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Refined asymptotics for the blow-up solution
of the complex Ginzburg-Landau equation
in the subcritical case

Giao Ky Duong, Nejla Nouaili, and Hatem Zaag

Abstract. In this paper, we aim to refine the blow-up behavior for the complex Ginzburg-Landau
(CGL) equation in some subcritical case. More precisely, we construct blow-up solutions and refine
their blow-up profile to the next order.

1. Introduction

In this paper, we consider the complex Ginzburg—Landau (CGL) equation

u; = (1 +ip)Au~+ (1 +i8)ul”  u + au,

CGL
u(.,0) = ug € L2RY,C), (eb

where 6, 8, € R.

This equation is better known when p = 3, having a long history in physics (see Aran-
son and Kramer [2]). The CGL equation describes many phenomena including nonlinear
waves, second-order phase transitions, and superconductivity. We note that the CGL equa-
tion can be used to describe the evolution of amplitudes of unstable modes for any process
exhibiting a Hopf bifurcation (see for example [2, Sect. VI-C, p.37; Sect. VII, p. 40] and
the references cited therein). In addition, our equation can be considered as a general nor-
mal form for a large class of bifurcations and nonlinear wave phenomena in continuous
media systems. More generally, the CGL equation is used to describe synchronization and
collective oscillation in complex media.

The study of collapse, chaotic or blow-up solutions of equation (CGL) appears in many
works; for a description of an unstable plane Poiseuille flow, see Stewartson and Stuart
[35] and Hocking et al. [21] and, in the context of binary mixtures, see Kolodner et al.
[22,23], where the authors describe an extensive series of experiments on traveling-wave
convection in an ethanol/water mixture, and they observe collapse solutions that appear
experimentally. For blow-up phenomena, see Plecha¢ and Sverdk [29] and Rottschifer
[33,34].
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For our purpose, we consider CGL independently from any particular physical context
and investigate it as a mathematical model in partial differential equations with p > 1.

The Cauchy problem for equation (CGL) can be solved in a variety of spaces using the
semigroup theory as in the case of the heat equation (see [5, 18, 19]). The space L>(R")
is a convenient choice for us.

We say that u(z) blows up or collapses in finite time 7" < oo, if u(t) exists for all
t €[0,T) and lim;_, 7 ||u(t)||L~ = +oo. In that case, T is called the blow-up time of the
solution. A point xo € R¥ is said to be a blow-up point if there is a sequence {(x;,;)},
such that x; — xo,¢; — T and |u(x;,¢;)| — oo as j — oo. The set of all blow-up points
is called the blow-up set.

Let us now introduce the following definition:

Definition 1.1 (Criticality for CGL). The parameters (8, §) are in the subcritical (resp.
critical, supercritical) regime if p — 82 — B8(p + 1) is positive (resp. zero, negative).

Some results are available in the subcritical regime from Zaag [38] (8 = 0) and also
Masmoudi and Zaag [24] (B # 0). In those papers, the authors construct a solution of
equation (CGL), which blows up in finite time 7" > 0 only at the origin such that for all
t €0, 7),

14i8 — bsub|x|2 _1;%18
T —1t) 71 |log(T — )| "*Hulx,t)—(p—1 1
(T =07 hoa(T = Muten) = (p =14 G ) L
< CO
T 1+ /log(T —1)]’
where
—1)2 2bg
by = (P =D S0 and p=——2P g1 (2

4(p — 82— Bs(1 + p)) (p—12

Note that this result was previously obtained formally by Hocking and Stewartson [20]
(p = 3) and mentioned later in Popp et al. [30] (see those references for more blow-up
results often proved numerically, in various regimes of the parameters).

In the critical regime, some blow-up solutions are available from Nouaili and Zaag
[28] and also Duong, Nouaili and Zaag [10]. More precisely, in that regime, the authors
construct a solution of equation (CGL), which blows up in finite time 7" > 0 only at the
origin, such that for all r € [0, T') (see [10, Thm. 2]),

| =07 fog(T — 1) e VI Ty v, 1) 3)
_( 1+ bcri|x|2 )_lptlig < CO
P (T —D)[log(T —1)|1/2 1> = 1+ [log(T —n)|1/*’

where

2 _ (p— D*4(p + 1) o
A6+ )(p2p — ) = (p =25 (p + 33 + pGp + 1)
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andv = v(B, p), u = n(B, p) are given in [10]. In fact, the authors obtain a more refined
description showing some additional higher-order terms in the Taylor expansion of the
blow-up solution given in (1).

Following our result, we felt that no similar refinement exists in the subcritical regime,
except maybe for some formal results given by Berger and Kohn [3] and also Veldzquez,
Galaktionov and Herrero [37] when 8 = § = « = 0, which corresponds to the nonlinear
heat equation (NLH).

1.1. Statement of our result

Our main concern is to give a refined asymptotic description of the blow-up solution given
by Masmoudi and Zaag [24]. Rather than considering that solution and refining its descrip-
tion, we will instead start over from the beginning, and construct a solution u(x, ¢) of
(CGL) in the subcritical regime (p — B8(p + 1) — 82 > 0) that blows up in some finite
time 7', in the sense that

il (., )|z = o0,

and which has the same zero-order description as the solution of Masmoudi and Zaag
[24] given in (1), with a more accurate description showing the next order terms in the
expansion.

We consider u(x, t) a solution of (CGL). Let us first introduce self-similar variables

1+i8 X
W(yat)=(T—t)”71 M(.X,t), y = T ;
—1

then, the main result of this work is the following:

Theorem 1 (First-order terms). Let us consider the subcritical regime where p — §% —
B3(p + 1) > 0. Then there exists a unique constant 1 depending on p, § and B such that
equation (CGL) has a solution u(x,t), which blows up in finite time T, only at the origin.
Moreover, the solution decomposes in self-similar variables as follows: for M > 0,

. log(|llog(T—1)|) . .
wp [y S og(r — 1)[ei#
Iyl <M |log(T—1)| 2
y a(l+1ié) log|log(T —1)]
_{‘00( 1/2) 2 $0)
[log(T — 1) [log(T — )| [log(T" —1)|

1

* |10g(T—t)|2$(y)}‘

|log[log(T — )| |
[log(T —1)3

<C(M) (1+ 1y, )

and 0(t) — 6g ast — T, such that

|log(Jlog(T —1)| |*

000 — o] = R
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with s
go(z) = (p— 1+ bz*) "1, ®)

with b (= bgy,) defined as in (2),

bB(1 + 82 b 1
=—%, a=2k(1-B0)———= and k=(p—1)71. (6)

(p—1)?
The functions & (y) and ¥ (y) are defined as

8(y) = Asha(y), (7
F(y) = Boho(y) + Baha(y) + Baha(y), 8)

where ﬁo, B, and JIZ depend only on B and § and are given by (41) in Definition 3.1 and
ho(¥), h2(y) and l;z(y) will be given in Lemma 2.2.

The constant B, depends only on B and § when B # 0. When 8 = 0, we can choose
§§2 arbitrarily.

Remark 1.2. For technical reasons, the proof of Theorem 1 must be done separately for

B #0and 8 =0.

Remark 1.3. In the case of the nonlinear heat equation (8 = § = 0), Theorem [ presents
the first rigorous proof of the formal approach given by Velazquez, Galaktionov, and Her-
rero [37].

Remark 1.4. We will consider CGL, given by (CGL), only when @ = 0. The case & # 0
can be done as in [12]. In fact, when « # 0, exponentially small terms will be added to
our estimates in a self-similar variable (see (9) below), and that will be absorbed in our
error terms, since our trap V4 (s) defined in Definition 3.1 is given in polynomial scales.

Let us give an idea of the method used to prove the results. We construct the blow-up
solution with the profile in Theorem 1, by following the method of [4, 25]. This kind of
method has been applied to various nonlinear evolution equations. For hyperbolic equa-
tions, it has been successfully used for the construction of multi-solitons for the semilinear
wave equation in one space dimension (see [6]). For parabolic equations, it has been used
in [24] and [39] for the complex Ginzburg Landau (CGL) equation with no gradient struc-
ture, the critical harmonic heat flow in [31], the two-dimensional Keller—Segel equation
in [32] and the nonlinear heat equation involving a nonlinear gradient term in [12, 36].
Recently, this method has been applied to various nonvariational parabolic systems in
[27] and [13-16], and to a logarithmically perturbed nonlinear equation in [7-9,26]. We
also mention a result for a higher-order parabolic equation [17] and in [1, 11] two more
results for equations involving nonlocal terms.

Following [25], [28] and [10], the proof is divided into two steps. First, we reduce
the problem to a finite-dimensional case. Second, we solve the finite-time-dimensional
problem and conclude by contradiction using index theory. More precisely, the proof is
performed in the framework of the similarity variables defined below in (9). We linearize
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the self-similar solution around the profile ¢y and we obtain g (see (11) below). Our goal
is to guarantee that ¢ (s) belongs to some set V4(s) (introduced in Definition 3.1), which
shrinks to 0 as s — +o00. The proof relies on two arguments:

* The linearized equation gives two positives modes (QO and ¢1), one zero mode (g5)
and an infinite-dimensional negative part. The negative part is easily controlled by the
effect of the heat kernel. Control of the zero mode is quite delicate. The control of g is
reduced to control of its positive modes; see Proposition 3.8.

* Control of the positive modes Q o and ¢; is handled thanks to a topological argument
based on index theory; see Proposition 3.5.

The organization of the rest of this paper is as follows. Section 3, the heart of the
paper, is divided into three subsections. At the beginning of Section 3 we give the proof
of the existence of the profile assuming technical details when B # 0. In particular, we
construct a shrinking set and give an example of initial data giving rise to the blow-up
profile. Section 3.1 is devoted to the proof of technical results which are needed in the
proof of existence; see Proposition 3.8. Then in Section 3.2 we aim to give an a priori
estimate of the finite mode of ¢ the negative part ¢g_ and the outer part g.. In Section 3.3,
we explain the case 8 = 0. In addition to that, we also give Appendices A, B, C, which
give necessary computations in detail and give some fundamental estimates used for the
proofs in the paper.

