
Ann. Inst. H. Poincaré
Anal. Non Linéaire 40 (2023), 531–555
DOI 10.4171/AIHPC/50

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Rigidity of closed CSL submanifolds in the unit sphere

Yong Luo and Linlin Sun

Abstract. We are concerned with the rigidity of contact stationary Legendrian (CSL) submanifolds,
critical points of the volume functional of Legendrian submanifolds in a Sasakian manifold, whose
Euler–Lagrange equation is a third-order elliptic PDE. We obtain several optimal rigidity theorems
for closed CSL submanifolds in the unit sphere by utilizing the maximum principle together with
Simons’ identity. In particular, we proved that a closed CSL submanifold Mn � S2nC1 is a totally
geodesic sphere or a Calabi 2-torus if jBj2 � 4.n�1/

n C
3n�2
n2
jHj2, where B and H are the second

fundamental form and the mean curvature vector, respectively. Moreover, an example shows that
this assumption is optimal.

1. Introduction

1.1. CSL submanifolds in a Sasakian manifold

Let . xM 2nC1; N̨ ; Ng N̨ ; NJ / be a .2nC 1/-dimensional contact metric manifold with contact
structure N̨ , associated metric Ng N̨ and almost complex structure NJ . Assume that .M; g/ is
an n-dimensional compact Legendrian submanifold of xM 2nC1 with the metric g induced
from Ng N̨ . The volume ofM is defined by V.M/ WD

R
M

d�g ;where d�g is the volume form
of g. A contact stationary Legendrian submanifold (briefly, CSL submanifold) of xM 2nC1

is a Legendrian submanifold of xM 2nC1 which is a stationary point of V with respect to
contact deformations. In other words, a CSL submanifold is a stationary point of variation
of the volume functional among Legendrian submanifolds. The Euler–Lagrange equation
for a CSL submanifold M is [5, 18]

divg. NJH/ D 0;

where divg is the divergence operator with respect to g and H is the mean curvature vector
of M in xM 2nC1:

Remark 1.1. The notion of a CSL submanifold was first defined by Iriyeh [18] and Castro
et al. [5] independently, using the names “Legendrian minimal Legendrian submanifold”
and “contact minimal Legendrian submanifold”, respectively. In this paper we prefer to
use the name “CSL submanifold”.
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The study of CSL submanifolds was motivated by the study of Hamiltonian minimal
Lagrangian (briefly, HSL) submanifolds, which was first studied by Oh [39, 40]. An HSL
submanifold in a Kähler manifold is a Lagrangian submanifold which is a stationary point
of the volume functional under Hamiltonian deformations. By [42], Legendrian submani-
folds in a Sasakian manifold xM 2nC1 can be seen as links of Lagrangian submanifolds in
the cone C xM 2nC1, which is a Kähler manifold with proper metric and complex structure.
In fact, a close relation between CSL submanifolds and HSL submanifolds was found by
Iriyeh [18] and Castro et al. [5]. Precisely, they independently proved that C.M/ is an
HSL submanifold in Cn (n � 2) if and only if M is a CSL submanifold in S2n�1 and M
is a CSL submanifold in S2nC1 (n � 1) if and only if ….M/ is an HSL submanifold in
CPn, where …WS2nC1 ! CPn is the Hopf fibration.

From the definition we see that CSL submanifolds are natural generalizations of min-
imal Legendrian submanifolds. The study of (nonminimal) CSL submanifolds of S2nC1

is a relatively recent endeavor. For n D 1, by [18], CSL curves in S3 are the so-called
.p; q/ curves discovered by Schoen and Wolfson [43], where p, q are relatively prime
integers. For nD 2, since a harmonic 1-form on a 2-sphere must be trivial, CSL 2-spheres
in S5 must be minimal and so must be the equatorial 2-spheres by Yau’s result [51]. There
are a lot of contact stationary doubly periodic surfaces from R2 to S5 by lifting Hélein
and Romon’s examples [15] and more CSL surfaces (mainly tori) were constructed in
[4, 14, 16, 18, 34–36, 38] etc. And for general dimensions, examples were constructed in
[3, 7, 11, 12, 20, 24, 37, 40] etc.

1.2. Gap phenomenon of closed minimal submanifolds in the unit sphere

In the theory of minimal submanifolds, the following Simons’ integral inequality and
pinching theorem due to Simons [45], Lawson [22] and Chern et al. [9] are well known.

Theorem A (Simons, Lawson, Chern–do Carmo–Kobayashi). LetM n be a compact min-
imal submanifold in a unit sphere SnCp and B the second fundamental form of M in
SnCp . Then we have Z

M

jBj2
� n

2 � 1
p

� jBj2
�

d� � 0:

In particular, if 0� jBj2 � n

2� 1p
; then either jBj2D 0 or jBj2D n

2� 1p
andM is the Clifford

hypersurface or the Veronese surface in S4.

Remark 1.2. Usually we call the number n

2� 1p
the first gap of minimal submanifolds in

a sphere because Chern conjectured that the set of numbers which are the constant square
length of the second fundamental form of compact minimal submanifolds in a sphere is
discrete.

From the classification of compact minimal submanifolds with jBj2D n

2� 1p
we see that

the first gap is not optimal except when p D 1 or n D p D 2. It is interesting to sharpen
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the first gap for other cases of higher codimension. In this direction there are many studies
by several authors (see [1, 13, 44]) and finally Li–Li [25] and Chen–Xu [8] independently
proved the following theorem.

Theorem B (Li–Li, Chen–Xu). Let M n be a compact minimal submanifold in a unit
sphere. Assuming that jBj2 � 2n

3
, then either jBj2 D 0 and M is totally geodesic or n D

2; jBj2 D 4
3

and M is the Veronese surface in S4.

Remark 1.3. Theorem B was generalized slightly by Lu [31].

Since Legendrian submanifolds are a special class of submanifolds, one may hope to
solve the first gap problem for this class of submanifolds. This was done when n D 2

(see [50]).

