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Traveling waves for a nonlocal KPP equation and
mean-field game models of knowledge diffusion

Alessio Porretta and Luca Rossi

Abstract. We analyze a mean-field game model proposed by economists Lucas and Moll [J. Polit-
ical Econ. 122 (2014)] to describe economic systems where production is based on knowledge
growth and diffusion. This model reduces to a PDE system where a backward Hamilton–Jacobi–
Bellman equation is coupled with a forward KPP-type equation with nonlocal reaction term. We
study the existence of traveling waves for this mean-field game system, obtaining the existence
of both critical and supercritical waves. In particular, we prove a conjecture raised by economists
on the existence of a critical balanced growth path for the described economy, supposed to be the
expected stable growth in the long run. We also provide nonexistence results which clarify the role
of parameters in the economic model.

In order to prove these results, we build fixed point arguments on the sets of critical waves for
the forced speed problem arising from the coupling in the KPP-type equation. To this purpose, we
provide a full characterization of the whole family of traveling waves for a new class of KPP-type
equations with nonlocal and nonhomogeneous reaction terms. This latter analysis has independent
interest since it shows new phenomena induced by the nonlocal effects and a different picture of
critical waves, compared to the classical literature on Fisher–KPP equations.
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1. Introduction

There is a huge literature in macroeconomics devoted to the analysis of knowledge-based
economic systems, where production and learning play key roles. As a sample reference,
we cite here only [4] among the pioneering papers on this topic. The most recent con-
tributions in this field have refreshed the interest in quantitative analysis of this kind of
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model; see e.g. [3, 14, 17, 19]. Along the lines of this research, in 2014 R. E. Lucas and
B. Moll introduced a new refined model to describe an economy of knowledge growth and
diffusion ([16]). This model, resulting in a system of PDEs, proved to be a source of many
interesting mathematical questions, which are the object of this work.

Compared to other previous models in macroeconomics, Lucas and Moll put new
emphasis on the interaction between the individual optimization and the evolution of the
economic environment which results from individual behaviors. In their model, the agents
are characterized by their level of productivity-related knowledge (or technology) and
split their time between producing and meeting other people in order to exchange ideas
and improve their knowledge. The evolution of this economy is globally described by
the productivity distribution function, which is driven by people’s choices. Conversely,
the individual strategies search for an optimal equilibrium between the time devoted to
producing and the time spent on increasing the technological level of production; this
choice obviously depends itself on the global status of the economic environment.

This kind of interaction is typical in mean-field game models, which aim at studying
the interplay (and the occurrence of Nash equilibria) between individual decisions and
collective behavior. So far, mean-field game theory, introduced by Lasry and Lions (see
[12, 15]), has been rapidly spreading in many fields of applications and currently leads
to new interesting problems in the theory of PDEs. Nowadays, mean-field game theory
attracts more and more interest among economists, since it provides support to develop
models for heterogeneous agents. We refer the reader to [2] for a discussion of several
mean-field game models in macroeconomics and we borrow from this paper the following
short presentation of the Lucas–Moll model.

In this model, any single agent has some level of knowledge/productivity z and decides
to allocate a fraction s 2 Œ0; 1� of their time (a unit of labor per year) to search for new
ideas or technologies (in order to increase the productivity level) by interacting with other
people, with ˛.s/ Poisson rate of probability of meeting another agent. As a result of
a meeting, the productivity associated to knowledge level becomes the maximum of the
productivity of the two agents. Thus, the individual dynamics is described through the
stochastic process xt WD log.zt / (here zt is the productivity level), which is governed by
the SDE

dxt D
p
2� dBt C dJt ;

where Bt is a standard 1-dimensional Brownian motion, � > 0, and Jt is a Poisson pro-
cess with intensity ˛.st / that jumps when individuals meet someone with a higher level of
productivity during the time st . The Brownian motion accounts for fluctuations in the indi-
vidual productivity. In the language of economists, the Brownian noise may also represent
the individual process of experimentation and innovation, whereas the learning process is
referred to as imitation.

The agents’ goal is to maximize their production, which is of course proportional to
the time devoted to producing (that is, .1 � s/) and to the current level of productivity z.
Then the value function of a single agent, conditionally to the initial condition xt D x, is
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given by

v.t; x/ D sup
s�2Œ0;1�

Et;x

Z C1
t

e��.��t/.1 � s� /e
x� d�:

Here � is the discount factor, while the control strategy of the agent is the process ¹stº
taking values in Œ0; 1� (recall that st also enters into the Poisson process Jt involved in the
dynamics of xt , which has intensity ˛.st /).

The Bellman equation of dynamic programming yields the following Hamilton–Jacobi
equation for v:

�@tv � �
2@xxv C �v D max

s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

.v.y; t/ � v.x; t//f .t; y/ dy

³
;

where f .t; x/ is the density of the log-productivity distribution function at time t (i.e. the
law of xt ). As derived by Lucas and Moll, the equation for f reads

@tf � �
2@xxf D f .t; x/

Z x

�1

˛.s�.t; y//f .t; y/ dy

� ˛.s�.t; x//f .t; x/

Z C1
x

f .t; y/ dy; (1)

where s�.t; x/ is the optimal feedback strategy of the agents.
It is not difficult to understand the equation for f as a balance of mass. Indeed, the

density f .t; x/ changes according not only to the individual noise of the agents, but also
to the exchange of knowledge among the population. In this respect, the right-hand side
should be understood as a balance (at time t ) between new people who upgrade their
knowledge to level x by meeting someone with such a level, and people who leave level x
because they increase their knowledge by learning from someone with higher technology.
In particular, the L1.R/ norm of f is preserved. We point out that the above description
applies to an equilibrium configuration, in the spirit of Nash equilibria: indeed, the den-
sity f appears a priori as an exogenous datum in the optimization of the agents, and the
equilibrium is realized a posteriori by assuming that f is actually driven by the optimal
strategy used by the agents.

Summing up, the mean-field game (MFG) system proposed by Lucas and Moll in their
knowledge–production model can be stated as follows:8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�@tv � �
2@xxv C �v D max

s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

Œv.y/ � v.x/�f .y/ dy

³
;

@tf � �
2@xxf D f .x/

Z x

�1

˛.s�/f .y/ dy � f .x/˛.s�/

Z C1
x

f .y/ dy;

s� D argmax
²
.1 � s/ex C ˛.s/

Z C1
x

Œv.y/ � v.x/�f .y/ dy

³
;

f .0/ D f0;

(2)

which is set for t > 0, x 2 R and the normalization condition
R

R f .t; y/ dy D 1.
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Among the most important questions raised by Lucas and Moll in the analysis of this
model, they addressed the problem of existence of traveling wave solutions for system (2).
These solutions, which are called balanced growth paths in the language of economics,
are solutions of the type

v.t; x/ D ect�.x � ct/; f .t; x/ D '.x � ct/: (3)

As explained in [16], this kind of solution (usually rephrased in terms of the productivity
variable z) plays a very crucial role in understanding the behavior of the economy in the
long run and the existence of sustainable growth strategies. See also Remark 2 where we
discuss the interpretation of our results in terms of the original model.

In [16], Lucas and Moll introduced a numerical algorithm to show the existence of
balanced growth paths in the case that the agents are not affected by individual noise,
which can be called the deterministic case (� D 0) for system (2). Further results for the
case without diffusion were given in [7, 8].

On one hand, introducing a diffusion term in the form of individual noise for the
agents looks very natural for the model, since it allows one to consider fluctuations in
the individual productivity and prevents some additional constraint for balance growth
paths (like an a priori prescription of a Pareto tail for the initial distribution); see e.g. the
discussion in [17].

On the other hand, in the diffusive case the analysis of traveling waves for system (2)
looks more challenging and intriguing. In the case of constant learning technology func-
tion ˛.s/ D ˛0 (new ideas arrive without the need to go in search of other people) the
cumulative distribution function F.t; x/ D

R x
�1

f .t; y/ dy satisfies the classical Fisher–
KPP equation ([13]). This case was extensively discussed in [17].

In the case of variable learning technology function ˛.s/, it was conjectured in [2,
16] that system (2) admits balanced growth paths and, in particular, the limiting profile
distribution in the long time should be a solution of the form (3) satisfying

c D 2�

sZ
R
˛.s�.y//'.y/ dy: (4)

This question is very relevant for the economic model because this would identify a critical
growth rate in the long run for balanced growth paths.

The purpose of this article is to prove, under fairly general assumptions, the existence
of such a critical traveling wave for system (2). From a PDEs viewpoint, this is espe-
cially interesting because it involves both a nontrivial extension of the standard analysis
of Fisher–KPP equations and the construction of critical equilibria for the mean-field game
system, namely a fixed point argument on a family of traveling waves.

Results in this direction were given in [20] for the case of a linear function ˛.s/D ˛s.
By contrast, in the original model suggested by Lucas and Moll, ˛.�/ is supposed to be a
strictly concave, increasing function such that ˛0.0/ D C1 and ˛0.1/ > 0. According to
[16], this setting of assumptions seems to match real situations on account of experimental
data, and power-type functions like ˛.s/ D s� , � 2 .0; 1/ are typical examples.
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In the economic interpretation, assuming ˛0.0/ D C1 implies that people will never
stop searching for new ideas and a possibly small but not trivial fraction of time is devoted
to searching for new technology, even at a large productivity level z. This results in the
condition that the optimal policy s� in (2) satisfies

s�.t; x/ > 0; x 2 R;

but of course s�.t; x/! 0 as x !1. The second condition ˛0.1/ > 0 also has a clear
interpretation in the model, namely that people with a sufficiently low level of knowledge
should devote all their time to going in search of new technology; this means that there
exists a threshold z0 > 0 such that it is not convenient (or not possible) to start producing
if the knowledge level is smaller than z0 (this typically happens for new producers). In the
logarithmic variable x D log z, this implies that there exists x0 2 R such that

s�.t; x/ � 1 8x � x0:

Under the above constitutive assumptions on the learning technology function ˛.�/, in this
paper we derive the following results:

• If � � 2�
p
˛.1/ and ˛.1/ > �2, there exists a balanced growth path (i.e. a solution of

(2) in the form (3)) with a growth rate c satisfying the critical identity (4). Moreover,
it holds that 2�2 < c < 2�

p
˛.1/.

• For every c such that 2�
p
˛.1/ � c < ˛.1/ C �2 and c < �, there exist balanced

growth paths with growth rate c (which are not critical).

• There are no balanced growth paths with growth rate c � 2�2 or c � ˛.1/C �2.

The first item above is our main contribution and proves the conjecture in [2] about
the existence of traveling waves with critical growth. We refer to Theorem 2.2 for a pre-
cise statement, where we also discuss the optimality of the conditions on �, �, ˛. Let us
mention that the existence of a critical traveling wave for system (2) is also proved inde-
pendently in the very recent paper [18] under the assumption that the discount factor �
and the intensity ˛ of the technology function are sufficiently large.

In the second item we show that there is a whole family of other traveling waves with
supercritical speed. This proves to be consistent with the typical behavior of KPP-type
equations. However, the existence of an upper bound (˛.1/C �2) for the velocities, which
is optimal owing to the third item, is not an intrinsic feature of KPP equations and it is
rather an outcome of the coupling with the value function v through the optimal feedback
strategy s�.

Unfortunately, the picture of all possible waves of system (2) is not yet completely
understood, as we will discuss later. However, even if many questions remain open for the
system, we believe that our analysis makes a significant advance towards the study of the
long time convergence to a stable profile.

As is very typical in mean-field game systems, the construction of equilibria is a con-
sequence of some fixed point argument. In this context, this leads us to a careful analysis
of traveling waves for a nonlocal KPP-type equation. Indeed, if F.t;x/ WD

R x
�1

f .t; y/dy
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is the cumulative distribution function, a direct computation (which we postpone to Sec-
tion 2) reveals that (1) can be rewritten for W WD 1 � F as

@tW � �
2@xxW D W

Z x

�1

A.t; y/.�@xW /dy; with A WD ˛ ı s�; (5)

together with the limiting conditions

W.t;�1/ D 1; W.t;C1/ D 0:

This is a nonlocal reaction–diffusion equation which, in the case A constant, reduces to
the classical Fisher–KPP equation

@tW � �
2@xxW D AW.1 �W /:

Traveling waves for system (2) require that A D A.x � ct/ (see Section 2.1), hence we
are led to consider solutions of the form W.t; x/ D w.x � ct/, i.e.8̂<̂

:��
2w00 � cw0 D w

Z x

�1

A.y/.�w0.y// dy; x 2 R;

w.�1/ D 1; w.C1/ D 0; w0 < 0:

(6)

We point out that w.x � ct/ is not just a wave for equation (5) because one additionally
assumes that the nonlocal kernel A is also moving with an imposed velocity c. As a matter
of fact, (6) has to be understood as a forced speed problem. Thus, even though equation (5)
can be rewritten as a more standard integro-differential equation by integrating by parts the
right-hand side, the results on traveling waves for that class of equations (see e.g. [5,6,11])
do not apply to (6).

A major part of our work consists in the analysis of solutions to (6). This corre-
sponds to the traveling wave problem for the cumulative distribution function with a given
imposed policy s (and A D ˛ ı s). Despite the large literature about nonlocal KPP equa-
tions, problem (6) presents some peculiar features which have not appeared in previous
models. In this respect, we give several new contributions, of independent interest, to the
study of forced speed waves for nonlocal KPP equations.

Assuming thatA.�/ is a nonnegative nonincreasing function satisfying NA WDA.�1/ >
A.C1/ DW A, we can summarize as follows our results, to be compared with what is
known for the standard local KPP case:

• Problem (6) admits waves for all c > 2�
p
A. If c � 2�

p
NA, there exist waves with

speed c and arbitrary normalization at any point x0 2 R. By contrast, if 2�
p
A < c <

2�
p
NA, for any given point x0 there is a minimal height # D #.x0; c/ such that waves

with velocity c only exist with w.x0/ � # .

• For fixed speed c 2 .2�
p
A; 2�

p
NA/, all possible waves are an ordered foliation

indexed by the value
R

RA.y/.�w
0.y// dy, whose maximum is given by

c2

4
D �2

Z
R
A.y/.�w0.y// dy: (7)
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The unique wave which satisfies (7) is called critical; this is the wave of velocity c
which, at any point, runs at the lowest possible height.

Let us point out how the analysis of (6) proves to be crucial in the study of system (2).
In fact, our approach is built on a fixed point argument which requires an understanding
of the full picture of possible waves for the single nonlocal KPP equation. Then impos-
ing condition (7) will lead us to a wave for (2) satisfying the criticality condition (4).
In this respect, our construction of the critical wave for the mean-field game system (2)
looks completely different from the method employed in [18], where the authors use a
topological degree argument and a suitable approximation procedure which automatically
provides a wave for (2) satisfying the criticality condition (4), assuming the parameters �,
˛ to be sufficiently large. The essential difference between the two approaches even raises
the question of whether the obtained critical waves coincide.

The organization of this paper runs as follows. We leave to the next section the deriva-
tion of the traveling wave system and a more precise statement of our main results. As we
mentioned, they involve both the single nonlocal KPP equation and the mean-field game
system. Further comments on the optimality of our results are also given below. Then Sec-
tion 3 is devoted to a detailed analysis of solutions to (6). In Section 4 we come back to
system (2) and we prove the results on the mean-field game model.

2. Assumptions and main results

We come back to the mean-field game system (2) in order to make precise the setting of
our assumptions. We assume that the learning technology function ˛.s/ satisfies

˛ 2 C 0.Œ0; 1�/ \ C 2..0; 1�/ is increasing, strictly concave; (8)

together with

˛.0/ D 0; (9)

˛.1/ > �2; (10)

lim
s!0C

˛0.s/ D C1; (11)

˛0.1/ > 0: (12)

We already explained in the introduction the interpretation of conditions (11) and (12) in
terms of the knowledge diffusion–growth model. Besides, condition (10) will turn out to
be necessary in order for balanced growth paths to exist (see Proposition 4.2 and Theorem
2.2). A natural interpretation is that there should be enough probability to meet people and
enhance the individual level of knowledge in order for this model of economy to reach a
significant balanced growth.

Another necessary assumption involves the discount rate �, i.e.

� > �2: (13)
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It will soon appear clear that this is a minimal condition even for the existence of solutions
to (2). Further conditions will be needed on the discount rate in order to guarantee the
existence of balanced growth paths, which we will discuss after Theorem 2.2.

2.1. Balanced growth paths and traveling waves

Here we derive the system of traveling waves which is associated to balanced growth paths
for the Lucas–Moll model. Before giving a proper definition of admissible solutions, we
start by making a few heuristic remarks on the solutions of system (2).

First of all, we stress that the Hamiltonian function

H.t; xI v/ WD max
s2Œ0;1�

�
.1 � s/ex C ˛.s/

Z C1
x

Œv.t; y/ � v.t; x/�f .t; y/ dy

�
(14)

requires the condition v.t/ 2 L1.f .t/ dx/ in order to be finite. Since

�@tv � �
2@xxv C �v � e

x

by comparison (and the condition � > �2) we have v � ex

.���2/
, hence we are led to require

f .t/ex 2L1.R/. This is to point out that a natural functional setting for system (2) should
require

f .1C ex/ 2 C 0.Œ0;1/IL1.R//;
v

1C ex
2 C 0.Œ0;1/IL1.R//; (15)

plus the natural condition that f .t/ be a probability density for all t .
It is also natural to guess that v be monotone with respect to x. This can be observed

by differentiating the Hamilton–Jacobi equation. In fact, by standard parabolic regularity,
locally bounded solutions .v;f / are at least of class C .1C#/=2;1C# , in particular v is C 1 in
the x variable. Then the strict concavity assumption on ˛ allows us to use some form of the
envelope theorem (see e.g. [9, Lemma 1]) which implies that H.t; xI v/ is differentiable
in x. Differentiating the Bellman equation we deduce that vx solves the equation

� @tvx � �
2@xxvx C �vx D .1 � s

�/ex � ˛.s�/vx.1 � F /; (16)

where

F.t; x/ WD

Z x

�1

f .t; y/ dy

is the cumulative distribution function, and s� is given in (2). Heuristically, this equation
yields vx � 0 and vxe�x 2 L1..0;1/ �R/.

