)

2
where y'(x) = n(x). One calculates
Vi) =n(r) =0,  y'(m)=n(r)=-1
y"(m) = '(r) = 0. y""(x) =" () = =6,
Therefore by a Taylor expansion, if we choose § small then there exists a constant C > 0

such that
y(x) —y(m) = —(x —7)* = C(x — m)* (64)
forall x € [r — 8, + 8]. The constant C is positive because y® () < 0.
To use inequality (64) in the energy expression (63), we need to choose £ valued in
[x =68, 7+ 4d].
Following [20], we define, for any ¢ > 0, the function f;:[0, 1] — R by
g1 for0 <r <e,
fer) =1 r7! fore <r <1/2, (65)
4(1—=r) forl/2<r<1.

One verifies that f(r) satisfies

/ol‘é‘zra‘” = fol Prdr s (1+ |1ogB(e)|>/ol‘$)2r3d’ (66)

for some B > 0 independent of €. That is, f is close to saturating the Hardy inequality,
which in this case has best constant 4/(d — 2)? = 1. Then set

Je(r) Se(r)
h(ry=mn—§ =n—94 .
) 7l 2
We observe that i(r) € [r — 6, w + §] for all r.
We then have
1 _
E(h) — E(u) =[ wp 4 Y@ Zy(”)]rd—l dr
o L r

1_ _(h_ )2 _ _ )4
</ |h'? + (h—m)” —Clh—7) ]rd_l dr
0

<[ -
fe
r

1'82 §2 f 2
- [[Gue-5|E
o L
Now using bound (66) we determine that

fe

r

8

4
—_CcC=
16

2
] ar.

2( B c%fsﬁ)ﬁdn

82 1
E(h)— E(u) < [0 i

4
and by choosing ¢ sufficiently small we may make the right-hand side negative.
We thus determine that £ (k) < E(u), and hence there are two solutions. |
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5.3. The n > 3 case: Precise dynamics of the self-similar solutions

We finally present some results on the dynamics of the self-similar solutions in the real
heat flow case when n > 3. The methods of analysis here are not original, and our results
are based on analogous results elsewhere. Our motivation in presenting them here is to
show how, in this special case, one can determine precise dynamics of the self-similar
solutions; it would be very satisfactory to extend these results to the general case of the
GLL equation.

We first recall the self-similar problem.

Definition 5.3. The self-similar real heat flow problem is the ODE

1

m—
0= 50+ (X4 D)opr) — 5w

subject the initial conditions ¢g(0) = 0 and qb/’g ©0)=p8>0.

From Proposition 5.2 we know that for every B > 0 there is a unique global solution
to this problem and that there exists ¢g(00) € R such that lim, o0 ¢ (r) = ¢g(00).

Proposition 5.4. Let ¢g be the solution of the self-similar problem and g the solution
of the stationary problem.
(i) We have the bound ¢pg(r) < yg(r).
(ii) The function ¢g is monotonically increasing and ¢g(r) < m.
(iii) For fixed r > 0, the function B +— ¢g(r) is strictly increasing, ¢o(r) = 0, and
limg_, o0 Pp(r) = 7.

(iv) The function 8 +— ¢g(00) is strictly increasing, ¢o(o0) = 0, and limg_, o, g (00)
= 7.

Figure 3. Plots of ¢g (r) for r € [0,2.5] and 8 = 0.25, 0.5, 1, 2, 4.5, 10, 30, and 100.
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The content of this proposition may be seen at a glance in Figure 3. Note that in light
of the non-uniqueness theorem for n = 2, we do not expect the same dynamics in the
n = 2 case: in fact, we expect a self-similar profile whose asymptotic limit is .

Lemma 5.5. Suppose that for all r € [0, R], we have ¢g(r) < . Then ¢g is increasing
on [0, R].

Proof. Because 8 > 0, the solution is initially increasing. For a contradiction, let ry be the
first critical point in [0, R]. Because ¢g is initially increasing, ro must be a local maximum.
However, from the ODE we have

2n—1 r
B(ro) = —( + 5)85(0) + 165 (r0) = 1 (ro)) > 0.
where 1(¢g(ro)) > 0 because ¢g(ro) € (0, 7). The condition ¢l’9’ (ro) > 0 contradicts rg
being a maximum. Hence ¢ is increasing on [0, R]. ]

Proof of Proposition 5.4(i). Lete > 0 and consider the functions ¢g and ¥g4.(r). Define
J() =r?(Yp1e(r) — dp(r)).

