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Existence results in large-strain magnetoelasticity

Marco Bresciani, Elisa Davoli, and Martin Kružík

Abstract. We investigate variational problems in large-strain magnetoelasticity, in both the static
and the quasistatic settings. The model contemplates a mixed Eulerian–Lagrangian formulation:
while deformations are defined on the reference configuration, magnetizations are defined on the
deformed set in the actual space. In the static setting, we establish the existence of minimizers. In
particular, we provide a compactness result for sequences of admissible states with equi-bounded
energies which gives the convergence of the composition of magnetizations with deformations. In
the quasistatic setting, we consider a notion of dissipation which is frame-indifferent and we show
that the incremental minimization problem is solvable. Then we propose a regularization of the
model in the spirit of gradient polyconvexity and we prove the existence of energetic solutions for
the regularized model.

1. Introduction

In this paper we study a variational model for magnetoelastic materials at large strains
and we provide existence results for optimal configurations, in both the static and the
quasistatic settings.

The theory of Brown [9] (see also [13–15,29]) is based on the assumption that equilib-
rium configurations of a magnetoelastic body are given by minimizers of an energy func-
tional that depends on the deformation yW�! R3 and on the magnetizationmWy.�/!
S2, where � � R3 represents the reference configuration of the body and S2 denotes
the unit sphere in R3. The fact that magnetizations are sphere valued resembles the con-
straint of magnetic saturation which, up to normalization, reads jmj D 1 in y.�/. The
magnetoelastic energy functional is defined, for q D .y;m/, by setting

E.q/ WD

Z
�

W.ry;m ı y/ dx C ˛
Z
y.�/

jrmj2 d� C
�0

2

Z
R3

jr�mj
2 d�: (1.1)

Here, W denotes a nonlinear, frame-indifferent, magnetostrictive energy density and the
corresponding integral in (1.1) represents the elastic energy. The second term in (1.1) is
termed exchange energy, penalizing spatial changes ofm; ˛ > 0 is the exchange constant.
The third contribution in (1.1) encodes the magnetostatic energy and favors divergence-
free states of the magnetization; �0 > 0 is the permeability of the vacuum. In particular,
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the stray-field potential �mWR3 ! R is defined as a weak solution of the magnetostatic
Maxwell equation [9, 15, 29]:

��m D div.�y.�/m/ in R3:

The magnetoelastic energy functional usually includes additional terms, such as the
anisotropy energy and the asymmetric exchange energy, also known as Dzyaloshinsky–
Moriya interaction (DMI) energy [16,45]. For qD .y;m/, these two terms are respectively
given by

Eani.q/ WD

Z
y.�/

�.m/ d�; EDMI.q/ WD �

Z
y.�/

curlm �m d�: (1.2)

The first term takes into account the magnetocrystalline anisotropy; the function �WS2 !
R is continuous and nonnegative, and vanishes only on a finite set of directions, the
easy axis, along which magnetizations tend to align themselves spontaneously. The DMI
energy is linked with the possible lack of centrosymmetry in the crystalline structure. The
sign of the parameter � 2 R is not prescribed. According to its value, this energy term
alone would be minimized by configurations satisfying curlm D ˙m, or equivalently,
˙m D ��m. Altogether, the sum of the symmetric and DMI exchange-energy terms is
optimized by helical fields m describing a rotation of constant frequency � orthogonal to
one of the coordinate axes, and rotating clockwise or counterclockwise according to the
sign of � [11, 37, 42].

The two energy contributions in (1.2) do not introduce additional mathematical chal-
lenges in our analysis as the corresponding functionals are continuous with respect to the
topology considered. Therefore, these energy terms will be neglected and we will consider
the magnetoelastic energy functional in (1.1). The same holds for applied loads which, in
the first instance, will also be neglected. These comprise applied body and surface forces
and external magnetic fields.

A peculiar feature of the energy in (1.1) is its mixed Eulerian–Lagrangian struc-
ture. Whereas the elastic energy is evaluated on the reference configuration, and is hence
Lagrangian, in fact all magnetic contributions are set on the actual deformed set, thus
being Eulerian. Therefore, the problem needs to be formulated in a class of admissible
states such that the deformed set y.�/ corresponding to each deformation y can be suit-
ably interpreted.

The existence of minimizers for the functional in (1.1) was first proven in [51] for
nonsimple materials, and then in [3, 34] for simple materials under the constraint of
incompressibility. In [34], the authors also studied quasistatic evolutions driven by time-
dependent applied loads and a rate-independent dissipation, and established the existence
of energetic solutions. Subsequently, in [4], the existence of minimizers for (1.1) was
obtained for compressible materials under weak growth assumptions on the elastic energy
density. The analysis in this case becomes quite technical because of the possible discon-
tinuity of deformations. A further extension of this result, contemplating an even larger
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class of admissible deformations, was obtained in [28]. Actually, the analysis in [3, 28]
concerns nematic elastomers; in that case, the variable m represents the nematic director
and the magnetostatic energy term is dropped. However, from the mathematical point of
view, the problem is substantially the same as that of magnetoelasticity.

To complete our review on magnetoelasticity, we also mention a few recent works
dealing with the analysis of magnetoelastic thin films. In particular, in [33] magnetoelastic
plates and their corresponding quasistatic evolutions are studied within the framework of
linearized elasticity in a purely Lagrangian setting. A large-strain analysis of magnetoelas-
tic plates has been initiated in [35], under a priori constraints on the Jacobian determinant
of deformations (see also [36, 38] for numerical results). The membrane regime for non-
simple materials has been recently investigated in [12], whereas von Kármán theories
starting from a nonlinear model have been identified in [7] in the case of incompressible
materials.

This paper is subdivided into two parts. The first part concerns the analysis of the vari-
ational model in the static case. Our setting is comparable with that in [34], except that
here we are not restricted to incompressible materials. In particular, the coercivity proper-
ties of the elastic energy density ensure that admissible deformations are continuous. The
main contribution in the first part consists in proving existence of equilibrium configura-
tions for the magnetoelastic energy in (1.1). A simplified version of this result reads as
follows. We refer to Theorem 3.2 for the precise statement and assumptions.

Theorem 1.1 (Existence of minimizers). Assume that the elastic energy densityW is con-
tinuous, p-coercive with p > 3, blows up under extreme compressions and is polyconvex
in its first argument. Assume also that interpenetration of matter is prevented. Then the
magnetoelastic energy in (1.1) admits a minimizer.

As already mentioned, the existence of minimizers for the functional in (1.1) has
already been established, even for larger classes of admissible deformations, in [3, 4, 28].
However, here the result is proven in a more direct way by arguing similarly to [34].
The main point is the compactness of sequences of admissible states with equi-bounded
energies achieved in Proposition 3.4. In particular, we prove the convergence of the com-
position of magnetizations with deformations. From this, the lower semicontinuity of the
elastic energy, which represents the most problematic term, is obtained by a standard
application of the classical Eisen selection lemma [17].

The convergence of the compositions of magnetizations with deformations constitutes
one of the main novelties of our paper and is going to be fundamental for the analysis in the
quasistatic setting. Note that this is a very delicate issue: indeed, contrary to deformations,
magnetizations may be discontinuous. In [34], the convergence of compositions follows
easily from the fact that deformations are volume preserving. Instead, in [4] this issue
is circumvented by working in the deformed configuration and by exploiting the weak
convergence of inverse deformations together with their Jacobian minors.

The techniques employed in our analysis require careful study of the geometry of the
deformed set and of fine and invertibility properties of admissible deformations. Essential
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tools are given by the topological degree [20] and by refined versions of the area formula
and the change-of-variable formula [18, 24]. In Lemma 2.1 we see that the deformed set
y.�/ can be replaced with a suitable open subset of it which has full measure. This is
necessary in order to be able to give a precise meaning to the gradient of magnetizations
appearing in the expression of the exchange energy.

The proof of the convergence of the compositions of magnetizations with deforma-
tions combines three main ingredients: the convergences of the deformed sets, the equi-
integrability of the Jacobian determinants of inverse deformations, and two classical
results of measure theory, namely the Egorov and Lusin theorems. For a similar approach
relying on the equi-integrability of Jacobian determinants of inverse deformations, we
refer to [23]. In that paper, the desired equi-integrability property follows from some a
priori control on the distortion of admissible deformations obtained by imposing specific
growth conditions on the elastic energy density, while here this property is deduced from
the singular behavior of the elastic energy density in response to extreme compressions.
This allows us to work with a more natural class of admissible deformations, which are
not necessarily homeomorphisms.

In the second part of our paper, we study quasistatic evolutions driven by the energy
functional in (1.1), complemented by the work of time-dependent applied loads deter-
mined by external body forces, surface forces, and magnetic fields, and a rate-independent
dissipation. Our analysis is set within the theory of rate-independent processes [44] with
the notion of energetic solution.

Our setting is again similar to the one in [34], but a key difference is our definition
of dissipation distance. In [34], this is simply defined as the distance in L1 between the
compositions of magnetizations with deformations. Here, instead, this is constructed by
introducing a dissipative variable, the Lagrangian magnetization, which is obtained as the
pull-back of the magnetization to the reference configuration. More precisely, for q D
.y;m/ 2 Q, this is given by

Z.q/ WD .adjry/m ı y; (1.3)

where the adjugate matrix simply denotes the transpose of the cofactor matrix. Then the
dissipation distance D WQ �Q! Œ0;C1/ is defined as

D.q; Oq/ WD

Z
�

jZ.q/ �Z. Oq/j dx: (1.4)

We observe that this dissipation is frame indifferent, i.e. rigid motions do not dissipate
energy. This is because the Lagrangian magnetization in (1.3) is an objective quantity.
To see this, let T WR3 ! R3 be a rigid motion of the form T .�/ WD Q� C c for every
� 2R3, whereQ2 SO.3/ and c 2R3. The admissible state QqD . Qy; zm/2Q obtained from
qD .y;m/2Q by superposition with T is defined by setting Qy WDT ıy and zm WDQ.m ı
T �1/. Thus, Z. Qq/ D Z.q/. This observation demonstrates that the dissipation introduced
in (1.4) is selective enough to only account for the part of the magnetic reorientation that
corresponds to changes of the geometry of the deformed sets.
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We mention that (1.3) is not the only possible way to pull back the magnetization to
the reference configuration as an objective quantity. Our choice preserves the flux of mag-
netizations through closed surfaces. Another possible choice, preserving the circulation of
magnetizations along closed loops, consists in replacing the matrix adjry in (1.3) with
.ry/>. Both quantities have been considered in different contexts (see [48–50] for the
flux-preserving pull-back and [30, 52] for the circulation-preserving pull-back). Here, the
pull-back in (1.3) is preferred as it appears naturally while rewriting the magnetostatic
energy as an integral on the reference configuration [48].

