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Refined asymptotics for the blow-up solution
of the complex Ginzburg–Landau equation

in the subcritical case

Giao Ky Duong, Nejla Nouaili, and Hatem Zaag

Abstract. In this paper, we aim to refine the blow-up behavior for the complex Ginzburg–Landau
(CGL) equation in some subcritical case. More precisely, we construct blow-up solutions and refine
their blow-up profile to the next order.

1. Introduction

In this paper, we consider the complex Ginzburg–Landau (CGL) equation

ut D .1C iˇ/�uC .1C iı/juj
p�1uC ˛u;

u.:; 0/ D u0 2 L
1.RN ;C/;

(CGL)

where ı; ˇ; ˛ 2 R.
This equation is better known when p D 3, having a long history in physics (see Aran-

son and Kramer [2]). The CGL equation describes many phenomena including nonlinear
waves, second-order phase transitions, and superconductivity. We note that the CGL equa-
tion can be used to describe the evolution of amplitudes of unstable modes for any process
exhibiting a Hopf bifurcation (see for example [2, Sect. VI-C, p. 37; Sect. VII, p. 40] and
the references cited therein). In addition, our equation can be considered as a general nor-
mal form for a large class of bifurcations and nonlinear wave phenomena in continuous
media systems. More generally, the CGL equation is used to describe synchronization and
collective oscillation in complex media.

The study of collapse, chaotic or blow-up solutions of equation (CGL) appears in many
works; for a description of an unstable plane Poiseuille flow, see Stewartson and Stuart
[35] and Hocking et al. [21] and, in the context of binary mixtures, see Kolodner et al.
[22, 23], where the authors describe an extensive series of experiments on traveling-wave
convection in an ethanol/water mixture, and they observe collapse solutions that appear
experimentally. For blow-up phenomena, see Plecháč and Šverák [29] and Rottschäfer
[33, 34].
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For our purpose, we consider CGL independently from any particular physical context
and investigate it as a mathematical model in partial differential equations with p > 1.

The Cauchy problem for equation (CGL) can be solved in a variety of spaces using the
semigroup theory as in the case of the heat equation (see [5, 18, 19]). The space L1.RN /
is a convenient choice for us.

We say that u.t/ blows up or collapses in finite time T < 1, if u.t/ exists for all
t 2 Œ0; T / and limt!T ku.t/kL1 D C1: In that case, T is called the blow-up time of the
solution. A point x0 2 RN is said to be a blow-up point if there is a sequence ¹.xj ; tj /º,
such that xj ! x0, tj ! T and ju.xj ; tj /j !1 as j !1. The set of all blow-up points
is called the blow-up set.

Let us now introduce the following definition:

Definition 1.1 (Criticality for CGL). The parameters .ˇ; ı/ are in the subcritical (resp.
critical, supercritical) regime if p � ı2 � ˇı.p C 1/ is positive (resp. zero, negative).

Some results are available in the subcritical regime from Zaag [38] (ˇ D 0) and also
Masmoudi and Zaag [24] (ˇ 6D 0). In those papers, the authors construct a solution of
equation (CGL), which blows up in finite time T > 0 only at the origin such that for all
t 2 Œ0; T /,


.T � t / 1Ciıp�1 jlog.T � t /j�i�u.x; t/ �

�
p � 1C

bsubjxj
2

.T � t /jlog.T � t /j

�� 1Ciıp�1




L1

(1)

�
C0

1C
p
jlog.T � t /j

;

where

bsub D
.p � 1/2

4.p � ı2 � ˇı.1C p//
> 0 and � D �

2bsub

.p � 1/2
ˇ.1C ı2/: (2)

Note that this result was previously obtained formally by Hocking and Stewartson [20]
(p D 3) and mentioned later in Popp et al. [30] (see those references for more blow-up
results often proved numerically, in various regimes of the parameters).

In the critical regime, some blow-up solutions are available from Nouaili and Zaag
[28] and also Duong, Nouaili and Zaag [10]. More precisely, in that regime, the authors
construct a solution of equation (CGL), which blows up in finite time T > 0 only at the
origin, such that for all t 2 Œ0; T / (see [10, Thm. 2]),


.T � t / 1Ciıp�1 jlog.T � t /j�i�e�i�

p
jlog.T�t/ju.x; t/ (3)

�

�
p � 1C

bcrijxj
2

.T � t /jlog.T � t /j1=2

�� 1Ciıp�1




L1
�

C0

1C jlog.T � t /j1=4
;

where

b2cri D
.p � 1/24.p C 1/2ı2

16.1C ı2/.p.2p � 1/ � .p � 2/ı2/..p C 3/ı2 C p.3p C 1//
> 0
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and � D �.ˇ; p/, � D �.ˇ;p/ are given in [10]. In fact, the authors obtain a more refined
description showing some additional higher-order terms in the Taylor expansion of the
blow-up solution given in (1).

Following our result, we felt that no similar refinement exists in the subcritical regime,
except maybe for some formal results given by Berger and Kohn [3] and also Velázquez,
Galaktionov and Herrero [37] when ˇ D ı D ˛ D 0, which corresponds to the nonlinear
heat equation (NLH).

1.1. Statement of our result

Our main concern is to give a refined asymptotic description of the blow-up solution given
by Masmoudi and Zaag [24]. Rather than considering that solution and refining its descrip-
tion, we will instead start over from the beginning, and construct a solution u.x; t/ of
(CGL) in the subcritical regime (p � ˇı.p C 1/ � ı2 > 0) that blows up in some finite
time T , in the sense that

lim
t!T
ku.:; t/kL1 D C1;

and which has the same zero-order description as the solution of Masmoudi and Zaag
[24] given in (1), with a more accurate description showing the next order terms in the
expansion.

We consider u.x; t/ a solution of (CGL). Let us first introduce self-similar variables

W.y; t/ D .T � t /
1Ciı
p�1 u.x; t/; y D

x
p
T � t

I

then, the main result of this work is the following:

Theorem 1 (First-order terms). Let us consider the subcritical regime where p � ı2 �
ˇı.p C 1/ > 0. Then there exists a unique constant � depending on p, ı and ˇ such that
equation (CGL) has a solution u.x; t/, which blows up in finite time T , only at the origin.
Moreover, the solution decomposes in self-similar variables as follows: for M > 0,

sup
jyj<M jlog.T�t/j

1
2

ˇ̌̌
W.y; t/e

�i�
log.jlog.T�t/j/
jlog.T�t/j jlog.T � t /j�i�ei�.t/

�

°
'0

� y

jlog.T � t /j1=2

�
C

a.1C iı/

jlog.T � t /j
C

logjlog.T � t /j
jlog.T � t /j2

E.y/

C
1

jlog.T � t /j2
F .y/

±ˇ̌̌
� C.M/

jlogjlog.T � t /j j2

jlog.T � t /j3
.1C jyj5/; (4)

and �.t/! �0 as t ! T , such that

j�.t/ � �0j � C
jlog.jlog.T � t /j j2

jlog.T � t /j2
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with
'0.z/ D .p � 1C bz

2/
�
1Ciı
p�1 ; (5)

with b (D bsub) defined as in (2),

� D �
4bˇ.1C ı2/

.p � 1/2
; a D 2�.1 � ˇı/

b

.p � 1/2
and � D .p � 1/

� 1
p�1 : (6)

The functions E.y/ and F .y/ are defined as

E.y/ D zA2
Qh2.y/; (7)

F .y/ D zB0
Qh0.y/CB2h2.y/C zB2

Qh2.y/; (8)

where zB0, B2 and zA2 depend only on ˇ and ı and are given by (41) in Definition 3.1 and
h0.y/, h2.y/ and Qh2.y/ will be given in Lemma 2.2.

The constant zB2 depends only on ˇ and ı when ˇ 6D 0. When ˇ D 0, we can choose
zB2 arbitrarily.

Remark 1.2. For technical reasons, the proof of Theorem 1 must be done separately for
ˇ 6D 0 and ˇ D 0.

Remark 1.3. In the case of the nonlinear heat equation (ˇ D ı D 0), Theorem 1 presents
the first rigorous proof of the formal approach given by Velázquez, Galaktionov, and Her-
rero [37].

Remark 1.4. We will consider CGL, given by (CGL), only when ˛ D 0. The case ˛ 6D 0
can be done as in [12]. In fact, when ˛ 6D 0, exponentially small terms will be added to
our estimates in a self-similar variable (see (9) below), and that will be absorbed in our
error terms, since our trap VA.s/ defined in Definition 3.1 is given in polynomial scales.

Let us give an idea of the method used to prove the results. We construct the blow-up
solution with the profile in Theorem 1, by following the method of [4, 25]. This kind of
method has been applied to various nonlinear evolution equations. For hyperbolic equa-
tions, it has been successfully used for the construction of multi-solitons for the semilinear
wave equation in one space dimension (see [6]). For parabolic equations, it has been used
in [24] and [39] for the complex Ginzburg Landau (CGL) equation with no gradient struc-
ture, the critical harmonic heat flow in [31], the two-dimensional Keller–Segel equation
in [32] and the nonlinear heat equation involving a nonlinear gradient term in [12, 36].
Recently, this method has been applied to various nonvariational parabolic systems in
[27] and [13–16], and to a logarithmically perturbed nonlinear equation in [7–9, 26]. We
also mention a result for a higher-order parabolic equation [17] and in [1, 11] two more
results for equations involving nonlocal terms.

Following [25], [28] and [10], the proof is divided into two steps. First, we reduce
the problem to a finite-dimensional case. Second, we solve the finite-time-dimensional
problem and conclude by contradiction using index theory. More precisely, the proof is
performed in the framework of the similarity variables defined below in (9). We linearize
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the self-similar solution around the profile '0 and we obtain q (see (11) below). Our goal
is to guarantee that q.s/ belongs to some set VA.s/ (introduced in Definition 3.1), which
shrinks to 0 as s !C1. The proof relies on two arguments:

• The linearized equation gives two positives modes ( zQ0 and Qq1), one zero mode ( Qq2)
and an infinite-dimensional negative part. The negative part is easily controlled by the
effect of the heat kernel. Control of the zero mode is quite delicate. The control of q is
reduced to control of its positive modes; see Proposition 3.8.

• Control of the positive modes zQ0 and Qq1 is handled thanks to a topological argument
based on index theory; see Proposition 3.5.

The organization of the rest of this paper is as follows. Section 3, the heart of the
paper, is divided into three subsections. At the beginning of Section 3 we give the proof
of the existence of the profile assuming technical details when ˇ 6D 0. In particular, we
construct a shrinking set and give an example of initial data giving rise to the blow-up
profile. Section 3.1 is devoted to the proof of technical results which are needed in the
proof of existence; see Proposition 3.8. Then in Section 3.2 we aim to give an a priori
estimate of the finite mode of q the negative part q� and the outer part qe . In Section 3.3,
we explain the case ˇ D 0. In addition to that, we also give Appendices A, B, C, which
give necessary computations in detail and give some fundamental estimates used for the
proofs in the paper.

