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The evolution of a gas can be described by different mathematical
models depending on the scale of observation. A natural question,
raised by Hilbert in his sixth problem, is whether these models
provide mutually consistent predictions. In particular, for rarefied
gases, it is expected that the equations of the kinetic theory of
gases can be obtained from molecular dynamics governed by the
fundamental principles of mechanics. In the case of hard sphere
gases, Lanford (1975) has shown that the Boltzmann equation
does indeed appear as a law of large numbers in the low density
limit, at least for very short times. The aim of this paper is to present
recent advances in the understanding of this limiting process.

1 A statistical approach to dilute gas dynamics

1.1 The physical model: A dilute gas of hard spheres
Although at the time Boltzmann published his famous paper [8]
the atomic theory was still rejected by some scientists, it was al-
ready well established that matter is composed of atoms, which
are the elementary constituents of all solids, liquids and gases. The
particularity of gases is that the volume occupied by their atoms
is negligible as compared to the total volume occupied by the
gas, and there are therefore very few constraints on the atoms’
geometric arrangement: they are thus very loosely bound and al-
most independent. Neglecting the internal structure of the atoms,
their possible organization into molecules, and the effect of long-
range interactions, a gas can be represented as a system formed
by a large number of particles that move in a straight line and
occasionally collide with each other, resulting in an almost instanta-
neous scattering. The simplest example of such a model consists in
assuming that the particles are small identical spheres, of diameter
ε ≪ 1 and mass 1, interacting only by contact (Figure 1). We refer
to this as a gas of hard spheres. This microscopic description of
a gas is explicit, but very difficult to use in practice because the
number of particles is extremely large, their size is tiny and their
collisions are very sensitive to small shifts (Figure 2). This model is
therefore not efficient for making theoretical predictions. A natural
question is whether one can extract, from such a complex system,
less precise but more stable models suitable for applications, such

as kinetic or fluid models. This question was formalized by Hilbert
at the International Congress of Mathematicians in 1900, in his
sixth problem:

Boltzmann’s work on the principles of mechanics suggests
the problem of developing mathematically the limiting
processes, there merely indicated, which lead from the
atomistic view to the laws of motion of continua.

The Boltzmann equation, mentioned by Hilbert and described in
more detail below, expresses that the particle distribution evolves
under the combined effect of free transport and collisions. For
these two effects to be of the same order of magnitude, a sim-
ple calculation shows that, in dimension d ≥ 2, the number of
particles N and their diameter ε must satisfy the scaling relation
Nεd−1 = O(1), called low density scaling [14]. Indeed, the regime
described by the Boltzmann equation is such that the mean free
path, i.e., the average distance traveled by a particle moving in
a straight line between two collisions, is of order 1. Thus, a typical
particle should go through a tube of volume O(εd−1) between
two collisions, and on average, this tube should cross one of the
N− 1 other particles. Note that, in this regime, the total volume
occupied by the particles at a given time is proportional to Nεd

and is therefore negligible compared to the total volume occupied
by the gas. We speak then of a dilute gas.

1.2 Three levels of averaging
Henceforth, it is assumed that the particle system evolves in the
unit domain with periodic boundary conditions 𝕋d = [0, 1]d. We
consider that the N particles are identical: this is the exchange-
ability assumption. The state of the system can be represented by
a measure in the phase space 𝕋d ×ℝd called empirical measure,

1
N

N

∑
i=1

δx−xiδv−vi,

where δx is the Dirac mass at x = 0. This measure is completely
symmetric (i.e., invariant under permutation of the indices of the
particles) because of the exchangeability assumption. This first aver-
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Hard sphere dynamics:

dxεk
dt

= vεk ,
dvεk
dt

= 0

as long as

|xεk(t) − xεk′(t)| > ε, 1 ≤ k ≠ k′ ≤ N

vε
′

i = vεi − ((vεi − vεj ) ⋅ω)ω,

vε
′

j = vεj + ((vεi − vεj ) ⋅ω)ω

Figure 1. At time t, the system of hard spheres is described by the positions (xεk(t))k≤N and the
velocities (vεk(t))k≤N of the centers of gravity of the particles. The spheres move in a straight
line and when two of them touch, they are scattered according to elastic reflection laws.

Case 1: transport and collision (the velocities are scattered)

Case 2: free transport (the particles do not collide)

Figure 2. The particles are very small (of diameter ε ≪ 1) and the
dynamics is very sensitive to small spatial shifts. In the first case depicted
above, two particles with initial positions x1, x2 and velocities v1, v2
collide and are scattered. In the second case, after shifting the position
of the first particle by a distance O(ε), they no longer collide and each
particle keeps moving in a straight line. Thus, a perturbation of order ε
of the initial conditions can lead to very different trajectories.

aging is however not sufficient to obtain a robust description of the
dynamics when N is large, because of the instabilities mentioned in
the previous section (Figure 2) which lead to a strong dependence
of the particle trajectories on ε.