2. Formulation of the problem

Here we consider the CGL equation, introduced in (CGL), with « = 0. As we mentioned
before in Remark 1.4, the perturbation of au is quite small. Now let us introduce the
similarity variable

u(x,t) = (T — 1) 7 Tw(y,s), y=

X
and s =—In(T —1). C)

VT —t )

Hence, w reads

1
8Sw=(1—i—i,B)Aw—Ey-Vw—Ll+(1+i8)|w|1’_1w. (10)
p_

Using the idea from [24], we will introduce ¢ (y, s) and 6(s) satisfying
w(y.s) = e EETEO (5 5) + g (y.5)). (an
where
|y >\

— oo $% = (p— 14 p ) 5%
00.8) =9o(=i7z) + U +iBT = (p-1+52) T (49T (12)
where (, a and b are well known in [24]:

_ 2bB(1 + §2?) b

G- @ TP
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and
b (p—1? .
4(p—8—(p+1)3p)
We will explain how we choose these constants in the proof. In particular, 7 is a new
constant added for refinement of the behavior of w. Note that ¢ (z) satisfies

1 1+ié
iz Vgy— +1
2 p—1

9o + (14 i8)|pol” "o = 0. (13)

Using equation (10), we derive that g solves the equation

¥ _, (14

Y q+L(q.0".y.5)+ R0, y.5), (14)
as p—1

where

. 1
£gqg =1 +ip)Ag— -y - Vg,

2
L(g.0',y.8) = (1 + i8){|¢ +qlP e+ ) —lol” e
) 1  Ins 7 ,
i = 52) + 5 o)) (15)
* . I Ins
R*0.y.5) = R9)=i(n(5 = =5 ) + 5 +0'6))e.
9 , 1 14i8 e

R(y,s) = —a—f t (A +if)Ag— 2y Vo — (p — 1)"’ + (1 +i8)lpl” .

Our aimistofinda § € C'([—InT, c0), R) such that equation (18) has a solution g(y, s)
defined for all (y,s) € RY x [~ In T, co) such that

F(y)logs
q(r.5) = — 53— +v(y.9),

where ¥ is defined by (8) in Theorem 1 and
|lv(s)|lLee — 0 ass — oo.

From (13), one sees that the variable z = le)T plays a fundamental role. Thus, we will
consider the dynamics for |z| > K, and |z| < 2K separately for some K > 0 to be fixed
large.

2.1. The outer region where |y| > Ks1/2

Let us consider a nonincreasing cut-off function yo € C*®(R™,[0, 1]) such that yo(£) = 1
for £ < 1and yo(§) = 0 for £ > 2 and introduce

109 = 1o 2205). (16)
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where K will be fixed large. Let us define

Ge(y.5) = e7 (3. 5)(1 — x(7.5)), (17)

and note that g, is the part of g(y, s), corresponding to the non-blow-up region |y| >
Ks'/2. As we will explain in Section 3.2.3, the linear operator of the equation satisfied by
qe is negative, which makes it easy to control ||ge (s)|| . This is not the case for the part
of ¢(y, s) for |y| < 2Ks'/?
eigenvalue in addition to infinitely many negative ones. Therefore, we have to expand g
with respect to these eigenvalues in order to control [|¢(s)|| e (jy|<2k51/2)- This requires
more work than for ¢g.. The following subsection is dedicated to that purpose. From now
on, K will be a fixed constant which is chosen such that ||g(s’ M ooy|> k5172 is small
enough, namely ||@o(2) |7 J o0 (‘Z|> K= C(p 7y (see Section 3.2.3 below for more details).

, where the linear operator has two positive eigenvalues, a zero

2.2. The inner region where |y| < 2Ks1/2

If we linearize the term L(g, 6, y, s) in equation (14), then we can write (14) as
0 Ins
T =2p5q—i(E—ng+ 5 +00)g
+ Vig + V23 + B(q,y,s) + R*(@,y.s), (18)

where

1
Lspg =1 +iB)Ag — Ey -Vg+ (1 +id)Regq,

+1 _ 1
Vi) = L+ i) = (lglP ™ - —).
p—1

- 1
_ : p—3 2
Va(y.s) = (1 +18)—2 (Icvl s 1),
B(gq.y.s) = (1+ ié’)(lqo +491” o+ q) —lol” o —lp|”'q (19)

p—1 _ _
- lel” *0(pq + wq)),

. (K Ins
R*0'.y.9) = RO.5) =i (5 —n—5 + 5 +0'6))g.
ad 1 1+l
R(y,s)=—8—¢+A<p——y-V¢ ( )¢+(1+15)|¢|” !
s 2 p—1

Note that the term B(g, y, s) is built to be quadratic in the inner region |y| < K s2. Indeed,
we have forall K > lands > 1,

sup  |B(g,y,s)| < C(K)|q|*. (20)
ly|l<2Ks?

Note also that R(y, s) measures the defect of ¢(y, s) from being an exact solution of (10).
However, since ¢(y, s) is an approximate solution of (10), one easily derives the fact that

C
[R(s)|[Lee < s (21)
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Therefore, if 6(s) goes to zero as s — oo, we expect the term R*(6’, y, s) to be small,
since (18) and (21) yield
. C
|R*(0', y,9)] < ST 16" (s)|. (22)

Therefore, since we would like to make g go to zero as s — oo, the dynamics of equation
(18) are influenced by the asymptotic limit of its linear term,

Lp.sq +Vig + V2q,
as s — o0o. In the sense of distributions (see the definitions of V; and V5 in (18) and ¢ in
(12)) this limit is £ 5q.
2.3. Spectral properties of £

Here we will restrict to N = 1. We consider the Hilbert space lep,g | (RY, C) which is the
setofall f € L2 (RY,C) such that

L 1700 lep00] dy < +oc,

where
_ by b2
e 4(+ip) e 4(1+82)

pﬂ(y)zm and |pg(y)| = (4nm)1\’/2'

We can diagonalize £g in lepﬂ | (RN, C). Indeed, we can write

(23)

I
Lgg = — div(pgVq).
PB

We notice that &£ g is formally “self-adjoint” with respect to the weight pg. Indeed, for any
v and w in prﬁl(RN , C) satisfying £gv and £gw in prﬂl(RN ,©), it holds that

/viﬂwpﬂ dy =/w$ﬁvpﬁ dy. (24)
If we introduce for each & = (a1, ...,ay) € NV the polynomial
Yi
= ca MY Ho, (—2—), (25)
Ja(y) = calli= ) He Wi

where H,, is the standard one-dimensional Hermite polynomial and ¢, € C is chosen so
that the term of highest degree in f, is IT;L, y;’”, then we get a family of eigenfunctions
of £, “orthogonal” with respect to the weight pg, in the sense that for any different o
ando € NV,

o
ffﬁfoz = _Efou

26)
/R Fu0) fr (M ps () dy = 0.
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2.4. Spectral properties of &£ s

In the sequel, we will assume N = 1. Now, with the explicit basis diagonalizing £g, we
are able to write &£ s in a Jordan block. More precisely, we recall [24, Lem. 3.1]:

Lemma 2.1 (Jordan block decomposition of &£ 5). For all n € N, there exist two poly-
nomials

n—1
hp = ifn + Zdj,nfj, where d;, € C,

j=0
5 n—-1 3 @7
hn=(1+i8)fu+ Y djnfj wheredj, €C,

j=0
of degree n such that
iﬂ,ghn = _ghn»
(28)

Lpshn = (1= 5 )hn + cahna.

with ¢, = n(n — 1)B(1 + 8)? (and we take hy = 0 for k < 0). The term of highest order
of hy (resp. hy) is iy™ (resp. (1 +1i8)y").

Proof. See the proof of [24, Lem. 3.1]. For the explicit formulation of ¢,, we look at the

imaginary part of order n — 1 in the equation éﬁﬂ,gﬁn =(1- %)ﬁn + cnhp—s. |
In addition to this we have the formulas of eigenfunctions /;, h i.je{l,2,...,6}
in [10]:

Lemma 2.2 (Basis vectors of degree less than or equal to 6). We have

ho(y) =i, ho=(1+if),
hi(y) =iy, hi=(1+id)y,

ha(y) =iy? +B—i(2+8B), hy=(+i8(*—2+2895).

ha(p) = iy* + y*(can +idan) + cao +iday,

cap =68, dap=—62+ B8 =-18—6(85—1),

Ca0 = —4BG + BS), dyo=12—6Bp% + 1285 + 28282,

ha(y) = (1 +i8)y* + y>(12(B8 — 1) + ida2) + Ca0 + idao.

Cap =12(B8—1), dsn =0,

Cao=6B2(1 485 —12(B5 — 1), dao = —6B28(38%+7) — 128(85 + 1),
he(y) = iy® + y*(co.a + idsa) + y*(co2 + ids2) + co0 + ide.o.

ce4 = 158, deas = —15(2 4 B6),



G. K. Duong, N. Nouaili, and H. Zaag 50

c6n = —60B(3 +8B). dsr = —90B% + 180 + 18085 + 308252,
ce.0 = 180 + 120882 — 4583 + 15836,
deo = —180B88 4 5568° — 608%p2 — 58352 + 18082 — 120,
he(y) = (1 +i8)y® + y*(sa + idsa) + y*(Csp + ids2) + e + idey,
G6,a = 30(B8 —1). dsa =0,
Cor = 90B(1 + 8%) — 180(BS — 1),
de = —90B(1 4 62) (385 + 4) + 180(BS — 1)(5 — 2),
.0 = —20B%(1 + 8%)(11B88 + 21) + 120(B8 — 1)(=2B% + BS + 1),
deo = 270B(1 4 82)(2 + BS) + B2(1 4 52)(14085% — 18088 + 3906)
+ 60(B8 — 1)(28%85 — B8% + 9B — 46),

Moreover, we have

£p.5ho = ho,
. 1-
ELgsh1 = §h1,

Lp.shs = 2B(1 4 8%)ho = 2if(1 + §2),
£psha = —ha + 12B(1 + 8*)ha,
£Lp.shs = —2he +30B(1 + §2)hy.

