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The pressureless damped Euler–Riesz equations

Young-Pil Choi and Jinwook Jung

Abstract. In this paper, we analyze the pressureless damped Euler–Riesz equations posed in either
Rd or Td . We construct the global-in-time existence and uniqueness of classical solutions for the
system around a constant background state. We also establish large-time behaviors of classical solu-
tions showing the solutions towards the equilibrium as time goes to infinity. For the whole space
case, we first show an algebraic decay rate of solutions under additional assumptions on the initial
data compared to the existence theory. We then refine the argument to have an exponential decay
rate of convergence even in the whole space. In the case of the periodic domain, without any further
regularity assumptions on the initial data, we provide the exponential convergence of solutions.

1. Introduction

In this paper we are interested in the global well-posedness and large-time behavior for
the pressureless Euler–Riesz equations with linear damping posed either in � D Rd or
Td :

@t�Cr � .�u/ D 0; x 2 �; t > 0;

@t .�u/Cr � .�u˝ u/ D ��u � ��rƒ
˛�d .� � c/;

(1.1)

subject to the initial data

.�; u/jtD0 WD .�0; u0/; x 2 �; (1.2)

where � D �.x; t/ and u D u.x; t/ denote the density and velocity of the fluid at time t
and position x, respectively. Here, the Riesz operator ƒs is defined by .��/s=2, and we
concentrate on the case d � 2 < ˛ < d . The coefficients  and � are positive constants,
and c > 0 is the nonzero background state. Forƒ˛�d .�� c/ to be well defined, we impose
the neutrality condition Z

�

.� � c/ dx D 0:

Without loss of generality, for simplicity of presentation, we set  D � D c D 1.
The pressureless Euler–Riesz system has recently been derived in [27] from the N -

interacting particle system governed by Newton’s laws. In [27], the interaction between
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particles is given by the force fields rK, where K.x/ D jxj�˛ with d � 2 < ˛ < d , and
the modulated kinetic and interaction energies are employed to show the quantitative error
estimate between the particle and Euler–Riesz systems. We would like to remark that the
case ˛D d � 2with d � 3 corresponds to the Coulomb potential, and the case max¹d � 2;
0º < ˛ < d with d � 1 is called the Riesz potential. The local well-posedness theory for
system (1.1) is developed in [12] and the case .˛; d/ D .1; 2/ is discussed in [1]. Strictly
speaking, in [12], system (1.1) with zero background state in the undamped case, i.e. cD 0
and  D 0, is considered; however, a small modification of the strategy used in [12] leads
to establishing the local existence and uniqueness of classical solutions to system (1.1);
see Theorem 3.1 below for more detailed discussion.

The main purpose of the current work is to establish the global-in-time existence and
uniqueness of classical solutions to the pressureless damped Euler–Riesz system (1.1) and
its large-time behavior. We would like to emphasize that to the best of our knowledge,
even for the multidimensional Euler–Poisson system, in the absence of the pressure, much
less is known about the global-in-time regularity of classical solutions or the large-time
behavior estimate. For the one-dimensional case, a critical threshold on the initial data
distinguishing the global-in-time regularity of solutions and finite-time singularity forma-
tion for the pressureless Euler–Poisson system is analyzed in [2,7,15,34]; see also [5,31]
for the case with pressure and other related systems. For higher-dimensional problems,
the critical threshold estimate for the two-dimensional restricted Euler–Poisson system is
studied in [26]; see [25] for more general discussion on the restricted flows. The global
existence of smooth solutions for the Euler–Poisson system around a constant background
state is discussed in [21, 22, 24]. We also refer to [16, 17, 19] for three-dimensional prob-
lems.

In order to state our first main result concerning the global well-posedness theory, we
use � > 0 and let h D � � 1 to reformulate system (1.1)–(1.2) as

@thCr � .hu/Cr � u D 0; x 2 �; t > 0;

@tuC u � ru D �u � rƒ
˛�dh;

(1.3)

with initial data
.h; u/jtD0 DW .h0 WD �0 � 1; u0/; x 2 �: (1.4)

For our solution spaces, we consider the following norms:

k.h; u/k2Xm WD khk
2
Hm C kuk

2

H
mC d�˛2

C khk2
PH
� d�˛2

: (1.5)

The notation Xm naturally denotes the space of functions with the finite corresponding
norm.

Now we state our first result on the global existence and uniqueness of solutions
to (1.1).
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Theorem 1.1. Consider system (1.3) on either�DRd or Td with d � 1 and max¹d � 2;
0º < ˛ < d . For any m > d

2
C 2, suppose that the initial data .�0; u0/ satisfy

inf
x2�

h0.x/ > �1;

Z
�

h0.x/ dx D 0; and .h0; u0/ 2 X
m:

If
k.h0; u0/kXm < "1

for some "1 > 0 sufficiently small, then system (1.3)–(1.4) admits a unique solution in
C.RCIXm/.

As mentioned above, the local-in-time existence of solutions for system (1.1) with
 D 0 is investigated in a recent work [12]. We are currently interested in the linear
velocity-damping effect on the global-in-time regularity of solutions, and as stated in The-
orem 1.1, the damping can prevent the finite-time breakdown of smoothness of solutions,
even in the absence of pressure, when the initial data are sufficiently small and regu-
lar. This is reminiscent of the proof of a global Cauchy problem for the compressible
Euler equations with damping [29, 33]. However, we only have the Riesz interactions,
not the pressure term. On the other hand, for the Euler–Poisson system around a con-
stant background state, i.e. system (1.1) with pressure, ˛ D d � 2, and  D 0, two- and
three-dimensional Cauchy problems are first discussed in [21, 24] and in [16] under the
consideration of irrotational flows. Compared to those works, we have linear damping in
the velocity instead of the pressure term. The main difficulties lie in the analysis of the
highest-order derivative estimates and the dissipation rate on the solutions due to the sin-
gularity of Riesz interactions, beyond the Coulomb ones. It is natural to expect that the
linear damping gives a good dissipation rate for the velocity u. However, it is not clear how
to analyze the stabilizing effect from the Riesz interactions and obtain a proper dissipation
rate for the perturbed density h. In order to overcome those difficulties, inspired by [12],
we estimate our solutions in the fractional Sobolev space specified in (1.5) and a modified
Hm norm for h (see (3.1) below) to have some cancellation of terms with the highest-
order derivatives. For the dissipation estimates for h, we clarify the dispersive effect of
the Riesz interaction and establish a delicate hypocoercivity-type estimate which provides
the higher-order dissipation rate. The proof strongly relies on the energy method based on
the commutator estimates for the fractional Laplacian and Gagliardo–Nirenberg–Sobolev-
type inequalities.

Remark 1.1. In [12], the finite-time singularity formation for the Euler–Riesz system
with zero background state in multidimensions d � 1 is investigated. In the presence of
pressure (isentropic or isothermal pressure), either the attractive or repulsive Riesz inter-
action case is considered, and the finite-time breakdown of smoothness of solutions is
observed under suitable assumptions on the initial data. The main idea is based on the
lower and upper bound estimates on the internal energy. In the attractive and pressure-
less case, the estimate of finite-time singularity formation in [12, Theorem 5.4] still holds.
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However, it is not clear how to employ those arguments for the repulsive and pressureless
case. As far as we know, the global-in-time existence or finite-in-time blowup results have
been shown only for the pressureless Euler–Poisson system with zero background state,
i.e. (1.1) with ˛ D d � 2 and c D 0, in a special setting. In [15, 32, 34], the geometrical
symmetry was crucially used to deduce such results. To the best of our knowledge, nei-
ther the global-in-time existence nor finite-time blowup of solutions to the repulsive and
pressureless Euler–Riesz system (1.1) without any symmetry assumptions, has been stud-
ied so far in the higher-dimensional case (d � 2) even for the repulsive and pressureless
Euler–Poisson system.

Remark 1.2. In [11], after a suitable scaling, the strong relaxation limit of system (1.1)
with the zero background state, i.e. c D 0, is investigated, and the following fractional
porous medium equation [3, 4] is rigorously and quantitatively derived:

@t� D r � .�rƒ
˛�d�/:

We would like to remark that the argument used in [11] can be extended to the nonzero
constant background state case when�DTd . The local-in-time existence and uniqueness
of classical solutions for that limiting equation have been recently established in [10]. Note
that as long as there exist classical solutions for those systems, the strong relaxation limit
estimate holds. Thus, as a by-product of Theorem 1.1, if one can show the existence of
global-in-time classical solutions to the porous medium equation, then the relaxation limit
holds for all times. Note that such a global existence was covered as a special case of the
singular Euler-alignment system [14,28] in one dimension. We also refer to [6,8,9,20,23]
for the strong relaxation limits of compressible Euler/Euler–Poisson systems.

Our second result provides the large-time behavior of solutions, obtained in Theo-
rem 1.1, to system (1.1) showing algebraic or exponential decay rates of convergence of
solutions in Xm when � D Rd or Td .

Theorem 1.2. Let d � 2 and the assumptions of Theorem 1.1 be satisfied.

(i) (Whole space case): If we additionally assume that

.h0; u0/ 2 PH
�s� d�˛2 .Rd / � Œ PH�s.Rd /�d (1.6)

for some

s 2
h
1 �

d � ˛

2
;
˛

2

i
; (1.7)

then we have

k.h; u/.�; t /k2Xm C khk
2

PH
�1C d�˛2

C kuk2
PHd�˛�1

� C.1C t /��; t � 0;

where � > 0 is given by

� WD min
° 2s

d � ˛
;
s C d � ˛ � 1

1 � d�˛
2

±
:
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Furthermore, if the order s > 0 is large enough such that (˛
2
�) s > 2C d � ˛,

then we have an exponential decay rate of convergence:

k.h; u/.�; t /k2Xm � Ce
��t ; t � 0

for some positive constants C and � independent of t .