We will show that f(r) > 0 for all r. Letting ¢ — 0 will then give the result.

By continuity of derivatives given by the well-posedness theory, there is an initial
interval [0, §) on which ¥g4.(r) — ¢ (r) is increasing, and hence, as r? is also increasing,
the function f is increasing on this interval.

Now suppose that f has a critical point. Let r( be the first critical point. Because f is
initially increasing, this critical point must be a local maximum. Because f is increasing
on (0, o), we have f(rg) > 0.

We then calculate

P = PG o) = S (1) + 41 (o (r) = B (1) + 2(Upse(r) — (1))
4—(2n—1 22n—1)—6 3
— (r” ) pry 22 r2) f+ S8+ 1) —ngp). (6T
First, we have the Lipschitz bound

N(Yg+s(ro)) — n(gp(ro)) = —(2n —3)(Yg4(ro) — ¢p(ro)).

where we have used the fact that f(ro) = ¥g4¢(r0) — ¢g(ro) > 0 to multiply across by
Vg+e(ro) — ¢p(ro).

Second, because f(ro) > 0, ¢pg(ro) < ¥g+¢(ro) < 7, and hence by the lemma, ¢g is
increasing on [0, rg]. Therefore qb/’g (ro) = 0.

Using both of these inequalities, as well as f”/(rg) = 0, in (67) yields
L2000 ) 40— 222 )

0 Ty

2n—5
>—f(ro) >0,
o

f"(ro) =
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which contradicts rg being a local maximum. Hence f has no critical points; it is increas-
ing for all 7. In particular, it is always positive, so ¢g(r) < Yg4.(r) for all r. Taking the
limit & — O then gives ¢g(r) < ¥g(r). |

Proof of Proposition 5.4(ii). The previous bound gives ¢g(r) < ¥g(r) < m for all r.
Hence by the lemma, ¢g(r) is always increasing. ]

Proof of Proposition 5.4(iii). Set @ < . We wish to show that ¢ (r) < ¢g(r), which
follows from a maximum principle analysis ofg(r) = rz(gbﬂ (r) — ¢o(r)). The analysis is
similar to the proof of item (ii). The function g is initially increasing. If ry denotes the
first critical point, which must be a maximum, one calculates

$p(ro) — Pa(ro)
2

g"(ro) = [4n

o+ 1]g0) +

2n—3
2

2n—>5

- [4nr; 8 + l]g(i’o) — g(rg) = [ + l]g(ro) >0,

a contradiction. Therefore g is increasing for all r, and in particular is positive, and hence
Yp(r) > Ya(r). ]

Proof of Proposition 5.4(iv). The proof follows from a similar maximum principle argu-
ment as in the previous proof to show that the function i(r) = (r/(2 + r))*(Y5(r) —
Yq(r)) is increasing. One then has, for r > 1,

2 1
(35) Wer) = vulr)) = Gs(1) = Yal1) > 0.

and hence on taking limits (¥g(0c0) — Yo (00)) > (1/9)(¥p(1) — ¥ (1)) > 0, which is
what we wanted to prove. ]

A. Some standard results

A.l. Hardy inequalities

Theorem A.1 (Generalized radial Hardy inequality). Suppose that f:R¢ — R is radial.
Then for all p > 1 and k > 0 such that p < d/(k + 1) there holds
|

rk+1 (68)

#(ﬁ
Lr = d—plk+1)lrklLe’

Proof. We suppose that f is smooth and compactly supported. The result for arbitrary f
then follows from a standard density argument.

