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Generation of vortices in the Ginzburg–Landau heat flow

Michał Kowalczyk and Xavier Lamy

Abstract. We consider the Ginzburg–Landau heat flow on the flat two-dimensional torus, starting
from initial data with a finite number of nondegenerate zeros – but very high initial energy. We show
that the initial zeros are conserved, while away from these zeros the modulus quickly grows close
to 1, and the flow rapidly enters a logarithmic energy regime, from which the evolution of vortices
can be described by the works of Bethuel, Orlandi and Smets.

1. Introduction

In the flat two-dimensional torus T2 D R2=Z2 we consider u.t; x/, a solution of the
Ginzburg–Landau heat flow

@tu � "
2�u D .1 � juj2/u t � 0; x 2 T2;

u.0; x/ D u0.x/;
(1.1)

with u0 2 C 1.T2/. The initial condition u0 may have a finite number of zeros. More
precisely, we assume that there exists ˛0 > 0 such that

ju0.x/j C jdetru0.x/j � ˛0: (1.2)

This implies in particular that the zeros of u0 are nondegenerate and the topological degree
of the vector field u0 at each zero is 1 or �1.

We will denote the energy associated with (1.1) by

E".u/ D

Z
T2

jruj2 C
1

4"2
.1 � juj2/2:

Note that (1.1) is the L2 gradient flow of E" up to a factor "2, hence E" is decreas-
ing along the flow. The Ginzburg–Landau heat flow has been extensively studied [2, 4,
5, 10, 13, 15–17, 19] in the case of initial data u0 D u0" satisfying a logarithmic energy
bound E".u0"/ � M ln.1="/. This bound enables one to identify vortices, the zeros of
u0", and to describe their evolution. More precisely, in [10, 13, 15], well-prepared initial
data are considered, with a finite number of vortices of degree ˙1 and correspondingly
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quantized energy. These works establish via different methods that, in the accelerated
timescale s D ."2= ln.1="//t , vortices move according to the gradient flow of a renormal-
ized energy analyzed in [3], for as long as no collisions happen. This limitation is removed
in the works [5, 17, 19], where splittings and collisions of vortices are described rigor-
ously. Specifically, [17] describes the global-in-time motion of vortices, taking collisions
into account, in bounded domains with Dirichlet or Neumann boundary conditions. Initial
well-preparedness is also relaxed: initial vortices are of degree ˙1, but the energy quan-
tization assumption is less stringent; moreover, splitting of higher-degree vortices into
vortices of degree˙1 is described under specific assumptions. In [5,19], the domain is the
whole plane and a global motion law allowing for splittings and collisions is obtained, for
initial data satisfying the logarithmic bound E".u0"/ �M ln.1="/. In the case of N"� 1

initial vortices, evolution of the vortex density is described by a mean-field equation first
obtained rigorously in [12, 18].

Here we are interested in initial data that may have much higher energy, and wish to
describe the emergence of vortices. This is mentioned as an open problem in [6, Prob-
lem 5]. Our methods are strongly inspired by similar results on the emergence of sharp
transitions in the Allen–Cahn heat flow [8].

Our first main result concerns the evolution of the zeros of u.

Theorem 1.1. There exists C0 > 0, depending on u0, such that, for all " > 0 sufficiently
small (depending on u0), if Z.t/ denotes the set of zeros of u.t/, we have

#Z.t/ D #Z.0/ for 0 � t � T" WD ln
1

"
�
1

2
ln ln

1

"
� C0:

In other words, no new zeros of the vector field u.t/ are generated up to t D T". Addition-
ally, if zj .t/ is the evolution of the j th zero z0j of u0, then jzj .t/ � z0j j . "

p
ln.1="/, and

the topological degree of u.t/ at zj .t/ is preserved. Finally, at t D T" we have

ju.T"; x/j �
1

2
for dist.x;Z.0// & "

r
ln
1

"
: (1.3)

Above and throughout the paper the symbol A . B for two nonnegative quantities A,
B means that there exists a constant C > 0, depending only on u0, such that A � CB .

Remark 1.2. In Theorem 1.1 and all our statements, the dependence on u0 is through the
constant ˛0 > 0 in (1.2), and constantsK0; r0 > 0 such that kru0kL1 � K0, the cardinal
of u�10 .¹0º/ is bounded by K0, and u0 is invertible with jDu�10 j � K0 in B.z0j ; r0/, for
each zero z0j . The initial datum u0 may depend on " as long as these constants can be
chosen "-independent.

An immediate corollary of Theorem 1.1 is that, if u0 does not vanish, then u.t/ does
not vanish for 0 � t � T".