(ii) (Periodic case): There exist positive constants C and � independent of t such that

k.h; u/.�; t /kXm � Ce
��t ; t � 0:

Remark 1.3. Condition (1.7) naturally requires d � 2.

Remark 1.4. Assumption (1.7) and the dimension restriction d � 2 can be relaxed in the
whole space case. Indeed, if we only assume (1.6) for some s 2 .0; ˛=2�, then we have

k.h; u/.�; t /k2Xm � C.1C t /
� s

1C d�˛2 ; t � 0; (1.8)

where C is a positive constant independent of t . Note that when s C d�˛
2
< 1, the decay

rate of convergence for the whole space case is at most

.1C t /
�
1� d�˛2

1C d�˛2 D .1C t /�1C"

for some constant " 2 .0; 1/. In this case, even though the order s > 0 is only assumed
to be positive, the decay rate does not depend on the dimension d ; however this decay
estimate provides a good decay estimate for the one-dimensional case. On the other hand,
when s D ˛

2
, i.e. (1.7) holds, the decay rate becomes

.1C t /
�min

®
˛
d�˛

;
d� ˛2 �1

1� d�˛2

¯
and it becomes

.1C t /�.d�1/ if ˛ D d � 1:

This shows that we can have a better decay rate of convergence in higher dimensions.

Remark 1.5. For the periodic domain case, if we are only interested in the large-time
behavior of the lowest-order norm, i.e. kukL2 Ckhk PH� d�˛2

, then the smallness assumption
on the solutions in Theorems 1.1–1.2 is not necessarily required. More precisely, if we
assume

(i) inf.x;t/2Td�RC 1C h.x; t/ � hmin > 0,

(ii) h 2 W 1;1.Td �RC/, r � u 2 L1.RCI ŒL1.Td /�d /,

then we have
ku.�; t /kL2 C kh.�; t /k PH�

d�˛
2
� Ce��t :

Here C and � are positive constants independent of t . In fact, the above estimate plays a
crucial role in establishing an exponential decay rate of convergence of k.h; u/.�; t /k2Xm ;
see Proposition 4.2 below.
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Remark 1.6. All the results in Theorems 1.1 and 1.2 can be readily extended to the
Coulomb interaction case, i.e. system (1.3) with ˛ D d � 2. In particular, if d > 6 and
(1.6) holds with s 2 .4; d � 2/, we have an exponential decay rate of convergence of solu-
tions for system (1.3) with ˛ D d � 2, i.e. pressureless damped Euler–Poisson system,
even in the whole space.

For the whole space case, as stated in Theorem 1.2, we take into account the neg-
ative Sobolev space of solutions. The negative Sobolev norm is first used in [18] for
the estimates on the optimal-time decay rates of convergence of solutions to the dissi-
pative equations in the whole space. As mentioned above, we were able to show that the
hypocoercivity-type estimate produces the dissipation rate for h; however, it does not give
the lower-order norm for h. For this, we find a proper negative order of derivative of solu-
tions that closes the estimates of Sobolev negative norms, and thus an algebraic decay
rate of convergence of solutions is established. We would also like to emphasize that an
exponential decay rate is found when the negative order is sufficiently large, which sub-
sequently requires d � 1 large enough, in the whole space. On the other hand, for the
periodic domain case, we suitably use the monotonicity of the negative Sobolev norms
and construct a modulated energy for system (1.3). More precisely, the modulated energy
is equivalent to the lowest-order norm of solutions, kukL2 C khk PH� d�˛2

, and this decays
to zero exponentially fast as time goes to infinity. This strategy does not require any fur-
ther integrability in the negative Sobolev space and as stated in Remark 1.5 any smallness
assumption on solutions is not needed. This decay estimate on the lower-order norm of
solutions, together with the energy estimate established in the proof of Theorem 1.1, yields
an exponential decay rate of convergence of solutions in the Xm norm.

Throughout this paper, we use the following notation:

• C denotes a generic positive constant which may differ from line to line;

• C D C.˛; ˇ; : : : / denotes a positive constant depending on ˛; ˇ; : : :;

• f . g and f � g mean that there exists a positive constant C > 0 such that f � Cg
and C�1f � g � Cf , respectively;

• f .˛;ˇ;::: g means that f � C.˛; ˇ; : : : /g for some constant C.˛; ˇ; : : : / > 0;

• @k denotes any partial derivative of order k.

The rest of this paper is organized as follows. In Section 2 we introduce several
auxiliary lemmas regarding the commutator estimates and Sobolev embeddings. These
estimates will very often be used throughout the paper. Section 3 is devoted to providing
the details of the proof of our first main theorem, Theorem 1.1. Since the local well-
posedness is by now classical, we mainly discuss the a priori estimates of solutions in the
proposed solution space. This yields that the local-in-time solutions can be extended to
the global-in-time one. Finally, in Section 4 we study the large-time behavior of classical
solutions.
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2. Preliminaries

In this section we provide various technical lemmas that will be used frequently through-
out the paper.

We first recall from [12] the commutator estimate.

Lemma 2.1 ([12]). Let s� 0. For a vector field v 2 .H
d
2C1CsC".Rd //d and f 2H s.Rd /,

we have
kŒƒs; v � r�f kL2 .s;d;" kvk

H
d
2 C1CsC"

kf kH s :

We next present several results on the Gagliardo–Nirenberg interpolation inequalities
and Moser-type inequalities.

Proposition 2.1. We have the following relations:

(i) If f 2 H s2.�/ and 0 � s1 � s2,

kf kH s1 � kf k

s2�s1
s2

L2
kf k

s1
s2

H s2 :

(ii) If s2; s3 � 0 and 0 � s1 � min¹s2; s3; s2 C s3 � d=2º,

kfgkH s1 .d;s1;s2;s3 kf kH s2 kgkH s3 :

(iii) If j; ` 2 N with 0 � j � ` and f 2 H `.�/,

kr
jf kL2 .d;j;` kr`f k

j
`

L2
kf k

1�
j
`

L2
:

(iv) (Moser-type inequality) If f; g 2 .H k \ L1/.�/,

k@k.fg/kL2 .d;k kf kL1k@kgkL2 C kgkL1k@kf kL2 :

Moreover, if rg 2 L1.�/,

k@k.fg/ � .@kf /gkL2 .d;k kf kL1k@kgkL2 C krgkL1k@k�1f kL2 :

In addition, if f; g 2 H k.�/ with rf;rg 2 L1.�/,

k@k.fg/ � .@kf /g � f .@kg/kL2 .d;k krf kL1k@k�1gkL2

C krgkL1k@
k�1f kL2 :

We finally show the total energy estimate of system (1.1) whose proof can be readily
obtained.

Proposition 2.2. For T > 0, let .�; u/ be a classical solution to (1.1) on Œ0; T �. Then we
have

1

2

d

dt

�Z
�

�juj2 dx C

Z
�

.� � 1/ƒ˛�d .� � 1/ dx

�
C

Z
�

�juj2 dx D 0:
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3. Global well-posedness for the damped pressureless Euler–Riesz
system

In this section we present the proof of Theorem 1.1. Although our proof mostly considers
the case � D Rd , similar arguments can be used for the case � D Td .

3.1. Local well-posedness

Note that the local-in-time existence and uniqueness of strong solutions can be deduced
from [12, Theorem 3.1]. Strictly speaking, in [12] the local well-posedness theory is stud-
ied in the case that � is integrable in �; however the proof can be readily extended to our
case. Thus, we present the following theorem without providing any details of its proof.

Theorem 3.1. Let the same assumptions as in Theorem 1.1 be verified. Then for any
positive constants "1 < M0, there exists a positive constant T0 depending only on "1 and
M0 such that if k.h0; u0/kXm < "1, then system (1.3) admits a unique solution .h; u/ 2
C.Œ0; T /IXm/ satisfying

sup
0�t�T0

k.h; u/kXm �M0:

We next show the equivalence relation between the reformulated system (1.3) and the
original one (1.1). Since its proof is classical, we omit it here.

Proposition 3.1. Let m > d
2
C 2. For any fixed T > 0, if .�; u/ 2 C.Œ0; T /IXm/ solves

system (1.1) with � > 0, then .h; u/ 2 C.Œ0; T /IXm/ solves system (1.3) with 1C h > 0.
Conversely, if .h; u/ 2 C.Œ0; T /IXm/ solves system (1.3) with 1C h > 0, then .�; u/ 2
C.Œ0; T /IXm/ solves system (1.1) with � > 0.

3.2. Global well-posedness

In this part we focus on the a priori estimates of solutions .h; u/ in the function space
C.0; T IXm/.

Before we move on, we define a modified Hm norm for h as

khk zHm WD

X
0<jkj�m

k��
1
2 @khkL2 : (3.1)

Note that khk zHm D k�k zHm . Furthermore, if khkL1 < 1, then

khkHm � khkL2 C khk zHm ;

since
.1 � khkL1/

1=2
khk zHm �

X
0<jkj�m

k@khkL2 � k�k
1
2

L1khk zHm :

Thus, rather than directly estimating khkHm , we can estimate khkL2 C khk zHm .
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Next, we investigate higher-order estimates for .h; u/. Before proceeding, for nota-
tional simplicity we set

X.T Im/ WD sup
0�t�T

k.h; u/.�; t /k2Xm and X0.m/ WD k.h0; u0/k
2
Xm :

Since the proofs for the following two lemmas are almost the same as in [12], we omit
them here.

Lemma 3.1. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system

(1.3). Then we have

1

2

d

dt
kUkk

2
L2
C kUkk

2
L2
� Ckuk3

H
mC d�˛2

�

Z
�

ƒ
˛�d
2 r@kh � Uk dx

for 0 � k � m, where Uk WD ƒ
d�˛
2 @ku and C D C.m; k; d; ˛/ is a positive constant

independent of T .