2. Formulation of the problem

Here we consider the CGL equation, introduced in (CGL), with ˛ D 0. As we mentioned
before in Remark 1.4, the perturbation of ˛u is quite small. Now let us introduce the
similarity variable

u.x; t/ D .T � t /
� 1
p�1w.y; s/; y D

x
p
T � t

and s D � ln.T � t /: (9)

Hence, w reads

@sw D .1C iˇ/�w �
1

2
y � rw �

w

p � 1
C .1C iı/jwjp�1w: (10)

Using the idea from [24], we will introduce q.y; s/ and �.s/ satisfying

w.y; s/ D ei.� ln sC� ln s
s C�.s//.'.y; s/C q.y; s//; (11)

where

'.y; s/ D '0

� y

s1=2

�
C .1C iı/

a

s
� ��iı

�
p � 1C b

jyj2

s

�� 1Ciıp�1
C .1C iı/

a

s
; (12)

where �, a and b are well known in [24]:

� D �
2bˇ.1C ı2/

.p � 1/2
; a D 2�.1 � ˇı/

b

.p � 1/2
;
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and

b D
.p � 1/2

4.p � ı2 � .p C 1/ıˇ/
:

We will explain how we choose these constants in the proof. In particular, � is a new
constant added for refinement of the behavior of w. Note that '0.z/ satisfies

�
1

2
z � r'0 �

1C iı

p � 1
'0 C .1C iı/j'0j

p�1'0 D 0: (13)

Using equation (10), we derive that q solves the equation

@q

@s
D Lˇq �

.1C iı/

p � 1
q C L.q; � 0; y; s/CR�.� 0; y; s/; (14)

where

Lˇq D .1C iˇ/�q �
1

2
y � rq;

L.q; � 0; y; s/ D .1C iı/
°
j' C qjp�1.' C q/ � j'jp�1'

� i
�
�
� 1
s2
�

ln s
s2

�
C
�

s
C � 0.s/

�
q
±
;

R�.� 0; y; s/ D R.y; s/ � i
�
�
� 1
s2
�

ln s
s2

�
C
�

s
C � 0.s/

�
';

R.y; s/ D �
@'

@s
C .1C iˇ/�' �

1

2
y � r' �

.1C iı/

p � 1
' C .1C iı/j'jp�1':

(15)

Our aim is to find a � 2 C 1.Œ� lnT;1/;R/ such that equation (18) has a solution q.y; s/
defined for all .y; s/ 2 RN � Œ� lnT;1/ such that

q.y; s/ D
F .y/ log s

s2
C v.y; s/;

where F is defined by (8) in Theorem 1 and

kv.s/kL1 ! 0 as s !1:

From (13), one sees that the variable z D y

s1=2
plays a fundamental role. Thus, we will

consider the dynamics for jzj > K, and jzj < 2K separately for some K > 0 to be fixed
large.

2.1. The outer region where jyj > Ks1=2

Let us consider a nonincreasing cut-off function �0 2 C1.RC; Œ0; 1�/ such that �0.�/D 1
for � < 1 and �0.�/ D 0 for � > 2 and introduce

�.y; s/ D �0

�
jyj

Ks1=2

�
; (16)
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where K will be fixed large. Let us define

qe.y; s/ D e
iı
p�1 sq.y; s/.1 � �.y; s//; (17)

and note that qe is the part of q.y; s/, corresponding to the non-blow-up region jyj >
Ks1=2. As we will explain in Section 3.2.3, the linear operator of the equation satisfied by
qe is negative, which makes it easy to control kqe.s/kL1 . This is not the case for the part
of q.y; s/ for jyj < 2Ks1=2, where the linear operator has two positive eigenvalues, a zero
eigenvalue in addition to infinitely many negative ones. Therefore, we have to expand q
with respect to these eigenvalues in order to control kq.s/kL1.jyj<2Ks1=2/. This requires
more work than for qe . The following subsection is dedicated to that purpose. From now
on, K will be a fixed constant which is chosen such that k'.s0/k

L1.jyj>Ks01=2/
is small

enough, namely k'0.z/k
p�1

L1.jzj>K/
�

1
C.p�1/

(see Section 3.2.3 below for more details).

2.2. The inner region where jyj < 2Ks1=2

If we linearize the term L.q; � 0; y; s/ in equation (14), then we can write (14) as

@q

@s
D Lˇ;ıq � i

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q

C V1q C V2 Nq C B.q; y; s/CR
�.� 0; y; s/; (18)

where

Lı;ˇq D .1C iˇ/�q �
1

2
y � rq C .1C iı/Re q;

V1.y; s/ D .1C iı/
p C 1

2

�
j'jp�1 �

1

p � 1

�
;

V2.y; s/ D .1C iı/
p � 1

2

�
j'jp�3'2 �

1

p � 1

�
;

B.q; y; s/ D .1C iı/
�
j' C qjp�1.' C q/ � j'jp�1' � j'jp�1q

�
p � 1

2
j'jp�3'.' Nq C N'q/

�
;

R�.� 0; y; s/ D R.y; s/ � i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
';

R.y; s/ D �
@'

@s
C�' �

1

2
y � r' �

.1C iı/

p � 1
' C .1C iı/j'jp�1':

(19)

Note that the term B.q;y; s/ is built to be quadratic in the inner region jyj �Ks
1
2 . Indeed,

we have for all K � 1 and s � 1,

sup
jyj�2Ks

1
2

jB.q; y; s/j � C.K/jqj2: (20)

Note also that R.y; s/measures the defect of '.y; s/ from being an exact solution of (10).
However, since '.y; s/ is an approximate solution of (10), one easily derives the fact that

kR.s/kL1 �
C

s
: (21)
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Therefore, if � 0.s/ goes to zero as s !1, we expect the term R�.� 0; y; s/ to be small,
since (18) and (21) yield

jR�.� 0; y; s/j �
C

s
C j� 0.s/j: (22)

Therefore, since we would like to make q go to zero as s!1, the dynamics of equation
(18) are influenced by the asymptotic limit of its linear term,

Lˇ;ıq C V1q C V2 Nq;

as s !1. In the sense of distributions (see the definitions of V1 and V2 in (18) and ' in
(12)) this limit is Lˇ;ıq.

2.3. Spectral properties of Lˇ

Here we will restrict to N D 1. We consider the Hilbert space L2
j�ˇ j
.RN ;C/ which is the

set of all f 2 L2loc.R
N ;C/ such thatZ

RN

jf .y/j2j�ˇ .y/j dy < C1;

where

�ˇ .y/ D
e
�
jyj2

4.1Ciˇ/

.4�.1C iˇ//N=2
and j�ˇ .y/j D

e
�

jyj2

4.1Cˇ2/

.4�
p
1C ˇ2/N=2

: (23)

We can diagonalize Lˇ in L2
j�ˇ j
.RN ;C/. Indeed, we can write

Lˇq D
1

�ˇ
div.�ˇrq/:

We notice that Lˇ is formally “self-adjoint” with respect to the weight �ˇ . Indeed, for any
v and w in L2

j�ˇ j
.RN ;C/ satisfying Lˇv and Lˇw in L2

j�ˇ j
.RN ;C/, it holds thatZ

vLˇw�ˇ dy D

Z
wLˇv�ˇ dy: (24)

If we introduce for each ˛ D .˛1; : : : ; ˛N / 2 NN the polynomial

f˛.y/ D c˛…
N
iD1H˛i

� yi

2
p
1C iˇ

�
; (25)

where Hn is the standard one-dimensional Hermite polynomial and c˛ 2 C is chosen so
that the term of highest degree in f˛ is …N

iD1y
˛i
i , then we get a family of eigenfunctions

of Lˇ , “orthogonal” with respect to the weight �ˇ , in the sense that for any different ˛
and � 2 NN ,

Lˇf˛ D �
˛

2
f˛;Z

R
f˛.y/f� .y/�ˇ .y/ dy D 0:

(26)
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2.4. Spectral properties of Lˇ;ı

In the sequel, we will assume N D 1. Now, with the explicit basis diagonalizing Lˇ , we
are able to write Lˇ;ı in a Jordan block. More precisely, we recall [24, Lem. 3.1]:

Lemma 2.1 (Jordan block decomposition of Lˇ;ı ). For all n 2 N, there exist two poly-
nomials

hn D ifn C

n�1X
jD0

dj;nfj ; where dj;n 2 C;

Qhn D .1C iı/fn C

n�1X
jD0

Qdj;nfj where Qdj;n 2 C;

(27)

of degree n such that
Lˇ;ıhn D �

n

2
hn;

Lˇ;ı
Qhn D

�
1 �

n

2

�
Qhn C cnhn�2;

(28)

with cn D n.n � 1/ˇ.1C ı/2 (and we take hk � 0 for k < 0). The term of highest order
of hn (resp. Qhn) is iyn (resp. .1C iı/yn).

Proof. See the proof of [24, Lem. 3.1]. For the explicit formulation of cn, we look at the
imaginary part of order n � 1 in the equation Lˇ;ı

Qhn D .1 �
n
2
/ Qhn C cnhn�2.

In addition to this we have the formulas of eigenfunctions hj ; Qhj ; j 2 ¹1; 2; : : : ; 6º
in [10]:

Lemma 2.2 (Basis vectors of degree less than or equal to 6). We have

h0.y/ D i; Qh0 D .1C iı/;

h1.y/ D iy; Qh1 D .1C iı/y;

h2.y/ D iy
2
C ˇ � i.2C ıˇ/; Qh2 D .1C iı/.y

2
� 2C 2ˇı/;

h4.y/ D iy
4
C y2.c4;2 C id4;2/C c4;0 C id4;0;

c4;2 D 6ˇ; d4;2 D �6.2C ˇı/ D �18 � 6.ˇı � 1/;

c4;0 D �4ˇ.3C ˇı/; d4;0 D 12 � 6ˇ
2
C 12ˇı C 2ˇ2ı2;

Qh4.y/ D .1C iı/y
4
C y2.12.ˇı � 1/C i Qd4;2/C Qc4;0 C i Qd4;0;

Qc4;2 D 12.ˇı � 1/; Qd4;2 D 0;

Qc4;0 D 6ˇ
2.1C ı2/ � 12.ˇı � 1/; Qd4;0 D �6ˇ

2ı.3ı2 C 7/ � 12ı.ˇı C 1/;

h6.y/ D iy
6
C y4.c6;4 C id6;4/C y

2.c6;2 C id6;2/C c6;0 C id6;0;

c6;4 D 15ˇ; d6;4 D �15.2C ˇı/;
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c6;2 D �60ˇ.3C ıˇ/; d6;2 D �90ˇ
2
C 180C 180ˇı C 30ˇ2ı2;

c6;0 D 180ˇ C 120ıˇ
2
� 45ˇ3 C 15ˇ3ı;

d6;0 D �180ˇı C 55ıˇ
3
� 60ı2ˇ2 � 5ˇ3ı2 C 180ˇ2 � 120;

Qh6.y/ D .1C iı/y
6
C y4. Qc6;4 C i Qd6;4/C y

2. Qc6;2 C i Qd6;2/C Qc6;0 C i Qd6;0;

Qc6;4 D 30.ˇı � 1/; Qd6;4 D 0;

Qc6;2 D 90ˇ
2.1C ı2/ � 180.ˇı � 1/;

Qd6;2 D �90ˇ.1C ı
2/.3ˇı C 4/C 180.ˇı � 1/.ı � 2ˇ/;

Qc6;0 D �20ˇ
2.1C ı2/.11ˇı C 21/C 120.ˇı � 1/.�2ˇ2 C ˇı C 1/;

Qd6;0 D 270ˇ.1C ı
2/.2C ˇı/C ˇ2.1C ı2/.140ˇı2 � 180ˇı C 390ı/

C 60.ˇı � 1/.2ˇ2ı � ˇı2 C 9ˇ � 4ı/;

Moreover, we have

Lˇ;ı
Qh0 D Qh0;

Lˇ;ı
Qh1 D

1

2
Qh1;

Lˇ;ı
Qh2 D 2ˇ.1C ı

2/h0 D 2iˇ.1C ı
2/;

Lˇ;ı
Qh4 D � Qh4 C 12ˇ.1C ı

2/h2;

Lˇ;ı
Qh6 D �2 Qh6 C 30ˇ.1C ı

2/h4:

Corollary 2.1 (Basis for the set of polynomials). The family .hn Qhn/n is a basis of CŒX�,
the R vector space of complex polynomials.

2.5. Decomposition of q

For the sake of controlling q in the region jyj < 2K
p
s, we will expand the unknown

function q (and not just �q, where � is defined in (16)) with respect to the family fn and
with respect to the hn. We start by writing

q.y; s/ D
X
n�M

Qn.s/fn.y/C q�.y; s/; (29)

where fn is the eigenfunction of Lˇ defined in (25), Qn.s/ 2 C, q� satisfiesZ
q�.y; s/hn.y/�.y/ dy D 0 for all n �M

and M is a fixed even integer satisfying

M � 4
�p

1C ı2 C 1C 2 max
iD1;2;y2R;s�1

jVi .y; s/j
�
; (30)
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with ViD1;2 defined in (19). From (29) we have

Qn.s/ D

R
q.y; s/fn.y/�ˇ .y/ dyR

fn.y/2�ˇ .y/
� Fn.q.s//; (31)

The function q�.y; s/ can be seen as the projection of q.y; s/ onto ¹fj ; j � M º,
which corresponds to the eigenvalues smaller than .1�M/=2. We will call it the infinite-
dimensional part of q and we will denote it q� D P�;M .q/. We also introduce PC;M D
Id � P�;M . Notice that P�;M and PC;M are projections. In the sequel, we will denote
P� D P�;M and PC D PC;M .