The monotonicity of v also implies that
R C1
x

Œv.y/ � v.x/�f .y/ dy � 0 and that the
function s� defined in (2) is a nonincreasing function of x. Indeed, since ˛.�/ is concave,
the function

g.sI x/ WD .1 � s/ex C ˛.s/

Z C1
x

.v.t; y/ � v.t; x//f dy
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is also concave with respect to s and so either g.�I x/ is decreasing in Œ0; 1� or s�.t; x/ WD
sup¹� 2 Œ0; 1� W g.�I x/ is increasing in Œ0; �/º. But one can readily check that®

� 2 Œ0; 1� W g.�I x2/ is increasing in Œ0; �/
¯

�
®
� 2 Œ0; 1� W g.�I x1/ is increasing in Œ0; �/

¯
8x1 < x2;

hence s�.t; x2/ � s�.t; x1/.
In fact, it is possible to build a solution .v; f / of (2) satisfying the above properties,

provided the discount rate is sufficiently large; however, we postpone to a forthcoming
article a more detailed analysis of the existence of solutions to the system, which depends
both on conditions on initial data and on the range of the discount factor.

Here, we only concentrate on balanced growth path solutions. The above discussion
eventually leads us to the following definition.

Definition 2.1. A balanced growth path (BGP) solution of (2) with growth rate c 2 R is
a triple .f; v; s�/ such that

f D '.x � ct/; v D ect�.x � ct/; s� D �.x � ct/;

and the following properties are satisfied:

• '; � 2 C 2.R/, � 2 W 1;1
loc .R/,

• '.1C ex/ 2 L1.R/, ex
R C1
x

'.y/ dy 2 L1.R/,

• � is increasing, nonnegative and �0e�x 2 L1.R/,

• f , v are classical solutions of the MFG system (2) (with f0 D '.x/) and s�.t; x/ D
argmax¹.1 � s/ex C ˛.s/

R C1
x

Œv.t; y/ � v.t; x/�f .t; y/ dyº.

Let us anticipate that the growth rate c of a BGP will necessarily be positive (and
actually larger than 2�2), but we include the case c � 0 in the above definition in order to
derive in particular the nonexistence of stationary solutions to (2).

We now proceed by showing that BGP solutions can be conveniently reformulated
in terms of vx and the CDF function F , and this formulation is well suited for traveling
waves. Let .f; v/ be a solution to (2). We first observe that, integrating by parts, we can
rewrite (omitting the t variable) asZ C1
x

Œv.y/ � v.x/�f .y/ dy D � lim
y!C1

.1 � F.y//.v.y/ � v.x//C

Z C1
x

vx.1 � F / dy

D

Z C1
x

vx.1 � F / dy; (17)

where we have used the monotonicity of � and the integrability of '� to see that .1 �
F.y//v.y/ �

R C1
y

f .s/v.s/ ds ! 0 as y ! C1. Due to (16), and using (17) in the
definition of s�, we see that the function � WD vxe�x is bounded and satisfies8̂<̂

:
�@t� � �

2@xx� � 2�
2@x� C .� � �

2/� D .1 � s�/ � ˛.s�/�.1 � F /;

s�.t; x/ D argmax
s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

�.t; y/ey.1 � F.t; y// dy

³
:

(18)
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The equation for F is also readily found. Integrating the equation for f (and neglecting
the terms at infinity), we have

@tF � �
2@xxF D

Z x

�1

f .�/

Z �

�1

˛.s�/f .y/ dy �

Z x

�1

˛.s�.�//f .�/

Z C1
�

f .y/ dy

D �

�
.1 � F.�//

Z �

�1

˛.s�/f .y/ dy

�x
�1

D �.1 � F.x//

Z x

�1

˛.s�/f .y/ dy;

where we just used integration by parts. Therefore, the function F solves the nonlocal
KPP equation

@tF � �
2@xxF C .1 � F /

Z x

�1

˛.s�.y//.@xF.y// dy D 0; (19)

i.e.W WD 1�F satisfies (5). Now, ifW is a traveling wave, i.e. it is of the formW.t;x/D

w.x � ct/, one can look for � and s� in the form of traveling waves too. This is consistent
because if �.t; x/ WD vx.t; x/e�x D z.x � ct/ for some function z, then

s�.t; x/ D argmax
s2Œ0;1�

�
.1 � s/ex C ˛.s/

Z C1
x

vx.t; y/.1 � F.t; y// dy

�
D argmax

s2Œ0;1�

ect
�
.1 � s/ex�ct C ˛.s/

Z C1
x�ct

z.y/eyw.y/ dy

�
; (20)

which implies that s� is a function of x � ct , i.e. it is itself a traveling wave.
Summing up, in the case of BGP solutions, we have that

W.t; x/ D 1 �

Z x

�1

'.y � ct/ dy; �.t; x/ D vx.t; x/e
�x
D ect�x�0.x � ct/

are traveling wave solutions of (5), (18), i.e. W D w.x � ct/, � D z.x � ct/ and s� D
�.x � ct/ are solutions to8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�2w00 C cw0 C w

Z x

�1

A.y/.�w0.y// dy D 0; x 2 R;

w � 0; w.�1/ D 1; w.C1/ D 0;

��2z00 C .c � 2�2/z0 C .� � �2/z C A.x/wz D 1 � �.x/; x 2 R;

z � 0; z is bounded; zexw 2 L1.R/;

�.x/ D argmax
s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

z.y/eyw.y/ dy

³
; A WD ˛ ı �:

(21)

This will be the framework where traveling waves will be sought. Let us notice that the
conditions at infinity for w are induced by mass conservation in the original system, with
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the normalization condition
R C1
�1

f D 1. The conditions for z follow from the conditions
on vx discussed above. The condition exw 2 L1.R/ is necessary to give proper sense to �
in (21); this is why this condition is required in the definition of BGP solutions. We stress
that, using elliptic estimates and the Harnack inequality, the first equation in (21) implies
jw0.x/j � Cw.x/, so the condition exw 2 L1.R/ itself implies a similar condition for w0

(which is the requirement 'ex 2 L1.R/ appearing in Definition 2.1). Let us further recall
that � and A are nonincreasing and, as we will see in Proposition 4.2 below, they are also
locally Lipschitz-continuous on R.

The connection between BGP solutions of (2) and traveling wave solutions of (21)
will be rigorously analyzed in Proposition 4.8. We only stress here that a one-to-one cor-
respondence is easily given, following the above derivation, between the solutions .z; w/
of (21) and the couple .vx ; f /. However, an extra condition (� > c) will be needed in
order to build the balanced growth value function v. This specifically comes from the
requirement that v be positive, and is a natural condition in the described model; see also
Remark 2.

2.2. Statement of the main results

We now state the main result of the paper.

Theorem 2.2. Assume that hypotheses (8)–(12) and (13) hold true. Then we have the
following:

(i) If there exists a BGP solution (with growth c) of (2), then necessarily

2�2 < c < ˛.1/C �2 and c < �

(hence (10) and (13) are necessary for a BGP to exist).

(ii) If � � 2�
p
˛.1/, there exists a BGP solution of (2) with growth c 2 .2�2;

2�
p
˛.1// and such that (4) is satisfied.

(iii) For every c 2 Œ2�
p
˛.1/; ˛.1/C �2/ such that c < �, there exist BGP solutions

of (2) with growth c (which do not satisfy (4)).

Remark 1. Several comments are in order to describe the above statement.

(a) The lower bound c > 2�2 for the growth rate of BGP solutions not only imme-
diately implies the nonexistence of stationary solutions to (2), but further sug-
gests that solutions to the system emerging from arbitrary initial data should be
“driven” rightward with a positive asymptotic speed, in both their components.

(b) The condition ˛.1/ > �2 proves to be necessary to leave room for the existence
of some traveling wave, solution of (21), hence for BGP solutions as well. By
contrast, the restriction � > c is not needed for the solutions .z;w/ of (21) to exist.
But this restriction is necessary for BGP solutions. In particular this is needed to
build a consistent value function v once the traveling waves vxe�x and f are
proved to exist; we refer the reader to Proposition 4.8 for a better comprehension.
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It is interesting to notice that this necessary condition � > c, linking the discount
rate to the possible balanced growth, is very common in the economic literature.
Indeed, as pointed out to us by Moll, this condition is usually needed both for neo-
classical growth models (see e.g. [1]) and for balanced growth equilibria induced
by endogenous growth (see e.g. [21]).

(c) As already mentioned in the previous item, there is a small gap between the pure
analysis of system (21) and the BGP solutions of (2). For example, without the
requirement zexw 2 L1.R/, solutions of (21) may be found with � � 1 in the
(larger) range of parameters

3

4
�2 � � � �2; �2 � � � ˛.1/ < �2;

and velocities c 2 Œ2�
p
˛.1/; 2�2/. These solutions however do not correspond

to balanced growth paths because the derivation of the equations in (21) from (2)
crucially relies on the condition zexw 2 L1.R/.

(d) The most important output of Theorem 2.2 is the existence of at least one wave
with velocity c 2 .2�2; 2�

p
˛.1//, which in addition is critical, in the sense that

it fulfills (4).
Notice that the speed c of this critical wave is not precisely known, and since
c < � is necessary for a BGP to exist, we have to assume � � 2�

p
˛.1/ in order

to guarantee the existence of at least one critical wave.
Unfortunately, not only we do not know whether this is the unique critical wave,
but we also do not know yet if there are other traveling waves in this range of
velocities (but we conjecture that other noncritical waves exist for c in this range).
By contrast, we know much better what happens for c � 2�

p
˛.1/; indeed, for

every c 2 Œ2�
p
˛.1/; ˛.1/C �2/ there are traveling waves with speed c, and they

can have arbitrary normalization at any given point x0 2R. This is a whole family
of traveling waves with supercritical speed, because they cannot satisfy condition
(4), since this latter condition implies c < 2�

p
˛.1/.

(e) The critical wave found in Theorem 2.2 (ii) also satisfies the expected decay as
x !1, namely that �w

0

w
!

c
2�2

.

Remark 2. Let us recall, from [16], that the solutions constructed in Theorem 2.2 have
a clear interpretation in terms of the productivity variable z D ex . Indeed, for a balanced
growth path solution, the cumulative distribution function F , given in terms of z, takes
the form

F D ˆ.e�ctz/

for some increasing function ˆ. This implies that all level sets of F (the qth quantiles of
the CDF function) grow with the same exponential rate c > 0, because®

z W F.t; z/ D q
¯
D
®
z D ectˆ�1.q/

¯
:

This fact justifies the name of balanced growth path solutions, in terms of the economy.
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Let us also mention that the decay rate of the critical wave, mentioned in Remark 1 (e),
is also significant for the economic model. This is usually interpreted by economists in
terms of the Pareto tail of the CDF function; indeed, if �w

0

w
!

c
2�2

, this means that F.t; z/

has a tail which decays (in polynomial scale) as z�
c

2�2 (the precise behavior for the KPP
equation would actually suggest F D O.z

� c

2�2 log z/). In the language of economists,
the value 2�2

c
is called the tail inequality associated to the Pareto-like distribution. In this

respect, our result also proves the conjecture in [2] that the critical balanced growth path
for system (2) should have tail inequality equal to �.

R
R ˛.s

�.y//'.y/ dy/�1=2.

As is typical in mean-field game systems, the solutions we find in Theorem 2.2 arise
from a fixed point argument. For this purpose, we first develop a deep study of traveling
waves for the single nonlocal KPP equation8̂<̂

:w
00
C cw0 C w

Z x

�1

A.y/.�w0.y// dy D 0; x 2 R;

0 � w � 1; w.�1/ D 1; w.C1/ D 0:

(22)

Here we have set the diffusion coefficient �D 1; this is no loss of generality, up to rescaling
c and A by 1=�2. The main difficulties we have to face, compared with the classical KPP
equation, come from the facts that this equation is inhomogeneous and nonlocal in the
reaction term, which entail, respectively, that it is not translation invariant and that the
comparison principle fails.

Equation (22) is obtained from the mean-field game system with A WD ˛ ı � . This
motivates the setting of assumptions we are interested in, namely, A is bounded and
nonincreasing. We also exclude the case A constant because this reduces to the standard
Fisher–KPP equation (for which basically everything is known).

In our analysis of problem (22), we completely characterize the whole family of trav-
eling waves.

Theorem 2.3. Assume that A 2 W 1;1
loc .R/ is bounded and nonincreasing and that

NA WD lim
s!�1

A.s/ > A WD lim
s!C1

A.s/ � 0:

The traveling wave problem (22) admits solution if and only if c > 2
p
A. For any c > 2

p
A

the family of solutions is given by

F WD .w#/#2‚;

with w# satisfying w#.0/ D # and

‚ D

8<:Œ#c ; 1/ if c 2 .2
p
A; 2

p
NA/;

.0; 1/ if c 2 Œ2
p
NA;C1/:

The .w#/#2‚ are strictly ordered and # 7! w# is a continuous bijection from ‚ to F

equipped with the L1.R/ norm.
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Finally, the “critical” waves w#c depend continuously on c 2 .2
p
A; 2
p
NA/ with

respect to the L1.R/ norm, and the values #c D w#c .0/ satisfy

#c % 1 as c & 2
p
A; #c & 0 as c % 2

p
NA: (23)

Of course, the choice of the point 0 for parametrizing F is purely arbitrary.
The fact that the waves with equal speed are ordered seems remarkable, because this

property is typically out of reach for nonlocal, inhomogeneous problems, due to the lack
of a comparison principle. We stress that the main interest of Theorem 2.3 lies in the
range of velocities .2

p
A; 2
p
NA/, which reduces to the empty set when A is constant. So

this is the range of traveling waves which come from the genuinely inhomogeneous (and
nonlocal) forced speed term A. Outside this range, the picture is similar to the classical
KPP equation: for any c � 2

p
NA the graphs of the family of waves (which in the classical

case are simply translations of the same profile) foliate the whole strip R � .0; 1/. By
contrast, for c 2 .2

p
A; 2
p
NA/, the foliation does not fill the whole strip, but only the

region to the right of the “critical” wave. The situation is depicted in Figure 1.

(a) c < 2
p
NA

(b) c � 2
p
NA

Figure 1. The two different types of foliation.

The two different scenarios can be heuristically explained as follows: on one hand, if
the transition of the wave from 1 to 0 takes place (for its main part) far to the right then it
would be affected by values of A close to A, and for such a value the range of admissible
speeds is classically c � 2

p
A; this is why fronts can be found for any c > 2

p
A, and

they converge pointwise to 1 as c & 2
p
A. Conversely, if the transition occurs far to the

left then A would be close to NA and then necessarily c & 2
p
NA; hence, for a given speed

c < 2
p
NA, the transition cannot occur too much to the left, or, equivalently, there must

exist a pointwise lower bound for the wave.
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In order to understand what happens for c in the range .2
p
A; 2
p
NA/, the following

operator will be of crucial importance:

	.w/ WD

Z
R
A.y/.�w0.y// dy:

From the modeling point of view, 	.w/ is related to the total expectation of meetings for
the given policy A WD ˛ ı s. Because of the condition w.�1/ D 1, it can be equivalently
written as

	.w/ D NAC

Z
R
A0.y/w.y/ dy:

This formulation enlightens the continuity and monotonicity of 	. The value of 	 on the
critical wavew#c turns out to encode the speed in a very transparent way: 	.w#c /D c

2=4.
This immediately shows that there exist no traveling waves with speed c � 2

p
A. The

relationship between the waves and the functional 	 is summarized in the following result.

Theorem 2.4. The mapping #! 	.w#/ is a decreasing homeomorphism between‚ and
J , where

J D

´
.A; c2=4� if 2

p
A < c < 2

p
NA;

.A; NA/ if c � 2
p
NA:

Another key feature of the operator 	 is that it encodes the exponential rate of decay
of the wave; see Proposition 3.12 below. Unfortunately, there is one property that we are
still missing: the ordering of critical waves with different speeds. This would be of great
help to construct a wave for system (21) through a fixed point argument. Nevertheless, we
are able to derive the ordering for large jxj, cf. Propositions 3.12 and 3.21, and we use this
to cook up a suitable selection principle for the fixed point argument.

3. The nonlocal KPP equation

This section is devoted to the study of the single traveling wave problem (22), which
corresponds to an assigned production/research strategy. Namely, throughout this section
we assume that c 2R is assigned and thatA is a given function which fulfills the properties
derived in Section 2.1, which are

A 2 W
1;1

loc .R/ is nonnegative, nonincreasing;
NA WD A.�1/ > A WD A.C1/:

In the next section, we start by collecting some tools on the nonlocal equation (22).

3.1. Preliminary toolbox

As a first step, we show basic properties of solutions to (22).
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Proposition 3.1. If (22) admits solution for some c 2 R, then necessarily c > 0 and
w0 < 0 in R. In addition, for any R > 0, there exists a constant CR, only depending on R,
NA D A.�1/ and an upper bound for c, such that, for any x0 2 R, it holds that

max
Œx0�R;x0CR�

w � CRw.x0/; max
Œx0�R;x0CR�

.1 � w/ � CR.1 � w.x0//: (24)

Proof. We preliminarily observe that w > 0 thanks to the elliptic strong maximum prin-
ciple. We then divide the equation in (22) by w and differentiate to get

w000

w
�
w0w00

w2
C c

w00

w
� c

.w0/2

w2
� Aw0 D 0; x 2 R:

Hence, the function u WD w0 satisfies the equation

u00 C
�
c �

u

w

�
u0 � Awu D c

u2

w
; x 2 R; (25)

with zero-order coefficient �Aw � 0. Moreover, by the boundedness of w, we know that
there exist two sequences .x˙n /n2N diverging to˙1 respectively, such that u.x˙n /! 0 as
n!1. Applying the weak maximum principle to equation (25) in .x�n ; x

C
n / and letting

n!1, we deduce that u � 0 in R if c � 0, whereas u � 0 in R if c � 0. Then, by the
limiting conditions in (22), we necessarily have that c > 0 and u � 0. The strict inequality
w0 D u < 0 follows by applying the strong maximum principle to (25).