Remark 3.1. Thanks to the Gagliardo–Nirenberg interpolation inequalities in Proposi-
tion 2.1, we have the following equivalence relation: for any i 2 ¹0; : : : ; mº,

kukL2 C
X

i�k�m

kUkkL2 � kuk
H
mC d�˛2

: (3.2)

Lemma 3.2. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system

(1.3). Then we have

1

2

d

dt

Z
�

1

�
j@khj2 dx � Ckuk

H
mC d�˛2

.1C kr log �kL1/2.k�1/
X
0<l�k

 1
p
�
@lh

2
L2

C

Z
�

ƒ
˛�d
2 rRk � Uk dx

for 1 � k � m, where C D C.m; k; d; ˛/ is a positive constant independent of T .

Here, we separately consider the L2-estimate for h.

Lemma 3.3. Let T > 0 and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system (1.3). Then
we have

1

2

d

dt
khk2

L2
� kukL2krhkL2khkL1 C

Z
�

ƒ
˛�d
2 rh � U0 dx:

Proof. Direct computation implies

1

2

d

dt
khk2

L2
D �

Z
�

hr � .hu/ dx �

Z
�

hr � udx

D

Z
�

h.rh � u/ dx C

Z
�

rh � udx

� khkL1krhkL2kukL2 C

Z
�

ƒ
˛�d
2 rh � U0 dx;

and this implies the desired result.
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As stated in Lemma 3.1, due to the presence of the linear damping in velocity, we have
a dissipation rate for the velocity u. Moreover, the terms with the highest-order derivatives
appearing in Lemmas 3.1 and 3.2 cancel each other out. Thus, we now focus on the esti-
mate for the dissipation rate for h. For this, a delicate analysis for the Riesz interaction
term based on the hypocoercivity-type estimate is required.

We first begin with the zeroth-order estimate.

Lemma 3.4. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system

(1.3) satisfying

sup
0�t�T

kh.t/kL1 �
1

2
:

Then we have

d

dt

Z
�

1

�
rh �ƒd�˛udx C

1

2
krhk2

L2
� CkrhkHm�1kuk2

H
mC d�˛2

C kƒ
d�˛
2 .r � u/k2

L2

C 6kƒd�˛uk2
L2
;

where C D C.m; d; ˛/ is a positive constant independent of T .

Proof. We first find

d

dt

Z
�

1

�
rh �ƒd�˛udx

D �

Z
�

@t�

�2
rh �ƒd�˛udx C

Z
�

1

�
r.@th/ �ƒ

d�˛udx

C

Z
�

1

�
rh �ƒd�˛.@tu/ dx

DW 	1 C 	2 C 	3;

where we use the equation of h in (1.3) to estimate

	2 D

Z
�

rh

�2
@th �ƒ

d�˛udx �

Z
�

1

�
@thƒ

d�˛.r � u/ dx

D �	1 C

Z
�

1

�
r � .�u/ƒd�˛.r � u/ dx

D �	1 C

Z
�

.r � u/ƒd�˛.r � u/ dx C

Z
�

�
r�

�
� u
�
ƒd�˛.r � u/ dx

� �	1 C kƒ
d�˛
2 .r � u/k2

L2
C
kukL1

1 � khkL1
krhkL2kƒ

d�˛.r � u/kL2

� �	1 C kƒ
d�˛
2 .r � u/k2

L2
C CkrhkL2kuk

2

H
mC d�˛2

:

Here C D C.m; d; ˛/ is a positive constant independent of T .
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On the other hand, 	3 can be estimated as

	3 D �

Z
�

1

�
rh �ƒd�˛.u � ruC uCƒ˛�drh/ dx

� C
1

1 � khkL1
krhkL2kuk

2

H
mC d�˛2

C
1

1 � khkL1
krhkL2kƒ

d�˛ukL2

�
1

1C khkL1
krhk2

L2

� CkrhkL2kuk
2

H
mC d�˛2

C 2krhkL2kƒ
d�˛ukL2 �

2

3
krhk2

L2

� �
1

2
krhk2

L2
C CkrhkL2kuk

2

H
mC d�˛2

C 6kƒd�˛uk2
L2
:

Thus, we combine the estimates for 	i , i D 1; 2; 3, to conclude the desired result.

Before proceeding to the higher-order estimates, we provide some technical estimates
based on the Moser-type inequality below. For smoothness of reading, we postpone its
proof to Appendix A.

Lemma 3.5. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system

(1.3) satisfying

sup
0�t�T

kh.t/kL1 �
1

2
:

Then for 1 � k � m � 1 we have

(i)
r�rh

�2
� @k.�u/

�
L2
� C.1C krhkHm�1/2krhkHm�1kuk

H
mC d�˛2

,

(ii)
rhr � �1

�

�
@k.�u/ � .@k�/u � �.@ku/

��i
L2

� C.1C krhkHm�1/2krhkHm�1kuk
H
mC d�˛2

;

(iii)
@� 1

�2
.@kh/rh

�
L2
� C.1C krhkHm�1/krhk2

Hm�1 ,

(iv) kƒd�˛@k�1@tukL2 � C
�
kuk2

H
mC d�˛2

C kuk
H
mC d�˛2

C krhkHm�1

�
, and

(v) kƒd�˛@k�1.ru W .ru/T /kL2 � Ckuk
2

H
mC d�˛2

.

Here � D hC 1 and C D C.m; k; d; ˛/ is a positive constant independent of T .

Lemma 3.6. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to system

(1.3) satisfying

sup
0�t�T

kh.t/kL1 �
1

2
:
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Then we have

d

dt

Z
�

1

�
@krh �ƒd�˛@kudx C

1

2
k@krhk2

L2

� C.1C krhkHm�1/2
�
krhk3

Hm�1 C kuk
3

H
mC d�˛2

�
C kƒ

d�˛
2 @k.r � u/k2

L2

C 6kƒd�˛@kuk2
L2

for 1 � k � m � 1, where C D C.m; k; d; ˛/ is a positive constant independent of T .

Proof. Throughout this proof, C > 0 denotes the generic constant depending only on
m; k; d , and ˛, independent of T .

Direct computation yields

d

dt

Z
�

1

�
@krh �ƒd�˛@kudx

D �

Z
�

@t�

�2
@krh �ƒd�˛@kudx C

Z
�

1

�
@kr@th �ƒ

d�˛@kudx

C

Z
�

1

�
@krh �ƒd�˛@k@tudx

DW J1 C J2 C J3:

We estimate J1, J2, and J3 one by one as follows.

˘ Estimates for J1. One obtains

J1 D

Z
�

r � .�u/

�2
@krh �ƒd�˛@kudx

D

Z
�

r � u

�
@krh �ƒd�˛@kudx C

Z
�

rh � u

�2
@krh �ƒd�˛@kudx

�
krukL1

1 � khkL1
k@krhkL2kƒ

d�˛@kukL2 C
krhkL1kukL1

.1 � khkL1/2
k@krhkL2kƒ

d�˛@kukL2

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

:

˘ Estimates for J2. We get

J2 D

Z
�

1

�2
@k@thrh �ƒ

d�˛@kudx �

Z
�

1

�
@k@thƒ

d�˛@k.r � u/ dx

D �

Z
�

1

�2
@k.r � .hu//rh �ƒd�˛@kudx �

Z
�

1

�2
@k.r � u/rh �ƒd�˛@kudx

C

Z
�

1

�
@k.r � .�u//ƒd�˛@k.r � u/ dx

D �

Z
�

1

�2
@k.r � .hu//rh �ƒd�˛@kudx �

Z
�

1

�2
@k.r � u/rh �ƒd�˛@kudx

C

Z
�

rh

�2
� @k.�u/ƒd�˛@k.r � u/ dx �

Z
�

1

�
@k.�u/ � rƒd�˛@k.r � u/ dx
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D �

Z
�

1

�2
@k.r � .hu//rh �ƒd�˛@kudx �

Z
�

1

�2
@k.r � u/rh �ƒd�˛@kudx

�

Z
�

r

�
rh

�2
� @k.�u/

�
�ƒd�˛@kudx �

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx

�

Z
�

@ku � rƒd�˛@k.r � u/ dx

�

Z
�

1

�

�
@k.�u/ � .@k�/u � �.@ku/

�
� rƒd�˛@k.r � u/ dx

DW

6X
iD1

J2i :

For J21, we use the Moser-type inequality in Proposition 2.1 to get

J21 D �

Z
�

1

�2
@k.rh � u/rh �ƒd�˛@kudx

�

Z
�

1

�2

�
@k.hr � u/ � h@k.r � u/

�
rh �ƒd�˛@kudx

�

Z
�

1

�2
h@k.r � u/rh �ƒd�˛@kudx

�
krhkL1

.1 � khkL1/2

�
k@k.rh � u/kL2 C k@

k.hr � u/ � h@k.r � u/kL2
�
kƒd�˛@kukL2

�

Z
�

1

�2
h@k.r � u/rh �ƒd�˛@kudx

� CkrhkL1
�
krhkL1k@

kukL2 C kukW 1;1k@khkH1

�
kƒd�˛@kukL2

�

Z
�

1

�2
h@k.r � u/rh �ƒd�˛@kudx

� Ckrhk2
Hm�1kuk

2

H
mC d�˛2

�

Z
�

1

�2
h@k.r � u/rh �ƒd�˛@kudx:

This implies

J21 C J22 � Ckrhk
2
Hm�1kuk

2

H
mC d�˛2

�

Z
�

1

�
@k.r � u/rh �ƒd�˛@kudx

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

:

For J23, we use Hölder’s inequality and Lemma 3.5(i) to obtain

J23 �
r�rh

�2
� @k.�u/

�
L2
kƒd�˛@kukL2

� C.1C krhkHm�1/2krhkHm�1kuk2
H
mC d�˛2

:

We next use integration by parts to deduce

J25 D kƒ
d�˛
2 @k.r � u/k2

L2
:
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For the estimate of J26 we use Lemma 3.5(ii) to deduce