The complementary part qC D q � q� will be called the finite-dimensional part of q.
We will expand it as

qC.y; s/ D
X
n�M

Qn.s/fn.y/ D
X
n�M

qn.s/hn.y/C Qqn.s/ Qhn.y/; (32)

where Qqn; qn 2 R. Finally, we notice that for all s we haveZ
q�.y; s/qC.y; s/�ˇ .y/ dy D 0:

Our purpose is to project (18) in order to write an equation for qn and Qqn. For that we
need to write down expressions for qn and Qqn in terms of Qn. The matrix .hn; Qhn/n�M in
the basis of .ifn; fn/ is upper triangular (see Lemma 2.2). The same holds for its inverse.
Thus, we derive from (32),

qn D Im Qn.s/ � ı Re Qn.s/C

MX
jDnC1

Aj;n Im Qj .s/C Bj;n Re Qj .s/

� Pn;m.q.s//;

Qqn.s/ D Re Qn.s/C

MX
jDnC1

QAj;n Im Qj .s/C zBj;n Re Qj .s/

� zPn;M .q.s//;

(33)

where all the constants are real. Moreover, the coefficients of Im Qn and Re Qn in the
expressions of qn and Qqn are explicit. This comes from the fact that the same holds for the
coefficient of ifn and fn in the expansion of hn and Qhn (see Lemma 2.1).

Note that the projectors Pn;m.q/ and zPn;m.q/ are well defined thanks to (31). We will
project equation (18) on the different modes hn and Qhn. Note from (29) and (32) that

q.y; s/ D

 X
n�M

qn.s/hn.y/C Qqn.s/ Qhn.y/

!
C q�.y; s/: (34)

We should keep in mind that the presentation in (34) is unique.
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3. Existence

In this section we prove the existence of a solution q.s/, �.s/ of problem (14)–(44) and
further describe the asymptotics of q,

q.y; s/ D Qh0.y/
� zA0

s2

�
C h2.y/

� zA2

s2

�
C Qh2.y/

� zA2

s2
C

zB2 ln s
s2

�
C v.y; s/;

with sup
jyj<Ms1=2

jv.y; s/j � C
.1C jyj5/ ln2 s

s3
for all M > 0

and j� 0.s/j �
CA10 ln2 s

s3
for all s 2 Œ� logT;C1/;

(35)

where zA0, A2, zA2 and zB2 are given in Definition 3.1 and h0.y/, h2.y/ and Qh2.y/ are
given in Lemma 2.2.

Hereafter, we denote by C a generic positive constant, depending only on p; ı; ˇ and
K introduced in (16), itself depending on p.

As a matter of fact, we aim to control the asymptotic (35) by a shrinking set. In fact,
we are inspired by the set given in [24] and [10] to introduce a new one that is sharper:

Definition 3.1 (A set shrinking to zero). For allK > 1, A � 1 and s � 1, we define VA.s/

as the set of all q 2 L1.R/ such that

kqekL1.R/ �
AMC2

s
1
2

;



 q�.y/

1C jyjMC1





L1.R/

�
AMC1

s
MC2
2

;

jqj j; j Qqj j �
Aj

s
jC1
2

for all 5 � j �M; jq0j �
1

s2
; j Qq1j �

A

s3
; jq1j �

A4

s3
:

In addition, the other modes will satisfy the following conditions:

jQ4j �
A7 ln2 s
s4

and j zQ4j �
A4 ln2 s
s4

;

jq3j �
A3

s4
and j Qq3j �

A3

s4
;

jQ2j �
A8 ln2 s
s4

and j zQ2j �
A10 ln2 s
s3

and

j zQ0j �
A ln2 s
s4

;

where

Q4 D q4 �
�1
2
D4;2

Qq2

s
C

hC4;2R�2;1
2

C
R�4;2

2

i 1
s3

�
;

D q4 �
�
A4

Qq2

s
C

B4

s3

�
; (36)
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zQ4 D Qq4 �
�
zD4;2
Qq2

s
C
1

s3

h
zC4;2R

�
2;1 C

zR�4;2

i�
D Qq4 �

�
zA4

Qq2

s
C

zB4

s3

�
; (37)

zQ0 D Qq0 �
�
Qq2

s

h
� QL0;2 � zD0;2 �

z‚�0;0c2

�

i
�

zR�0;1

s2
�

zT �0;1 ln s

s3

�
�

� 1
s3

h
� zX0 C � zK0;2R

�
2;1 �

zC0;2:R
�
2;1 �

zT ��0;1

i�
D Qq0 �

�
zA0

Qq2

s
C

zB0

s2
C

zC0 ln s
s3

C

zD0

s3

�
(38)

and

Q2 D q2 �
�
Qq2

s

h
D2;2 � �.1C ı

2/C c4 zD4;2 C
‚�2;0c2

�

i
C
R�2;1

s2

�
�

� zT �2;0 ln s

s3
C
1

s3

h
X2 C c4Œ zC4;2R

�
2;1 C

zR�4;2� �D2;0:
zR�0;1 C T

��
2;0

i�
D q2 �

�
A2

Qq2

s
C

B2

s2
C

C2 ln s
s3

C
D2

s3

�
; (39)

zQ2 D Qq2 �
� zA2 ln s

s2
C

zB2

s2

�
(40)

and

zA2 D �
ıb

.p � 1/2
R�0;1 C .�C

zC2;2/R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2; (41)´
zB2 D �

R�0;1���

c2
; where c2 D 2ˇ.1C ı2/ if ˇ 6D 0;

zB2 is arbitrary if ˇ D 0;
(42)

and

X2 D R
�
2;2 C .C2;2 � ı�/R

�
2;1 C

‚�2;0R
�
0;1

�
and zX0 D zR

�
0;2 � .ı�C

zD0;0/ zR
�
0;1:

Using Definition 3.1, we claim the following:

Claim 3.2 (The size of q 2 VA). For all r 2 VA.s/ we have the following estimates:

(i) krkL1.jyj<2K
p
s/ � C.K/

AMC1p
s

and krkL1 � C.K/A
MC2
p
s

.

(ii) For all y 2 R, jr.y/j � C AMC1 ln s
s2

.1C jyjMC1/.

Proof. The proof directly follows from the definition of the shrinking set.

From item (i), our purpose is to control q to stay in V.A/ for s � s01. Moreover, the
bounds in this set help us to conclude the results in the propositions.
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In the following, we aim to choose the initial data.

Definition 3.3 (Choice of initial data). Let us define, for A � 1, s0 D � log T > 1 and
d0; d1 2 R, the function

 s0;d0;d1.y/ D
h�A ln2 s

s40

Qd0 C
zB0

s20
C
. zA0
zA2 C

zC0/ ln s0
s30

C

zD0 C
zA0
zB2

s30

�
Qh0

C
A

s30

Qd1 Qh1.y/C d0h0 C
� zA2 ln s0

s20
C

zB2

s20

�
Qh2

C

�B2

s20
C

D2 CA2
zB2

s30
C
.C2 CA2

zA2/ ln s0
s30

�
h2

C

� zB4 C
zA4
zA2

s30
C

zA4
zA2 ln s0
s30

�
Qh4

C

�B4 CA4
zB2

s30
C

A4
zA2 ln s0
s30

�
h4

i
�.2y; s0/; (43)

where s0 D � log T and hi , Qhi , i D 0; 1; 2; 3; 4 are given in Lemma 2.2, � is defined by
(16) and d0 D d0. Qd0; Qd1/ will be fixed later in Proposition 3.6 (i). The constants zAi , Ai ,
zBi , Bi , zCi , Ci , zDi , Di for i D 0; 2; 4 are given by (36)–(40).

Remark 3.4. Let us recall that we will modulate the parameter � to kill one of the neutral
modes; see equation (44) below. It is natural that this condition must be satisfied for the
initial data at s D s0. Thus, it is necessary that we choose d0 to satisfy condition (44); see
(45) below.

So far, in fact, the phase �.s/ introduced in (11) is arbitrary, as we will show below in
Proposition 3.7. We can use a modulation technique to choose �.s/ in such a way that we
impose the condition

P0;M .q.s// D 0; (44)

which allows us to kill the neutral direction of the operator zL defined in (18). Reasonably,
our aim is then reduced to the following proposition:

Proposition 3.5 (Existence of a solution trapped in VA.s/). There exists A2 � 1 such that
for A� A2 there exists s02.A/ such that for all s0 � s02.A/, there exists . Qd0; Qd1/ such that
if q is the solution of (18)–(44), with initial data given by (43) and (45), then v 2 VA.s/

for all s � s0.

This proposition gives stronger convergence to 0 in L1.R/.
Let us first be sure that we can choose the initial data such that it starts in VA.s0/. In

other words, we will define a set where we will select the good parameters . Qd0; Qd1/ that
will give the conclusion of Proposition 3.5. More precisely, we have the following result:

Proposition 3.6 (Properties of initial data). For each A � 1, there exists s03.A/ > 1 such
that for all s0 � s03, we have the following properties:
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(i) P0;M .i�.2y; s0// 6D 0 and the parameter d0.s0; Qd0; Qd1/ given by

d0.s0; Qd0; Qd1/ D �
A

s30

Qd1
P0;M

�
Qh1�.2y; s0/

�
P0;M

�
i�.2y; s0/

�
�

�A ln2 s0
s40

Qd0 C
zB0

s20
C
. zA0
zA2 C

zC0/ ln s0
s30

C

zD0 C
zA0
zB2

s30

�
�
P0;M

�
Qh0�.2y; s0/

�
P0;M

�
i�.2y; s0/

�
�

� zA2 ln s0
s20

C

zB2

s20

�P0;M � Qh2�.2y; s0/�
P0;M

�
i�.2y; s0/

� (45)

�

�B2

s20
C

D2 CA2
zB2

s30
C
.C2 CA2

zA2/ ln s0
s30

�P0;M �h2�.2y; s0/�
P0;M

�
i�.2y; s0/

�
�

� zB4 C
zA4
zA2

s30
C

zA4
zA2 ln s0
s30

�P0;M � Qh4�.2y; s0/�
P0;M

�
i�.2y; s0/

�
�

�B4 CA4
zB2

s30
C

A4
zA2 ln s0
s30

�P0;M �h4�.2y; s0/�
P0;M

�
i�.2y; s0/

�
is well defined, where � is defined in (16) and the constants zAi , Ai , zBi , Bi , zCi , Ci for
i D 0; 2; 4 are given by (36)–(40).

(ii) If  is given by (43) and (45) with d0 defined by (45) then there exists a quadrilateral
Ds0 � Œ�2; 2�

2 such that the mapping

. Qd0; Qd1/!
�
z‰0 D z 0 �

� zB0

s20
C
. zA0
zA2 C

zC0/ ln s0
s30

C

zD0 C
zA0
zB2

s30

�
; z 1

�
(where  stands for  

s0; Qd0; Qd1
) is linear, one to one from Ds0 onto Œ�A ln2 s0

s40
; A ln2 s0

s40
� �

Œ� A
s30
; A
s30
�. Moreover, it is of degree 1 on the boundary.

(iii) For all . Qd0; Qd1/ 2 Ds0 we have

 e � 0;  0 D 0;

for all 3 � i �M , i 6D 4, 1 � j �M , j 6D ¹2; 4º and for some 
 > 0,

j z i j C j j j � Ce
�
s0

and
j z‰i j C j‰j j � Ce

�
s0 for i; j D ¹2; 4º;

where z‰i and ‰i are defined as in (36)–(40).

