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Convergence rate for the incompressible limit of
nonlinear diffusion–advection equations

Noemi David, Tomasz Dębiec, and Benoît Perthame

Abstract. The incompressible limit of nonlinear diffusion equations of porous medium type has
attracted a lot of attention in recent years, due to its ability to link the weak formulation of cell-
population models to free boundary problems of Hele-Shaw type. Although a vast literature is
available on this singular limit, little is known on the convergence rate of the solutions. In this
work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with
BV-uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces.

1. Introduction

We consider the nonlinear drift–diffusion equation

@n

@t
� r � .nrp C nrV / D ng; (1)

posed on .0; T / � Rd , d � 2, where n describes a population density and p D p.n/ is
the density-dependent pressure. The reaction term on the right-hand side represents the
population growth rate g D g.t; x/, while V D V.t; x/ is a chemical concentration. The
pressure is assumed to be a known increasing function of the density. We consider the
following two representative examples:

p
 D P
 .n/ WD




 � 1
n
�1; 
 > 1; (2)

and

p" D P".n/ WD "
n

1 � n
; " > 0: (3)

We are concerned with calculating the rate at which solutions to (1) converge to the
so-called incompressible (or stiff pressure) limit, as described below. More precisely we
prove the following results.
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Theorem 1.1 (Convergence rate in PH�1). Assume (A-L1data), (A-drift), and (A-reaction)
(for d D 2) and (A-reaction0) or (A-reaction00) (for d � 3). For d D 2 assume addition-
ally (A-2D). Then, for all T > 0, there exists a unique function n1 2 C.Œ0; T /IL1.Rd //
such that the sequence n
 (resp. n") converges, as 
 !1 (resp. "! 0), to n1 strongly
in L1.0; T I PH�1.Rd // with the rate

sup
t2Œ0;T �

kn
 .t/ � n1.t/k PH�1.Rd / �
C.T /


1=2
C kn0
 � n

0
1k PH�1.Rd /:

Theorem 1.2 (Convergence rate in L4=3). Under the assumptions of Theorem 1.1, and
additionally (A-BVdata), (A-BVdrift) and g 2 BV..0; T / � Rd /, we also have n1 2
BV..0; T / �Rd / and

sup
t2Œ0;T �

kn
 .t/ � n1.t/kL4=3.Rd / �
C.T /


1=4
C kn0
 � n

0
1k

1=2

PH�1.Rd /
: (4)

Theorem 1.3. Under the assumptions of Theorem 1.1, there exists a function p1 2

L1..0; T / � Rd / such that, after extracting a subsequence, the sequence p
 converges
to p1 weakly� in L1..0; T / �Rd / and the relation

p1.1 � n1/ D 0 (5)

holds almost everywhere in .0; T / �Rd .

The above graph relation between the limit pressure and density is well known in the
literature. In particular, when considering tumor growth models it implies that saturation
holds in the region where there is a positive pressure, which is usually referred to as the
region occupied by the tumor. Here we provide a new proof that does not require strong
convergence of the density or the pressure.

In fact, the limit n1 satisfies (together with a limit pressure, p1) a free-boundary-type
problem, discussed briefly below, and the question of passing to this limiting problem has
been vastly addressed in literature. Our contribution is to provide a new proof together
with a convergence rate.

Motivation and previous works. Models like (1) are well known and commonly em-
ployed in a variety of applications, for instance in bio-mathematical modeling of living
tissue. In the case V D 0, g D 0, it is well known that if the pressure satisfies the power
law (2), then (1) is actually the porous medium equation

@n


@t
��n

 D 0; (6)

whose well-understood properties (e.g. regularizing effects) facilitate the analysis notably.
The other choice of the pressure, given by (3), is well known in kinetic theory of dense
gases where the short-distance interactions between particles are strongly repulsive. In this
spirit it has been used in models describing collective motion or congested traffic flow;
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see [2, 3, 12, 19, 24]. Despite having a singularity when the population density reaches
its maximum value (here standardized to 1), this choice of pressure gives rise to a tissue
growth model with similar properties – indeed, the crucial a priori estimates are the same
and the limiting free-boundary-type problem is almost identical. A difference is that the
singularity in the pressure prevents the cell densities ever rising above the maximum value
1. Taking advantage of these similarities, we shall henceforth index the solution of (1) by

 , nD n
 , and consider the singular limit 
!1. Each of the assumptions and properties
we discuss below has its natural "-analogue by putting " D 1=
 .

Let us recall that the study of the incompressible limit has a long history and it has
been investigated for many different models related to (1). The first result on the limit

 !1 was obtained for the classical porous medium equation (6). The most interesting
difference from the case with a non-trivial reaction term is that the free boundary problem
arising in the limit turns out to be stationary. In fact, as proven in [5] the limit density
n1 is independent of time. This result can be intuitively explained by noticing that the
degenerate diffusivity of (1), namely 
n
�1, converges to 0 if n < 1, while it tends to
infinity in the regions where n > 1. Therefore, while there is no motion in the regions
where the density is below 1, where the solution lies above this level it tends to collapse
instantaneously; cf. [16]. In the absence of reaction terms and, hence, of any evolution
process in the Hele-Shaw problem, the limit pressure turns out to be constantly equal to 0,
p1 � 0.

