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Normalized solutions of L2-supercritical NLS equations
on compact metric graphs

Xiaojun Chang, Louis Jeanjean, and Nicola Soave

Abstract. This paper is devoted to the existence of non-trivial bound states of prescribed mass for
the mass-supercritical nonlinear Schrödinger equation on compact metric graphs. The investigation
is based upon a min-max principle for some constrained functionals which combines the mono-
tonicity trick and second-order information on the Palais–Smale sequences, and upon the blow-up
analysis of bound states with prescribed mass and bounded Morse index.

1. Introduction and main results

In this paper we investigate the existence of non-constant critical points for the mass super-
critical NLS energy functional E.�;G /WH 1.G /! R defined by

E.u;G / D
1

2

Z
G

ju0j2 dx �
1

p

Z
G

jujp dx; p > 6 (1.1)

under the mass constraint Z
G

juj2 dx D � > 0; (1.2)

where G is a compact metric graph. Critical points, also called bound states, solve the
stationary nonlinear Schrödinger equation (NLS) on G ,

�u00 C �u D jujp�2u;

for some Lagrange multiplier �, coupled with the Kirchhoff condition at the vertexes (see
(1.3) below). In turn, solutions to (1.3) give standing waves of the time-dependent focusing
NLS on G ,

i@t .t; x/ D �@xx .t; x/ � j .t; x/j
p�2 .t; x/;

via the ansatz  .t; x/ D ei�tu.x/. The constraint (1.2) is dynamically meaningful as the
mass (or charge), as well as the energy, is conserved by the NLS flow.
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One of the main physical motivations to consider the Schrödinger equation on metric
graphs is the study of propagation of optical pulses in nonlinear optics, or of matter waves
(in the theory of Bose–Einstein condensates), in ramified structures, such as T -junctions
or X -junctions. We refer the interested reader to the recent paper [26], to [5, 10, 29, 30],
and to the references therein for more details. In addition, the problem on metric graphs
presents interesting new mathematical features with respect to the Euclidean case. For
these reasons, the problem of existence of bound states on metric graphs attracted a lot of
attention in the past decade, mainly in the subcritical or critical regimes, which correspond
to p 2 .2; 6/ or p D 6, respectively. In such frameworks, a particularly relevant issue
concerns the existence of ground states, that is, global minimizers of the energy under the
mass constraint; see [1–4] for non-compact G , and [13, 14] for the compact case. We also
refer to [11,16,31–33,35] and references therein for strictly related issues (problems with
localized nonlinearities, combined nonlinearities, existence of critical points in absence of
ground states), always in subcritical and critical regimes.

In striking contrast, the supercritical regime on general graphs is essentially un-
touched. We are only aware of [6] in which the assumptions allow the analysis to be
reduced to the study of minimizing sequences living in a bounded subset of the constraint;
see Remark 1.4. Actually, in the supercritical regime the energy is always unbounded from
below (see the proof of Lemma 3.4 below), and ground states never exist. However, it is
natural to discuss the existence of bound states, and in this paper we address this problem
on any compact graph G . An interesting feature of this setting is that there always exists
a constrained constant (trivial) critical point of E.�; G /, obtained by taking the constant
function �� WD .�=`/1=2, where ` denotes the total length of G . Thus, in order to obtain a
non-trivial result, one has to focus on existence of non-constant bound states.

Basic notation and main result

We recall that a metric graph G D .E;V/ is a connected metric space obtained by glueing
together a number of closed line intervals, the edges in E , by identifying some of their
endpoints, the vertexes in V . The peculiar way in which these identifications are performed
defines the topology of G . Any bounded edge e is identified with a closed bounded interval
Ie, typically Œ0; `e� (where `e is the length of e), while unbounded edges are identified with
(a copy of) the closed half-line Œ0;C1/. A metric graph is compact if and only if it has a
finite number of edges, and none of them is unbounded.

A function u on G is a map uW G ! R, which is identified with a vector of functions
¹ueº, where each ue is defined on the corresponding interval Ie. Endowing each edge with
Lebesgue measure, one can define Lp spaces over G , denoted by Lp.G /, in a natural way,
with norm

kuk
p

Lp.G /
D

X
e

kuek
p

Lp.e/:

The Sobolev space H 1.G / is defined as the set of functions uW G ! R such that ue 2

H 1.Œ0; `e�/ for every bounded edge e, ue 2 H
1.Œ0;C1// for every unbounded edge e,
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and u is continuous on G (in particular, if a vertex v belongs to two or more edges ei , the
corresponding functions uei take the same value on v); the norm in H 1.G / is naturally
defined as

kuk2
H1.G /

D

X
e

�
ku0ek

2
L2.e/ C kuek

2
L2.e/

�
:

We aim to prove the existence of non-constant critical points of the energyE.�;G /, defined
in (1.1), constrained on the L2-sphere

H 1
�.G / WD

®
u 2 H 1.G /W

R
G
juj2 dx D �

¯
:

If u 2 H 1
�.G / is such a critical point, then there exists a Lagrange multiplier � 2 R such

that u satisfies the following problem:8̂<̂
:
�u00 C �u D jujp�2u for every edge e 2 E;X
e�v

u0e.v/ D 0 at every vertex v 2 V ;
(1.3)

where e � v means that the edge e is incident at v, and the derivative u0e.v/ is always
an outer derivative. The second equation is the so-called Kirchhoff condition. Note that
at external vertexes, namely vertexes which are reached by a unique edge, the Kirchhoff
conditions reduce to purely Neumann conditions. Finally, notice that the positive constant
function �� D .�=`/1=2 trivially satisfies (1.3), for � D .�=`/.p�2/=2.

Our main existence result is as follows.

Theorem 1.1. Let G be any compact metric graph, and p > 6. There exists �1 > 0

depending on G and on p such that, for any 0 < � < �1, problem (1.3) with the mass
constraint (1.2) has a positive non-constant solution which corresponds to a mountain
pass critical point of E.�;G / on H 1

�.G /, at a strictly larger energy level than ��.

Remark 1.2. Note that the Lagrange multiplier associated with any positive solution u to
(1.3) is positive. Indeed, by standard arguments, we know that u 2 C 2.e/ on every edge.
Then, integrating the first equation in (1.3) on every edge, summing over the edges, and
making use of the Kirchhoff condition, we obtain

�

Z
G

juj dx D

Z
G

jujp�1 dx;

whence we deduce that � > 0.

Remark 1.3. The theorem is not a perturbation result, in the sense that the value �1
will not be obtained by any limit process, and can be explicitly estimated. We refer to
Proposition 2.1 and Remark 2.2 for more details.

On the other hand, one may wonder whether or not the restriction � < �1 can be
removed. This is an open problem; our min-max approach fails for large masses. Observ-
ing that our solutions will have Morse index at most 2 as critical points of the associated
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action functional (see Section 3), another related issue could be to investigate whether
it is possible to find solutions of (1.3), possibly non-positive, with any mass � > 0 and
Morse index bounded by 2. For the NLS equations with Dirichlet conditions in bounded
Euclidean domains, this question has a negative answer; see [34, Theorem 1.2]. Even if
the two problems are not equivalent, this result suggests that a bound of type � < �1 may
be necessary.