The compactness established in Proposition 3.4 ensures that the dissipation distance in
(1.4) is lower semicontinuous on the sublevel sets of the total energy. Specifically, this fol-
lows combining the weak continuity of the Jacobian cofactor with the convergence of the
compositions of magnetizations with deformations. As a consequence, the incremental
minimization problem is solvable for each fixed partition of the time interval. Never-
theless, the existence of energetic solutions is out of reach in this framework. Roughly
speaking, this is because the dissipation distance is not continuous on the sublevel sets of
the total energy. Such a situation is quite common for large-strain theories (see [40] for an
example in finite plasticity).

Therefore, in the last part of the paper, we resort to a regularized counterpart to the
functional in (1.1), which is obtained by augmenting the magnetoelastic energy by the total
variation of the Jacobian cofactor of the deformation. Namely, for every q D .y;m/ 2 Q,
we consider the regularized energy functional

zE.q/ WD E.q/C jD.cofry/j.�/: (1.5)

This brings us to the theory of nonsimple materials initiated by Toupin [55, 56] and later
extended by many authors (see, for instance, [2, 44, 50]). The idea is to assume that the
stored energy density depends also on higher-order gradients of the deformation. More
regularity allows us to work in a stronger topology and to gain the continuity of the dis-
sipation distance on the sublevel sets of the regularized total energy. Here, we apply a
fairly weak concept of nonsimple materials introduced in [5] under the name of gradient
polyconvex materials (see also [32]). Indeed, in view of (1.5), we only need to assume that
cofry 2 BV.�IR3�3/.

Our second main result asserts the existence of energetic solutions for the regularized
model. We present a simplified statement below and we refer to Theorem 4.6 for its precise
formulation.

Theorem 1.2 (Existence of energetic solutions). Under the same assumptions as Theorem
1.1, there exists an energetic solution for the regularized model determined by the energy
in (1.5), complemented by time-dependent applied loads, and the dissipation in (1.4).

The existence of energetic solutions is proved by time discretization following the
well-established scheme introduced in [22] (see also [44]). Thus, the compactness of time-
discrete solutions is achieved by appealing to some version of the Helly selection theorem,
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here provided by Lemma 4.10. We stress that the existence of time-discrete solutions is
available even in the absence of the regularization introduced in (1.5) (see Proposition
4.3), and that this is only needed to construct time-continuous solutions.

Note that taking the same definition of dissipation distance as in [34], simply given
by the distance in L1 between the compositions of magnetizations with deformations, we
would be able to establish the existence of energetic solutions without resorting to any
regularization.

To summarize, the novelty of our analysis is twofold. First, we prove the compact-
ness of the compositions of magnetizations with deformations for sequences of admissible
states with equi-bounded energies. This extends the compactness result obtained in [34]
for incompressible materials to compressible ones. Moreover, this provides a more direct
proof of the existence of minimizers for the functional in (1.1) for compressible materi-
als compared to those available in [3, 4]. Note that, unlike in [51], no higher-order term
is included in the magnetoelastic energy in the static setting. Second, in the quasistatic
setting, we consider a more realistic notion of dissipation and we do not restrict ourselves
to incompressible materials [34]. Solutions of the incremental minimization problem are
shown to exist without resorting to any regularization. Finally, the existence of energetic
solutions is achieved by including an additional energy term controlling the derivatives of
the Jacobian cofactor of deformations only, instead of the full Hessian matrix of deforma-
tions [51].

We remark that the choice to limit ourselves to the case of continuous deformations is
taken just for convenience. We do not see substantial obstacles in extending our arguments
to more general classes of possibly discontinuous deformations for which cavitation is
excluded, like those considered in [4,28], with the help of the techniques that have already
been developed in these settings. Also, the global injectivity of admissible deformations is
assumed in view of its physical interpretation, i.e. to avoid the interpenetration of matter,
but this does not seem to be crucial for the analysis. It might be possible to achieve the
same results without this assumption by relying on the local invertibility results available
in the literature [4, 20, 28] in combination with suitable covering arguments.

We mention that, more recently, we have been able to extend the present analysis by
imposing the magnetic saturation constraint in the more realistic form jm ı yjdetry D 1
in � (see [9, 29, 51]). We refer to [8] for more details.

The paper is organized as follows. In Section 2 we recall some preliminary results
on the invertibility of Sobolev functions. Section 3 is devoted to the analysis in the static
setting including the proof of Theorem 1.1. Finally, Section 4 describes the quasistatic
problem and contains the proof of Theorem 1.2.

2. Preliminaries

In this section we collect some results regarding the invertibility of Sobolev maps with
supercritical integrability. Let�� R3 be a bounded Lipschitz domain. We consider maps
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in W 1;p.�IR3/ with p > 3. Any such map admits a representative in C 0.x�IR3/ which
has the Lusin property .N / [41, Corollary 1], i.e. it maps sets of zero Lebesgue mea-
sure to sets of zero Lebesgue measure. Henceforth, we will always tacitly consider this
representative. In this case, the image of measurable sets is measurable and the area
formula holds [41, Corollary 2 and Theorem 2]. As a consequence, if the Jacobian deter-
minant is different from zero almost everywhere, then the map also has the Lusin property
.N�1/, i.e. the preimage of every set with zero Lebesgue measure has zero Lebesgue
measure.

Let y 2 W 1;p.�IR3/. To make up for the fact that y.�/ might not be open, even if
detry > 0 almost everywhere, we introduce the deformed configuration, which is defined
as�y WD y.�/ n y.@�/. To prove that this set is actually open, we employ the topological
degree. Recall that the degree of y on� is a continuous map deg.y;�; �/WR3 n y.@�/!
Z. For its definition and main properties, we refer to [19].

Lemma 2.1 (Deformed configuration). Let y 2 W 1;p.�IR3/ be such that detry > 0

almost everywhere in �. Then the deformed configuration �y is an open set that differs
from y.�/ by at most a set of zero Lebesgue measure. Moreover,�y D y.x�/ and @�y D
y.@�/.

Proof. We claim that �y D ¹� 2 R3 n y.@�/ W deg.y; �; �/ > 0º. Once the claim is
proved, we deduce that �y is open. Indeed, the set on the right-hand side is open by the
continuity of the degree.

Let �0 2R3 n y.@�/ be such that deg.y;�;�0/ > 0. Then, by the solvability property
of the degree, �0 2 y.�/ and, in turn, �0 2 �

y . Conversely, let �0 2 �
y . Denote by V

the connected component of R3 n y.@�/ containing �0 and consider R > 0 such that
B.�0; R/ �� V . Let  2 C1c .R

3/ be such that  � 0, supp � xB.�0; R/ � V , andR
R3  d� D 1. Then, by the integral formula for the degree, we compute

deg.y; �; �/ D
Z
�

 ı y detry dx D
Z
y�1.B.�0;R//

 ı y detry dx:

As  ı y > 0 on y�1.B.�0;R// and detry > 0 almost everywhere, we obtain deg.y;�;
�/ > 0 and this proves the claim.

By the Lusin property .N /, we have L3.y.�/ n �y/ � L3.y.@�// D 0. For sim-
plicity, define U WD y�1.�y/ D � n y�1.y.@�//. Then � n U D y�1.y.@�//, so that
L3.� n U/ D 0 by the Lusin properties .N / and .N�1/. In particular, U is dense in �.

We prove that �y D y.x�/. As �y � y.�/, we immediately have �y � y.�/ D
y.x�/. Let � 2 y.x�/ and consider x 2 x� such that y.x/ D �. By density, xU D x�. Thus,
there exists .xn/ � U such that xn ! x and, in turn, �n WD y.xn/! �. As .�n/ � �

y ,
this yields � 2 �y .

Finally, we prove that @�y D y.@�/. This follows combining

@�y D �y n .�y/ı D y.x�/ n�y D .y.x�/ n y.�// [ .y.x�/ \ y.@�// � y.@�/
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and

@�y D�y \R3 n�y D y.x�/\ .R3 n y.�// [ y.@�/� y.x�/\y.@�/D y.@�/:

The next example clarifies the difference between the sets y.�/ and �y .

Example 2.2 (Ball’s example). The following is inspired by [1, Example 1]. Let � WD
.�1; 1/3 and write � D �C [ P [��, where

�C WD .0; 1/ � .�1; 1/2; P WD ¹0º � .�1; 1/2; �� WD .�1; 0/ � .�1; 1/2:

Define yW�!R3 by y.x/ WD .x1;x2; jx1jx3/, where xD .x1;x2;x3/. The corresponding
deformed set is depicted in Figure 1. Then y 2 W 1;1.�IR3/ and for every x 2 � n P
we have

ry.x/ D

0@ 1 0 0

0 1 0

x1x3=jx1j 0 jx1j

1A :
In particular, detry >0 on� nP . We have y.�C/D V C, y.P /D S , and y.��/D V �,
where, for � D .�1; �2; �3/, we set

V C WD
®
� 2 R3 W 0 < �1 < 1; �1 < �2 < 1; j�3j < �1

¯
;

S WD ¹0º � .�1; 1/ � ¹0º;

V � WD
®
� 2 R3 W �1 < �1 < 0; �1 < �2 < 1; j�3j < ��1

¯
:

Note that yj�nP is injective, but y is not a homeomorphism. Also, y.�/D V C [ S [ V �

is not open. Instead, �y D V C [ V �, since S � y. xP \ @�/, and this set is open. Note
also that, while y.�/ is necessarily connected, the deformed configuration �y is not.

P
�� �C

V � V C

S

Figure 1. The deformation in Example 2.2.

Remark 2.3 (Topological image). Let y 2 W 1;p.�IR3/. The topological image of y
is given by the set imT.y; �/ WD ¹� 2 R3 n y.@�/ W deg.y; �; �/ ¤ 0º. Note that
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deg.y; �; �/ D 0 for every � 2 R3 n y.x�/, so that imT.y; �/ � y.�/. In relation to
the problem of invertibility of deformations in elasticity, the topological image was first
considered in [53] and then in several other contributions [4,6,25–27,46,47,54]. In Lemma
2.1, we proved that, if detry > 0 almost everywhere, then

�y D imT.y; �/ D
®
� 2 R3 n y.@�/ W deg.y; �; �/ > 0

¯
:

For more information about the topological properties of Sobolev maps with supercritical
integrability, we refer to [31].

We now consider the invertibility of Sobolev maps with supercritical integrability. Let
y 2 W 1;p.�IR3/ with p > 3 be such that detry > 0 almost everywhere. Assume that
y is almost everywhere injective, i.e. there exists a set X � � with L3.X/ D 0 such that
yj�nX is injective. In this case, we can consider the inverse yj�1

�nX
Wy.� nX/! � nX .

