
A QHZ SDUDGLJP IRU DUWLğFLDO LQWHOOLJHQFH EDVHG RQ
JURXS HTXLYDULDQW QRQ�H[SDQVLYH RSHUDWRUV

Alessandra Micheletti

The recent frantic surge of machine learning and, more broadly, of
artificial intelligence (AI) brings to light old and new open issues,
and among them, the so-called eXplainable artificial intelligence
(XAI) – AI that humans can understand – as opposed to black-
box learning systems where even their designers cannot explain
AI decisions. One of the major XAI questions is how to design
transparent learning systems that incorporate prior knowledge.
These topics are becoming more relevant and pervasive as AI
systems become more unfathomable and entangled with human
factors. Recently a new paradigm for XAI has been introduced in
literature, based on group equivariant non-expansive operators
(GENEOs), which are able to inject prior knowledge in a learning
system. Hence, the use of GENEOs dramatically reduces the number
of unknown parameters to be identified and the size of the related
training set, providing both computational advantages and an
increased degree of interpretability of the results. Here we will
illustrate the main characteristics of GENEOs and the encouraging
results already obtained on a couple of industrial case studies.

1 ,QWURGXFWLRQ

The use of techniques and architectures of artificial intelligence
(AI) is becoming more and more pervasive in a wide range of
applications, starting from automation or quality control in industry,
to self-driving vehicles, crime surveillance, health monitoring and
many others.

As the Oxford Dictionary states, by AI one means the theory and
development of computer systems able to perform tasks normally
requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages.
Such systems are quite often based on machine or deep learning
techniques, that is, on different types of neural networks, with
many layers and thus with a huge number of unknown parameters,
which need to be identified on the basis of a training set of data.
Even if in many applications AI and deep learning prove to be very
effective, two main problems often arise: the limited availability of
data in some applications, which prevents the scientists to define
a sufficiently large training set, and the ‘black-box’ nature of deep

learning systems, having as a consequence that even its designers
cannot explain AI decisions.

Equivariant operators are proving to be increasingly important
in deep learning, in order to make neural networks more trans-
parent and interpretable [2–4,10,20,21,27,28]. The use of such
operators corresponds to the rising interest in the so-called “explain-
able machine learning” [8,14,23], which looks for methods and
techniques that can be understood by humans. In accordance with
this line of research, group equivariant non-expansive operators
(GENEOs) have been recently proposed as elementary components
for building new kinds of neural networks [5, 6, 11]. Their use is
grounded in topological data analysis (TDA) and guarantees good
mathematical properties, such as compactness, convexity, and fi-
nite approximability, under suitable assumptions on the space of
data and by choosing appropriate topologies. Furthermore, GE-
NEOs allow to shift the attention from the data to the observers
who process them, and to incorporate the properties of invariance
and simplification that characterize those observers. The basic idea
is that we are not usually interested in data, but in approximating
the experts’ opinion in presence of the given data [12].

More formally, a GENEO is a functional operator that transforms
data into other data. By definition, it is assumed to commute with
the action of given groups of transformations (equivariance) and to
make the distance between data decrease (non-expansivity). The
groups represent the transformations that preserve the “shape”
of our data, while the non-expansivity condition means that the
operator must simplify the data metric structure. Both equivariance
and non-expansivity are important: while equivariance reduces
the computational complexity by expressing the equivalence of
data, non-expansivity guarantees that the space of GENEOs can be
finitely approximated, under suitable assumptions. The key point
for the use of GENEOs is the possibility of focusing on them in
the search for optimal components of neural networks, instead of
exploring the infinite-dimensional spaces of all possible operators.
The relatively small dimension of the spaces of GENEOs – and their
good geometric and topological properties – open the way to a new
kind of “geometric knowledge engineering for deep learning,”
which can allow us to drastically reduce the number of involved
parameters and to increase the transparency of neural networks,
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by inserting information in the agents that are responsible for data
processing.

In this paper we will introduce GENEOs and their main math-
ematical properties and we will show the quite promising results
already obtained by their application to two different industrial
problems, namely, protein pocket detection and maintenance of
electric power lines.