Corollary 2.1 (Basis for the set of polynomials). The family (h,,h~,,),, is a basis of C[X],
the R vector space of complex polynomials.

2.5. Decomposition of ¢

For the sake of controlling ¢ in the region |y| < 2K /s, we will expand the unknown
function ¢ (and not just yg, where y is defined in (16)) with respect to the family f,, and
with respect to the %,. We start by writing

q(r.8) = > Qu(s) fu(») +q-(1.9). (29)

n<M

where f}, is the eigenfunction of £ g defined in (25), @, (s) € C, g_ satisfies

[ q—(y,9)ha(y)p(y)dy =0 foralln <M
and M is a fixed even integer satisfying

M24(\/1+82+1+2' max |V,-(y,s)|), (30)

i=1,2,yeR,s>1
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with V;—1 > defined in (19). From (29) we have

_ 409 fn(»)pp(y) dy
J 1n()?pp(»)

The function g_(y, s) can be seen as the projection of g(y, s) onto {f;, j > M},
which corresponds to the eigenvalues smaller than (1 — M) /2. We will call it the infinite-
dimensional part of g and we will denote it ¢— = P_ pr(g). We also introduce Py =
Id — P_ p. Notice that P_ ps and Py p are projections. In the sequel, we will denote
P_ = P_’M andP+ = P+’M.

The complementary part g+ = g — g— will be called the finite-dimensional part of g.
We will expand it as

Qn(s) = Fu(q(s)), 3D

q+(y,s) = Z @n(s) fn(y) = Z qn($)hn(y) +qn(s)ﬁn(y)v (32)

n<M n<M

where ¢,, ¢, € R. Finally, we notice that for all s we have

/ 4—(. )4+ (. 8)ps(y) dy = 0.

Our purpose is to project (18) in order to write an equation for ¢, and g,. For that we
need to write down expressions for g, and g, in terms of @,. The matrix (A, l;n)nS M in
the basis of (if,, f,) is upper triangular (see Lemma 2.2). The same holds for its inverse.
Thus, we derive from (32),

M
gn = Im@,(s) —§Re @, (s) + Z AjnIm@;(s) + Bj Re @;(s)

j=n+1
= Pum(q(s)),
Mo ) (33)
Gn(s) =Re@u(s) + Y AjnIm@Q;(s) + BjnRe@;(s)
j=n+1
= Pum(q(s)).

where all the constants are real. Moreover, the coefficients of Im @,, and Re @,, in the
expressions of g, and g, are explicit. This comes from the fact that the same holds for the
coefficient of i f,, and f,, in the expansion of A, and ﬁn (see Lemma 2.1).

Note that the projectors P, ,(q) and ﬁnm (g) are well defined thanks to (31). We will
project equation (18) on the different modes #,, and h ». Note from (29) and (32) that

q(y.s) = (Z n () (y) + qz,(s)ﬁn(y)) +q-(7,9). (34)

n<M

We should keep in mind that the presentation in (34) is unique.
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3. Existence

In this section we prove the existence of a solution ¢(s), 8(s) of problem (14)—(44) and
further describe the asymptotics of ¢,

B lns
4r.9) = o) (22) + b (22 )+h2<y)(— + 220+ 00s),
1
with  sup |v(y,s)| < C% forall M > 0 (35)
lyl<Msl/2 s
CAY In?
and [0'(s)] < ———2 foralls € [~ log T, +00),

s3

where s, A2, 4y and B, are given in Definition 3.1 and ho(y), h2(y) and ﬁz(y) are
given in Lemma 2.2.

Hereafter, we denote by C a generic positive constant, depending only on p, §, 8 and
K introduced in (16), itself depending on p.

As a matter of fact, we aim to control the asymptotic (35) by a shrinking set. In fact,
we are inspired by the set given in [24] and [10] to introduce a new one that is sharper:

Definition 3.1 (A set shrinking to zero). Forall K > 1, A > 1 and s > 1, we define V4(s)
as the set of all ¢ € L°°(R) such that

M+2 M+1
q-(y) A
gellLo®) < 1 H M+1 H S mom
52 1+ |yl Le®) ~ %
- A7 ) 1 A A4
l91.14j1 = —gz forall 5 = j = M. ol = 5. |1l = 5+ |l = 5
s 2
In addition, the other modes will satisfy the following conditions:
A7 ln s A*In? s
104 < and Q4] < o
3 3
lgs| = — and |g3] = —.
s s
A81 Aloln s
10> = and |02 < —5—
and
Aln s
|00l < )
where
1 G2 [Ca2R3y | Rip71
s (ot o [C3f50 o)
04=14qa <2 42— + st s
q B
=q— (AL + 2, (36)
s s
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~ - ~ g 11~ -
04 =G4 — <D4’2T2 S—3[C4,2R§,1 + RZ,z])

. (=G B
=q4— (eAmqs—Z + S—;), (37)
5 _ ~ 2 = ~ Opoc21 Ry Tr Ins
Qo =qo— (q—z[/«LLo,z — Doy — —2 ] - 02’1 - 0’13 )
s s s
Ir = ~ ~ ~
- (s_3 [—Xo + nKo2R; | — Con.R; | — To*”f])
~ ~ Gy By Clns Do
=q°‘<‘*‘°— 2 T3 +S—3) (38)
and
(S Co R
QZZ%—(CI I:DZZ_M(1+52)+C4D42+ 2,0 ]+%)
s
Tz,o Ins ~ ~, - .
_ ( 3 + S_3[X2 + C4[C4,2R2’1 + R4’2] - D2,()-R0,1 + T2,0])
G B ©Clns D
= (T T ) (39)
~ ~ e’A:Z Ins j‘iz
Q>=q2- ( 2 S_z) (40)
and
~ 8b . ~ . ~ ~
A== Ro o+ Coa)RS  — DooRS, + Rop. (41)
2 Rs,l_n’( 2 .
By = ——>—. where c =26(1 4+ %) if  #0, @)
B, is arbitrary it =0,
and

* *

®2 RO,I v _ D% ~N D *
X, = R2 5+ (Capn — (S,LL)RZ 1+ Y and Xo = RO,2 —(6p + DO,O)Ro,l-

Using Definition 3.1, we claim the following:

Claim 3.2 (The size of ¢ € V4). For all r € V4(s) we have the following estimates:

. M+2
@ rleqyi<ar vp) < C)AT and |Ir|lze < C(K)AZ
(i) Forall y € R, |r(y)| < C A% s “‘“(1 + [y M.

Proof. The proof directly follows from the definition of the shrinking set. |

From item (i), our purpose is to control ¢ to stay in V(A) for s > s¢;. Moreover, the
bounds in this set help us to conclude the results in the propositions.
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In the following, we aim to choose the initial data.

Definition 3.3 (Choice of initial data). Let us define, for A > 1, so = —logT > 1 and
do, d; € R, the function

Aln’s . B Fodor + B Insg Do 4 o B -
Wso,do,dl(J’)=[( - d0+_2°_|_( 02 0) o, Lo 0 2>h0
0

0 Sg sS’
Aol B
+ d1 1()’)+doho+( 2% 2)h2

so 50
i)’ Dy + A, B €5 + Arohy)Ins
+(_22+ 2 32 2+(2 232) 0>h2
So So So
Ba + Asky syl .
n 4+ 4=A>2+=>4>4<A>2n30 i
( 3 sq

So

. 1(2y.50). 43)

So 50

L <£4 + e)‘\)4c§2 n A4A2 lnso)h4]

where 5o = —log T and A;, hi,i =0,1,2,3,4are given in Lemma 2.2, y is defined by
(16) and do =d (do, dl) will be fixed later in Proposition 3.6 (i). The constants A,, A,
31, B, E’,, G, i),, D; fori = 0,2, 4 are given by (36)—(40).

Remark 3.4. Let us recall that we will modulate the parameter 6 to kill one of the neutral
modes; see equation (44) below. It is natural that this condition must be satisfied for the
initial data at s = s¢. Thus, it is necessary that we choose dj to satisfy condition (44); see
(45) below.

So far, in fact, the phase 0(s) introduced in (11) is arbitrary, as we will show below in
Proposition 3.7. We can use a modulation technique to choose 6(s) in such a way that we
impose the condition

Po,m(q(s)) =0, (44)

which allows us to kill the neutral direction of the operator £ defined in (18). Reasonably,
our aim is then reduced to the following proposition:

Proposition 3.5 (Existence of a solution trapped in V4(s)). There exists Az = 1 such that
for A > A, there exists so2(A) such that for all so > s92(A), there exists (do, dl) such that
if q is the solution of (18)—(44), with initial data given by (43) and (45), then v € V4(s)
forall s > sg.

This proposition gives stronger convergence to 0 in L*°(R).

Let us first be sure that we can choose the initial data such that it starts in V4(sg). In
other words, we will define a set where we will select the good parameters (c?o, d 1) that
will give the conclusion of Proposition 3.5. More precisely, we have the following result:

Proposition 3.6 (Properties of initial data). For each A > 1, there exists sg3(A) > 1 such
that for all so > so3, we have the following properties:
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(i) Po,m(ix(2y,s0)) # 0 and the parameter dy(so, do, cil) given by

£d~1 PO,M(EIX(ZyaSO))
5 Pom(ix(2y.50))
3 <A1;1; sogo n 0;6’_5 n (Ao s —:3‘60) In 5o n Do +SéAoi>’2)
Pou (hox(2y,50))
Pom (ix(2y.50))
Az In s ﬁZ)PO,M(ﬁzx(zy,so))
Po.um (i x(2y.50))
D+ AB, n (€ + AzAz) Insg

do(s0,do, dy) = —

=2 45
2 2 (45)

<_ " ) Po.y (h2x(2y.50))
55 50 53 Poa (i x(2y, 50))
<£~4 + Ashy  AgAzIn So) Po,u (hax(2y. 50))

50 59 Po,m (i x(2y. 50))
By+ A4 By AgAsln So) Po,m (hax(2y. 50))

3 3
So So

Po.m (i x(2y.50))

is well defined, where y is defined in (16) and the constants A?i, Aj, £~i, Bi, ‘a-, €; for
i =0,2,4 are given by (36)—(40).