J26 D �

Z
�

r

h
r �

�1
�

�
@k.�u/ � .@k�/u � �.@ku/

��i
�ƒd�˛@kudx

�

rhr � �1
�

�
@k.�u/ � .@k�/u � �.@ku/

��i
L2
kƒd�˛@kukL2

� C
�
1C krhkHm�1

�2
krhkHm�1kuk2

H
mC d�˛2

:

Hence, we gather the estimates for the J2i to yield

J2 � �

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx C kƒ

d�˛
2 @k.r � u/k2

L2

C C.1C krhkHm�1/2krhkHm�1kuk2
H
mC d�˛2

:

˘ Estimates for J3. In this case,

J3 D

Z
�

1

�2
.@kh/rh �ƒd�˛@k@tudx �

Z
�

1

�
@khƒd�˛@k@t .r � u/ dx

D

Z
�

1

�2
.@kh/rh �ƒd�˛@k@tudx

C

Z
�

1

�
.@kh/ƒd�˛@k.r � .u � ru/Cr � uCƒ˛�d�h/ dx

D

Z
�

1

�2
.@kh/rh �ƒd�˛@k@tudx C

Z
�

1

�
.@kh/ƒd�˛@k.r � .u � ru// dx

C

Z
�

1

�
.@kh/ƒd�˛@k.r � u/ dx C

Z
�

1

�
.@kh/�.@kh/ dx

DW

4X
iD1

J3i :

For the term J31, we use Lemma 3.5(iii) & (iv) to obtain

J31 D

Z
�

@
� 1
�2
.@kh/rh

�
�ƒd�˛@k�1@tudx

�

@� 1
�2
.@kh/rh

�
L2
kƒd�˛@k�1@tukL2

� C.1C krhkHm�1/krhk2
Hm�1

�
kuk2

H
mC d�˛2

C kuk
H
mC d�˛2

C krhkHm�1

�
� C

�
1C krhkHm�1 C kuk

H
mC d�˛2

�
krhk2

Hm�1

�
kuk

H
mC d�˛2

C krhkHm�1

�
:

We then estimate J32 as

J32 D �

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1.r � .u � ru// dx
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D �

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1..u � r/.r � u// dx

�

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1.r � .u � ru/ � u � r.r � u// dx

D �

Z
�

@
�1
�
.@kh/

�
u � rƒd�˛@k�1.r � u/ dx

�

Z
�

@
�1
�
.@kh/

�
Œƒd�˛; u � r�@k�1.r � u/ dx

�

Z
�

@
�1
�
.@kh/

�
ƒd�˛Œ@k�1.u � r.r � u// � u � r@k�1.r � u/� dx

�

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1.r � .u � ru/ � u � r.r � u// dx

DW

4X
iD1

J32i :

First, we estimate J321 as

J321 D

Z
�

1

�
.@kh/@u � rƒd�˛@k�1.r � u/ dx C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx

D �

Z
�

r �

�1
�
.@kh/@u

�
ƒd�˛@k�1.r � u/ dx C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx

� C
�
krhkL1k@

khkL2k@ukL1

.1 � khkL1/2
C
k@krhkL2k@ukL1 C k@

khkL2kr
2ukL1

1 � khkL1

�
� kƒd�˛@k�1.r � u/kL2 C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx:

Next, Lemma 2.1 yields

J322 � C
�
krhkL1k@

khkL2

.1 � khkL1/2
C
k@kC1hkL2

1 � khkL1

�
kuk

H
d
2 C1C.d�˛/C"

k@k�1.r � u/kHd�˛

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

;

where " satisfies .d � ˛/=2C " � 1 so that d
2
C 1C .d � ˛/C " � mC d�˛

2
.

For J323 we need to estimate

kƒd�˛.@`u � r@k�1�`.r � u//kL2

for 1 � ` � k � 1. For ` D 1,

kƒd�˛@u � r@k�2.r � u/kL2 � k@u � r@
k�2.r � u/kHd�˛ � Ckuk

2

H
mC d�˛2

;

where we used Proposition 2.1(ii) with s1 D s3 D d � ˛ and s2 D d
2
C 2C d�˛

2
.
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For 2 � ` � k � 1, we use Proposition 2.1 to get

kƒd�˛@`u � r@k�1�`.r � u/kL2 � k@
`u � r@k�1�`.r � u/kH2

� Ck@`ukHm�`k@
k�`C1ukHm�.k�`C1/

� Ckuk2
H
mC d�˛2

;

and this implies

J323 � C
�
krhkL1k@

khkL2

.1 � khkL1/2
C
k@kC1hkL2

1 � khkL1

�
kuk2

H
mC d�˛2

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

:

Now, for J324 we use the estimate@�1
�
.@kh/

�
L2
� C

�
krhkL1k@

khkL2

.1 � khkL1/2
C
k@kC1hkL2

1 � khkL1

�
� C.1C krhkHm�1/krhkHm�1 ;

together with Lemma 3.5(v), to obtain

J324 D �

dX
i;jD1

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1.@xiuj @xj ui / dx

D �

Z
�

@
�1
�
.@kh/

�
ƒd�˛@k�1.ru W .ru/T / dx

�

@�1
�
.@kh/

�
L2
kƒd�˛@k�1.ru W .ru/T /kL2

� C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

:

Then we collect the estimates for the J32i to yield

J32 � C.1C krhkHm�1/krhkHm�1kuk2
H
mC d�˛2

C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx:

For J33 and J34,

J33 D

Z
�

1

�2
.@kh/rh �ƒd�˛@kudx �

Z
�

1

�
@krh �ƒd�˛@kudx

�
krhkL1

.1 � khkL1/2
k@khkL2kƒ

d�˛@kukL2 C
1

1 � khkL1
k@krhkL2kƒ

d�˛@kukL2

� Ckrhk2
Hm�1kuk

H
mC d�˛2

C
1

6
k@krhk2

L2
C 6kƒd�˛@kuk2

L2
;
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J34 D

Z
�

1

�2
.@kh/rh � @krh dx �

Z
�

1

�
j@krhj2 dx

�
krhkL1

.1 � khkL1/2
k@khkL2k@

k
rhkL2 �

1

1C khkL1
k@krhk2

L2

� Ckrhk3
Hm�1 �

2

3
k@krhk2

L2
:

Thus, we combine the estimates for the J3i to obtain

J3 � C.1C krhkHm�1/.krhk3
Hm�1 C kuk

3

H
mC d�˛2

/ �
1

2
k@krhk2

L2
C 6kƒd�˛@kuk2

L2

C

Z
�

1

�
.@kh/u � rƒd�˛@k.r � u/ dx:

Therefore, we gather all the results for the Ji to obtain

d

dt

Z
�

1

�
@krh �ƒd�˛@kudx C

1

2
k@krhk2

L2

� C.1C krhkHm�1/2.krhk3
Hm�1 C kuk

3

H
mC d�˛2

/

C kƒ
d�˛
2 @k.r � u/k2

L2
C 6kƒd�˛@kuk2

L2
:

Based on the results so far, below we provide a uniform-in-time bound estimate of
solutions.

Proposition 3.2. Let T > 0, m > d
2
C 2, and .h; u/ 2 C.Œ0; T /IXm/ be a solution to

system (1.3). Suppose that X.T Im/ � "20 � 1, so that

sup
0�t�T

kh.t/kL1 �
1

2
:

Then there exists a positive constant C � independent of T such that

X.T Im/ � C �X0.m/:

Proof. Applying Lemma 3.6 and (3.2) implies that we can find C1 > 0 independent of T
such that

d

dt

� X
0�k�m�1

Z
�

1

�
@krh �ƒd�˛@kudx

�
C
1

2
krhk2

Hm�1

� C.1C krhkHm�1/2.krhk3
Hm�1 C kuk

3

H
mC d�˛2

/

C 2
X

0�k�m�1

k.r � Uk/k
2
L2
C 6

X
0�k�m�1

kƒd�˛@kuk2
L2

� C.1C krhkHm�1/2.krhk3
Hm�1 C kuk

3

H
mC d�˛2

/C C1
X

0�k�m

kUkk
2
L2
; (3.3)
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where we used
kƒd�˛@kukL2 D kƒ

d�˛
2 UkkL2 � kUkkH1 :

On the other hand, it follows from Lemmas 3.1 and 3.2 that

d

dt

� X
1�k�m

�
kUkk

2
L2
C

 1
p
�
@kh

2
L2

��
C 2

X
1�k�m

kUkk
2
L2

� C.1C krhkHm�1/2.m�1/.krhk3
Hm�1 C kuk

3

H
mC d�˛2

/: (3.4)

Here we used

.1C kr log �kL1/2.k�1/
X
0<l�k

 1
p
�
@lh

2
L2
� C.1C krhkHm�1/2.m�1/krhk2

Hk�1

for k D 1; : : : ; m � 1, where C > 0 is independent of t .
Now we use Lemma 3.1 for k D 0 and Lemma 3.3 to get

d

dt
.khk2

L2
C kU0k

2
L2
/C 2kU0k

2
L2
� Ckuk3

H
mC d�˛2

C 2kukL2krhkL2khkL1 ;

and combine this with Proposition 2.2 to obtain

d

dt

�Z
�

�juj2 dx C khk2
PH
� d�˛2

C khk2
L2
C kU0k

2
L2

�
C kuk2

L2
C 2kU0k

2
L2

� Ckuk3
H
mC d�˛2

C 2kukL2krhkL2khkL1 :

We next choose a positive constant �1 � 1 satisfying C1�1 < 1 and combine (3.3) and
(3.4) to find

d

dt

�Z
�

�juj2 dx C khk2
PH
� d�˛2

C khk2
L2
C kU0k

2
L2

C

X
1�k�m

�
kUkk

2
L2
C

 1
p
�
@kh

2
L2

�
C �1

X
0�k�m�1

Z
�

1

�
@krh �ƒd�˛@kudx

�
C
�1

2
krhk2

Hm�1 C

�
kuk2

L2
C

X
1�k�m

kUkk
2
L2

�
� C.1C krhkHm�1/2.krhk3

Hm�1 C kuk
3

H
mC d�˛2

/

C CkhkHm.kuk2
L2
C krhk2

L2
/: (3.5)