Introducing non-trivial Dirichlet boundary conditions drastically changes the behavior
of the limiting free boundary problem. In fact, the limit pressure no longer vanishes and
this triggers the evolution of the interface in accordance with Darcy’s law (which states
that the velocity of the free boundary is proportional to the pressure gradient). This prob-
lem was addressed in [15], where the authors study the incompressible limit of the porous
medium equation defined in Œ0;1/ � �, where � is a compact subset of Rd , and the
pressure satisfies p.t; x/D f .t; x/ on @� for some f .t; x/ � 0. In the absence of Dirich-
let boundary data, i.e. f � 0, and for � large enough, the problem is actually the same
as in [5] and it still holds that n1 D n1.x/ as well as p1 � 0. On the other hand, if
one imposes the pressure to be strictly positive somewhere on @�, i.e. f 6� 0, then the
pressure gradient no longer vanishes and the dynamics of the limit problem is governed
by Darcy’s law.

The same non-stationary effect, although due to different dynamics, is produced by a
non-trivial reaction process. The incompressible limit for (1) without convective effects,
i.e. V D 0, and with a pressure-dependent growth rate g D G.p/, was first addressed in
the seminal paper [25] by Perthame, Quirós, and Vázquez. They prove that it is possible
to extract subsequences of n
 and p
 which converge in the L1-norm to functions

n1 2 C.Œ0; T �IL
1.Rd // \ BV..0; T / �Rd /;

p1 2 L
2.0; T IH 1.Rd // \ BV..0; T / �Rd /;



N. David, T. Dębiec, and B. Perthame 514

satisfying the following equation in the sense of distributions on .0; T / �Rd ,

@n1

@t
��p1 D n1G.p1/;

and the relations
.1 � n1/p1 D 0

almost everywhere, as well as

p1.�p1 CG.p1// D 0 (7)

in the sense of distributions. The last equality is usually referred to as the complementarity
relation and represents the link between the limit equation and the free boundary problem.
In fact, denoting by �.t/ WD ¹x 2 Rd j p1.x; t/ > 0º the region occupied by the tumor,
from (7) one can see that the pressure satisfies an elliptic equation in the evolving domain
�.t/ with homogeneous Dirichlet boundary conditions. The free boundary @�.t/ is mov-
ing under Darcy’s law, which finally allows the fully geometrical representation of the
limit problem to be obtained. A derivation of the velocity law can be found in [25] for
initial data given by characteristic functions of bounded sets, although the proof relies
on formal arguments. A weak (distributional) and a measure-theoretic interpretation of
the free boundary condition have been recovered in [23], while in [20] the same result is
achieved through the viscosity solutions approach.

An analogous result regarding the limit 
 !1 has been shown in [19] for the pres-
sure law given by (3). The authors obtain virtually the same limiting problem, the only
difference being that the complementarity relation (7) becomes

p21.�p1 CG.p1// D 0I

see [19, Theorem 2.1]. Let us point out that due to uniform estimates in L1 the conver-
gence of the sequence of densities is also true in any Lp-space, p <1.

The Hele-Shaw limit for the porous medium equation including convective effects,
cf. (1) with V 6� 0, and possibly reaction terms, has attracted a lot of interest as well.
Similarly to the driftless case, when passing to the limit 
 ! 1, the model converges
to a free boundary problem where, however, the interface dynamics is no longer driven
only by Darcy’s law, but also by the external drift, i.e. the normal velocity is given by
�.rp1 CrV / � �, where � is the outward normal direction. The asymptotics as 
 !1
has been addressed both for local and non-local drift, in the absence of reactions; see for
instance [1, 9], where the authors adopt techniques relying on the gradient flow structure
of the equation. In [21], Kim, Požár, and Woodhouse also include a linear reaction term in
the equation and are able to prove convergence to the incompressible limit using viscosity
solutions. Recently, in [11] the authors show that the complementarity condition including
a drift, i.e.

p1.�p1 C�V CG.p1// D 0;

holds in the sense of distributions.
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In recent years, many other variations of the model at hand have been proposed,
together with the analysis of their incompressible limit. We refer the reader to [10] for a
model including the effects of nutrients, [17] for the generalization of the driftless model
with a non-monotone proliferation term, and [28] for the model including active motion.
In order to account for viscoelastic effects, several models propose to use Brinkman’s law
instead of Darcy’s law [26]. Moreover, cross-reaction–diffusion models using Darcy’s law,
Brinkman’s law, or a singular pressure law have attracted a lot of attention as they raise
challenging questions both on the existence of solutions and their incompressible limit;
see [4, 6, 13, 14, 18, 22].