Note that L3.y.X// D 0 by the Lusin property .N /. We define the map vW�y ! R3 by
setting

v.�/ WD

´
yj�1
�nX

.�/ if � 2 �y n y.X/;

a if � 2 �y \ y.X/;
(2.1)

where a 2 R3 is arbitrarily fixed. The map v satisfies v ı y D id almost everywhere in �
and y ı v D id almost everywhere in �y . Since y maps measurable sets to measurable
sets, the measurability of v follows. As y has both Lusin properties .N / and .N�1/, the
map v has the same properties. Moreover, v 2 L1.�y IR3/ since v.�y/ � � [ ¹aº and
� is bounded.

We remark that the definition of v in (2.1) depends on the choice of the set X where
y is not injective and of the value a 2 R3. However, as y has the Lusin property .N /, its
equivalence class is uniquely determined and coincides with that of the classical inverse
y�1, where the latter is defined out of a subset of y.�/ with zero Lebesgue measure.
Hence, with a slight abuse of notation, we will denote this equivalence class of functions
defined on �y by y�1 and we will refer to it as the inverse of y .

Remark 2.4 (Ciarlet–Nečas condition). Let y 2 W 1;p.�IR3/ be such that detry > 0
almost everywhere. Then y is almost everywhere injective if and only if it satisfies the
Ciarlet–Nečas condition [10], which readsZ

�

detry dx � L3.y.�//:

This equivalence easily follows from the area formula [10, p. 185]. Note that the Ciarlet–
Nečas condition is preserved under weak convergence in W 1;p.�I R3/ thanks to the
weak continuity of Jacobian minors and the Morrey embedding. As a consequence, given
.yn/ � W

1;p.�IR3/ such that each yn is almost everywhere injective with detryn > 0
almost everywhere, if yn* y inW 1;p.�IR3/ for some y 2W 1;p.�IR3/with detry >
0 almost everywhere, then y is almost everywhere injective. Note that the condition
detry > 0 almost everywhere has to be assumed a priori.
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The inverse y�1 of y turns out to have Sobolev regularity. Note that this makes sense
since, by definition, y�1 is defined on the deformed configuration �y , which is open
by Lemma 2.1. The Sobolev regularity of the inverse has been proved for more general
classes of deformations, such as in [4, Proposition 5.3], [27, Theorem 9.3], [54, Theorem
4.6], and [53, Theorem 8]. For the convenience of the reader, we recall the proof. Note
that here we do not impose any regularity on the boundary.

Proposition 2.5 (Global invertibility). Let y 2 W 1;p.�I R3/ be almost everywhere
injective with detry > 0 almost everywhere. Then y�1 2 W 1;1.�y IR3/ with ry�1 D
.ry/�1 ı y�1 almost everywhere in �y . Moreover, cof ry�1 2 L1.�y I R3�3/ and
detry�1 2 L1.�y/.

Proof. By the Piola identity we haveZ
�

cofry W r� dx D 0 (2.2)

for every � 2 C1c .�IR
3/. As cof ry 2 Lp=2.�IR3�3/ and p=2 > p=.p � 1/ D p0

since p > 3, by density, this actually holds for � 2 W 1;p
0 .�IR3/. Let ' 2 C1.x�/ and

 2 C1c .�
y IR3/. Choosing � D ' ı y in (2.2), after some algebraic manipulation, we

obtain the following identity:

�

Z
�

' div ı y detry dx D
Z
�

 ı y ˝r' W cofry dx: (2.3)

LetX ��with L3.X/D 0 be such that yj�nX is injective. For clarity, let us consider
the representative v of y�1 in (2.1) and let us fix a representative of ry . Set D WD � n
.y�1.y.@�//[ ¹detry � 0º [X/, so that vD yj�1D on y.D/ andry is invertible onD.
Let ˆ 2 C1c .�

y IR3�3/ and denote its rows by ˆi D .ˆi1; ˆ
i
2; ˆ

i
3/
>, where i D 1; 2; 3.

Using the change-of-variable formula, we compute

�

Z
�y
v � divˆ d� D �

Z
y.D/

yj�1D � divˆ d� D �
Z
D

x � divˆ ı y detry dx

D �

Z
�

x � divˆ ı y detry dx

D �

3X
iD1

Z
�

xi divˆi ı y detry dx:

Then using (2.3) with '.x/ D xi for every x 2 � and  .�/ D ˆi .�/ for every � 2 �y ,
we obtain

�

Z
�y
v � divˆ d� D

3X
i;jD1

Z
�

ˆij ı y.cofry/ji dx

D

3X
i;jD1

Z
�

ˆij ı y.adjry/ij dx
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D

Z
�

ˆ ı y W adjry dx D
Z
�

ˆ ı y W .ry/�1 detry dx

D

Z
D

ˆ ı y W .ry/�1 detry dx

D

Z
y.D/

ˆ W .ry/�1 ı yj�1D d�;

where, in the last line, we used again the change-of-variable formula. Hence, as L3.�y n
y.D// D 0, we deduce that v admits a weak gradient with a representative given by

rv.�/ WD

´
.ry/�1 ı yj�1D .�/ if � 2 y.D/;

A if � 2 �y n y.D/;

where A 2 R3�3 is arbitrary. Thanks to the Lusin property .N /, the equivalence class
of rv is uniquely determined. Moreover, it belongs to L1.�y IR3�3/. Indeed, by the
change-of-variable formula,Z

�y
jrvj d� D

Z
y.D/

j.ry/�1j ı yj�1D d� D
Z
D

j.ry/�1j detry dx

D

Z
D

j adjryj dx D
Z
�

j adjryj dx:

Thus, v 2W 1;1.�y IR3/. Similarly, using the identity adj.F �1/D .detF /�1F for every
F 2 R3�3C , we computeZ

�y
j adjrvj d� D

Z
y.D/

.detry/�1 ı yj�1D jryj ı yj
�1
D d�

D

Z
D

jryj dx D
Z
�

jryj dx;

while, using the identity det.F �1/ D .detF /�1 in F 2 R3�3C , we obtainZ
�y

detrv dx D
Z
y.D/

.detry/�1 ı yj�1D d� D L3.D/ D L3.�/:

Therefore, cofrv 2 L1.�y IR3�3/ and detrv 2 L1.�y/.

Remark 2.6 (Area formula for the inverse). Let y 2 W 1;p.�IR3/ be almost everywhere
injective with detry > 0 almost everywhere. Let X � � with L3.X/ D 0 be such that
yj�nX is injective and let v be the representative of y�1 in (2.1). By Proposition 2.5,
v 2 W 1;1.�y IR3/. Since y has the Lusin property .N�1/, the map v has the Lusin
property .N /. Moreover, v is almost everywhere injective. Thus, we can use the area
formula to estimate the measure of preimages of sets via y as follows. For every F � R3,
we write y�1.F / WD ¹x 2 � W y.x/ 2 F º. Let F � R3 be measurable. By (2.1), we have
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v.F / D y�1.F n .y.@�/ [ y.X///. Then, exploiting both Lusin properties .N / and
.N�1/ of y and applying the area formula [24, Theorem 2], we compute

L3.y�1.F // D L3.v.F // D

Z
F

detrv d�:

3. Static setting

3.1. The mathematical model

Let � � R3 be a bounded Lipschitz domain. For p > 3 fixed, the class of admissible
deformations is given by

Y WD
®
y 2 W 1;p.�IR3/ W detry > 0 a.e., y a.e. injective, y D Ny on �

¯
; (3.1)

where � � @� is H2-measurable with H2.�/ > 0 and Ny 2 C 0.�IR3/.

Example 3.1. Let � and y be as in Example 2.2. Given � WD ¹�1; 1º � .�1; 1/2 and
Ny WD id, we have y 2 Y. In particular, this is a case in which Y ¤ ;.

Henceforth, we identify each y 2 Y with its continuous representative and we set
�y WD y.�/ n y.@�/. Then admissible magnetizations are given by the maps m 2
W 1;2.�y IS2/. Note that this makes sense as �y is open by Lemma 2.1. Thus, the class
of admissible states is defined as

Q WD
®
.y;m/ W y 2 Y; m 2 W 1;2.�y IS2/

¯
: (3.2)

We endow the set Q with the topology that makes the map q D .y;m/ 7! .y; ��ym;

��yrm/ from Q toW 1;p.�IR3/�L2.R3IR3/�L2.R3IR3�3/ a homeomorphism onto
its image, where the latter space is equipped with the weak product topology. Hence qn!
q in Q if and only if the following convergences hold:

yn * y in W 1;p.�IR3/; (3.3)

��ynmn * ��ym in L2.R3IR3/; (3.4)

��ynrmn * ��yrm in L2.R3IR3�3/: (3.5)

In this case, up to subsequences, we actually have

��ynmn ! ��ym in La.R3IR3/ for every 1 � a <1: (3.6)

The energy functional EWQ! R is defined, for q D .y;m/ 2 Q, by setting

E.q/ WD

Z
�

W.ry;m ı y/ dx C ˛
Z
�y
jrmj2 d� C

�0

2

Z
R3

jr�mj
2 d�: (3.7)

The first term represents the elastic energy of the system. Note that, as y satisfies the Lusin
property .N�1/, the composition m ı y is measurable and its equivalence class does not
depend on the choice of the representative of m. The nonlinear elastic energy density
W WR3�3C � S2 ! Œ0;C1/ is continuous and satisfies the following two assumptions:
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(Coercivity) There exist a constant K > 0 and a Borel function 
 W Œ0;C1/! Œ0;C1/

satisfying limh!0C 
.h/ D C1 such that

W.F ;�/ � KjF jp C 
.detF / (3.8)

for every F 2 R3�3C and � 2 S2.

(Polyconvexity) There exists a function yW WR3�3C � R3�3C � RC � S2 ! Œ0;C1/ such
that yW .�; �; �;�/ is convex for every � 2 S2 and there holds

W.F ;�/ D yW .F ; cofF ; detF ;�/ (3.9)

for every F 2 R3�3C and � 2 S2.

Another standard assumption on the elastic energy density is the one of frame indifference,
which reads

8F 2 R3�3C ; 8� 2 S2; 8Q 2 SO.3/; W.QF ;Q�/ D W.F ;�/:

This assumption is crucial from the physical point of view, as it ensures the objectivity of
the magnetoelastic energy. However, this requirement will play no role in our analysis.