We will therefore introduce a second averaging, with respect
to the initial configurations; from a physical point of view, this
averaging is natural since only fragmentary information on the ini-
tial configuration is available. We therefore assume that the initial
data (XN,VN) = (xi, vi)1≤ i≤N are independent random variables,
identically distributed according to a distribution f 0 = f 0(x, v). This

assumption must be slightly corrected to account for particle exclu-
sion: |xi − xj| > ε for i ≠ j. This statistical framework is called the
canonical setting. It is a simple framework allowing us to establish
rigorous foundations for the kinetic theory, i.e., to characterize, in
the large N asymptotics, the average dynamics and more precisely
the evolution equation governing the distribution f(t,x, v) at time t
of a typical particle.

In this paper, our aim is to go beyond this averaged dynam-
ics, and to describe in a precise way the correlations that appear
dynamically inside the gas. Fixing a priori the number N of parti-
cles induces additional correlations, so to circumvent them, we
introduce a third level of averaging by assuming that N is also
a random variable, and that only its average με = ε−(d−1) is deter-
mined (according to the low density scaling). To define a system
of initially independent (modulo exclusion) identically distributed
hard spheres according to f 0, we introduce the grand canonical
measure as follows: the probability density of finding N particles
of coordinates (xi, vi)i≤N is given by

1
𝒵ε

μN
ε

N!

N

∏
i=1

f 0(xi, vi)∏
i≠ j

1|xi−xj|> ε for N = 0, 1, 2,…, (1.1)

where the constant 𝒵ε is the normalization factor of the probability
measure. We will assume in the following that the function f 0

is Lipschitz continuous, with a Gaussian decay in velocity. The
corresponding probability and expectation will be denoted by ℙε

and 𝔼ε.

1.3 A statistical approach
Once the initial random configuration (N, (xε0i , vε0i )1≤ i≤N) is cho-
sen, the hard sphere dynamics evolves deterministically (according
to the hard sphere equations shown in Figure 1), and we seek to
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understand the statistical behavior of the empirical measure

πε
t (x, v) ≔

1
με

N

∑
i=1

δx−xεi (t)δv−vεi (t) (1.2)

and its evolution in time.

A law of large numbers
The first step is to determine the law of large numbers, that is,
the limiting distribution of a typical particle when με → ∞. In the
case of N identically distributed independent variables (ηi)1≤ i≤N

of expectation 𝔼(η), the law of large numbers implies in particular
that the mean converges in probability to the expectation:

1
N

N

∑
i=1

ηi −−−→
N→∞

𝔼(η).

One can easily show the following convergence in probability:

⟨πε
0,h⟩ ≔

1
με

N

∑
i=1

h(xε0i , vε0i ) −−−→
με→∞

∫ f 0h(x, v)dxdv,

under the grand canonical measure. The difficulty is to under-
stand whether the initial quasi-independence propagates in time
so that there exists a function f = f(t, x, v) such that the following
convergence in probability holds:

⟨πε
t ,h⟩ −−−→

με→∞
∫ f(t, x, v)h(x, v)dxdv (1.3)

under the grand canonical measure (1.1) over the initial configu-
rations. The most important result proving this convergence was
obtained by Lanford [16]: he showed that f evolves according to
a deterministic equation, namely the Boltzmann equation. This
result will be explained in Section 2.2.

A central limit theorem
The approximation (1.3) of the empirical measure neglects two
types of errors. The first is the presence of correction terms that con-
verge to 0 when με →+∞. The second is related to the probability,
which must tend to zero, of configurations for which this conver-
gence does not occur. A classical problem in statistical physics is to
quantify more precisely these errors, by studying the fluctuations,
i.e., the deviations between the empirical measure and its expec-
tation. In the case of N independent and identically distributed
variables (ηi)1≤ i≤N, the central limit theorem implies that the fluc-
tuations are of order O(1/√N), and the following convergence in
law holds true:

√N( 1
N

N

∑
i=1

ηi −𝔼(η))
(law)
−−−→
N→∞

𝒩(0,Var(η)),

where𝒩(0,Var(η)) is the normal law of variance Var(η)=𝔼((η−
𝔼(η))2). In particular, at this scale, we find some randomness. In-
vestigating the same fluctuation regime for the dynamics of hard
sphere gases consists in considering the fluctuation field ζ ε

t defined

by duality, namely,

⟨ζ εt ,h⟩ ≔ √με(⟨πε
t ,h⟩ − 𝔼ε(⟨πε

t ,h⟩)), (1.4)

where h is a continuous function, and 𝔼ε the expectation with
respect to the grand canonical measure. At time 0, one can easily
show that, under the grand-canonical measure, the fluctuation
field ζ ε

0 converges in the low density limit to a Gaussian field ζ 0
with covariance

𝔼(ζ0(h)ζ0(g)) = ∫ f 0(z)h(z)g(z)dz.

A series of recent works [4–7] has allowed to characterize the
fluctuation field (1.4) and to obtain a stochastic evolution equa-
tion governing the limit process. These results are presented in
Section 3.3.