We have d F 7
(%) = :

dr \rk pk+1 0 pk”
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Multiplying this equation by ( f/rk+1)?P=14=1 and integrating over [0, 00) yields

[ G =l [ G

where s(d) is the measure of the unit sphere in R?. Now performing integration by parts

on the term on the left we find

[ G [ GGy o

+[G) 0

The boundary term corresponding to r = oo is 0 because f is compactly supported. For
the r = 0 term we find

. (69)
r=0

NP a pd—plk+1) _
hm( k+1> r —rlgr%)f(r) r =0

r—>0\r

ifd — p(k + 1) > 0. We therefore have
®d NS\ e
|G
“ | Gl a
== [T(Z)[@=1= -1+ vyt
0

+(p - l)f(r)”_zfr(r)rd_l_(”_”(k“)] dr

(d—plk+1)+k) =1
o s(d) H rk+1 —(p— 1)/ k+1 ret.

Substituting this into (69) and combining terms we get

=—s(d)p Rd}{‘_]:(}’k%)p K p” k1

k+1

S ‘P—l

for
T e Ll

)

Lp

which upon dividing through by the norm of f/r gives the result. ]

Corollary A.2. Suppose that f:R¢ — X is radial with X = C or X = R™. Then for all
p > landk > 0suchthat p < d/(k + 1), there is a constant C(d, p, X) such that
f
rk+1
Proof. Take X = C and write f as f(r) = a(r) + ib(r) for real-valued functions a and
b. Using that ||u||» ~ | Reul||zr + || Imu|Lr, we have

Fz |7l < 1L, +]

rk+1lLe rk+1lLr
A similar argument holds for X = R™ writing f in terms of its real-valued coordinate
functions. ]

(70)

Jr

b,
rkllLe

ar
rk

fr

rk

~ ‘

||
~llpkttiiLe
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A.2. Local well-posedness for a class of singular ODEs

Theorem A.3. Consider the Cauchy problem

1w = A 0.0 —k(E0 LDy Lpgay.
f0) =0,
f'(0)=aeC,

where

e k>0,

A(zy, 22, 1) is a smooth function with A(«,0,0) = 0,

B(z) is a smooth function such that |B(z)| < C|z|? in a neighborhood of 0, and
(0B/0z)(0) = (0B/0z)(0) = 0.

There exists ro > 0 such that there is a unique solution among all functions f:[0,r9] - C
satisfying

f'(r) = 1'(0)
| (Dzeqoro) + | R (72)

The unique solution in this space is second differentiable at r = 0 and satisfies f"(0) = 0.

Let us make two remarks on the conditions in the theorem.

Condition (72) on f is equivalent to both f and f” belonging to L® and f’ satisfying
a Lipschitz condition at r = 0.

The assumptions on B ensure that its behavior as r — 0 is non-singular; indeed, one
readily verifies that, for smooth f, B(f(r))/r? — 0 as r — 0. With this formulation
of the Cauchy problem the singular behavior occurs only in the term «(f'(r)/r —

f)/r?).

The proof of the theorem involves a standard, if delicate, fixed point argument; details

may be found in [8].

A.3. An integration inequality

Proposition A.4. Suppose that A'(r) + c1rA(r) < car™* for ¢1 > 0. Then for any ro > 0,
A(r) = C(C1,ro)(A(r0)e*«:1r2/4 § ek,

Proof. We may write the equation as

i(eclrz/zA(r)) S C_ieclr2/2’
dr r

which on integration gives

"1 2
—_ 15712 g

A(r) < 10T A(1) + e 2/ o

ro
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r
_ 01(7'2—"2)/2 1 1 _ C]S2/2
=410 A1) + ez =1 (r—k+1e"1’2/2 "o sk ¢ “)

To prove the result we show that the term in the brackets is bounded independently of r.
This term is clearly a continuous function of r. Moreover, we have from the condition

C1>0,
r

. _ 2 .
lim r*+1e7%/2 — 56 and  lim —e
r—o0 r—o0 Ky

which means, by I’Hopital’s rule, that

1 r 2
lim | ——————— —ecls /2 dS
r—00 r—k+leclr2/2 Yo sk

= lim ( ! i C1r2/2>
r—00 (_k + l)r—kecer/z + clr—k+2e61'2/2 ik
i 1
m ——— =
r—>o0 —k 414 c1r?

We thus have for all r € [rg, 00),

1 r 152
- - _— ,c18%/2
(r—k+leclr2/2 /;0 Ske ds) = C(ro, c1),

which completes the proof. ]
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