The proof of Theorem 1.1 is divided into some intermediate steps. First, in Section 2,
we observe the local minimality of the constant solution for � < �1, following [13].

Since in addition E.�; G / is unbounded from below, as p > 6, this naturally suggests
the possible existence of a second critical point, of mountain pass type. However, ifE.�;G /
indeed has a mountain pass geometry, it is unclear whether there exists a bounded Palais–
Smale sequence at the mountain pass level. Since G is compact the existence of such a
sequence would guarantee a corresponding critical point. We point out that, to establish
its existence, the techniques based on scaling, usually employed in the Euclidean setting
and related to the validity of a Pohozaev identity (see [23] or [7, 22]), do not work, since
G is not scale invariant. To overcome this obstruction, we shall construct a special Palais–
Smale sequence whose elements are exact critical points of some approximating problems.
To this aim we introduce the family of functionals E�.�;G /WH 1

�.G /! R defined by

E�.u;G / D
1

2

Z
G

ju0j2 dx �
�

p

Z
G

jujp dx; � 2
�
1
2
; 1
�
:

Exploiting the monotonicity ofE�.u;G /with respect to � as in [24, Theorem 1.1], it is rel-
atively straightforward to show that E�.�;G /jH1

�.G /
has a bounded Palais–Smale sequence

of mountain pass type, for almost every � 2 Œ1=2; 1�. This ensures the existence of a criti-
cal point u� of E�.u;G /, for almost every � 2 Œ1=2; 1�; see Lemma 3.1. At this point it is
natural to take the limit of ¹u�nº along a sequence �n ! 1�, in order to obtain a critical
point of the original functional. Indeed, if ¹u�nº is bounded, it proves to be a Palais–
Smale sequence of the functional E.�; G /. The idea behind the introduction of a family
of approximating problems is that one expects to show more easily the boundedness of a
sequence of exact critical points (of the approximating problems), than the boundedness
of an arbitrary Palais–Smale sequence. We refer to [24,25] for an exposition of this way to
attack the boundedness of Palais–Smale sequences, a way which is inspired by the work
of Struwe on the monotonicity trick [36].

However, in the present situation once again the boundedness of ¹u�nº is an issue.
To overcome it, we shall look for solutions of the approximating problems having addi-
tional properties. We shall make use of [12, Theorem 1], recalled here as Theorem 3.10.
Applying this abstract result to our problem we obtain the existence of a sequence ¹u�nº
of critical points for E�n.�;G /jH1

�.G /
with uniformly bounded Morse index.

Roughly speaking, [12, Theorem 1] guarantees, for a parametrized family of function-
als having a uniform mountain pass geometry on a constraint, the existence of a bounded
Palais–Smale sequence with second-order, or Morse-type, properties, for almost every
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value of the parameter. It has been known since the pioneering work of Lions [27], see
also [19, 20], that second-order information can turn out to be extremely useful for prov-
ing the compactness of Palais–Smale sequences. The proof of [12, Theorem 1] relies on
a combination of the monotonicity trick, as presented in [24], on ideas from [19, 20], and
on geometric considerations. Related results, but in unconstrained settings, were recently
established in [9, 28].

In Section 4, we perform a detailed blow-up analysis for this type of sequence, in the
spirit of [18] (see also [34]). We think that this analysis is of independent interest and,
for the sake of generality, we perform it on graphs which are not necessarily compact. In
Theorem 4.2, we characterize the blow-up behavior of solutions close to local maximum
points, both when they accumulate in the interior of one edge and when they accumulate
on a vertex; in the latter case, the limit problem is an NLS equation posed on a star
graph, which is a new phenomenon with respect to the Euclidean case. In Theorem 4.6,
we establish a relation between the upper bound on the Morse index and the number of
maximum points of the solutions, and describe the behavior far away from them.

Afterwards, Theorems 4.2 and 4.6 are used in Section 5 to finally deduce, via a
contradiction argument, that also the sequence ¹u�nº is bounded, and converges to the
non-constant mountain pass solution of Theorem 1.1.

Remark 1.4. In [6] the more general case of a graph with a compact core and a finite
number of half-lines attached is considered. However, due to the presence of an external
potential well or of attractive delta boundary conditions at the vertexes, the search for
a solution can be reduced, following the strategy introduced in [8], to the search for a
local minimum on a bounded subset of the mass constraint. So one avoids the issue of the
boundedness of Palais–Smale sequences, which is the central difficulty in our problem.

2. Local minimality of the constant solution

Let �� WD .�=`/1=2 with ` WD jG j being the total length of the graph G . Clearly, the con-
stant function �� is always a solution to (1.3) in H 1

�.G / for some � 2 R, and hence a
constrained critical point of E.�;G / on H 1

�.G /. Furthermore, following [13], we can give
a variational characterization of ��.

Proposition 2.1. Assume that G is a compact metric graph and p > 2. Then there exists
�1 > 0 depending on G and on p such that

(i) if 0 < � < �1, then �� is a strict local minimizer of E.u;G / in H 1
�.G /;

(ii) if � > �1, then �� is not a local minimizer of E.u;G / in H 1
�.G /.

Proof. To characterize the variational properties of ��, we shall evaluate the sign of
the quadratic form ' 2 T��H

1
�.G / 7! d2jH1

�.G /
E.��; G /Œ'; '�, where d2jH1

�.G /
E.u; G /

denotes the constrained Hessian of E.�G / on H 1
�.G / and T��H

1
�.G / is the tangent space
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of H 1
�.G / at ��, defined as

T��H
1
�.G / WD

®
� 2 H 1.G /W

R
G
� dx D 0

¯
:

From [13, Proposition 4.1], which remains valid with the same proof for p > 6, we obtain

d2jH1
�.G /

E.��;G /Œ�; ��

D

Z
G

j�0j2 dx � .p � 2/�p�2�

Z
G

j�j2 dx 8� 2 T��H
1
�.G /: (2.1)

Now denote by �2.G / the smallest positive eigenvalue of the Kirchhoff Laplacian on
G (that is, �.�/00 on G , coupled with the Kirchhoff condition at the vertexes), namely

�2.G / D inf
�2H1.G /R
G � dxD0

R
G
j�0j2dxR

G
j�j2dx

:

Let us suppose that 0 < � < �1, where

�1 WD `
��2.G /
p � 2

� 2
p�2
; (2.2)

and let ˇ 2 .0; 1/ be such that

ˇ�2.G / � .p � 2/
��
`

� p�2
2
> 0:

In view of (2.1), it follows that

d2jH1
�.G /

E.��;G /Œ�; �� � .1 � ˇ/

Z
G

j�0j2 C
�
ˇ�2.G / � .p � 2/�

p�2
�

� Z
G

j�j2 dx

for every � 2 T��H
1
�.G /, which implies that d2jH1

�.G /
E.��;G / is positive definite when-

ever 0 < � < �1. Hence, for any such �, the constant �� is a strict local minimizer of
E.�;G / on H 1

�.G /.
If instead � > �1, taking an eigenfunction �2 corresponding to �2.G /, we obtain

d2jH1
�.G /

E.��;G /
�
�2; �2

�
D
�
�2.G / � .p � 2/�

p�2
�

� Z
G

j�2j
2 dx < 0;

which implies that �� is not a local minimizer of E.u;G / in H 1
�.G /.