Our aim is to compute the rate of convergence of the solutions of (1) as "! 0 or 
 !
1 in (3) or (2) respectively. To the best of our knowledge the only result in this direction
is given by Alexander, Kim, and Yao [1] for the porous medium equation including a
space-dependent drift. Passing to the incompressible limit, the authors are able to build a
link between the Hele-Shaw model and the congested crowd motion model

@tnCr � .nrV / D 0 if n < 1;

with the constraint n � 1. To prove the equivalence of the two models, they study the
convergence as 
 !1 of the porous medium equation with drift; cf. (1) with G � 0.
Unlike [25], their approach is based on viscosity solutions. On the one hand, they are able
to prove locally uniform convergence of the viscosity solution of (1) to a solution of the
Hele-Shaw model. On the other hand, they show the convergence of the porous medium
equation with drift to the aforementioned crowd motion model in the 2-Wasserstein dis-
tance. Therefore, they prove the equivalence of the two models in the special case of initial
data given by “patches”, namely n0 D 1�0 for a compact set �0. In fact, the locally uni-
form limit holds only for solutions of the form of a characteristic function, while the limit
in the 2-Wasserstein metric holds for any bounded initial data, 0 � n0 � 1 with finite
energy and second moment. Moreover, while the local uniform convergence only requires
a strict subharmonicity assumption on the drift term, i.e. V 2 C 2.Rd /; �V > 0, stronger
regularity is needed to pass to the 2-Wasserstein limit. More precisely the authors make
the following assumptions on V D V.x/: there exists � 2 R such that

inf
x2Rd

V.x/ D 0; D2V.x/ � �Id 8x 2 Rd ; k�V kL1.Rd / � C:

Under these assumptions, they derive the rate of convergence (cf. [1, Theorem 4.2.])

sup
t2Œ0;T �

W2.n
 .t/; n1.t// �
C


1=24
;

where C is a positive constant depending on
R
V n0, k�V k1, and T .

The main result of this paper offers an improved polynomial rate of convergence in
a negative Sobolev norm and the strong topology of Lebesgue spaces; see Theorems 1.1
and 1.2 above and Corollary 1.7 below. Let us remark that the 2-Wasserstein distance and
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the PH�1-norm can be bounded by each other when the densities are uniformly bounded
away from vacuum: see Appendix A. We refer the reader to [27, Section 5.5.2], and refer-
ences therein, for further discussion of the equivalence of the two distances.

Preliminaries and assumptions. Throughout this paper we make the following assump-
tions on the components of the model. Firstly, we assume that (1) is equipped with non-
negative initial data n0
 (resp. n0" ) such that there is a compact set K � Rd and a function
n01 2 L

1.Rd / satisfying

suppn0
 � K;

p0
 D P
 .n
0

 / 2 L

1.Rd /; 0 � n0
 2 L
1.Rd /; kn0
 � n

0
1kL1.Rd / ! 0;

p0" D P".n
0
"/ 2 L

1.Rd /; 0 � n0" 2 L
1.Rd /; kn0" � n

0
1kL1.Rd / ! 0:

(A-L1data)

Note in particular that the compact support assumption is needed only in the power law
pressure. This is because when the pressure is given by (3) we can achieve our main esti-
mate without a uniform bound for the pressure in L1, which is not the case for the power
law. Having uniformly compactly supported data allows a maximum principle for the
equation satisfied by the pressure to be derived. When additionally specified, we assume
further

n0
 2 BV.Rd /; �.n0
 /


2 L1.Rd /; (A-BVdata)

uniformly in 
 . Secondly, the chemical concentration potential V is assumed to satisfy

D2V �
�
�C

1

2
tr.D2V /

�
Id for some � 2 R; (A-drift)

and additionally

D2V 2 L1..0; T / �Rd /; rV 2 L1..0; T / �Rd /;

r�V 2 L1..0; T / �Rd /:
(A-BVdrift)

Thirdly, we assume the proliferation rate g D g.t; x/ to be locally integrable and satisfy
either

gC 2 L
1..0; T / �Rd / and �g � 0; (A-reaction)

where fC WD max.f; 0/ denotes the positive part of the function, or

gC 2 L
1..0; T /�Rd / and .�g/� 2 L

1.0; T ILd=2.Rd //; d � 3; (A-reaction0)

where f� WD max.�f; 0/ denotes the negative part of the function, or alternatively

gC 2 L
1..0; T / �Rd / and rg 2 L1.0; T ILd .Rd //; d � 3: (A-reaction00)

Under these assumptions one can derive several crucial uniform estimates for (1).

Lemma 1.4 (A priori estimates). Under assumption (A-L1data) the family n
 of solutions
to (1) satisfies the following bounds, uniformly in 
 :
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(1) suppp
 .t/ � K.t/ for some compact set K.t/,

(2) there exists a positive constant pM D pM .T / such that 0 � p
 � pM , 0 � n
 �

. 
�1


pM /

1

�1 ,

(3) n
 2 L1.0; T IL1.Rd //.

Assuming in addition (A-BVdrift) we also have n
 2 L1.0; T IBV.Rd //. When the pres-
sure is given by (3), points (2) and (3) still hold, and moreover 0 � n" � 1.

These bounds are enough for our purposes. Their proofs are fairly standard and derived
in full detail in [11, 17, 19, 25], so we omit them here. Let us point out that to fully jus-
tify passing to the incompressible limit 
 !1, one usually needs to derive additional
estimates for the time derivative of the population density and the pressure.