Theorem C (Yamaguchi–Kon–Miyahara). If † is a closed minimal Legendrian surface
of the unit sphere S5 and 0 � jBj2 � 2, then jBj2 is identically 0 or 2.

Remark 1.4. Theorem C is inspired by Yau’s Lagrangian version of this result (see [51,
Theorem 7]).

The higher-dimensional case of this problem largely remains open and one may see
[10, 49] for related results.

1.3. Main results

Besides efforts made to obtain the existence of CSL submanifolds, it is also of interest to
understand the properties of these examples. See [17,21,41] for progress in this direction.
To understand the geometry of CSL submanifolds, and inspired by the first gap problem of
closed minimal submanifolds in the unit sphere, Luo [32,33] studied the first gap problem
of CSL surfaces and obtained the following result.

Theorem D (Luo). Let † be a closed contact stationary Legendrian surface in S5.
Assuming that 0 � jBj2 � 2, then † is either totally geodesic or jBj2 D 2 and † is a
flat minimal Legendrian torus.

Remark 1.5. A flat minimal Legendrian torus in S5 must be a generalized Clifford torus,
which also is a minimal Calabi torus as stated in the appendix. For details we refer to
[14, p. 853].

The study of the first gap problem for submanifolds satisfying a fourth-order quasi-
elliptic nonlinear equation was first carried out by Li: in [26–28], several gap theorems for
Willmore submanifolds in a sphere are proved.

In this paper we aim to study this kind of problem further. We will not only generalize
Theorem D in dimension 2, but also prove such a result in higher dimensions. The main
results of this manuscript are the following theorems:
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Theorem 1.1. Suppose M n (n � 2) is a closed contact stationary Legendrian submani-
fold of S2nC1 and

jBj2 �
.n � 1/.nC 2/

n
C
n2 C 3n � 2

2n2
jHj2 �

.n � 1/.n � 2/jHj
p
4nC jHj2

2n2
: (1.1)

(1) If n D 2, then M is either totally geodesic or a Calabi torus as stated in the
appendix.

(2) If n � 3, then M is either minimal or a Calabi product Legendrian immersion of
a totally geodesic Legendrian immersion and a point, as stated in the appendix.

As a consequence, we obtain the following theorem:

Theorem 1.2. If M n (n � 3) is a closed contact stationary Legendrian submanifold of
S2nC1 and

jBj2 �
4.n � 1/

n
C
3n � 2

n2
jHj2; (1.2)

then M is totally geodesic.

Remark 1.6. According to examples of Calabi product Legendrian immersion of a totally
geodesic Legendrian immersion and a point, we see that both Theorem 1.1 and Theorem
1.2 are optimal.

By a similar argument we can obtain similar results for Hamiltonian minimal subman-
ifolds in CPn, which we would like to omit here.

The rest of this paper will be organized as follows. In Section 2 we give some pre-
liminaries on the Sasakian geometry, CSL submanifolds in a sphere and prove several
important lemmas which will be useful in the remaining sections. In Sections 3 and 4 we
give a complete proof of Theorem 1.1. Actually in Section 3 we get stronger results in
the surface case. Theorem 1.2 is proved in Section 5, where we also prove more results
and propose several conjectures. In the appendix, we state the examples which are not
only used in the statement of our theorems, but also illustrate that both Theorem 1.1 and
Theorem 1.2 are optimal.

2. Preliminaries

In this section we recall some basic material from contact geometry and submanifold
geometry. For more information we refer to [2, 48].

2.1. Contact manifolds

Definition 2.1. A contact manifold xM is an odd-dimensional manifold with a 1-form N̨
such that N̨ ^ .d N̨ /n ¤ 0, where dim xM D 2nC 1.
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Assume now that . xM; N̨ / is a given contact manifold of dimension 2nC 1. Then N̨
defines a 2n-dimensional vector bundle over xM , where the fiber at each point p 2 xM is
given by

N�p D ker N̨p:

Since N̨ ^ .d N̨ /n defines a volume form on xM , we see that

N! WD d N̨

is a closed nondegenerate 2-form on N� ˚ N� and hence it defines a symplectic product on
N� such that . N�; N!j N�˚N�/ becomes a symplectic vector bundle. A consequence of this fact is
that there exists an almost complex bundle structure

QJ W N� ! N�

compatible with d N̨ , i.e. a bundle endomorphism satisfying

(1) QJ 2 D �id N� ,

(2) d N̨ . QJX; QJY / D d N̨ .X; Y / for all X; Y 2 N�,

(3) d N̨ .X; QJX/ > 0 for X 2 N� n 0.

Since xM is an odd-dimensional manifold, N! must be degenerate on T xM , and so we
obtain a line bundle N� over xM with fibers

N�p WD
®
V 2 Tp xM

ˇ̌
N!.V;W / D 0 8W 2 N�p

¯
:

Definition 2.2. The Reeb vector field xR is the section of N� such that N̨ .xR/ D 1.

Thus N̨ defines a splitting of T xM into a line bundle N� with the canonical section xR and
a symplectic vector bundle . N�; N!j N� ˚ N�/. We denote the projection along N� by N� , i.e.

N� WT xM ! N�; V 7! N�.V / WD V � N̨ .V /xR:

Using this projection we extend the almost complex structure QJ to a section NJ2�.T � xM ˝
T xM/ by setting

NJ .V / WD QJ .�.V //

for V 2 T xM .
We call NJ an almost complex structure of the contact manifold xM .

Definition 2.3. Let . xM; N̨ / be a contact manifold. Then a submanifold M of . xM; N̨ / is
called an isotropic submanifold if TxM � N�x for all x 2M .

For algebraic reasons the dimension of an isotropic submanifold of a .2nC 1/-dimen-
sional contact manifold cannot be bigger than n.