On large deviations
The last question generally studied in a classical probabilistic ap-
proach is that of the quantification of rare events, i.e., the estima-
tion of the probability of observing an atypical behavior (which
deviates macroscopically from the mean). For independent and
identically distributed random variables, this probability is exponen-
tially small, and it is therefore natural to study the asymptotics

I(m) ≔ lim
δ→0

lim
N→∞

− 1
N
logℙ(| 1

N

N

∑
i=1

ηi −m| < δ) withm≠𝔼(η).

The limit I(m) is called the large deviation functional and can be
expressed as the Legendre transform of the log-Laplace transform
ℝ∋ u↦ log𝔼(exp(uη)). To generalize this statement to correlated
variables in a gas of hard spheres, it is necessary to compute the
log-Laplace transform of the empirical measure on deterministic
trajectories, which requires extremely precise control of the dynam-
ical correlations. Note that, at time 0, under the grand canonical
measure, one can show that, for any δ > 0,

lim
δ→0

lim
με→∞

− 1
με

logℙε(d(πε
0,φ

0) ≤ δ)

= H(φ0| f 0) ≔ ∫(φ0 log
φ0

f 0
− (φ0 − f 0))dxdv,

where d is a distance on the space of measures. The dynamical
cumulant method introduced in [4,6] is a key tool for computing
the exponential moments of the hard sphere distribution, thus
obtaining the dynamical equivalent of this result in short time. We
give an overview of these techniques in Section 3.

2 Typical behavior: A law of large numbers

2.1 Boltzmann’s amazing intuition
The equation that rules the typical evolution of a gas of hard spheres
was heuristically proposed by Boltzmann [8] about a century before
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its rigorous derivation by Lanford [16], as the “limit” of the particle
system when με → +∞. Boltzmann’s revolutionary idea was to
write an evolution equation for the probability density f = f(t, x, v)
giving the proportion of particles at position x with velocity v at
time t. In the absence of collisions, and in an unbounded domain,
this density f would be transported along the physical trajectories
x(t) = x(0) + vt, which means that f(t, x, v) = f 0(x− vt, v). The
challenge is to take into account the statistical effect of collisions.
As long as the size of the particles is negligible, one can consider
that these collisions are pointwise in both t and x. Boltzmann
proposed a quite intuitive counting:
• the number of particles of velocity v increases when a particle
of velocity v ′ collides with a particle of velocity v ′1, and takes
the velocity v (Figure 1 and (2.2));

• the number of particles of velocity v decreases when a parti-
cle of velocity v collides with a particle of velocity v1, and is
deflected to another velocity.

The probability of these jumps in velocity is described by a transition
rate, called the collision cross section. For interactions between
hard spheres, it is given by ((v − v1) ⋅ ω)+, where v − v1 is the
relative velocity of the colliding particles, and ω is the deflection
vector, uniformly distributed in the unit sphere 𝕊d−1 ⊂ ℝd.

The fundamental assumption of Boltzmann’s theory is that,
in a rarefied gas, the correlations between two colliding particles
must be very small. Therefore, the joint probability of having two
pre-colliding particles of velocities v and v1 at position x at time t
should be well approximated by the product f(t,x,v)f(t,x,v1). This
independence property is called the molecular chaos hypothesis.
The Boltzmann equation then reads

∂t f+ v ⋅ ∇x f⏟⏟⏟
transport

= C( f, f)⏟⏟⏟
collision

, (2.1)

where

C( f, f)(t, x, v) = ∬[f(t, x, v′)f(t, x, v′1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain term

− f(t, x, v)f(t, x, v1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
loss term

]

× ((v− v1) ⋅ω)+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cross section

dv1 dω,

with the scattering rules

v′ = v− ((v− v1) ⋅ω)ω, v′1 = v1 + ((v− v1) ⋅ω)ω (2.2)

being analogous to those introduced in Figure 1, with the important
difference that ω is now a random vector chosen uniformly in the
unit sphere 𝕊d−1: indeed, the relative position of the colliding
particles disappeared in the limit ε → 0. As a result, the Boltzmann
equation is singular because it involves a product of densities at
a single point x.

Boltzmann’s idea of reducing the Hamiltonian dynamics de-
scribing atomic behavior to a kinetic equation was revolutionary
and paved the way to the description of non-equilibrium phenom-
ena by mesoscopic equations. However, the Boltzmann equation

(2.1) was first strongly criticized because it seems to violate some
fundamental physical principles. It actually predicts an irreversible
evolution in time: it has a Lyapunov functional, called entropy, de-
fined by S(t) ≔−∬ f log f(t,x,v)dxdv, such that d

dt S(t) ≥ 0, with
equality if and only if the gas is in thermodynamic equilibrium. The
Boltzmann equation thus provides a quantitative formulation of
the second principle of thermodynamics. But at first glance, this
irreversibility seems incompatible with the fact that the dynamics
of hard spheres is governed by a Hamiltonian system, i.e., a system
of ordinary differential equations that is completely reversible in
time. Soon after Boltzmann postulated his equation, these two
different behaviors were considered, by Loschmidt, as a paradox
and an obstruction to Boltzmann’s theory. A fully satisfactory math-
ematical explanation of this question remained elusive for almost
a century, until the role of probabilities was precisely identified: the
underlying dynamics is reversible, but the description that is given
of this dynamics is only partial and is therefore not reversible.