Remark 1.5 (More general drift term). It is easily seen in the proof of our main results that
we do not require the drift velocity to be a gradient. Indeed, one can replace the term nrV

in (1) by nU.t; x/ with appropriate modifications to the regularity assumptions (A-drift)
and (A-BVdrift).

Our approach is to first obtain a rate of convergence in the homogeneous negative
Sobolev norm PH�1 and then interpolate with the uniform bound in BV to deduce a con-
vergence rate in Lebesgue spaces. To realize this program we make use of the diffusion
structure of the problem and “lift” the Laplacian. More precisely, we define the function
' to be the solution of the following Poisson equation in .0; T / �Rd ,

��'
 D n
 ; (8)

given by the convolution '
 D K ? n
 , where K is the fundamental solution of the
Laplace equation. Explicitly, for x ¤ 0,

K.x/ D

8̂̂<̂
:̂
�
1

2�
lnjxj for d D 2;

1

d.d � 2/!d
jxj2�d for d � 3;

where !d denotes the volume of the unit ball in Rd .
Suppose for now that d � 3. Then, since n
 2 L1.Rd / \L1.Rd /, a straightforward

application of Young’s inequality shows that

'
 2 L
p.Rd / for p >

d

d � 2

and
r'
 2 L

2.Rd /:

If d D 2, then we do not have '
 2 L1.R2/ and we cannot apply Young’s inequality to
deduce square integrability ofr'
 (indeed, this is an endpoint case). However, let us point
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out that, for the power law case, since by Lemma 1.4 (1) solutions are always compactly
supported, we can take '
 to be the solution of the Poisson equation on K.T / � R2 with
homogeneous Dirichlet boundary conditions. In this case, we know that r'
 2 L2.K/.

Under suitable conditions it is possible to infer the L2-integrability of r.'" � '"0/ in
R2, which is needed for the singular pressure law. In this case, we impose the following
additional assumptions:

g D g.t/; rV 2 L1..0; T / �R2/;

Z
R2

jxjn0" <1: (A-2D)

The bound on the first moment is propagated in time and guarantees the well-posedness
of K ? n". Taking a space-independent growth rate implies that the difference n" � n"0
has zero mean for all times. Therefore, we haveZ

R2

.n" � n"0/ D 0;

Z
R2

jxj jn" � n"0 j <1;

from which we conclude that r.'" � '"0/ 2 L2.R2/:
Notice that the L1 convergence of the initial data implies the convergence of r'0
 to

r'01 in L2. Moreover, the uniform bounds on n
 together with the Hardy–Littlewood–
Sobolev inequality imply that the convolution n
 7!K ? n
 is a bounded linear operator
from L2d=dC2 to L2. Therefore there is a subsequence r'
k which converges weakly in
L2 to r'1.

Finally, we recall that the gradient r' can be used to represent the PH�1-norm of the
function n as

kn.t/k PH�1.Rd / D kr'.t/kL2.Rd /:

Having obtained a convergence rate in the negative norm and assuming additionally
the BV bounds provided by Lemma 1.4, we will use the following interpolation inequality,
proved (in greater generality) by Cohen et al. [8] (see also [7]) to deduce a rate in the
Lebesgue 4=3-norm:

Lemma 1.6 (Interpolation inequality). There exists a constant C D C.d; T / > 0 such
that, for all t 2 Œ0; T �,

kn.t/kL4=3.Rd / � C jn.t/j
1=2

BV.Rd /
kr'.t/k

1=2

L2.Rd /
: (9)

Thus, Theorem 1.2 is a simple consequence of Theorem 1.1, Lemma 1.6, and the
uniform bound in BV provided by Lemma 1.4.

By the usual log-convex interpolation of Lp-norms we readily obtain the following
corollary to Theorem 1.2.

Corollary 1.7 (Convergence rate in Lp).

sup
t2Œ0;T �

kn
 .t/ � n1.t/kLp.Rd / �
C


˛
;
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with

˛ WD

8̂̂<̂
:̂
p � 1

p
for p 2 .1; 4=3�;

1

3p
for p 2 Œ4=3;1/:

Remark 1.8 (Finite speed of propagation). When one assumes additionally that the initial
data have uniformly compact support, then at any later time the support of n
 is still
uniformly contained in a bounded set (this is one of the fundamental properties of the
porous medium equation; see [25, Lemma 2.6] and [19, Lemma 3.3] for the model with
a non-zero right-hand side). Therefore, one can consider problem (1) to be posed on a
bounded subset of Rd with homogeneous Dirichlet boundary condition. Naturally, our
results remain true in this case with the improvement that we obtain a rate � 
�1=4 in
any Lp-norm, 1 � p � 4=3. In particular, this covers the case of “patches”, i.e. when
the initial distribution is given by an indicator function of a compact set, as considered
recently in [1].

Plan of the paper. The remainder of the paper is devoted to proving the main theorem. It
turns out that the equation can be conveniently trisected and dealt with term by term: the
pressure-driven advection, drift, and proliferation are considered separately. Indeed, it is
the diffusion term that governs the rate of convergence. The proof is therefore structured
as follows. In Sections 2 and 3 we prove the main theorem for the choice of the singular
pressure in (3) and the power law pressure in (2) in the absence of reactions and drift.
Then in Section 4 we explain how to treat the additional terms.