Moreover, it holds that k  �.y/

.1CjyjMC1/
kL1.R/ � CA=s

M
4 C1

0 .
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(iv) For all . Qd0; Qd1/ 2Ds0 ,  
s0; Qd0; Qd1

2 VA.s0/ with strict inequalities except for . z 0; z 1/.

Proof. The proof is the same as [24, Prop. 4.2] and [10, Prop. 4.5].

In the following, we find a local-in-time solution for equation (18) coupled with con-
dition (44).

Proposition 3.7 (Local-in-time solution and modulation for problem (18)–(44) with initial
data (43)–(45)). For all A � 1, there exists T3.A/ 2 .0; 1=e/ such that for all T � T3, the
following holds: for all . Qd0; Qd1/ 2DT , there exists smax > s0 D� logT such that problem
(18)–(44) with initial data at s D s0,

.q.s0/; �.s0// D . s0; Qd0; Qd1
; 0/;

where 
s0; Qd0; Qd1

is given by (43) and (45), has a unique solution q.s/;�.s/ satisfying q.s/2
VAC1.s/ for all s 2 Œs0; smax/.

Proof. The proof is quite similar to [24, Prop. 4.4] and [10, Prop. 4.6].

Let us now give the proof of Proposition 3.5.

Proof of Proposition 3.5. Let us consider A � 1, s0 � s03, . Qd0; Qd1/ 2 Ds0 , where s03 is
given by Proposition 3.6. From the existence theory (which follows from the Cauchy
problem for equation (CGL)), starting in VA.s0/ which is in VAC1.s0/, the solution stays
in VA.s/ until some maximal time s� D s�. Qd0; Qd1/. Then either

• s�. Qd0; Qd1/ D1 for some . Qd0; Qd1/ 2 Ds0 and the proof is complete;

• s�. Qd0; Qd1/ <1 for any . Qd0; Qd1/ 2 Ds0 and we argue by contradiction. By continuity
and the definition of s�, the solution on s� is in the boundary of VA.s�/. Then, by
definition of VA.s�/, at least one of the inequalities in that definition is an equality.
Owing to the following proposition, this can happen only for the first two components
Qq0, Qq1.

Precisely we have the following result:

Proposition 3.8 (Control of q.s/ by .q0.s/, q1.s// in VA.s/). There exists A4 � 1 such
that for each A � A4, there exists s04 2 R such that for all s0 � s04. The following holds:

If q is a solution of (18) with initial data at s D s0 given by (43) and (45) with
. Qd0; Qd1/ 2 Ds0 , and q.s/ 2 V.A/.s/ for all s 2 Œs0; s1�, with q.s1/ 2 @VA.s1/ for some
s1 � s0, then we have the following properties:

(i) (Smallness of the modulation parameter � defined in (11)) For all s 2 Œs0; s1�,

j� 0.s/j �
CA10 ln2 s

s3
:

(ii) (Reduction to a finite-dimensional problem) We have

. zQ0.s1/; Qq1.s1// 2 @
�h
�
A ln2 s1
s41

;
A ln2 s1
s41

i
�

h
�
A

s31
;
A

s31

i�
:
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(iii) (Transverse crossing) There exists ! 2 ¹�1; 1º such that

! zQ0.s1/ D
A

s41
and !

d zQ0.s1/

ds
.s1/ > 0;

! Qq1.s1/ D
A

s31
and !

d Qq1

ds
.s1/ > 0:

Proof. See the proof in Section 3.1.

Assume the result of the previous proposition, for which the proof is given below
in Section 3.1, and continue the proof of Proposition 3.5. Let A � A4 and s0 � s04.A/.
It follows from Proposition 3.8(ii) that . zQ0; Qq1.s�// 2 @.Œ� As41

; A
s41
� � Œ� A

s31
; A
s31
�/, and the

function

�WDs0 ! @.Œ�1; 1�2/

. Qd0; Qd1/!
� s4�

A ln2 s�
zQ0;

s3�
A
Qq1

�
. Qd0; Qd1/

.s�/; with s� D s�. Qd0; Qd1/

is well defined. Then it follows from Proposition 3.8 (iii) that � is continuous. On the other
hand, using Proposition 3.6 (ii)–(iv) together with the fact that q.s0/ D  s0; Qd0; Qd1 , we see

that when . Qd0; Qd1/ is in the boundary of the rectangle Ds0 we have strict inequalities for
the other components.

Applying the transverse crossing property given by Proposition 3.8 (iii), we see that
q.s/ leaves VA.s/ at s D s0, hence s�. Qd0; Qd1/D s0. Using Proposition 3.6 (ii), we see that
the restriction of � to the boundary is of degree 1. A contradiction then follows from the
index theory. Thus there exists a value . Qd0; Qd1/2Ds0 such that for all s � s0, qs0;d0;d1.s/2
VA.s/. This concludes the proof of Proposition 3.5.

Using Proposition 3.8 (i), we get the bound on � 0.s/. This concludes the proof of (35).

3.1. Reduction to a finite-dimensional problem

In the following we give the proof of Proposition 3.8.
The idea of the proof is to project equation (18) on the different components of the

decomposition (34). More precisely, we claim that Proposition 3.8 is a consequence of the
following proposition:

Proposition 3.9. There existsA5 � 1 such that for allA�A5, there exists s5.A/ such that
the following holds for all s0 � s5: assuming that for all s 2 Œ�; s1� for some s1 � � � s0,
q.s/ 2 VA.s/ and q0.s/ D 0, then the following holds for all s 2 Œ�; s1�:

(i) (Smallness of the modulation parameter)

j� 0.s/j �
CA10 ln2 s

s3
:
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(ii) (ODE satisfied by the expanding mode) For m D 0 and 1 we have

j zQ00.s/ �Q0.s/j �
C ln2 s
s4

and ˇ̌̌
Qq01 �

1

2
Qq1

ˇ̌̌
�
C

s3
:

(iii) (ODE satisfied by the null mode)ˇ̌̌
zQ02.s/ �

2 zQ2

s

ˇ̌̌
�
CA8 ln2 s

s3
:

(iv) (Control of negative modes)

jq1.s/j � e
�
.s��/
2 jq1.�/j C

CA3

s3
;

jQ2.s/j � e
�.s��/

jQ2.�/j C
CA7 ln2 s

s4
;

jq3j � e
� 32 .s��/jq3.�/j C

CA2

s4
;

j Qq3j � e
� s��2 j Qq3.�/j C

CA2

s4
;

jQ4.s/j � e
�2.s��/

jQ4.�/j C
CA6 ln2 s

s4
;

j zQ4.s/j � e
�.s��/

j zQ4.�/j C
CA3 ln2 s

s4
;

jqj .s/j � e
�j

.s��/
2 jqj .�/j C

CAj�1

s
jC1
2

for all 5 � j �M;

j Qqj .s/j � e
�.j�2/

.s��/
2 j Qqj .�/j C

CAj�1

s
jC1
2

for all 5 � j �M;


 q�.y; s/

1C jyjMC1





L1
� e�

MC1
4 .s��/




 q�.�/

1C jyjMC1





L1
C C

AM

s
MC2
2

;

kqe.y; s/kL1 � e
�

.s��/
2.p�1/ kqe.�/kL1 C

CAMC1
p
�

.1C s � �/;

where zQ0, Q2, zQ2, Q4 and zQ4 are defined by (36)–(40).

Proof. Briefly speaking, the main idea of the proof of Proposition 3.9 is to project equa-
tions (14) and (18) according to the decomposition (34). Due to the lengthy proof with
many technical computations, we will give the complete proof in Section 3.2.

Proof of Proposition 3.8. Let us now focus on the proof of Proposition 3.8 assuming Pro-
position 3.9 holds. Indeed, we will take A4 � A5. Hence, we can use the conclusion of
Proposition 3.9.



Blow-up solution of the complex Ginzburg–Landau equation 59

(i) The proof follows from (i) of Proposition 3.9. Indeed, by choosing T4 small enough,
we can make s0 D � logT bigger than s5.A/.

(ii) We notice that from Claim 3.2 and the fact that q0.s/ D 0, it is enough to prove that
for all s 2 Œs0; s1�,

j zQ2.s/j D
ˇ̌̌
Qq2.s/ �

� zA2 ln s
s2

C

zB2

s2

�ˇ̌̌
<
A10 ln2 s
s3

; (46)

kqekL1.R/ �
AMC2

2s
1
2

;



 q�.y; s/

1C jyjMC1





L1
�
AMC1

2s
MC2
2

;

jqj j; j Qqj j �
Aj

2s
jC1
2

for all 5 � j �M; jq1j �
A4

2s3
;

jQ2j �
A8 ln2 s
2s4

jq3j; j Qq3j �
A3

2s4
;

jQ4j; j zQ4j �
A7 ln s
2s4

:

(47)

In fact, the estimates in (47) are similar to [10, Prop. 4.7]. For that reason, we only focus
on the proof of (46). Indeed, we will use a contradictory argument: we assume that there
exists s� 2 Œs0; s1� such that

zQ2.s�/ D
�
Qq2.s�/ �

� zA2 ln s�
s2�

C

zB2

s2�

��
D !

A10 ln2 s�
s3�

for all
s 2 Œs0; s�Œ

and ˇ̌̌
Qq2.s/ �

� zA2 ln s
s2

C

zB2

s2

�ˇ̌̌
<
A10 ln2 s
s3

;

where ! D ˙1. As a matter of fact, we can reduce to the positive case where ! D 1 (the
case ! D �1 also works in the same way). Note by Proposition 3.6 (iv) thatˇ̌̌

Qq2.s0/ �
� zA2 ln s0

s20
C

zB2

s20

�ˇ̌̌
<
A10 ln2 s0

s30
;

thus s� > s0, and the interval Œs0; s�� is not empty.
Using the continuity of zQ2 and the definition of s�, it is clear that zQ2.s�/ is the maximal
value of zQ2 in Œs� � "; s�� with " > 0 and small enough. Then, recalling from Proposi-
tion 3.9 (iii) that ˇ̌̌

zQ02 C 2
zQ2

s

ˇ̌̌
�
CA8 ln2 s

s4
;

hence it follows that

zQ02.s�/ � �
zQ2

s
C
CA8 ln2 s

s4
�
.�2A10 C CA8/ ln2 s

s4
< 0; (48)
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provided that A is large enough. Then zQ2 has to decrease in Œs� � "1; s�� which implies a
contradiction with the assumption that zQ2 admits a maximum at s�. In other words, (46)
holds. Finally, the proof of Proposition 3.8 is concluded.

3.2. Proof of Proposition 3.9

In this section we focus on the proof of Proposition 3.9. The idea is mainly based on the
technique in [24], [28] and [10]. In fact, it involves the projection equations (14) and (18)
to get equations satisfied by the different coordinates of the decomposition (34). Let us
summarize the proof:

• In the first part of Section 3.2.1 we deal with equation (18) to write equations satisfied
by Qqj and qj . Then we prove (i), (ii), (iii) and (iv) (except the two last identities) of
Proposition 3.9.

• In the second part of Section 3.2.1 we first derive from equation (18) an equation
satisfied by q� and prove the last but one identity in Proposition 3.9 (iv).

• In Section 3.2.2 we project equation (14) (which is simpler than (18)) to write an
equation satisfied by qe and prove the last identity in Proposition 3.9 (iv).

3.2.1. The finite-dimensional part: qC. We now divide the proof into two steps:

• In part 1 we give the details of projections of equation (18) to get ODEs, satisfied by
modes Qqj and qj .

• In part 2 we prove Proposition 3.9 (i), (ii), (iii), together with the estimates concerning
Qqj and qj in (iv).

Part 1: The projection of equation (18) on the eigenfunction of the operator Lˇ;ı . In
the following, we will find the main contribution in the projections zPn;M and Pn;M of the
six terms appearing in equation (18): @sq, Lˇ;ıq, �i. �

2
p
s
C

�
s
C � 0.s//q, V1q C V2 Nq,

B.q; y; s/ and R�.� 0; y; s/.