2.2 Typical behavior: Lanford’s theorem
Lanford’s result [16] shows in which sense the Boltzmann equation
(2.1) is a good approximation of the hard sphere dynamics. It can
be stated as follows (this is not exactly the original formulation;
see in particular Section 2.4 below for comments).

Theorem 2.1 (Lanford). In the low density limit (με → ∞ with
μεεd−1 = 1), the empirical measure πε

t defined by (1.2) concen-
trates on the solution of the Boltzmann equation (2.1): for any
bounded and continuous function h,

∀δ > 0, lim
με→∞

ℙε(|⟨πε
t ,h⟩ − ∫ f(t, x, v)h(x, v)dxdv| ≥ δ) = 0,

on a time interval [0, TL] that depends only on the initial distribu-
tion f 0.

The time of validity TL of the approximation is found to be
a fraction of the average time between two successive collisions
for a typical particle. This time is large enough for the microscopic
system to undergo a large number of collisions (of the order of με),
but (much) too small to see phenomena such as relaxation to (lo-
cal) thermodynamic equilibrium, and in particular hydrodynamic
regimes. Physically, we do not expect this time to be critical, in
the sense that the dynamics would change in nature afterwards.
In fact, in practice, Boltzmann’s equation is used in many appli-
cations (such as spacecraft reentrance calculations) without time
restrictions. However, it is important to note that a time restric-
tion might not be only technical: from a mathematical point of
view, one cannot exclude that the Boltzmann equation presents
singularities (typically spatial concentrations that would prevent
the collision term from making sense, and that would also locally
contradict the low density assumption). At present, the problem of
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extending Lanford’s convergence result to longer times still faces
serious obstacles.

2.3 Heuristics of Lanford’s proof
Let us informally explain how the Boltzmann equation (2.1) can
be predicted from the dynamics of the particles. The goal is to
transport via the dynamics the initial grand canonical measure (1.1)
and then to project this measure at time t onto the 1-particle phase
space. We thus define by duality the density F ε1(t, x, v) of a typical
particle with respect to a test function h by

∫ Fε1(t, x, v)h(x, v)dxdv ≔ 𝔼ε(⟨πε
t ,h⟩). (2.3)

Theorem 2.1 states that F ε
1 converges to the solution to the Boltz-

mann equation f in the low density limit. So let h be a regular and
bounded function on 𝕋d ×ℝd and consider the evolution of the
empirical measure during a short time interval [t, t+ δ]. Separating
the different contributions according to the number of collisions,
we can write
1
δ
(𝔼ε[⟨πε

t+δ,h⟩] − 𝔼ε[⟨πε
t ,h⟩])

= 1
δ
𝔼ε[

1
με

∑
j

no collision

(h(zεj (t+ δ)) − h(zεj (t)))]

+ 1
δ
𝔼ε[

1
2με

∑
(i, j)

one collision

(h(zεi (t+ δ)) + h(zεj (t+ δ))

− h(zεi (t)) − h(zεj (t)))]
+⋯. (2.4)

To simplify, z εi (t) denotes the coordinates (xεi (t), vεi (t)) of the
i-th particle at time t. Since the left-hand side of (2.4) formally
converges when δ → 0 to the time derivative of 𝔼ε[⟨πε

t ,h⟩], we
will analyze the limit δ → 0 of the first two terms in the right-hand
side of (2.4), which should lead to a transport term and a collision
term as in (2.1). We will also explain why the remainder terms,
involving two or more collisions in the short time interval δ, tend
to 0 with δ (showing that they are of order δ).

Since the particles move in a straight line and at constant
speed in the absence of collisions, if the distribution F ε1 is sufficiently
regular, the definition (2.3) of F ε1 formally implies that, when δ tends
to 0, the first term in the right-hand side of (2.4) is asymptotically
equal to

∫ Fε1(t, z)v ⋅ ∇xh(z)dz = −∫(v ⋅ ∇xFε1(t, z))h(z)dz.

The transport term in (2.1) is thus well obtained in the limit. Let us
now consider the second term in the right-hand side of (2.4). Two
particles of configurations (x1, v1) and (x2, v2) at time t collide at
a later time τ ≤ t+ δ if there exists ω ∈ 𝕊d−1 such that

x1 − x2 + (τ− t)(v1 − v2) = −εω. (2.5)

This implies that their relative position must belong to a tube of
length δ|v1 − v2| and width ε oriented in the v1 − v2 direction.
The Lebesgue measure of this set is of the order δεd−1|v2 − v1| =
O(δεd−1) (neglecting large velocities). More generally, a sequence
of k− 1 collisions between k particles imposes k− 1 constraints
of the previous form, and this event can be shown to have proba-
bility less than (δεd−1)k−1 = (δμ−1

ε )k−1 (again neglecting large
velocities). Since there are, on average, μk

ε ways to choose these
k colliding particles, we deduce that the occurrence of k− 1 colli-
sions in (2.4) has a probability of order δ k−1με. This explains why
the probability of having k ≥ 3 colliding particles can be estimated
by O(δ2) and thus can be neglected in (2.4).