The second term in (3.7) is the exchange energy and comprises the parameter ˛ > 0.
The third term is called magnetostatic energy and involves the function �mWR3!R which
is a weak solution of the magnetostatic Maxwell equation:

��m D div.��ym/ in R3: (3.10)

This means that �m belongs to the homogeneous Sobolev space

V 1;2.R3/ WD
®
' 2 L2loc.R

3/ W r' 2 L2.R3IR3/
¯

and satisfies

8' 2 V 1;2.R3/;

Z
R3

r�m � r' d� D
Z

R3

��ym � r' d�:

Note that such weak solutions exist and are unique up to additive constants [4, Proposition
8.8], so that their gradient is uniquely defined. The constant �0 > 0 denotes the vacuum
permeability.

3.2. Compactness and existence of minimizers

The main result of this section is the existence of minimizers of the energy E in (3.7).
Recall the definition of the class of admissible states in (3.1)–(3.2).

Theorem 3.2 (Existence of minimizers). Assume p > 3 and Y ¤ ;. Suppose that W is
continuous and satisfies (3.8)–(3.9). Then the functional E admits a minimizer in Q.
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Remark 3.3 (Applied loads). In Theorem 3.2, applied loads can be also taken into
account. Let f 2 Lp

0

.�IR3/, g 2 Lp
0

.†IR3/, where † � @� is H2-measurable and
such that � \†D ;, and h 2 L2.R3IR3/ represent an applied body force, surface force,
and magnetic field, respectively. Then the work of applied loads, which should be sub-
tracted from the magnetoelastic energy, is described by the functional LWQ ! R given
by

L.q/ WD

Z
�

f � y dx C
Z
†

g � y dH2
C

Z
�y
h �m d�;

where q D .y;m/. Note that the energy contribution determined by the external magnetic
field, usually called Zeemann energy, is described by an Eulerian term. The functional L
is evidently continuous with respect to the topology of Q, so that its treatment is trivial.

We begin by proving a compactness result for sequences of admissible states with
equi-bounded energies. In particular, we establish the convergence of compositions of
magnetizations with deformations. Recall the function 
 introduced in (3.8).

Proposition 3.4 (Compactness). Let .qn/ � Q with qn D .yn;mn/ satisfy

krynkLp.�IR3�3/ � C; krmnkL2.�yn IR3�3/ � C; k
.detryn/kL1.�/ � C (3.11)

for every n 2 N. Then there exists q 2 Q with q D .y;m/ such that, up to subsequences,
we have qn ! q in Q and also

mn ı yn ! m ı y in La.�IR3/ for every 1 � a <1: (3.12)

Remark 3.5 (Anisotropy and DMI energies). The crystalline anisotropy and the asym-
metric exchange can be easily included in Theorem 3.2 without additional difficulties. The
corresponding energy terms are described by the functionalsEaniWQ!R andEDMIWQ!

R defined, for q D .y;m/ 2 Q, by

Eani.q/ WD

Z
�y
�.m/ d�; EDMI.q/ WD �

Z
�y

curlm �m d�;

where �W S2 ! R is continuous and � 2 R. These two functionals are indeed continu-
ous with respect to the convergences given by Proposition 3.4. The continuity of EDMI is
evident from (3.5)–(3.6). The continuity of Eani follows easily from (3.3) and (3.12). By
(3.12), we can assume that compositions converge almost everywhere so that, by the dom-
inated convergence theorem, �.mn ı yn/! �.m ı y/ in La.�/ for every 1 � a <1.
Then, exploiting the weak convergence of Jacobian determinants, which follows from
(3.3), and employing the change of variable formula, we obtain

Eani.qn/ D

Z
�

�.mn ı yn/ detryndx !
Z
�

�.m ı y/ detry dx D Eani.q/:

We mention that the continuity of Eani can be also established without relying on (3.12),
but exploiting only (3.3) and (3.6) by means of a localization argument based on (3.13)–
(3.14).
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Proof of Proposition 3.4. For the convenience of the reader, the proof is divided into three
steps.

Step 1 (compactness). By (3.11), using the Poincaré inequality with boundary terms, we
deduce that .yn/ is bounded in W 1;p.�IR3/ . Thus, up to subsequences, (3.3) holds for
some y 2 W 1;p.�IR3/.

We claim that y 2 Y. Thanks to Remark 2.4 and the compactness of the trace operator,
we only have to prove that detry > 0 almost everywhere in �. By the weak continuity
of Jacobian minors, detryn * detry in Lp=3.�/. Then, for every S � � measurable,
we have Z

S

detry dx D lim
n!1

Z
S

detryn dx � 0;

and, given the arbitrariness of S , we deduce that detry � 0 almost everywhere in �. By
contradiction, suppose that detry D 0 on a measurable set S0 � � with L3.S0/ > 0.
In this case, up to subsequences, detryn ! 0 almost everywhere in S0, and, taking into
account (3.8), we obtain 
.detryn/!C1 almost everywhere in S0. Then, by the Fatou
lemma, we obtain lim infn!1

R
S0

.detryn/dxDC1, which contradicts (3.11). There-

fore, L3.S0/ D 0 and detry > 0 almost everywhere in �.
The compactness of the sequence .qn/ is proved as in [34, Proposition 2.1]. By the

Morrey embedding, we have yn! y uniformly in�. From this, we obtain the following:

8A �� �y open; A � �yn for n� 1 depending on A; (3.13)

8O �� �y open; O � �yn for n� 1 depending on O: (3.14)

To see (3.13), let A���y be open so that dist.@AI@�y/ > 0. Recall that @�y D y.@�/
by Lemma 2.1. Then, for n� 1 depending on A, we have

kyn � ykC 0.x�IR3/ � dist.@AIy.@�//:

Let � 2 A. We obtain

kyn � ykC 0.x�IR3/ � dist.�Iy.@�//;

and, by the stability property of the degree [20, Theorem 2.3, Claim (1)], we deduce
� … yn.@�/ and deg.yn;�;�/D deg.y;�;�/ for n� 1. As deg.y;�;�/ > 0 by Remark
2.3, the solvability property of the degree [20, Theorem 2.1] gives � 2 �yn for n� 1.
This proves (3.13), while (3.14) is immediate.

Let A �� �y be open with smooth boundary and n� 1 as in (3.13). From (3.11),
we have Z

A

jrmnj
2 d� �

Z
�yn
jrmnj

2 d� � C (3.15)

for every n� 1. Recalling that magnetizations are sphere valued, we deduce that .mn/
is bounded in W 1;2.AIR3/, so that, up to subsequences, mn * m in W 1;2.AIR3/ for
some m 2 W 1;2.AIR3/. By the Rellich embedding, mn ! m in L2.AIR3/ and, in turn,
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jmj D 1 almost everywhere in A. The map m 2 W 1;2
loc .�

y I S2/ does not depend on A.
In particular, as the right-hand side of (3.15) does not depend on A, we actually have
m 2W 1;2.�y IS2/. Therefore, q D .y;m/ 2Q. Moreover, arguing with a sequence .Aj /
of open sets with smooth boundaries such that Aj �� AjC1 ���y for every j 2N and
�y D

S1
jD1Aj , we select a (not relabeled) subsequence of .mn/ such that

8A �� �y open; mn * m in W 1;2.A/,mn ! m almost everywhere in A: (3.16)

We remark that, for every A �� �y open, the sequence .mn/ � W 1;2.AIS2/ is defined
only for n� 1 depending on A.

Step 2 (Convergence in Q). In order to prove that qn ! q in Q, we are left to show (3.4)
and (3.5). To prove the first claim, we consider ' 2 L2.R3IR3/. We need to show that

lim
n!1

Z
R3

.��ynmn � ��ym/ � ' dx D 0: (3.17)

Let A;O � R3 be open such that A �� �y �� O . We writeZ
R3

.��ynmn � ��ym/ � ' dx D
Z
A

.��ynmn � ��ym/ � ' dx

C

Z
OnA

.��ynmn � ��ym/ � ' dx

C

Z
R3nO

.��ynmn � ��ym/ � ' dx: (3.18)

For the first integral on the right-hand side of (3.18), by (3.13) for n� 1 we haveZ
A

.��ynmn � ��ym/ � ' dx D
Z
A

.mn �m/ � ' dx; (3.19)

where, as n!1, the right-hand side goes to zero since mn * m in W 1;2.AIR3/ by
(3.16). Using the Hölder inequality, the second integral on the right-hand side of (3.18) is
estimated asˇ̌̌̌Z

OnA

.��ynmn � ��ym/ � ' dx
ˇ̌̌̌
� 2

p
L3.O n A/k'kL2.R3IR3/: (3.20)

By (3.14), the third integral on the right-hand side of (3.18) equals zero for n� 1. There-
fore, we obtain

lim sup
n!1

ˇ̌̌̌Z
R3

.��ynmn � ��ym/ � ' dx
ˇ̌̌̌
� 2

p
L3.O n A/k'kL2.R3IR3/;

from which, letting O & �y and A % �y so that L3.O n A/ ! L3.@�y/ D 0, we
deduce (3.17). Here, we used that @�y D y.@�/ by Lemma 2.1 and that L3.y.@�//D 0
thanks to the Lusin property .N /. Thus (3.4) is proved.
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For the second claim, we proceed in a similar way. Givenˆ 2 L2.R3IR3�3/, we need
to show

lim
n!1

Z
R3

.��ynrmn � ��yrm/ W ˆ dx D 0: (3.21)

As before, we consider A;O � R3 open with A �� �y �� O and we writeZ
R3

.��ynrmn � ��yrm/ W ˆ dx D
Z
A

.��ynrmn � ��yrm/ W ˆ dx

C

Z
OnA

.��ynrmn � ��yrm/ W ˆ dx

C

Z
R3nO

.��ynrmn � ��yrm/ W ˆ dx: (3.22)

For the first integral on the right-hand side of (3.22), by (3.13), for n� 1 we haveZ
A

.��ynrmn � ��yrm/ W ˆ dx D
Z
A

.rmn � rm/ W ˆ dx;

and, as n!1, the right-hand side goes to zero sincemn*m inW 1;2.AIR3/ by (3.16).
Note that the sequence .��ynrmn/ � L2.R3IR3�3/ is bounded by (3.11). Using the
Hölder inequality, the second integral on the right-hand side of (3.22) is estimated asˇ̌̌̌Z

OnA

.��ynrmn � ��yrm/ W ˆ dx
ˇ̌̌̌

� .k��ynrmnkL2.R3IR3�3/ C k��yrmkL2.R3IR3�3//kˆkL2.OnAIR3�3/

� .C C k��yrmkL2.R3IR3�3//kˆkL2.OnAIR3�3/:

By (3.14), the third integral on the right-hand side of (3.22) equals zero for n� 1. There-
fore, we obtain

lim sup
n!1

ˇ̌̌̌Z
R3

.��ynrmn � ��yrm/ W ˆ dx
ˇ̌̌̌

� .C C k��yrmkL2.R3IR3�3//kˆkL2.OnAIR3�3/:

From this, letting O & �y and A% �y so that L3.O n A/! L3.@�y/ D 0 and, in
turn, kˆkL2.OnAIR3�3/ ! 0, we deduce (3.21). Thus also (3.5) is proved.