Let us remark that, in rapidly evolving scientific fields like arti-
ficial intelligence, which claims for new ideas and mathematical
instruments, it is crucial to establish a strict interaction and col-
laboration between academic mathematical research and industry,
in order to focus on the most important mathematical problems
that must be addressed to produce technological innovation. Such
industry-academia interactions are fostered since many years by
the European Consortium for Mathematics in Industry (ECMI)1,
with its many initiatives, and in particular with its biannual con-
ference, whose next edition2 will be held in Wrocław (Poland) on
June 26–30, 2023.

2 *(1(2V DV PRGHOV IRU REVHUYHUV

Observers can be often seen as functional operators, transforming
data into other data. This happens, for example, when we blur an
image by a convolution, or when we summarize data by descriptive
statistics. However, observers are far from being entities that merely
change functions into other functions. They do that in a compatible
way with respect to some group of transformations, i.e., they
commute with these transformations. For example, the operator
associating to each regular function f ∶ ℝn → ℝ its Laplacian Νf
commutes with all Euclidean isometries of ℝn. More precisely, we
say that this operator is equivariant with respect to the group of
isometries.

Another important property of observers should also be consid-
ered: they are endowed with some kind of regularity. A particularly
important regularity property is non-expansivity. That means that
the distance between the input data is not smaller than the dis-
tance between the output functions. This type of regularity is
frequently found in applications, since usually operators are re-
quired to simplify the metric structure of data. We can obviously
imagine particular applications where this condition is violated
locally, but the usual long term purpose of data processing is to
converge to an interpretation, i.e., a representation that is much
simpler and meaningful than the original data. As a consequence, it
is reasonable to assume that the operators representing observers,
as well as their iterated composition, are non-expansive. This as-
sumption is not only useful for simplifying the analysis of data,
but it is also fundamental in the proof that the space of group

1 https://ecmiindmath.org
2 https://ecmi2023.org

equivariant non-expansive operators is compact (and hence finitely
approximable), provided that the space of data is compact with
respect to a suitable topology [5].

2.1 Basic definitions and properties of GENEO spaces
Let us now formalize the concept of group-equivariant non-ex-
pansive operator, as was introduced in [5].

We assume that a space Ͷ of functions from a set X to ℝk is
given, together with a group G of transformations of X, such that
if Γ ∈ Ͷ and g ∈ G, then Γ ∘ g ∈ Ͷ. We call the pair (Ͷ,G) per-
ception pair. We also assume that Ͷ is endowed with the topology
induced by the L∞-distance DͶ(Γ1,Γ2) = ‖Γ1 −Γ2‖∞, Γ1,Γ2 ∈
Ͷ. Let us assume that another perception pair (, H) is given,
with  endowed with the topology induced by the analogous
L∞-distance D, and let us fix a homomorphism T ∶ G → H.

'HğQLWLRQ 1� A map F ∶ Ͷ →  is called a group equivariant
non-expansive operator (GENEO) if the following conditions are
satisfied:
1. F(Γ ∘ g) = F(Γ) ∘ T(g) for any Γ ∈ Ͷ and any g ∈ G

(equivariance);
2. ‖F(Γ) − F(Γন)‖∞ ≤ ‖Γ− Γন‖∞ for any Γ,Γন ∈ Ͷ

(non-expansivity).

If we denote by Fall the space of all GENEOs between (Ͷ,G)
and (,H) and endow it with the metric

DGENEO(F1, F2) = sup
Γ∈Ͷ

‖F1(Γ) − F2(Γ)‖∞, F1, F2 ∈ Fall,

the following main properties of spaces of GENEOs hold true (see
[5] for the proofs).

7KHRUHP 2� If Ͷ and  are compact, then Fall is compact with
respect to the topology induced by the metric DGENEO.

&RUROODU\ �� IfͶ and  are compact with respect to the∞-metrics
DͶ and D, respectively, then for any ΄ > 0 the space Fall can be
΄-approximated by a finite set.

7KHRUHP �� If  is convex, then Fall is convex.