First term: @q
@s

. From (33), we directly derive

zPn;M

�@q
@s

�
D Qq0n and Pn;M

�@q
@s

�
D q0n: (49)

Second term: Lˇ;ıq, where Lˇ;ı is defined as in (19). We will use the following lemma
from [24]:

Lemma 3.10 (Projection of Lˇ;ı on Qhn and hn for n �M ).

(a) If n �M � 2, thenˇ̌̌
Pn;M .Lˇ;ıq/ �

�
�
n

2
qn.s/C cnC2 QqnC2

�ˇ̌̌
� C




 q�

1C jyjMC1





L1
;

where cn is given in Lemma 2.1. Moreover, we have the following: if M � 1 � n � M ,
then ˇ̌̌

Pn;M .Lˇ;ıq/C
n

2
qn.s/

ˇ̌̌
� C




 q�

1C jyjMC1





L1
:
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(b) If n �M , then the projection of Lˇ;ı on Qhn satisfiesˇ̌̌
zPn;M .Lˇ;ıq/ �

�
1 �

n

2

�
Qqn.s/

ˇ̌̌
� C




 q�

1C jyjMC1





L1
:

Proof. The proof is similar to the proof of [24, Lem. 5.1].

Using Lemma 3.10 and the fact that q.s/ 2 VA.s/ (see Definition 3.1) we can improve
the error by the following:

Corollary 3.1. For all A � 1, there exists s9 � 1 such that for all s � s9.A/, if q.s/ 2
VA.s/, then we have the following properties:

(a) For n D 0 we have

jP0;M .Lˇ;ıq/ � c2 Qq2j � C
AMC1

s
MC2
2

:

(b) For 1 � n �M � 1 we haveˇ̌̌
Pn;M .Lˇ;ıq/C

n

2
qn.s/

ˇ̌̌
� C

AnC2

s
nC3
2

:

In particular, we have a smaller bound for P2;M .Lˇ;ıq/:

jP2;M .Lˇ;ıq/C q2 � c4 Qq4j �
AMC1

s
MC2
2

:

(c) For n DM we haveˇ̌̌
PM;M .Lˇ;ıq/C

M

2
qM .s/

ˇ̌̌
� C

AMC1

s
MC2
2

:

(d) For 0 � n �M we haveˇ̌̌
zPn;M .Lˇ;ıq/ �

�
1 �

n

2

�
Qqn.s/

ˇ̌̌
� C

AMC1

s
MC1
2

:

Third term: �i.�
s
� � ln s

s2
C

�

s2
C � 0.s//q. It is enough to project iq, from (33); we recall

[24, Lem. 5.3]:

Lemma 3.11 (Projection of the term �i.�
s
� � ln s

s2
C

�

s2
C � 0.s//q on hn and Qhn for

n �M ). We have the following equalities:

(i) the projection on hn,

Pn;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

D �

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

��
ıqn C .1C ı

2/ Qqn C

MX
jDnC1

Kn;j qj C Ln;j Qqj

�
;
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where Kn;j and Ln;j are defined by

Kn;j D Pn;M .ihj /; (50)

Ln;j D Pn;M .i Qhj /I (51)

(ii) the projection on Qhn,

zPn;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

D �

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

��
�qn � ı Qqn C

MX
jDnC1

zKn;j qj C QLn;j Qqj

�
;

where zKn;j and QLn;j are defined by

zKn;j D zPn;M .ihj /; (52)

QLn;j D zPn;M .i Qhj /: (53)

Using the fact that q.s/ 2 VA.s/ is defined in Definition 3.1, the error estimates can
be improved:

Corollary 3.2. For all A � 1, there exists s10.A/ � 1 such that for all s � s10.A/, if
q 2 VA.s/ and j� 0.s/j � CA10

s5=2
, then we have the following properties:

(a) For all 1 � n �M we haveˇ̌̌
Pn;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

An

s
nC3
2

:

(b) For 1 � n �M we haveˇ̌̌
zPn;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

An

s
nC3
2

:

In particular, when n D 0; 2; 4, we can get smaller bounds as follows:

(c) For n D 0 we have the following in particular:ˇ̌̌
P0;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

C

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
¹ıq0 C .1C ı

2/ Qq0 CK0;2q2 C L0;2 Qq2º
ˇ̌̌

� C
A4 ln s
s4

;ˇ̌̌
zP0;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

C

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
¹�q0 � ı Qq0 C zK0;2q2 C QL0;2 Qq2º

ˇ̌̌
� C

A4 ln s
s4

:
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(d) For n D 2 we haveˇ̌̌
P2;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

C

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
Œıq2 C .1C ı

2/ Qq2�
ˇ̌̌

� C
A4 ln s
s4

;ˇ̌̌
zP2;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�

C

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

��
�q2 � ı Qq2 C zK2;4q4 C QL2;4 Qq4

�ˇ̌̌
� C

A5

s4
:

(e) For n D 3 we haveˇ̌̌
P3;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

A2

s4
;ˇ̌̌

zP3;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

A2

s4
:

(f) For n D 4 we haveˇ̌̌
P4;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

A5

s4
;ˇ̌̌

zP4;M

�
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
�ˇ̌̌
� C

A5

s4
:

Fourth term: V1q C V2 Nq. We recall [24, Lem. 5.5]:

Lemma 3.12 (Projections of V1q and V2 Nq).

(i) It holds that

jVi .y; s/j � C
.1C jyj2/

s
for all y 2 R and s � 1, (54)

and for all k 2 N�,

Vi .y; s/ D

kX
jD1

1

sj
Wi;j .y/C zWi;k.y; s/; (55)

where Wi;j is an even polynomial of degree 2j and zWi;k.y; s/ satisfies

for all s � 1 and jyj �
p
s, j zWi;k.y; s/j � C

.1C jyj2kC2/

skC1
: (56)
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(ii) The projections of V1q and V2 Nq on hn and Qhn satisfy

j zPn;M .V1q/j C jPn;M .V1q/j

�
C

s

MX
jDn�2

.j Qqj j C j Oqj j/C

n�3X
jD0

C

s
n�j
2

.j Qqj j C j Oqj j/C
C

s




 q�

1C jyjMC1





L1
; (57)

and the same holds for V2 Nq.

Remark 3.13. Note that, when n � 2, the first sum in (57) runs for j D 0 to M and the
second sum does not exist.

By the fact that q.s/ 2 VA.s/, the error estimates can be bounded improved as follows:

Corollary 3.3. For all A � 1, there exists s11.A/ � 1 such that for all s � s11.A/, if
q 2 VA.s/, then for 3 � n �M we have

j zPn.V1q C V2 Nq/j C jPn.V1q C V2 Nq/j �
CAn�2

s
nC1
2

:

Now we study the asymptotics of zP2;M .V1q/, zP2;M .V2 Nq/,P0;M .V1q/ andP0;M .V2 Nq/:

Lemma 3.14. Using the definitions of V1; V2, the following hold:

(i) It holds that for i D 1; 2,

for all s � 1 and jyj � s1=2;
ˇ̌̌
Vi .y; s/ �

1

s
Wi;1.y/

ˇ̌̌
�
C

s2
.1C jyj4/; (58)

where

W1;1.y/ D �
.p C 1/b

2.p � 1/2
.1C iı/.y2 � 2.1 � ıˇ//;

W2;1.y/ D �.1C iı/
b

2.p � 1/2
.p � 1C 2iı/.y2 � 2.1 � ˇı//:

(59)

(ii) The projections of V1q and V2 Nq on Ohn and Qhn satisfyˇ̌̌
zPn;M .V1q C V2 Nq/ �

1

s

X
j�0

Œ zCn;j qj C zDn;j Qqj �
ˇ̌̌

�
C

s2

X
j�0

Œj Oqj j C j Qqj j�C
1

s




 q�.:; s/

1C jyjM





L1
; (60)

and ˇ̌̌
Pn;M .V1q C V2 Nq/ �

1

s

X
j�0

ŒCn;j qj CD2;j Qqj �
ˇ̌̌

�
C

s2

X
j�0

Œj Oqj j C j Qqj j�C
1

s




 q�.:; s/

1C jyjM





L1
; (61)
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where for all n; j � 0 we have

Cn;j D Pn;M .W1;1hj CW2;1 Nhj / zCn;j D zPn;M .W1;1hj CW2;1 Nhj /; (62)

Dn;j D Pn;M .W1;1 Qhj CW2;1
NQhj / zDn;j D zPn;M .W1;1 Qhj CW2;1

NQhj /: (63)

In particular, using the fact that q.s/ 2 VA.s/, the error estimates can be improved as
follows:

Corollary 3.4. For all A � 1, there exists s12.A/ � 1 such that for all s � s12.A/, if
q.s/ 2 VA.s/, thenˇ̌̌

P0;M .V1q C V2 Nq/ �
�
C0;0

q0

s
CD0;0

Qq0

s
C C0;2

q2

s
CD0;2

Qq2

s

�ˇ̌̌
� C

ln s
s4
;ˇ̌̌

zP0;M .V1q C V2 Nq/ �
�
zD0;0
Qq0

s
C zC0;2

q2

s
C zD0;2

Qq2

s

�ˇ̌̌
� C

ln s
s4
;ˇ̌̌

P2;M .V1q C V2 Nq/ �
�D2;0 Qq0

s
C
C2;2q2

s
C
D2;2 Qq2

s

�ˇ̌̌
� C

ln s
s4
;ˇ̌̌

zP2;M

�
V1q C V2 Nq

�
�
1

s

°
Qq0 zD2;0 C q2 zC2;2 C Qq2 zD2;2

±ˇ̌̌
� C

ln s
s4
;ˇ̌̌

P4;M .V1q C V2 Nq/ �
�
C4;2

q2

s
CD4;2

Qq2

s

�ˇ̌̌
� C

ln s
s4
;ˇ̌̌

zP4;M .V1q C V2 Nq/ �
�
zC4;2

q2

s
C zD4;2

Qq2

s

�ˇ̌̌
� C

ln s
s4

and ˇ̌̌
P3;M .V1q C V2 Nq/

ˇ̌̌
�
CA2

s4
;ˇ̌̌

zP3;M .V1q C V2 Nq/
ˇ̌̌
�
CA2

s4
:

Fifth term: B.q; y; s/.

B.q; y; s/ D .1C iı/

�

�
j'C qjp�1.' C q/ � j'jp�1' � j'jp�1q �

p� 1

2
j'jp�3'.' Nq C N'q/

�
:

We have the following lemma:

Lemma 3.15. The function B D B.q; y; s/ can be decomposed for all s � 1 and jqj � 1
as

sup
jyj�s1=2

ˇ̌̌̌
B �

MX
lD0

X
0�j;k�MC1
2�jCk�MC1

1

sl

h
B lj;k

� y

s1=2

�
qj Nqk C zB lj;k.y; s/q

j
Nqk
iˇ̌̌̌

� C jqjMC2 C
C

s
MC1
2

;



G. K. Duong, N. Nouaili, and H. Zaag 66

where B l
j;k
. y

s1=2
/ is an even polynomial of degree less than or equal to M and the rest of

zB l
j;k
.y; s/ satisfies

for all s � 1 and jyj < s1=2; j zB lj;k.y; s/j � C
1C jyjMC1

s
MC1
2

:

Moreover,

for all s � 1 and jyj < s1=2;
ˇ̌̌
B lj;k

� y

s1=2

�
C zB lj;k.y; s/

ˇ̌̌
� C:

On the other hand, in the region jyj � s1=2 we have

jB.q; y; s/j � C jqj Np; (64)

for some constant C where Np D min.p; 2/.

Proof. See [24, proof of Lem. 5.9, p. 1646].

Lemma 3.16 (The quadratic term B.q; y; s/). For all A � 1, there exists s13 � 1 such
that for all s � s13, if q.s/ 2 VA.s/, then

(a) the projections of B.q; y; s/ on hn and on Qhn, for n � 3 satisfy

j zPn;M .B.q; y; s//j C jPn;M .B.q; y; s//j � C
An

s
nC2
2

I (65)

(b) for n D 0; 1; 2; 3; 4 we have

j zPn;M .B.q; y; s//j C jPn;M .B.q; y; s//j �
C ln2 s
s4

: (66)

Proof. See [24, Lem. 5.10].