Step 3 (Convergence of the compositions). By Proposition 2.5, y�1n 2 W
1;1.�yn IR3/

with detry�1n 2 L
1.�yn/ for every n 2 N. We claim that, for every open set A �� �y ,

the sequence .detry�1n / � L
1.A/ is equi-integrable. To show this, we argue as in [4,

Proposition 7.8]. Define O
 W .0;C1/! Œ0;C1/ by setting O
.z/ WD z
.1=z/. In this case

lim
z!C1

O
.z/

z
D lim
z!C1


.1=z/

D lim
h!0C


.h/ D C1;
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where we used (3.8). Using the change-of-variable formula we computeZ
�yn
O
.detry�1n / d� D

Z
�yn


.1= detry�1n / detry�1n d�

D

Z
�yn


.detryn/ ı y
�1
n .detryn/

�1
ı y�1n d�

D

Z
�


.detryn/ dx;

where the right-hand side is uniformly bounded by (3.11). Thus, the claim follows by the
de la Vallée–Poussin criterion [21, Theorem 2.29]. In particular, using the area formula as
in Remark 2.6, we deduce

8A �� �y open; 8" > 0; 9 ı.A; "/ > 0 W 8F � A measurable;

L3.F / < ı.A; "/ ) sup
n2N

L3.y�1n .F // < ": (3.23)

We now prove thatmn ı yn! m ı y in L1.�IR3/. Fix " > 0. Take A �� �y open
such that L3.� n y�1.A// < ". We computeZ

�

jmn ı yn �m ı yj dx D
Z
�ny�1.A/

jmn ı yn �m ı yj dx

C

Z
y�1.A/

jmn ı yn �m ı yj dx: (3.24)

As magnetizations are sphere valued, for every n 2 N the first integral on the right-hand
side of (3.24) is bounded by 2L3.� n y�1.A// < 2". For the second integral on the right-
hand side of (3.24), we split it asZ

y�1.A/

jmn ı yn �m ı yj dx D
Z
y�1.A/ny�1n .A/

jmn ı yn �m ı yj dx

C

Z
y�1.A/\y�1n .A/

jmn ı yn �m ı yj dx: (3.25)

We claim that L3.y�1.A/ n y�1n .A// < " for n � 1 depending only on ", so that the
second integral on the right-hand side of (3.25) is bounded by 2". To see this, let V � R3

be open and such that A �� V �� �y . In this case, y.y�1.A// D A �� V so that, by
uniform convergence, yn.y

�1.A//�V for n� 1which, in turn, gives y�1.A/�y�1n .V /
for n� 1. Then we have

y�1.A/ n y�1n .A/ � y
�1
n .V / n y

�1
n .A/ D y

�1
n .V n A/ (3.26)

for n� 1. In particular, let V be chosen such that L3.V n A/ < ı.V; "/ with ı.V; "/ > 0
given by (3.23). Hence, for n� 1 depending only on ", from (3.23) and (3.26), we obtain
L3.y�1.A/ n y�1n .A// < " and the claim is proved.
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To estimate the second integral on the right-hand side of (3.25) we proceed as follows.
Henceforth, we will simply write ı in place of ı.A;"/, where ı.A;"/ > 0 is given by (3.23).
Without loss of generality, we can assume that ı is sufficiently small in order to have
L3.y�1.F // < " for every F � A measurable with L3.F / < ı. By the Lusin theorem,
there existsK1 � A compact with L3.A nK1/ < ı=2 such thatmjK1 is continuous while,
by the Egorov theorem, there exists K2 � A compact with L3.A nK2/ < ı=2 such that
mn!m uniformly onK2. SetK WDK1 \K2, so thatK �A is compact and L3.A nK/<

ı. We have

y�1.A/ \ y�1n .A/ � .y
�1.K/ \ y�1n .K// [ y

�1.A nK/ [ y�1n .A nK/

so that we estimate the second integral on the right-hand side of (3.25) asZ
y�1.A/\y�1n .A/

jmn ı yn �m ı yj dx

�

Z
y�1.K/\y�1n .K/

jmn ı yn �m ı yj dx

C

Z
y�1.AnK/[y�1n .AnK/

jmn ı yn �m ı yj dx: (3.27)

For the second integral on the right-hand side of (3.27), we haveZ
y�1.AnK/[y�1n .AnK/

jmn ı yn �m ı yj dx

� 2L3.y�1.A nK/ [ y�1n .A nK//

< 4"; (3.28)

where, in the last line, we used (3.23). For the first integral on the right-hand side of (3.27),
we have Z

y�1.K/\y�1n .K/

jmn ı yn �m ı yj dx

�

Z
y�1.K/\y�1n .K/

jmn ı yn �m ı ynj dx

C

Z
y�1.K/\y�1n .K/

jm ı yn �m ı yj dx: (3.29)

Note that, in the previous equation, the composition m ı yn is meaningful, at least for
n� 1, since the domain of integration is a subset of y�1.A/ \ y�1n .A/ and A � �yn .
Given the choice of K, for n � 1 depending only on ", we have supK jmn � mj <
"=L3.�/. Thus, we estimateZ

y�1.K/\y�1n .K/

jmn ı yn �m ı ynj dx <
"

L3.�/
L3.y�1.K/ \ y�1n .K// < ":
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On the other hand, m is uniformly continuous on K. Hence, there exists �."/ > 0 such
that for every �1;�2 2K with j�1 � �2j < �."/ there holds jm.�1/�m.�2/j < "=L

3.�/.
As a consequence, for n� 1 such that kyn � ykC 0.x�IR3/ < �."/, we obtainZ

y�1.K/\y�1n .K/

jm ı yn �m ı yj dx <
"

L3.�/
L3.y�1.K/ \ y�1n .K// < ":

Therefore, combining (3.24)–(3.25) and (3.27)–(3.29), we deduce that

lim sup
n!1

Z
�

jmn ı yn �m ı yj dx � 10":

As " > 0 was arbitrary, this concludes the proof of the convergence of compositions in
L1.�IR3/. The convergence in La.�IR3/ for every 1 < a < 1 follows immediately
by extracting a subsequence that converges almost everywhere and by applying the domi-
nated convergence theorem.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let .qn/ � Q with qn D .yn;mn/ be a minimizing sequence for
E, namely such that E.qn/! infQ E. In particular, supn2N E.qn/ < C1. From (3.8),
we deduce (3.11) so that we can apply Proposition 3.4. This gives a (not relabeled) sub-
sequence .qn/ and an admissible state q D .y;m/ 2 Q such that qn ! q in Q and
mn ı yn ! m ı y in L1.�IR3/. We claim that

E.q/ � lim inf
n!1

E.qn/; (3.30)

so that q is a minimizer of E. We focus on the elastic energy first. We have ryn* ry in
Lp.�IR3�3/ and, by the weak continuity of Jacobian minors, we also have cofryn *
cofry inLp=2.�IR3�3/ and detryn* detry inLp=3.�/. Moreover, the subsequence
can be chosen in order to have mn ı yn ! m ı y almost everywhere in �. Thus, given
(3.9), applying [2, Theorem 5.4] we prove that

Eel.q/ � lim inf
n!1

Eel.qn/: (3.31)

The lower semicontinuity of the exchange energy is immediate. Indeed, by (3.5) and the
lower semicontinuity of the norm, there holds

Eexc.q/ � lim inf
n!1

Eexc.qn/: (3.32)

We focus on the magnetostatic energy. Denote by �n a weak solution of the Maxwell
equation corresponding to qn. Thus, for every n 2 N and for every ' 2 V 1;2.R3/, there
holds Z

R3

r�n � r' d� D
Z

R3

��ynmn � r' d�: (3.33)
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Denote by V 1;2.R3/=R the quotient of V 1;2.R3/ with respect to constant functions and
recall that this is a Hilbert space with inner product given by

.Œ'�; Œ �/ 7!

Z
R3

r' � r d�:

Testing (3.33) with ' D �n and using that supn2N k��ynmnkL2.R3IR3/ < C1 by (3.4),
we obtain

sup
n2N
kŒ�n�kV 1;2.R3/=R D sup

n2N
kr�nkL2.R3IR3/ < C1:

Therefore, there exists � 2 V 1;2.R3/ such that, up to subsequences, we have Œ�n� * Œ�� in
V 1;2.R3/=R, or equivalently, r�n * r� in L2.R3IR3/. Passing to the limit, as n!1,
in (3.33), we obtain Z

R3

r� � r' d� D
Z

R3

��ym � r' d�;

for every ' 2 V 1;2.R/. Thus � is a weak solution of the Maxwell equation corresponding
to q and, in turn, Emag.q/ D .�0=2/kr�k

2
L2.R3IR3/

. By the lower semicontinuity of the
norm, we conclude

Emag.q/ � lim inf
n!1

Emag.qn/: (3.34)

Finally, combining (3.31)–(3.32) and (3.34), we get (3.30).

4. Quasistatic setting

4.1. General setting

In this section we study quasistatic evolutions of the model driven by time-dependent
applied loads and dissipative effects. The framework is the theory of rate-independent
processes [44] with the notion of energetic solutions.

We start by describing the general setting. The applied loads are determined by the
functions

f 2 C 1.Œ0; T �ILp
0

.�IR3//; g 2 C 1.Œ0; T �ILp
0

.†IR3//;

h 2 C 1.Œ0; T �IL2.R3IR3//;
(4.1)

where † � @� is H2-measurable and such that � \ † D ;, representing external body
forces, surface forces, and magnetic fields, respectively. Define the functional LW Œ0; T � �

Q! R by setting

L.t; q/ WD

Z
�

f .t/ � y dx C
Z
†

g.t/ � y dH2
C

Z
�y
h.t/ �m d�; (4.2)

where q D .y;m/. The total energy is given by the functional EW Œ0; T � �Q! R defined
by

E.t; q/ WD E.q/ �L.t; q/: (4.3)
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By a repeated application of the Hölder inequality and the Young inequality and using
(3.8), we prove

E.t; q/ � C0kryk
p

Lp.�IR3�3/
C k
.detry/kL1.�/ C ˛krmk

2
L2.�y IR3�3/

� C1 (4.4)

for every q D .y;m/ 2 Q. Here, C0.K/ > 0 and C1.p; SM;Mf ;Mg ; Mh/ > 0 are two
constants, whereK > 0was introduced in (3.8) and SM WD k NykLp0 .†IR3/ takes into account
the boundary datum in (3.1). Also, we set

Mf WD kf kC 0.Œ0;T �ILp0 .�IR3//; Mg WD kgkC 0.Œ0;T �ILp0 .†IR3//;

Mh WD khkC 0.Œ0;T �IL2.R3IR3//:

Note that, from (4.4), we deduce infŒ0;T ��Q E � �C1.
Given the regularity of the applied loads, for every q D .y;m/ 2 Q, the map t 7!