(i) If ¥ is given by (43) and (45) with dy defined by (45) then there exists a quadrilateral
Dy, C [—2,2)? such that the mapping

-~ ~ ~ B (,;&?J«T —i—"é)lns Do + AoBr\ ~
(do,dl)—><‘1’o=1//o—(s—é)+ 0 253 o) 70 Sgo 2), 1)

2 2
[_Al;14so’ Aln4so] x

(where  stands for Y, + 5 ) is linear, one to one from Dy, onto
50,do,d1 s KH

[—%, %] Moreover, it is of degree 1 on the boundary.
(iii) For all (c?o, c?l) € Dy, we have
Ve=0, vYo=0,
forall3<i<M,i#41<j<M,j#{2,4} and for somey > 0,
Vil + Y] < Ce

and
|‘Ifi| + |\IJ]| < Ce™ V% fori,j = {2,4},
where ffli and \V; are defined as in (36)—(40).
. _ Mg
Moreover, it holds that ||%”LOO(R) <CA/sy .
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(iv) Forall (6?0, 671) € Dsy,, 1/st do.dy € V4 (so) with strict inequalities except for (1;0, \;1)
Proof. The proof is the same as [24, Prop. 4.2] and [10, Prop. 4.5]. [

In the following, we find a local-in-time solution for equation (18) coupled with con-
dition (44).

Proposition 3.7 (Local-in-time solution and modulation for problem (18)—(44) with initial
data (43)—(45)). Forall A > 1, there exists T3(A) € (0, 1/e) such that for all T < T3, the
Sollowing holds: for all (do, dl) € Dr, there exists Smax > So = —log T such that problem
(18)—(44) with initial data at s = sy,

(4(50). 0(50)) = (¥, g3, 0)-

where Vso.do.dy 1S 8iven by (43) and (45), has a unique solution q(s), 0(s) satisfying q(s) €
VA-H (S) fOI‘ alls € [507 smax)-

Proof. The proof is quite similar to [24, Prop. 4.4] and [10, Prop. 4.6]. ]
Let us now give the proof of Proposition 3.5.

Proof of Proposition 3.5. Let us consider 4 > 1, sg > so3, (Jg, cfl) € Dy,, where s¢3 is
given by Proposition 3.6. From the existence theory (which follows from the Cauchy
problem for equation (CGL)), starting in V4(s¢) which is in V441 (sg), the solution stays
in V4(s) until some maximal time s« = §x (c?o, c?l). Then either

¢ Sk (do, c?l) = oo for some (jo, d~1) € Dy, and the proof is complete;

LI (c?o, Jl) < oo for any (c?o, d 1) € Dy, and we argue by contradiction. By continuity
and the definition of s, the solution on sy is in the boundary of V4(s«). Then, by
definition of V4(sx), at least one of the inequalities in that definition is an equality.
Owing to the following proposition, this can happen only for the first two components
o, q1-

Precisely we have the following result:

Proposition 3.8 (Control of g(s) by (go(s), g1(s)) in V4(s)). There exists A4 > 1 such

that for each A > Ay, there exists So4 € R such that for all sg > so4. The following holds:
Ifq is a solution of (18) with initial data at s = s¢ given by (43) and (45) with

(do.dy) € Dy, and q(s) € V(A)(s) for all s € [so, s1], with q(s1) € dV4(s1) for some

81 > So, then we have the following properties:

(1) (Smallness of the modulation parameter 6 defined in (11)) For all s € [sg, $1],

CAY1In?s
0'(9)] = —5—

(i) (Reduction to a finite-dimensional problem) We have

(Qo(s51).G1(s1)) € 3([—/“?; = &jh] x [_ia %])

51 S1 81
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(iii) (Transverse crossing) There exists w € {—1, 1} such that

~ A do
w0o(s1) = = and w%(slpo,
1 s
A dq
wq1(s1) = — and a)i(sl) > 0.
57 ds

=]

Proof. See the proof in Section 3.1. ]

Assume the result of the previous proposition, for which the proof is given below
in Section 3.1, and continue the proof of Proposition 3.5. Let A > Ay and sg > sg4(A).
It follows from Proposition 3.8(ii) that (QO Gi1(sx)) € o([— 4, 4] X [— S%, s%])’ and the

1 1

function

¢: Dso — 8([—1 11%)
3

(do,dy) — ( Qo, c7 ) y (s*) with 55 = sx(do. d1)

Aln : 5*
is well defined. Then it follows from Proposition 3.8 (iii) that ¢ is continuous. On the other
hand, using Proposition 3.6 (ii)—(iv) together with the fact that ¢(so) = ¥ 5 7, we see
that when (do, dy) is in the boundary of the rectangle 5, we have strict inequalities for
the other components.

Applying the transverse crossing property given by Proposition 3.8 (iii), we see that
q(s) leaves V4(s) at s = 59, hence s (do, d 1) = so. Using Proposition 3.6 (ii), we see that
the restriction of ¢ to the boundary is of degree 1. A contradiction then follows from the
index theory. Thus there exists a value (cZo, d 1) € Dy, such that for all s > ¢, gsy,d4.4, (5) €
V4(s). This concludes the proof of Proposition 3.5. |

Using Proposition 3.8 (i), we get the bound on 6’(s). This concludes the proof of (35).

3.1. Reduction to a finite-dimensional problem

In the following we give the proof of Proposition 3.8.

The idea of the proof is to project equation (18) on the different components of the
decomposition (34). More precisely, we claim that Proposition 3.8 is a consequence of the
following proposition:

Proposition 3.9. There exists As > 1 such that for all A > As, there exists s5(A) such that
the following holds for all sq > s5: assuming that for all s € [z, s1] for some s1 > T > sy,
q(s) € V4(s) and qo(s) = O, then the following holds for all s € [z, 51]:

(1) (Smallness of the modulation parameter)

CAY 2
6] = =5
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(i1) (ODE satisfied by the expanding mode) For m = 0 and 1 we have

~ Cln K
[06(s) — Qo(s)| <
and
P - C
q1 — 5‘]1 = s_3

(iii) (ODE satisfied by the null mode)

~ 20, CA%In?s
|05 - =22 = =52
(iv) (Control of negative modes)
_G=0 3
i@l = e = @+ =5,
CA71n s

102(5)] < e C710,(0)| + ——,

CA2
lgs| < 6_%(S_r)|513(f)| + s

_ CA2
1G3] < 72 g3 (o) + —
_ A6ln s
104(s)] < e7267D104(0)| + ———.
_ A31n s
104(9)] < e 10u(0)| + ——.
CAI'—1
lgj (s)] <e” i457 Iq,(f)|+ - forall5<j <M,
Ky 2
j—1
|g; (s)] < e™ —— Jforall5<j <M,
s 2
|, <o ] e
14 |y|MFLiLe — 14 |y|MF1lLe M2
) CAM-H
lge(y.5) Lo < e 2D ||ge () [lLoo + (1+4s—1),
JT

where Qo, 0, Qz, Q4 and Q~4 are defined by (36)—(40).

Proof. Briefly speaking, the main idea of the proof of Proposition 3.9 is to project equa-
tions (14) and (18) according to the decomposition (34). Due to the lengthy proof with
many technical computations, we will give the complete proof in Section 3.2. ]

Proof of Proposition 3.8. Let us now focus on the proof of Proposition 3.8 assuming Pro-
position 3.9 holds. Indeed, we will take A4 > As. Hence, we can use the conclusion of
Proposition 3.9.
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(1) The proof follows from (i) of Proposition 3.9. Indeed, by choosing 74 small enough,
we can make so = —log T bigger than s5(A).

(i) We notice that from Claim 3.2 and the fact that go(s) = 0, it is enough to prove that
for all s € [sg, 51],

Arlns B, A2 g
1021 = ‘qZ(S) ( T )‘ <3 (46)
M+2 M1
q—(y,s) A
lgellLo®) < —. H . H <
252 1+ ]yl L® = 257
o A . A4
91161 =~ forall5<j <M, g < 53,
2 (47)
Asln S AS
Q2] = lg3],1g3] < 29 S
A7 lns
104],104] < )

In fact, the estimates in (47) are similar to [10, Prop. 4.7]. For that reason, we only focus
on the proof of (46). Indeed, we will use a contradictory argument: we assume that there
exists s« € [sg, 1] such that

o = (o (% ) =

3
* Sk

for all
S € [S0, Sx[

and

3

. Arlns B, A0
0= (Zr ) <

3
K
where @ = %1. As a matter of fact, we can reduce to the positive case where w = 1 (the
case w = —1 also works in the same way). Note by Proposition 3.6 (iv) that

- Axlnsg B, A'%1n? 5o
)qz(so) - (—2 + _2)‘ <3
5o So 5o
thus s« > $o, and the interval [so, s«] is not empty.
Using the continuity of Q5 and the definition of s, it is clear that Q(sx) is the maximal
value of Q5 in [s« — &, 5«] With ¢ > 0 and small enough. Then, recalling from Proposi-
tion 3.9 (iii) that
Q 2 CA®%1n? s
’Qz + 2_‘ - st

hence it follows that

81,2 _H4l0 8y 112
Qz(S*)<—& CA lns<(2A + CA®%)In" s

G = = <0, (48)
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provided that A is large enough. Then Qz has to decrease in [s« — €1, 5«] which implies a
contradiction with the assumption that O, admits a maximum at s,. In other words, (46)
holds. Finally, the proof of Proposition 3.8 is concluded. ]

3.2. Proof of Proposition 3.9

In this section we focus on the proof of Proposition 3.9. The idea is mainly based on the

technique in [24], [28] and [10]. In fact, it involves the projection equations (14) and (18)

to get equations satisfied by the different coordinates of the decomposition (34). Let us

summarize the proof:

* In the first part of Section 3.2.1 we deal with equation (18) to write equations satisfied
by ¢; and g;. Then we prove (i), (ii), (iii) and (iv) (except the two last identities) of
Proposition 3.9.