Notation. Henceforth we shall usually suppress the dependence on time and space of
the quantities of interest, only exhibiting the time variable in the final results. Similarly,
for the sake of brevity, all space integration should be understood with respect to the d -
dimensional Lebesgue measure.

2. Singular pressure law

In this and the following section, to explain the main idea in a simple situation, we ignore
the drift and proliferation terms in (1) and consider only the nonlinear diffusion equation

@n"

@t
� r � .n"rp"/ D 0; (10)

assuming now the pressure law as in (3). In this case we can rewrite (10) as

@n"

@t
��H".n"/ D 0;

with

H".n"/ WD

Z n"

0

sp0".s/ ds D "
n"

1 � n"
C " ln.1 � n"/:
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Recall that we have the uniform bound n" < 1, so that the right-hand side above is well
defined with ln.1 � n"/ � 0.

Let us take " > "0 > 0. We subtract the equation for n"0 from the equation for n" to
obtain

@.n" � n"0/

@t
��.H".n"/ �H"0.n"0// D 0: (11)

Now we pose (8) for both solutions n" and n"0 :

��'" D n"; ��'"0 D n"0 :

Then (11) reads

��
@.'" � '"0/

@t
��.H".n"/ �H"0.n"0// D 0;

and we test it against '" � '"0 to derive

1

2

d
dt

Z
Rd

jr.'" � '"0/j
2
D

Z
Rd

.n" � n"0/.H"0.n"0/ �H".n"//:

We now proceed to estimate the right-hand side. On the set ¹n" > n"0º we make use of the
non-negativity of H".n"/ and non-positivity of the logarithmic term in H"0.n"0/ to writeZ

¹n">n"0 º

.n" � n"0/.H"0.n"0/ �H".n"// � "
0

Z
¹n">n"0 º

.n" � n"0/
n"0

1 � n"0

� "0
Z
¹n">n"0 º

n"0 :

Similarly, on the complementary set ¹n" � n"0º we haveZ
¹n"�n"0 º

.n" � n"0/.H"0.n"0/ �H".n"// � "

Z
¹n"�n"0 º

.n"0 � n"/
n"

1 � n"
� "

Z
¹n"�n"0 º

n":

Therefore we have

1

2

d
dt

Z
Rd

jr.'" � '"0/j
2
� "

Z
¹n"�n"0 º

n" C "
0

Z
¹n"�n"0 º

n"0

� "kn".t/kL1.Rd / C "
0
kn"0.t/kL1.Rd /;

and since n" and n"0 are uniformly bounded in L1..0; T /; L1.Rd // with respect to " and
"0, we obtain

1

2

d
dt

Z
Rd

jr.'" � '"0/.t/j
2
� C."C "0/:

Integrating in time on Œ0; t/ we then have

1

2

Z
Rd

jr.'" � '"0/.t/j
2
� Ct."C "0/C

Z
Rd

jr.'" � '"0/.0/j
2:



Convergence rate for the incompressible limit of nonlinear diffusion–advection equations 521

It follows that the sequence .r'"/" converges in the strong topology of L1..0; T /;
L2.Rd // to r'1. Consequently, letting "0 ! 0, we deduce the following rate for the
convergence n" ! n1 in the space PH�1.Rd /:

kn".t/ � n1.t/k PH�1.Rd / � C
p
t
p
"C kn0" � n

0
1k PH�1.Rd /;

where C is a positive constant defined as

C D
r
2 sup
">0

kn"kL1..0;T /�Rd //:

Assuming the additional BV bounds for the initial data, we get from Lemma 1.4 that n" is
uniformly bounded in L1.0; T IBV.Rd //, and we can use (9) to obtain the rate "1=4, as
announced in (4). Thus Theorems 1.1 and 1.2 are proved in this special case.

3. Power law

Let us now consider (10) with the pressure law given by (2) and demonstrate that the
method employed in the previous section remains valid. We now have the porous medium
equation

@n


@t
��n

 D 0:

Let us recall that there exists a positive constant pM such that

0 �




 � 1
n
�1
 � pM ; 0 �


 0


 0 � 1
n

 0�1

 0 � pM :

Let us define

c
 WD
�
 � 1




� 1

�1
p
1=.
�1/
M and Qn
 WD

n


c

:

Then it immediately follows that Qn
 � 1 and solves the equation

@t Qn
 ��.c

�1

 Qn

 / D 0:

Following the same argument as before, we define '
 and Q'
 by

��'
 D n
 ; �� Q'
 D Qn
 ;

i.e. Q'
 D '
=c
 .
Without loss of generality, we take 1 < 
 < 
 0. Now we subtract the equation for Qn
 0

from the equation for Qn
 to obtain

@. Qn
 � Qn
 0/

@t
��.c
�1
 Qn

 � c


 0�1

 0 Qn


 0


 0/ D 0: (12)
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Then from (12) we have