L.t; q/ belongs to C 1.Œ0; T �/. In particular, for every t 2 Œ0; T �, we compute

@tE.t;q/D�@tL.t;q/D�

Z
�

Pf .t/ � y dx �
Z
†

Pg.t/ � y dH2
�

Z
�y

Ph.t/ �md�: (4.5)

Employing the Hölder inequality and the Young inequality again and exploiting (4.4), we
prove the estimate

j@tE.t; q/j � L.E.t; q/CM/: (4.6)

Here,L.p;K; SM;Lf ;Lg ;Lh/ > 0 andM.p;K; SM;Mf ;Mg ;Mh/ > 0 are two constants
and we set

Lf WD k Pf kC 0.Œ0;T �ILp0 .�IR3//; Lg WD k PgkC 0.Œ0;T �ILp0 .†IR3//;

Lh WD k PhkC 0.Œ0;T �IL2.R3IR3//:

From this, using the Grönwall inequality, we obtain

E.t; q/CM � .E.s; q/CM/eL.t�s/ (4.7)

for every q 2 Q and s; t 2 Œ0; T � with s < t .
As in [50], we introduce the Lagrangian magnetization given, for q D .y;m/ 2 Q, by

Z.q/ WD .adjry/m ı y: (4.8)

The dissipation distance D WQ �Q! Œ0;C1/ is defined as

D.q; Oq/ WD

Z
�

jZ.q/ �Z. Oq/j dx: (4.9)

Moreover, the variation of any map qW Œ0;T �!Q with respect to D on the interval Œs; t ��
Œ0; T � is defined by

VarD.qI Œs; t �/ WD sup
² NX
iD1

D.q.ti /; q.ti�1// W … D .t0; : : : ; tN /

is a partition of Œs; t �
³
:

(4.10)
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Here, by a partition of the interval Œs; t �we mean any finite ordered set…D .t0; : : : ; tN /�
Œ0;T �N with sD t0< t1< � � �< tN D t . Note that in (4.10) each partition can have different
cardinality.

Remark 4.1 (Regularity of the applied loads). The regularity assumptions on the applied
loads in (4.1) can be relaxed. Indeed, following [44], all the analysis can still be carried
out if we just assume

f 2 W 1;1.0; T ILp
0

.�IR3//; g 2 W 1;1.0; T ILp
0

.†IR3//;

h 2 W 1;1.0; T IL2.R3IR3//:

Remark 4.2 (Time-dependent boundary conditions). At the current stage, we are not
able to treat time-dependent Dirichlet boundary conditions (except for the case in which
the boundary datum is given time-by-time by a rigid motion). In particular, the strategy
devised in [22] is hindered by the fact that the magnetostatic energy is not differentiable
in time. However, time-dependent Dirichlet boundary conditions can be included in the
analysis in a relaxed form by removing the boundary condition in (3.1) and by enriching
the total energy with the term

q 7!

Z
�

jy � Ny.t/j dH2;

where qD .y;m/2Q and Ny 2C 1.Œ0;T �IC 0.�IR3// (or just Ny 2W 1;1.0;T IC 0.�IR3//).
From a modeling point of view, in the case in which the material is clamped, this corre-
sponds to also keeping track of deformations of the clamp itself. Additionally, under such
relaxed boundary conditions, existence of admissible deformations with finite energy is
automatically guaranteed.

The existence of energetic solutions is usually proved in two steps: first, for a given
partition of the time interval, one constructs a time-discrete solution by solving the cor-
responding incremental minimization problem; then one considers the piecewise constant
interpolants determined by the time-discrete solutions for a sequence of partitions of van-
ishing size and, by means of compactness arguments, obtains the desired time-continuous
solution.

The first step is addressed by employing the results of Section 3. Let…D .t0; : : : ; tN /
be a partition of Œ0; T �. We consider the incremental minimization problem determined by
… with initial data q0 2 Q, which reads

find .q1; : : : ; qN / 2 QN such that each qi is a minimizer

of q 7! E.ti ; q/CD.qi�1; q/ for i D 1; : : : ; N : (4.11)

The next result states the existence of solutions of (4.11) and collects their main prop-
erties. Recall the definition of the total energy E and of the dissipation distance D in (4.3)
and (4.9), respectively.
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Proposition 4.3 (Solutions of the incremental minimization problem). Assume p > 3 and
Y ¤ ;. Suppose that W is continuous and satisfies (3.8)–(3.9), and that the applied loads
satisfy (4.1). Let … D .t0; : : : ; tN / be a partition of Œ0; T � and let q0 2 Q. Then the
incremental minimization problem (4.11) admits a solution .q1; : : : ;qN /2QN . Moreover,
if q0 is such that

E.0; q0/ � E.0; Oq/CD.q0; Oq/ (4.12)

for every Oq 2 Q, then the following holds:

8i D 1; : : : ; N; 8Oq 2 Q; E.ti ; q
i / � E.ti ; Oq/CD.qi ; Oq/; (4.13)

8i D 1; : : : ; N; E.ti ; q
i / � E.ti�1; q

i�1/CD.qi�1; qi /

�

Z ti

ti�1

@tE.�; q
i�1/ d�; (4.14)

8i D 1; : : : ; N; E.ti ; q
i /CM C

iX
jD1

D.qj�1; qj /

� .E.0; q0/CM/eLti : (4.15)

Proof. The main point is to prove the existence of solutions of (4.11). Given a solution of
(4.11) where q0 satisfies (4.12), then (4.13)–(4.15) are obtained by standard computations
as in [43, Theorem 3.2].

It is sufficient to show that, for Qt 2 Œ0; T � and Qq 2 Q fixed, the auxiliary functional
F WQ ! R given by F .q/ WD E.Qt ; q/ C D. Qq; q/, admits a minimizer in Q. As D is
positive, from (4.4) we have

F .q/ � C0kryk
p

Lp.�IR3�3/
C k
.detry/kL1.�/ C ˛krmk

2
L2.�y IR3�3/

� C1 (4.16)

for every q 2 Q with q D .y;m/. Let .qn/ � Q with qn D .yn;mn/ be a minimizing
sequence for F , namely such that F .qn/! infQ F . In particular, supn2N F .qn/ <C1,
so that (4.16) yields (3.11). By Proposition 3.4, there exists q 2 Q such that, up to subse-
quences, we have qn! q in Q andmn ı yn!m ı y inLa.�IR3/ for every 1� a <1.
Arguing as in the proof of Theorem 3.2, we prove (3.30) while, exploiting the weak con-
tinuity of the trace operator, we get

L.Qt ; q/ D lim
n!1

L.Qt ; qn/: (4.17)

By the weak continuity of Jacobian minors, cofryn * cofry in Lp=2.�IR3�3/. This,
combined with the convergence of .mn ı yn/ in L.p=2/

0

.�IR3/, yields Z.qn/ * Z.q/ in
L1.�IR3/ and, by the lower semicontinuity of the norm, we deduce

D. Qq; q/ � lim inf
n!1

D. Qq; qn/: (4.18)

Finally, combining (3.30) and (4.17)–(4.18), we obtain

F .q/ � lim inf
n!1

F .qn/;

so that q is a minimizer of F .
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Unfortunately, in our setting we cannot proceed with the second step of the proof of
the existence of energetic solutions. This is due to a lack of compactness in the dissipative
variable which is typical of large-strain theories. Therefore, in the next subsection we
propose a regularization of the model in the spirit of gradient polyconvexity [5].

4.2. Regularized setting

Henceforth, we regularize the problem as follows. Recalling (3.1), we restrict ourselves to
the class of deformations

zY WD
®
y 2 Y W cofry 2 BV.�IR3�3/

¯
; (4.19)

so that the corresponding class of admissible states is given by

zQ WD
®
.y;m/ W y 2 zY; m 2 W 1;2.�y IS2/

¯
: (4.20)

Equivalently, in (4.19) we require that the distributional gradient of cofry is given by a
bounded tensor-valued Radon measure D.cofry/ 2Mb.�IR3�3�3/.

Example 4.4. Let �, P , and y be as in Example 2.2 and let � and Ny be as in Example
3.1. Then y 2 zY. To see this, for every x 2 � n P with x D .x1; x2; x3/, we compute

cofry.x/ WD

0@jx1j 0 �x1x3=jx1j

0 jx1j 0

0 0 1

1A :
Set u.x/ WD �x1x3=jx1j. Then u 2 BV.�/ sinceD1uD vH2 P; whereD1 denotes the
distributional derivative with respect to the first variable and we set v.x/ WD 2x3. Therefore
y 2 zY.

Example 4.5. Define f W Œ0; 1� ! R by setting f .x/ WD x2 cos2.�=x2/ for every 0 <
x � 1 and f .0/ WD 0, and let gW Œ0; 1�! R be given by g.x/ WD

R x
0
f .z/ dz. We have

f 2 C 0.Œ0; 1�/ n BV.Œ0; 1�/ and g 2 C 1.Œ0; 1�/. Moreover, g is strictly increasing and,
in turn, injective. Let � WD .0; 1/3 and define yW�! R3 by y.x/ WD .x1; x2; g.x1/x3/,
where xD .x1; x2; x3/. In this case, y 2C 1.x�IR3/ is a homeomorphism and detry > 0.
However,

cofry.x/ WD

0@g.x1/ 0 �f .x1/x3
0 g.x1/ 0

0 0 1

1A ;
so that cofry … BV.�IR3�3/. In particular, for � WD ¹1º � .0; 1/2 and Ny WD id, there
holds y 2 Y n zY.

Recalling (3.7), the regularized magnetoelastic energy zEW zQ! R is given by

zE.q/ WD E.q/C jD.cofry/j.�/; (4.21)
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where q D .y; m/ and jD.cof ry/j.�/ denotes the total variation of the measure
D.cofry/ over �. The corresponding total energy zEW Œ0; T � � zQ! R is defined as

zE.t; q/ WD zE.q/ �L.t; q/; (4.22)

where L is given by (4.2). Also, analogously to (4.7), there holds

zE.t; q/CM � . zE.s; q/CM/eL.t�s/ (4.23)

for every q 2 zQ and s; t 2 Œ0; T � with s < t .
The second main result of the paper states the existence of energetic solutions for the

regularized model.