Remark 2.2. By [21, Theorem 1], we have �2.G / � �2=`2. Then by (2.2) it follows that

�1 � `
p�6
p�2

� �2

p � 2

� 2
p�2
:

In particular, �1 !C1 as `!C1:
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3. Mountain pass solutions for approximating problems

When �� is a local minimizer of the energy, and since the energy is unbounded from
below on H 1

�.G / in the supercritical regime, one may consider the question of finding a
non-constant solution of mountain pass (MP) type. The existence of an MP solution will
be the content of this and the next two sections. Before proceeding, it is convenient to
recall a preliminary result and a definition.

Lemma 3.1 ([14, Proposition 3.1]). Assume that G is a compact metric graph, p > 2, and
¹unº � H

1
�.G / is a bounded Palais–Smale sequence of E.�; G / constrained on H 1

�.G /.
Then there exists u 2 H 1.G / such that, up to a subsequence, un ! u strongly in H 1

�.G /.

Definition 3.2. For any graph F (not necessarily compact) and any solution U 2 C.F /\
H 1

loc.F /, not necessarily in H 1.F /, of8̂<̂
:
�U 00 C �U D �jU jp�2U in F ;X
e�v

U 0.v/ D 0 for any vertex v of F ;
(3.1)

with �; � 2 R, we consider

Q.'IU;F /

WD

Z
F

�
j'0j2 C .� � .p � 1/�jU jp�2/'2

�
dx 8' 2 H 1.F / \ Cc.F /: (3.2)

The Morse index of U , denoted by m.U /, is the maximal dimension of a subspace W �
H 1.F / \ Cc.F / such that Q.'IU;F / < 0 for all ' 2 W n ¹0º.

Note that this is the definition of a Morse index as a solution to (3.1), and not as a
critical point of the energy functional under the L2 constraint (see Definition 3.9 below).

Lemma 3.1 is a useful result which exploits the compactness of the reference graph G .
However, as already anticipated in the introduction, in the present setting even the exis-
tence of a bounded Palais–Smale sequence at the mountain pass level is not straightfor-
ward. To overcome this issue, we introduce the family of functionals

E�.u;G / D
1

2

Z
G

ju0j2 dx �
�

p

Z
G

jujp dx;

depending on the parameter � 2 Œ1=2; 1�. The idea is to adapt the monotonicity trick [24]
on this family.

The main result of this section is the following:

Proposition 3.3. Assume that G is a compact metric graph and p > 6. Let � 2 .0; �1/.
For almost every � 2 Œ1=2; 1�, there exists a critical point u� of E�.�; G / on H 1

�.G /, at
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level c� > E�.��;G /, which solves8̂<̂
:
�u00� C ��u� D �u

p�1
� ; u� > 0 in G ;X

e�v

u0�.v/ D 0 for any vertex v; (3.3)

for some �� > 0. Moreover, its Morse index satisfies m.u�/ � 2.

In the proof of the proposition, the value of� 2 .0;�1/ is fixed and will not change. As
a first step, we show that the family of functionals E�.�;G / has a mountain pass geometry
on H 1

�.G / around the constant local minimizer ��, uniformly with respect to �.

Lemma 3.4. Assume that G is a compact metric graph and p > 6. There exists w 2
H 1
�.G / such that, setting

� WD
®

 2 C.Œ0; 1�;H 1

�.G //W 
.0/ D ��; 
.1/ D w
¯
;

we have

c� WD inf

2�

max
t2Œ0;1�

E�.
.t/;G / > E�.��;G /

D max
®
E�.
.0/;G /; E�.
.1/;G /

¯
8� 2

�
1
2
; 1
�
:

Remark 3.5. Note that the functions �� and w, and hence also � , are independent of �.

Proof of Lemma 3.4. Since � � 1, and taking advantage of the monotonicity, we see from
the proof of Proposition 2.1 that �� remains a strict local minimizer of E�.�;G / inH 1

�.G /

for all � 2 Œ1=2; 1�.
More precisely, for any � 2 Œ1=2;1� there exists a ballB.��; r�/ of center �� inH 1

�.G /

and radius r� > 0 such that �� strictly minimizes E�.�G / in B.��; r�/, and

inf
u2@B.��;r�/

E�.u;G / > E�.��;G / > E1.��;G /: (3.4)

Let e be any edge of G ; we identify e with the interval Œ�`e=2; `e=2�. Then any
compactly supported H 1 function v on such an interval, with mass �, can be seen as
a function in H 1

�.G /. Denoting vt .x/ WD t1=2v.tx/, with t > 1, it is not difficult to check
that vt 2 H 1

�.G / (notice in particular that the support of vt is shrinking as t becomes
larger), and that

E�.vt ;G / D
t2

2

Z
e
jv0j2 dx �

�t
p�2
2

p

Z
e
jvjp dx �

t2

2

�Z
e
jv0j2 dx �

t
p�6
2

p

Z
e
jvjp dx

�
;

for every � 2 Œ1=2; 1�. Since p > 6,

E�.vt ;G / < E1.��;G / < E�.��;G /
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for t sufficiently large (independent of �). Now taking w D vt with any such choice of t
in the definition of � , the above estimate and the minimality of �� in B.��; r�/ imply that
w 62 B.��; r�/. Therefore, by continuity, for any 
 2 � there exist t
 2 Œ0; 1� such that

.t
 / 2 @B.��; r�/; and hence, by (3.4),

max
t2Œ0;1�

E�.
.t/;G / � E�.
.t
 /;G / > inf
u2@B.��;r�/

E�.u;G / > E�.��;G /

D max
®
E�.��;G /; E�.w;G /

¯
;

which completes the proof.

At this point we wish to use the monotonicity trick on the family of functionals
E�.�G /, in order to obtain a bounded Palais–Smale sequence at level c� for almost every
� 2 Œ1=2;1�. In fact, we need a stronger result carrying also an “approximate Morse-index”
information, Theorem 3.10 below, proved in [12].

We recall the general setting in which the theorem is stated. Let .E; h�; �i/ and .H; .�; �//
be two infinite-dimensional Hilbert spaces and assume that

E ,! H ,! E 0;

with continuous injections. For simplicity, we assume that the continuous injection E ,!

H has norm at most 1 and identify E with its image in H . We also introduce´
kuk2 D hu; ui;

juj2 D .u; u/;
u 2 E;

and, for � 2 .0;C1/, we define

S� D
®
u 2 E; juj2 D �

¯
:

For our application, it is plain that E D H 1.G / and H D L2.G /.
In the following definition, we denote by k�k� and k�k��, respectively, the operator

norm of L.E;R/ and of L.E;L.E;R//.