Corollary 1.3. If Z.0/ D ; then Z.t/ D ; for t 2 Œ0; T"�.
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This means that up to time T" the Ginzburg–Landau heat flow does not spontaneously
create dipoles, as happens in the Berezinsky–Kosterlitz–Thouless phase transition in sta-
tistical mechanics. If one allows the initial condition u0 to depend on ", one may however
observe creation of zeros, as in [14, Proposition 4.1]. More precisely, the construction
in [14, Proposition 4.1], adapted to our context (there " D 1), involves an initial condi-
tion u0 D u0" bounded in C 2 and such that the two components of u0 vanish along two
smooth curves passing, with parallel tangents, through two points distant at most ", so that
ju0j C jdet.ru0/j . " at these points, and ˛0 in (1.2) cannot be taken "-independent; see
Remark 1.2.

Our second main result is a logarithmic energy bound at the time t D T" given by
Theorem 1.1.

Theorem 1.4. For all sufficiently small " > 0 (depending on u0), we have

E".u.t// . ln
1

"
8t � T":

Theorem 1.4 shows that the evolution enters an energy regime where the analysis of
[4, 5, 19] can be applied. The present context is actually slightly different, because we
work on the torus T2 instead of R2, but the results of [4, 5, 19] should apply to T2, with
appropriate modifications. Conversely, the results of the present paper could be adapted to
R2, with appropriate conditions at infinity, at the price of minor technical complications.

In particular, the work [19] describes the evolution of the vortices of u as functions of
the accelerated time-variable

s D
"2

ln 1
"

t:

The vortices ak.s/ evolve according to the gradient flow of a renormalized energy W.a/,
combined with a finite number of collision or branching times. Note that in the torus T2,
the renormalized energyW.a/would be slightly different from the one considered in [19];
see [1, 7, 9]. The initial conditions for the vortices ak.s/ as s ! 0C are identified via the
jacobian Ju D det.ru/ at the initial time [6, Proposition 2]. We therefore complement
Theorem 1.4 with our third main result, which characterizes the jacobian at time t D T".
Note that, in contrast with the previous theorems, where " > 0 was small but fixed and
therefore we omitted stressing the "-dependence of u.t/ D u".t/ evolving according to
(1.1), this only concerns the limit, as "! 0, of the map u.T"/ D u".T"/.

Theorem 1.5. We have, as "! 0,

Ju.T"/ D det.ru.T"// �!
NX
jD1

Odj ız0j
;

in the sense of distributions, where z01 ; : : : ; z
0
N are the zeros of u0, and Odj 2 ¹˙1º its

topological degree at z0j .
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Now we can be more specific about the initial conditions for the later evolution of the
vortices ak.s/, as described in [6, Proposition 2]. Letting dk denote the topological degree
of u.s/ at ak.s/ for small s > 0, the initial conditions a0

k
D lims!0C ak.s/ must satisfy

LX
kD1

dkıa0
k
D

NX
jD1

Odj ız0j
:

This implies in particular that ¹a0
k
º D ¹z0j º. But the points a0

k
may not be disjoint: this

description does not prevent a priori a single initial zero z0j spontaneously splitting into
several vortices ¹akº, because at s D 0 the energy is not yet quantized (in the sense of
[19, Theorem 1.5]). In fact, initial splitting into two vortices can easily be ruled out, but it
is not clear whether splitting into three or more vortices can occur.

However, note that in the setting of Corollary 1.3, if there are no initial zeros, we can
directly conclude that no later vortices appear. A complete proof of this fact would require
adapting [6] to our torus-based setting.

The main idea of this paper is that on the timescale considered, the effect of diffusion
in the Ginzburg–Landau equation is dominated by the nonlinear effect. This means that
the modulus of any initial data instantaneously (on the fast timescale s D "2t=.ln 1="/)
approaches 1, except possibly on small regions where the initial data is close to 0. The
methods are elementary and provide explicit pointwise estimates on u.t;x/, which directly
imply the stated results. To control diffusive effects, the key tool is Lemma 2.2, which is
a type of Gronwall inequality (new to the best of our knowledge). The organization of the
paper follows that of the presentation of the results, which are proven in the same order in
consecutive sections.