Sixth term: R�.� 0; y; s/. In the following, we expand R� as a power series of 1
s

as s !
1, uniformly for jyj � s1=2.

Lemma 3.17 (Power series of R� as s !1). For all n 2 N,

R�.� 0; y; s/ D …n.�
0; y; s/C z…n.�

0; y; s/; (67)

where

…n.�
0; y; s/ D

n�1X
kD0

1

skC1
Pk.y/

� i
�
��

ln s
s2
C
�

s2
C � 0.s/

��a
s
.1C iı/C

n�1X
kD0

ek
y2k

sk

�
; (68)

and

for all jyj < s1=2; j z…n.�
0; y; s/j � C.1C sj� 0.s/j/

.1C jyj2n/

snC1
; (69)

where Pk is a polynomial of order 2k for all k � 1 and ek 2 R.
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In particular,

sup
jyj�s1=2

ˇ̌̌̌
R�.� 0; y; s/ �

1X
kD0

1

skC1
Pk.y/C i

�
��

ln s
s2
C
�

s2
C � 0

�
�

h
� C

.1C iı/

s

�
a �

b�y2

.p � 1/2

�iˇ̌̌̌
� C

�1C jyj4
s3

C C
� ln s
s2
C j� 0j

�y4
s2

�
: (70)

Proof. The proof is similar to [24, Lem. 5.11].

In the following, we introduce Fj .R
�/.�; s/ as the projection of the rest term

R�.� 0; y; s/ on the standard Hermite polynomial, introduced in Lemma 2.1.

Lemma 3.18 (Projection of R� on the eigenfunction of L). It holds that Fj .R�/.� 0; s/�
0 when j is odd, and jFj .R�/.� 0; s/j � C

1Csj� 0.s/j

sj=2C1
when j is even and j � 4.

Proof. See [24, Lem. 5.12].

More precisely, we can describe the projection of R� as follows:

Lemma 3.19 (Projection of R� on the eigenfunctions Qh and hn). Let us consider R�

defined as in the above, then the following hold:

(i) For j � 4 which is even, then zPj .R�/.� 0; s/ and Pj .R�/.� 0; s/ are O.1Csj�
0j

sj=2C1
/.

(ii) For all j odd we have zPj .R�/.� 0; s/ D Pj .R�/.� 0; s/ D 0.

(iii) For j D 0 we have

P0;M .R
�.� 0.s/; s// D

R�0;0

s
C
R�0;1

s2
C
R�0;2

s3
C � 0.s/

�
�� C

‚�0;0

s
CO

� 1
s2

��
C

ln s
s2

�
�� C

T �0;0

s
CO

� 1
s2

��
C
1

s2

�
��� C

T ��0;0

s
CO

� 1
s2

��
CO

� 1
s4

�
;

zP0;M .R
�.� 0.s/; s// D

zR�0;0

s
C

zR�0;1

s2
C

zR�0;2

s3
C � 0.s/

� z‚�0;0
s
CO

� 1
s2

��
C

ln s
s2

� zT �0;0
s
CO

� 1
s2

��
C
1

s2

� zT ��0;0
s
CO

� 1
s2

��
CO

� 1
s4

�
:

(iv) For j D 2 we have

P2;M .R
�.� 0.s/; s// D

R�2;1

s
C
R�2;2

s3
C � 0.s/

�‚�2;0
s
CO

� 1
s2

��
C

ln s
s2

�T �2;0
s
CO

� 1
s2

��
C
1

s2

�T ��2;0
s
CO

� 1
s2

��
CO

� 1
s4

�
;
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zP2;M .R
�.� 0.s/; s// D

zR�2;1

s2
C

zR�2;1

s3
C � 0.s/

� z‚�2;0
s
CO

� 1
s2

��
C

ln s
s2

� zT �2;0
s
CO

� 1
s2

��
C
1

s2

� zT ��2;0
s
CO

� 1
s2

��
CO

� 1
s4

�
;

where R�
j;k

, zR�
j;k

, ‚�
j;k

, z‚�
j;k

are constants, depending on p, ı, ˇ only. For more details
see Appendix C and equation (92).

(v) In particular, we choose 8̂̂<̂
:̂
a D 2.1�ıˇ/b

.p�1/2
;

� D � 2ˇb

.p�1/2
.1C ı2/;

b D .p�1/2

4.p�ı2�.pC1/ıˇ/
:

(71)

Then we have

R�0;0 D
zR�0;0 D

zR�2;1 D 0: (72)

Proof. For the details, we kindly refer readers to Appendix C.

Part 2: Proof of Proposition 3.9. In this part, we consider A� 1 and take s large enough
that Part 1 is satisfied.

• Proof of item (i): We control � 0.s/. From the projection of (18) on h0.y/D i , we obtain

q00 D c2 Qq2 C P0;M

�
�i
��
s
�
� ln s
s2
C
�

s2
C � 0

�
q
�

C P0;M .V1q C V2 Nq/C P0;M .B/C P0;M .R
�.� 0.s/; s//; (73)

where c2 D 2ˇ.1C ı2/, as defined in Lemma 2.1. In addition to this, from the fact that
q0 � 0 by the modulation, we also obtain

q00 � 0:

Using the fact that q 2VA.s/, given in Definition 3.1, together with Corollaries 3.1 and 3.4,
Lemmas 3.10, 3.16 and 3.19, we obtain the following:

P0;M .Lı;ˇq/ D c2 Qq2 CO
� 1

s
MC2
2

�
;

P0;M

�
�i
��
s
�
� log s
s2
C
�

s2
C � 0

�
q
�

D �

��
s
�
� log s
s2
C
�

s2
C � 0.s/

�
¹ıq0 C .1C ı

2/ Qq0 CK0;2q2 C L0;2 Qq2º CO
� ln s
s4

�
and

P0;M .V1q C V2 Nq/ D C0;0
q0

s
CD0;0

Qq0

s
C C0;2

q2

s
CD0;2

Qq2

s
CO

� ln s
s4

�
;
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P0;M .B.q// D O
� ln2 s
s4

�
;

P0;M .R
�/ D

°
�� C

‚�0;0

s
CO

� 1
s2

�±
� 0.s/C

.R�0;1 � ��/

s2
C
R�0;2

s3
C
�� ln s
s2

C T �0;1
ln s
s3
CO

� ln s
s4

�
;ˇ̌̌

��� 0.s/C c2 Qq2 �
�

s
¹.1C ı2/ Qq0 CK0;2q2 C L0;2 Qq2º CD0;0

Qq0

s

C C0;2
q2

s
CD0;2

Qq2

s
C .��/

ln s
s2
C
.R�0;1 � ��/

s2
C
.R�0;2 � T

��
0;0/

s3
C T �0;0

ln s
s3

C
c2‚

�
0;0

�

Qq2

s
C
‚�0;0.R

�
0;1 � ��/

�

1

s3
C
‚�0;0.��/ ln s

�s3

ˇ̌̌
� C

ln2 s
s4

: (74)

In particular, we use again the fact that q 2 VA,ˇ̌̌
c2 Qq2.s/C

.R�0;1 � ��/

s2
C
�� ln s
s2

ˇ̌̌
�
A10 ln2 s
s3

;

which can be written ˇ̌̌
Qq2.s/ �

zA2 ln s
s2

�

zB2

s2

ˇ̌̌
�
A10 ln2 s
s3

;

where
zA2 D �

��

c2
and zB2 D �

.R�0;1 � ��/

c2
:

Thus, we obtain

j� 0.s/j �
CA10 ln2 s

s3
; (75)

and ˇ̌̌
��� 0.s/C c2 Qq2.s/C

.R�0;1 � ��/

s2
C
�� ln s
s2

ˇ̌̌
�
C ln s
s3

; (76)

which concludes Proposition 3.9 (i).

• Proof of item (iii): Let us project equation (18) on Qh2. We get

Qq02 D
zP2;M .Lˇ;ıq/C zP2;M

�
�i
��
s
�
� ln s
s2
C
�

s2
C � 0.s/

�
q
�
C zP2;M .V1q C V2 Nq/

C zP2;M .B.q//C zP2;M .R
�.� 0.s/; s//: (77)

We repeat the same process as for Qq0. Using the fact that q.s/ 2 VA.s/ for all s 2 Œ�; s1�,
by Corollaries 3.1 and 3.4, and Lemmas 3.10, 3.16, 3.19, we obtain the following bounds
for the terms on the right-hand side of (77):

zP2;M .@sq/ D @s Qq2; (78)

j zP2;M .Lˇ;ıq/j �
AMC1

s
MC2
2

: (79)

In particular, we also have the following expansion:
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Terms coming from zP2;M .�i.�s �
� ln s
s2
C

�

s2
C � 0.s//q/. We have

zP2;M

�
�i
��
s
�
� ln s
s2
C
�

s2
C � 0.s/

�
q
�
D �

�

s
.�q2 � ı Qq2/CO

� ln s
s4

�
:

Terms coming from zP2;M .V1q C V2 Nq/. We have

zP2;M .V1q C V2 Nq/ D
1

s
¹ Qq0 zD2;0 C q2 zC2;2 C Qq2 zD2;2º CO

� ln s
s4

�
:

This yields

zP2.V1q C V2 Nq/ D
zD2;2

s
Qq2 C

1

s3
¹ zC2;2R

�
2;1 �

zD2;0 zR
�
0;1º CO

� ln s
s4

�
:

Terms coming from zP2;M .B.q//. We have

j zP2;M .B/j �
C ln2 s
s4

:

Terms coming from zP2;M .R�/. We have

zP2;M .R
�/ D zT �2;0

ln s
s3
C
. zR�2;2 C

zT ��2;0/

s3
C
� 0.s/�

s

�ıb

.p � 1/2
CO

� ln s
s4

�
D zT �2;0

ln s
s3
C
. zR�2;2C

zT ��2;0/

s3
C

�
c2 Qq2.s/C

.R�0;1���/

s2
C
�� ln s
s2

�
�ıb

s.p�1/2

CO
� ln s
s4

�
D �

c2ıb

.p � 1/2s
Qq2 �

ıb

.p � 1/2s3
R�0;1 C

zR�2;2

s3
CO

� ln s
s4

�
:

Note that we combined the facts given in (75) and (76), and �, b and a are as given in
(71). Finally, by adding these estimates, we obtain

Qq02 D
Qq2

s

°
ı�C zD2;2 �

c2ıb

.p � 1/2

±
C
1

s3

°
�R�2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1

±
CO

� ln2 s
s4

�
: (80)

Let us remark that even though there exists the order ln s
s3

in the ODE of Qq2, it will be
canceled when we add all terms in the ODE. From the explicit formulas of �, b, c2 and
zD2;2, we can compute

ı�C zD2;2 �
c2ıb

.p � 1/2
D �2:
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In addition to this, using the definition of zQ2 given as in (40), we establish that

zQ02 D �2
zQ2

s
C
1

s3

°
� zA2 C �R

�
2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1

±
CO

� ln2 s
s4

�
:

In fact, we now prove that there exists � such that the order 1
s3

is canceled. Indeed, we
choose � such that

� zA2 C �R
�
2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1 D 0:

Using the fact that
zA2 D �

��

c2
;

we derive

� D �
c2

�

°�
�

ıb

.p � 1/2

�
R�0;1 C .�C

zC2;2/R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2

±
: (81)

The explicit formula for �will be given by equation (93) in Appendix C. Finally, we obtain
the following ODE:

zQ02 D �
2

s
zQ2 CO

�A8 ln s2

s4

�
;

which implies of Proposition 3.9 (iii).
For the other estimates, we kindly refer readers to [24, Prop. 4.6] and [10, Prop. 4.10],

where they can be found. Therefore, we finish our proof here.