Definition 3.6. Let �WE! R be a C 2-functional on E and ˛ 2 .0; 1�. We say that �0 and
�00 are ˛-Hölder continuous on bounded sets if for anyR> 0 one can findM DM.R/> 0
such that for any u1; u2 2 B.0;R/,

k�0.u1/� �
0.u2/k� �Mku2 � u1k

˛; k�00.u1/� �
00.u2/k�� �Mku1 � u2k

˛: (3.5)

Definition 3.7. Let � be a C 2-functional on E; for any u 2 E define the continuous
bilinear map

D2�.u/ D �00.u/ �
�0.u/ � u

juj2
.�; �/:

Remark 3.8. If u is a critical point of the functional �jS� then the restriction of D2�.u/

to TuS� coincides with the constrained Hessian of �jS� at u (as introduced in Proposi-
tion 2.1.)
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Definition 3.9. Let � be a C 2-functional on E; for any u 2 S� and � > 0, we define the
approximate Morse index by

zm� .u/ D sup
®
dimL j L is a subspace of TuS� such that

D2
jS��.u/.'; '/ < ��k'k

2
8' 2 L n ¹0º

¯
:

If u is a critical point for the constrained functional �jS� and � D 0, we say that this is the
Morse index of u as constrained critical point.

Theorem 3.10 ([12, Theorem 1]). Let I � .0;C1/ be an interval and consider a family
of C 2 functionals ˆ�WE ! R of the form

ˆ�.u/ D A.u/ � �B.u/; � 2 I;

where B.u/ � 0 for every u 2 E, and

either A.u/!C1 or B.u/!C1 as u 2 E and kuk ! C1. (3.6)

Suppose moreover that ˆ0� and ˆ00� are ˛-Hölder continuous on bounded sets for some
˛ 2 .0; 1�. Finally, suppose that there exist w1; w2 2 S� (independent of �) such that,
setting

� D
®

 2 C.Œ0; 1�; S�/W 
.0/ D w1; 
.1/ D w2

¯
;

we have

c� WD inf

2�

max
t2Œ0;1�

ˆ�.
.t// > max
®
ˆ�.w1/; ˆ�.w2/

¯
; � 2 I:

Then, for almost every � 2 I , there exist sequences ¹unº � S� and �n! 0C such that, as
n!C1,

(i) ˆ�.un/! c�;

(ii) kˆ0�jS�.un/k ! 0;

(iii) ¹unº is bounded in E;

(iv) zm�n.un/ � 1.

We are ready to give the proof of Proposition 3.3.

Proof of Proposition 3.3. We apply Theorem 3.10 to the family of functionals E�.�; G /,
with E D H 1.G /, H D L2.G /, S� D H 1

�.G /, and � defined in Lemma 3.4. Setting

A.u/ D
1

2

Z
G

ju0j2 dx and B.u/ D
�

p

Z
G

jujp;

assumption (3.6) holds, since we have

u 2 H 1
�.G /; kuk ! C1 H) A.u/!C1:

Moreover, assumption (3.5) holds since the unconstrained first and second derivatives of
E� are of class C 1, and hence locally Hölder continuous, on H 1

�.G /.
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In this way, for almost every � 2 Œ1=2; 1� there exist a bounded Palais–Smale sequence
¹unº for the constrained functional E�.�; G /jH1

�.G /
at level c�, and �n ! 0C, such that

zm�n.un/ � 1. Moreover, as explained in [12, Remark 1.4], since u 2 S� 7! juj 2 S�,
w1; w2 � 0, the map u 7! juj is continuous, and E�.u; G / D E�.juj; G /, it is possible
to choose ¹unº with the property that un � 0 on G . By Lemma 3.1, we have un ! u�
strongly inH 1.G /, and u� � 0 is a constrained critical point, thus a non-negative solution
to (3.3), for �� D �.u�/ (Lemma 3.1 is stated for the particular value � D 1; however, it
is immediate to check that this choice does not play any role in the proof). The case when
u� vanishes at one (or more) vertex can be easily ruled out by the Kirchhoff condition, the
uniqueness theorem for ODEs, and the fact that u� � 0. Thus, u� is strictly positive on
each vertex, whence u� > 0 in G by the strong maximum principle.

It remains to show that the Morse index m.u�/, defined in Definition 3.2 with � D
�.u�/ is at most 2. This result can be directly deduce from [12, Theorem 3] but we prove
it here in our setting for completeness. To simplify the notation we omit the dependence
of the functionals E�.�;G / on G . Defining

N�� WD �
1

�
E 0�.u�/ � u� D � lim

n!1

1

�
E 0�.un/ � un;

we conclude from Theorem 3.10 (ii) that N�� D ��; we refer to [12, Remark 1.2] for more
detail.

To show that u� 2 S� has Morse index at most 1 as a constrained critical point, see
Definition 3.9, we assume by contradiction that there exists aW0 � TuS� with dimW0D 2
such that

D2E�.u�/.w;w/ < 0 8w 2 W0 n ¹0º:

Since W0 is of finite dimension, by compactness and homogeneity, there exists a ˇ > 0
such that

D2E�.u�/.w;w/ < �ˇkwk
2
8w 2 W0 n ¹0º:

Now, from [12, Corollary 1] or using directly that E 0� and E 00� are ˛-Hölder continuous on
bounded sets for some ˛ 2 .0; 1�, we deduce that there exists a ı1 > 0 such that, for any
v 2 S� such that kv � uk � ı1,

D2E�.v/.w;w/ < �
ˇ

2
kwk2 8w 2 W0 n ¹0º: (3.7)

Since ¹unº � S� converges to u we have kun � uk � ı1 for n 2 N large enough. Then
since dimW0 > 1, (3.7) provides a contradiction with Theorem 3.10 (iv) where we recall
that �n! 0C. Finally, recalling that S� is of codimension 1 inH 1.G / and observing that,
for any w 2 H 1.G /,

D2E�.u�/.w;w/ WD E
00
� .u/.w;w/C ��.w;w/

D

Z
G

�
jw0j2 C .�� � .p � 1/ju�j

p�2/w2
�
dx;

we obtain that m.u�/ � 2.
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4. Blow-up phenomena

Proposition 3.3 does not ensure the existence of a mountain pass solution for the original
problem obtained when � D 1. However, it gives the existence of a sequence �n ! 1�,
with a corresponding sequence of mountain pass critical points u�n 2H

1
�.G / ofE�n.�;G /,

constrained onH 1
�.G /. We aim to show that ¹u�nº converges to a constrained critical point

of E1.�; G /. For this purpose, it is sufficient to prove that ¹u�nº is bounded in H 1.G /,
thanks to Lemma 3.1. The advantage of working with ¹u�nº is that this is a sequence of
solutions of approximating problems with uniformly bounded Morse index. In this section
we perform a blow-up analysis for this type of sequence, in the spirit of [18]. This analysis,
of independent interest, will be used in the next section to gain the desired boundedness
of ¹u�nº.

A somewhat related study, regarding least action solutions, was previously performed
in [15].

General setting for the blow-up analysis

For the sake of generality, in what follows we consider a general metric graph satisfying
the following assumption:

G has a finite number of vertexes and edges (but is not necessarily compact). (4.1)

Let ¹unº �H 1.G / be a sequence of positive solutions of the NLS equation, coupled with
Kirchhoff condition at the vertexes:8̂̂<̂

:̂
�u00n C �nun D �nu

p�1
n on G ;

un > 0 on G ;P
e�v u

0
e;n.v/ D 0 8v 2 V ;

(4.2)

where �n ! 1 (in fact, it would be sufficient to ask that �n ! � > 0, regardless of the
value of �), and �n 2 R.