Since we have the equivalence relationsZ
�

�juj2 dx � kuk2
L2
; krhkHm�1 �

X
1�k�m

 1
p
�
@kh


L2
;

kuk
H
mC d�˛2

� kukL2 C
X

0�k�m

kUkkL2 ;
(3.6)
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andX
0�k�m

kUkk
2
L2
C

X
1�k�m

 1
p
�
@kh

2
L2
C �1

X
0�k�m�1

Z
�

1

�
@krh �ƒd�˛@kudx

�

X
0�k�m

kUkk
2
L2
C

X
1�k�m

 1
p
�
@kh

2
L2

(3.7)

for �1 > 0 sufficiently small, we can find positive constants �2 and C2 independent of T
such that

d

dt
.Ym C khk2

L2
C khk2

PH
� d�˛2

/C �2Y
m
� C2"0Y

m; (3.8)

where Ym D Ym.t/ is given by

Ym WD

Z
�

�juj2 dx C
X

0�k�m

kUkk
2
L2
C

X
1�k�m

 1
p
�
@kh

2
L2

C �1
X

0�k�m�1

Z
�

1

�
@krh �ƒd�˛@kudx:

Thus, once "0 is chosen sufficiently small so that �2 � C2"0 > 0, we set � WD �2 � C2"0
and use Grönwall’s lemma to get

Ym.t/C kh.�; t /k2
L2
C kh.�; t /k2

PH
� d�˛2

C �

Z t

0

Ym.�/ d�

� Ym.0/C kh0k
2
L2
C kh0k

2

PH
� d�˛2

:

Since
Ym.t/C kh.�; t /k2

L2
C kh.�; t /k2

PH
� d�˛2

� k.h; u/.�; t /k2Xm

for �1 > 0 small enough, we conclude the desired result.

3.3. Proof of Theorem 1.1

We are now ready to provide the details of the proof of Theorem 1.1.
First, choose "0 as required in Proposition 3.2. Then we set "1 to

"21 WD
"20

2.1C C �/
:

By the local existence theory, Theorem 3.1, we can find T0 > 0 such that if the initial data
.h0; u0/ satisfies X0.m/ < "21, a solution .h; u/ to (1.3) exists in C.Œ0; T0/IX

m/. Assume
for a contradiction that

T � WD sup
®
T > 0 j X.T Im/ � "20

¯
<1:

Then by definition,

"20 D X.T
�
Im/ � C �X0.m/ < C

�"21 D
C �

2.1C C �/
"20 < "

2
0;

and this contradicts the assumption. Thus, the solution exists in C.RCIXm/.
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4. Large-time behavior of solutions

4.1. Whole space case: Algebraic decay rate of convergence

To get the large-time behavior estimates for the whole space case, we investigate negative
Sobolev norms. First, we present an auxiliary lemma below.

Lemma 4.1. (i) Let �d < s1 < s < s2 < d and f 2 . PH s1 \ PH s2/.Rd /. Then we
have

kf k PH s � kf k

s2�s
s2�s1

PH s1
kf k

s�s1
s2�s1

PH s2
:

(ii) If s 2 .0; d/, 1 < p < q <1, and 1=q C s=d D 1=p, then we have

kƒ�sf kLq .p kf kLp :

Proof. For (i), since we have

s D
s2 � s

s2 � s1
s1 C

s � s1

s2 � s1
s2;

we use Hölder’s inequality to obtainZ
Rd

j�j2sj Of .�/j2 d� D

Z
Rd

j�j
2s1.

s2�s
s2�s1

/
j�j
2s2.

s�s1
s2�s1

/
j Of .�/j

2.
s2�s
s2�s1

/
j Of .�/j

2.
s�s1
s2�s1

/
d�

�

�Z
Rd

j�j2s1 j Of .�/j2 d�

� s2�s
s2�s1

�Z
Rd

j�j2s2 j Of .�/j2 d�

� s�s1
s2�s1

;

and this implies the desired result.
The inequality in (ii) is the well-known Hardy–Littlewood–Sobolev inequality, and for

the proof, we refer to [30, p. 119, Theorem 1].

Lemma 4.2. Let T > 0, m > d
2
C 2, and 0 < s � ˛

2
. Let .h; u/ 2 C.Œ0; T /IXm/ be a

solution to system (1.3) satisfying

sup
0�t�T

kh.t/kL1 �
1

2
:

Then we have

d

dt

�
kƒ�suk2

L2
C kƒ�s�

d�˛
2 hk2

L2

�
C 2kƒ�suk2

L2

� Ckuk2
H
mC d�˛2

kƒ�sukL2 C CkhkL2kuk
H
mC d�˛2

kƒ�s�
d�˛
2 rhkL2 ;

where C D C.s; ˛; d;m/ is a positive constant independent of T .

Proof. Direct estimation gives

1

2

d

dt

�
kƒ�suk2

L2
C kƒ�s�

d�˛
2 hk2

L2

�
C kƒ�suk2

L2

D �

Z
Rd

ƒ�s.u � ru/ �ƒ�sudx �

Z
Rd

ƒ�s�
d�˛
2 .r � .hu//ƒ�s�

d�˛
2 h dx
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D �

Z
Rd

ƒ�s.u � ru/ �ƒ�sudx C

Z
Rd

ƒ�s�
d�˛
2 .hu/ �ƒ�s�

d�˛
2 rh dx

DW 	1 C 	2:

For 	1 one gets

	1 � kƒ
�s.u � ru/kL2kƒ

�sukL2

� ku � ruk
L

1
1
2C

s
d

kƒ�sukL2

� krukL2kuk
L
d
s
kƒ�sukL2

� CkrukL2kr
Œ d2 �C1�suk�

L2
kuk1��

L2
kƒ�sukL2

� Ckuk2
H
mC d�˛2

kƒ�sukL2 ;

where we used Lemma 4.1(ii) and the Gagliardo–Nirenberg interpolation inequality with

s

d
D

�1
2
�
k

d

�
� C

1

2
.1 � �/; k D

hd
2

i
C 1 � s; � D

d
2
� s�

d
2

�
C 1 � s

:

For 	2 we obtain

	2 � kƒ
�s� d�˛2 .hu/kL2kƒ

�s� d�˛2 rhkL2

� khuk

L

1

1
2C

sC d�˛2
d

kƒ�s�
d�˛
2 rhkL2

� khkL2kuk
L

d

sC d�˛2

kƒ�s�
d�˛
2 rhkL2

� CkhkL2kr
Œ ˛2 �C1�suk�

L2
kuk1��

L2
kƒ�s�

d�˛
2 rhkL2

� CkhkL2kuk
H
mC d�˛2

kƒ�s�
d�˛
2 rhkL2 :

Here we also used Lemma 4.1(ii) and the Gagliardo–Nirenberg interpolation inequality
with

s C d�˛
2

d
D

�1
2
�
k

d

�
� C

1

2
.1 � �/; k D

h˛
2

i
C 1 � s; � D

˛
2
� s�

˛
2

�
C 1 � s

:

Now we combine all the estimates for the 	i to deduce the desired result.

Lemma 4.3. Let T > 0, m > d
2
C 2, and 0 < s � ˛

2
. Let .h; u/ 2 C.Œ0; T /IXm/ be a

solution to system (1.3) satisfying

sup
0�t�T

kh.t/kL1 �
1

2
:
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Then we have

d

dt

Z
Rd

ƒ�srh �ƒ�sudx C
1

2
kƒ�s�

d�˛
2 rhk2

L2

� C
�
khkHm C kƒ�s�

d�˛
2 rhkL2

�
kuk2

H
mC d�˛2

C CkhkL2kƒ
�suk2

L2

C kƒ�s.r � u/k2
L2
C
1

2
kƒ�sC

d�˛
2 uk2

L2
;

where C > 0 is independent of T .

Proof. Straightforward calculation yields

d

dt

Z
Rd

ƒ�srh �ƒ�sudx D �

Z
Rd

ƒ�s.@th/ƒ
�s
r � udx

C

Z
Rd

ƒ�srh �ƒ�s.@tu/ dx

DW J1 C J2:

For J1 we use Lemma 4.1 to get

J1 D

Z
Rd

ƒ�s.r � .hu//ƒ�sr � udx C kƒ�s.r � u/k2
L2

D �

Z
Rd

ƒ�s.hu/ � rƒ�sr � udx C kƒ�s.r � u/k2
L2

� kƒ�s.hu/kL2kƒ
�s
r.r � u/kL2 C kƒ

�s.r � u/k2
L2

� Ckhuk
L

1
1
2C

s
d

kƒ�sr.r � u/kL2 C kƒ
�s.r � u/k2

L2

� CkhkL2kuk
H
mC d�˛2

kƒ�sr.r � u/kL2 C kƒ
�s.r � u/k2

L2

� CkhkL2kuk
H
mC d�˛2

�
kuk

H
mC d�˛2

C kƒ�sukL2
�
C kƒ�s.r � u/k2

L2
:

Here we used

kƒ�sr.r � u/kL2 � kƒ
�suk

s
sC2

L2
kr

2uk
2
sC2

L2
�

s

s C 2
kƒ�sukL2 C

2

s C 2
kr

2ukL2 :

For J2 we also have

J2 D �

Z
Rd

ƒ�srh �ƒ�s.u � ru/ dx �

Z
Rd

ƒ�srh �ƒ�sudx � kƒ�s�
d�˛
2 rhk2

L2

� kƒ�srhkL2kƒ
�s.u � ru/kL2 �

1

2
kƒ�s�

d�˛
2 rhk2

L2
C
1

2
kƒ�sC

d�˛
2 uk2

L2

� C
�
kƒ�s�

d�˛
2 rhkL2 C krhkL2

�
kuk2

H
mC d�˛2

�
1

2
kƒ�s�

d�˛
2 rhk2

L2
C
1

2
kƒ�sC

d�˛
2 uk2

L2
;
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where we used Lemma 4.1 and Young’s inequality to get

kƒ�srhkL2 � kƒ
�s� d�˛2 rhk�

L2
krhk1��

L2

� �kƒ�s�
d�˛
2 rhkL2 C .1 � �/krhkL2 ; � WD

s

s C d�˛
2

:

Thus, we gather the estimates for J1 and J2 to conclude the desired result.