Theorem 2 and Corollary 3 guarantee that if the spaces of data
are compact, then also the space of GENEOs is compact, and can
then be well approximated by a finite number of representatives,
thereby reducing the complexity of the problem. Theorem 4 implies
that if the space of data is also convex, then any convex combina-
tion of GENEOs is still a GENEO. Thus, when both compactness and
convexity hold, we have an easy instrument to generate any ele-
ment of Fall starting from a finite number of operators. Additionally,
the convexity of Fall ensures that each strictly convex cost function
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3.2 Parameter identification
The model that was described so far, as shown in Figure 1, has
a total of 17 parameters (ΐi, i = 1,…, 8, j, j = 1,…, 8 and ·). The
codes were written using both C and Python. The fact that the
model only employs convolutional operators and linear combina-
tions thereof allowed us to set up an optimization pipeline quite
similar to a 3D convolutional neural network (CNN), but with two
fundamental differences. First, our model has a really tiny set of
parameters, if compared to a classical CNN: we estimated that a re-
cent method called DeepSite [15], which implements a classical 3D
CNN for pocket detection, has 844529 parameters; DeepPocket [1],
an even newer approach that uses a 3D CNN to rescore fPocket [18]
predictions, has 665 122 parameters. Second, the convolutional
kernels of the GENEOs are not learned entry by entry as in classical
CNNs, since in this way equivariance would not be preserved at
each iteration; instead, at each step the kernels are recomputed
from the shape parameters that are updated during the optimiza-
tion. Finally, the estimated values of the parameters j, j = 1,…, 8,
can be interpreted as weights giving the relative importance of
each considered channel to the final pocket detection.

In order to identify the unknown parameters, we have to opti-
mize a cost function that evaluates the goodness of our predictions.
If we denote by Ε̂ the output of the model after thresholding, then
we must compare Ε̂ to the ground truth represented by the binary
function Α, which takes the value 1 in those voxels occupied by
the ligand and 0 in the other voxels. We adopted the following
accuracy function that needs to be maximized:

l(Ε̂, Α) = |Ε̂ ∧ Α| + k ⋅ |(1− Ε̂) ∧ (1− Α)|
|Α| + k ⋅ |1− Α| ∈ [0, 1].

Here Ε̂ ∧ Α denotes the minimum between the two functions, | ⋅ |
denotes the volume of the set where the function equals 1 and 1
denotes the constant function equal to 1. Note that the function
l(Ε̂, Α) is well defined, since all our functions are defined only on
a (voxelized) compact cubic region surrounding the molecule. The
hyperparameter k ranges in [0, 1], and when k = 1, the accuracy
function is simply the fraction of correctly labelled voxels out of the
total. We choose k < 1, which allows to balance the two terms
of the sum in the numerator to obtain more and slightly bigger
pockets. In particular, we empirically found that values of k in the
interval [0.01,0.05] give similar and good results, all characterized
by a rather small number of pockets of suitable size.

Eventually, pockets are found as the connected components of
the thresholded output of the model. In this way we get an array
where voxels located in a pocket are labelled with the successive
number of the connected component they belong to, while they
are labelled with 0 if they do not belong to a pocket. Actually, this
representation is not very informative, since in the applications of
pocket detection in medicinal chemistry it is desirable to compute
also the druggability of the identified cavities, that is, a ranking of
the pockets on the basis of their fitness to host a ligand.

To assign a score to each pocket, we went back to the output
of the model before the thresholding, that is, to the function Ε(x),
which was interpreted as the probability that a voxel x belongs to
a pocket. The score of a pocket was then computed as the average
value of Ε taken only over the voxels belonging to the pocket,
rescaled by a factor proportional to the volume of the pocket so
as to avoid giving too high scores to very small pockets. Eventually,
the final output of the model consists in a list of pockets, given as
the coordinates of their voxels, and the corresponding scores.

Figure 2 displays an example of results of GENEOnet applied
to the protein 2QWE. The picture shows a relevant aspect of
GENEOnet: the depicted protein is made up of four symmetrical
units so that the true pocket is replicated four times. GENEOnet
correctly outputs, among the others, four symmetrical pockets
that receive high scores. This happens thanks to equivariance, be-
cause the results of the model on identical units are the same, with
position and orientation coherently adjusted.

Figure 2. Model predictions for protein 7WIY. Left: the global view of the
prediction, where different pockets are depicted in different colors and
are labelled with their scores. Right: a zoomed view of the pocket
containing the ligand.