Definition 2.4. An isotropic submanifold M � . xM; N̨ / of maximal possible dimension n
is called a Legendrian submanifold.
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2.2. Sasakian manifolds

Let . xM; N̨ / be a contact manifold, with the almost complex structure NJ and Reeb field xR.
A Riemannian metric Ng N̨ defined on xM is said to be associated if it satisfies the following
three conditions:

(1) Ng N̨ .xR; xR/ D 1,

(2) Ng N̨ .V; xR/ D 0 for all V 2 N�,

(3) N!.V; NJW / D Ng N̨ .V;W / for all V;W 2 N�.

We should mention here that on any contact manifold there exists an associated metric
on it.

Sasakian manifolds are the odd-dimensional analogue of Kähler manifolds. They are
defined as follows.

Definition 2.5. A contact manifold . xM; N̨ /with an associated metric Ng N̨ is called Sasakian
if the cone C xM equipped with the extended metric NNg,

.C xM; NNg/ D .RC � xM; dr2 C r2 Ng N̨ /

is Kähler with respect to the following canonical almost complex structure NNJ on TC xM D
R˚ hxRi ˚ N� W

NNJ.r@r/ D xR; NNJ.xR/ D �r@r:

Furthermore, if Ng N̨ is Einstein, xM is called a Sasakian Einstein manifold.

We recall several lemmas which are well known in Sasakian geometry. These lemmas
will be used in the next section.

Lemma 2.1. Let . xM; N̨ ; Ng N̨ ; NJ / be a Sasakian manifold. Then

xrX
xR D NJX

for X; Y 2 TM , where xr is the Levi-Civita connection on . xM; Ng N̨ /.

Lemma 2.2. LetM be a Legendrian submanifold in a Sasakian Einstein manifold . xM; N̨ ;

Ng N̨ ; NJ /. Then the mean curvature form N!.H; �/jM defines a closed 1-form on M .

For a proof of this lemma we refer to [23, Proposition A.2] or [46, Lemma 2.8]. In
fact, they proved this result under a weaker assumption that . xM; N̨ ; Ng N̨ ; NJ / is a weakly
Sasakian Einstein manifold, where weakly Einstein means that Ng N̨ is Einstein only when
restricted to the contact hyperplane ker N̨ .

Lemma 2.3. Let M be a Legendrian submanifold in a Sasakian manifold . xM; N̨ ; Ng N̨ ; NJ /

and B be the second fundamental form of M in xM . Then we have

Ng N̨ .B.X; Y /; xR/ D 0

for any X; Y 2 TM .
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In particular, this lemma implies that the mean curvature H of M is orthogonal to the
Reeb field xR.

Lemma 2.4. For any Y;Z 2 ker N̨ , we have

Ng N̨ .xrX . NJY /;Z/ D Ng N̨ . NJ xrXY;Z/:

A most canonical example of Sasakian Einstein manifolds is the standard odd-dimen-
sional sphere S2nC1.

The standard sphere S2nC1. Let CnC1 D R2nC2 be the Euclidean space with coor-
dinates .x1; : : : ; xnC1; y1; : : : ; ynC1/ and S2nC1 be the standard unit sphere in R2nC2.
Defining

˛0 D
1

2

nC1X
jD1

.xj dyj � yj dxj /;

then
N̨ WD ˛0jS2nC1

defines a contact 1-form on S2nC1. Assume that g0 is the standard metric on R2nC2 and
J is the standard complex structure of CnC1. Defining

Ng N̨ D g0jS2nC1 ; NJ D J jS2nC1 ;

then .S2nC1; N̨ ; Ng N̨ ; NJ / is a Sasakian Einstein manifold with associated metric Ng N̨ . Its
contact hyperplane is characterized by

ker N̨x D
®
Y 2 TxS2nC1

ˇ̌
hY; J xi D 0

¯
:

2.3. CSL submanifolds in the unit sphere

Assume �WM n ! S2nC1 � CnC1 is a Legendrian immersion. The shape operator A�

with respect to the normal vector � 2 T ?M is a symmetric operator on the tangent bundle
and satisfies the Weingarten equations

hB.X; Y /; �i D hA�.X/; Y i 8X; Y 2 TM; � 2 T ?M:

The Gauss equations, Codazzi equations and Ricci equations are given by

R.X; Y;Z;W / D hX;ZihY;W i � hX;W ihY;Zi C hB.X;Z/;B.Y;W /i
� hB.X;W /;B.Y;Z/i;

.r?X B/.Y;Z/ D .r?Y B/.X;Z/;

R?.X; Y; �; �/ D hA�.X/;A�.Y /i � hA�.Y /;A�.X/i;

where X; Y;Z;W 2 TM , �; � 2 T ?M .
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Let ¹eiº be a local orthonormal frame of M . Then ¹Jei ; J�º is a local orthonormal
frame of the normal bundle T ?M , where J is the complex structure of CnC1. Recall that
M is CSL if and only if

div.JH/ D 0:

It is obvious that M is CSL when M is minimal.
Notice that for all X; Y;Z 2 �.TM/, by Lemma 2.1 we see

.r?ZB/.X; Y / D �J.rZ.JB//.X; Y /C hZ; JB.X; Y /iJ�:

Thus,

r
?
XH D �JrX .JH/C hX; JHiJ�;

div.JH/ D �
nX
iD1

hr
?
ei

H; Jei i:

As an immediate consequence, there is no closed nonminimal CMC Legendrian subman-
ifold in S2nC1. Moreover, M is CSL if and only if

nX
iD1

hr
?
ei

H; Jei i D 0:

Set �ijk WD hB.ei ; ej /; Jeki and �j WD hH; Jej i D
Pn
iD1 �i ij (1 � i; j; k � n). Then

jBj2 D j� j2; jHj2 D j�j2;

jr
?Bj2 D jr� j2 C j� j2; jr?Hj2 D jr�j2 C j�j2:

Moreover, by Lemma 2.4, the Codazzi equation and Lemma 2.2 we have

�ijk D �j ik D �ikj ; �ijk;l D �ijl;k ;

d� D 0; ı� D div.JH/:

Therefore we have the following lemma:

Lemma 2.5. The submanifoldM is CSL if and only if � is a harmonic 1-form if and only
if JH is a harmonic vector field.