Proposition 4.1. Let T > 0, m > d
2
C 2, and 0 < s � ˛

2
. Let .h; u/ 2 C.Œ0; T /IXm/ be

a solution to system (1.3). Suppose that X.T Im/ � "20 � 1 so that

sup
0�t�T

kh.t/kL1 �
1

2
:

Then we have

ku.�; t /k2
H
mC d�˛2

C ku.�; t /k2
PH�s
C kh.�; t /k2Hm C kh.�; t /k

2

PH
�s� d�˛2

C

Z t

0

�
ku.�; �/k2

H
mC d�˛2

Cku.�; �/k2
PH�s
Ckrh.�; �/k2

Hm�1 Ckh.�; �/k
2

PH
1�s� d�˛2

�
d�

� C
�
ku0k

2

H
mC d�˛2

C ku0k
2
PH�s
C kh0k

2
Hm C kh0k

2

PH
�s� d�˛2

�
;

where C > 0 is independent of T .

Proof. We collect the estimates in Lemmas 4.2 and 4.3, combine these with (3.8), and use
Young’s inequality to find positive constants �2; �3, and C3 satisfying

d

dt

�
Ym C kƒ�suk2

L2
C khk2

L2
C khk2

PH
� d�˛2

C kƒ�s�
d�˛
2 hk2

L2

C �3

Z
Rd

ƒ�srh �ƒ�sudx

�
C �2

�
Ym C kƒ�suk2

L2
C kƒ�s�

d�˛
2 rhk2

L2

�
� C3"0

�
Ym C kƒ�suk2

L2
C kƒ�s�

d�˛
2 rhk2

L2

�
;

where we used
kƒ�s.r � u/kL2 .s kƒ�suk

s
sC1

L2
kruk

1
sC1

L2

and

kƒ�sC
d�˛
2 ukL2 .s;d;˛ kƒ�suk

s� d�˛2
s

L2
kuk

d�˛
2
s

L2
:

Thus, we use the smallness of "0 to get a constant �3 > 0 and the relations

kƒ�
d�˛
2 hkL2 � kƒ

�s� d�˛2 hk�
L2
khk1��

L2

� �kƒ�s�
d�˛
2 hkL2 C .1 � �/khkL2 ; � WD

d�˛
2

s C d�˛
2
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and

kƒ�srhkL2 � kƒ
�s� d�˛2 hk

N�
L2
krhk1�

N�
L2

� N�kƒ�s�
d�˛
2 hkL2 C .1 �

N�/khkL2 ;
N� WD

s

1C s C d�˛
2

to yield

Ym.t/C ku.�; t /k2
PH�s
C kh.�; t /k2

L2
C kh.�; t /k2

PH
�s� d�˛2

C �3

Z t

0

�
Ym.�/C ku.�; �/k2

PH�s
C kh.�; �/k2

PH
1�s� d�˛2

�
d�

� C
�
Ym.0/C ku0k

2
PH�s
C kh0k

2
L2
C kh0k

2

PH
�s� d�˛2

�
:

This asserts the desired result.

4.1.1. Proof of Theorem 1.2. In this part, we provide the details of the proof of Theorem
1.2 on the large-time behavior of solutions in the whole space.

Before getting into the main estimates, we first deal with the decay estimate (1.8) in
Remark 1.4. That introduces the main ideas behind our arguments for the better decay
estimates of solutions.

From Lemma 4.1, we have that for s � 0,

khkL2 � krhk

sC d�˛2

1CsC d�˛2

L2
khk

1

1CsC d�˛2

PH
�s� d�˛2

and khk
PH
� d�˛2

� krhk

s

1CsC d�˛2

L2
khk

1C d�˛2

1CsC d�˛2

PH
�s� d�˛2

:

We then use the uniform bound in Proposition 4.1 and the smallness assumptions on the
solutions to get �

khk2
L2
C khk2

PH
� d�˛2

� 1CsC d�˛2
s . krhk2

L2
:

Thus, we now set

F m.t/ WD Ym.t/C kh.�; t /k2
L2
C �2kh.�; t /k

2

PH
� d�˛2

; (4.1)

where Ym is from Proposition 4.1. From the smallness of solutions and estimates in (3.8),
we can find a constant �4 > 0 satisfying

d

dt
F m
C �4.F

m/
1CsC d�˛2

s � 0:

This gives

�
1

1C d�˛
2

s

d

dt

�
.F m/�

1C d�˛2
s

�
� ��4:
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We integrate the above with respect to t and get

.F m.t//�
1C d�˛2

s � .F m.0//�
1C d�˛2

s C �4
1C d�˛

2

s
t;

or equivalently,

F m.t/ �
�
.F m.0//�

1C d�˛2
s C �4

1C d�˛
2

s
t
�� s

1C d�˛2 :

Thus, we obtain

F m.t/ . .1C t /
� s

1C d�˛2 :

Since F m.t/ � k.h; u/.�; t /k2Xm , this concludes the desired result.
As mentioned in Remark 1.4, the above estimates do not allow us to have a better

decay rate of convergence even in higher dimensions. For that reason, we refine the above
arguments by taking the negative order (˛

2
�) s > 0 large enough.

We present the proof by dividing into two cases: s � 1 � d�˛
2

and s > 2 C d � ˛.
In the former case, we obtain an algebraic decay rate of convergence of solutions. On the
other hand, in the latter case, an exponential decay rate is found.

˘ Case A: s � 1 � d�˛
2

. In this case, we first note that

�s �
d � ˛

2
� �1C

d � ˛

2
< 0 and � s < d � ˛ � 1 < 1

with our assumption on s and ˛, and thus the interpolation inequality implies

.h0; u0/ 2 PH
�1C d�˛

2 .Rd / � Œ PHd�˛�1.Rd /�d :

Then, similarly to Lemma 4.2, we estimate

1

2

d

dt

�
kƒ�1C

d�˛
2 hk2

L2
C kƒd�˛�1uk2

L2

�
C kƒd�˛�1uk2

L2

D �

Z
Rd

.ƒ�1C
d�˛
2 h/ƒ�1C

d�˛
2 .r � .hu// dx �

Z
Rd

.ƒ�1C
d�˛
2 h/ƒ�1C

d�˛
2 .r � u/ dx

�
1

2

Z
Rd

ƒd�˛�1.u � ru/ƒd�˛�1udx �

Z
Rd

rƒ�1hƒd�˛�1udx

D

Z
Rd

.ƒ�1C
d�˛
2 rh/ �ƒ�1C

d�˛
2 .hu/ dx �

1

2

Z
Rd

ƒd�˛�1.u � ru/ƒd�˛�1udx

� kƒ�1C
d�˛
2 rhkL2kƒ

�1C d�˛
2 .hu/kL2 C

1

2
kƒd�˛�1.u � ru/kL2kƒ

d�˛�1ukL2

� kƒ�1C
d�˛
2 rhkL2khuk

L

1

1
2C

1� d�˛2
d

C
1

2
kƒd�˛�1.u � ru/kL2kƒ

d�˛�1ukL2 :

Here, if ˛ � d � 1, we get

kƒd�˛�1.u � ru/kL2 � Cku � rukH1 � Ckuk2
H
mC d�˛2

;
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and if ˛ 2 .d � 1; d/, we deduce

kƒ�.d�˛�1/.u � ru/kL2 � ku � ruk
L

1
1
2C

d�˛�1
d

� krukL2kuk
L

d
d�˛�1

� Ckuk2
H
mC d�˛2

:

In either case, we have

1

2

d

dt

�
kƒ�1C

d�˛
2 hk2

L2
C kƒd�˛�1uk2

L2

�
C kƒd�˛�1uk2

L2

� kƒ�1C
d�˛
2 rhkL2khuk

L

1

1
2C

1� d�˛2
d

C Ckuk2
H
mC d�˛2

kƒd�˛�1ukL2

� kƒ�1C
d�˛
2 rhkL2khkL2kuk

L

d

1� d�˛2

C Ckuk2
H
mC d�˛2

kƒd�˛�1ukL2

� Ckhk2Hmkuk
H
mC d�˛2

C Ckuk2
H
mC d�˛2

kƒd�˛�1ukL2 ;

where we used 1 � d�˛
2
2 .0; 1/ to have kƒ�1C

d�˛
2 rhkL2 . khkHm . On the other hand,

similarly to Lemma 4.3, we can get a constant  > 0 satisfying

�
d

dt

Z
Rd

hƒd�˛�2r � udx

D �

Z
Rd

.@th/ƒ
d�˛�2

r � udx �

Z
Rd

hƒ�˛.@t .r � u// dx

D �

Z
Rd

hu �ƒd�˛�2r.r � u/ dx C kƒ�1C
d�˛
2 r � uk2

L2

C
1

2

Z
Rd

hƒd�˛�2.r � .u � ru// dx �

Z
Rd

hƒd�˛�2r � udx � khk2
L2

� kukL1khkL2kƒ
d�˛�2

r.r � u/kL2 C kƒ
�1C d�˛

2 r � uk2
L2

C CkhkL2kƒ
d�˛�2

r � .u � ru/kL2 �
1

2
khk2

L2
C
1

2
kƒd�˛�2r � uk2

L2

� CkhkL2kuk
2

H
mC d�˛2

C 
�
kuk2

H1 C kƒ
d�˛�1uk2

L2

�
�
1

2
khk2

L2
:

Then we use the estimates in Proposition 4.1 to get

d

dt

�
F m
C kƒ�1C

d�˛
2 hk2

L2
C kƒd�˛�1uk2

L2
� �4

Z
Rd

hƒd�˛�2r � udx

�
C �5

�
Ym C kƒd�˛�1uk2

L2
C khk2

L2

�
� C"0

�
Ym C kƒd�˛�1uk2

L2
C khk2

L2

�
(4.2)

for some positive constants �4 and �5, where F m appears in (4.1). Noting that

s C
d � ˛

2
� 1 > max

°
1 �

d � ˛

2
;
d � ˛

2

±
;
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we find

khk
PH
� d�˛2

� khk

s

sC d�˛2

L2
khk

d�˛
2

sC d�˛2

PH
�s� d�˛2

and khk
PH
�1C d�˛2

� khk

sCd�˛�1

sC d�˛2

L2
khk

1� d�˛2

sC d�˛2

PH
�s� d�˛2

;

which subsequently implies

khk
sC d�˛2

s

PH
� d�˛2

. khkL2 and khk

sC d�˛2
sCd�˛�1

PH
�1C d�˛2

. khkL2 :

From the smallness condition on khkL2 we have

�
khk2

PH
�1C d�˛2

C khk2
PH
� d�˛2

�1C� . khk2
L2
; � WD max

°d � ˛
2s

;
1 � d�˛

2

s C d � ˛ � 1

±
: (4.3)

We now define

Zm WD F m
C kƒ�1C

d�˛
2 hk2

L2
C kƒd�˛�1uk2

L2
� �4

Z
Rd

hƒd�˛�2r � udxI

then a simple combination (4.2) and (4.3) leads to

d

dt
Zm C �3.Z

m/1C� � 0:

Solving the above differential inequality gives

.Zm/.t/ �
�
.Zm.0//�� C �3�t

�� 1
� ;

and this proves the first assertion in Theorem 1.2.

˘ Case B: s > 2C d � ˛. Note that

kukL2 � kuk

s

1C d�˛2 Cs

PH
1C d�˛2

kuk

1C d�˛2

1C d�˛2 Cs

PH�s

and s > 2 C d � ˛ is equivalent to s

1C d�˛
2 Cs

> 2
3

. Since we have a uniform bound for
kuk PH�s , we can get

kuk3
L2

. "

3s

1C d�˛2 Cs
�2

0 kuk2
PH
1C d�˛2

D "

3s

1C d�˛2 Cs
�2

0 kU1k
2
L2
;

where U1 was defined as U1 WD rƒ
d�˛
2 u.

We now define a function

xYm WD
X

1�k�m

�
kUkk

2
L2
C

 1
p
�
@kh

2
L2

�
C �1

X
0�k�m�1

Z
Rd

1

�
@krh �ƒd�˛@kudx: (4.4)
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Then it follows from (3.3) and (3.4) that there exist positive constants �5 and C , indepen-
dent of "0 and T , such that

d

dt
xYm C �5 xY

m
� C"0 xY

m
C Ckuk3

L2
� C"0 xY

m
C C"

3s

1C d�˛2 Cs
�2

0 kU1k
2
L2
:

Then the smallness condition on "0 implies

d

dt
xYm C �7 xY

m
� 0

for some constant �7 > 0, and Grönwall’s lemma implies an exponential decay rate of
convergence of solutions. This completes the proof.

4.2. Periodic case: Exponential decay rate of convergence

In this part we consider the periodic domain, i.e.�D Td , and study the large-time behav-
ior estimates of system (1.3). Instead of dealing with the negative Sobolev norm of .h; u/,
we take advantage of the boundedness of the domain and show an exponential decay esti-
mate of its L2 norm.

Let us define a modulated energy:

E.t/ WD
1

2

Z
Td

.1C h/ju �mc j
2 dx C

1

2

Z
Td

hƒ˛�dh dx;

where mc denotes the average of the momentum:

mc WD

Z
Td

.1C h/u dx:

Here we remind the reader that the mass is assumed to be zero, i.e.
R

Td h dx D 0 for all
t � 0.

Note that if there exists a positive constant lower bound on 1C h, i.e. h.x; t/C 1 >
hmin > 0 for all .x; t/ 2 Td �RC, then the modulated energy satisfies

hmink.u �mc/.�; t /k
2
L2
C kh.�; t /k2

PH
� d�˛2

� E.t/ (4.5)

for all t � 0. This implies that the exponential decay of E.t/ also gives an estimate of the
lowest-order norm of solutions. For that reason, our first goal is to prove the following
proposition.

Proposition 4.2. Let .h;u/ be a global classical solution to (1.3) with sufficient regularity.
Suppose that

(i) inf.x;t/2Td�RC 1C h.x; t/ � hmin > 0 and

(ii) h 2 W 1;1.Td �RC/, r � u 2 L1.RCI ŒL1.Td /�d /.
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Then we have
k.u �mc/.�; t /k

2
L2
C kh.�; t /k

PH
� d�˛2

� Ce��t :

Here C and � are positive constants independent of t .

Remark 4.1. We notice that the required regularity and assumptions for solutions .h; u/
are guaranteed by Theorem 1.1.

In the lemma below, we first show that the modulated energy E.t/ is not increasing in
time.

Lemma 4.4. Let .h; u/ be a global classical solution to (1.3) with sufficient regularity.
Then we have

d

dt
E.t/CD.t/ D 0;

where the dissipation rate function D is given by

D.t/ WD

Z
Td

.hC 1/ju �mc j
2 dx:

Proof. Direct computation gives

1

2

d

dt

Z
Td

.hC 1/ju �mc j
2 dx

D
1

2

Z
Td

@thju �mc j
2 dx C

Z
Td

.hC 1/.u �mc/.@tu �m
0
c/ dx

D

Z
Td

..hC 1/u � ru/ � .u �mc/ dx

�

Z
Td

.hC 1/.u �mc/ �
�
u � ruC uCrƒ˛�dh

�
dx

D �

Z
Td

.hC 1/.u �mc/ � udx �

Z
Td

.hC 1/.u �mc/ � rƒ
˛�dh dx

D �

Z
Td

.hC 1/ju �mc j
2 dx �

Z
Td

.hC 1/u � rƒ˛�dh dx:

Here we used the symmetry of the operator ƒ˛�d :Z
Td

.hC 1/rƒ˛�dh dx D

Z
Td

hrƒ˛�dh dx D 0:

Since we have

1

2

d

dt

Z
Td

hƒ˛�dh dx D

Z
Td

.hC 1/u � rƒ˛�dh dx;

we combine the above results to conclude the desired result.
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Since the dissipation rate function D does not have a dissipation with respect to h,
motivated by [13], we introduce a perturbed modulated energy E� :

E� WD E C �

Z
Td

.u �mc/ � rW ? hdx;

where � > 0 will be chosen appropriately later and W satisfies the following relations:

(i) The potential W is an even function explicitly written as

W.x/ D

´
�c0 log jxj CG0.x/ if d D 2;

c1jxj
2�d CG1.x/ if d � 3;

where c0 > 0 and c1 > 0 are normalization constants and G0 and G1 are smooth
functions over T2 and Td (d � 3), respectively.

(ii) For any h 2 L2.Td / with
R

Td h dx D 0, U WD W ? h 2 H 1.Td / is the unique
function that satisfies the conditionZ

Td

U dx D 0 and
Z

Td

rU � r dx D

Z
Td

h dx 8 2H 1.Td /; (4.6)

i.e. U is the unique weak solution to ��U D h.

Remark 4.2. For h 2 L2.Td / with
R

Td h dx D 0, the following hold:

(i) For W defined above we have

khk PH�1 � krW ? hkL2 :

(ii) We can define the PH�s.Td /-norm as

khk PH�s WD

� X
n2Zd

jnj�2sj Oh.n/j2
�1=2

:

Then, by definition, it is clear that for s1 � s2 � 0,

khk PH�s1 � khk PH�s2 :

In particular, we have
khk PH�1 � khk PH�

d�˛
2
;

due to .d � ˛/=2 2 .0; 1/.

Remark 4.3. Due to Remark 4.2 and the assumptions in Proposition 4.2, we findˇ̌̌̌Z
Td

.u �mc/ � rW ? hdx

ˇ̌̌̌
.
Z

Td

.hC 1/ju �mc j
2 dx C khk PH�1 :

Since khk PH�1 � khk PH� d�˛2
, for sufficiently small � , we get

E � E� : (4.7)
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We are now in a position to provide the details of the proof for Proposition 4.2.