It remains to examine more closely the collision term involving
two particles in (2.4), in order to obtain the collision operator C(f, f)
of the Boltzmann equation (2.1). This term involves the two-particle
correlation function F ε

2 . For any k ≥ 1, we define

∫ Fεk (t, Zk)hk(Zk)dZk

= 𝔼ε(
1
μk
ε

∑
(i1,…, ik)

hk(zεi1(t),…, zεik(t))), (2.6)

where i1,…, ik are all distinct and Zk = (xi, vi)1≤ i≤ k. We can then
show that, in the limit δ → 0,

∂tFε1 + v ⋅ ∇xFε1⏟⏟⏟⏟⏟
transport

= Cε(Fε2)⏟⏟⏟
collision

at distance ε

, (2.7)

where

Cε(Fε2)(t, x, v)

= ∬[Fε2(t, x, v′, x+ εω, v′1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
gain term

− Fε2(t, x, v, x− εω, v1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
loss term

]

× ((v− v1) ⋅ω)+⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cross section

dv1 dω.

The key step in closing the equation is themolecular chaos assump-
tion postulated by Boltzmann, which states that the pre-collisional
particles remain independently distributed at all times so that, with
the convention (2.5) fixing the sign of ω, we have

Fε2(t, z1, z2) ≃ Fε1(t, z1)Fε1(t, z2) if (v1 − v2) ⋅ω > 0. (2.8)

When the diameter ε of the spheres tends to 0, the coordinates x1
and x2 coincide and the scattering parameterω becomes a random
parameter. Assuming that F ε1 converges, its limit must satisfy the
Boltzmann equation (2.1).

Establishing the factorization (2.8) rigorously uses a different
strategy, elaborated by Lanford [16], then completed and improved
over the years: see themonographs [10,11,25]. In the last few years,
several quantitative convergence results have been established,
and the proofs have been extended to the case of somewhat
more general domains, potentials with compact support, or with
super-exponential decay at infinity: see [1,12,13,17,21,22].
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F ε2(t, x1, v1, x2, v2) ≃ F ε1(t, x1, v1)F
ε
1(t, x2, v2) F ε2(t, x1, v1, x2, v2) ≄ F ε1(t, x1, v1)F

ε
1(t, x2, v2)

Figure 3. In the left figure, particles 1 and 2 will meet in the future; with high probability, they did
not collide in the past and we expect the correlation function F ε2 to factorize in the με → ∞ limit.
In the figure on the right, the coordinates of the particles belong to the bad set ℬε

2, which means
that they most likely met in the past. In this case, microscopic correlations have been dynamically
constructed and the factorization (2.8) should not be valid.

2.4 On the irreversibility
In this section, we will show that the answer to the irreversibility
paradox lies in the molecular chaos hypothesis (2.8), which is valid
only for specific configurations.

In fact, the notion of convergence that appears in the state-
ment of Theorem 2.1 differs from the one used in Lanford’s proof:
Theorem 2.1 states the convergence of the ⟨πε

t , h⟩ observables,
i.e., the convergence in the sense of measures, since the test func-
tion h must be continuous. This convergence is rather weak and
is not sufficient to ensure the stability of the collision term in the
Boltzmann equation because this term involves traces. In the proof
of Lanford’s theorem, we consider all k-particle correlation func-
tions F ε

k defined by (2.6) and show that, when με → ∞, each of
these correlation functions converges uniformly outside a set ℬε

k of
negligible measure. Thus, the proof uses a much stronger notion
of convergence than that stated in Theorem 2.1. Moreover, the
set ℬε

k of bad microscopic configurations (t, Zk) (on which F εk does
not converge) is somehow transverse to the set of pre-collisional
configurations (as can be seen in Figure 3; two particles in ℬε

2

tend to move away from each other so that they are unlikely to
collide). The convergence defect is therefore not an obstacle to
taking bounds in the collision term (correlation functions are only
evaluated there in pre-collisional configurations). However, these
singular sets ℬε

k encode important information about the dynam-
ical correlations: by neglecting them, it is no longer possible to
go back in time and reconstruct the backward dynamics. Thus, by
discarding the microscopic information encoded in ℬε

k, one can
only obtain an irreversible kinetic picture that is far from describing
the full microscopic dynamics.