By using the Bochner formula for harmonic vector fields (cf. [19]), we get the follow-
ing lemma:

Lemma 2.6. If M is CSL, then

1

2
�jHj2 D jr.JH/j2 C Ric.JH; JH/:

From Lemma 2.6, one can check the following lemma:
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Lemma 2.7. If † � S5 is CSL and nonminimal, then the zero set of H is isolated and

� logjHj D �

provided H ¤ 0, where � is the Gauss curvature of †.

We will need the following Simons’ identity (cf. [45]; see also [6, 49]).

Lemma 2.8 (Simons’ identity). Assume that M n is a Legendrian submanifold in S2nC1.
Then

��ijk WD
X
l

�ijk;l l

D �i;jk � �iıjk � �j ıik C
X
s;t

�ijt�tks�s

C .nC 1/�ijk C 2
X
l;s;t

�isl�jlt�kts �
X
l;s;t

�tli�tls�jks

�

X
l;s;t

�tlj�tls�iks �
X
l;s;t

�tlk�tls�ijs : (2.1)

Consequently,

��k WD
X
l

�k;l l D
X
i

�i;ik C .n � 1/�k C
X
s;t

�tsk�t�s �
X
l;s;t

�tlk�tls�s :

Proof. The Ricci identity yields

�ijk;lm D �ijk;ml C
X
t

�tjkRtilm C
X
t

�itkRtjlm C
X
t

�ijtRtklm:

Therefore,

��ijk D
X
l

�ijk;l l

D

X
l

�ijl;kl

D

X
l

�ijl;lk C
X
l;t

�tjlRtikl C
X
l;t

�itlRtjkl C
X
l;t

�ijtRtlkl

D �i;jk C
X
l;t

�tjlRtikl C
X
l;t

�itlRtjkl C
X
l;t

�ijtRtlkl :

Thus,

��ijk D �i;jk C
X
l;t

�tjl .ıtkıil � ıtlıik C �tks�ils � �tls�iks/

C

X
l;t

�til .ıtkıjl � ıtlıjk C �tks�jls � �tls�jks/

C

X
l;t

�ijt ..n � 1/ıtk C �tks�l ls � �tls�lks/
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D �i;jk C �ijk � �j ıik C
X
l;s;t

�tjl .�tks�ils � �tls�iks/

C �ijk � �iıjk C
X
l;s;t

�til .�tks�jls � �tls�jks/

C .n � 1/�ijk C
X
l;s;t

�ijt .�tks�s � �tls�lks/

D �i;jk � �iıjk � �j ıik C
X
s;t

�ijt�tks�s

C .nC 1/�ijk C 2
X
l;s;t

�tjl�tks�ils �
X
l;s;t

�tjl�tls�iks

�

X
l;s;t

�til�tls�jks �
X
l;s;t

�tls�lks�ijt :

3. Rigidity results for closed CSL surfaces in the unit sphere

In this section we assume † � S5 is a closed CSL surface.

Lemma 3.1 (Cf. [51]). If † is minimal and not totally geodesic, then the zero set of B is
isolated and

� logjBj D 3�

provided B ¤ 0.

Corollary 3.2. If † � S5 is a closed minimal Legendre surface with constant Gauss
curvature, then † is either totally geodesic or a Calabi torus as stated in the appendix.

Proof. By the Gauss equation, 2� D 2� jBj2, we know that jBj2 is a constant. According
to Lemma 3.1, we know that either B � 0 or � � 0. Thus † is either the totally geodesic
sphere or a flat minimal Legendrian torus.

More generally, we have the following proposition:

Proposition 3.3. Assume that † � S5 is a closed nonminimal Legendre surface with
r.JH/ D 0. Then † is a Calabi torus as stated in the appendix.

Proof. Denote e1 D JH
jHj and let ¹e1; e2º be the global orthonormal frame of T†. We

consider the function f WD 3�111 � 2�1 D �111 � 2�122, where �1 D jHj is a positive
constant. The Simons’ identity (2.1) gives

1

3
�f D �2�1 C

X
t

�211t�1 C 3�111 C 2
X
l;s;t

�1sl�1lt�1ts � 3
X
l;s;t

�tl1�tls�11s

D f C
X
t

�211t�1 C 2
X
l;s;t

�1sl�1lt�1ts � 3
X
l;t

�21tl�111 � 3
X
l;t

�1tl�2tl�112:
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On one hand, noticing that 0 D �2 D �112 C �222, we haveX
l;t

�1tl�2tl D �111�211 C 2�112�212 C �122�222

D .�111 C �122/�112:

On the other hand, assuming that the eigenvalues of the symmetric matrix .�1tl /1�t;l�2
are c1, c2, thenX

s;l;t

�1sl�1lt�1ts D c
3
1 C c

3
2

D .c1 C c2/.c
2
1 C c

2
2 � c1c2/

D .�111 C �122/

� 2X
l;tD1

�21tl � .�111�122 � �
2
112/

�
:

Thus,

2
X
l;s;t

�1sl�1lt�1ts � 3
X
l;t

�21tl�111 � 3
X
l;t

�1tl�2tl�112

D .2�122 � �111/

2X
l;tD1

�21tl � 2�1�111�122 � �1�
2
112:

Therefore,

1

3
�f D f C �2111�1 � f

2X
t;lD1

�21tl � 2�1�111�122

D f

�
1C �111�1 �

X
t;l

�21tl

�
D f��1

D 0:

Consequently, f is a constant. We conclude that both �111 and �122 are constants. From
Lemma 2.7 we see that � D 0, which implies from the Gauss equation 2� D 2C jHj2 �
jBj2 that jBj2 is a constant, and we get that �112 D ��222 is a constant. Up to now, we
show that � is a covariant constant (see also [51]).