As for the Harnack inequalities (24), the first one comes from standard elliptic theory,
because w solves an equation as w00 C cw0 C Vw D 0 where the potential V satisfies
0� V � NA. As for the second one, we observe that ifw solves (22) then v.x/ WD 1�w.x/
satisfies

�v00 � cv0 C .1 � v/g.x/v D 0;

where

g.x/ WD
1

v

�
NA � A.1 � v/C

Z x

�1

A0.y/.1 � v.y// dy

�
:

On one hand, using A0v � 0 in the above integral shows that g � 0. On the other hand,
the fact that A0v is decreasing yields

g.x/ �
1

v
. NA � A.1 � v/C .1 � v/.A � NA// D NA:

Therefore, we conclude as before that v.x/� CRu.x0/ provided jx � x0j �R. This gives
the second inequality in (24).

It will be handy to reformulate the equation in (22). Namely, under the condition
w.�1/ D 1, integrating by parts the nonlocal term leads to

w00 C cw0 C w

�
NA � Aw C

Z x

�1

A0.y/w.y/ dy

�
D 0; x 2 R: (26)

The advantage of this equation, compared with the one in (22), is that the only identically
constant solutions are 0 and 1. Now we show that all other solutions to (26) are decreasing
waves connecting 1 and 0 and then, in particular, they are solutions of (22).
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Lemma 3.2. Let 0 � w � 1 be a solution of (26) for some c � 0. Then either w � 0, or
w � 1, or c > 0 and w satisfies

w.�1/ D 1; w.C1/ D 0 and w0 < 0 in R:

Moreover, there exists a constant L, only depending on c, NA, such that kw000k1 � L.

Proof. We first observe that globally bounded solutions of (26) are also bounded in C 3.
Indeed, using the monotonicity of A and the bounds on w, we notice that w solves a linear
equation w00 C cw0 C wV D 0, where

0 � V WD

�
NA � Aw C

Z x

�1

A0.y/w.y/ dy

�
� NA:

By elliptic estimates (see e.g. [10, Theorem 9.11]), given any point a 2 R we have

jw0.a/j � L sup
x2Œa�1;aC1�

jw.x/j � L;

where L only depends on c, NA. Then the same conclusion holds true (with a larger L) for
w00 D �cw0 � wV . We then bootstrap by differentiating this equation and observing that
V 0 D �Aw0. This shows that jw000j � L for some L depending on c, NA.

Let us now show that bounded solutions are decreasing waves. First we observe that
A0 � 0 and w � 1 imply

� w00 � cw0 � A.x/w.1 � w/ � 0; x 2 R: (27)

We treat separately the cases c D 0 and c > 0.

Case c D 0. In this case (27) yields w00 � 0 in R, hence w is constant. Then, since
A.�1/ D NA > 0, (27) shows that the only possibilities are w � 0 or w � 1.

Case c > 0. Inequality (27) implies that �.w0ecx/0 � 0, which, integrated on .�1; x/
(w0ecx vanishes at �1 because w0 is bounded), yields w0.x/ � 0 for any x 2 R. Differ-
entiating (26) we get the following equation for w0:

.w0/00 C c.w0/0 C w0
�
NA � 2Aw C

Z x

�1

A0.y/w.y/ dy

�
D 0:

We deduce from the elliptic strong maximum principle that either w0 < 0 in R, or w0 � 0.
In the latter case, as before, we infer from (27) and NA > 0 that w � 0 or w � 1.

We are left with the case w0 < 0. In this case w.˙1/ exist and satisfy 0 � w.�1/ <
w.C1/ � 1. We integrate the integral in (26) by parts to get

� w00 � cw0 � w

�
NA.1 � w.�1//C

Z x

�1

A.y/.�w0.y// dy

�
: (28)

The two terms on the right-hand side are nonnegative. Suppose by contradiction that
w.�1/ < 1. Then there exists k > 0 such that the right-hand side is larger than k for
x � 0, i.e.

� .w0ecx/0 � kecx : (29)
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Integrating on .�1; x/, for given x < 0, we obtain �w0.x/ � k
c

, which is impossible.
Therefore, w.�1/ D 1. If, on the other hand, w.C1/ > 0, it is the integral term in (28)
that is larger than some k > 0 for x � x0 such that A.x0/ > 0, i.e. (29) holds for x � x0.
Integrating on .x0; x/ yields

�w0.x/ �
k

c
� e�c.x�x0/

�k
c
� w0.x0/

�
;

which is again a contradiction. This concludes the proof.

In the next step we study how to build solutions of (26) using shooting and comparison
methods for ODEs in truncated domains. A key role will be played by the Cauchy problem
in the half-line.

Lemma 3.3. LetP;Q 2W 1;1
loc .R/ andK 2L1loc.R/. Given c;a;�2R, # > 0, the Cauchy

problem8̂̂̂<̂
ˆ̂:
w00 C cw0 C w

�
P.x/CQ.x/w C

Z x

a

K.y/w.y/ dy

�
D 0; x > a;

w.a/ D #;

w0.a/ D �;

(30)

admits a unique (classical) positive solution w in some interval Œa; b/, with either b D
C1, or b 2 .a;C1/ and w.b�/ D 0 or C1. Moreover, such a solution depends con-
tinuously on c, a, # , �, as well as on P , Q and K with respect to W 1;1

loc .R/ and L1loc.R/
convergences respectively.

Proof. We formally divide the equation by w and differentiate. We get

w000w � w0w00

w2
C c

w00w � .w0/2

w2
C P 0 CQ0w CQw0 CKw D 0; x > a;

which implies

w000 �
w0w00

w
C cw00 � c

.w0/2

w
CQww0 C .Q0 CK/w2 C P 0w D 0; x > a:

We also have that w00.a/ D �c�� P.a/# �Q.a/#2. If P;Q 2 C 1.R/ and K 2 C 0.R/,
this is a standard Cauchy problem of the third order, as long as w stays bounded away
from 0. The existence, uniqueness and continuity with respect to the data then follow
from the classical theory. In the general case, the same properties are consequences of
Carathéodory’s existence theorem. The resulting solution w is such that w00 is absolutely
continuous and therefore it is a classical solution of (30).

The next tool is a comparison principle and will play a crucial role in our analysis.
Here and in the sequel, whatever elliptic equation is given in the form

w00 D F.x;w;w0/;
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we say thatw is a subsolution (respectively, supersolution) ifw satisfiesw00 � F.x;w;w0/
(respectively, w00 � F.x;w;w0/).

Lemma 3.4. Let c;a 2R and P ,Q,K satisfy the assumptions of Lemma 3.3. In addition,
assume that Q and K are nonpositive.

Let w1 and w2 be respectively a positive subsolution and a positive supersolution to
the first equation of (30) in an interval Œa; ˇ�, with

w1.a/ � w2.a/; w01.a/ � w
0
2.a/; w02.a/ � 0:

Then w1=w2 is nondecreasing on Œa; ˇ�, and it is increasing if w01.a/ > w
0
2.a/.

Proof. Suppose first that w01.a/ > w
0
2.a/. Call � WD w1=w2. Using all the information at

the initial point, this function satisfies

�.a/ � 1; �0.a/ D
w2.a/w

0
1.a/ � w1.a/w

0
2.a/

w1.a/2
�
w2.a/

w1.a/2
Œw01.a/ � w

0
2.a/� > 0:

Let Q̌ be the largest value in .a; ˇ� such that � > 1 in .a; Q̌/. Assume by contradiction
that � is not increasing in Œa; Q̌�. This means that there exist a � x1 < x2 � Q̌ such that
�.x1/ � �.x2/. Call

h WD max
Œa;x2�

� > 1:

Let Nx 2 Œa; x2� be such that �. Nx/ D h. We know that Nx ¤ a. Moreover, if �.x2/ D h

then necessarily �.x1/ D h. Hence, in any case, we can take Nx 2 .a; x2/. We define  WD
hw2 � w1. Then  � 0 in .a; x2/ and  . Nx/ D 0. The function  satisfies the following
differential inequality in .a; Nx/:

� 00 � c 0 � hw2

�
P CQw2 C

Z x

a

Kw2

�
� w1

�
P CQw1 C

Z x

a

Kw1

�
;

whence, using the fact that w1 > w2 > 0 in .a; Q̌/ � .a; Nx/ and thatQ andK are nonpos-
itive, we eventually deduce that, in .a; Nx/,

� 00 � c 0 �  

�
P CQw1 C

Z x

a

Kw1

�
;

which means that  is a supersolution of some linear elliptic equation. As a consequence,
since  attains its minimal value 0 at Nx, the Hopf lemma yields  0. Nx/ < 0 which implies
that  < 0 is some right neighborhood of Nx. This contradicts the definition of h. We
have thereby shown that � D w1=w2 is strictly increasing in Œa; Q̌�, whence in particular
�. Q̌/ > 1. It follows that Q̌ D ˇ and this concludes the proof in the case w01.a/ > w

0
2.a/.

Assume now that w01.a/D w
0
2.a/DW O�. Fix a number # 2 Œw2.a/;w1.a/� and, for � 2

R, let w� be the solution of (30) provided by Lemma 3.3. Applying the property derived
before we deduce, on one hand, that if � > O� then w�=w2 is increasing on Œa; ˇ�, and on
the other that if � < O� then w1=w� is increasing on some interval Œa; ˇ�� on which w�
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is positive. It follows from the continuous dependence with respect to the data, ensured
by Lemma 3.3, that both w O�=w2 and w1=w O� are nondecreasing on Œa; ˇ� (and that w O� is
positive there), whence

w1

w2
D
w1

w O�

w O�

w2

is nondecreasing on Œa; ˇ�.

We now deduce some consequences of the previous comparison principle. An easy
one, readily observed, is that if there exists a (positive) constant subsolution of the equa-
tion, then any supersolution starting below must be nonincreasing.

Corollary 3.5. For any a < b, M > 0, and # �  > 0, consider the Dirichlet problem8̂<̂
:w
00
C cw0 C w

�
M � A.x/w C

Z x

a

A0.y/w.y/ dy

�
D 0; x 2 .a; b/;

w.a/ D #; w.b/ D ;

(31)

where A.x/ 2 W 1;1.R/ is nonincreasing.
Assume that M � A.a/# and that there exists a positive solution W of the first equa-

tion of (31) such that W.a/ D # and W 0.a/ � 0.
Then, for every  � W.b/ problem (31) admits a unique positive solution, which is

nonincreasing and decreasing if  < W.b/. Moreover, W
w

is increasing unless w D W .

Proof. For � � 0, let w� be the solution to the first equation of (31), with initial condition

w�.a/ D #; .w�/0.a/ D �:

Such a solution exists and is positive in a right neighborhood of a thanks to Lemma 3.3.
Moreover, since M � A.a/# , the constant function w0 � # is a subsolution; hence, due
to � � 0 and Lemma 3.4, w� is nonincreasing (and decreasing if � < 0). Lemma 3.4 also
implies that thew� are increasing with respect to � (in the set where they are positive), and
it is readily seen that w� vanishes before the point b if �� is sufficiently large. Finally, if
�DW 0.a/, thenw� DW by uniqueness. Therefore, for � >W 0.a/,w� �W and remains
positive up to x D b. It then follows from the continuity of the solution with respect to �,
that for any  � W.b/ there exists a unique value � � W 0.a/ � 0 such that w�.b/ D  .
Finally, applying Lemma 3.4 again, withw1DW , we deduce thatW=w� is nondecreasing
and it is increasing if � < W 0.a/. This concludes the proof.

We complete our toolbox with another lemma showing that two waves will be arbi-
trarily close in the future provided they were sufficiently close in the past.

Lemma 3.6. Let w be a solution to (22). For every x0 2 R and " > 0, there exists ı > 0
such that if zw is another solution satisfying jw.x/� zw.x/j � ı for all x 2 .�1; x0/, then

jw.x/ � zw.x/j � " 8x 2 R:
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Proof. The difference  WD zw � w of two solutions w, zw to (22) satisfies

 00 C c 0 C  . NA � A. zw C w// D �zw

Z x

�1

A0 zw C w

Z x

�1

A0w:

Assume now that jw � zwj � ı in an interval .�1; x0/. We can then estimate the right-
hand side for x � x0 as follows:ˇ̌̌̌
� zw

Z x

�1

A0 zw C w

Z x

�1

A0w

ˇ̌̌̌
� jw � zwj

Z x

�1

jA0 zwj C w

Z x

�1

.�A0/j zw � wj � 2ı NA:

Thus, we can take aD x0 � 1 and deduce from interior elliptic estimates that j 0.a/j �Cı
for some C only depending on c and NA. We therefore have that at the point a both zw �w
and zw0 � w0 are of order ı.

The function zw satisfies an initial value problem of the type (30), with P D P zw , Q
and K given by

P zw WD NAC

Z a

�1

A0 zw; Q.x/ WD �A.x/; K.x/ WD A0.x/:

The function w satisfies the same type of problem, but with

Pw WD NAC

Z a

�1

A0w:

Using that jw � zwj � ı in .�1; a/ we see thatZ a

�1

A0w � ı. NA � A.a// �

Z a

�1

A0 zw �

Z a

�1

A0w C ı. NA � A.a//;

hence jP zw � Pw j � ı. NA � A.a//. Recall that the values of zw, zw0 at a are close to those
of w, w0 up to an order ı. As a consequence, by Lemma 3.3, for any " > 0 and x1 > a, we
can find ı < "=2 small enough so that j zw �wj < "=2 in .�1; x1�. Choosing x1 such that
w.x1/ < "=2, and recalling that w and zw are decreasing by Proposition 3.1, we conclude
that jw � zwj � " in R.

3.2. Construction of the traveling waves

This section is devoted to the construction of waves – i.e. solutions to (22). We will dis-
tinguish two cases depending on the range of the velocity c.

Case A: c � 2
p
NA. The construction of solutions of (22) is easier in this case because, for

such values of c, we know that there is a traveling wave solution  for the classical KPP
equation: ´

 00 C c 0 C NA .1 �  / D 0; x 2 R;

 .�1/ D 1;  .C1/ D 0:

Observe that  is a supersolution of (22). We further know that  0 < 0. We consider the
normalization condition  .0/ D # , with # arbitrarily fixed in .0; 1/.
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For n 2 N and � 2 R, we introduce the truncated problem8̂̂̂<̂
ˆ̂:
w00 C cw0

Cw

�
A.�n/ .�n � �/ � Aw C

Z x

�n

A0.y/w.y/ dy

�
D 0; x 2 .�n; n/;

w.�n/ D  .�n � �/; w.n/ D  .n � �/:

(32)

Lemma 3.7. Let c � 2
p
NA. For any n 2 N and � 2 R, problem (32) admits a unique

positive solution wn;� . Moreover, wn;� .x/ is decreasing in x and satisfies

8x 2 Œ�n; n�; wn;� .x/ �  .x � �/:

Finally, the mapping � 7! wn;� is continuous with respect to the L1..�n; n// norm.

Proof. The existence and uniqueness of the decreasing solution for (32) is given by Corol-
lary 3.5. To prove the upper bound, we exploit the fact that wn;� is a subsolution of the
local equation satisfied by  . Indeed, it satisfies in .�n; n/,

�w00n;� � cw
0
n;� D wn;�

Z x

�n

A.y/.�w0n;� .y// dy

� NAwn;� . .�n � �/ � wn;� /

� NAwn;� .1 � wn;� /:

We can then use the sliding method to deduce that wn;� �  .� � �/ on .�n; n/. Indeed, if
this were not the case, calling N� the value for which

min
x2Œ�n;n�

. .x � N�/ � wn;� .x// D 0;

which exists and is unique by monotonicity, we would have that N� > �. Hence, because
 .� � N�/ >  .� � N�/ D wn;� on the boundary of the interval Œ�n; n�, the minimum would
be attained at an interior point but not on the boundary, contradicting the elliptic strong
maximum principle.

For the last statement, consider a sequence .�j /j2N converging to some Q� 2 R.
Using elliptic estimates up to the boundary, for any subsequence of .�j /j2N we can
extract another subsequence .�jk /k2N such that the associated .wn;�jk /k2N converges in

C 2..�n; n// to a solution zw of problem (32) with � D Q�. Then, by uniqueness, zw D wQ� .
This concludes the proof.

The following proposition is the existence result.

Proposition 3.8. For any c � 2
p
NA and # 2 .0; 1/, problem (22) admits a solution w

satisfying w.0/ D # .
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Proof. Let .wn;� /n2N; �2R be the family given by Lemma 3.7, associated with the stan-
dard traveling wave  normalized by  .0/ D # 2 .0; 1/. We have

wn;0.0/ �  .0/ D # D wn;n.n/ < wn;n.0/:

Then, by the continuous dependence with respect to �, there exists �n 2 Œ0; n/ such that
wn;�n.0/ D # . Using interior elliptic estimates, one sees as in the proof of Lemma 3.2
that the family .wn;�n/n2N is equibounded in C 3.I /, for any bounded interval I . Hence,
as n!1, it converges (up to subsequences) in C 2loc.R/ to some function w. We know
that w is nonincreasing and satisfies 0 � w � 1 and w.0/ D # . We can pass to the limit
in the equation in (32) using the dominated convergence theorem. Namely, recalling that
�n � 0 and  .�1/ D 1, we infer that w is a solution of (26) which satisfies 0 � w � 1
andw.0/D # . It then follows from Lemma 3.2 thatw is decreasing and thatw.�1/D 1,
w.C1/ D 0. Then, integrating the integral in (26) by parts, we recover a solution of the
original problem (22).

Case B: 2
p
A < c < 2

p
NA. This range is more interesting since one cannot no longer rely

on comparison with the waves of the (usual, local) KPP equation. Indeed, unlike what
happens in Case A, now the wave will no longer satisfy any arbitrary normalization at a
given point.

The first ingredient is to find a supersolution, which in the previous section was simply
given by a wave for a standard KPP equation.