3 Fluctuations and large deviations

3.1 Corrections to the chaos assumption
Returning to equation (2.7) on F ε

1 , we can see that, apart from the
small spatial shifts of the collision term, the deviations of the Boltz-
mann dynamics are due to the factorization defect F ε

2 − F ε
1 ⊗ F ε1 ,

a geometric interpretation of which is given below.
Let us first describe the geometric representation of F ε

1 . We look
at the history of particle 1⋆ located at position x1⋆ with velocity
v1⋆ at time t, in order to characterize all initial configurations that
contribute to F ε1(t, x1⋆, v1⋆). The particle 1⋆ performs a uniform
rectilinear motion x1⋆(t ′) = x1⋆ − v1⋆(t− t ′) until it collides with
another particle, called particle 1, at a time t1 < t. This collision
can be of two types: either a physical collision (with deflection), or
a mathematical artifact arising from the loss term in equation (2.7)

t

t1

t2

t4

t3

0

a1 = 1⋆

a2 = 1

a3 = 1⋆

a4 = 3

1⋆

1⋆

4 3 1 2

Figure 4. The history of the particle 1⋆ can be encoded in a tree a,
say of size n, whose root is indexed by 1⋆. The pseudotrajectory is
then prescribed by the collision parameters (ti, vi,ωi)1≤ i≤n.
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1⋆
2⋆

Fε
2 = +

1⋆ 2⋆

≁

Figure 5. F ε2 trees are classified into two categories: those involving an (external) collision
between the 1⋆ and 2⋆ trees, and others for which the particles in the 1⋆ tree are always
at least ε away from those in the 2⋆ tree (which we denote by ≁).

(the particles touch but are not deflected). From then on, to under-
stand the history of particle 1⋆, we need to trace the history of both
particles 1⋆ and 1 before time t1. From time t1 on, both particles
perform uniform rectilinear motions until one of them collides with
a new particle 2 at time t2 < t1, and so on, until time 0. Note that,
between the times of collision with new particles, the particles can
collide with each other: this will be called recollision. The history of
the particle 1⋆ can be encoded using a rooted tree awhose vertices
correspond to the different collisions that took place in the history
of 1⋆ and are indexed by the parameters of these collisions. An ex-
ample is shown in Figure 4. The root of the tree a is indexed by 1⋆.
If n is the total number of collisions, and 0< tn <⋯< t1 < t are the
times of the collisions, one can order the particles so that, at time
ti, 1 ≤ i ≤ n, the collision occurs between the i-th particle and the
j-th particle, where j∈ {1⋆, 1,…, i− 1} (necessarily, j= 1⋆ at time
t1). Then the branching of the tree a associated with the i-th col-
lision is indexed by the relation ai = j, where j ∈ {1⋆, 1,…, i− 1},
together with the collision parameters (ti, vi,ωi)1≤ i≤n, where ωi is
the deflection vector. The tensor product F ε

1 ⊗ F ε
1 is then described

by two independent collision trees, with roots 1⋆ and 2⋆, and
respectively n1 and n2 branches.

Now consider the second-order correlation function: F ε
2 can be

described by a collision graph constructed from two collision trees
with roots 1⋆ and 2⋆, and n1 + n2 branches. The main difference
with F ε

1 ⊗ F ε1 is that the particles in the 1
⋆ and 2⋆ trees may inter-

act. We can thus decompose the trees constituting F ε2 into two
categories: those such that there is at least one collision involving
a particle from each tree (such a recollision will be called external),
and the others (Figure 5).

Note, however, that two collision-free trees do not correspond
to independent trees, precisely because of the dynamical exclusion
condition. This exclusion condition can itself be decomposed as
11⋆ ≁2⋆ = 1− 11⋆ ∼2⋆ (Figure 6), where 11⋆ ∼2⋆ means that there
is an overlap at some point between a particle from the 1⋆ tree
and a particle from the 2⋆ tree. This decomposition is a pure
mathematical artifact, and the 1⋆ ∼ 2⋆ overlap condition does not
affect the dynamics (the overlapping particles are not deflected).

1*

classificationF2.pdf

Figure 7 Among the pseudoynamics describing F
"
2 , we separate those having a recollision between

trees 1⇤ and 2⇤, and those where particles from tree 1⇤ and particles from tree 2⇤ remain at a
distance greater than ", which will be denoted by /
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3.1. What is missing at leading order?
Going back to the equation (2.2) on F
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Figure 6. Decomposition of the dynamical exclusion condition.
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2*

-

Figure 7. The second-order cumulant corresponds to the occurrence
of at least one external recollision or an overlap.

Let us now define the second-order rescaled cumulant

f ε2 ≔ με(Fε2 − Fε1 ⊗ Fε1). (3.1)

The previous discussion indicates that this cumulant is represented
by trees that are coupled by external collisions or overlaps (Figure 7).
In view of definition (3.1) and the discussion in Section 2.3 giving
an O(t/με) estimate of the Lebesgue measure of configurations
giving rise to a collision, one can expect f ε2 to be uniformly bounded
in L1 and therefore to have a limit f2 in the sense of the measures.
One can prove in addition that f2 corresponds to trees with exactly
one external recollision or overlap on [0, t]: any other interaction
between the trees gives rise to additional smallness and is therefore
negligible.
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Remark 3.1. The initial measure does not factorize exactly (F ε,02 ≠
F ε,01 ⊗ F ε,0

1 ) because of the static exclusion condition. Thus, the
initial data also induce a small contribution to f ε2 , but this con-
tribution is significantly smaller than the dynamical correlations
(by a factor ε).