We want to show that † is a Calabi torus as defined in the appendix.
At a point p 2 †, we choose an orthonormal frame ¹e1; e2º on Tp† such that

�.e1; e1; e1/ D max
jX jD1;X2TpM

�.X;X;X/:

Then since

f .t/ WD �.cos.t/e1 C sin.t/e2; cos.t/e1 C sin.t/e2; cos.t/e1 C sin.t/e2/
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achieves its maximum value at t D 0, we see that f 0.0/D 0, which implies that �112.p/D
0. Since r.JH/ D 0, we see that the unit smooth orthogonal vector field of JH, say � , is
also parallel. Remember that we have proved � is a parallel 3-symmetric tensor. Assume
that .e1; e2/.p/DD.JH;�/.p/, whereD is a constant matrix. Then we extend ¹e1; e2º to
get a global orthonormal tangent vector frame on† by .E1;E2/ WDD.JH; �/. Moreover,
E1 and E2 are two unit parallel vector fields on †.

We claim that
1C �111�122 � �

2
122 D 0: (3.1)

Assume that ¹!1; w2º is the dual of ¹E1; E2º. Then the connection coefficient !12 of †
equals zero since E1 is parallel. Then

0 D d!12

D �!13 ^ !32 � !14 ^ !42 C !1 ^ !2

D

X
j;k

�11j�12k!j ^ !k C
X
j;k

�21j�22k!j ^ !k C !1 ^ !2

D .1C �111�122 � �
2
122/!1 ^ !2:

Due to (3.1), we choose four nonzero constants r1, r2, r3, r4 such that r21 C r
2
2 D

r23 C r
2
4 D 1 and

�111 D
r2

r1
�
r1

r2
; �122 D

r2

r1
; �222 D

1

r1

�r4
r3
�
r3

r4

�
:

Comparing with the Calabi torus defined by r1, r2, r3, r4 as stated in the appendix, we
know that † is locally isometric to the Calabi torus (see also [29, Theorem 1.5]). Since †
is closed, † coincides with the Calabi torus.

Proof of the 2-dimensional case of Theorem 1.1. By the Gauss equation and assumption,
we have 2� D 2 C jHj2 � jBj2 � 0: According to Lemma 2.6, since Ric.JH; JH/ D
�jHj2 � 0, we know that

r.JH/ � 0; �jHj2 � 0:

If M is minimal, then M is either the totally geodesic sphere S2 or a flat minimal Leg-
endrian torus by Theorem C. If M is not minimal, then the conclusion follows from
Proposition 3.3.

4. Rigidity results for closed CSL submanifolds in the unit sphere

In this section we assume M n (n � 3) is a closed CSL submanifold in S2nC1.
Put

�ijk WD V�ijk C
1

nC 2
.�iıjk C �j ıki C �kıij /:

Notice that . V�ijk/ is 3-symmetric and is trace-free with any two symbols.
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Lemma 4.1. If at some p 2M ,

jBj2 �
.n � 1/.nC 2/

n
C
n2 C 3n � 2

2n2
jHj2 �

.n � 1/.n � 2/jHj
p
4nC jHj2

2n2
; (4.1)

then at p we have Ric.JH; JH/ � 0. Moreover, if H ¤ 0 then Ric.JH; JH/ D 0 if and
only if

B.JH; JH/ D �1jHjH; B.JH; X/ D �2jHjJX;

B.X; Y / D
�2

jHj
hX; Y iH 8X; Y ? JH;

(4.2)

where �1, �2 satisfy
1C �1�2 � �

2
2 D 0:

Proof. Without loss of generality, assume H ¤ 0 at p. Moreover, assume �1 D jHj > 0
and �j D 0 for all j > 1. A direct calculation yields

Ric11 D n � 1C
X
j

�11j�j �
X
j;k

�21jk

D n � 1C
n � 2

nC 2
V�111�1 C

2.n � 1/

.nC 2/2
�21 �

X
j;k

V�21jk

� n � 1 �
n � 2

nC 2
j V�111j j�1j C

2.n � 1/

.nC 2/2
�21 �

X
j;k

V�21jk :

The equality holds if and only if
V�111 � 0: (4.3)

Notice thatX
i;j;k

V�2ijk D V�
2
111 C 3

nX
jD2

V�211j C 3

nX
jD2

V�21jj C 6
X

2�j<k�n

V�21jk C

nX
iD2

V�2i i i

C 3
X

2�i¤j�n

V�2ijj C 6
X

2�i<j<k�n

V�2ijk

� V�2111 C 3

nX
jD2

V�211j C 3

nX
jD2

V�21jj C 6
X

2�j<k�n

V�21jk C
3

nC 1

nX
iD2

� nX
jD2

V�ijj

�2
C 6

X
2�i<j<k�n

V�2ijk

D V�2111 C 3

nX
jD2

V�21jj C
3.nC 2/

nC 1

nX
jD2

V�211j C 6
X

2�j<k�n

V�21jk

C 6
X

2�i<j<k�n

V�2ijk
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�
nC 2

n

�
V�2111 C

nX
jD2

V�21jj

�
C
3.nC 2/

nC 1

nX
jD2

V�211j C 6
X

2�j<k�n

V�21jk

C 6
X

2�i<j<k�n

V�2ijk

�
nC 2

n

X
j;k

V�21jk

�
nC 2

n � 1
j V�111j

2:

And the equality holds if and only if (the assumption n � 3 here is essential)

V�11j D 0; V�1jk D 0; V�1jj D V�1kk 82 � j < k � n;

V�ijk D 0 82 � i; j; k � n:
(4.4)

Therefore, we obtain

Ric11 � n � 1 �
n � 2

nC 2

r
n � 1

nC 2

X
i;j;k

V�2
ijk
j�1j C

2.n � 1/

.nC 2/2
�21 �

n

nC 2

X
i;j;k

V�2ijk :