3.2.2. The infinite-dimensional part: q�. The proof is similar to [24, Sect. 5.2]. So, we
will sketch the main step and readers can find the details in [24]. Using the definition of
the projection P�, defined in (32), we apply it to equation (18):

P�

�@q
@s

�
D P�

�@q
@s

�
C P�

h
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
i

C P�.V1q C V2 Nq/C P�.B.q; y; s//C P�.R
�.� 0; y; s//: (82)

In particular, we obtain the following:

First term: @q
@s

. From (33), its projection is

P�

�@q
@s

�
D
@q�

@s
:

Second term: zLˇ;ıq. From (18) we have

P�.Lˇ;ıq/ D Lˇq� C P�Œ.1C iı/Re q��:
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Third term: �i.�
s
� � ln s

s2
C

�

s2
C � 0.s//q. Since P� commutes with multiplication by i ,

we deduce that

P�

h
�i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q
i
D �i

��
s
� �

ln s
s2
C
�

s2
C � 0.s/

�
q�:

Fourth term: V1q and V2 Nq. We have


 P�.V1q/

1C jyjMC1





L1
� kV1kL1




 q�

1C jyjMC1





L1
C C

AM

s
MC2
2

and 


 V2 Nq

1C jyjM





L1
� kV2kL1




 q�

1C jyjM





L1
C C

AM

s
MC2
2

:

Fifth term: B.q; y; s/. Using (20) we have the following estimate from Lemmas A.3
and 3.15: 


P�.B.q; y; s//

1C jyjMC1





L1
� C.M/

h�AMC2
s
1
2

� Np
C
A5C.MC1/

2

s

i 1

s
MC1
2

; (83)

where Np D min.p; 2/.

Sixth term: R�.� 0; y; s/. Using the fact that � 0.s/ � CA10 ln2 s
s4

, the following holds:


P�.R�.� 0; y; s//
1C jyjMC1




 � C

s
MC3
2

:

Using (82) and Duhamel’s integral equation, we get for all s 2 Œ�; s1�,

q�.s/ D e
.s��/Lˇ q�.�/

C

Z s

�

e.s�s
0/LˇP�Œ.1C iı/Re q�� ds0

C

Z s

�

e.s�s
0/LˇP�

h
�i
��
s

0

�
� ln s0

.s0/2
C
�

s2
C � 0.s0/

�
q
i
ds0

C

Z s

�

e.s�s
0/LˇP�

h
V1q C V2 Nq C B.q; y; s

0/CR�.� 0; y; s0/
i
ds0:

Using Lemma A.2, we get


 q�.s/

1C jyjMC1





L1
� e�

MC1
2 .s��/




 q�.�/

1C jyjMC1





L1

C

Z s

�

e�
MC1
2 .s�s0/

p
1C ı2




 q�

1C jyjMC1





L1
ds0

C

Z s

�

e�
MC1
2 .s�s0/




P���i��s 0 � � ln s0

.s0/2
C

�

s2
C � 0.s0/

�
q
�

1C jyjMC1





L1
ds0

C

Z s

�

e�
MC1
2 .s�s0/




P�ŒV1q C V2 Nq C B.q; y; s0/CR�.� 0; y; s0/�
1C jyjMC1





L1
ds0:
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By using the above estimates, we derive


 q�.s/

1C jyjMC1





L1
� e�

MC1
2 .s��/




 q�.�/

1C jyjMC1





L1

C

Z s

�

e�
MC1
2 .s�s0/

�p
1C ı2 C kjV1j C jV2jkL1

�


 q�

1C jyjMC1





L1
ds0

C C.M/

Z s

�

e�
MC1
2 .s�s0/

hA.MC1/2C5
.s0/

MC3
2

C
A.MC2/ Np

.s0/
Np�1
2

1

.s0/
MC2
2

C
AM

.s0/
MC2
2

i
ds0:

Since we have already fixed M in (30) such that

M � 4
�p

1C ı2 C 1C 2 max
iD1;2;y2R;s�1

jVi .y; s/j
�
;

using Gronwall’s lemma, we deduce that

e
MC1
2 s




 q�.s/

1CjyjMC1





L1
� e

MC1
4 .s��/e

MC1
2 �




 q�.�/

1CjyjMC1





L1

C e
MC1
2 s2

MC3
4

hA.MC1/2C5
s
MC3
4

C
A.MC2/ Np

s
Np�1
2

1

.s0/
MC2
2

C
AM

s
MC2
2

i
;

which concludes the proof of the last but one identity in Proposition 3.9 (iv).

3.2.3. The outer region: qe . As a matter of fact, our shrinking set VA.s/ is similar to
[24]. In particular, the estimate of qe is exactly the same. For that reason, again we omit
the detailed computation. Below we give the main idea; more details can be found in [24].

In fact, using that q.s/ 2 VA.s/ for all s 2 Œ�; s1�, and Proposition 3.9 (i), we derive the
following rough estimates:

kq.s/kL1.jyj�2Ks1=2/ � C
AMC1

s1=2
and j� 0.s/j �

CA10 ln2 s
s4

: (84)

In particular, using the definition of qe , given as in (17), we have

@qe

@s
D Lˇqe �

1

p � 1
qe C .1 � �/e

iı
p�1 s¹L.q; � 0; y; s/CR�.� 0; y; s/º

� e
iı
p�1 sq.s/

�
@s�C .1C iˇ/��C

1

2
y � r�

�
C 2e

iı
p�1 s.1C iˇ/ div.q.s/r�/: (85)

In addition to this, we can write (85) under Duhamel’s integral equation and take an L1

estimate:

kqe.s/kL1 � e
� s��p�1 kqe.�/kL1 ;

C

Z s

�

e
� s�s

0

p�1
�
k.1 � �/L.q; � 0; y; s0/kL1 C k.1 � �/R

�.� 0; y; s0/kL1
�
ds0

C

Z s

�

e
� s�s

0

p�1




q.s0/�@s�C .1C iˇ/��C 1

2
y � r�

�



L1
ds0

C

Z s

�

e
� s�s

0

p�1
1

p
1 � e�.s�s

0/
kq.s0/r�kL1 ds

0:
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Thanks to detailed computation given in of [24, Sect. 5.3], we obtain

kqe.s/kL1 � e
� s��p�1 kqe.�/kL1

C

Z s

�

e
� s�s

0

p�1

� 1

2.p � 1/
kqe.s

0/kL1 C C
AMC1
p
s0

C C
AMC1

s0
1

p
1 � e�.s�s

0/

�
ds0:

By using Gronwall’s inequality, we derive

kqe.s/kL1 � e
�

.s��/
2.p�1/ kqe.�/kL1 C

CAMC1

�
1
4

.s � � C
p
s � �/;

which yields the proof of Proposition 3.9 (iv).

3.3. The case ˇ D 0

Here we give an argument for the special case where ˇ D 0. The main reasoning comes
from Definition 3.1 for VA.s/, in particular (41). In particular, there is only one bound that

becomes singular: QA2 D �
R�0;1
c2

. Naturally, we change this bound to a new one:

j zQ2j D
ˇ̌̌
Qq2 �

� QA2 ln s
s2

C
zB2

s2

�ˇ̌̌
�
A10 ln2 s
s3

;

where QA2 is defined by (41) and zB2 can be chosen arbitrarily. In addition to this, we also
denote the new shrinking set by VA.s/. In particular, Proposition 3.9 remains valid, except
the ODEs for � 0.s/ and zQ2.

• For � 0.s/: Repeating the process for the case ˇ ¤ 0, we deriveˇ̌̌
�� 0.s/ �

�R�0;1
s2
C
T �0;1 ln s

s2

�ˇ̌̌
�
C ln s
s3

:

When ˇ D 0, R�0;1 D 0. However, the leading order
T �0;1 ln s
s2

will generate

�.s/ �
�0 ln s
s

:

This violates our purpose that

�.s/�
ln s
s
:

Hence, it imposes
� D 0:

Note that constants T �i;j ; zT
�
i;j D 0. Thus, we getˇ̌̌

�� 0.s/ �
R�0;1

s2

ˇ̌̌
�
C ln s
s3

: (86)
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It is sufficient to prove Proposition 3.9 (iii). Indeed, we take the projection of equation
(18) on Qh2, as in equation (77). In particular, plugging (86) into

zP2;M .R
�/ D

zR�2;2

s3
C
� 0.s/�

s

�ıb

.p � 1/2
CO

� ln s
s4

�
;

we obtain

zP2;M .R
�/ D

zR�2;2

s3
C

�R�0;1
s2

�
�ıb

s.p � 1/2
CO

� ln s
s4

�
D

�
zR�2;2 �

ıbR�0;1

.p � 1/2

� 1
s3
CO

� ln s
s4

�
:

Note that, when ˇ D 0 we have

ı�C zD2;2 D �2

and
zT �2;2 �

T �0;1ıb

.p � 1/2
D 0:

Hence we have

Qq02 D �
2 Qq2

s
C
1

s3

°
�R�2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1

±
CO

� ln2 s
s4

�
:

Using the decomposition zQ2 D Qq2 � .
zA2.ˇD0/ ln s

s2
C
zB2.ˇD0/

s2
/, then zQ2 reads

zQ2 D �
2

s
zQ2 C

�
� zA2 C �R

�
2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1

� 1
s3

CO
� ln2 s
s4

�
:

Note that it is not similar to the case ˇ¤ 0; the role of � vanishes. The order 1
s3

is canceled
by

zA2 D �R
�
2;1 C

zC2;2R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2 �
ıb

.p � 1/2
R�0;1: (87)

In particular, when ˇ D ı D 0 we can explicitly compute

zA2 D � zC2;2R
�
2;1 C

zR�2;2 D �
�
�
1

4

� 5�
8p
�
5

32
�
.5p � 4/

p2
D �

5�.p � 1/

8p2
:

This constant exactly matches the formal approach given by Velázquez, Galaktionov and
Herrero [37].
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A. Spectral properties of Lˇ

In this appendix, we recall from [24, App. A] some properties associated to the operator
Lˇ , defined in (15). We recall that

Lˇv D .1C iˇ/�v �
1

2
y � rv D

1

�ˇ
div.�ˇrw/;

where

�ˇ .y/ D
e
�
jyj2

4.1Ciˇ/

.4�.1C iˇ//N=2
:

Moreover, the operator Lˇ is self-adjoint with respect to the weight �ˇ in the sense thatZ
RN

u.y/Lˇw.y/�ˇ .y/ dy D

Z
RN

w.y/Lˇu.y/�ˇ .y/ dy: (88)

In one space dimension (N D 1), the eigenfunctions fn of Lˇ are dilations of standard
Hermite polynomials Hn.y/:

fn.y/ D Hn

� y

2
p
1C iˇ

�
; where LˇHn D �

n

2
Hn:

If N � 2, its eigenfunction f˛.y1; : : : ; yN /, where ˛ D .˛1; : : : ; ˛N / 2 NN is a multi-
index, are given by

f˛.y/ D

NY
iD1

f˛i .yi / D

NY
iD1

H˛i

� yi

2
p
1C iˇ

�
:

The family f˛ is orthogonal in the sense that for all ˛ and � 2 NN ,Z
f˛f��ˇ dy D ı˛;�

Z
f 2˛ �ˇ dy:

The semigroup generated by Lˇ is well defined and has the kernel

esLˇ .y; x/ D
1

Œ4�.1C iˇ/.1 � e�s/�N=2
exp

h
�

jx � ye�
s
2 j2

4.1C iˇ/.1 � e�s/

i
: (89)

In the following, we give some properties associated to the kernel.

Lemma A.1.
(a) The semigroup associated to Lˇ satisfies the maximum principle

kesLˇ'kL1 � k'kL1 :

(b) Moreover, we have

kesLˇ div.'/kL1 �
C

p
1 � e�s

k'kL1 ;

where C only depends on ˇ.
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Proof.

(a) The result directly follows from the definition of the semigroup given in (89).

(b) Using integration by parts and (a), the conclusion follows.

Lemma A.2. There exists a constant C such that if � satisfies

for all x 2 R; j�.x/j � .1C jxjMC1/;

then for all y 2 R we have

jesLˇP�.�.y//j � Ce
�
MC1
2 s.1C jyjMC1/:

Proof. This also follows directly from the definition of the semigroup, through integration
by parts; for a similar case see [4, pp. 556–558].

Moreover, we have the following useful lemma concerning P�.