3.2 The cumulant generating function
For a Gaussian process, the first two correlation functions F ε

1 and F
ε
2

determine completely all other k-particle correlation functions F ε
k ,

but in general, part of the information is encoded in the cumulants
of higher order (k ≥ 3)

f εk (t, Zk) ≔ μk−1
ε

k

∑
ℓ=1

∑
σ∈𝒫ℓ

k

(−1)ℓ−1(ℓ− 1)!
ℓ

∏
i=1

Fε|σi|(t, Zσi),

where 𝒫ℓ
k is the set of partitions of {1,…, k} into ℓ parts with σ =

{σ1,…,σℓ}, |σi| being the cardinality of the set σi and Zσi =(zj)j∈σi .
Each cumulant encodes finer and finer correlations. Contrary to the
correlation functions (F ε

k ), the cumulants (f εk ) do not duplicate the
information which is already encoded at lower orders. From a geo-
metric point of view, we can extend the analysis of the previous
section and show that the cumulant f εk of order k can be repre-
sented by k trees that are completely connected either by external
collisions, or by overlaps (Figure 8). These dynamical correlations
can be classified by a signed graph with k vertices representing the
different trees, coding tree collisions (the corresponding edges take
a + sign) and overlaps (the corresponding edges take a − sign).
We can then systematically extract a minimally connected graph T
by identifying k− 1 “aggregations” of tree collisions or overlaps.
We then expect f εk to decompose into a sum of 2k−1kk−2 terms,
where the factor kk−2 is the number of trees with k numbered
vertices (from Cayley’s formula). For each given signed minimally
connected graph, the collision/overlap conditions correspond to
k − 1 independent constraints on the configuration z1⋆,…, zk⋆
at time t. Therefore, neglecting the issue of large velocities, this
contribution to the cumulant f εk has a Lebesgue measure of size
O((t/με)k−1), and we derive the estimate

‖f εk ‖L1 ≤ μk−1
ε Ck × 2k−1kk−2 × (t/με)k−1 ≤ k!C(Ct)k−1. (3.2)

1⋆
2⋆

f ε
5 = μ4

ε ×

3⋆ 4⋆ 5⋆

Figure 8. The cumulant of order k corresponds to trees with roots
in 1⋆,…, k⋆ that are completely connected by external collisions
or overlaps.

A geometric argument similar to the one developed in Lanford’s
proof and recalled in the analysis of the second-order cumulant
above shows that f εk converges to a limiting cumulant fk and that
only graphs with exactly k− 1 external collisions or overlaps (and
no cycles) contribute in the limit.

Note further that a classical and rather simple calculation (based
on the series expansions of the exponential and logarithm) shows
that the cumulants are nothing but the coefficients of the series
expansion of the exponential moment:

ℐεt (h) ≔
1
με

log𝔼ε[exp(με⟨πε
t ,h⟩)]

=
∞

∑
k=1

1
k!

∫ f εk (t, Zk)
k

∏
i=1

(eh(zi) − 1)dZk. (3.3)

The quantity ℐεt (h) is called the cumulant generating function.
Estimate (3.2) provides the analyticity of ℐεt (h) in short time as
a function of eh, and this uniformly with respect to ε (sufficiently
small). The limit ℐt of ℐεt can then be determined as a series in terms
of the limiting cumulants fk,

ℐt(h) =
∞

∑
k=1

1
k!

∫ fk(t, Zk)
k

∏
i=1

(eh(zi) − 1)dZk.

In a suitable functional setting [5], it can be shown that this func-
tional satisfies a Hamilton–Jacobi equation

∂tℐt(h) = ∫dz
∂ℐt(h)
∂h

v ⋅ ∇xh+ℋ(∂ℐt(h)
∂h

,h)

with initial condition ℐ(0, h) = ∫ dz f 0(eh − 1) and Hamiltonian
ℋ given by

ℋ(φ,h) ≔ 1
2
∫φ(z1)φ(z2)(eΔh − 1)dμ(z1, z2,ω), (3.4)

whereΔh(z1,z2,ω)= h(z ′1)+ h(z ′2)− h(z1)− h(z2). We use here
notation (2.2) for the pre-collisional velocities and the definition

dμ(z1, z2,ω) ≔ δx1−x2((v1 − v2) ⋅ω)+ dωdv1 dv2 dx1.

The successive derivatives of this functional being precisely the limit
cumulants fk, the successive derivatives of the Hamilton–Jacobi
equation provide the evolution equations of these cumulants: for
example, differentiating this equation once produces the Boltz-
mann equation, differentiating it twice produces the equation of
the covariance described in the next paragraph.