We denote Br .x0/ D ¹x 2 G W dist.x; x0/ < rº. Moreover, we denote by Gm the star
graph with m � 1 half-lines glued together at their common origin 0 (note that G1 D RC,
and G2 is isometric to R).

It is also convenient to recall the definition of Q.�Iu;G /; see (3.2).
First, we note that if �n !C1, then un blows-up along any sequence of local maxi-

mum points.

Lemma 4.1. Let G be a metric graph satisfying (4.1), p > 2, and un 2 H 1.G / be a
solution to (4.2) for some �n 2 R and �n 2 .0; 1�. Let xn 2 G be a local maximum point
for un. Then

un.xn/ � �
1
p�2
n :
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Proof. Let e be an edge of G such that xn 2 e ' Œ0; `e�; it is plain that unje 2 C 2.Œ0; `e�/,
by regularity. If xn is in the interior of e, then u00n.xn/ � 0; if instead xn is a vertex of
e, then, by the Kirchhoff condition, u0n.xn/ must vanish, and hence u00n.xn/ � 0 again. In
both cases, the equation for un (which holds on the whole closed interval Œ0; `e�) yields

�nun.xn/ � �nu
p�1
n .xn/ D u

00
n.xn/ � 0;

whence the thesis follows.

The next theorem provides a precise behavior, close to a local maximum point, of
the sequence ¹unº, as �n ! C1, while m.un/ remains bounded. In the statement and
in the proof, we shall systematically identify an edge e with the interval Œ0; `e�, where `e

denotes the length of e. Since in this section we allow G to be non-compact, it is admissible
that `e D C1 (clearly, in such a case e ' Œ0;C1/; unless it is necessary, we shall not
distinguish these cases).

Theorem 4.2. Let G be a metric graph satisfying (4.1), p > 2, and ¹unº � H 1.G / be a
sequence of solutions to (4.2) for some �n 2 R and �n 2 .0; 1�. Suppose that

�n !C1 and m.un/ � Nk for some Nk � 1:

Let xn 2 G be such that, for some Rn !1,

un.xn/ D max
BRn Q"n .xn/

un; where Q"n D .un.xn//�
p�2
2 ! 0:

Suppose moreover that

lim sup
n!1

dist.xn;V/
Q"n

D C1: (4.3)

Then, up to a subsequence, the following hold:

(i) All the xn lie in the interior of the same edge e ' Œ0; `e�.

(ii) Setting "n D �
� 12
n , we have

Q"n

"n
! .0; 1�;

dist.xn;V/
"n

!C1 as n!1;
(4.4)

and the scaled sequence

vn.y/ WD "
2
p�2
n un.xn C "ny/ for y 2

Œ0; `e� � xn

"n
(4.5)

converges to V in C 2loc.R/ as n!1, where V 2H 1.R/ is the (unique) positive
finite energy solution to8̂̂<̂

:̂
�V 00 C V D V p�1; V > 0 in R;

V .0/ D max
R
V;

V .x/! 0 as jxj ! C1:
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(iii) There exists �n 2 C1c .G /, with supp�n � B NR"n.xn/ for some NR > 0, such that

Q.�nIun;G / < 0:

(iv) For all R > 0 and q � 1, we have

lim
n!1

�
1
2�

q
p�2

n

Z
BR"n .xn/

uqn dx D lim
n!1

Z
BR.0/

vqn dy D

Z
BR.0/

V q dy:

If, instead of (4.3), we suppose that

lim sup
n!1

dist.xn;V/
Q"n

< C1; (4.6)

then, up to a subsequence, the following hold:

(i0) xn ! v 2 V , and all the xn lie on the same edge e1 ' Œ0; `1�, where the vertex
v is identified by the coordinate 0 on e1.

(ii0) Let e2 ' Œ0; `2�; : : : ; em ' Œ0; `m� be the other edges of G having v as a vertex

(if any), where v is identified by the coordinate 0 on each ei . Setting "n D �
� 12
n ,

we have
Q"n

"n
! .0; 1�;

lim sup
n!1

dist.xn;V/
"n

< C1;

(4.7)

and the scaled sequence defined by

vn.y/ WD "
2
p�2
n un."ny/ for y 2

ei
"n

, for i D 1; : : : ; m;

converges to a limit V in C 0loc.Gm/ as n!1. Denoting by Vi the restriction of
V to the i th half-line `i of Gm, and by vi;n the restriction of vn to ei="n, we have
moreover that vi;n ! Vi in C 2loc.Œ0;C1//. Finally, V 2 H 1.Gm/ is a positive
finite energy solution to the NLS equation on the star graph8̂̂̂̂

<̂
ˆ̂̂:
�V 00 C V D V p�1; V > 0 in Gm;

mX
iD1

V 0i .0
C/ D 0;

V .x/! 0 as dist.x; 0/!1

with a global maximum point Nx located on `1, whose coordinate is

Nx D lim
n!1

Nxn 2 Œ0;C1/; where Nxn WD
dist.xn;V/

"n
:

(iii0) There exists �n 2 C1c .G /, with supp�n � B NR"n.xn/ for some NR > 0, such that

Q.�nIun;G / < 0:
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(iv0) For all R > 0 and q � 1, we have

lim
n!1

�
1
2�

q
p�2

n

Z
BR"n .xn/

uqn dx D lim
n!1

Z
BR. Nxn/

vqn dy

D

Z
Œ0; NxCR�

V
q
1 dy C

mX
iD2

Z
Œ0;R� Nx�

V
q
i dy

D

Z
BR. Nx/

V q dy

(where BR. Nxn/ and BR. Nx/ denote the balls in the scaled and in the limit graphs,
respectively).

The proof of the theorem is divided into several intermediate steps. We start with some
preliminary results.

Lemma 4.3. Let U 2 H 1
loc.Gm/ be a solution to8̂̂̂̂
<̂
ˆ̂̂:
�U 00 C �U D �U p�1 in Gm;

U > 0 in Gm;

mX
iD1

U 0i .0/ D 0;

(4.8)

for some p > 2, �; � > 0, where Ui denotes the restriction of U on the i th half-line of Gm.
Suppose that U is stable outside a compact set K, in the sense that Q.'IU;Gm/ � 0 for
all ' 2 H 1.Gm/ \ Cc.Gm nK/. Then U.x/! 0 as dist.x; 0/!C1, and U 2 H 1.G /.

The proof is analogous to that of [18, Theorem 2.3], and hence we omit it.

Remark 4.4. Clearly, by the density of H 1.Œ0;C1// \ Cc.Œ0;C1// in H 1.Œ0;C1//,
any solution with finite Morse index is stable outside a compact set.

Lemma 4.5. Let U 2 H 1.Gm/ be any non-trivial solution of (4.8). Then its Morse index
m.U / is strictly positive.