��
@. Q'
 � Q'
 0/

@t
��.c
�1
 Qn

 � c


 0�1

 0 Qn


 0


 0/ D 0;

and we test it against Q'
 � Q'
 0 to deduce

1

2

d
dt

Z
Rd

jr. Q'
 � Q'
 0/j
2
D

Z
Rd

.c
�1
 Qn

 � c

 0�1

 0 Qn


 0


 0/. Qn
 0 � Qn
 /

�

Z
Rd

c
�1
 Qn

 .1 � Qn
 /C

Z
Rd

c

 0�1

 0 Qn


 0


 0.1 � Qn
 0/; (13)

where the inequality follows from the fact that Qn
 ; Qn
 0 � 1. It is easy to see that for 0 �
s � 1 it holds that s
 .1 � s/ � s



. Hence, we have

1

2

d
dt

Z
Rd

jr. Q'
 � Q'
 0/j
2
� c
�1


1




Z
Rd

Qn
 C c

 0�1

 0

1


 0

Z
Rd

Qn
 0

�

�
 � 1



pM sup


k Qn
 .t/kL1.Rd /

� 1



C

�
 0 � 1

 0

pM sup

 0
k Qn
 0.t/kL1.Rd /

� 1

 0

� C
� 1


C
1


 0

�
;

where in the last inequality we used the fact that by Lemma 1.4, n
 is uniformly bounded
in L1.0; T IL1.Rd //. Finally, we remove the scaling using the triangle inequality:

1

3
kr.'
 � '
 0/.t/k

2
L2.Rd /

� kr.'
 � Q'
 /.t/k
2
L2.Rd /

C kr. Q'
 0 � '
 0/.t/k
2
L2.Rd /

C kr. Q'
 � Q'
 0/.t/k
2
L2.Rd /

�

ˇ̌̌
1 �

1

c


ˇ̌̌2
kr'
 .t/k

2
L2.Rd /

C

ˇ̌̌
1 �

1

c
 0

ˇ̌̌2
kr'
 0.t/k

2
L2.Rd /

C Ct
� 1


C
1


 0

�
C kr. Q'
 � Q'
 0/.0/k

2
L2.Rd /

�
1




�
Ct C 


ˇ̌̌
1 �

1

c


ˇ̌̌2
sup


kn
 .t/k

2
PH�1.Rd /

�
C
1


 0

�
Ct C 
 0

ˇ̌̌
1 �

1

c
 0

ˇ̌̌2
sup

 0
kn
 0.t/k

2
PH�1.Rd /

�
C kr. Q'
 � Q'
 0/.0/k

2
L2.Rd /

:

By the definition of c
 , 
 j1 � 1
c

j2 ! 0 as 
 !1. Thus, we have

kr.'
 � '
 0/.t/k
2
L2.Rd /

� .C t C C/
� 1


C
1


 0

�
C 3kr. Q'
 � Q'
 0/.0/k

2
L2.Rd /

:
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By the same argument, we find

kr. Q'
 � Q'
 0/.0/k
2
L2.Rd /

� C
� 1


C
1


 0

�
C 3kr.'
 � '
 0/.0/k

2
L2.Rd /

:

Finally, we conclude

kr.'
 � '
 0/.t/k
2
L2.Rd /

� .C t C C/
� 1


C
1


 0

�
C 9kr.'
 � '
 0/.0/k

2
L2.Rd /

: (14)

Consequently, arguing as before and letting 
 0 !1, we find

kn
 .t/ � n1.t/k PH�1.Rd / �
C
p
t C C
p



C 9kn0
 � n
0
1k PH�1.Rd /:

Again, under the additional BV assumptions we obtain (4) thanks to the interpolation
inequality in Lemma 1.6.

4. Including drift and reaction terms

Having obtained the announced rate of convergence due to the nonlinear diffusion term,
we now show that we can include the drift and reaction terms. In fact, due to our assump-
tions on the proliferation rate and the chemical potential, all the additional terms will
either have an appropriate sign, or be absorbed into the L2-norm of the potential '. We
now write (1) as

@n


@t
��A
 .n
 / D r � .n
rV /C n
g;

where g D g.t; x/ and A
 is chosen appropriately depending on the state law for the
pressure. As seen before, there is no harm in assuming the uniform bound n � 1. Then,
arguing in the same way as previously, we obtain

1

2

d
dt

Z
Rd

jr.'
 � '
 0/j
2
C

Z
Rd

.n
 � n
 0/.A
 .n
 / � A
 0.n
 0//

D �

Z
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.n
 � n
 0/r.'
 � '
 0/ � rV C

Z
Rd

g.t; x/.n
 � n
 0/.'
 � '
 0/

D

Z
Rd

�.'
 � '
 0/r.'
 � '
 0/ � rV �

Z
Rd

g.t; x/�.'
 � '
 0/.'
 � '
 0/:

It only remains to consider the two new terms on the right-hand side. For the first one we
can writeZ

Rd

�.'
 � '
 0/r.'
 � '
 0/ � rV

D �

Z
Rd

r.'
 � '
 0/
TD2.'
 � '
 0/rV �

Z
Rd

r.'
 � '
 0/
TD2V r.'
 � '
 0/
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D �
1