Lemma 3.9. For any c > 2
p
A, equation (26) admits a decreasing supersolution  sat-

isfying
 .�1/ D 1;  .C1/ D 0:

Proof. Let QA 2 .A; NA/ be such that c > 2
p
QA. Then call s WD 1� QA=A 2 .0; 1/ and define

h.u/ WD

´
QAu if u � s;
NAu.1 � u/ if u > s:

We know that there is a traveling wave solution  for the classical KPP equation with
nonlinear term h, i.e. a decreasing solution of´

 00 C c 0 C h. / D 0; x 2 R;

 .�1/ D 1;  .C1/ D 0:

We normalize it by  .0/ D s. Let us show that, for � sufficiently large, the function
 .� � �/ is a supersolution of (22), or equivalently of (26). For x < �, we have that
 .x � �/ > s and thus

 .x � �/

Z x

�1

A.y/.� 0.y � �// dy � NA .x � �/.1 �  .x � �// D h. .x � �//:
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This implies that  .� � �/ is a supersolution of (22) in .�1; �/, for any choice of �. On
the other hand, if � > 0, for x > � we find thatZ x

�1

A.y/.� 0.y � �// dy D

Z �=2

�1

A.y/.� 0.y � �// dy

C

Z C1
�=2

A.y/.� 0.y � �// dy

� NA.1 �  .��=2//C A.�=2/ .��=2/:

The above right-hand side is independent of x and tends to A as �!C1. It follows that,
for � large enough, it holds for x > � that

 .x � �/

Z x

�1

A.y/.� 0.y � �// dy < QA .x � �/ D h. .x � �//:

Hence, for such values of �, the function  .� � �/ is a supersolution of (22) and thus
of (26).

The next step is to show that if (22), or equivalently (26), admits a decreasing super-
solution then it also admits a solution. We would like to follow the same strategy as in
the previous section, going through the approximating problems (32). However, since we
cannot no longer use the comparison with the local equation, we will need the following
lemma to guarantee that solutions stay bounded away from 1, uniformly in n.

Lemma 3.10. Let c > 2
p
A and let  be a decreasing supersolution of (26), satisfying

 .�1/ D 1,  .C1/ D 0. For any n 2 N and � � 0, problem (32) admits a unique
positive solution wn;� . Moreover, wn;� .x/ is decreasing in x and it holds that

sup
n2N

wn;� .0/ < 1:

Finally, the mapping � 7! wn;� is continuous with respect to the L1..�n; n// norm.

Proof. Firstly, we check that .� � �/ is still a supersolution of (26) for any � � 0. Because
of the condition  .�1/ D 1, it is equivalent to consider equation (22). Using the mono-
tonicity of both A and  , we see that for � � 0 and x 2 R,

� 00.x � �/ � c 0.x � �/ �  .x � �/

Z x��

�1

A.y/.� 0.y// dy

D  .x � �/

Z x

�1

A.y � �/.� 0.y � �// dy

�  .x � �/

Z x

�1

A.y/.� 0.y � �// dy;

i.e.  .� � �/ is a supersolution of (22). We can therefore restrict ourselves to the case
� D 0.
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Corollary 3.5 implies the existence, uniqueness and strict monotonicity of the solution
to (32) with � D 0. We call it wn. Let us show that .wn.0//n2N stays bounded from above
away from 1.

Assume by contradiction that this is not the case. Then, up to extraction of a subse-
quence, we have that wn.0/! 1 as n!1. We can further assume that, up to another
extraction,wn.0/ > .�1/ for all n2N. Let bn be the smallest intersection point between
wn and  on .0; n�. Then call

kn WD max
Œ�n;bn�

wn

 
;

and let xn 2 Œ�n; bn� be a point where such a maximum is reached. We see that kn >
wn.0/
 .�1/

> 1, whence xn lies inside the interval .�n; bn/ because wn= is equal to 1 on the
boundary. We also see that

lim
n!1

wn.0/

 .0/
D

1

 .0/
>

1

 .�1/
� max
Œ�n;�1�

wn

 
:

This implies that xn > �1 for n large enough. The function gn WD kn touches wn from
above at the point xn, whence

0 D w00n.xn/C cw
0
n.xn/C wn.xn/

Z xn

�n

A.y/.�w0n.y// dy

� g00n.xn/C cg
0
n.xn/C gn.xn/

Z xn

�n

A.y/.�w0n.y// dy

� gn.xn/

�Z xn

�n

A.y/.�w0n.y// dy �

Z xn

�1

A.y/.� 0.y// dy

�
;

where, for the last inequality, we have used that  is a supersolution of (22). We deduce
that Z xn

�n

A.y/. 0.y/ � w0n.y// dy �

Z �n
�1

A.y/.� 0.y// dy > 0;

and thus, integrating by parts,

A.xn/. .xn/ � wn.xn//C

Z xn

�n

A0.y/.wn.y/ �  .y// dy > 0:

We recall that wn �  in Œ�1; 0/ because wn.0/ >  .�1/, as well as in Œ0; bn� by the
definition of bn. Thus, for n large enough, since xn 2 .�1; bn/, we infer that wn �  in
Œ�1; xn� and therefore the above inequality together with A0 � 0 yieldsZ �1

�n

A0.y/.wn.y/ �  .y// dy > 0:

This implies in particular that A0 6� 0 in .�1;�1�. Recall, however, that we are assuming
that .wn/n2N converges to 1 at the point 0, hence uniformly in .�1;�1�. Passing to the
limit as n!1 in the above integral inequality we then reach a contradiction.

The last statement of the lemma follows from the uniqueness of the solution, exactly
as in the proof of Lemma 3.7.
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Proposition 3.11. Problem (22) admits a solution for any c > 2
p
A.

Proof. Fix c > 2
p
A. Let  be the supersolution provided by Lemma 3.9 and let

.wn;� /n2N; ��0 be the family constructed from it in Lemma 3.10. We know from that
lemma that there exists # satisfying

sup
n2N

wn;0.0/ < # < 1:

For given n 2 N, using the fact that wn;� .0/ >  .n � �/ > # for � sufficiently large
(depending on n) together with the continuity ofwn;� with respect to �, we can find �n > 0
such that wn;�n.0/ D # .

By standard elliptic estimates, .wn;�n/n2N converges in C 2loc.R/ (up to subsequences)
to some function 0 � w � 1. Thus, using the dominated convergence theorem, we can
pass to the limit in the equation of (32) and deduce that w solves (26). Finally, because
w.0/ D # 2 .0; 1/, Lemma 3.2 implies that w is a solution to (22).

3.3. The functional 	

We investigate now more deeply the structure of the set of traveling waves. A key role will
be played by the following quantity associated to a solution w of (22):

	.w/ WD

Z
R
A.y/.�w0.y// dy D NAC

Z
R
A0.y/w.y/ dy: (33)

Observe that the second formulation of 	, obtained after integration by parts, shows that
	 is decreasing with respect to w.

We start by collecting some properties of the traveling waves which involve the func-
tional 	.

Proposition 3.12. Let w be a solution to (22) and 	 be given by (33). Then we have

(i) A < 	.w/ < NA;

(ii) 	.w/ � c2

4
;

(iii) w satisfies
A.0/ � 	.w/

A.0/ � A
� w.0/ �

NA � 	.w/

NA � A.0/
; (34)

where the inequalities are understood to hold provided the corresponding
denominators are not 0;

(iv) w is strictly log-concave (i.e. w0=w is decreasing) and satisfies

lim
x!C1

�w0

w
.x/ D

c

2
�

r
c2

4
� 	.w/ DW � > 0:

In particular, it holds that
w.x/ D w.0/e��.x/x ;

where �.x/ is an increasing function converging to � as x !C1.
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Proof. Sincew0 < 0 from Proposition 3.1, the boundsA< 	.w/ < NA immediately follow,
recalling that A � A � NA and that both inequalities are strict somewhere.

Estimates (34) on w.0/ easily follow from the definition of 	 as well. Indeed, on one
hand,

	 D

Z 0

�1

A.y/.�w0.y// dy C

Z C1
0

A.y/.�w0.y// dy � A.0/.1 � w.0//C Aw.0/:

On the other hand, an integration by parts shows that

	 D NAC

Z
R
A0.y/w.y/ dy � NAC

Z 0

�1

A0.y/w.y/ dy � NAC w.0/.A.0/ � NA/:

Now we investigate the properties of q WD �w0=w, which is a positive function. Direct
computation reveals that

q0 D q2 � cq C

Z x

�1

A.y/.�w0.y// dy; x 2 R: (35)

The integral term is positive, nondecreasing in x, and converges to 0 as x ! �1 and to
	.w/ as x !C1. We now show that q is bounded and increasing. Recall that c > 0 by
Proposition 3.1.

First of all we observe that necessarily q.x/� c, because if q.x0/ > c then (35) would
imply that q blows up at some point x1 > x0. The boundedness of q then implies that
	.w/ � c2=4, because otherwise by (35) there would exist " > 0 such that, for large x,

q0 > q2 � cq C c2=4C " � ";

which is impossible because q is bounded. So we also proved that 	.w/ � c2=4. This
allows us to rewrite (35) as

q0 D .q � ��.x//.q � �C.x//; x 2 R; (36)

with

�˙.x/ WD
c

2
˙

s
c2

4
�

Z x

�1

A.y/.�w0.y// dy:

Observe that 0 < ��.x/ < �C.x/ and �0�.x/ > 0 > �
0
C.x/ for all x 2 R, with

��.�1/ D 0 < ��.C1/ D
c

2
�

r
c2

4
� 	.w/ DW �; �C.�1/ > �C.C1/ > 0:

We infer that if q.x0/ � �C.x0/ at some x0 then q � �C.x0/ in .x0;C1/, which implies
that q.C1/ D C1, thus this case is excluded. On the other hand, if ��.x0/ � q.x0/ �
�C.x0/ at some x0 then ��.x0/ � q � �C.x0/ in .�1; x0/ and thus q.�1/ > 0, which
is impossible because, since q D�w0=w, we would have thatw.�1/D�1. The unique
possibility left is therefore q < �� in R. We deduce from (36) that q0 > 0 and that

q.C1/ D ��.C1/ D �:

So the proof of item (iv) is concluded.
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For the last statement of the theorem, we write w.x/ D w.0/e��.x/x ; with

�.x/ D �
1

x
log

w.x/

w.0/
D �

1

x

Z x

0

w0.y/

w.y/
dy:

The convergence of w0=w towards �� implies that �.x/! � as x ! C1. Moreover,
from the monotonicity of w0=w, we infer that, for x ¤ 0,

�0.x/ D �
1

x

w0.x/

w.x/
C

1

x2

Z x

0

w0.y/

w.y/
dy > 0:

We focus now on the case 2
p
A < c < 2

p
NA. We seek a wave for which the bound (ii)

in Proposition 3.12 is optimal, i.e. such that

	.w/ D
c2

4
:

This will be called a “critical wave” associated with a given speed. Observe that similar
waves can only exist in this range of velocities, since 	.w/ < NA by Proposition 3.12. We
are going to show that, for a given velocity c, the critical wave runs at the lowest height.

In order to clarify this fact, we start to investigate the possible heights that are admis-
sible at a given speed c.

Proposition 3.13 (Same speed, different normalization). Assume that (22) admits a solu-
tion w. Then, for any x0 2 R and # 2 .w.x0/; 1/, there exists a solution zw of (22)
satisfying zw.x0/ D # . Moreover, the function zw=w is nondecreasing on R.

Proof. Let n 2 N. For � � 0, we consider the initial value problem8̂̂̂<̂
ˆ̂:
 00 C c 0 C  

�
NA � A C

Z �n
�1

A0w C

Z x

�n

A0 

�
D 0; x > �n;

 .�n/ D w.�n � �/;

 0.�n/ D w0.�n � �/:

(37)

If � D 0 then the function w is a solution of this problem. If � > 0, we see that the
function w� defined by w� WD w.� � �/ is a supersolution of this problem. Indeed, calling
A� WD A.� � �/, for x 2 R we have

w00� C cw
0
� D w�

Z x��

�1

Aw0 D �w�

�
NA � Aw� C .A � A� /w� C

Z x��

�1

A0w

�
D �w�

�
NA � Aw� � w�

Z x��

x

A0 C

Z �n
�1

A0w C

Z x��

�n

A0w

�
� �w�

�
NA � Aw� �

Z x��

x

A0w� C

Z �n
�1

A0w C

Z x��

�n

A0w�

�
D �w�

�
NA � Aw� C

Z �n
�1

A0w C

Z x

�n

A0w�

�
:
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On the other hand, the constantw.�n� �/ is a subsolution of the same problem. It follows
from Lemma 3.4 that (37) admits a unique solution  � , which is decreasing and for which
the ratio �=w� is nondecreasing in Œ�n;C1/, whence in particular � �w� . In the case
� D 0 we have  0 � w. Take x0 2 R and # 2 .w.x0/; 1/. It holds that

 0.x0/ D w.x0/ < #;  � .x0/ � w.x0 � �/! 1 as � !C1:

Thus, the continuous dependence of  � .x0/ with respect to � yields the existence of some
� > 0 such that  � .x0/ D # . Such a function  � we will call  n. The ratio  �=w� is
nondecreasing in Œ�n;C1/ and equal to 1 at �n. Then, writing

 �

w
D
 �

w�

w�

w
;

and observing that �w�
w

�0
D
w0
�
w � w0w�

w2
D
w�

w

�w0
�

w�
�
w0

w

�
> 0

due to Proposition 3.12 (iv), we find that  �=w is increasing in Œ�n;C1/ and larger
than 1.

The sequence . n/n2N converges (up to subsequences) to some function zw inC 2loc.R/.
This function is nonincreasing, satisfies zw.x0/D # and in addition zw=w is nondecreasing
in R and larger than or equal to 1. We infer that zw.�1/ D 1. For every x 2 R, it holds
that

zw00 C c zw0 C zw. NA � A zw/ D � lim
n!1

 n

Z x

�n

A0 n D �

Z x

�1

A0 zw;

i.e. zw is a solution of (26). It then readily follows that zw.C1/ D 0, and thus that zw
satisfies (22).

Corollary 3.14. Assume that (22) admits a solution w. Then, for any x0 2 R and " > 0,
there exists a solution zw of (22) satisfying

zw.x0/ > w.x0/; w � zw < w C ":

Proof. Let ı > 0 be such that .1 C ı/w.x0/ < 1. Applying Proposition 3.13 with # D
.1C ı/w.x0/ provides us with a solution zw such that zw.x0/D .1C ı/w.x0/ and zw=w is
nondecreasing. This yields

8x � x0; w.x/ � zw.x/ � .1C ı/w.x/ < w.x/C ı:

By Lemma 3.6, given " > 0, we can choose ı small enough that kw � zwk1 < ".

We have now the ingredients to show the critical role played by the equality 	.w/ D

c2=4.
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Lemma 3.15. Assume that (22) admits a solution w for which 	.w/ < c2=4. Then (22)
admits another decreasing solution  < w.

Before proving this lemma, let us show how it entails the existence of the critical wave.

Proposition 3.16. For any 2
p
A < c < 2

p
NA, there exists a solution w to (22) for which

	.w/ D c2=4.

Proof. Consider the maximization problem

j � WD sup
®
	.w/ W w is a solution of (22)

¯
:

We know from Proposition 3.12 that A < j � � c2=4 < NA. Let us show that j � is attained.
Let .wn/n2N be a maximizing sequence for j �. We use formulation (26) for the equation
satisfied by the wn. Using the C 3 estimate of Lemma 3.2, as well as the dominated con-
vergence theorem, we infer that .wn/n2N converges (up to subsequences) in C 2loc.R/ to a
nonincreasing solution w of (26). Moreover, the second formulation in (33) yields

j � D lim
n!1

	.wn/ D NAC

Z
R
A0.y/w.y/ dy:

This immediately shows that w 6� 0; 1. Therefore, Lemma 3.2 implies that w is a decreas-
ing solution to (22) and in particular that 	.w/ D j �.

Assume by way of contradiction that 	.w/ D j � < c2=4. Then by Lemma 3.15 there
exists another solution zw < w to (22). The second formulation in (33) yields 	. zw/ >

	.w/ D j �, contradicting the definition of j �.

It remains to prove Lemma 3.15.

Proof of Lemma 3.15. We construct the desired wave in two steps.

Step 1. As a first step, we show that, for any � 2 R and k 2 .0; 1/, there exists a solution
 �;k of (26) for x < � which satisfies

8x � �;  0�;k.x/ < 0; 1 �
 �;k

w
.x/ � k D

 �;k

w
.�/:

This is essentially a consequence of Corollary 3.5. Indeed, for n 2 N, n < �, we consider
the problem8̂<̂

: 
00
C c 0 C  

�
NA � A C

Z �n
�1

A0w C

Z x

�n

A0 

�
D 0; x 2 .�n; �/;

 .�n/ D w.�n/;  .�/ D kw.�/:

(38)

We notice that NAC
R �n
�1

A0w D A.�n/w.�n/C
R �n
�1

A.�w0/ > A.�n/w.�n/, and we
use Corollary 3.5 with W D w. Since the target is smaller than w.�/, we obtain the exis-
tence of a unique positive and decreasing solution  n of (38) with  n

w
being decreasing

on Œ�n; ��, whence

8x 2 .�n; �/; 1 >
 n

w
.x/ >

 n

w
.�/ D k:
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By elliptic estimates, the  n converge (up to subsequences) as n!1, locally uniformly
in .�1; ��, to a solution  of (26) for x < �. Moreover,  satisfies kw �  � w,  .�/D
kw.�/ and  =w is nonincreasing on .�1; ��, whence it holds that

0 �  0w � w0 :

This is the function  �;k we sought.

Step 2. Now the purpose is to extend the function  �;k to the whole of R. According
to (26), we extend them as the solutions to the problem8̂̂̂̂

<̂
ˆ̂̂:
 00 C c 0 C  

�
NA � A C

Z �

�1

A0 �;k C

Z x

�

A0 

�
D 0; x > �;

 .�/ D  �;k.�/;

 0.�/ D  0�;k.�/:

(39)

Lemma 3.3 gives the existence and uniqueness of the positive solution in .�; ��;k/, with
either ��;k D C1, or  �;k.��;k/ D 0 or C1. Our aim is to choose � 2 R, k 2 .0; 1/ in
such a way that ��;k D C1.