Proof of Proposition 4.2. It is obvious that E� satisfies

d

dt
E� CD�

D 0; (4.8)

where D� D D� .t/ is given as

D�
WD D � �

d

dt

Z
Td

.u �mc/ � rW ? hdx:

Now we claim that
D� .t/ � cE� .t/

for some positive constant c independent of t . First, we estimate

d

dt

Z
Td

.u �mc/ � rW ? hdx

D �

Z
Td

�
u � ruC uCrƒ˛�dh

�
� rW ? hdx �m0c

Z
Td

rW ? hdx

C

Z
Td

.u �mc/ � rW ? .@th/ dx

D �

Z
Td

.u � ru/ � rW ? hdx �

Z
Td

.u �mc/ � rW ? hdx

�

Z
Td

rƒ˛�dh � rW ? hdx �

Z
Td

.u �mc/ � rW ? .r � ..hC 1/u// dx

DW

4X
iD1

Ji :

For J1 we recall that for a D .a1; : : : ; ad / 2 Rd and b D .b1; : : : ; bd / 2 Rd ,

r � .a˝ b/ D

dX
jD1

@xj .aibj / D a.r � b/C .b � r/a:

This gives

J1 D �

Z
Td

.u � r.u �mc// � rW ? hdx

D �

Z
Td

r � ..u �mc/˝ u/ � rW ? hdx C

Z
Td

.u �mc/.r � u/ � rW ? hdx

D

Z
Td

..u �mc/˝ u/ W r
2W ? hdx C

Z
Td

.u �mc/.r � u/ � rW ? hdx:

For J3 we use (4.6) to get

J3 D

Z
Td

.ƒ˛�dh/�W ? hdx D �

Z
Td

hƒ˛�dh dx:
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For J4 we find

J4 D �

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/.u �mc//

�
dx

�

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/mc/

�
dx:

Here we rewrite the second term on the right-hand side of the above as

�

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/mc/

�
dx

D

Z
Td

.r � .u �mc//W ?
�
r � ..hC 1/mc/

�
dx

D

“
Td�Td

.r � .u �mc//W.x � y/ry � .h.y/mc/ dx dy

D

“
Td�Td

.r � .u �mc//mc � rW.x � y/h.y/ dx dy

D

Z
Td

mc.r � .u �mc// � rW ? hdx

D

Z
Td

r � .mc ˝ .u �mc// � rW ? hdx

D �

Z
Td

.mc ˝ .u �mc// W r
2W ? hdx

D �

Z
Td

..u �mc/˝mc/ W r
2W ? hdx;

where we used the symmetry of r2W ? h to get the last equality. Thus, J4 can be esti-
mated as

J4 D �

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/.u �mc//

�
dx

�

Z
Td

..u �mc/˝mc/ W r
2W ? hdx:

Hence, we combine the estimates for the Ji to yield

d

dt

Z
Td

.u �mc/ � rW ? hdx

D

Z
Td

..u �mc/˝ .u �mc// W r
2W ? hdx

C

Z
Td

.r � u � 1/.u �mc/ � rW ? hdx

�

Z
Td

hƒ˛�dh dx �

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/.u �mc//

�
dx:
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Therefore, we choose sufficiently small � > 0 to obtain

D�
D D � �

Z
Td

..u �mc/˝ .u �mc// W r
2W ? hdx

� �

Z
Td

.r � u � 1/.u �mc/ � rW ? hdx

C �

Z
Td

hƒ˛�dh dx C �

Z
Td

.u �mc/ � rW ?
�
r � ..hC 1/.u �mc//

�
dx

� D � �kr2W ? hkL1k.u �mc/k
2
L2

� �.1C kr � ukL1/ku �mckL2krW ? hkL2

C �khk2
PH
� d�˛2

� �ku �mckL2
rW ?

�
r � ..hC 1/.u �mc//

�
L2

� D � C�krW kL1krhkL1

�Z
Td

.hC 1/ju �mc j
2 dx

�
� C�

�Z
Td

.hC 1/ju �mc j
2 dx

�1=2
khk PH�1

C �khk2
PH
� d�˛2

� C�ku �mckL2kr � ..hC 1/.u �mc//k PH�1

� .1 � C.�1=2 C �//D C .� � C�3=2/khk2
PH
� d�˛2

� cE� ;

where c D c.hmin;krW kL1 ;khkW 1;1 ;kr � ukL1/ is a positive constant independent of t .
Thus, the claim is proved, and we have from (4.8) that

d

dt
E� C cE� � 0:

Applying Grönwall’s lemma to the above gives exponential decay of E� , and this, com-
bined with (4.5) and (4.7), concludes the desired result.

4.2.1. Proof of Theorem 1.2: Periodic case. We first notice that the average of momen-
tum satisfies

m0c.t/ D �mc.t/; i.e. mc.t/ D mc.0/e�t ;

due to the symmetry of the operator ƒ˛�d . This together with Proposition 4.2 givesZ
Td

juj2 dx � 2

Z
Td

ju �mc j
2 dx C 2jmc j

2
� C1e

�C2t

for some Ci > 0, i D 1; 2, independent of t . On the other hand, it follows from (3.5) and
the equivalence relations (3.6)–(3.7) that

d

dt
xYm C �5 xY

m
� C1e

�C2t
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for some �5 > 0 which is independent of t , where xYm appears in (4.4). Applying Grön-
wall’s lemma to the above yields exponential decay of xYm towards zero as t !1. Note
that the L2-norm of h is not included in xYm. For the decay estimate of kh.�; t /kL2 , we use
Lemma 4.1 to get

khkL2 � khk
�

PH
� d�˛2

krhk1��
L2

with � D
1

1C d�˛
2

:

Since the right-hand side of the above converges to zero exponentially fast, we also have
the same exponential decay rate of convergence of khkL2 . This completes the proof.

A. Proof of Lemma 3.5

In this appendix we provide the details of the proof of Lemma 3.5.

(i) We apply Proposition 2.1 to obtainr�rh
�2
� @k.�u/

�
L2

�

r�rh
�2
� .@k.hu/ � h@ku/

�
L2
C

r�rh
�
� @ku

�
L2

� C
�rh
�2


W 1;1

C

rh
�


W 1;1

��
k@k.hu/ � h@kukH1 C k@kukH1

�
� C

�
kr2hkL1

.1 � khkL1/2
C

krhk2L1

.1 � khkL1/3

�
�
�
krhkW 1;1k@k�1ukH1 C k@khkH1kukL1 C k@

kukH1

�
� C.1C krhkHm�1/2krhkHm�1kuk

H
mC d�˛2

;

where C D C.m; k; d; ˛/ is a positive constant independent of T .

(ii) Note that the left-hand side equals zero when k D 1. For k � 2, we again use Propo-
sition 2.1 to estimater�r � �1� �@k.�u/ � .@k�/u � �.@ku/�

��
L2

� C
r2�1

�

�
L1

@k.�u/ � .@k�/u � �.@ku/
L2

C C
r�1

�

�
L1

r�@k.�u/ � .@k�/u � �.@ku/�
L2

C
1

1 � khkL1

r2�@k.�u/ � .@k�/u � �.@ku/�
L2
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� C
�
kr2hkL1

.1 � khkL1/2
C

krhk2L1

.1 � khkL1/3

��
krhkL1k@

k�1ukL2 C k@
k�1hkL2krukL1

�
C C

krhkL1

.1 � khkL1/2

��
kr

2hkL1k@
k�1ukL2 C kr@

k�1hkL2krukL1
�

C
�
krhkL1k@

k�1
rukL2 C k@

k�1hkL2kr
2ukL1

��
C

C

1 � khkL1

��
kr

3hkL1k@
k�1ukL2 C k@

k�1
r
2hkL2krukL1

�
C
�
kr

2hkL1k@
k�1
rukL2 C k@

k�1
rhkL2kr

2ukL1
�

C
�
krhkL1k@

k�1
r
2ukL2 C k@

k�1hkL2kr
3ukL1

��
� C.1C krhkW 1;1/2krhkHm�1kuk

H
mC d�˛2

� C.1C krhkHm�1/2krhkHm�1kuk
H
mC d�˛2

:

(iii) Note that

@
� 1
�2
.@kh/rh

�
D

1

�2

�
�
@h

2�
.@kh/rhC @kC1hrhC .@kh/r@h

�
;

and thus taking the L2 norm on both sides of the above and using Proposition 2.1 gives@� 1
�2
.@kh/rh

�
L2

�
C

.1 � khkL1/2

� krhk2L1

2.1 � khkL1/
k@khkL2 C k@

kC1hkL2krhkL1

C k@khkL2kr
2hkL1

�
� C.1C krhkHm�1/krhk2

Hm�1 :

(iv) It follows from the equation for u in (1.3) that

�ƒd�˛@k�1@tu D ƒ
d�˛@k�1.u � ruC uCƒ˛�drh/

D u � rƒd�˛@k�1uC Œƒd�˛; u � r�@k�1u

Cƒd�˛Œ@k�1; u � r�uCƒd�˛@k�1uC @k�1rh:

Thus, we have

kƒd�˛@k�1@tukL2

� C

�
kukL1krƒ

d�˛@k�1ukL2 C kuk
H

d
2 C1C.d�˛/C"

k@k�1ukHd�˛

C

k�1X
jD1

kƒd�˛.@ju � r@k�1�ju/kL2 C kƒ
d�˛@k�1ukL2 C k@

k�1
rhkL2

�
� C

�
kuk2

H
mC d�˛2

C kuk
H
mC d�˛2

C krhkHm�1

�
;
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where we used Lemma 2.1 with " > 0 satisfying .d � ˛/=2C " < 1, together with Propo-
sition 2.1, to get

kƒd�˛.@ju � r@k�1�ju/kL2 .˛;d k@ju � r@k�1�jukH2

.˛;d;k;j k@jukHm�j k@k�jukHm�.k�j /

.˛;d;k;j kuk2Hm

for 1 � j � k � 1.

(v) By adding and subtracting, we obtain

ƒd�˛@k�1.ru W .ru/T /

D

dX
iD1

ƒd�˛@k�1.@xiu � rui /

D

dX
iD1

ƒd�˛
�
.@k�1@xiu/ � rui C @xiu � r@

k�1ui
�

C

dX
iD1

ƒd�˛
�
@k�1.@xiu � rui / � @xiu � r@

k�1ui � @xi .@
k�1u/ � rui

�
D 2

dX
iD1

@xiu � rƒ
d�˛@k�1ui C 2Œƒ

d�˛; @xiu � r�@
k�1ui

C

dX
iD1

ƒd�˛
�
@k�1.@xiu � rui / � @xiu � r@

k�1ui � @xi .@
k�1u/ � rui

�
:

We then apply Lemma 2.1 and Proposition 2.1 to deduce

kƒd�˛@k�1.ru W .ru/T /kL2

� C

�
krukL1kukHkC.d�˛/ C kruk

H
d
2 C1C.d�˛/C"

k@k�1ukHd�˛

C

k�2X
`D1

kƒd�˛.@`C1u � r@k�1�`u/kL2

�
� Ckuk2

H
mC d�˛2

;

where " satisfies .d � ˛/=2C " < 1.
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