2

Z
Rd

rjr.'
 � '
 0/j
2
� rV �

Z
Rd

r.'
 � '
 0/
TD2V r.'
 � '
 0/

D
1

2

Z
Rd

jr.'
 � '
 0/j
2�V �

Z
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 � '
 0/
TD2V r.'
 � '
 0/

� ��

Z
Rd

jr.'
 � '
 0/j
2;

where we have integrated by parts and used assumptions (A-drift). For the remaining term
we integrate by parts to obtainZ

Rd

gjr.'
 � '
 0/j
2
C

Z
Rd

.'
 � '
 0/r.'
 � '
 0/ � rg

� kgCkL1..0;T /�Rd /

Z
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jr.'
 � '
 0/j
2
C

Z
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.'
 � '
 0/r.'
 � '
 0/ � rg„ ƒ‚ …
A

:

In case of d D 2, we suppose that g satisfies assumption (A-reaction). Then we can inte-
grate by parts in the last term to obtain

A D �
1

2

Z
Rd

j'
 � '
 0 j
2�g � 0:

If instead d � 3, we may alternatively assume that g satisfies assumption (A-reaction0)
or assumption (A-reaction00). In the first case, successively using the Hölder and Sobolev
inequalities, we obtain

A �
1

2
k'
 � '
 0k

2
L2
�
.Rd /
k.�g/�kLd=2.Rd / � CSk.�g/�kLd=2.Rd /

Z
Rd

jr.'
 � '
 0/j
2;

where CS denotes the constant from the Sobolev inequality, and 2� D 2d
d�2

is the Sobolev
conjugate exponent. Otherwise, if g satisfies (A-reaction00), to estimate the term A we do
not integrate it by parts, but we use in turn the Young, Hölder, and Sobolev inequalities,
to obtain

2A �

Z
Rd

jr.'
 � '
 0/j
2
C

Z
Rd

j.'
 � '
 0/j
2
jrgj2

�

Z
Rd

jr.'
 � '
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2
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� .1C CSkrgk
2
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Z
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 � '
 0/j
2:

Therefore we have

1

2

d
dt

Z
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jr.'
 � '
 0/j
2
C

Z
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 � n
 0/.A
 .n
 / � A
 0.n
 0//

� C

Z
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jr.'
 � '
 0/j
2:
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Assuming for concreteness the power law pressure, using inequality (14) and a Grönwall
inequality, we deduce

sup
t2Œ0;T �

kr.'
 � '
 0/.t/kL2.Rd / � C
� 1
p


C

1
p

 0

�
C kr.'
 � '
 0/.0/kL2.Rd /:

Finally, passing to the limit 
 0 !1, we conclude the proof of Theorem 1.1. Using the
uniform BV-bound and (9) we obtain Theorem 1.2.

4.1. Limit relation between n1 and p1

Here we prove relation (5) between the limit density and pressure, where p1 is defined as
the weak� limit (up to a subsequence) of p
 in L1..0; T / �Rd /.

Proof of Theorem 1.3. The relation is a straightforward consequence of the main estimate
obtained in Section 3. We inspect (13), this time not ignoring the non-positive terms. After
integration in time, using (14) these terms can be bounded asZ T

0

Z
Rd

Qn

 0


 0.1 � Qn
 /c

 0�1

 0 C

Z T

0

Z
Rd

Qn

 .1 � Qn
 0/c

�1



� C.T /
� 1


C
1


 0

�
C

Z
Rd

jr.'
 � '
 0/.0/j
2:

Now let  be a compactly supported test function and consider the quantityˇ̌̌̌Z T

0

Z
Rd

 Qn

 .1 � Qn
 0/

ˇ̌̌̌
� k k1

Z T

0

Z
supp 

Qn

 .1 � Qn
 0/

D k k1

Z T

0

Z
supp 

Qp



�1

 .1 � Qn
 0/:

Using weak lower semicontinuity of convex functionals and weak� convergence of the
pressure and the density, we can pass to the limit with 
 0 and 
 in turn to obtainZ T

0

Z
Rd

 p1.1 � n1/ D 0;

which concludes the proof.

5. Conclusions and open problems

We computed the rate of convergence of the solutions of a reaction–advection–diffusion
equation of porous medium type in the incompressible limit. Our result in a negative
Sobolev norm can be interpolated with uniform BV-estimates in order to find a rate in any
Lp-space for 1 < p <1.
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How to assess the accuracy of our estimate remains an open problem. For the pure
porous medium equation it might seem tempting to attempt a calculation for the illustrious
example of the Barenblatt solution (taking as initial data the solution at some time t > 0).
However, a direct calculation shows that in this case the data is “ill prepared” in the sense
that it converges (in L1) to its limit profile with too slow a rate of � ln 
=
 . It is unclear
how to approach the question of optimality in general. We expect that the “worst” rate
would be exhibited by a focusing solution, whose support is initially contained outside a
compact set and closes up in finite time, thus generating a singularity.