Observing that

NAC

Z �

�1

A0 �;k D NA.1� �;k.�1//CA.�/ �;k.�/C

Z �

�1

A.� 0�;k/ > A.�/ �;k.�/;

we deduce that the constant function 1 � �;k.�/ is a subsolution of the equation in (39).
Hence Lemma 3.4 implies that  �;k is decreasing in Œ�; ��;k/. It satisfies there

 00�;k C c 
0
�;k C  �;k

�
NAC

Z �

�1

A0 �;k

�
� 0: (40)

Since  �;k � kw on .�1; ��, we find thatZ �

�1

A0 �;k � k

Z �

�1

A0w ! k

Z
R
A0w as � !C1:

Therefore, by definition of 	, we have

NAC

Z �

�1

A0 �;k
�!1
����! NAC k.	 � NA/: (41)

On account of (40) and (41), and since 	 < c2

4
, we can find � sufficiently large and k

sufficiently close to 1 that  �;k satisfies

 00�;k C c 
0
�;k C

c2

4
 �;k > 0 in Œ�; ��;k/: (42)

Next we apply Proposition 3.12 (iv), which yields

8x 2 R;
w0

w
.x/ > �

c

2
:
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Using the fact that  �;k converges to w as k % 1, uniformly in .�1; �� and therefore by
elliptic estimates in C 1loc..�1; ��/ (up to subsequences), we deduce that for k sufficiently
close to 1 (depending on �) it holds that

 0
�;k

 �;k
.�/ > �

c

2
: (43)

Summing up, we can pick � large enough and then k close enough to 1 in such a way that
both (42) and (43) hold. Therefore, the function q WD � 0

�;k
= �;k satisfies

q0 <
�
q �

c

2

�2
in Œ�; ��;k/; q.�/ < c=2:

It follows that q.x/ < c=2 for all x > �, i.e.

 �;k.x/ >  �;k.�/e
� c2 .x��/:

This means that  �;k remains positive on the whole R. Namely, it is a nontrivial solution
of (26) and therefore it solves (22) due to Lemma 3.2.

Remark 3. We could have considered two other natural optimization problems. Namely,
for given x0 2 R,

#� WD inf
®
w.x0/ W w is a solution of (22)

¯
;

or, for given # 2 .0; 1/,

�� WD inf
®
w�1.#/ W w is a solution of (22)

¯
:

Once it has been shown that these infima are actually minima, it follows from Lemma 3.15
that they are both attained by the critical wave (satisfying 	.w/ D c2=4). To show that
the minima are attained it is sufficient to verify that #� > 0, �� > �1. For this, we con-
sider some corresponding minimizing sequences .wn/n2N . By Lemma 3.2, they converge
in C 2loc to solutions of (26). On one hand, if #� D 0, one would have that the limit is
identically equal to 0, whence, thanks to Proposition 3.12,

c � 2 lim
n!1

p
	.wn/ D 2

p
NA;

which is a contradiction. On the other hand, if �� D �1 then the limit w of the mini-
mizing sequence would satisfy w � # . Being a nonincreasing solution to (26), we would
necessarily have that w � 0, whence the same contradiction as before.

Let us point out that we do not know whether the optimal waves for the above problems
are unique, nor whether an optimal wave for a problem is also critical for the same problem
with another choice of the parameter, or for a problem of the other type (except of course
that w is optimal for the first problem at a point x0 if and only if it is optimal for the
second problem for the value # D w.x0/).
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We now show the uniqueness of the wave for given 	, a crucial step to prove the
ordering of waves.

Proposition 3.17. For given c; j 2 R, there exists at most one solution of (22) such that

	.w/ D j:

Proof. The proof consists in showing that two solutions of (22) on which the operator 	

coincides cannot intersect on R, unless they coincide. One then concludes, because two
strictly ordered solutions necessarily have distinct values of 	, thanks to (33) and the facts
that A0 6� 0 and that solutions are positive due to Proposition 3.1.

Letw1,w2 be two solutions intersecting at some point x0 2R and for which 	.w1/D

	.w2/D j . Call qi WD �
w 0i
wi

, i D 1; 2. Assume by contradiction that q1.x0/¤ q2.x0/ and,
without loss of generality, that q1.x0/ > q2.x0/. Notice that

q1 � q2 D
�w2w

0
1 C w1w

0
2

w1w2
D

�w2
w1

�0w1
w2
: (44)

Hence q1.x0/ > q2.x0/ implies that w2
w1

is increasing near x0. We claim that w2 > w1 in
.x0;C1/. Indeed, set

� WD inf
®
a < x0 W q1.x/ > q2.x/ 8x 2 .a; x0/

¯
:

Since w2
w1
! 1 as x ! �1, by Rolle’s theorem there exists some point a < x0 such that

.w2
w1
/0.a/D 0, i.e. q1.a/D q2.a/; this means that � is finite. Hence we have q1.�/D q2.�/

and q01.�/ � q
0
2.�/. From equation (35) we deduce thatZ �

�1

A.�w1/
0 dy �

Z �

�1

A.�w2/
0 dy;

with equality only if q01.�/ D q02.�/. Next, recalling from (44) that w2
w1

is increasing as
long as q1 > q2, we find that q1 > q2 and w2 < w1 in the interval .�; x0/, and therefore,
again by (44), that�w01 >�w

0
2 in .�; x0/, which yields

R x
�
A.�w1/

0 dy �
R x
�
A.�w2/

0 dy

for all x 2 .�; x0�, with equality only in the case A.�/ D 0. Summing up, we have seen
that

R x
�1

A.�w1/
0 dy �

R x
�1

A.�w2/
0 dy for all x 2 .�; x0�, and that equality holds if

and only if q01.�/ D q
0
2.�/ and A.�/ D 0. However, in such a case, equation (35) yields

.q1 � q2/
0 D .q1 C q2/.q1 � q2/ � c.q1 � q2/ in .�; x0/, which, together with q1.�/ D

q2.�/ and q01.�/ D q
0
2.�/, contradicts q1.x0/ > q2.x0/. This means that necessarilyZ x0

�1

A.�w1/
0 dy >

Z x0

�1

A.�w2/
0 dy: (45)

Together with the fact that w1.x0/D w2.x0/, this implies that w1 is a supersolution of the
truncated equation of w2, namely

w001 C cw
0
1 C w1

�Z x0

�1

A.�w2/
0 dy C A.x0/w2.x0/ � A.x/w1 C

Z x

x0

A0w1 dy

�
� 0:
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Since w01.x0/ < w
0
2.x0/, by Lemma 3.4 we deduce that w1 < w2 in .x0;C1/. But this

implies, using that 	.w1/ D 	.w2/ in (33),Z x0

�1

A.w2 � w1/
0 dy D �

Z C1
x0

A.w2 � w1/
0 dy D

Z C1
x0

A0.w2 � w1/ dy � 0;

which contradicts (45).
We are only left with the possibility that q1.x0/ D q2.x0/ (which means w01.x0/ D

w02.x0/). In this case, if (45) holds (up to reversing the roles of the two solutions),
we obtain the contradiction as before. Otherwise it holds that

R x0
�1

A.�w1/
0 dy DR x0

�1
A.�w2/

0 dy, and thenw1 Dw2 in .x0;C1/ by the uniqueness result of Lemma 3.3.
We now rewrite equation (26) satisfied by wi in terms of the function zwi .x/ WD wi .�x/
as follows:

zw00i � c zw
0
i C zwi

�
	.wi / �

Z C1
x0

A0wi dy � A.�x/ zwi �

Z x

�x0

A0.�y/ zwi .y/ dy

�
D 0;

and we observe that the quantities 	.wi / �
R C1
x0

A0wi dy coincide for i D 1; 2. It then
follows, again by Lemma 3.3, that w1 D w2 in .�1; x0/ as well.

3.4. Decay estimates of the waves

We now derive some estimates about the convergence at ˙1 in terms of the value of the
function at a given point, say, the origin. They will be used in the study of the waves for
the mean-field system.

Lemma 3.18. Let w be a solution of (22). Then we have

1 � w.x/ � .1 � w.0//e0x 8x � 0; where 0 WD
A.0/w.0/
p
NAC c

; (46)

and

w.x/ � w.0/e Q0.
1
c�x/ 8x > 0; where Q0 WD

A.0/.1 � w.0//

c
. (47)

In addition, if w is a critical wave, i.e. 	.w/ WD
R

R A.�w
0/ D c2

4
(< NA), then there

exists a constant K, only depending on NA and positive lower bounds for c and 1 � w.0/,
such that

w.x/ � Kxe�
c
2x 8x � 1: (48)

Proof. We start with the behavior for x!�1. Similarly to the proof of Proposition 3.12,
we introduce the function

 .x/ WD �
w0

1 � w
:

We know from Lemma 3.2 that  is a positive function. It satisfies

�  0 �  2 � c C
w

1 � w

Z x

�1

A.y/.�w0.y// dy D 0: (49)
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In particular, since A � NA and w satisfies w < 1 and w0 < 0, we have

� 0 �  2 � c C NA � 0:

This implies that
 �

p
NA; (50)

because otherwise we would have  0 � �c � �c
p
NA in .�1; Nx/ for some Nx, which is

not possible. Coming back to (49), using that A, w are nonincreasing, we also have

� 0 �  2 � c C A.0/w.0/ � 0 8x < 0:

Due to (50), we deduce that

 0 � � 
�p
NAC c

�
C A.0/w.0/; x < 0:

Hence
.e.
p
NACc/x /0 � e.

p
NACc/xA.0/w.0/; x < 0:

Since  is bounded above by (50), integrating in .�1; x/ we deduce

 .x/ � 0 WD
A.0/w.0/
p
NAC c

:

Recalling that  D � w 0

1�w
, we readily derive (46).

A similar statement can be obtained as x!C1. As in the proof of Proposition 3.12,
here we consider the function q WD �w0=w, which is positive, bounded and satisfies (35).
In particular, since A is nonincreasing, for x > 0 we deduce

q0 � q2 � cq C

Z 0

�1

A.y/.�w0.y// dy � q2 � cq C A.0/.1 � w.0//:

Hence, always for x > 0,

q0.x/ � �cq C c Q0; where Q0 WD
A.0/.1 � w.0//

c
:

This implies
q.x/ � q.0/e�cx C Q0.1 � e

�cx/ � Q0.1 � e
�cx/:

Recalling that q D �w
0

w
this readily implies (47).

Let us prove the last statement. Suppose that w is a critical wave. In this case, we
rewrite (35) as

q0 D q2 � cq C
c2

4
�

Z C1
x

A.y/.�w0.y// dy

� q2 � cq C
c2

4
� A.x0/w.x0/; x � x0 (51)

where x0 is any given point and we used that A, w are nonincreasing.
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We take now a number ˇ 2 .0; c
8
/, and we choose x0 such that

A.x0/w.x0/ � cˇ �
c2

4
� cˇ: (52)

Notice that, if A.0/ � cˇ, then we can take x0 D 0. Otherwise we have A.0/ > cˇ, and
we can use (47) to find a value x0 > 0, only depending on NA, ˇ and a positive lower bound
of 1 � w.0/, such that (52) holds. As a first consequence, from (51) we deduce

q0 � �cq C cˇ; x � x0

which leads, as before, to the exponential estimate

w.x/ � w.x0/e
�ˇ.x�x0�

1
c / 8x � x0:

Coming back to (51), now we upgrade it to

q0 �
�
q �

c

2

�2
� A.x/w.x/ �

�
q �

c

2

�2
� NAe�ˇ.x�x0�

1
c /; x > x0: (53)

We set
� WD

c

2
� q C Be�ˇ.x�x0/;

where B is sufficiently large, e.g. take B D NA
ˇ
e1=8, so that Bˇ � NAe

ˇ
c . Then we get from

(53),

��0 D q0 C Bˇe�ˇ.x�x0/ �
�
q �

c

2

�2
� �2 � 2Be�ˇ.x�x0/�:

Notice that � is a positive function since q < c
2

due to Proposition 3.12. Then � satisfies�1
�

�0
� 1 � 2Be�ˇ.x�x0/

1

�

and we get, integrating and dropping the term in x0,

1

�
� exp

�2B
ˇ
e�ˇ.x�x0/

� Z x

x0

exp
�
�
2B

ˇ
e�ˇ.y�x0/

�
dy

� x �M

for some constant M only depending on x0, ˇ and B (which only depends on NA and ˇ).
Finally, for x sufficiently large (e.g. for x > M C 1), we have � � 1

x�M
and this implies,

by definition of �, that
c

2
� q �

1

x �M
8x > M C 1:

Recalling that q D�w
0

w
, by integration we deduce inequality (48), say for x >M C 1, but

then of course for any x � 1 as well. The constantK depends on x0, ˇ, NA, and then, from
the above choices of x0 and ˇ, the constant depends on NA and on positive lower bounds
of c and 1 � w.0/.
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3.5. The whole family of waves

We are now in a position to characterize the whole family of waves for any given speed
c > 2

p
A. The key ingredients are Corollary 3.14 and the uniqueness result for any given

value of 	, Proposition 3.17. We recall that the operator 	 is defined on solutions of (22)
by the two equivalent formulations in (33).

Lemma 3.19. Assume that (22) admits a solution w. Then, for any A < j < 	.w/, there
exists a solution zw � w of (22) satisfying 	. zw/ D j .

Proof. Consider the family of waves

Fw;j WD
®
 solution of (22) W  � w and 	. / � j

¯
;

and call
j � WD inf

 2Fw;j
	. /:

We have that j � � j . We now show that j � is attained. Let . n/n2N be a minimizing
sequence for 	 on Fw;j . This sequence converges (up to subsequences) in C 2loc.R/ to a
nonincreasing solution w �  � � 1 of (26). We see from (33) that

j � D lim
n!1

	. n/ D NAC

Z
R
A0.y/ �.y/ dy: (54)

Because j � � j > A, we deduce that  � 6� 1 and therefore  � is a solution of (22) thanks
to Lemma 3.2. It holds in particular that 	. �/ D j �, i.e. j � is attained.

Next we assume by contradiction that j � > j . We apply Corollary 3.14 and deduce
that, for any " > 0, there exists a solution z of (22) satisfying

z .0/ >  �.0/;  � � z <  � C ":

It follows from the second formulation in (33) that

j � D 	. �/ > 	. z / > j � C ".A � NA/:

We can therefore choose " small enough in such a way that 	. z / > j , whence z 2 F ,
and we obtain a contradiction with the definition of j �.

Proposition 3.20. Two distinct solutions of (22) are strictly ordered.

Proof. Letw1,w2 be two distinct solutions of (22). Proposition 3.17 entails that 	.w1/¤

	.w2/. Suppose, to fix ideas, that 	.w1/ > 	.w2/, and assume by contradiction that
there exists x0 2 R such that w1.x0/ � w2.x0/. Then, thanks to Corollary 3.14 and the
second formulation in (33), we can find a solution zw1 � w1 which still fulfills 	. zw1/ >

	.w2/, but in addition zw1.x0/ > w2.x0/. Next, applying Lemma 3.19 one obtains another
solution zw� zw1 such that 	. zw/D	.w2/ (note that 	.w2/ >A by Proposition 3.12). This
contradicts Proposition 3.17, because zw.x0/ � zw1.x0/ > w2.x0/.
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Gathering together all previous results, we can derive the characterization of the family
of traveling wave solutions.

Proof of Theorem 2.3. Problem (22) admits solution if and only if c > 2
p
A due to Propo-

sitions 3.11 and 3.12. Fix c > 2
p
A and let F be the family of solutions to (22). We

know from Proposition 3.20 that functions in F are strictly ordered. We can therefore
parametrize F as

F D .w#/#2‚;

with w# satisfying w#.0/ D # , for a suitable set of indices ‚ � .0; 1/. Proposition 3.8
yields ‚ D .0; 1/ when c � 2

p
NA.

Consider the case 2
p
A < c < 2

p
NA. Let wc be the critical wave provided by Proposi-

tion 3.16, i.e. satisfying 	.wc/ D c2=4. We know from Proposition 3.12 that this realizes
the maximum of 	 on the family F . As a consequence, since 	 is decreasing due to the
second formulation in (33) and the functions in F are strictly ordered, wc lies below any
other function of F . This means that min‚ D wc.0/ 2 .0; 1/; let us call this value #c .
Proposition 3.13 eventually shows that ‚ D Œ#c ; 1/.

Let us show the continuity of the mapping

‚ 3 # 7! w# 2 F ;

equipped with the L1.R/ norm, for any given c > 2
p
A. Consider a sequence .#n/n2N

converging to some Q# 2 ‚. It follows that .w#n/n2N converges (up to subsequences)
locally uniformly to a solution zw of (26) satisfying zw.0/D Q# . By Lemma 3.2, the function
zw satisfies zw.�1/ D 1, zw.C1/ D 0. This means that zw solves (22) and therefore zw D
w Q# . For any " > 0, consider x" > 0 for which

w Q#.�x"/ > 1 � "; w Q#.x"/ < ";

and, owing to the locally uniform convergence, let n" be such that

8n � n"; jxj � x"; jw#n.x/ � w Q#.x/j < ":

This means that

8n � n"; x > x"; jw#n.x/ � w Q#.x/j < max
®
w#n.x"/; w Q#.x"/

¯
< 2"

and likewise

8n � n"; x < �x"; jw#n.x/ � w Q#.x/j < 1 �min
®
w#n.�x"/; w Q#.�x"/

¯
< 2":

We have thereby shown that .w#n/n2N converges uniformly to w Q# .
To complete the proof, it remains to analyze the dependence of the critical waves wc

with respect to c. Let .cn/n2N be a sequence converging to some Qc 2 .2
p
A; 2
p
NA/. Then

.wcn/n2N converges (up to subsequences) locally uniformly to a solution zw of (26) with
c D Qc. By dominated convergence, we find thatZ

R
A0.y/ zw.y/ dy D lim

n!1

Z
R
A0.y/wcn.y/ dy D lim

n!1
	.wcn/ � NA D

Qc2

4
� NA: (55)
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Because Qc 2 .2
p
A; 2
p
NA/, we deduce that zw 6� 0; 1 and thus that zw is a solution to (22)

due to Lemma 3.2. Hence (55) yields 	. zw/ D Qc2=4, i.e. zw is the critical front w Qc . The
same arguments as before show that the convergence of (the subsequence of) .wcn/n2N

towards w Qc is uniform in space. This means that the whole sequence .wcn/n2N converges
uniformly to w Qc .

Finally, the limits in (23) are deduced from the bounds (34) in Proposition 3.12. This
is immediate ifA<A.0/ < NA. Otherwise, we need to apply the inequalities (34) at a point
x0 where A < A.x0/ < NA, which imply that

wc.x0/% 1 as c & 2
p
A; wc.x0/& 0 as c % 2

p
NA:

Then we can use Harnack’s inequalities (24) to transport these limits at the origin.