Theorem 4.6 (Existence of energetic solutions). Assume p > 3 and zY ¤ ;. Suppose that
W is continuous and satisfies (3.8)–(3.9), and that the applied loads satisfy (4.1). Then,
for every q0 2 zQ satisfying

8Oq 2 zQ; zE.0; q0/ � zE.0; Oq/CD.q0; Oq/; (4.24)

there exists an energetic solution qW Œ0; T �! zQ of the regularized model which fulfills the
initial condition q.0/ D q0. Namely, the following stability condition and energy balance
hold:

8t 2 Œ0; T �; 8Oq 2 yQ; zE.t; q.t// � zE.t; Oq/CD.q.t/; Oq/; (4.25)

8t 2 Œ0; T �; zE.t; q.t//C VarD.qI Œ0; t �/

D zE.0; q0/C

Z t

0

@t zE.�; q.�// d�: (4.26)

Given the highly nonconvex character of the energy, we cannot establish any regular-
ity of the solution. However, by applying a suitable version of the measurable selection
lemma, the existence of a measurable energetic solution can be ensured.

As already mentioned, the proof Theorem 4.6 proceeds by time discretization. Let
… D .t0; : : : ; tN / be a partition of Œ0; T �. The regularized incremental minimization prob-
lem determined by … with initial data q0 2 Q reads

find .q1; : : : ; qN / 2 zQN such that each qi is a minimizer

of q 7! zE.ti ; q/CD.qi�1; q/ for i D 1; : : : ; N : (4.27)

The next result provides the analogue of Proposition 4.3 in the regularized setting.

Proposition 4.7 (Solutions of the regularized incremental minimization problem). Assume
p > 3 and zY ¤ ;. Suppose that W is continuous and satisfies (3.8)–(3.9), and that the
applied loads satisfy (4.1). Let … D .t0; : : : ; tN / be a partition of Œ0; T � and let q0 2 zQ.
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Then the incremental minimization problem (4.27) admits a solution .q1; : : : ;qN / 2 zQN .
Moreover, if q0 satisfies (4.24), then the following holds:

8i D 1; : : : ; N; 8Oq 2 zQ; zE.ti ; q
i / � zE.ti ; Oq/CD.qi ; Oq/; (4.28)

8i D 1; : : : ; N; zE.ti ; q
i / � zE.ti�1; q

i�1/CD.qi�1; qi /

�

Z ti

ti�1

@t zE.�; q
i�1/ d�; (4.29)

8i D 1; : : : ; N; zE.ti ; q
i /CM C

iX
jD1

D.qj�1; qj /

� . zE.0; q0/CM/eLti : (4.30)

Proof. Again, the main point is to prove the existence of solutions to (4.27). Hence, we
show that the auxiliary functional zF W zQ ! R defined by zF .q/ WD zE.Qt ; q/ CD. Qq; q/,
where Qt 2 Œ0; T � and Qq 2 zQ are fixed, admits a minimizer in zQ. The proof goes as that
of Proposition 4.3. Let .qn/ � zQ with qn D .yn;mn/ be a minimizing sequence for zF ,
namely such that zF .qn/! inf zQ zF . We have supn2N

zF .qn/ <C1. From this, exploiting
the coercivity in (4.4) and applying Proposition 3.4, we find q D .y;m/ 2Q such that, up
to subsequences, the convergences in (3.4)–(3.6) and (3.12) hold true. These allow us to
establish (3.30) and (4.17)–(4.18) as in Proposition 4.3. We also deduce that the sequence
.cofryn/ is bounded in BV.�IR3�3/. Thus, up to subsequences, there hold

cofryn ! G in L3=2.�IR3�3/; D.cofryn/
�
*DG in Mb.�IR

3�3�3/ (4.31)

for some G 2 BV.�IR3�3/. By (3.3) and the weak continuity of Jacobian minors, G D
cofry and, in particular, y 2 zY and q 2 zQ. Moreover, by the lower semicontinuity of the
total variation, we obtain

jD.cofry/j.�/ � lim inf
n!1

jD.cofryn/j.�/:

This, combined with (3.30) and (4.17)–(4.18), yields

zF .q/ � lim inf
n!1

zF .qn/

and, in turn, q is a minimizer of zF .

Remark 4.8 (Gradient polyconvexity). The regularization introduced in Section 4.2
makes assumption (3.9) superfluous in the proof of Proposition 4.7, as well as in the rest
of our analysis. By (4.31), up to subsequences, we have cofryn! cofry almost every-
where. As observed in [5], this entails ryn!ry almost everywhere. Indeed, exploiting
the identity det.cofF / D .detF /2 for every F 2 R3�3, we see that detryn ! detry
almost everywhere. Then, by the formula F �1 D .detF /�1.adjF / for every F 2 R3�3C ,
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we obtain .ryn/
�1 ! .ry/�1 almost everywhere and the claim follows by the conti-

nuity of the map F 7! F �1 on R3�3C . The almost everywhere convergence of .ryn/ and
.mn ı yn/, which can be assumed by (3.12), entails the lower semicontinuity of the elastic
energy in (3.31) by a simple application of the Fatou lemma. Therefore, assumption (3.9)
is actually not necessary in the regularized setting.

In the next proposition, we consider the piecewise-constant interpolants corresponding
to solutions of (4.27) and we collect their main properties. Recall the definition of variation
with respect to D in (4.10).

Proposition 4.9 (Piecewise-constant interpolants). Assume p > 3 and zY ¤ ;. Suppose
that W is continuous and satisfies (3.8)–(3.9), and that the applied loads satisfy (4.1). Let
…D .t0; : : : ; tN / be a partition of Œ0; T � and let q0 2 zQ satisfy (4.24). Let .q1; : : : ;qN / 2
zQN be a solution of the regularized incremental minimization problem (4.27) and define
the (right-continuous) piecewise-constant interpolant q…W Œ0; T �! zQ as

q….t/ WD

´
qi�1 if t 2 Œti�1; ti / for some i D 1; : : : ; N ;

qN if t D T :
(4.32)

Then the following holds:

8t 2 …; 8Oq 2 zQ; zE.t; q….t// �
zE.t; Oq/CD.q….t/; Oq/; (4.33)

8s; t 2 … W s < t; zE.t; q….t// �
zE.s; q….s//C VarD.q…I Œs; t �/

�

Z t

s

@t zE.�; q….�// d�; (4.34)

8t 2 Œ0; T �; zE.t; q….t//CM C VarD.q…I Œ0; t �/

� . zE.0; q0/CM/eLt : (4.35)

Proof. Claims (4.33)–(4.34) follow immediately from (4.28)–(4.29), respectively. We
prove (4.35). Let t 2 Œ0; T � and let i 2 ¹1; : : : ; N º be such that ti�1 � t < ti . In this
case we have

q….t/ D q
i�1; VarD.q…I Œ0; t �/ D

i�1X
jD1

D.qj�1; qj /:

Thus, using (4.23) and (4.30), we compute

zE.t; q….t//CM C VarD.q…I Œ0; t �/

� . zE.ti�1; q
i�1/CM/eL.t�ti�1/ C

i�1X
jD1

D.qj�1; qj /

�

�
zE.ti�1; qi�1/CM C

i�1X
jD1

D.qj�1; qj /

�
eL.t�ti�1/

� . zE.0; q0/CM/eLt : (4.36)
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In the proof of Theorem 4.6, we will use the following version of the Helly selection
principle, which is a special case of [39, Theorem 3.2].

Lemma 4.10 (Helly selection principle). Let Z be a Banach space and let K � Z be
compact. Let .zn/ � BV.Œ0; T �IZ/ be such that for every n 2 N there holds

8t 2 Œ0; T �; zn.t/ 2K (4.37)

and
sup
n2N

Var.znI Œ0; T �/ < C1: (4.38)

Then there exist a subsequence .znk / and a map z 2 BV.Œ0; T �IZ/ such that

8t 2 Œ0; T �; znk .t/! z.t/ in Z: (4.39)

The proof of Theorem 4.6 rigorously follows the well-established scheme introduced
in [22]. Therefore, we simply show how to lead the argument back to the original scheme.
For additional details we refer to [43, Theorem 5.2].

Proof of Theorem 4.6. Following [43, Theorem 5.2], we divide the proof into five steps.

Step 1 (A priori estimates). Let .…n/ be a sequence of partitions of Œ0; T � with …n D

.tn0 ; : : : ; t
n
Nn
/ such that j…nj WD max¹tni � t

n
i�1 W i D 1; : : : ; Nnº ! 0 as n ! 1. For

every n 2N, by Proposition 4.7, the incremental minimization problem (4.27) determined
by …n admits a solution and, by Proposition 4.9, the corresponding piecewise-constant
interpolant qn WD q…n with qn D .yn;mn/ defined according to (4.32) satisfies

8t 2 …n; 8Oq 2 zQ; zE.t; qn.t// �
zE.t; Oq/CD.qn.t/; Oq/; (4.40)

8s; t 2 …n W s < t; zE.t; qn.t// �
zE.s; qn.s//C VarD.qnI Œs; t �/

�

Z t

s

@t zE.�; qn.�// d�; (4.41)

8t 2 Œ0; T �; zE.t; qn.t//CM C VarD.qnI Œ0; t �/ (4.42)

� . zE.0; q0/CM/eLt :

In particular, from (4.42), we deduce that, for every n 2 N, there holds

sup
n2N

°
sup
t2Œ0;T �

zE.t; qn.t//C VarD.qnI Œ0; T �/
±
� C (4.43)

for some constant C.q0;M;L; T / > 0.

Step 2 (Selection of subsequences). From (4.4) and (4.43), for every n 2 N and t 2 Œ0; T �
we have

kryn.t/kLp.�IR3�3/ � C; krmn.t/kL2.�yn.t/IR3�3/ � C;

k
.detryn.t//kL1.�/ � C; kD.cofryn.t//kMb.�IR3�3�3/ � C:



M. Bresciani, E. Davoli, and M. Kružík 586

This shows that each map of the sequence .qn/ takes values in the set zK � zQ defined as

zK WD
®
Oq D . Oy; ym/ 2 zQ W kr OykLp.�IR3�3/ � C; kr ymkL2.� Oy IR3�3/ � C;

k
.detr Oy/kL1.�/ � C; kD.cofr Oy/kMb.�IR3�3�3/ � C
¯
:

Applying Proposition 3.4 and arguing as in the proof of Proposition 4.7, we prove the
following:

for every . Oqn/ � zK with Oqn D . Oyn; ymn/ there exist a subsequence . Oqnk /

and an admissible state Oq 2 zQ with Oq D . Oy; ym/ such that Oqnk ! Oq in zQ;

ymnk ı Oynk ! ym ı Oy in La.�IR3/ for every 1 � a <1;

Z. Oqnk /! Z. Oq/ in L1.�IR3/;

D.cofr Oynk /
�
*D.cofr Oy/ in Mb.�IR

3�3�3/:

(4.44)

In particular, we stress the strong convergence of .Z. Oqnk // in L1.�IR3/ which follows
from the strong convergence of .cofr Oynk / in L3=2.�IR3/ (see (4.31)) and the strong
convergence of .mnk ı ynk / in L3.�IR3/. Thus, the set

K WD
®
Z. Oq/ W Oq 2 zK

¯
is compact with respect to the strong topology of L1.�IR3/. Now consider the sequence
.zn/ � BV.Œ0; T �IL1.�IR3// with zn.t/ WD Z.qn.t// for every t 2 Œ0; T �. Setting Z D
L1.�IR3/, the sequence .zn/ satisfies (4.37) by construction, as the maps of the sequence
.qn/ take values in zK , while (4.38) holds in view of (4.43). Thus, by Lemma 4.10, there
exist a subsequence .znk / and a map z 2 BV.Œ0; T �IL1.�IR3// such that (4.39) holds.