Lemma A.3. For all k � 0 we have


 P�.�/

1C jyjMCk





L1
� C




 �

1C jyjMCk




:
Proof. Using (31) we have

j�nj � C



 �

1C jyjMCk





L1
:

Since for all m �M , we have jhm.y/j � C.1C jyjmCk/ and

j�j � C



 �

1C jyjMCk





L1
.1C jyjmCk/;

the result follows from definition (29) of �.

B. Details of expansions of the potential terms: V1 and V2

In this section we aim to give expansions of V1 and V2 in order to give the conclusion of
Lemma 3.14 (i) and some related constants. Indeed, we recall the definitions of V1 and V2:

V1.y; s/ D .1C iı/
p C 1

2

�
j'jp�1 �

1

p � 1

�
;

V2.y; s/ D .1C iı/
p � 1

2

�
j'jp�3'2 �

1

p � 1

�
;
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where

'.y; s/ D '0.y; s/C
.1C iı/a

s
D �

�
1C

b

p � 1

jyj2

s

�� 1Ciıp�1
C
.1C iı/a

s

and

a D
2�b.1 � ıˇ/

.p � 1/2
:

Then, using Taylor expansion, we claim the following asymptotic behavior:

V1.y; s/ D
1

s
W1;1.y/C

1

s2
W1;2 CO

�1C jyj6
s3

�
(90)

and

V2.y; s/ D
1

s
W2;1.y/C

1

s2
W2;2.y/CO

�1C jyj6
s3

�
; (91)

where

W1;1.y/ D .1C iı/
.p C 1/

2

b

.p � 1/2
.�y2 C 2.1 � ıˇ//;

W1;2.y/ D .1C iı/
.p C 1/

2

b2

.p � 1/3

°
y4 �

.2.1 � ıˇ/.p � 2C ı2//

p � 1
y2

C
.p � 1/.1C ı2/.1 � ıˇ/2 C .p � 3/.1 � ı2/.1 � ıˇ/2

p � 1

±
D .1C iı/

.p C 1/

2

b2

.p � 1/4

°
.p � 1/y4 � Œ2.1 � ıˇ/.p � 2C ı2/�y2

C 2.p � 2C ı2/.1 � ıˇ/2
±

and

W2;1.y/ D .1C iı/
b

2.p � 1/2
¹.p � 1C 2iı/.�y2 C 2.1 � ıˇ//º;

W2;2.y/ D .1C iı/
b2

2.p � 1/4

°
.p � 1C 2iı/.p � 1C iı/y4

� .2.p � 1/.p � 2/C .2p � 10/ı2 C .8p � 16/ıi/.1 � ıˇ/y2

C .1 � ıˇ/2
h .p C 1/.p � 1/.1C iı/2

2
C .p C 1/.p � 3/.1C ı2/

C
.p � 3/.p � 5/.1 � iı/2

2

i±
:

For the proofs of (90) and (91), we kindly refer readers to [10, Appendix B].
In addition to this, we aim to determine the constants given in Lemma 3.14 (ii):

zD4;2 D zP4;M .W1;1 Qh2 CW2;1
NQh2/ D

b.ı2 � p/

.p � 1/2
;
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D2;2 D P2;M .W1;1 Qh2 CW2;1
NQh2/

D �
b

2.p � 1/2
¹�24pı C 56ı3 C 64ı2ˇ C 32ı C 24pı2ˇ C 40ı4ˇº;

QL2;4 D zP2;M .i Qh4/ D 6ı
2ˇ � 12ı � 6ˇ;

D4;2 D P4;M .W1;1 Qh2 CW2;1
NQh2/ D

b

.p � 1/2
¹�2ı.1C ı2/º;

zD2;0 D zP2;M .W1;1 Qh0 CW2;1
NQh0/ D �

b

2.p � 1/2
.2p � 2ı2/;

QL0;2 D zP0;M .i Qh2/ D �2ı C ı
2ˇ � ˇ;

zD0;2 D zP0;M .W1;1 Qh2 CW2;1
NQh2/

D �
b

2.p � 1/2
¹�32ıˇ � 12pˇ2 C 12ı2ˇ2 � 16ı2 C 16p � 4ı4ˇ2 C 4pı2ˇ2

� 32pıˇº;

zC2;2 D zP2;M .W1;1h2 CW2;1 Nh2/

D �
b

2.p � 1/2
¹�14ı2ˇ C 2pˇ � 12ˇº;

zC2;4 D zP2;M .W1;1h4 CW2;1 Nh4/

D �
b

2.p � 1/2
¹96pˇ C 224ı3ˇ2 � 288ı2ˇ � 128pıˇ2 � 192ˇ C 96ıˇ2º;

zD2;4 D zP2;M .W1;1 Qh4 CW2;1
NQh4/

D �
b

2.p� 1/2
¹�96pı2ˇ2 � 168pıˇ C 96p � 528ıˇ � 96ı2 C 216ı2ˇ2

� 168pˇ2 C 144ı4ˇ2 � 360ı3ˇº;

zF2;2 D zP2;M .W1;2 Qh2 CW2;2
NQh2/

D
b2

2.p � 1/4
¹�240p C 276p2 � 312pı2 � 204ı4 C .�288p�552p2C696/ıˇ

C .432 � 144p/ı3ˇ C 144ı5ˇ C .180p � 180p2/ˇ2

C .96p2 C 288p � 96/ı2ˇ2 C .108C 36p/ı4ˇ2º;

D0;2 D P0;M .W1;1 Qh2 CW1;2
NQh2/

D �
b

2.p � 1/2
¹32ı C 24ı5ˇ2 C 64ı2ˇ C 48ı3ˇ2 C 64ı4ˇ C 32ı3 C 24ıˇ2

C 96pı3ˇ2 C 96pıˇ2º;

L0;2 D P0;M .i Qh2/ D 4ıˇ C 4ı
3ˇ:



G. K. Duong, N. Nouaili, and H. Zaag 80

C. Details of expansions of R�.y; s; � 0.s//

Using the definition of ', (18) and the fact that '0 satisfies (13), we see that R� is defined
as

R� D
.1C iˇ/

s
�z'0.z/C

1

2s
z � r'0 C

a

s2
.1C iı/ �

.1C iı/2a

.p � 1/s

C .1C iı/
�
F
�
'0.z/C

a

s
.1C iı/

�
� F.'0.z//

�
� i
��
s
� �

ln s
s2
C
�

s2
C � 0.s/

��
'0.z/C

a

s
.1C iı/

�
D R�1.y; s/C

ln s
s2
T1 C

1

s2
T2 CC�

0.s/‚.y; s/;

where F.w/D jwjp�1w,‚.y; s/D�i.'0.y; s/C
a.1Ciı/

s
/, T �1 D��‚ and T �� D �‚.

Expansion of R�
1
.y; s/ in terms of hj and Qhj

As a matter of fact, we can expand R�1 in a series of 1
sj

as

R�1.y; s/ D
1

s
R0.y/C

1

s2
R1.y/C

1

s3
R2.y/C zR.y; s/;

where zR satisfies

j zR.y; s/j �
C.1C jyj6/

s4
;

which implies that

jPj;M . zR/j C j zPj;M . zR/j �
C

s4
:

In addition to this, we can write Rj .y/ in the basis generated by hk ; and Qhk as

Rj .y/ D

jX
kD0

.R�j;khk C
zR�j;k
Qhk/:

Repeating the method given in [10, Sect. D], we can find explicit formulas for the constants
R�i;j and zR�i;j . Here we give only the results:

R�0;0 D ��
�
�C

2bˇ.1C ı2/

.p � 1/2

�
;

zR�0;0 D a �
2�b.1 � ıˇ/

.p � 1/2
;

zR�2;1 D
4�.p C .p C 1/ıˇ � ı2/b2

.p � 1/4
�

�b

.p � 1/2
;

R�2;1 D
2�b2.ı C 3pˇ C 3pı2ˇ � ˇ C ı3 C ı4ˇ/

.p � 1/4
;
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zR�0;1 D
2�b2

.p � 1/4
.3ı3ˇ C .2pˇ2 C 6ˇ2 � 5/ı2 C .�7ˇ � 10pˇ/ı C 5p � 3pˇ2 C ˇ2/;

R�0;1 D �
4ˇ�b2

.p � 1/4
.2ı4 C ˇı3 C 3pı2 C ˇı C 3p � 2/;

zR�2;2 D
6�b2

.p � 1/4
¹ı3ˇ � 2ı2 � .2p C 1/ıˇ C 2pº

�
2�b3

.p � 1/6
¹3ˇ2ı6 � 12ˇı5 C .9 � 12ˇ2 � 6pˇ2/ı4 C .42pˇ C 42ˇ/ı3

C .70pˇ2 C 19p2ˇ2 � 78p � 6ˇ2/ı2

C .�98p2ˇ C 36ˇ � 74pˇ/ı � 20p C 49p2 C 18pˇ2 � 30p2ˇ2º:

We do not need to formulate constants other than these.

Expansion of � 0.s/‚.y/

We introduce

‚.y; s/ D �i
�
'0.y; s/C

a.1C iı/
p
s

�
;

where '0 and a are defined as in (12) and (11), respectively. Using Taylor expansion we
write

‚.y; s/ D �i� C �.ı � i/
y2

s

b

.p � 1/2
C a.ı � i/

1

s

C �.1 � iˇ/ı.p C 1/
y4

s2
b2

2.p � 1/4
C z‚.y; s/;

where z‚.y; s/ satisfies

j z‚.y; s/j �
C.1C jyj6/

s3
;

which yields

jPj;M .z‚/j C j zPj;M .z‚/j �
C

s3

and

� i� C �.ı � i/
y2

s

b

.p � 1/2
C a.ı � i/

1

s
C �.1 � iˇ/ı.p C 1/

y4

s2
b2

2.p � 1/4

D

�
�� C

‚�0;0

s

�
h0 C

z‚�0;0

s
Qh0 C

‚�2;0

s
h2 C

z‚�2;0

s
Qh2 CCO

�1C jyj4
s2

�
: (92)

In addition to this, we can calculate these constants and we obtain

‚�0;0 D 4.1C ı
2/ıˇ

�b

.p � 1/2
;

z‚�0;0 D �ˇ.1C ı
2/

�b

.p � 1/2
;
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z‚�2;0 D �ı
�b

.p � 1/2
;

‚�2;0 D .1C ı
2/

�b

.p � 1/2
;

z‚�2;1 D �3ı.p C 1/.�ˇ
2
C ˇı � 2/

�b2

.p � 1/4
:

In particular, we also have the following expansions of T � D ��‚ and T �� D �‚:

T � D
�
�� C

T �0;0

s

�
h0 C

zT �0;0

s
Qh0 C

T �2;0

s
h2 C

zT �2;0

s
Qh2 CCO

�1C jyj4
s2

�
;

T �� D
�
��� C

T �0;0

s

�
h0 C

zT �0;0

s
Qh0 C

T �2;0

s
h2 C

zT �2;0

s
Qh2 CO

�1C jyj4
s2

�
;

where

.T �i;j ;
zT �i;j / D ��.‚

�
i;j ;
z‚�i;j / and T ��i;j ;

zT ��i;j D �.‚
�
i;j ;
z‚�i;j /:

Finally, we aim to give the explicit form of � here: indeed, we have the following
formula from (81):

� D �
c2

�

°�
�

ıb

.p � 1/2

�
R�0;1 C .�C

zC2;2/R
�
2;1 �

zD2;0 zR
�
0;1 C

zR2;2

±
:

Using the formulas for the constants in �, we obtain

� D �
ˇ.1C ı2/

8.p � .p C 1/ıˇ � ı2/3

� ¹ı6ˇ2 C 3ı5ˇ C .3ˇ2p C 10/ı4 C .5ˇ C 18pˇ/ı3

C .2ˇ2p2 C 7ˇ2 C 10p C ˇ2p/ı2 C .�18ˇ C 18pˇ C 20p2ˇ/ı

C 10p � 2ˇ2 C 12ˇ2p2 � 2ˇ2p � 10p2º: (93)
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