Proof of Theorem 2.4. The monotonicity and continuity of the mapping # ! 	.w#/

immediately follow from Theorem 2.3 and the second formulation of 	 in (33). The
image J of the mapping is an interval contained in .A; NA/ \ .A; c2=4� and with lower
bound A, due to Proposition 3.12 and Lemma 3.19. Then by Proposition 3.16, J D
.A; c2=4� if 2

p
A < c < 2

p
NA.

In the case c � 2
p
NA, we consider a sequence of waves .w#n/n2N with .#n/n2N

converging to 0, and we deduce from (3.1) that .w#n/n2N converges locally uniformly
to 0. It then follows from (33) that .	.w#n//n2N converges to NA. This means that J D
.A; NA/ in this case.

A question remains open after Theorem 2.3: Can two distinct critical waves intersect?
We are not able to answer this question in general, but only in the region where A is local.

Proposition 3.21. Assume that A.x0/D NA. Let wc1 , wc2 be the critical waves associated
with 2

p
A < c1 < c2 < 2

p
NA; then wc1.x0/ > wc2.x0/.

Proof. Assume by contradiction that wc1.x0/ < wc2.x0/. Then by Theorem 2.3 there
exists another wave zw for (22) with cD c1 satisfying zw>wc1 on R and zw.x0/Dwc2.x0/.
Observe that zw is a supersolution of the equation in (22) with c D c2. Then, using the fact
that A � NA on .�1; x0�, one checks that necessarily zw > wc2 on .�1; x0/, whence
zw0.x0/ � w

c2.x0/. Therefore, Lemma 3.4 yields zw � wc2 on Œx0;C1/. Then we derive
from Theorem 2.4,

c21
4
� 	. zw/ D NAC

Z C1
x0

A0.y/ zw.y/ dy � NAC

Z C1
x0

A0.y/wc2.y/ dy D
c22
4
;

which is a contradiction.

4. Traveling waves for the mean-field game system

We now prove the main result of the paper. This will be the outcome of a thorough analysis
of the system of traveling waves (21). Namely, we are going to provide necessary and
sufficient conditions for the existence of traveling waves, as in the following statement.
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Theorem 4.1. Assume that hypotheses (8)–(13) hold true. Then we have the following
properties:

(i) there are no solutions of (21) with c � 2�2 or with c � ˛.1/C �2;

(ii) there exists a solution .c; w; z/ of (21) such that c 2 .2�2; 2�
p
˛.1// and

c2

4
D �2

Z
R
˛.�.y//.�w0.y// dyI

(iii) for every c 2 Œ2�
p
˛.1/;˛.1/C �2/, there exist solutions of (21) (with arbitrary

normalization at any given point).

The three statements of this theorem are separately proved in the next subsections.
Then, in Section 4.4, we will eventually show the equivalence between BGP solutions of
(2) and traveling wave solutions of (21). The proof of Theorem 2.2 will then be achieved.

4.1. Preliminary properties and necessary conditions

In this section we derive some necessary conditions for the existence of waves. This will
enlighten in particular the optimality of the assumptions � > �2, ˛.1/ > �2, so those two
conditions (hypotheses (10), (13)) will not be assumed to hold a priori here.

First of all, it is convenient to observe that, by the concavity of ˛, the function �
associated with a solution .z; w/ of (21) can be computed as

�.x/ D

8̂̂̂<̂
ˆ̂:
s 2 .0; 1/ if

Z C1
x

z.y/eyw.y/ dy D
ex

˛0.s/
;

1 if
Z C1
x

z.y/eyw.y/ dy �
ex

˛0.1/
:

(56)

We will see in the next proposition that � 2W 1;1
loc .R/, and it is positive and nonincreasing.

Hence, when dealing with the first equation of (21), we will be allowed to make use of the
results of Section 3 with A WD ˛ ı � (and the obvious rescaling by 1=�2).

Proposition 4.2. Under assumptions (8), (9), (11), (12), problem (21) admits solution
only if

� > �2 and ˛.1/ > �2:

Moreover, for any solution .c; w; z/, the following properties hold:

2�2 < c < ˛.1/C �2;

z.�1/ D 0; z0 > 0 in R; z.C1/ D
1

� � �2
;

and the associated � belongs to W 1;1
loc .R/, is nonincreasing and satisfies

9x0 2 R; � D 1 in .�1; x0�; 0 < � < 1 in .x0;C1/; �.C1/ D 0: (57)

In particular, we have that A WD ˛ ı � 2 W 1;1
loc .R/ is positive and nonincreasing.
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Proof. Assume that (21) admits a solution .c;w; z/. We preliminarily observe that z > 0:
indeed, with z being a supersolution of a linear elliptic equation, the strong maximum
principle implies that either z > 0 or z � 0. But in the latter case, the equation itself yields
� � 1, while, from (56), we get � � 0. The strong maximum principle also yields w > 0.
We now derive the properties stated in the proposition separately.

Properties of � . Owing to the characterization (56) for the function � , properties zw > 0
and ˛0.0/ D C1 entail that � is strictly positive. Moreover, (56) also implies that � is
nonincreasing, because ˛00 < 0; that �.x/ D 1 for �x large enough, because ˛0.1/ > 0;
and that �.C1/ D 0, because of the condition zexw 2 L1.R/ in (21). This proves (57).
Finally, from (56) we deduce, using the regularity of ˛.s/,

� 0.x/ D
1

˛00.�.x//

�
exR C1

x
eyzw dy

C z.x/w.x/

�
exR C1

x
eyzw dy

�2�
D
˛0.�.x//

˛00.�.x//

�
1C z.x/w.x/˛0.�.x//

�
8x W �.x/ < 1: (58)

Since z,w are locally bounded, and ˛00.s/ < 0, we deduce that � 0.x/ is locally bounded in
the interval .x0;C1/ where 0 < �.x/ < 1, and it admits a finite limit as x! xC0 . Hence
� 2 W

1;1
loc .R/. We notice indeed that � is piecewise C 1 but it is not differentiable at x0,

because limx!xC0
� 0.x/ < 0. The regularity of ˛ then yields A D ˛ ı � 2 W 1;1

loc .R/.

The condition � > �2. Integrating the equation for z in (21) in an interval .x; y/ yields

�2z0.x/� �2z0.y/D .c � 2�2/.z.x/� z.y//C

Z y

x

Œ1� � C .�2 � �� ˛.�/w/z�: (59)

Supposing by contradiction that � � �2, and using that �.C1/D 0, we find that the term
under the integral satisfies

lim inf
x!C1

Œ1 � � C .�2 � � � ˛.�/w/z� � 1;

hence (59) yields z0.y/! �1 as y !C1, contradicting the boundedness of z.

Properties of z. Now that we know that � > �2, we infer from (57) that the term under
the integral in (59) satisfies

lim sup
x!�1

Œ1 � � C .�2 � � � ˛.�/w/z� � .�2 � �/ lim inf
x!�1

z.x/:

Hence, if z.x/ does not tend to 0 as x!�1, using the fact that z is uniformly continuous
(by elliptic estimates) we obtain by (59) the contradiction z0.x/!�1 as x!�1. This
proves that z.�1/ D 0.

Next, the properties of the function � derived above allow us to apply the results of
Section 3 with A WD ˛ ı � . In particular, Proposition 3.1 asserts that c > 0 and that w
is decreasing. Then, differentiating the equation for z in (21), and using that � , A, w are
nonincreasing, we find that z0 satisfies

� �2.z0/00 C .c � 2�2/.z0/0 C .� � �2/z0 C A.x/wz0 � 0; x 2 R: (60)
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Moreover, with z being bounded, there exist two sequences .x˙n /n2N diverging to ˙1
respectively, such that z0.x˙n /! 0 as n!1. Hence, applying the weak maximum prin-
ciple in the intervals .x�n ; x

C
n / and letting n!1, we deduce that z0 � 0 in R. Next, the

strong maximum principle yields z0 > 0, because otherwise z � z.�1/ D 0, while we
know that z > 0.

The monotonicity and boundedness of z imply that z.x/ converges to a positive limit
z.C1/ as x!C1. Due to elliptic estimates, the convergence holds in C 2loc and thus we
deduce that the value z.C1/ satisfies

.� � �2/z.C1/ D � lim
x!C1

.A.x/wz � 1C �.x// D 1:

The condition ˛.1/ > �2 and the bounds 2�2 < c <˛.1/C �2. First of all, Proposition 3.1
yields c > 0 and Proposition 3.12 (iv) yields

w.x/ � w.0/e��x 8x � 0;

with

� D
1

�2

�
c

2
�

r
c2

4
� �2	.w/

�
;

where the operator 	 is defined in (33). If c � 2�2, we see that � � 1. If c � ˛.1/C �2,
the same conclusion follows from the inequalities 	.w/ � NA WD ˛.1/ (and 	.w/ � c2

4�2
)

provided by Proposition 3.12; indeed,

� �
1

�2

�
c

2
�

r
c2

4
� �2˛.1/

�
�
1

�2

�
c

2
�

r
c2

4
� c�2 C �4

�
D 1:

Hence, in both cases, we find that

w.x/ � w.0/e�x 8x � 0:

Since z does not tend to 0 atC1, because z0 > 0, the condition zexw 2 L1.R/ in (21) is
violated. As a by-product, we have shown that necessarily ˛.1/ > �2.

The first statement of Proposition 4.2 proves Theorem 4.1 (i).
Next we derive a pointwise lower bound for z only using that it satisfies the equation

in (21), i.e.

� �2z00 C .c � 2�2/z0 C .� � �2/z C A.x/wz D 1 � �.x/; (61)

for some given functions A;w 2 L1.R/.

Lemma 4.3. Let z be a nonnegative solution of (61) in Œ0; 2�, with c 2 R, � � �2 and
A, w nonnegative and bounded. Then

z.1/ �
1 � sup.0;2/ �

C.1C �2 C jcj C �C supA supw/
;

for some universal constant C > 0.
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Proof. It is sufficient to find a positive subsolution of (61) on .0;2/ vanishing at the bound-
ary. This is simply provided by z WD 1 � .x � 1/2. On .0; 2/ it satisfies

��2z00 C .c � 2�2/z0 C .� � �2/z C A.x/wz � C.1C �2 C jcj C �C supA supw/;

for some universal constant C > 0. Hence, calling

k WD
1 � sup.0;2/ �

C.1C �2 C jcj C �C supA supw/
;

and supposing that sup.0;2/ � < 1 (otherwise the result trivially holds), we have that kz is
a subsolution of (61) on .0; 2/. Observe that the zeroth-order coefficient of this equation
is nonnegative. Thus, the standard maximum principle yields

z.1/ � kz.1/ D k:

We conclude this subsection with a stability lemma for problem (22) that will often be
used in the sequel. Following the terminology employed for the nonlocal KPP equation,
we say that a solution to (22) is critical if

	.w/ WD

Z
R
A.y/.�w0.y// dy D

c2

4
: (62)

Lemma 4.4. Let .cj /j2N be a sequence of positive numbers, .Aj /j2N be a sequence of
equibounded, nonincreasing, nonnegative functions in W 1;1

loc .R/ satisfying

Aj .�1/ > Aj .C1/ 8j 2 N;

and for j 2 N, let wj be a solution to (22) with c D cj and AD Aj . Assume that .cj /j2N

converges to some c > 0, that .Aj /j2N converges pointwise to some function A satisfying
A.0/ > 0 and that .wj .0//j2N converges to some value in .0; 1/. Then .wj /j2N converges
uniformly towards a decreasing solution w of (22).

In addition, if the wj are critical (in the sense of (62)) then w is critical too.

Proof. Let NA > 0 be such that Aj � NA for all j 2 N. By Lemma 3.2, .wj /j2N converges
in C 2loc.R/, up to subsequences, towards a functionw. Moreover, sinceAj .0/!A.0/ > 0,
Lemma 3.18 implies that the convergence is also uniform in R, with 1 � wj .x/ � Kex

and wj .x/ � Ke�x for some positive K;  independent of j . Hence, since the wj are
decreasing by Proposition 3.1, we find thatˇ̌̌̌Z x

�1

Aj .y/.�w
0
j .y// dy

ˇ̌̌̌
� NA.1 � wj .x// � NAKe

x ;

which is arbitrarily small up to choosing �x very large. As a consequence, we deduce
that, up to subsequences,Z x

�1

Aj .y/.�w
0
j .y// dy !

Z x

�1

A.y/.�w0.y// dy;
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and thus that w solves (22). By Theorem 2.3 (or a classical result if A is constant) there is
a unique wave for such a problem which fulfills w.0/ D limj!1 wj .0/. This shows that
the whole sequence wj converges uniformly to w. We know from Proposition 3.1 that w
is decreasing.

The fact that the criticality condition (62) is preserved is obtained by estimating the
integral atC1 using that wj .x/ � Ke�x .

4.2. The critical wave

We now turn to the proof of Theorem 4.1 (ii). It is divided into two main parts: we first
build an approximated solution .zn; wn; cn/ (for a suitably truncated problem) through a
fixed point argument, and secondly we pass to the limit on the mean-field game system in
order to get a solution.

We assume here for the sake of simplicity that � D 1; the general case is treated in the
same way with the obvious modifications.

Part I. The approximated problem. For n2N, we consider the following approximated
problem:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

w00 C cw0 C w

Z x

�1

A.y/.�w0.y// dy D 0; x 2 R;

w > 0; w.�1/ D 1; w.C1/ D 0;

�z00 C .c � 2/z0 C .� � 1/z C Awz D 1 � Œ��n; x 2 .�n; n/;

z D 0 in .�1;�n�; z D
1

� � 1
in Œn;C1/;

Œ��n.x/ D argmax
s2Œ0;1�

²
.1 � s/ex

C˛.s/

Z C1
x

z.y/eyw.y/�n.y/ dy

³
; A WD ˛.Œ��n/;

(63)

where
�n.y/ D min¹1; e�2.y�n/º:

The role of �n is to prevent the case A � ˛.1/, which in the original problem (21) is
excluded by the condition zexw 2 L1.R/; it actually guarantees that Œ��n.x/; A.x/! 0

as x !C1, uniformly with respect to c, w, z.
We will find a solution to (63) through a fixed point argument on the function Œ��n.

The latter is characterized by

8s 2 .0; 1/; Œ��n.x/ D s ”

Z C1
x

z.y/eyw.y/�n.y/ dy D
ex

˛0.s/
: (64)
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From this we immediately see that Œ��n is nonincreasing and satisfies Œ��n.x/ D 1 for �x
large and Œ��n.C1/ D 0. We therefore look for the fixed point in the set

X WD
®
� 2 W

1;1
loc .R/ W � is nonincreasing; �.x/ D 1 for �x large; �.C1/ D 0

¯
:

At some point we will actually restrict to a closed subset of X with respect to the L1.R/
topology.

We now define an operator Tn on X . Given � 2 X , we set A WD ˛ ı � and we call
wc the (unique) critical wave with speed c 2 .0; 2

p
˛.1// associated with A, provided

by Theorem 2.3 ( NA D ˛.1/). Then we choose a speed c through a suitable normalization
condition expressed in terms of the functions

wc.x/ WD inf
0<c0�c

wc0.x/:

Namely, we claim that there exists a unique c 2 .0; 2
p
˛.1// such thatZ 0

�1

eywc.y/ dy D
1

2
: (65)

It is clear that the wc are nonincreasing with respect to c. Moreover, thanks to Proposi-
tion 3.21, for any x 2 R where A.x/D ˛.1/ it holds that wc.x/ is decreasing with respect
to c. It follows that wc.x/ D wc.x/ and that this value is strictly decreasing with respect
to c. As a consequence, the mapping GW .0; 2

p
˛.1//! R defined by

G.c/ WD

Z 0

�1

eywc.y/ dy

is decreasing. In addition, one checks that it is continuous using dominated convergence
and the last part of Theorem 2.3. Furthermore, by the properties of X , there exists x0 2 R
such that 0 D A.C1/ < A.x0/ < A.�1/ D ˛.1/. Therefore, owing to the criticality
condition

	.wc/ WD

Z
R
A.y/.�w0c.y// dy D

c2

4
;

the two inequalities in (34) (applied in x0 by translation of the coordinate system, and with
A D 0, NA D ˛.1/) imply that wc.x0/! 1 as c & 0 and wc.x0/! 0 as c % 2

p
˛.1/.

We then infer from Harnack’s inequalities (24) that these convergences hold true locally
uniformly in R. The first one then implies that G.c/! 1 as c & 0, while the second one
implies that

G.c/ �

Z 0

�1

eywc.y/ dy ! 0 as c % 2
p
˛.1/:

As a consequence, there exists a unique c 2 .0; 2
p
˛.1// such that G.c/ D 1=2, i.e. (65)

holds true. This normalization determines the choice of c employed to define Tn.
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Now, given the above speed c and the associated critical wave wc , we consider the
solution z of the second equation in (63) with � in place of Œ��n and the prescribed exterior
conditions, which classically exists and is unique. The outcome Tn.�/ is the function Œ��n
generated by wc and z as indicated in the last line of (63). Summing up, the operator Tn
works as follows:

� 2 X  A WD ˛ ı �

 .c; wc/ W

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

w00 C cw0 C w

Z x

�1

A.y/.�w0.y// dy D 0;

w.�1/ D 1; w.C1/ D 0;

Z
R
A.�w0/ D

c2

4
;Z 0

�1

eywc.y/ dy D
1

2
;

 z W

8̂̂<̂
:̂
�z00 C .c � 2/z0 C .� � 1/z C Awcz D 1 � �; x 2 .�n; n/;

z D 0 in .�1;�n�; z D
1

� � 1
in Œn;C1/;

 Tn.�/ WD Œ��n.x/ D argmax
s2Œ0;1�

²
.1� s/ex C˛.s/

Z C1
x

z.y/eywc.y/�n.y/ dy

³
:

In the following lemma, we prove the existence of a fixed point for Tn.