For every n 2 N, define #nW Œ0; T �! R by setting #n.t/ WD @t zE.t; qn.t//. By (4.6)
and (4.43), the sequence .#n/ is bounded in L1.0; T /. Hence, up to subsequences,
#n

�
* # in L1.0; T / for some # 2 L1.0; T /. If we define N# W Œ0; T � ! R as N#.t/ WD

lim supn!1 #n.t/, then N# 2 L1.0; T / and, by the Fatou lemma, # � N# .
Finally, for every fixed t 2 Œ0; T �, exploiting (4.44), we select a subsequence .qn

kt
`

.t//

and some q.t/ 2 zQ with q.t/ D .y.t/;m.t// such that

qn
kt
`

.t/! q.t/ in zQ;

mn
kt
`

ı yn
kt
`

.t/! m ı y.t/ in La.�IR3/ for every 1 � a <1;

Z.qn
kt
`

.t//! Z.q.t// in L1.�IR3�3/;

D.cofryn
kt
`

.t//
�
*D.cofry.t// in Mb.�IR

3�3�3/:

(4.45)

The candidate solution qW Œ0; T �! zQ is pointwise defined by this procedure. Note that,
by (4.39), there holds z.t/D Z.q.t//. Also, we choose the subsequence in (4.45) in order
to have #n

kt
`

.t/! N#.t/.
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Step 3 (Stability of the limiting function). We claim that q satisfies (4.25). Fix t 2 Œ0; T �.
Henceforth, for simplicity, we will replace the subscripts nk and nkt

`
by k and kt

`
, respec-

tively. For every k 2 N, set �k.t/ WD max¹s 2 …k W s � tº and note that �k.t/! t , since
j…kj ! 0. Then qk.t/ D qk.�k.t// so that, by (4.28), we have

8Oq 2 zQ; zE.�k.t/; qk.t// �
zE.�k.t/; Oq/CD.qk.t/; Oq/: (4.46)

Recall (4.45). Arguing as in the proof of Proposition 4.7 and exploiting the continuity of
the applied loads in (4.1), we obtain

zE.t; q.t// � lim inf
`!1

zE.�kt
`
.t/; qkt

`
.t//: (4.47)

Moreover, by the continuity of the applied loads in (4.1), there holds

8Oq 2 zQ; zE.�kt
`
.t/; Oq/! zE.t; Oq/; (4.48)

while, as zkt
`
.t/! z.t/ in L1.�IR3/ and z.t/ D Z.q.t//, we have

8Oq 2 zQ; D.qkt
`
.t/; Oq/! D.q.t/; Oq/: (4.49)

Hence, combining (4.46)–(4.49), we deduce

zE.t; q.t// � lim inf
`!1

zE.�kt
`
.t/; qkt

`
.t//

� lim inf
`!1

®
zE.�kt

`
.t/; Oq/CD.qkt

`
.t/; Oq/

¯
D zE.t; Oq/CD.q.t/; Oq/

for every Oq 2 zQ, which gives (4.25) for t fixed.

Step 4 (Upper energy estimate). We claim that q satisfies the upper energy estimate

8t 2 Œ0; T �; zE.t; q.t//C VarD.qI Œ0; t �/ � zE.0; q
0/C

Z t

0

@t zE.�; q.�// d�: (4.50)

Recall (4.43). For every n 2 N, using (4.23) we obtain

8s; t 2 Œ0; T �; j zE.t; qn.t// �
zE.s; qn.s//j � .C CM/jeLjt�sj � 1j

DW �.t � s/; (4.51)

where �.r/! 0, as r ! 0.
Fix t 2 Œ0; T �, so that qn.t/ D qn.�n.t// and VarD.qnI Œ0; t �/ D VarD.qnI Œ0; �n.t/�/

for every n 2 N. Recall the definition of #n in Step 2. By (4.51) and (4.41) we have

zE.t; qn.t//C VarD.qnI Œ0; t �/ �
zE.�n.t/; qn.�n.t///

C VarD.qnI Œ0; �n.t/�/C �.j…nj/

� zE.0; q0/C

Z �n.t/

0

#n.�/ d� C �.j…nj/ (4.52)



M. Bresciani, E. Davoli, and M. Kružík 588

for every n 2 N. Also, by the lower semicontinuity of the total variation we have

VarD.qI Œ0; t �/ D Var.zI Œ0; t �/ � lim inf
n!1

Var.znI Œ0; t �/

D lim inf
n!1

VarD.qnI Œ0; t �/; (4.53)

as (4.39) holds and z.s/ D Z.q.s// for every s 2 Œ0; T �. Then, from (4.47) and (4.52)–
(4.53), we deduce

zE.t; q.t//C VarD.qI Œ0; t �/

� lim inf
`!1

®
zE.t; qkt

`
.t//C VarD.qkt

`
I Œ0; t �/

¯
� zE.0; q0/C lim inf

`!1

²Z �
kt
`
.t/

0

#kt
`
.�/ d� C �.j…kt

`
j/

³
D zE.0; q0/C

Z t

0

#.�/ d� � zE.0; q0/C
Z t

0

N#.�/ d�; (4.54)

where, in the last line, we used that #k
�
* # in L1.0; T /, # � N# , and �.j…kj/! 0.

We claim that N#.t/ D @t zE.t; q.t// for every t 2 .0; T /. Fix t 2 .0; T /. Testing (4.25)
with qkt

`
.t/, we have

�zE.t; qkt
`
.t// � �zE.t; q.t//CD.q.t/; qkt

`
.t//

so that, using (4.49), we compute

lim sup
`!1

zE.t; qkt
`
.t// D � lim inf

`!1

�
�zE.t; qkt

`
.t//

�
� � lim inf

`!1

�
�zE.t; q.t//CD.q.t/; qkt

`
.t//

�
� zE.t; q.t//:

Given (4.47), we conclude that zE.t;qkt
`
.t//! zE.t;q.t//. Recalling (4.45), by [43, Propo-

sition 5.6], we have

#kt
`
.t/ D @t zE.t; qkt

`
.t//! @t zE.t; q.t//

and, as #kt
`
.t/! N#.t/, we deduce N#.t/ D @t zE.t; q.t//. Therefore, (4.54) gives (4.50) for

fixed t .

Step 5 (Lower energy estimate). Finally, we show that q satisfies

8t 2 Œ0; T �; zE.t; q.t//C VarD.qI Œ0; t �/ � zE.0; q
0/C

Z t

0

@t zE.�; q.�// d�; (4.55)

which, combined with (4.50), proves (4.26).
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Note that, by (4.47), we have supt2Œ0;T � zE.t; q.t// � C . Moreover, the function t 7!
@t zE.t;q.t// belongs to L1.0; T /, as it coincides with N# . Hence, by [43, Proposition 5.7],
for every s; t 2 Œ0; T � with s < t we have

zE.t; q.t//C VarD.qI Œs; t �/ � zE.s; q.s//C

Z t

s

@t zE.�; q.�// d�;

which in turn yields (4.55).
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[50] T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic
materials under diffusion at large strains and its analysis. Z. Angew. Math. Phys. 69 (2018),
no. 3, Paper No. 55 MR 3787821

https://mathscinet.ams.org/mathscinet-getitem?mr=3393264
https://mathscinet.ams.org/mathscinet-getitem?mr=3299014
https://mathscinet.ams.org/mathscinet-getitem?mr=2699976
https://zbmath.org/?q=an:1342.78012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3502225
https://zbmath.org/?q=an:1173.74328&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2340001
https://zbmath.org/?q=an:1161.74387&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2105969
https://zbmath.org/?q=an:1173.49013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2511255
https://zbmath.org/?q=an:0275.49041&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=322651
https://zbmath.org/?q=an:1371.81320&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3269033
https://zbmath.org/?q=an:1120.47062&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2182832
https://mathscinet.ams.org/mathscinet-getitem?mr=3380972
https://zbmath.org/?q=an:0863.49002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1267368
https://zbmath.org/?q=an:0836.73025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1346364
https://zbmath.org/?q=an:0665.73017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=965254
https://zbmath.org/?q=an:0633.73108&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=853781
https://mathscinet.ams.org/mathscinet-getitem?mr=3787821


M. Bresciani, E. Davoli, and M. Kružík 592

[51] P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials. SIAM
J. Math. Anal. 36 (2005), no. 6, 2004–2019 Zbl 1086.49014 MR 2178230

[52] B. L. Sharma and P. Saxena, Variational principles of nonlinear magnetoelastostatics and their
correspondences. Math. Mech. Solids 26 (2021), no. 10, 1424–1454 MR 4323424

[53] V. Šverák, Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal.
100 (1988), no. 2, 105–127 MR 913960

[54] Q. Tang, Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinburgh Sect.
A 109 (1988), no. 1-2, 79–95 Zbl 0656.73010 MR 952330

[55] R. A. Toupin, Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11 (1962),
385–414 Zbl 0112.16805 MR 144512

[56] R. A. Toupin, Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17 (1964),
85–112 Zbl 0131.22001 MR 169425

Received 30 March 2021; revised 16 December 2021; accepted 4 January 2022.

Marco Bresciani
Institute of Analysis and Scientific Computing, TU Wien, Wiedner Haupstrasse 8-10, 1040 Vienna,
Austria; marco.bresciani@asc.tuwien.ac.at

Elisa Davoli
Institute of Analysis and Scientific Computing, TU Wien, Wiedner Haupstrasse 8-10, 1040 Vienna,
Austria; elisa.davoli@tuwien.ac.at

Martin Kružík
Institute of Information Theory and Automation, Czech Academy of Science,
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