* In the second part of Section 3.2.1 we first derive from equation (18) an equation
satisfied by g_ and prove the last but one identity in Proposition 3.9 (iv).

* In Section 3.2.2 we project equation (14) (which is simpler than (18)) to write an
equation satisfied by ¢, and prove the last identity in Proposition 3.9 (iv).

3.2.1. The finite-dimensional part: g. We now divide the proof into two steps:

* In part 1 we give the details of projections of equation (18) to get ODEs, satisfied by
modes g; and g;.

* In part 2 we prove Proposition 3.9 (i), (ii), (iii), together with the estimates concerning
g, and g; in (iv).

Part 1: The projection of equation (18) on the eigenfunction of the operator £ 5. In
the following, we will find the main contribution in the projections ﬁn, M and P, pr of the
six terms appearing in equation (18): dsq, £ps9, —i(ﬁ; + £ 4+0'(s))q, Vig + V24,
B(g,y,s)and R*(0', y,s).

First term: g—g. From (33), we directly derive

5 (0qy\ _ dq
Pum (5) =g, and P,,,M(g) =q.. 49)
Second term: £ s5q, where &£ 5 is defined as in (19). We will use the following lemma
from [24]:

Lemma 3.10 (Projection of £ 5 on l;n and h,, forn < M).

@ Ifn <M — 2, then

n . q-
Pun(Epa0) = (=3 )| =l
n,M (LB,69) 2‘]n(s) + Cnt2gn+2 || = T+ |+ |l oo

where ¢y, is given in Lemma 2.1. Moreover, we have the following: if M —1 <n < M,
then

n q-
Pran(p5)+ 5000)| = € T o
M (Lpsd) + 54n ()| = R Es
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(b) Ifn < M, then the projection of £ s on ﬁn satisfies
Pu o) = (1= 3)in )| = € | |
n,M(Lgsq ) qn(S)| = T M
Proof. The proof is similar to the proof of [24, Lem. 5.1]. ]

Using Lemma 3.10 and the fact that g(s) € V4(s) (see Definition 3.1) we can improve
the error by the following:

Corollary 3.1. For all A > 1, there exists sg > 1 such that for all s > s9(A), if q(s) €
V4(s), then we have the following properties:

(a) Forn = 0 we have

M+1
[Pom(£p,59) — c2G2| < C—5-

s 2
(b) For1 <n < M — 1 we have

n n+2
Py (Lp59) + EQn(s) <C

n+3 °
s 2

In particular, we have a smaller bound for P> pr(£g5q):
AM+1
|P2,m(£8,59) + 42 — cadsl = —55
S 2
(c) Forn = M we have
M M+1
|Po(2.50) + S au )] = €5
(d) For0 <n < M we have

~ N AM+1
Prwt (£.59) = (1= 5 )an()| = € S
s 2

Third term: —i(% — 771;‘—23 + s% + 0'(s))q. Itis enough to project i ¢, from (33); we recall
[24, Lem. 5.3]:

Lemma 3.11 (Projection of the term —i(% — r)i‘—f + Slz + 6’(s))g on h, and hy for
n < M). We have the following equalities:
(i) the projection on hy,
Ins

Pow(-i(E=n=2+ L +0'6))q)

s s s

7 Ins n M

= —(; Tz tat 9'(»“)) (5% +(1+8%)gn + Z Kn.jqj + Ln,j‘?j)v
j=n+1
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where K, ; and Ly j are defined by

Kn.j = Pun(ih)), (50)
Luj = Pum(ihy); (51)

(ii) the projection on I,

P (< (%05 + 2 +00))a)

M
Ins . ~ -
z_(ﬁ_n—+—+9(s))( n— 08Gn + Z Kn,iq; +Ln,jqj),
j=n+1
where I?n,j and L, ; are defined by
Kuj = Pam(ihy), (52)
Luj = Pamlihy). (53)

Using the fact that g(s) € V4(s) is defined in Definition 3.1, the error estimates can
be improved:

Corollary 3.2. For all A > 1, there exists s19(A) > 1 such that for all s > s19(A), if
g € Va(s) and |6'(s)| < %, then we have the following properties:

(@) Foralll <n < M we have
An

(o Ins p
Pn’M<—l(?—77s—2+S—2+9/(S))q)‘ Scs%.

(b) For1 <n < M we have

ﬁn,M(—i(% —nlns + — ~|—9 (s)) )’ < Csn:.

In particular, when n = 0, 2, 4, we can get smaller bounds as follows:

(c) Forn = 0 we have the following in particular:
. Ins
‘PO,M (—l (E N5+ 12 + 9/(s))q>

lns
+ (% 1t Ay (s)){Sqo + (1 + 6%do + Ko2ga + Lo2ds)
A*Ins
54
~ Ins
el v
7 In , ~ ~ s
+ (; - 'ls—z + s_2 +0 (S)){—CIO —8Go + Ko2q2 + Lo2G2}
A*Ins
s

)

<C
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(d) Forn =2 we have
. Ins
‘PZ,M (—z (E —N5 + 12 + 9’(s))q>

+ (ﬁ _ ln_s +3 -|- 6 (s)) [8g2 + (1 + 8%)g>]
s

A*Ins

54

Pone (i (2 —nln—s + 5 +69)q)

lns ~ = 7o~
+ (— —n— + 12 + 9’(s)) (—qz — 84> + Ko.4q4 + L2,4Q4)‘
s s

<C

’

(e) Forn = 3 we have
\pa,M(_i(g_nm—u_w(s))q)( <ot
Pose (i (=5 40 0)a)]

() Forn = 4 we have

(P4,M(— (% - nln—s +t + o' (s))q)‘ CA—45,

s
~ 7 Ins A3
Pt o) <

Fourth term: V;q + V,q. We recall [24, Lem. 5.5]:
Lemma 3.12 (Projections of Vg and V,g).
(1) It holds that
1 2
|V,-(y,s)|§C(+S¢ forally € Rands > 1, (54)
and for all k € N*,
Vi(y.s) = Z Wi (9) + Wik (y.9). (55)

where W; ; is an even polynomial of degree 2j and I/T/,-’k (v, s) satisfies

(1+]yP*+?)

foralls = Land |y| < /5, [Wix(y.s)| <C st
S

(56)
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(ii) The projections of Vi1q and V»q on hy, and };n satisfy

| Past (Vi@)| + | Pap (Vi)

< Z(|q,|+|q,|)+2 ,,,(|q,|+|q,|)+ HWHW (57
j=n—-2

and the same holds for V»q.

Remark 3.13. Note that, when n < 2, the first sum in (57) runs for j = 0 to M and the
second sum does not exist.

By the fact that g(s) € V4(s), the error estimates can be bounded improved as follows:

Corollary 3.3. For all A > 1, there exists s11(A) > 1 such that for all s > s11(A), if
q € Va(s), then for 3 <n < M we have
CAn—2

|Pa(Vig + Vad)| + [Pa(Vig + Vo)l < — 7
s 2

Now we study the asymptotics of ﬁz’M(qu), ]32,M (V2q), Po,m(V1q) and Py p (V24):

Lemma 3.14. Using the definitions of V1, V», the following hold:
(1) It holds that fori = 1,2,

forallszland|y|§s1/2, Viy,s) = =W;1(y) <—(1+|J’|4) (58)
where ( Db
+ .
Wia(y) = =2 (1 + i)y — 2(1 - 66)),
2(p—1 (59)
b
Wai(y) = —(1 +i8) ——=(p — 1 +2i8)(y> — 2(1 — B9)).
2(p—1)
(i1) The projections of Viq and V>q on l;,, and hy, satisfy
- 1 ~ ~
Pumt(Viq + V2q) — 3 Z[Cn,jqj + Dn,j‘]j]‘
Jj=0
C R 8 q-(..9)
< S 3+l + S| o (60)
Jj=0
and
1 -
Pum (V1q + Vaq) — ; Z[Cn,,-q,- + Dz,,-q,-]’
q-(..s)
i PR o)

C
< &Y 0a +igl+ |
j=0
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where for alln, j > 0 we have

Cuj = PaaWiihj + Warihj)Co i = Pyt (Wiihj + Warh)), (62)
D, ;= Pn,M(Wl,ll’;j + Wz,lﬁj)ﬁn,j = ﬁn,M(Wl,lﬁj + Wz,lﬁj)- (63)

In particular, using the fact that g(s) € V4(s), the error estimates can be improved as
follows:

Corollary 3.4. For all A > 1, there exists s12(A) > 1 such that for all s > s12(A), if
q(s) € Vy(s), then

_ q q Ins
Po,p (Vig + Vagq) — (Co,oqs—o + Do,oqs—o + Co,zi—2 + Do,zg)’ < CS—4,

Pom(Vig + Vaq) — <5o,oqs—0 + 50,2qs—2 + 50,zqs—2)) <C—

D q C D ~ ]

Py (Vig + V2q) _( 2,090 |, 2292 2,2612)‘ < Cn—f,
S Ky s P

P. g L5 ~ .= Ins

PZ,M(qu + qu) - E{QoDz,o + q2Can + quz’ZH < Cs_‘"

Ins

Py (Vig + V2q) — (C4,2qs—2 + D4,2qs—2)‘ < Cs_“’