Lemma 4.5. The operator Tn has a fixed point in a closed subset zX of X .
As a consequence, problem (63) admits a solution .c; w; z/ D .cn; wn; zn/ with cn 2

.0; 2
p
˛.1//, zn increasing in .�n; n/, wn decreasing and satisfying in addition the fol-

lowing properties:

(i) wn is a critical wave corresponding to cn, i.e.Z
R
A.�w0n/ dy D c

2
n=4I (66)

(ii) there exists a constant # > 0, only depending on ˛.1/, such that

wn.0/ � # > 0 8n 2 NI (67)

(iii) the following normalization condition holds true:Z 0

�1

eywcn.y/ dy D
1

2
; where wcn.x/ WD inf

0<c0�cn
wc0.x/.

Proof. The fixed point will be obtained as a consequence of Schauder’s theorem. Some
preliminary observations are in order, concerning the functions wc , z associated with
the definition of Tn.�/ (cf. the previous scheme). We start with the monotonicities. We
know from Proposition 3.1 that wc , as well as any other wave for the KPP equation,
is decreasing. On the other hand, the constant functions 0 and 1

��1
being respectively
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a sub- and a supersolution of the equation for z, the maximum principle yields 0� z � 1
��1

in .�n;n/; then z0.˙n/� 0 and thus, applying the strong maximum principle to z0, which
satisfies (60), we infer that z0 > 0 in .�n; n/.

Next we point out a lower bound for wc . This is a crucial consequence of (65), which
implies that

1

2
�
1

4
C

Z 0

� ln4
wc.y/ dy �

1

4
C .ln 4/wc.� ln 4/ �

1

4
C .ln 4/wc.� ln 4/:

Hence, by Harnack’s inequality (24), for any R > 0 there exists a positive constant CR,
only depending on R and ˛.1/ (recall that c 2 .0; 2

p
˛.1//), such that

wc.x/ � CR > 0 8x 2 Œ�R;R�: (68)

In particular, (67) holds.
We now identify the compact set zX � X where we apply Schauder’s theorem and we

separately check its hypotheses. For simplicity, hereafter we drop the index of Tn.

The invariant convex, compact set zX � X . Our goal is to show that T .X/ is contained
in a compact subset of X with respect to the L1.R/ norm; this will be our zX . Consider
as before the functions wc , z associated with T .�/. We preliminarily observe that elliptic
boundary estimates imply that the C 1 norm of z is controlled in terms of ˛.1/ and �,
and thus there exists a constant ı 2 .0; 1/, depending on ˛.1/, �, such that z � 1

2.��1/
in

Œn � ı; n�. Because of this and the lower bound (68) for wc , we find that, for x < n � ı,

e�x
Z C1
x

z.y/eywc.y/�n.y/ dy � e
�x

Z n

n�ı

z.y/eywc.y/�n.y/ dy � e
�x Cnı

2.� � 1/
;

which is larger than 1=˛0.1/ for x smaller than some xn (possibly smaller than �n) only
depending on n, ˛.1/, �. Owing to the characterization (64), we derive

T .�/ D 1 on .�1; xn�:

We are left to show the regularity of Œ��n D T .�/ and the uniform estimate as x !
C1. For these, we rewrite (64) as

Œ��n.x/ D .˛
0/�1

�
exR C1

x
zeywc�n dy

�
8x W Œ��n.x/ < 1: (69)

Since .˛0/�1 is decreasing, this shows on one hand that Œ��n is strictly positive and non-
increasing, and on the other, using zwc � 1

��1
, that

Œ��n.x/ � !n.x/ WD .˛
0/�1

�
ex.� � 1/R C1

x
ey�n.y/ dy

�
8x > yn;

where yn is the unique point where the right-hand side is equal to 1. Observe that
!n.x/! 0 as x !C1 because ˛0.0/ D C1.



A. Porretta and L. Rossi 994

As for the regularity, differentiating (69) we obtain (exactly as in (58))

Œ��0n.x/ D
˛0.Œ��n.x//

˛00.Œ��n.x//

�
1C �n.x/z.x/wc.x/˛

0.Œ��n.x//
�
8x W Œ��n.x/ < 1: (70)

Then the strict concavity of ˛ implies that Œ��n is a locally Lipschitz continuous function,
whose W 1;1 norm remains bounded as long as Œ��n stays bounded away from 0. The
lower bound follows from (69), namely, for any x � n where Œ��n.x/ < 1,

Œ��n.x/ � .˛
0/�1

�
exR xC1

x
zeywc�n dy

�
� .˛0/�1

�
.� � 1/e2.xC1�n/

wc.x C 1/

�
;

hence, by (68), Œ��n.x/ � C.x/, where C.x/ is a positive decreasing function depending
on n, ˛, �, ˛.1/. We deduce the existence of another positive decreasing function zC.x/,
depending on the same terms, such that kŒ��nkW 1;1.�1;x/ �

zC.x/. Summing up, we have
seen that

T .X/ � zX WD
®
� 2 W

1;1
loc .R/ W � is nonincreasing; �.x/ D 1 for x � xn;

0 � �.x/ � !n.x/ for x � yn;

k�kW 1;1.�1;x/ �
zC.x/

¯
;

hence zX is invariant under T . The set zX is convex and one readily checks that it is compact
in L1.R/ using the Arzelà–Ascoli theorem and the conditions at˙1.

Continuity of T . Let .�j /j2N in zX converge uniformly to some � . Then we have that
Aj WD ˛ ı �j uniformly converges to A WD ˛ ı � ; notice that the conditions in zX imply
thatA.x/D ˛.1/ for x � xn and that 0�A.x/� ˛.!n.x//! 0 as x!C1, in particular
the Aj do not trivialize in the limit. Let .cj ;wj ; zj / be the triplet provided by the construc-
tion of T .�j /. Since the .cj /j2N are in .0; 2

p
˛.1//, they converge, up to extraction of a

subsequence, to some c 2 Œ0; 2
p
˛.1/�. On one hand, the wj are locally uniformly equi-

bounded from below away from zero due to (68). On the other hand, the values wj .xn/
are bounded from above away from 1, because otherwise Proposition 3.21 and the second
Harnack inequality in (24) would yield a contradiction with the normalization (65). We
deduce that .wj .xn//j2N is contained in a compact subset of .0; 1/. Then, since by the
criticality condition,

c2j =4 D

Z
R
Aj .�w

0
j / dy �

Z xn

0

Aj .�w
0
j / dy D ˛.1/.1 � wj .xn//;

we find that c D limj!C1 cj > 0. We can therefore apply Lemma 4.4 and infer that
.wj /j2N converges uniformly, up to subsequences, towards a decreasing solution w to
(22), which in addition is critical, i.e. fulfills (62). We find as a by-product that c <
2
p
˛.1/. Indeed, by uniqueness of the critical wave, cf. Theorem 2.4, we have that wj

converges to w along the whole subsequence on which cj ! c.
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It remains to check that the normalization condition (65) is preserved up to subse-
quences. By dominated convergence, it is sufficient to show that the functions

wj;cj .x/ WD inf
0<c0�cj

wj;c0.x/

converge pointwise to
wc.x/ WD inf

0<c0�c
wc0.x/;

where wj;c0 and wc0 are the critical waves with speed c0 corresponding to the nonlinearity
Aj and A respectively.

For this purpose, we observe that, for fixed c0 2 .0; 2
p
˛.1//, the wj;c0 converge uni-

formly, up to subsequences, to wc0 , thanks to Lemma 4.4 and the bounds (34) applied in
xn. This convergence holds true for the whole sequence wj;c0 because of the uniqueness
of the critical wave for fixed c0. Since wj;cj .x/ � wj;c0.x/ for any c0 < cj , and cj ! c,
we deduce that

lim sup
j!1

wj;cj .x/ � wc0.x/ 8c
0 < c:

Recalling that the values wc0.x/ are continuous with respect to c0 owing to the last part of
Theorem 2.3, this yields

lim sup
j!1

wj;cj .x/ � inf
0<c0�c

wc0.x/ D wc.x/: (71)

Conversely, we fix x 2 R and, for any " > 0 and j 2 N, we find c"j 2 .0; cj / such that

wj;cj .x/ � wj;c"j .x/ � ":

Without loss of generality, we can suppose that c"j ! Qc as j !1, for some Qc 2 Œ0; c�.
If Qc > 0, Lemma 4.4 and (34) entail that wj;c"j .x/! wQc.x/; while if Qc D 0, (34) yields
wj";cj" .x/! 1. Hence, in any case,

lim inf
j!1

wj;cj .x/ � wQc.x/ � " � wc.x/ � ":

Since " is arbitrary, the previous inequality together with (71) implies that wj;cj .x/ con-
verges to wc.x/, for every x 2 R. As we said above, this yieldsZ 0

�1

eywc.y/ dy D lim
j!1

Z 0

�1

eywj;cj .y/ dy D
1

2
;

i.e. (65) holds. As we have shown before, this condition uniquely characterizes c. We
deduce that the whole sequence cj converges to c (and consequently, the whole sequence
wj;cj ! wc).

The convergences of �j , cj and wj now imply, by standard stability in the second
equation, that zj converges uniformly to the unique z which solves �z00 C .c � 2/z0 C
.� � 1/z C Awcz D 1 � � in .�n; n/ with the given boundary conditions. Finally, we
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have proved that .cj ; wj ; zj / ! .c; w; z/ uniformly, and the latter is the unique triple
associated with T .�/. We conclude using the characterization (64) that T .�j /! T .�/ in
L1.R/.

We can now invoke Schauder’s theorem which provides us with a fixed point �n 2 zX
such that Tn.�n/D �n. Associated with this function, we have An WD ˛ ı �n and a unique
triple .cn; wn; zn/ which therefore solves system (63). By construction, we have that wn
satisfies the conditions (i)–(iii).

Part II. Passing to the limit in the approximation. Now we study the limit of the
sequence .cn; wn; zn/n2N of solutions to (63) provided by Lemma 4.5. We call �n the
associated optimal functions Œ��n, and An WD ˛ ı �n. We recall that wn is decreasing and
that zn is increasing.

To start with, we show that �n stays bounded away from 0. Indeed, by Lemma 4.3, for
any x 2 R we have zn.x C 1/ � C.1 � �n.x//, for some positive constant C depending
on �, �, ˛.1/. Then for any given x 2 R, we find for n > x C 2 that either �n.x/ D 1, or
by (64),

1

˛0.�n.x//
D e�x

Z C1
x

zn.y/e
ywn.y/�n.y/ dy

� e�x
Z xC2

xC1

zn.y/e
ywn.y/ dy

� C.1 � �n.x//wn.x C 2/.e
2
� e/:

Owing to (68), this provides a positive lower bound for �n.x/ independent of n. We have
thereby shown that

lim inf
n!1

�n.x/ > 0 8x 2 R: (72)

Next we derive an upper bound for wn. Namely, we claim that up to extraction of a
subsequence, it holds that

wn.0/ � # < 1 8n 2 N: (73)

To show this, we consider two (mutually excluding) possibilities. Either there exists some
ˇ < 1 such that �n.0/ � ˇ < 1 for all n 2 N; in this case the same computation as before
yields, for any � > 1 and n > �,

1

˛0.ˇ/
�

1

˛0.�n.0//
�

Z �

1

zn.y/e
ywn.y/ dy

� C.1 � �n.0//wn.�/.e
�
� e/

� C.1 � ˇ/wn.�/.e
�
� e/;

which implies

wn.�/ �
1

e� � e

� 1

C.1 � ˇ/˛0.ˇ/

�
:

The right-hand side is smaller than 1 for � sufficiently large, and thus (73) follows from
Harnack’s inequality (24). Alternatively, there exists a subsequence (not relabeled) such
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that �n.0/! 1 as n!1. If this is the case, using the characterization (64) of �n we
derive

lim inf
n!1

Z C1
ln 23

zn.y/e
ywn.y/�n.y/ dy � lim inf

n!1

Z C1
0

zn.y/e
ywn.y/�n.y/ dy �

1

˛0.1/
;

which, owing to the same characterization, shows that An.ln 2
3
/ D ˛.1/ for n sufficiently

large. Hence, for such values of n, Proposition 3.21 yields wn D wcn in .�1; ln 2
3
� and

therefore, by (65),
1

2
�

Z ln 23

�1

eywn.y/ dy �
2

3
wn.ln 2

3
/:

Namely, wn.ln 2
3
/ � 3

4
, whence we deduce (73) because wn is decreasing.

Henceforth, we reason up to subsequences and we suppose that cn converges to some
c 2 Œ0; 2

p
˛.1/� and that the functions wn, zn, �n, An converge, respectively, towards

some w, z, �; A WD ˛.�/ locally uniformly in R (observe that the �n are equicontinuous
on compact sets due to (70) and (72)).

We claim that these functions solve (21). To prove this we need to check that the
various terms do not trivialize. This is done in the following items.

(a) 0 < w < 1. This follows from the bounds (67) and (73) and Harnack’s inequali-
ties (24).

(b) c > 0. From the criticality condition (66) we obtain

c2n=4 D

Z
R
An.�w

0
n/ dy �

Z x

�1

An.�w
0
n/ dy � An.x/.1 � wn.x//; (74)

which implies c > 0 due to (72) and w < 1.

(c) A > 0, A 6� ˛.1/. We already know from (72) that A > 0. Then the lower bounds
on cn and 1 � wn imply that wn satisfies estimate (48) with a constant K inde-
pendent of n, namely

wn.x/ � Kxe
�
cn
2 x 8x � 1; 8n 2 N: (75)

In particular, we see that w.x/ ! 0 as x ! 1. Now, suppose by contradic-
tion that A.x/ � ˛.1/. Applying (74) with x0 arbitrarily large would show that
c D limn!1 cn D 2

p
˛.1/. Since ˛.1/ > 1, together with (75) this would imply

that wn.x/ex are equi-integrable at C1 for n large enough. But then, from the
characterization of �n in (64), we would have A.x/ < ˛.1/ for large x, which
gives a contradiction.

(d) 0 < z < 1
��1

. As �n, An, wn converge locally uniformly to � , A, w respectively,
we have by standard stability that the function z satisfies the equation in (21),
i.e. (61). Moreover, z is nondecreasing and satisfies 0 � z � 1

��1
. Indeed, since

the right-hand side in the equation is nonnegative, the strong maximum principle
yields z � 0 as soon as z vanishes somewhere. But this is impossible because
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z � 0 entails � � 1, i.e. A � ˛.1/, which was already excluded. This means in
particular that z > 0.
A similar argument applies from above. The constant function 1

��1
is a superso-

lution of (61). Hence if z, which is less than or equal to 1
��1

, attains the value
1
��1

somewhere, the strong maximum principle yields z � 1
��1

. Coming back to
equation (61), we see that this is only possible if � � 0, i.e. A � 0. But this has
already been ruled out.

(e) 2 < c < 2
p
˛.1/. Recall that 0 < w < 1, c > 0 and A 6� 0. We can then apply

Lemma 4.4 and infer that w solves (22) and fulfills the critical identity (62). In
particular, since A 6� ˛.1/, as seen in (c), we deduce that c < 2

p
˛.1/.

Finally, we are left to show that c > 2. For this purpose, we observe that Propo-
sition 3.12, together with (67), implies that

wn.x/ � #e
�
cn
2 x 8x > 0:

Assume by contradiction that c � 2. We then have

w.x/ � #e�x 8x > 0:

For any arbitrary x0 < x1, we find thatZ x1

x0

z.y/eyw.y/ dy � z.x0/#.x1 � x0/:

In particular, because z.x0/> 0 by (b), there exists x1 (depending on x0) such thatZ x1

x0

z.y/eyw.y/ dy >
ex0

˛0.1/
;

and this inequality holds true for zn, wn when n is sufficiently large. It follows
from (64) that, for such values of n (that we can assume without loss of generality
are larger than x1), �n.x0/D 1. This means that A� ˛.1/, but this case has been
excluded in (c).

Summing up, we have shown that c, w, z solve the equations and constraints in (21)
with A WD ˛ ı � . It remains to prove that � is indeed the optimal function associated
with w, z. This follows from the fact that, as n ! 1, the integral equivalence in (64)
reduces by dominated convergence (recall that the decays (75) hold with cn ! c > 2) to
the characterization (56) of � . This concludes the proof of Theorem 4.1 (ii).

4.3. Waves with supercritical speed

We now deal with Theorem 4.1 (iii), namely, we construct other traveling waves for sys-
tem (21), with speeds which are faster than 2�

p
˛.1/. As in the previous subsection, we

assume for simplicity that � D 1. For each speed, we are able to attain any arbitrary nor-
malization `0 2 .0; 1/ for w at a given point x0 2 R.

We start with a lemma on the shooting method for the nonlocal problem, similar to
Lemma 3.3.
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Lemma 4.6. Let A 2 W 1;1
loc .R/ be a bounded, nonnegative, nonincreasing function sat-

isfying NA WD A.�1/ > 0. Consider the problem8̂̂̂<̂
ˆ̂:
w00 C cw0 C w

�
A.a/ � Aw C

Z x

a

A0.y/w.y/ dy

�
D 0; x > a;

w.a/ D ;

w0.a/ D 0;

(76)

with c � 2
p
NA, a 2 R and  2 .0; 1/. Then we have

(i) problem (76) admits a unique solution w.�I /, which in addition is decreasing
and positive in .0;C1/, with w ! 0 as x !C1;

(ii) for any x0 > a and `0 2 .0; 1/, there exists a unique 0 such that w.x0I 0/ D `0.