3.3 Fluctuations
The control of the cumulant generating function allows in particular
to obtain the convergence of the fluctuation field defined in (1.4)
and thus to analyze the dynamical fluctuations over a time T⋆

of the same order of magnitude as the convergence time TL of
Theorem 2.1.
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Theorem 3.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [5]).
The fluctuation field ζ ε

t converges, in the low density limit and
on a time interval [0, T⋆], towards a process ζ t, solution to the
fluctuating Boltzmann equation

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

dζt = ℒt ζt dt⏟⏟⏟
linearized Boltzmann operator

+ dηt⏟
Gaussian noise

,

ℒth = − v ⋅ ∇xh⏟⏟⏟⏟⏟⏟⏟⏟⏟
transport

+ C( ft,h) + C(h, ft)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
linearized collision operator

,
(3.5)

where ft is the solution at time t to the Boltzmann equation (2.1)
with initial data f 0, and dηt is a centered Gaussian noise delta-
correlated in t, x with covariance

Covt(h1,h2) =
1
2
∫dz1 dz2 dω((v2 − v1) ⋅ω)+δx2−x1

f(t, z1)f(t, z2)Δh1Δh2(z1, z2,ω),

where Δh(z1, z2,ω) = h(z ′1) + h(z ′2) − h(z1) − h(z2).

The limiting process (3.5) was conjectured by Spohn in [25],
and this reference also presents a large panorama on the theory
of fluctuations in physics. In the context of dynamics with random
collisions, a similar result is shown by Rezakhanlou in [24]. In the
deterministic setting, the noise obtained in the limit is a conse-
quence of the asymptotically unstable structure of the microscopic
dynamics (Figure 2) combined with the randomness of the initial
data at small scales.

3.4 Large deviations
The strength of the cumulant generating function becomes really
apparent at the level of large deviations, i.e., for very improba-
ble trajectories that are at a “distance” O(1) from the averaged
dynamics: roughly speaking, we can show that the probability of
observing an empirical distribution close to the density φ(t, x, v)
during the time interval [0, T] decays exponentially fast with a rate
quantified by a functional ℱ[0,T] which evaluates the cost of this
deviation in the low density asymptotics

ℙε(πε
t ≃ φt,∀t ≤ T) ∼ exp(−μεℱ[0,T](φ)). (3.6)

The proximity between πε and φ is measured in the weak topology
on the Skorokhod space of measure-valued functions. A precise
formulation of (3.6) and a proof can be found in [6]. The result
of [6] can be summarized as follows: for a class of functions φ in
a neighborhood of the solution to the Boltzmann equation, there
exists a time interval [0, T⋆] where the asymptotic (3.6) is char-
acterized by a functional ℱ[0,T⋆] obtained by a certain Legendre
transform of the Hamiltonianℋ defined by (3.4). This functional is
identical to the one conjectured in [9,24], by analogy with stochas-
tic collision models of Kac type [2,15,18,23]. Let us also note that
the limiting SPDE (3.5) could be predicted by the same analogy

with Kac’s model for which collisions are modeled by a Markov
process [19,20]. Thus, the statistical analysis of the fluctuations and
large deviations of the empirical measure confirms the robustness
of Boltzmann’s intuition (cf. Section 2.1): even on exponentially
small scales, the behavior of the empirical measure of a hard sphere
gas is identical to that of a model of particles with random colli-
sions depending only on the local density. This does not contradict
the Hamiltonian structure of the microscopic dynamics. Memory
effects persist, but they are encoded in ways that are “transverse”
to the empirical measure (or at different spatial scales).

4 Conclusion

Over a short time, Lanford’s theorem states the convergence of
the empirical measure of a hard sphere gas to the solution to the
Boltzmann equation (Theorem 2.1). This result is completed by
the analysis of fluctuations (Theorem 3.2) and large deviations
(Section 3.4) of the empirical measure. These stochastic corrections
are proved on times of the same order of magnitude as Lanford’s
theorem.

The strategy of the proof consists in tracking how the random-
ness of the initial measure is transported by the dynamics of hard
spheres and how the instability of this dynamics transfers, in the
low density asymptotics, the initial randomness into a dynamical
white noise (space/time). The convergence time is limited because
the current proof gives only rough estimates of the dynamical cor-
relations, obtained by considering that collisions only destroy the
initial chaos by forming larger and larger aggregates of correlated
particles. An important step to progress in the mathematical under-
standing of these models would be to show that the disorder is not
simply the result of the initial data, but that it can be regenerated
by the mixing properties of the dynamics.

A more favorable framework for controlling long time evolution
is to consider an initial measure obtained as a perturbation of an
equilibrium measure. The stationarity of the equilibrium measure
then becomes a key tool to control dynamical correlations. The
simplest case consists in perturbing only one particle, which shall
be called the tagged particle, and to study its evolution over time.
In [3], it is established that this particle follows a Brownian motion
for large times. Another case where we know how to use the
invariant measure is the study of the fluctuation field at equilibrium.
In a series of recent works [5,7], Theorem 3.2 has been generalized
to arbitrarily large, and even slightly divergent, kinetic times. This
allows in particular to derive the fluctuating hydrodynamic Stokes–
Fourier equations.
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