Proof. Thanks to the Kirchhoff condition, it is not difficult to check thatZ
Gm

.jU 0j2 C �U 2/ dx D

Z
Gm

�jU jp dx:

Therefore
Q.U IU;Gm/ D .2 � p/

Z
Gm

jU jp dx < 0;

and the thesis follows by density of H 1.Gm/ \ Cc.Gm/ in H 1.Gm/.

Proof of Theorem 4.2 under assumption (4.3). This case is simpler than that when (4.6)
holds, since, roughly speaking, after rescaling we do not see the vertexes of G , and we
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obtain a limit problem on the line. We present in any case the proof for the sake of com-
pleteness. Since G has a finite number of edges, up to a subsequence all the points xn
belong to same edge e, and (i) holds. Let Qun be defined by

Qun.y/ WD Q"
2
p�2
n un.xn C Q"ny/ for y 2 Qen WD

e � xn
Q"n

:

Notice that any interval Œ�a; a�, with a > 0, is contained in Qen for sufficiently large n.
Indeed, .e � xn/=Q"n contains the set®

y 2 RW j Q"nyj < dist.xn;V/
¯
D
®
y 2 RW jyj < dist.xn;V/=Q"n

¯
;

which exhausts the whole line R as n!1, by (4.3).
Now, on every compact Œ�a; a� we have Qun.0/ D 1 D maxŒ�a;a� Qun for n large (since

un.xn/ D maxBRn Q"n .xn/ un for some Rn !C1), and

�Qu00n C Q"
2
n�n Qun D �n Qu

p�1
n ; Qun > 0 in Qen:

Furthermore, by Lemma 4.1,
Q"2n�n 2 .0; 1� 8n:

Thus, by elliptic estimates, we have Qun ! Qu in C 2loc.R/, and the limit Qu solves

� Qu00 C Q� Qu D Qup�1; Qu � 0 in R; (4.9)

for some Q� 2 Œ0; 1�. By local uniform convergence, Qu.0/D 1, and hence Qu > 0 in R by the
strong maximum principle. We claim that

the Morse index of Qu is bounded by Nk: (4.10)

If by contradiction this is false, then there exists k > Nk functions �1; : : : ; �k 2 H 1.R/ \
Cc.R/, linearly independent inH 1.R/, such thatQ.�i I Qu;R/ < 0 for every i 2 ¹1; : : : ; kº.
Then let

�i;n.x/ D Q"
1
2
n�i

�x � xn
Q"n

�
:

Since �i has compact support, the functions �i;n can be regarded as functions in H 1.e/,
and hence in H 1.G /, for every n large, thanks to (4.3). Indeed, if supp �i � Œ�M;M�,
then ®

x 2 RW x�xn
Q"n
� Œ�M;M�

¯
D
�
xn � Q"M; xn C Q"nM

�
�

h
xn � Q"n

dist.xn;V/
Q"n

; xn C Q"n
dist.xn;V/
Q"n

i
� e:

Moreover, �1;n; : : : ; �k;n are linearly independent in H 1.G /, and, by scaling,

Q.�i;nIun;G / D Q.�i;nIun; e/ D Q.�i I Qun; Qen/! Q.�i I Qu;R/ < 0:
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This implies thatm.un/ � k > Nk for sufficiently large n, a contradiction. Therefore, claim
(4.10) is proved. To sum up, Qu is a finite Morse index non-trivial solution to (4.9), for
some Q� 2 Œ0; 1�. Having Q� D 0 is however not possible, since by phase plane analysis the
equation Qu00 C Qup�1 D 0 in R has only, as non-trivial solutions, periodic sign-changing
solutions. Now, by Lemma 4.3, Qu! 0 as jxj ! C1, and Qu 2 H 1.R/. Therefore,

0 < lim inf
n!1

�n

.un.xn//p�2
� lim sup

n!1

�n

.un.xn//p�2

� 1; (4.11)

which proves the first estimate in (4.4). At this point it is equivalent, but more convenient,
to work with vn defined by (4.5) rather than with Qun. By (4.3) and (4.11),

lim sup
n!1

dist.xn;V/
"n

D C1:

Thus, similarly to before, one can show that vn converges to a limit function v in C 2loc.R/,
such that

�v00 C v D vp�1; v � 0 in RI

moreover, v has a positive global maximum v.0/ � 1 (thus v > 0 in R), has finite Morse
indexm.v/ � Nk, and hence, by Lemma 4.3, v! 0 as jxj !1, and v 2H 1.R/. It is well
known that there exists only one such solution, denoted by V . Thus, (ii) is proved. Point
(iv) follows directly by local uniform convergence. Finally, point (iii) is a consequence of
the fact that the Morse index of V is positive (see Lemma 4.5; in fact, it is well known
that in fact m.V / is precisely equal to 1). This implies that there exists � 2 C 1c .R/ such
that Q.�IV;R/ < 0; thus, defining

�i;n.x/ D "
1
2
n�i

�x � xn
"n

�
;

we deduce that for sufficiently large n we have Q.�i;nI un; G / < 0, and supp �i;n �
B NR"n.xn/ for some NR > 0.

Proof of Theorem 4.2 under assumption (4.6). Since Q"n! 0 and G has a finite number of
vertexes and edges, up to a subsequence the maximum points xn converge to a vertex v,
and belong to same edge e1 ' Œ0; `1�; thus, (i0) holds, and we can suppose that

dn

Q"n
! � 2 Œ0;C1/; dn WD dist.xn;V/ D xn:

Let
Qun.y/ WD Q"

2
p�2
n un.Q"ny/ for y 2 Qei;n WD

ei
Q"n

for i D 1; : : : ; m:

Note that Qun is defined on a graph Gm;n consisting of m expanding edges, glued together
at their common origin, which is identified with the coordinate 0 on each edge Qei;n. In the
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limit n!1, this graph converges to the star graph Gm. Plainly, for every a > �C 1 and
large n,

Qun

�xn
Q"n

�
D 1 D max

Ba.0/
Qun

(since un.xn/ D maxBRn Q"n .xn/ un for some Rn !C1),

�Qu00n C Q"
2
n�n Qun D �n Qu

p�1
n ; Qun > 0

on any edge of Gm;n, and the Kirchhoff condition at the origin holds. Also, by Lemma 4.1,

Q"2n�n 2 .0; 1� 8n:

Thus, by elliptic estimates, we have QunjQei;n DW Qui;n! Qui in C 2loc.Œ0;C1// for every i , and
the limit Qui solves

� Qu00i C
Q� Qui D Qu

p�1
i ; Qui � 0 in .0;C1/ (4.12)

for some Q�2 Œ0;1�. Moreover, since Qun is continuous on Gm;n and by uniform convergence,
Qui .0/ D Quj .0/ for every i ¤ j , so that Qu ' . Qu1; : : : ; Qum/ can be regarded as a function
defined on Gm. Since the convergence Qui;n ! Qui takes place in C 2 up to the origin, the
Kirchhoff condition also passes to the limit. Now we exclude the case that Qu � 0 on some
half-line of Gm. By local uniform convergence, we have

Qu1.�/ D lim
n!1

Qu1;n

�dn
Q"n

�
D 1:

This implies that Qu1 > 0 in .0;C1/, by the strong maximum principle. In turn, the Kirch-
hoff condition, the uniqueness theorem for ODEs, and the strong maximum principle
again, ensure that Qui > 0 on .0;C1/ for every i . Finally, we claim that

the Morse index of Qu is bounded by Nk: (4.13)

The proof of this claim is completely analogous to that of (4.10). If by contradiction
this is false, then there exist k > Nk functions �1; : : : ; �k 2 H 1.Gm/ \ Cc.Gm/, linearly
independent in H 1.Gm/, such that Q.�i I Qu;Gm/ < 0 for every i 2 ¹1; : : : ; kº. Then let

�i;n.x/ D Q"
1
2
n�i

� x
Q"n

�
:

Since �i has compact support, the functions �i;n can be regarded as functions inH 1.G /\

Cc.G / for every n large; precisely, supp.�i;n/ � BRQ"n.xn/ for some R > 2�. Moreover,
�1;n; : : : ; �k;n are linearly independent in H 1.Gm/ and, by scaling,

Q.�i;nIun;G / D Q.�i;nIun; e/ D Q.�i I Qun; Qen/! Q.�i I Qu;R/ < 0:

This implies thatm.un/ � k > Nk for sufficiently large n, a contradiction. Therefore, claim
(4.13) is proved.
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To sum up, Qu is a finite Morse index non-trivial solution to (4.12), for some Q� 2
Œ0; 1�. As before, the case Q� D 0 can be ruled out by phase-plane analysis, and hence,
by Lemma 4.3, Qu! 0 as jxj ! C1, and Qu 2 H 1.Gm/. Therefore,

0 < lim inf
n!1

�n

.un.xn//p�2

� lim sup
n!1

�n

.un.xn//p�2
� 1; (4.14)

which proves the first estimate in (4.7). At this point it is equivalent, but more convenient,
to work with vn defined in point (ii0) of the theorem, rather than with Qun. By (4.6) and
(4.14),

lim sup
n!1

dist.xn;V/
"n

< C1:

Thus, similarly to before, one can show that vn converges, in C 0loc.Gm/ and in C 2loc.Œ0;

C1// on every half-line, to a limit function V ' .V1; : : : ; Vm/, which solves8̂̂<̂
:̂
�V 00 C V D V p�1; V � 0 in Gm;

mX
iD1

V 0i .0
C/ D 0I

furthermore, V has a positive global maximum on the half-line `1, V1. Nx/ � 1 (thus V >

0 in Gm), and has finite Morse index m.V / � Nk. Moreover, by Lemma 4.3, V ! 0 as
jxj ! 1. Thus, (ii0) is proved. Point (iv0) follows directly by local uniform convergence.
Finally, point (iii0) is a consequence of Lemma 4.5. This implies that there exists � 2
H 1.Gm/ \ Cc.Gm/ such that Q.�IV;Gm/ < 0; thus, defining

�i;n.x/ D "
1
2
n�i

�x � xn
"n

�
;

it is not difficult to deduce that for sufficiently large n we have Q.�i;nI un; G / < 0, and
supp�i;n � B NR"n.xn/ for some positive NR.

Theorem 4.2 allows the pointwise blow-up behavior close to local maximum points to
be described. In what follows, we focus on the global behavior, and, in particular, on what
happens far away from local maxima.

Theorem 4.6. Let G be a metric graph satisfying (4.1) and p > 2. Let ¹unº � H 1.G /

be a sequence of solutions to (4.2) such that �n ! C1 and m.un/ � Nk for some Nk � 1.
There exist k 2 ¹1; : : : ; Nkº, and sequences of points ¹P 1n º, . . ., ¹P kn º, such that

�n dist.P in; P
j
n /!C1 8i ¤ j; (4.15)

un.P
i
n/ D max

B
Rn�
�1=2
n

.P in/

un for some Rn !C1, for every i ; (4.16)
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and constants C1; C2 > 0 and R > 0 such that

un.x/ � C1�
1
p�2
n

kX
iD1

e�C2�
1
2
n dist.x;P in/

C C1�
1
p�2
n

hX
jD1

e�C2�
1
2
n dist.x;vj / 8x 2 G n

k[
iD1

B
R�
�1=2
n

.P in/; (4.17)

where v1; : : : ; vh are all the vertexes of G .

Proof. The proof closely follows that of [18, Theorem 3.2], and is divided into two steps.

Step 1. There exist k 2 ¹1; : : : ; Nkº, and sequences of points ¹P 1n º, . . ., ¹P kn º, such that
(4.15) and (4.16) hold, and moreover

lim
R!C1

�
lim sup
n!1

�
� 1
p�2

n max
dn.x/�R�

�1=2
n

un.x/
�
D 0; (4.18)

where dn.x/Dmin¹dist.x;P in/W i D 1; : : : ; kº is the distance function from ¹P n1 ; : : : ;P
n
k
º.

Thanks to Theorem 4.2, we can adapt the proof of [18, Theorem 3.2] with minor
changes (some details are actually simpler in the present setting, since here we deal with
a constant potential, differently to [18]). In adapting [18, Theorem 3.2], it is important to
point out that any limit of un, given by Theorem 4.2, tends to 0 at infinity. This fact is
crucial in the proof of (4.18).

Moreover, if the reference graph is unbounded, it is important to observe that un.x/!
0 as jxj ! C1 on each half-line, since un 2 H 1.G / by assumption. This implies that, if
¹P 1n º; : : : ; ¹P

h
n º are local maximum points of un, then there exists a maximum point on

G n
Sh
iD1 BR��1=2n

.P in/.

Step 2. Conclusion of the proof. By (4.18), for every " 2 .0; 1/ small, to be chosen later,
there exist R > 0 and nR 2 N large such that

max
dn.x/>R�

�1=2
n

un.x/ � �
1
p�2
n " 8n � nR: (4.19)

Thus, in the set An WD ¹dn.x/ > R�
�1=2
n º, in addition to (4.19) we also have

u00n D .�n � u
p�2
n /un H) �u00n C

�n

2
un � 0 (4.20)

provided that " > 0 is small enough.
We want to exploit (4.19) and (4.20) in a comparison argument, as in [18] (or [17,

Theorem 3.1]). However, the presence of the vertexes makes the argument a little more
involved in our setting.
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Let us denote by ¹vj º
h1
jD1 the set of vertexes which are not included in one of the balls

B
R�
�1=2
n

.P in/ for large n. On any such vertex, by (4.19),

un.vj / � �
1
p�2
n ":

For any edge e, we consider the restriction of un on e \ An. Since k is independent of n,
e \ An consists of finitely many relatively open intervals (which may be unbounded, if G

is non-compact).
Let In be any such bounded interval; then the following alternative holds: @In \

¹vj º
h1
jD1 can either be empty (case 1), or be a single vertex , say v1 (case 2), or be a

pair of vertexes, say v1 and v2 (case 3).
Assume first that case 1 holds. Then there exist two indexes i; j 2 ¹1; : : : ; kº such that

@In consists of one point at distance R��1=2n from P in, and one point at distance R��1=2n

from P
j
n . Consider the function

�n.x/ D e
�
�

1
2
n jx�P

i
nj C e�
�

1
2
n jx�P

j
n j;

which solves �00n D 

2�n�n in In. By taking 
 < 1=4, we have

��00n C
�n

2
�n � 0 in In:

Moreover, �
e
R�

1
p�2
n �n � un

�ˇ̌
@In
� �

1
p�2
n .1 � "/ > 0;

and hence, by the comparison principle, we have

u.x/ � e
R�
1
p�2
n �n.x/n 8x 2 In;

which clearly implies the validity of the thesis on In in this case.
If case 2 holds, then there exists an index i 2 ¹1; : : : ; kº such that @In consists of a

point at distance R��1=2n from P in, plus the vertex v1. Arguing as before, it is not difficult
to check that

u.x/ � e
R�
1
p�2
n e�
�

1
2
n jx�P

i
nj C �

1
p�2
n e�
�

1
2
n jx�v1j 8x 2 In;

which gives the thesis in case 2.
In case 3, an analogous argument ensures that

u.x/ � �
1
p�2
n e�
�

1
2
n jx�v1j C �

1
p�2
n e�
�

1
2
n jx�v2j 8x 2 In;

whence the thesis follows once again.
Finally, let us consider the case when In is an unbounded interval of e\An. Then we

only have two possibilities: either @In consists of a point at distance R��1=2n from P in, or
@In consists of a vertex, say v1.
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In the former case, we argue as before with the comparison function

 n.x/ D e
�
R�

1
p�2
n e�
�

1
2
n jx�P

i
nj;

where 
 < 1=4. In the latter one, we can use

 n.x/ D �
1
p�2
n e�
�

1
2
n jx�v1j:

To sum up, slightly modifying the choice of the comparison functions, according to the
structure of @In, it is possible to prove the validity of (4.17) in all the possible cases.

5. Mountain pass solution for the original problem

In this section we complete the proof of the main existence result, Theorem 1.1. Let � 2
.0;�1/. As already anticipated in Section 4, Proposition 3.3 gives a sequence of mountain
pass critical points u�n 2 H

1
�.G / of E�n.�;G / on H 1

�.G / with �n ! 1� and m.u�n/ � 2.
Moreover, the energy level c�n is bounded, since

E1.��;G / � E�.��;G / � c� � c1=2 8� 2
�
1
2
; 1
�

(the first and the second inequalities are proved in Lemma 3.4; the third one follows
directly from the monotonicity of c�). Thus, Theorem 1.1 is a direct corollary of the next
statement.

Proposition 5.1. Let G be a metric graph satisfying (4.1) and p > 6. Let ¹unº � H 1.G /

be a sequence of solutions to (4.2) for some �n 2 R and �n ! 1. Suppose thatZ
G

junj
2 dx D �; m.un/ � Nk 8n;

for some � > 0 and Nk 2 N, and that

the sequence of the energy levels
®
cn WD E�n.un;G /

¯
is bounded:

Then the sequences ¹�nº � R and ¹unº � H 1.G / must be bounded. In addition, ¹unº is
a (bounded) Palais–Smale sequence for E1.�;G / constrained on H 1

�.G /.

Proof of Theorem 1.1. It is sufficient to apply Proposition 5.1 on the sequence ¹u�nº
which, as observed, fulfills the assumptions. Indeed, applying Lemma 3.1 we then deduce
that un ! Nu strongly in H 1.G /.

Proof of Proposition 5.1. SinceZ
G

.ju0nj
2
C �nu

2
n/ dx D �n

Z
G

junj
p dx;
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it follows that

cn D E�n.un;G / D
�1
2
�
1

p

� Z
G

ju0nj
2 dx �

�n�

p
I

therefore �1
2
�
1

p

� Z
G

ju0nj
2 dx D cn C

�n�

p
: (5.1)

This estimate gives the boundedness of ¹unº in H 1.G /, provided that ¹�nº is bounded
(recall that ¹cnº is bounded as well). Once the boundedness of ¹unº in H 1.G / is proved,
and since �n ! 1, the fact that it is a Palais–Smale sequence for E1.�;G / constrained on
H 1
�.G / is straightforward.

Therefore, we only have to show that ¹�nº is bounded. By contradiction, we suppose
that this is not the case. By (5.1), we have �n ! C1, up to a subsequence. Thus, Theo-
rems 4.2 and 4.6 hold for un WD u�n . For ¹P 1n º; : : : ; ¹P

k
n º given by Theorem 4.6, Theorem

4.2 ensures the existence of blow-up limits, which can be either defined on R, or on a star
graph Gm. In the rest of the proof,

• ¹vinº denotes the scaled sequence around P in;

• V i denotes the limit of ¹vinº;

• Nxin denotes the global maximum point of vin;

• Nxi denotes the global maximum point of V i .

Then, for R > 0, on one hand we haveˇ̌̌̌
�
1
2�

2
p�2

n

Z
G

u2n dx �

kX
iD1

Z
BR. Nx

i
n/

.vin/
2 dx

ˇ̌̌̌
!C1 (5.2)

(in the second integral, the ball BR. Nxin/ is the ball in the scaled graph). Indeed, the first
term inside the absolute value satisfies

�
1
2�

2
p�2

n

Z
G

u2n dx D �
1
2�

2
p�2

n �!C1;

since p > 6, while the second term is bounded, since by Theorem 4.2,

kX
iD1

Z
BR. Nx

i
n/

.vin/
2 dx !

Z
BR. Nxi /

.V i /2 dx;

and it is the sum of a finite number of bounded integrals, since V i 2 H 1.Gm/.
On the other hand, by Theorem 4.6, for some positive constant C which changes from

one line to another,ˇ̌̌̌
�
1
2�

2
p�2

n

Z
G

u2n dx �

kX
iD1

Z
BR.x

i
n/

.vin/
2 dx

ˇ̌̌̌

D �
1
2�

2
p�2

n

ˇ̌̌̌Z
G

u2n dx �

kX
iD1

Z
B
R�
�1=2
n

.P in/

u2n dx

ˇ̌̌̌
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D �
1
2�

2
p�2

n

Z
Gn
S
i B

R�
�1=2
n

.P in/

u2n dx

� C1�
1
2
n

kX
iD1

Z
Gn
S
i B

R�
�1=2
n

.P in/

e�C2�
1
2
n dist.x;P in/ dx

C C1�
1
2
n

hX
jD1

Z
G

e�C2�
1
2
n dist.x;vj / dx

� C�
1
2
n

kX
iD1

Z
GnB

R�
�1=2
n

.P in/

e�C�
1
2
n dist.x;P in/ dx C C�

1
2
n

hX
jD1

Z
G

e�C�
1
2
n dist.x;vj / dx

� C�
1
2
n

Z C1
R�
�1=2
n

e�C�
1
2
n y dy C C�

1
2
n

Z C1
0

e�C�
1
2
n y dy

� C

Z C1
R

e�Cz dz C C

Z 1
0

e�Cz dz

� Ce�CR C C:

By taking the limit as n!1, we deduce that

lim sup
n!1

ˇ̌̌̌
�
1
2�

2
p�2

n

Z
G

u2n dx �

kX
iD1

Z
Br . Nxi /

.V i /2 dx

ˇ̌̌̌
� Ce�CR C C;

in contradiction with (5.2).
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