>3 = ~ ~ g Ins
P4,M(V1q + qu) — (C4’262—2 =+ D4’2%)‘ < CS—4

and
_ cA?
‘P3,M(V1¢] + qu)‘ < e
~ _ CcA?
‘P3,M(qu + Vz‘])) =4
Fifth term: B(q,y,s).
B(q,y.s) = (1 +id)
p—1 p—1 p—1 p—1 p—3 _ -
x (I(ﬂ+q| (e+q) —lol" -l q— lel e(pq + soq))-
We have the following lemma:

Lemma 3.15. The function B = B(q,y,s) can be decomposed for all s > 1 and |q| < 1
as

M
1 y i ~ -
w 1B=3 3 S| B(m)e T + Bluowa'dt]
y|<st/2 1=0 0<j,k<M+1
2<j+k<M+1
<Clg|M*? +

M+1°
S 2
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where BJI., k(ﬁ) is an even polynomial of degree less than or equal to M and the rest of

Ejl.’k (v, s) satisfies

1/2 51 1+ |y|M+!
foralls > 1and |y| < s, |Bj (y,5)| < C——5—
s 2
Moreover,
foralls > 1and |y| < 52, ‘B]’.,k(sl%> +B L] <c
On the other hand, in the region |y| > s'/? we have
|B(g,y.5)| < Clq|?, (64)
for some constant C where p = min(p, 2).
Proof. See [24, proof of Lem. 5.9, p. 1646]. ]

Lemma 3.16 (The quadratic term B(q, y, s)). For all A > 1, there exists s13 > 1 such
that for all s > s13, if () € V4(s), then

(a) the projections of B(q, y, s) on hy, and on En,for n > 3 satisfy

~ An
s 2
(b) forn =0,1,2,3,4 we have
~ Cln?s
| Bnp (B(G. y. ) + [ Pasa (B(g. . )| = —5— (66)
Proof. See [24, Lem. 5.10]. [

Sixth term: R*(6’, y,s). In the following, we expand R* as a power series of % as s —
oo, uniformly for |y| < s'/2.

Lemma 3.17 (Power series of R* as s — o0). Foralln € N,

R*(0',y,s) = (0, y.s) + (0, y.s), (67)
where
n—1 1
(0, y,9) =Y <5 Pe(y)
k=0 §
( LI 7 )) “(1+'8)+§ P 6
(=13 + 3 I 5 i kzoek 7 )
and

(1+1yP"

forall |y| < sY2, |T1,(0".y.5)] < C(1 + 5|6'(s)]) FEES T

(69)

where Py is a polynomial of order 2k for all k > 1 and ej, € R.
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In particular,
Ins n
sup |R*(0',y,s) — Z k+1Pk(y)+l( n—2+—2+9/>
lyl<s'/ =8
1 biy?
e EER (- 2]
s (p—1)?
1+ |y|* Ins A
< — Z
_C( S +C<S2 +10 |)s2). (70)
Proof. The proof is similar to [24, Lem. 5.11]. [

In the following, we introduce F;(R*)(¢,s) as the projection of the rest term
R*(#’, y, s) on the standard Hermite polynomial, introduced in Lemma 2.1.

Lemma 3.18 (Projection of R* on the eigenfunction of &£). It holds that F; (R*)(0',s) =
0 when j is odd, and |F; (R*)(6',s)| < C 32 LI0ON \ohen j is even and j > 4.

1/2+1

Proof. See [24, Lem.5.12]. [
More precisely, we can describe the projection of R* as follows:

Lemma 3.19 (Projection of R* on the eigenfunctions h and hy). Let us consider R*
defined as in the above, then the following hold:

(i) For j > 4 which is even, then E(R*)(@’,s) and P;j(R*)(¢',s) are 0(1+s|0’|)

si/2+1 /"
(i1) For all j odd we have E(R*)(Q/,s) = P;(R*)(0',5) =0.
(iii) For j = 0 we have
R R R} (O 1
Pop (R*(8'(s).8)) = =2 + —Sh 4 =2 1 6/()(—x + =2 + 0(5))
s s s
n o 1 Too 0 1
7( #1804 0( )+ (o + T 0())
1
+0(3)

- R* R* R o 1
P (R*(0'(5).5) = =2 + =21 4+ 282 4 9/(5)( =2 + 0( ) )
Ky s s N

o)+ (5 o) + o)

@iv) For j = 2 we have

*

Papr (R*(0'(5).5)) = R% + ? + 9’@)(% + o(i))
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Po o (R*(0'(s), s))—R—+R—+9<)( +0( ))

o)+ HE o) o)

where R ﬁj © ®] © o* *k are constants, depending on p, 8, B only. For more details

Jsk’
see Appendix C and equatlon (92).

(v) In particular, we choose

_ 2(1-8B)b
- (p-1)2

pn=—-282_(1+82), (71)

_ (p-1?
4(p—82—(p+1)3B)"

Then we have
Roo = E;,O = E;,l =0. (72)
Proof. For the details, we kindly refer readers to Appendix C. ]

Part 2: Proof of Proposition 3.9. In this part, we consider A > 1 and take s large enough
that Part 1 is satisfied.

¢ Proof of item (i): We control 8’ (s). From the projection of (18) on /¢(y) = i, we obtain
- . Ins
do = 242 + Po.m (—l (% - 'lsz + Siz + 9/)4)
+ Po.y (Viq + Vaq) + Po s (B) + Po s (R*(6'(s). 5)). (73)

where ¢, = 28(1 + 52), as defined in Lemma 2.1. In addition to this, from the fact that
qo = 0 by the modulation, we also obtain

q0 = 0.

Using the fact that ¢ € V4(s), given in Definition 3.1, together with Corollaries 3.1 and 3.4,
Lemmas 3.10, 3.16 and 3.19, we obtain the following:

1
Pom(Ls,89) = 22 + 0( MH)

(o nlogs
Poar (=i (5 -5 +—2+0’)q)

_ ([L nlogs

s 52

Ins
= + 5+ 0/5) ) {80 + (1 + 820 + Ko2qz + Loada} + 0(=5)
and

_ Ins
Poy (Vg + V2q) = COO_ + Do, 0— + Co, 2— + Dozqs—2 + 0(—)
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In? s
Pon (B(@) = O(=5).
O} 1 (RG,—nk) Ry klns
Po (R*) = f—c + =22+ 0()}0/(s) + 22+ =02 4 150
s s s s s
Ins Ins
*
’ ~ W 2\ ~ ~ fio
—Kk0'(s) + 2G> — ;{(1 +38%)go + Ko,2q2 + Lo2q2} + Do,o?
q> q» Ins (Ré,l — 1K) (Ré‘,z - To*,z) . Ins
+ CO,ZT + DO’ZT + (7’]IC)S—2 + 2 + 3 0,073
208, g OF (R —nK) 1 OF s(nk)Ins In2s
+ 0,061_2+ 0,01%%0,1 =+ 0,0 - ‘SC = (74)
K S K s KS s
In particular, we use again the fact that g € Vg,
. (Rg,1 — 1K) klns|  A0In?s
‘026]2(S) + 0’1s2 + 2 ‘ < PER
which can be written
. Arlns  By| AInZs
4a(s) — 2 2 = 3
where (R® )
~ ~ —nK
cAsz = —ﬁ and 332 = —Lﬂ
Cca C2
Thus, we obtain
CAYIn?s
16"(s)| < 3 (75)
and (R® )
~ —nK klns Clns
—k0'(5) + 2o (s) + —22 5 + 1 > ‘ < —, (76)
s s s
which concludes Proposition 3.9 (i).
* Proof of item (iii): Let us project equation (18) on hy. We get
~ = ~ . Ins ~ _
Gy = Pom(£p59) + Pam (—l (% - US_Z + Siz + 9'(5))q> + Py (Vig + V2q)
+ P (B(@) + Pou (R*(0'(5), 9)). (77)

We repeat the same process as for gg. Using the fact that g(s) € V4(s) for all s € [z, s51],
by Corollaries 3.1 and 3.4, and Lemmas 3.10, 3.16, 3.19, we obtain the following bounds

for the terms on the right-hand side of (77):

ﬁZ,M(aSQ) = 0542,
M+1

|Pot (£8,59)] <

M+2
S 2

In particular, we also have the following expansion:

(78)

(79
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Terms coming from Py 5 (—i% - "sl';s + 5 +0'(s))q). We have

ﬁz,M(—i(% - % + Siz + 9’(s)>q) - __( 0 — 80n) + O(lnS)

Terms coming from ﬁz, m(V1iq + V2q). We have

~ _ Ins
Py (Vig + Vaq) = —{CIODz o+ QZC2 2+ Q2D2 2 + 0( )

This yields

~ _ 5 Ins
Py(Vig + Vagq) = —612+ {C22R21—D20R01}+0( )

Terms coming from ﬁz, M (B(q)). We have

Cln s
1P (B)| <
Terms coming from fz, m(R*). We have
- ~Ins  (RE,+Tr% 0@ —8b Ins
kY k I > s —_
P, M(R™) =T, 3 3 + s (po1)p (s“ )

~, Ins (R5,+T5% _ (Rg.1—nk) niklnsy —8b
= 2,0_3 + 2.2 3 2,_0 + (Czﬂz(S) + 0.1 D) + n )
s s s

s2 Js(p—1)2
Ins
+0(%)
c28b 8b . R, Ins
ot it 5 o)

Note that we combined the facts given in (75) and (76), and w, b and a are as given in
(71). Finally, by adding these estimates, we obtain

c26b }
(p—1)?