3.3 Comparison between GENEOnet and other methods
We compared the results of GENEOnet with a set of other recent
methods for protein pocket detection based on machine learning
techniques. Since the output of such methods can be different
from our output, both in terms of the discretization strategy and
of the objective function to be optimized, we decided to base our
comparison on the scores given by the different methods to the
cavities. In this way we can perform a comparison based on the
ability of the model to assign the highest scores to pockets that
match the true ones. Given our dataset of proteins, having only
one ligand, and thus one ‘true pocket’ each, we can compute the
fraction of proteins whose true pocket is hit by the predicted one
with highest score, by the one with second highest score, and
so on. We say that a predicted pocket A hits the true pocket B if
A has the greatest overlap with B. If no predicted pocket has an
intersection with the true one, we say that the method failed on
that protein. Finally, we computed the cumulative sum of these
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fractions; in this way we get a curve where the i-th point represents
the fraction of proteins whose true pocket has been recognized
within the first i highest scored predicted pockets.

In the following we will denote by Hj the proportion of correct
recognitions, i.e.,

Hj =
#(proteins whose true pocket is hit by the jth top ranked)

#(proteins) ,

and by Tj the corresponding cumulative quantities, i.e.,

Tj =
#(proteins whose true pocket is hit within the jth top ranked)

#(proteins)

=
j

∑
i=1

Hi.

In this way different methods can be compared directly: if a model
has a cumulative curve that stands above all the others, then
that model is definitely better. We chose to use this approach
to compare our model with the following other state-of-the-art
methods:
1. fPocket [16]: a fast geometrical method that employs a detec-

tion algorithm based on alpha-spheres.
2. P2RANK [18]: a model that uses random forests to make pre-

dictions on a cloud of points evenly sampled on the solvent
accessible surface.

3. DeepPocket [1]: a method that performs a re-scoring of fPocket
cavities by means of 3D CNNs.

4. Caviar [22]: a model that uses a novel approach to the classical
technique of points enclosure.

5. SiteMap [13]: a model that clusterizes site points based on
surface distance and how well they are sheltered from the
solvent.

6. CavVis [24]: a model that uses Gaussian surfaces to predict
pockets based on a visibility criterion.
The results are reported in Figure 3, which demonstrates that

GENEOnet has a better performance than all the other methods
considered in the comparison.

� 6&(1(�QHW� DSSOLFDWLRQ RI *(1(2V WR /L'A5 VFDQV
VHJPHQWDWLRQ IRU PDLQWHQDQFH RI HOHFWULF SRZHU SODQWV

In Portugal, the maintenance and inspection of the energy transmis-
sion system is based on LiDAR point clouds. Low-flying helicopters
are deployed to scan the environment from a bird-eye view (BEV)
perspective and store the results in a 3D point cloud format for fur-
ther processing by maintenance personnel. This results in detailed
large-scale point clouds with high point density, no sparsity and no
object occlusion. The captured 3D scenes are quite extensive and
mostly composed of arboreal/rural areas, with the transmission
line making a small percentage of the LiDAR scans. As a result,
maintenance specialists spend the majority of their time manually

Figure 3. Comparison results. The top figure shows a bar chart of the
proportions of correct recognition Hj for the different methods, while the
bottom figure shows the corresponding cumulative frequency curves.

sectioning and labelling 3D data in order to focus on 3D scenes
that encompass the transmission line, for later inspection, to avoid
collisions with the vegetation that may cause fires. In order to accel-
erate this task, we applied GENEOs to the detection of power-line
supporting towers and produced a semantic segmentation. These
metal structures serve as points of reference for the location of
the electrical network. By doing so, the laborious task of manually
searching and sectioning the 3D scenes that contain parts of the
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Figure 4. Visualization of TS40K raw point cloud with colored labels.

transmission network can be automated, which grants a significant
speed-up to the whole procedure. This research is still going on
and is performed in collaboration with the CNET Center for New
Energy Technologies SA, of the company EDP, the main electric
energy provider in Portugal.