Another challenging problem is to find an estimate for the convergence rate of the pres-
sure, for which the method used above seems inapplicable as it is not clear how to relate
the quantities p
 � p
 0 and '
 � '
 0 . Consequently, we are also currently unable to treat
more general, pressure-dependent, reaction terms. Finally, it would be of interest to inves-
tigate whether it is possible to strengthen the estimate of Theorem 1.1 to Lebesgue norms
without interpolation with BV. One advantage of any such alternative approach could be
to allow for passing to the incompressible limit when BV bounds are not available, as is
the case for systems of equations like (1). Additionally, it could allow for estimating the
rate of convergence in the L1-norm rather than the seemingly arbitrary L4=3-norm.

A. Bounding the W2-norm by the PH �1-norm

We consider here the conservative case of (1), assuming
R
n
 .t/ D

R
n1.t/ D 1. More-

over, rather than the Cauchy problem set in the whole space, we consider the boundary
value problem set in a bounded domain � � Rd with homogeneous Neumann boundary
conditions.

We put d�
 D n
 .x/ dx, d�1 D n1.x/ dx, ignoring time dependence for the sake
of brevity. Furthermore, we make the additional assumption that n1 � n > 0 for some
constant n.

Consider the curve �W Œ0; 1�! P2.Rd / given by � 7! �� WD .1 � �/�
 C ��1, to-
gether with the vector field

V� .x/ D
1

.1 � �/n
 .x/C � n1.x/
r.'
 � '1/:

For any test function  2 C1c ..0; 1/ ��/ we haveZ 1

0

Z
�
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@�
d�� .x/ d� D

Z 1
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Z
�

@ 

@�
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 .x/C � n1.x// dx d�

D

Z 1

0

Z
�

 .n
 .x/ � n1.x// dx d�

D

Z 1

0

Z
�

r � r.'
 � '1/ dx d�

D

Z 1

0

Z
�

r � V� d�� .x/ d�:
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Therefore, the pair .�; V / solves the continuity equation

@��

@�
Cr � .V� .x/�� / D 0;

posed on .0; 1/ �Rd with the marginal constraints

�0 D �
 ; �1 D �:

Consequently, from [27, Theorem 5.15], we deduce that � is absolutely continuous and
the inequality

j�0j.�/ � kV�kL2.Rd ;d�� /

holds, where j�0j denotes the metric derivative of the curve � with respect to the Wasser-
stein distance. Furthermore, since .P2.Rd /;W2/ is a length space, we have

W2.�
 ; �1/ �

Z 1

0

j�0j.�/ d�:

Combining these last two inequalities, we obtain the bound

W2.�
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Z 1

0
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�
1
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n
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Interestingly, a reverse bound can also be shown. Rather than a positive lower bound,
a common upper bound is now required of all the densities (which is of course the case
here). Now let � W Œ0; 1�! P2.Rd / be a constant-speed geodesic from �
 to �1 and E
be a vector field such that .�; E/ satisfy the continuity equation, and kE�kL2.Rd I�� /

D

W2.�
 ; �1/. Then

kr'
 � r'1k
2
L2
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�

.'
 � '1/.n
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�
1

2
kr'
 � r'1k

2
L2
C
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2
W2.�
 ; �1/

2:

We refer the reader to [27, Section 5.5.2], and references therein, for further discussion of
the equivalence of the two distances.
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[14] T. Dębiec and M. Schmidtchen, Incompressible limit for a two-species tumour model with
coupling through Brinkman’s law in one dimension. Acta Appl. Math. 169 (2020), 593–611
Zbl 1459.92077 MR 4146915

[15] O. Gil and F. Quirós, Convergence of the porous media equation to Hele-Shaw. Nonlinear
Anal. 44 (2001), no. 8, Ser. A: Theory Methods, 1111–1131 Zbl 1016.35042 MR 1830861

[16] O. Gil and F. Quirós, Boundary layer formation in the transition from the porous media equa-
tion to a Hele-Shaw flow. Ann. Inst. H. Poincaré C Anal. Non Linéaire 20 (2003), no. 1, 13–36
MR 1958160

https://zbmath.org/?q=an:1293.35035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3190322
https://zbmath.org/?q=an:1153.90003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2366138
https://zbmath.org/?q=an:1197.35159&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2438216
https://zbmath.org/?q=an:1435.35390&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4072681
https://zbmath.org/?q=an:0651.35039&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=916741
https://zbmath.org/?q=an:1402.35147&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3870087
https://zbmath.org/?q=an:1350.49071&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3554709
https://zbmath.org/?q=an:1044.42028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1993422
https://zbmath.org/?q=an:1384.35136&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3740370
https://zbmath.org/?q=an:1478.35210&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4324293
https://arxiv.org/abs/2103.02564
https://zbmath.org/?q=an:1286.93026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3020033
https://zbmath.org/?q=an:1458.35421&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4188329
https://zbmath.org/?q=an:1459.92077&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4146915
https://zbmath.org/?q=an:1016.35042&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1830861
https://mathscinet.ams.org/mathscinet-getitem?mr=1958160


Convergence rate for the incompressible limit of nonlinear diffusion–advection equations 529

[17] N. Guillen, I. Kim, and A. Mellet, A Hele-Shaw limit without monotonicity. Arch. Ration.
Mech. Anal. 243 (2022), no. 2, 829–868 Zbl 1484.35025 MR 4367913
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