Since assumption (4.1) is equivalent to

n � 1 �
n � 2

nC 2

r
n � 1

nC 2

X
i;j;k

V�2
ijk
j�1j C

2.n � 1/

.nC 2/2
�21 �

n

nC 2

X
i;j;k

V�2ijk � 0;

we complete the proof of the first part.
If Ric.JH; JH/ D 0, then (4.4) is equivalent to (4.2) while (4.3) is equivalent to

�1 �
3

nC 2
jHj:

We conclude that
�2 D

1

n � 1
.jHj � �1/ �

1

nC 2
jHj �

1

3
�1:

According to (4.2),

jBj2 D �21 C 3.n � 1/�
2
2; jHj

2
D .�1 C .n � 1/�2/

2:

Thus,X
i;j;k

V�2ijk D jBj
2
�

3

nC 2
jHj2 D

n � 1

nC 2
.3�2 � �1/

2; �1 D jHj D �1 C .n � 1/�2:

Now the equality in (4.1) is equivalent to

n � 1 �
n � 2

nC 2

r
n � 1

nC 2

X
i;j;k

V�2
ijk
j�1j C

2.n � 1/

.nC 2/2
�21 �

n

nC 2

X
i;j;k

V�2ijk D 0

,

�r
nC 2

n � 1

X
i;j;k

V�2
ijk
C
n � 2

2n
j�1j

�2
D
.nC 2/2

4n2
.�21 C 4n/
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,

�
.3�2 � �1/C

n � 2

2n
.�1 C .n � 1/�2/

�2
D
.nC 2/2

4n2

�
.�1 C .n � 1/�2/

2
C 4n

�
, ..nC 1/�2 � �1/

2
D .�1 C .n � 1/�2/

2
C 4n;

which is equivalent to
1C �1�2 � �

2
2 D 0:

Proof of Theorem 1.1 when n � 3. From Lemma 4.1 we have Ric.JH; JH/ � 0 and
Lemma 2.6 implies that r.JH/ D 0. Therefore we have either H D 0 or H ¤ 0 and
the second fundamental form of M in S2nC1 is given by (4.2) where �1 and �2 are two
smooth functions satisfying

1C �1�2 � �
2
2 D 0:

Now assume H ¤ 0. Let e1 D JH
jHj . Then

�111 D �1; �11j D 0; �1jk D �2ıjk ; �ijk D 0 82 � i; j; k � n:

According to Simons’ identity (2.1), we have

��1 D �2�1 C
X
t

�211t�1 C .nC 1/�111 C 2
X
l;s;t

�1sl�1lt�1ts � 3
X
l;s;t

�tl1�tls�11s

D �2�1 C �
2
1�1 C .nC 1/�1 C 2.�

3
1 C .n � 1/�

3
2/ � 3.�

2
1 C .n � 1/�

2
2/�1

D �2.n � 1/�2 C .n � 1/�
2
1�2 C .n � 1/�1 C 2.n � 1/�

3
2 � 3.n � 1/�

2
2�1

D .n � 1/.�1 � 2�2/.1C �1�2 � �
2
2/

D 0:

Hence �1 and �2 are constants. Therefore there exist two constants r1, r2 such that r21 C
r22 D 1 and

�1 D
r2

r1
�
r1

r2
; �2 D

r2

r1
:

Comparing with the Calabi product Legendrian immersion of a totally geodesic Leg-
endrian immersion and a point determined by r1, r2 as stated in the appendix, we may
conclude that M is locally isometric to the Calabi product Legendrian immersion of a
totally geodesic Legendrian immersion and a point (see also [29, Theorem 1.5]). SinceM
is closed, we conclude thatM must be a Calabi product Legendrian immersion of a totally
geodesic Legendrian immersion and a point. This completes the proof of Theorem 1.1.

As an application of Theorem 1.1, we give a proof of Theorem 1.2. Firstly, we prove
the following result:

Theorem 4.2. Suppose M n (n � 3) is a closed CSL submanifold of S2nC1 and for some
" > 0 we have

jBj2 �
.n � 1/.nC 2/

n
�
.n � 1/.n � 2/"

n

C

�n2 C 3n � 2
2n2

�
.n � 1/.n � 2/

4n2

�
"C

1

"

��
jHj2:



Y. Luo and L. Sun 546

(1) If " � 1, then M is a minimal Legendrian immersion.

(2) If 0 < " < 1, then M is either a minimal Legendrian immersion or the Calabi
product Legendrian immersion of the totally geodesic  WSn�1 ! S2n�1 and a
point.

Proof. By Young’s inequality, for every " > 0 we have

2
p

H
p
4nC jHj2 �

jHj2

"
C ".4nC jHj2/:

The equality holds if and only if

jHj2

"
D ".4nC jHj2/:

Therefore, under the assumption, we have (1.1). Moreover, when " � 1, we have a strict
inequality.

(1) When " � 1, according to Theorem 1.1, we know that M is minimal.

(2) When 0 < " < 1, according to Theorem 1.1, we know that M is either a minimal
Legendrian immersion or the Calabi product Legendrian immersion of the totally
geodesic  WSn�1 ! S2n�1 and a point.

Theorem 4.3. Let M n (n � 3) be a closed CSL submanifold of S2nC1 and

jBj2 �
2.nC 1/

3
�

n � 17

3.nC 3/
jHj2:

(1) If n D 3, then M is the totally geodesic Legendrian immersion.

(2) If n � 4, then M is either the totally geodesic Legendrian immersion or is a non-
minimal Calabi product Legendrian immersion of the totally geodesic  WSn�1 !
S2n�1 and a point.