We considered a dataset provided by EDP, using 40 000 km
of rural and forest terrain labelled with 22 classes, culminating in
2823 samples describing the transmission system, named TS40K
(see Figure 4). Withal, the provided point clouds exhibit noisy labels
and are mainly composed of non-relevant classes for our problem,
such as the ground. Power-line supporting towers make up less
than 1% of the overall point clouds, which makes noisy labelling
a major issue for the segmentation task. For instance, patches of
ground incorrectly classified as tower amount to roughly 40% of
tower 3D points.

One plausible way to approach our problem would be to
employ state-of-the-art methods with respect to 3D semantic seg-
mentation. However, most proposals [9,26,29] do not account for
the existence of ground, as it is usually removed to boost efficiency
in urban settings, and this is not possible in rural scenes, due to
their irregular terrain. Moreover, the high point density combined
with the severe class imbalance and noisy labelling in TS40K are
sure to affect the performance of these models in real scenarios.

We then built an architecture called SCENE-net, based on
GENEOs [17], whose equivariance properties encode prior knowl-
edge on the objects of interest (such as geometrical characteristics
of towers) and embed them into a model still based on convolu-
tional kernels, similarly to the previous application.

Note that also for this problem there is a piece of information
that can be injected in a learning system based on GENEOs, ex-
ploiting the equivariance property. In fact, the shape of the towers
could easily be recognized by a human being, but should be learned
by a ‘blind’ machine-learning system. Therefore, also in this case
study, the knowledge injection in the GENEO network results in
a simplified and thus more interpretable model.

4.1 SCENE-net: the model
The pipeline used for SCENE-net is quite similar to the one of
GENEOnet, used for protein pocket detection. A schematic repre-
sentation is reported in Figure 5.

Figure 5. Pipeline of SCENE-net: an input point cloud  is voxelized and
a measurement Γ is applied. This representation then is fed to a GENEO
layer, where each G𝜗i

i separately convolves the input. A GENEO observer
ெ is then achieved by a convex combination of the operators in the
GENEO layer. The function ோ transforms the analysis of the observer into
the probability of belonging to a tower. Lastly, a threshold operation is
applied to classify the voxels. Note that this final step occurs after training
is completed.

The input is a point cloud denoted by∈ℝN×(3+d), whereN is
the number of points and 3+d is the number of spatial coordinates
and of any point-wise recorded features, such as colors, labels,
normal vectors, etc. The cloud  is first discretized, using a 3D
regular grid, or voxel discretization of the considered scene, and
then fed to a layer of GENEOs G𝜗i

i (GENEO layer), each chosen from
a parametric family of operators, and defined by a set of trainable
shape parameters 𝜗i, i = 1,…,n. Such GENEOs are employed as
kernels for convolutional operators. The output of the GENEO layer
is then combined into another GENEO ெ obtained by a convex
combination of the G𝜗i

i , with weights Ί1,…,Ίn:

ெ(x) =
n

∑
i=1

ΊiG
𝜗i
i (x), Ίi ∈ [0, 1],

n

∑
i=1

Ίi = 1,

where x is a point of the discretization grid. Because of the prop-
erties of GENEOs recalled in Section 2.1, ெ is still a GENEO that
can be interpreted as an ‘expert’ observer, and the estimated value
of each coefficient Ίi represents the contribution given to the ex-
pert observer by the ‘naive observer’ G𝜗i

i . The parameters Ίi grant
then our model its intrinsic interpretability. They are learned during
training and represent the importance of each G𝜗i

i , and, by exten-
sion, the importance of their encoded properties, in modelling the
ground truth.

Next, we transform the observer’s analysis into the probability
ோ(x) that x belongs to a supporting tower, as follows:

ோ(x) = (tanh(ெ(x)))+.

Negative signals in ெ(x) represent patterns that do not exhibit
the sought-out geometrical properties. Conversely, positive values
quantify their presence. Therefore, tanh compresses the observer’s
value distribution into [−1, 1], and a rectified linear unit (ReLU) is
then applied to enforce a zero probability to negative signals.
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Lastly, a probability threshold Α ∈ [0, 1] is defined and applied
to ோ to detect the points of the discretization grid that lie on the
towers:

ோ̃ = {x ∈ grid ∣ ோ(x) ≥ Α}.