1 * ~ * ~N D* D
+ = MRS 1+ CopRy 1 — DaoRyy + Rap —

~ ~2 ~
G = %{M + D2y —
&b
_ % R }
(p—12"*
In? s
ro()
s

Let us remark that even though there exists the order ;‘—f in the ODE of g5, it will be
canceled when we add all terms in the ODE. From the explicit formulas of u, b, ¢, and
D> », we can compute
C25b

S+ Dyp— ——— =—
(p—1)?
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In addition to this, using the definition of Q » given as in (40), we establish that

01y - ) o
0y =222 + < {~Ao+ uR, + CoaR3, — DaoRy, + Roo -

o)

In fact, we now prove that there exists 1 such that the order S% is canceled. Indeed, we
choose 7 such that

s
G Rl

~ ~ ~ o~ ~ 8b
—y + Ry | + CaaR5 | — DRy + Ra2 — WRSJ =0.
Using the fact that
~ K
‘AZ = _)7_5
2

we derive

2 §b . ~ . ~ -
"= _?{(_W)RO’I +(u+ Cap)Ry  — DaoRY, + Rz,z}. 81)

The explicit formula for 1 will be given by equation (93) in Appendix C. Finally, we obtain
the following ODE:

0y =20, + o(A),

which implies of Proposition 3.9 (iii).
For the other estimates, we kindly refer readers to [24, Prop. 4.6] and [10, Prop. 4.10],
where they can be found. Therefore, we finish our proof here.

3.2.2. The infinite-dimensional part: g_. The proof is similar to [24, Sect. 5.2]. So, we
will sketch the main step and readers can find the details in [24]. Using the definition of
the projection P_, defined in (32), we apply it to equation (18):

() () (s v
+ P_(Vig + V2§) + P_(B(q.y.5)) + P_(R*(0'.y.5)).  (82)

In particular, we obtain the following:

First term: g—?. From (33), its projection is

Second term: fﬂ,gq. From (18) we have

P_(2p.59) = L4 + P_[(1 +i8)Req_].
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Third term: —i (% - lns + L+ 0'(s))g. Since P_ commutes with multiplication by i,
we deduce that

P_[—i(% - nlil—; + s% +0'))q] = —i(% - nln—s +3 T +0'(5))q-

Fourth term: V;q and V,g. We have

P_(V1q) ” q- AaM
N TR T e
|yl = Wil | s |+ €
and o
V2q H q- A
< |V °°H—H co .
e e = ot i el + € e

Fifth term: B(q, y, s). Using (20) we have the following estimate from Lemmas A.3
and 3.15:

AM+2 As+(M+1)2

scon[(F) ] @

S 2

H P_(B(q.y.s)) H
1 + |y|M+1 Lo

where p = min(p, 2).

Sixth term: R*(6’, y, s). Using the fact that 6(s) < %, the following holds:

P_(R*(0',,5))
ETaa

M+3 .

Using (82) and Duhamel’s integral equation, we get for all s € [z, 51],
q-(s) = ™% _(2)

N
+ / eGP [(14i8)Req_]ds'
T

(s—s")&Ep ©’ nlns n (s’ !
+/T P [ (S o Ty +9(s))q]ds
N
+ / e6=sLs P—[qu + V23 + B(q,y,s') + R*(¢, y’s/)] ds’
T

Using Lemma A.2, we get

q-(7) H
1+ |y|M+1 Loo

M+1 (S 7)

H q—(s)
1

+ |y|M+l HLoo -

ds’

SR e
+/L_ + 1+| |M+1 Loo
/ In
b [eren | P-[-i (8 — 5 + &+ 6'6)a] |
: L [yM+ L
L /‘S o= ML s—s') P_[Vig + Vag + B(q,y.s') + R*(0', y,5)] ”
: L [yM+t

ds’
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By using the above estimates, we derive

|

H q-(7)
+ |y|M+1 Lo —

1+|y|M+1 HLoo
D (VT 482 + V] + |Val e Hq—‘H d
—i—/;e (VI8 411Vl + Walllew) | 1 |
(M+1)2+5 (M+2)p M
+C(M)/s e_%(s—y)[/l A p 1 A
T

(s) "7 (s/) T ()" (s’) =N

Since we have already fixed M in (30) such that
M > 4(\/1 F624+1+2 max |Vi(y,s)|>,

i=1,2,yeR,s>1

—%(S—‘L’)

!

]ds’.

using Gronwall’s lemma, we deduce that

q—(s) q-(7) H
1 + |y|M+1 Lo
AM+D2+5 QM +2)p 1 AM

M+3 + -1 , M+2 + M+2]’
s @ s2 (s") 2 s 2

M+1 M+1 1
T+S < e%(s_r)eTJrr

|-

M+1 M+3 [

+ eTsz 4

which concludes the proof of the last but one identity in Proposition 3.9 (iv).

3.2.3. The outer region: ¢g.. As a matter of fact, our shrinking set V4(s) is similar to
[24]. In particular, the estimate of g, is exactly the same. For that reason, again we omit
the detailed computation. Below we give the main idea; more details can be found in [24].

In fact, using that g (s) € V4(s) for all s € [z, s1], and Proposition 3.9 (i), we derive the
following rough estimates:

AM+1 CAYn?s
||Q(S)||L°°(|y|521<s1/2)fcslT and |0'(s)| < — (34)

In particular, using the definition of ¢, given as in (17), we have

9.

1 AS *
Ts = Lpte = St + (1= e T{LG. 0y ) + RU(Oy.5)

1
_id g . 1
—er] Q(S)(as)( + (1 +iB)Ax + 37 Vx)

+2e7 T (1 + iB) div(g(s)V ). (85)

In addition to this, we can write (85) under Duhamel’s integral equation and take an L*°
estimate:

Ige®)llzoe < €™ 7T [lge()lloe,

N s
+/ e 7T (II(1 = X)L(g. 0", y. sl + (1= RO, y,5")|IL) ds
tS s—s'
+/ e T
T

S S—S, 1
+ / P P
T V1— e—(s—s’)

a6 (e + 0+ ipAL+ 5y V)| as

lg(s)Vxllzes ds'.
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Thanks to detailed computation given in of [24, Sect. 5.3], we obtain

Ige(®)llLoe < ™7 Ige ()| Lo

s 1 / M+1
+ [ (G el + €
M+1
+c = ﬁ)ds’.
By using Gronwall’s inequality, we derive
M+

S i ) CA
ge(s)llLoe < e 20D |ge(T)l| Lo + I (S —T+ s —1),

.;;

which yields the proof of Proposition 3.9 (iv).

3.3. Thecase f§ =0

Here we give an argument for the special case where § = 0. The main reasoning comes
from Definition 3.1 for V4(s), in particular (41). In particular, there is only one bound that

becomes singular: A, = —R— . Naturally, we change this bound to a new one:
AyIns B A01n? s
3l = [ga— (A2l By A0
s s

where A, is defined by (41) and B, can be chosen arbitrarily. In addition to this, we also
denote the new shrinking set by V4 (s). In particular, Proposition 3.9 remains valid, except
the ODE:s for 6/(s) and Q5.

* For 0'(s): Repeating the process for the case f # 0, we derive

R01 TO*,llns Clns
(Ke(s) (S + 2 )‘5 -

When 8 = 0, Rj; = 0. However, the leading order =

> will generate

90 lns

0(s) ~

This violates our purpose that
Ins
0(s) € —.
s
Hence, it imposes
n=0.

Note that constants Tl*], T* = 0. Thus, we get

R*
K@(S)—L Clns

(86)

3
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It is sufficient to prove Proposition 3.9 (iii). Indeed, we take the projection of equation
(18) on h,, as in equation (77). In particular, plugging (86) into

- Ri, () —8b Ins
Pom(RY) = == o(—=).
Z,M( ) S3 + s (p . 1)2 ( S4 )
we obtain
~ . Ry, (Ry\ —5b Ins
P (R7) = 53 ( 52 >s(p —1)? + (s_4)

- SbR} 1 Ins
R U2 S Wl -
(R2’2 (p—1)2>s3 +0(s4 )

Note that, when 8 = 0 we have

5/L + 52,2 =2

and
~. T0f18b
22 (p-1?2
Hence we have
~ 2G> 1 ~ ~ ~ ~ &b
Gp=——"+ S—3{MR§,1 +ConRy = DaoRoy + Rop = WRSJ}

Using the decomposition O, = G, — (22 ;0) Ins 4 ‘1’)2(5:0)), then O, reads
~ 2 ~ ~ . ~ . ~ =, ~ 8b L\ 1
0, = 3 0>+ (—Az +uRy 1+ CapRy 1 — DaoRyy + Rop— WRQ,I)S_:;

In? s
+0 (—s )
Note that it is not similar to the case B # 0; the role of 1 vanishes. The order S% is canceled
by
8b

@_—l)zRal. (87)

Ay = pRy  + Cop RS, — Do Ry, + Rop —
In particular, when 8 = § = 0 we can explicitly compute

~ ~ ~ IN5« 5 (5p—4) Sk(p—1)

This constant exactly matches the formal approach given by Veldzquez, Galaktionov and
Herrero [37].
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A. Spectral properties of £

In this appendix, we recall from [24, App. A] some properties associated to the operator
&£ g, defined in (15). We recall that

1 1
Lgv = (1 +iB)Av =2y - Vv = —div(pgVw),
LB

where
1y

e 4(+ip)

(@4r(1+ip))N/2
Moreover, the operator £ is self-adjoint with respect to the weight pg in the sense that

pg(y) =

/‘ u() Lsw()ps(y) dy ='/‘ w()Lau()ps(y) dy. (88)
RN RN

In one space dimension (N = 1), the eigenfunctions f, of £g are dilations of standard
Hermite polynomials Hy(y):

fn(Y)ZHn< Y ﬂ), wherefﬂH =_%Hn_

21+

If N > 2, its eigenfunction fy(y1,...,YN), Where & = (q,...,anN) € N# is a multi-
index, are given by

[ (52

N
fa(y)=i]:[1fa,-(yi) =i=l T

The family f, is orthogonal in the sense that for all o and £ € NV,

/hkw@=%gfﬁww.