Proof. For given  , local existence and uniqueness of w is provided by Lemma 3.3, and
w is nonincreasing from Lemma 3.4, because the constant  is a subsolution. In fact, if
we observe that w00.x/ < 0 if ever x � a and w0.x/ D 0, we conclude that w is actually
decreasing. Consider now the unique wave   of the classical KPP equation´

 00 C c 0 C NA .1 �  / D 0; x 2 R;

 .�1/ D 1;  .C1/ D 0;  .a/ D ;
(77)

which exists because c � 2
p
NA. Since we have

A.a/ � A C

Z x

a

A0.y/ .y/ dy D A.a/.1 �  .a// �

Z x

a

A.y/ 0.y/ dy

� A.a/.1 �  / � NA.1 �  /;

then  is a supersolution of problem (76), with  0.a/ < 0. By the comparison principle of
Lemma 3.4 we deduce that w.�I / �   . Hence w exists for all times and admits a limit
as x !1. We observe that the equation reads

.w0ecx/0 D �wecx
�
A.a/.1 � / �

Z x

a

A.y/w0.y/ dy

�
D �wecxg.x/;

where g.x/ is an increasing function which admits a bounded limit as x !1; then nec-
essarily we deduce that w0 ! 0 and w ! 0 as x !1. Indeed, if w.x/ has a positive
limit at infinity, then .w0ecx/0 � �#ecx for some # > 0, in which case w0 converges to a
negative constant at infinity. But this is impossible, so w.x/! 0 and in turn w0.x/! 0

as well, for x !1. This proves (i).
Now, for x0 > a, we consider the map  7! w.x0I /; this is continuous and nonde-

creasing due to Lemmas 3.3 and 3.4 respectively. But the monotonicity is actually strict;
as we observed before, for 1 < 2, we havew001.a/ <w

00
2
.a/, sow01 <w

0
2

for x > a and
we get w.x0I1/ < w.x0; 2/ by Lemma 3.4 again. Therefore, the range of  7! w.x0I/

is an interval. Clearly we have w.x0I `0/ < `0 because w is decreasing. On the other
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hand, there exists a wave  0 for the KPP equation (77) such that  0.x0/ D `0; if we take
 D  0.a/, by comparison we know that w.x0I / >  0.x0/D `0. Therefore, we deduce
the existence of a unique 0 2 .`0;  0.a// such that w.x0I 0/ D `0.

Similarly to the previous section, we use a fixed point argument to build an approxima-
tion of the traveling wave in the compact set Œ�n; n�. However, the approximated problem
slightly differs from (63).

Lemma 4.7. Assume that hypotheses (8)–(11) hold true and let c � 2
p
˛.1/. For n 2 N

larger than ˛0.1/, jx0j < n and `0 2 .0; 1/, there exists a solution .wn; zn/ of the problem8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

w00 C cw0 C w

�
A.�n/ � Aw C

Z x

�n

A0.y/w.y/ dy

�
D 0; x 2 Œ�n; n�;

0 < w < 1; w.x0/ D `0; w0 < 0;

�z00 C .c � 2/z0 C .� � 1/z C Awz D 1 � Œ��n; x 2 Œ�n; n�;

z.�n/ D 0; z.n/ D
1

� � 1
; z0 > 0;

Œ��n.x/ D argmax
s2Œ0;1�

²
.1 � s/ex

C˛.s/

�Z n

x

z.y/eyw.y/ dy C
1

n

�³
; A WD ˛ ı Œ��n:

(78)

Proof. We consider the following subset of C 0.Œ�n; n�/:

X WD
®
� 2 W 1;1.Œ�n; n�/ W � is nonincreasing; .˛0/�1.nen/ � � � 1

¯
(observe that .˛0/�1.nen/ � .˛0/�1.n/ < 1 by hypothesis). We define a map T on X in
the following way. Take � 2 X and call A WD ˛ ı � . First, we let w be the unique solution
of the problem8̂̂̂<̂

ˆ̂:
w00 C cw0 C w

�
A.�n/ � Aw C

Z x

a

A0.y/w.y/ dy

�
D 0; x 2 Œ�n; n�;

w.x0/ D `0;

w0.�n/ D 0:

Existence and uniqueness of w are given by Lemma 4.6, which additionally ensures that
w is decreasing and satisfies 0 < w < 1. Next, given � , A and w, we consider the unique
solution of the linear elliptic problem in (78), with Œ��n replaced by � . We have seen in
the proof of Lemma 4.5 that z is increasing. We finally define T .�/ WD Œ��n from the last
line of (78). This function is nonincreasing and fulfills an analogous characterization to
the one derived in the previous section:

Œ��n.x/ D .˛
0/�1

�
exR n

x
zeyw dy C 1

n

�
8x 2 Œ�n; n� W Œ��n.x/ < 1: (79)
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This yields Œ��n.x/ � .˛0/�1.nen/ and moreover, by an analogous computation to (58),

Œ��0n.x/ D
˛0.Œ��n.x//

˛00.Œ��n.x//

�
1C z.x/w.x/˛0.Œ��n.x//

�
8x W Œ��n.x/ < 1: (80)

By the boundedness of w, z and the regularity of ˛, as well as the positive lower bound
for Œ��n, we eventually deduce jŒ��0nj � C for some positive constant C only depending
on c, �, ˛, n. We have thereby shown that T .X/ � X .

Actually, we have shown that T .X/ � zX , with

zX WD
®
� 2 W 1;1.Œ�n; n�/ W � is nonincreasing; .˛0/�1.nen/ � � � 1; j� 0j � C

¯
:

This is a compact, convex subset of C 0.Œ�n; n�/.
We now prove that T admits a fixed point in zX . Let us check the continuity of T .

Consider a sequence .�j /j2N in zX converging uniformly to some � . Call Aj WD ˛ ı �j
and wj , zj the associated functions used in the definition of T . Integrating the term in
the equation for wj by parts (in order to get rid of the term A0j ), using elliptic estimates,
and then integrating back, we find a subsequence of .wj /j2N converging uniformly to a
solution w of the same equation, with A WD ˛ ı � , which satisfies in addition 0 � w � 1
and w0.�n/ D 0, w.x0/ D `. By Lemma 4.6 there is a unique such solution, hence the
whole sequence .wj /j2N converges towards it. Likewise, .zj /j2N converges uniformly to
the unique solution of the corresponding equation with A and � . Then, using the char-
acterization (79), we deduce that .T .�j //j2N converges uniformly to the function Œ��n
defined as in (78). This is precisely T .�/.

We can therefore invoke Schauder’s theorem and conclude that the map T has a fixed
point in zX , which is by construction a solution of (78).

We finally analyze the limit as n!1, in order to get the wave for the system on the
whole line. It is here that we face the question whether wex is integrable atC1.

Proof of Theorem 4.1 (iii). Fix c 2 Œ2
p
˛.1/; ˛.1/C 1/. Let wn, zn be a solution of sys-

tem (78), provided by Lemma 4.7, and let Œ��n and An WD ˛ ı Œ��n be the associated
function from the last line of (78). First of all, by elliptic estimates, both wn and zn are
locally bounded inC 2 norm, hence they converge (up to subsequences) inC 1loc.R/ to some
functions w, z. We claim that

sup
n2N

Z n

�n

znwne
y dy < C1: (81)

To show this, assume first by contradiction that there exists x 2 R such that (up to subse-
quences)

pn.x/ WD

Z n

x

znwne
y dy !C1:

Then, since p0n.x/ is locally uniformly bounded, this must be true for all x 2 R. Recalling
the characterization (79) for Œ��n, we deduce that Œ��n.x/ D 1 for n sufficiently large,
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depending on x, hence An.x/ D ˛.1/ for large n, and this actually holds uniformly in
.�1; x�, by monotonicity. It follows that the limit w of the wn is a solution of

w00 C cw0 C ˛.1/w.1 � w/ D 0;

such that w.x0/ D `0 2 .0; 1/, i.e. w is a wave for the standard KPP equation. We deduce
that w tends to 0 as x !C1. In particular, for " 2 .0; 1/ to be chosen later, we can find
x1 > 0 such that w.x1/ < "=2. Now we come back to wn; by pointwise convergence, we
take n large enough so that wn.x1/ < ". For x > x1, we estimate

0 D w00n C cw
0
n C wn.x/

�
An.�n/ � Anw C

Z x

�n

A0n.y/w.y/ dy

�
� w00n C cw

0
n C wn.x/An.x/.1 � wn.x//

� w00n C cw
0
n C An.x/wn.x/.1 � "/:

Since we are assuming An.x/! ˛.1/, this implies, for n sufficiently large,

w00n C cw
0
n C .˛.1/ � "/.1 � "/wn � 0:

Then the function q WD �w0n=wn satisfies

q0 � q2 � cq C .˛.1/ � "/.1 � "/ D .q � ��" /.q � �
C
" /;

where

�˙" WD
c

2
˙

r
c2

4
� .˛.1/ � "/.1 � "/:

We infer that
lim inf
x!C1

q.x/ � ��" :

But the condition 2 < c < ˛.1/C 1 implies lim"!0C �
�
" > 1, hence we can choose " small

enough so that ��" > 1. Reverting to the function wn, we derive

wn.x/ � Ce
��x

8x > x1;

for some C > 0 and � > 1. This estimate and the bound on z imply

pn.x1/ D

Z C1
x1

znwne
ydy �

C

� � 1

Z C1
x1

e.1��/y dy;

so pn.x1/ cannot blow up. This contradicts the fact that pn ! C1 pointwise. We have
thus shown that pn.x/ remains bounded at any given x. We improve this to the bound (81)
by noticing thatZ n

�n

znwne
y dy D

Z 0

�n

znwne
ydy C pn.0/ �

1

� � 1
C pn.0/:

We now refine the above argument to show a uniform decay forwn at infinity. Observe
that (81), together with (79), implies that the function Œ��n in (78) associated with .zn;wn/
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does not tend to 1 as n!1 at a sufficiently large point x. Thus, by Lemma 4.3, the limit
z of (a subsequence of) zn is positive for x sufficiently large. We infer that zwey 2 L1.R/
as a consequence of (81) and Fatou’s lemma. Now consider the functions q.x/ WD �w

0.x/
w.x/

and qn.x/ WD �
w 0n
wn

. Since wey 2 L1 there must be a point Nx where q. Nx/ > 1 (otherwise,
if �w

0

w
� 1 for every x, then wey is not integrable at infinity). By pointwise convergence,

we can assume that qn. Nx/ � .1C "/ for some " > 0, and for all n 2 N. But since

q0n D q
2
n � cqn C

�
An.�n/ � Anwn C

Z x

�n

A0n.y/wn.y/ dy

�
;

the same argument used to prove Proposition 3.12 shows that qn is increasing in .0; n/;
hence we deduce that qn.x/ � .1 C "/ for every x 2 . Nx; n/. Recalling that qn D �

w 0n
wn

,
integrating we get

wn.x/ � wn. Nx/e
�.1C"/.x� Nx/

� Ce�.1C"/x ; x 2 . Nx; n/:

Thanks to this estimate, we can use the dominated convergence theorem and we conclude
that Z n

x

znwne
y dy

n!1
����!

Z C1
x

zwey dy:

This implies that Œ��n characterized by (79) pointwise converges to � characterized by
(56), i.e.

�.x/ WD argmax
s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

z.y/eyw.y/ dy

³
:

Call A WD ˛ ı � . We immediately deduce that z solves the equation in (21). Next, the
uniform positive lower bound on zn.x/ for x large, which is also true for wn.x/ due to
wn.x0/ D `0 and the Harnack inequality, implies that An D A D ˛.1/ on some half-line
.�1; Nx�. For �n < Nx we then find that

�w00n � cw
0
n D ˛.1/ � Anwn C

Z x

Nx

A0n.y/wn.y/ dy

D ˛.1/.1 � wn. Nx// �

Z x

Nx

An.y/w
0
n.y/ dy

n!1
����! ˛.1/.1 � w. Nx// �

Z x

Nx

A.y/w0.y/ dy

D ˛.1/.1 � w.�1// �

Z x

�1

A.y/w0.y/ dy:

Hence w satisfies the differential inequality (28) used in the proof of Lemma 3.2 to derive
w.�1/D 1 andw.C1/D 0. This shows thatw solves (22). In the end, .z;w/ are proved
to be solutions of problem (21).

This concludes the proof of Theorem 4.1.
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4.4. From traveling waves to BGP solutions

We now deduce Theorem 2.2 from the results obtained in Theorem 4.1 on the traveling
waves. We only need to establish first a rigorous connection between solutions of (21) and
BGP solutions of the mean-field game system (2), which are defined as in Definition 2.1.

Proposition 4.8. Assume conditions (8), (9), (11), (12) hold. If .f; v; s�/ is a BGP with
growth c, thenw.x/ WD

R C1
x

'.y/dy and z.x/ WD �0.x/e�x are solutions of the traveling
wave system (21).

Conversely, let c < � and .w; z/ be solutions of (21). Then the triple given by

f D �w0.x � ct/; v D ect
�Z x�ct

�1

z.y/eydy CK

�
; s� D �.x � ct/ (82)

is a BGP solution of system (2), with K D ˛.1/
��c

R
R e

yz.y/w.y/ dy.
Finally, there are no possible BGPs with growth c � �.

Proof. Suppose we are given a BGP solution .f; v; s�/ of (2), hence f .t; x/D '.x � ct/,
v D ect�.x � ct/, s� D �.x � ct/ for some c > 0. Thus, as shown in Section 2.1, the
functions w.x/ WD

R C1
x

'.y/ dy, z.x/ WD �0.x/e�x are solutions to the traveling wave
system (21). Finally, according to Definition 2.1, we also have wex 2 L1.R/, while z is
nonnegative and bounded. Hence zwex 2 L1.R/ and therefore all conditions in (21) are
fulfilled.

Conversely, assume that .w; z; �/ is a solution of (21) and define .f; v; s�/ from (82).
Set '.r/ WD �w0.r/ and �.r/ WD

R r
�1

z.y/ey dy CK, where

K WD
˛.1/

� � c

Z
R
eyz.y/w.y/ dy: (83)

It follows that f D '.x � ct/, v D ect�.x � ct/ with '; � 2 C 2.R/, as required in
Definition 2.1. We further know that � 2 W 1;1

loc .R/ by Proposition 4.2. Still from Propo-
sition 4.2, we know that z > 0 and it has a bounded positive limit as r ! C1; this
implies that � is increasing, nonnegative and �0e�x 2 L1.R/. Therefore, the condition
zwey 2 L1.R/ implies that erw.r/ D er

R C1
r

'.y/ dy 2 L1.R/. By Proposition 3.12,
we also know that �w

0.r/
w

.r/! � > 0 as r !C1; hence we deduce that w0ey 2 L1.R/
as well.

So far, we have checked that the first three conditions in Definition 2.1 hold. We are
left to show that .f; v/ solve system (2). We preliminarily observe that the definition of �
in (21) yields through the computations (20) and (17), that s� D �.x � ct/ satisfies

s� D argmax
s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

vx.t; y/

Z C1
y

f .t; r/ dr dy

³
D argmax

s2Œ0;1�

²
.1 � s/ex C ˛.s/

Z C1
x

Œv.t; y/ � v.t; x/�f .t; y/ dy

³
;
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i.e. s� is given by the formula in (2). As far as v is concerned, taking the derivative in
the equation for w, and using that A.x � ct/ D ˛.s�.t; x//, it readily follows that f D
'.x � ct/ is a traveling wave solution of the Fokker–Planck equation. Finally, in order to
derive the equation for v, we consider the Hamiltonian

H.t; xI v/ WD max
s2Œ0;1�

�
.1 � s/ex C ˛.s/

Z C1
x

Œv.t; y/ � v.t; x/�f .t; y/ dy

�
D max
s2Œ0;1�

�
.1 � s/ex C ˛.s/

Z C1
x

vx.t; y/

Z C1
y

f .t; r/ dr dy

�
;

where the equality follows from (17). We know that the above maxima are attained at
sD s�.t;x/, and actually this is the unique maximizer because the expressions are concave
in s, because vx D exz.x � ct/ > 0. Applying the envelope theorem as in Section 2.1, we
notice that H is differentiable in x with @xH D .1 � s�/ex � ˛.s�/vx

R C1
x

f .t; y/ dy.
This means that

.1 � �.x � ct// � ˛.�.x � ct//w.x � ct/z.x � ct/ D e�x@xH.t; xI v/:

Inserting this information into the equation for z in (21), we conclude that vxDexz.x�ct/
satisfies the differential equation

�@tvx � �
2@xxvx C �vx D @xH.t; xI v/:

Now we integrate this equation in the interval .�1; x/. We observe that

H.t;�1I v/ D ˛.1/

Z
R
vx.t; y/

Z C1
y

f .t; r/ dr dy

D ect˛.1/

Z
R
eyz.y/w.y/ dy D K.� � c/ect ;

with K defined by (83), while, by definition of v, we have

v.t;�1/ D ectK; @tv.t;�1/ D ce
ctK:

Finally, using that vxx D ex.z.x � ct/C z0.x � ct//! 0 as x!�1, we conclude that

0 D

Z x

�1

¹�@tvx � �
2@xxvx C �vx � @xH.t; xI v/º

D �@tv � �
2@xxv C �v �H.t; xI v/C @tv.t;�1/ � �v.t;�1/CH.t;�1I v/

D �@tv � �
2@xxv C �v �H.t; xI v/;

which means that v is a solution of the Bellman equation. Therefore, we have proved that
.f; v; s�/ is a BGP solution of system (2).

We conclude by observing that c < � is necessary for a BGP to exist. Indeed, if a BGP
exists, we have established so far that it is of the form (82) for some .z; w; �/ solution of
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(21) and for some constant K 2 R. By properties of z and � , given in Proposition 4.2, we
deduce that vxx ! 0 as x!�1, owing to elliptic estimates, while s� D �.x � ct/! 1

as x ! �1. Then, writing the equation for z in (21) in terms of vx D exz.x � ct/,
integrating it on .�1; x/ and using that v is a solution of (2), with the same computation
as before we get

.� � c/K D ˛.1/

Z
R
eyz.y/w.y/ dy:

Since the right-hand side is positive, and K � 0 because otherwise v would be negative
for �x large, we deduce that � > c.

We can finally conclude with the proof of our main result.

Proof of Theorem 2.2. (i) If there exists a BGP solution, then we have the neces-
sary condition c < � from Proposition 4.8. In addition, a BGP solution yields
a traveling wave .z; w/ solution of (21). Hence c must satisfy the conditions in
Theorem 4.1 (i).

(ii) By Theorem 4.1 (ii), there exists a traveling wave with speed c 2 .2�2;2�
p
˛.1//

which is also critical. If � � 2�
p
˛.1/, then c < � so by Proposition 4.8 this

yields a BGP solution of (2), which is critical as well, i.e. fulfills (4).

(iii) Putting together Theorem 4.1 (iii) and Proposition 4.8, for every c 2 Œ2�
p
˛.1/;

˛.1/C �2/ such that c < �, we have a BGP solution of (2) with growth c, and
with arbitrary normalization at any given point.
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