Proof. Choose " D nC3
3.n�1/

(n � 3) as in Theorem 4.2. Since " � 1 if and only if n D 3,

when nD 3,M is minimal with jBj2 � 2.nC1/
3

. It remains to consider the case that n � 3,
M is minimal and

jBj2 �
2.nC 1/

3
:

According to Simons’ identity (2.1), we have

1

2
�j� j2 D jr� j2 C .nC 1/j� j2 C 2

X
i;j;k;l;s;t

�isl�jlt�kts�ijk

� 3
X

i;j;k;l;s;t

�tli�tls�jks�ijk :

Define
Ai D .�ijk/1�j;k�n; 1 � i � n;
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then (see [49])

1

2
�j� j2 D jr� j2 C .nC 1/j� j2 �

X
i;j

jŒAi ; Aj �j
2
�

X
i;j

hAi ; Aj i
2

� jr� j2 C .nC 1/j� j2 �
3

2

�X
i

jAi j
2

�2
D jr� j2 C .nC 1/j� j2 �

3

2
j� j4:

By assumption, we have
1

2
�j� j2 � jr� j2:

Thus � � 0 or j� j � 2.nC1/
3

. Following the same argument as [8] or [25], when j� j �
2.nC1/
3

, we must have n D 2, hence the last case cannot happen. Therefore M is totally
geodesic.

Proof of Theorem 1.2. Condition (1.2) in Theorem 1.2 is just the case " D 1 in Theorem
4.2. We conclude that M is minimal and jBj2 � 4.n�1/

n
. Since 4.n�1/

n
�

2.nC1/
3

always
holds when n � 3, by Theorem 4.3, we finish the proof.

5. More results and discussions

In this section we will get more results from Theorem 4.2.

Theorem 5.1. Suppose M n (n � 3) is a closed CSL submanifold of S2nC1 and

jBj2 �

8<:
2.nC 1/

3
; 3 � n � 16;

2.
p
3n � 2 � 1/; n � 17:

(1) If 3 � n � 16, then M is the totally geodesic Legendrian immersion.

(2) If n � 17, then M is either the totally geodesic Legendrian immersion or the
Calabi product Legendrian immersion of the totally geodesic  WSn�1 ! S2n�1

and a point.

Proof. Take " D .n�
p
3n�2/2

.n�1/.n�2/
as in Theorem 4.2. Noticing that " > 0, since n � 3 and

2.nC1/
3

< 2.
p
3n � 2� 1/when 3� n� 16we see that jBj2 � 2.nC1/

3
< 2.
p
3n � 2� 1/,

which implies that M is minimal and hence totally geodesic by the same argument as
Theorem 4.3. When n � 17, if M is minimal, then jBj2 � 2.

p
3n � 2 � 1/ � 2.nC1/

3
we

get M is totally geodesic by the same argument with Theorem 4.3 again. Therefore we
complete the proof.
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Theorem 5.2. If M n (n � 3) is a closed CSL submanifold of S2nC1 and

jBj2 � 2C
3

nC 1
jHj2;

then M is a totally geodesic Legendrian immersion.

Proof. Take " D nC1
n�1

as in Theorem 4.2. Notice that " > 1 and hence M is minimal.
Therefore jBj2 � 2 � 2.nC1/

3
. Then by a similar argument to Theorem 4.3 we complete

the proof.

Remark 5.1. Under the assumption n � 4 and

jBj2 < 2C
3

nC 3=2
jHj2;

Li–Wang [30] proved that the closed simply connected Legendrian submanifold M n in
S2nC1 must be diffeomorphic to Sn. Under the assumption

jBj2 <

8̂̂<̂
:̂
6C

3

nC 2=3
jHj2; n � 5;

6C
3

4
jHj2; n D 4;

Sun–Sun [47] proved that a closed simply connected Legendrian submanifold M n in
S2nC1 must be a topological sphere.

At the end of this paper, we list some conjectures.

Conjecture 1. If M n (n � 2) is a closed minimal Legendrian submanifold in S2nC1 and

jBj2 �
.n � 1/.nC 2/

n
;

then M is either totally geodesic or a minimal Calabi product Legendrian immersion of a
totally geodesic Legendrian immersion and a point.

This conjecture is equivalent to the following one:

Conjecture 2. If M n (n � 2) is a closed contact stationary Legendrian submanifold of
S2nC1 and

jBj2 �
.n � 1/.nC 2/

n
C
n2 C 3n � 2

2n2
jHj2 �

.n � 1/.n � 2/jHj
p
4nC jHj2

2n2
;

then M is either totally geodesic or a Calabi product Legendrian immersion of a totally
geodesic Legendrian immersion and a point.

From Theorem 1.1, we know that this conjecture is true for n D 2.
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For the first gap of the length of fundamental form of CSL submanifolds in the unit
sphere, motivated by Theorem 5.1, we list a conjecture.

Conjecture 3. If M n (n � 2) is a closed contact stationary Legendrian submanifold of
S2nC1 and

jBj2 � 2.
p
3n � 2 � 1/;

then M is either totally geodesic or a Calabi product Legendrian immersion of a totally
geodesic Legendrian immersion and a point.

Theorems D and 5.1 claim that this conjecture is true for nD 2 and n� 17 respectively.

A. Examples

A.1. Calabi tori

For every four nonzero real numbers r1, r2, r3, r4 with r21 C r
2
2 D r

2
3 C r

2
4 D 1, a Calabi

torus is a CSL surface in S5 defined as

F W† WD S1 � S1 ! S5;

.t; s/ 7!
�
r1r3 exp

�p
�1
�r2
r1
t C

r4

r3
s
��
; r1r4 exp

�p
�1
�r2
r1
t �

r3

r4
s
��
;

r2 exp
�
�
p
�1
r1

r2
t
��
:

Denoting

�1 D exp
�p
�1
�r2
r1
t C

r4

r3
s
��
; �2 D exp

�p
�1
�r2
r1
t �

r3

r4
s
��
;

�3 D exp
�
�
p
�1
r1

r2
t
�
;

then F.t; s/ D .r1r3�1; r1r4�2; r2�3/. Since

@F

@t
D
�p
�1r2r3�1;

p
�1r2r4�2;�

p
�1r1�3

�
;

@F

@s
D
�p
�1r1r4�1;�

p
�1r1r3�2; 0

�
;

the induced metric in † is given by

g D dt2 C r21 ds2:

Let E1 D @F
@t

, E2 D 1
r1

@F
@s

. Then ¹E1; E2; �1 D
p
�1E1; �2 D

p
�1E2;R D

p
�1F º is

a local orthonormal frame of S5 such that ¹E1; E2º is a local orthonormal tangent frame
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and R is the Reeb field. Direct calculation yields

@�1

@t
D

�
�
p
�1
r22 r3

r1
�1;�

p
�1
r22 r4

r1
�2;�

p
�1
r21
r2
�3

�
;

@�1

@s
D

�
�
p
�1
r2r

2
3

r4
�1;
p
�1
r2r

2
4

r3
�2; 0

�
;

@�2

@t
D

�
�
p
�1
r2r4

r1
�1;
p
�1
r2r3

r1
�2; 0

�
;

@�2

@s
D

�
�
p
�1
r24
r3
�1;�

p
�1
r23
r4
�2; 0

�
;

@R
@t
D

�
�r2r3�1;�r2r4�2; r1�3

�
;

@R
@s
D

�
�r1r4�1; r1r3�2; 0

�
:

Hence,

A�1 D �<hdF; d�1i D
�r2
r1
�
r1

r2

�
dt2 C r1r2 ds2;

A�2 D �<hdF; d�2i D 2r2 dt ds C r1
�r4
r3
�
r3

r4

�
ds2;

AR
D 0:

Thus
H D

�2r2
r1
�
r1

r2

�
�1 C

1

r1

�r4
r3
�
r3

r4

�
�2:

Moreover, E1 and E2 are two parallel tangent vector fields. Under the orthonormal frame
¹E1; E2º, the second fundamental form can be written as

A�1 D

 
r2
r1
�
r1
r2

0

0 r2
r1

!
; A�2 D

 
0 r2

r1
r2
r1

1
r1

�
r4
r3
�
r3
r4

�! ; AR
D 0:

A direct calculation shows that

� D 2C jHj2 � jBj2 D 0:

It is obvious that JH is parallel. In particular,† is CSL. Moreover, F is a minimal Legen-
drian surface if and only if r1 D˙

p
6
3

, r2 D˙
p
3
3

, r3 D r4 D˙
p
2
2

. In this case jBj2 D 2
and the Gauss curvature of F is 0, i.e. F is a flat minimal Legendrian torus.

A.2. Calabi product Legendrian immersions

Let F D .F 1; F 2; : : : ; F nC1/WM n ! S2nC1 � CnC1 be an isometric immersion. Then
F is a Legendrian immersion if and only ifX

˛

F ˛i
NF ˛ D 0 8i:
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Let
 D .1; 2/WS

1
! S3;

t 7!
�
r1 exp

�p
�1
r2

r1
t
�
; r2 exp

�
�
p
�1
r1

r2
t
��

be a Legendre curve where r1, r2 are two nonzero constants satisfying r21 C r
2
2 D 1.

Let F D .F 1; F 2; : : : ; F n/WM n�1 ! S2n�1 be a Legendrian immersion. Then QF WD
.1F; 2/W zM WD S1 �M ! S2nC1 is a Legendrian immersion. We call QF a Calabi prod-
uct Legendrian immersion of F and a point.

The induced metric on zM is given by

Qg D dt2 C r21g;

where g is the induced metric on M . Denote

E1 D
�p
�1r2 exp

�p
�1
r2

r1
t
�
F;�
p
�1r1 exp

�
�
p
�1
r1

r2
t
��
D d QF

� @
@t

�
;

Ej D
�

exp
�p
�1
r2

r1
t
�

dF.ej /; 0
�
D

1

r1
d QF .ej /; j D 2; : : : ; n;

where ¹dF.ej /ºnjD2 is a local orthonormal frame of TM . We obtain a local orthonormal
frame ¹Ej ºnjD1 of T zM . Then ¹�j WD

p
�1Ej ;

p
�1 QF º is a local orthonormal frame of the

normal bundle T ? zM . A direct calculation yields

QA�1 D �<
®˝

d QF ; d�1
˛¯
D

�r2
r1
�
r1

r2

�
dt2 C r1r2g;

QA�j D �<
®˝

d QF ; d�j
˛¯
D r1A

p
�1 dF.ej / C

r2

r1
dt ˝ .Ej /]

C
r2

r1
.Ej /

]
˝ dt; j D 2; : : : ; n;

QA
p
�1 QF
D 0:

We obtain that

• QF is CSL if and only if F is CSL,

•
p
�1zH is parallel if and only if

p
�1H is parallel,

• QF is minimal if and only if F is minimal and jr1j D
q

n
nC1

.

The second fundamental form can be written in matrix form as

QA�1 D

 
r2
r1
�
r1
r2

0

0 r2
r1

Id.n�1/�.n�1/

!
; QA�j D

 
0 r2

r1
˛Tj

r2
r1 j̨

1
r1

A
p
�1 dF.ej /

!
;

QA
p
�1QF
D 0; j D 2; : : : ; n;

where �
˛2 ˛3 � � � ˛n

�
D Id.n�1/�.n�1/:
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Hence,

zH Qg D
�nr2
r1
�
r1

r2

�
˝ �1 C

1

r21
H;

j zHj2
Qg D

�nr2
r1
�
r1

r2

�2
C
1

r21
jHj2g ;

jzBj2
Qg D

�r2
r1
�
r1

r2

�2
C .n � 1/

�r2
r1

�2
C 2.n � 1/

�r2
r1

�2
C
1

r21
jBj2g :

When M is totally geodesic, a direct calculation yields

jzBj2
Qg �

.n � 1/.nC 2/

n
C
n2 C 3n � 2

2n2
j zHj2
Qg �

.n � 1/.n � 2/j zH Qg j
q
4nC jzH Qg j2

2n2
:

The equality holds if and only if jr1j �
q

n
nC1

or equivalently jr2j �
q

1
nC1

. We also have

jzBj2
Qg �

3n � 2

n2
j zHj2
Qg �

4.n � 1/

n
D
.n � 1/.n � 2/

n2
r21
r22
:
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