In order to recognize the main geometrical characteristics of
towers, we used three different kernels for the GENEOs G𝜗i

i :
• A cylindrical kernel, with main axis orthogonal to the plane
of the ground. The corresponding GENEO is thus equivariant
under rotations around a vertical axis and is able to identify
vertical structures which are much higher than the surrounding
landscape, as towers are.

• A cone-cylinder kernel, formed by a cylinder with a cone on
the top. The corresponding GENEO is still equivariant under
rotations around a vertical axis and is able to distinguish towers
from trees, because of the typical shape formed by power lines
stemming from the top of the towers.

• A sphere with negative values in its interior, able to detect
bushes and tree crowns and to assign them a negative weight.

4.2 Parameter identification
The unknown parameters 𝜗i,Ίi, i = 1, 2, 3 of the model are identi-
fied by solving the optimization problem

min
𝜗,Ί

𝔼[ொ(𝜗,Ί,X)] such that 𝜗i ≥ 0, ∀i,

ΊT1 = 1,

Ίi ≥ 0, ∀i.

Here the loss ொ is defined by

ொ(𝜗,Ί,X) = fw(, ΄, y)(ோ𝜗,Ί(X) − y)2,

where ோ𝜗,Ί(X) is the estimated probability that the voxel X lies
on a tower, y is the ground truth probability that voxel X lies on
a tower (computed as the proportion of LiDAR scanned points lying
in voxel X whose labels belong to a tower) and fw is a weight as
proposed in [25] to mitigate data imbalance. The hyperparameter
 emphasizes the weighting scheme, whereas ΄ is a small positive
number which ensures that the weights of the samples are positive
(see [17,25] for more details).

Like in the previous case study, the Adam algorithmwas applied
to solve the optimization problem.

4.3 SCENE-net results and comparison with other methods
In order to limit the unbalanced nature of the dataset in the training
phase, the entire TS40K dataset has been sectioned into 2823
subsets, each cropped around one different supporting tower. The
samples have then been randomly split into a training set (80% of
the total), a validation set (20% of the total), and a test set (10%
of the total).

The results of SCENE-net have been compared with those of
a convolutional neural network (CNN) applied to the same data. The
following metrics have been used to compare the two methods:
• Precision = (# true positive)/(# true positive + # false positive).
This index tells us from all voxels predicted positively, what
percentage did the model classify correctly.

• Recall = (# true positive)/(# true positive + # false negative). This
index provides the percentage of voxels lying on a tower that
were correctly classified.

• Intersection over union (IoU) = (# true positive)/(# true positive
+ # false negative + # false positive). This index measures the
overlap between the prediction and the ground truth, over the
total volume they occupy.

The results are reported in Table 1.

Method Precision Recall IoU
CNN 0.44 (±0.07) 0.26 (±0.02) 0.53
SCENE-net 0.68 (±0.08) 0.16 (±0.05) 0.58

Table 1. Comparison metrics between SCENE-net and CNN on TS40K.

Quantitatively, using SCENE-net we observe a lift in Precision
of 24%, and of 5% in IoU, and a drop of 10% in Recall. The lower
Recall of SCENE-Net is due to noisy labels in the ground truth. As
shown in Figure 6, the ground surrounding supporting towers as
well as power lines are often mislabeled as tower.

Additionally, from Figure 7 we note that the performance of
SCENE-net is comparable to that of CNN when we change the
classification threshold Α in the model pipeline, but SCENE-net
has in total 11 parameters to be identified, while CNN has about
103 unknown parameters and therefore needs to be trained with
a much bigger training set.

(a) TS40K sample (b) SCENE-Net (c) Baseline CNN

true positive false negative false positive

Figure 6. For the TS40K sample shown in (a), SCENE-Net accurately
detects the body of the power grid tower (b), while a comparable CNN
has a large false positive area in the vegetation (c). Our model is
interpretable with 11 trainable geometric parameters, whereas the CNN
has a total of 2190 parameters. Note that the ground around the towers
and the lines above are mislabeled as towers in the ground truth.
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Figure 7. Precision–Recall curve for SCENE-Net and the CNN benchmark,
with changing detection threshold. Although our model SCENE-Net has
two orders of magnitude less parameters than the CNN, it attains
a comparable area under the P–R curve.
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