The semigroup generated by &£ g is well defined and has the kernel

£ _ 1 e —yemap?
O = AT B e exp| 4(1+i,3)(1—e—s)]' (89)

In the following, we give some properties associated to the kernel.
Lemma A.1.
(a) The semigroup associated to £ g satisfies the maximum principle
£
le*=2pllLe < ll@llLes.

(b) Moreover, we have

lle*£# div(p)| L <

C
= ﬁW”Lw,

where C only depends on f.
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Proof.
(a) The result directly follows from the definition of the semigroup given in (89).

(b) Using integration by parts and (a), the conclusion follows. |
Lemma A.2. There exists a constant C such that if ¢ satisfies
forallx € R, |p(x)| = (1+ [x[MF1),

then for all y € R we have

€528 P_($(y))] < Ce™ "2 (1 + |y|M+),

Proof. This also follows directly from the definition of the semigroup, through integration
by parts; for a similar case see [4, pp. 556-558]. ]

Moreover, we have the following useful lemma concerning P_.

Lemma A.3. Forall k > 0 we have

P_(¢)
e e = e

Proof. Using (31) we have

sl
< -
|¢n|_C”1+|y|M+k Loo”

Since for all m < M, we have |h,,(y)| < C(1 + |y|"™t¥) and

91 = €m0+ P

the result follows from definition (29) of ¢. [

B. Details of expansions of the potential terms: V; and V,

In this section we aim to give expansions of V; and V; in order to give the conclusion of
Lemma 3.14 (i) and some related constants. Indeed, we recall the definitions of V; and V5:

—a+is P2 (o -
Vi09) = (i) == (lel? ! = ).

Lo p—1 3 9 1
Va(y.s) = (1 +i8)——(lel” > — —).
2(y.8) = (1 +i8)— (Isol . 1)
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where
1 +ib)a b 2, - Lii 1 +ib)a
0(.9) = goy.s) + D (o LTy, (i
s p—1 s s
and
_ 2kb(1—34B)
(p—12
Then, using Taylor expansion, we claim the following asymptotic behavior:
1 1 1+ |yl°
Vas) = ~ Wi () + 5 Wiz + 02D (90)
s s s
and .
1 1 1+
Vo) = ~Wa () + 5 Waa() + 0 (L0, o1
s s s
where
_ o+ b 2
Wia0) = (1+i5)F5— = (07 +201 - 56).
LD B QU245 ,
Wia0) = (19— s - y
L p=ha+ §)(1 =8>+ (p=3)(1 =81 - 5/3)2}
p—1
o (p+D b 4 241.,2
=(1 —Dy*—[2(1 - -2
(1 +i8) = (= D = R =) (p =2+ )y
+2(p =2+ 8%)(1 - 8p)?
and

b
Wai(y) =1+ iS)W{(P — 1+ 2i8) (= +2(1 - 8B))},

2
Wa20) = (1 +i9)5 ol (p = 1+ 208)(p — 1 +i8)y*

—Q2(p—1D(p—2)+ (2p—10)8* + (8p — 16)8i)(1 — B)y*

_ i 8)2
(- spp[LEDCZDUEDT L () 41y -3t +57)

L P=I0 —25)(1 —i5)2]}_

For the proofs of (90) and (91), we kindly refer readers to [10, Appendix B].

In addition to this, we aim to determine the constants given in Lemma 3.14 (ii):

b(8* — p)
(p—1)2"°

Dan = Pypg (Wi thy + W 1hy) =
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D35 = Pz,M(Wl,lﬁz + Wa.1hy)
b
= —W{—24p3 + 5683 + 64528 + 328 + 24p6 B + 405*B),
p —
Lo = Poy(ihs) = 6828 — 125 — 68,
- = b
D4p = Papyy(Wiiha + Wa1hy) = (1)_—1)2{—25(1 + 8%},

52,0 = ﬁZ,M(Wl,ll:iO + W2,1]’~10) =— (2p —26%),

2(p—1)?
Loa = Pom(ihs) = =26 + 828 — B,

50,2 = ﬁO,M(Wl,lﬁ2 + Wa1hy)
b
- _m{—mﬁ —12pB% + 126282 — 168> + 16p — 48*B* + 4ps> B>
—32pdp},

Cap = Pyt (Wi thy + Wa 1)
b
=——— (148’ +2pp — 128},
2(p—1)2{ B +2pp— 128}
Caa = Poy(Witha + Wa,ihs)
b
= —m{%pﬁ + 2248 B> — 28887 — 128pép> — 1928 + 96882},
p —
52,4 = ﬁZ,M(Wl,l};4 + W2,154)
b
= —————{-96p8>B> — 168p8B + 96p — 52888 — 965> + 2165> B>
2(p—1)?
— 168pB?% + 1445*B% — 360538},
Fp= ﬁZ,M(Wl,Zl’;Z + Wz,zﬁz)
2

b
= W{—240p +276p* — 312p8% — 2048* 4 (—288p —552p* +696)58
p [—

+ (432 — 144p)53 B + 1448° B + (180p — 180p>) 82
+ (96p2 + 288p — 96)62 B2 + (108 4 36p)8* B>},
Doa = Poyt (Wi 1hy + Wi ahy)

b
= _m{m + 248°B% + 64828 + 4853 B2 + 648 + 326 + 24582
p—

+ 9683 B2 4 96 psp>},
Loo = Pom(ihs) = 488 + 483B.
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C. Details of expansions of R*(y,s, 0’(s))

Using the definition of ¢, (18) and the fact that ¢q satisfies (13), we see that R* is defined
as

_(1+ip) (1+i8)2a

(p—Ds

1 a
R* Azgo(z) + =z - Voo + — (1 +i8) —
2s s

. a .
+ (1 +i8)(F(¢o(2) + S(1+i8)) = F(po(2)))
s
M Ins n , a )
—l(; — T]s—z + S_2 + 0 (S))(QO()(Z) + ;(1 + 18))
1 1
= Ri(0.5) + 5. T1 + 5 T2 + +0/(5)0(y. 5),

s s

where F(w) = |w|?"w, O(y,s) = —i(po(y.s) + M), T =—n®and T** = n0@.

Expansion of R{(y, s) in terms of /&; and h T

As a matter of fact, we can expand R7 in a series of Sl] as

. 1 1 1 ~
R (35) = < Ro() + 5 R1(¥) + 5 Ra(0) + R(3.).

where R satisfies s
=~ C(1+1[y°)
[R(8)| = ——73—

which implies that
~ ~ ~ C
|Pim(R)| + |Pim(R)| < rE
In addition to this, we can write &R; () in the basis generated by A, and Ek as

J
Ri(v) = D (R i + R} h).
k=0

Repeating the method given in [10, Sect. D], we can find explicit formulas for the constants
R} ; and R} ;. Here we give only the results:

. 2bB(1 + §2)

Ry = —K([L + W),

~. 2kb(1 —8B)

Ryg=a- W7

e _ A+ (p+ 156~ §2)b? Kb
w (p—1)* =D

2kb?(8 + 3pB + 3p82B — B + 83 + 84B)

R, =
! (p—D*
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R, = %(353/3 + (2pB* + 6% = 5)8> + (=78 — 10pp)8 + 5p — 3pp> + B7),
R§, = —%(254 + B8% +3p8% + B8 +3p —2),
R, = ( 6"b12)4{53,3 262 — (2p + 1)88 + 2p}

o ZKb1)6{3ﬁ256 12B8% + (9 — 128% — 6pB2)5* + (42pf + 426)8°

+ (70pp? + 19p% B2 — 18p — 682)5>
+ (—98p2B + 368 — T4pP)s — 20p + 49p? + 18pBp> — 30p>B2).

‘We do not need to formulate constants other than these.

Expansion of 0’ (s)© (y)

We introduce
a(l+1ié) )
7 ,

where ¢o and a are defined as in (12) and (11), respectively. Using Taylor expansion we

O(y.5) = —i (#o(r.5) +

write
. v: b 1
OW,s) =—ik+k(—i)———+a(6—i)-
s (p—1)2 s
p4 2 _
+x(1—if)é(p + 1) 220 1) + O(y, ),
where ©(y, 5) satisfies
~ C(1+ |yl
60,91 = LD,
which yields
~ ~ o~ C
1Py @)+ 1P )] =
and
2 p4 2
—i §—i)——— = 8 — 1—iB)s H———
e+ 8 =) s =) zm<p+)22( =
o 0r,. o g Tyl
= (—c+ —22Yho + —22ho + —22hy + Ooj 4 +O( b ) o2
s s s s s

In addition to this, we can calculate these constants and we obtain

Of0 = 4(1 + 3 = Dy

. kb
Ooo——ﬁ(1+52)( e
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~ kb
Oy =—0——,
20 (p—1)7?
kb
O3y =010+68)—.
20 (p—12
~ ) kb?
05, =-3(p+1)(—p*+p5—2)—.
> (p—D*
In particular, we also have the following expansions of 7* = —n® and T** = 1©®:
T T, . Tr T, - 1+ |y
T" = (UK + ﬁ)ho + 2250+ 22, + 205, 4+ +0(—ly| )
s s s s s

Ty Tgo- T5 T, - N
T = (=nk + ﬂ)ho + 2+ 22hy + 20, + 0(_+ ] )
s s s s 52

where

(175 T3 = —n(©F ;.87 ) and T, T) = n(6},.0;)).

Finally, we aim to give the explicit form of 7 here: indeed, we have the following
formula from (81):

Co &b ~ ~ ~ ~
n= __{(_W)Rg’l + (IL + C2,2)R§’1 — DZ,ORS,I + Rz,z}.

Using the formulas for the constants in 7, we obtain

_ B +8?)
T T8 (p+ -5
x {8882 +38°B + (3% p + 10)6* + (58 + 18pp)s>
+ (2B%p% +7B% 4+ 10p + B%p)8% + (—18B + 18pp + 20p>p)$
+10p — 282 + 1282 p? — 282 p — 10p?). (93)
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