2. Zeros of u: Proof of Theorem 1.1

Denote by ˆWR �R2 ! R2 the flow of the ODE y0 D .1 � jyj2/y, that is,

@tˆ D .1 � jˆj
2/ˆ; ˆ.0;X/ D X;

given explicitly by

ˆ.t; X/ D
etXp

1C jX j2.e2t � 1/
: (2.1)

We want to estimate how far u is from

v.t; x/ D ˆ.t; g.t; x//

for some well-chosen map g with g.0;x/D u0.x/. To this end we definewD e�t .u� v/,
so that

u D v C etw:
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Using the equations satisfied by u and ˆ we obtain

@tw � "
2�w D �2.v � w/v � jvj2w � e�tN .v; etw/ � e�tR; (2.2)

N .v;X/ D jX j2v C 2.v �X/X C jX j2X;

R D @tv � "
2�v � .1 � jvj2/v

D Dˆ.t; g/.@tg � "
2�g/ � "2D2ˆ.t; g/rg � rg:

In view of (2.2), it is natural to choose, as in [8], g.t/ D e"
2t�u0, that is, g solves

@tg � "
2�g D 0; g.0; x/ D u0.x/;

and therefore
R D �"2D2ˆ.t; g/rg � rg: (2.3)

The rest of the article is devoted to obtaining good pointwise estimates on etw D u � v.

Lemma 2.1. If w solves

@tw � "
2�w D �2.v � w/v � jvj2w C F; t > 0; x 2 �;

with w.0; x/ D 0, then

kw.t/kL1 �

Z t

0

kF.s/kL1 ds:

Proof. Multiplying the equation by w=jwj we obtain

@t jwj D "
2 w

jwj
��w � jvj2jwj � 2

.v � w/2

jwj
C F �

w

jwj

� "2
w

jwj
��w C jF j

� "2�jwj C jF j;

so by the comparison principle we have jwj � �, where � solves @t� � "2�� D jF j and
�.0; x/ D 0, that is, �.t/ D

R t
0
e"
2.t�s/�jF.s/j ds, where et� denotes the heat semigroup

on the torus T2. Since the L1-norm is nonincreasing under the action of that semigroup,
we deduce the announced bound.

We apply Lemma 2.1 to our map w and F D�e�tN .v; etw/� e�tR. We have jgj �
ju0j . 1, so jvj . 1 and jN .v;X/j . jX j2 for jX j . 1 (we will apply this to X D etw D
u � v). Thus we obtain

ketw.t/kL1 .
Z t

0

e.t�s/kesw.s/k2L1 ds C

Z t

0

et�skR.s/kL1 ds: (2.4)

Recall that
R D �"2D2ˆ.t; g/rg � rg;
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and jrgj � jru0j . 1, hence

kR.t/k1 . "2 sup
jX j.1

jD2ˆ.t; X/j:

Direct calculation gives

jD2ˆ.t; X/j .
et jX j.e2t � 1/

.1C jX j2.e2t � 1//3=2

D et .e2t � 1/1=2
.jX j2.e2t � 1//1=2

.1C jX j2.e2t � 1//3=2

. et .e2t � 1/1=2;

so Z t

0

et�skR.s/kL1 ds . "2et
Z t

0

.e2s � 1/1=2 ds

. "2et .e2t � 1/1=2;

where we have usedZ t

0

.e2s � 1/1=2 ds D

Z .e2t�1/1=2

0

x2

1C x2
dx

D .e2t � 1/1=2 � arctan..e2t � 1/1=2/

� .e2t � 1/1=2:

Plugging this into (2.4) we deduce

ketw.t/kL1 .
Z t

0

e.t�s/kesw.s/k2L1 ds C "
2et .e2t � 1/1=2: (2.5)

Lemma 2.2. Assume f , h are continuous positive functions on .0;1/ satisfying

lim sup
t&0

f .t/

h.t/
� 1

and f .t/ � c

Z t

0

et�sf .s/2 ds C h.t/ 8t > 0;

for some constant c > 0. If T > 0 is such that

sup
0<t<T

Z t

0

et�s
h.s/

h.t/
h.s/ ds �

1

8c
;

then
f .t/ � 2h.t/ 8t 2 .0; T /:

If in addition h is nondecreasing, it suffices to check thatZ T

0

eT�sh.s/ ds �
1

8c
:
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Proof. For all t > Qt > 0 we have

f .Qt /

h.Qt /
� c

Z Qt
0

e
Qt�s
�f .s/
h.s/

�2 h.s/
h.Qt /

h.s/ ds C 1

� c

Z Qt
0

e
Qt�s h.s/

h.Qt /
h.s/ ds ‚.t/2 C 1

�
1

8
‚.t/2 C 1;

where

‚.t/ D sup
0<s<t

f .s/

h.s/
:

Taking the supremum over 0 < Qt < t we deduce that

‚.t/ �
1

8
‚.t/2 C 1 8t 2 .0; T /;

so ‚ takes values into®
x 2 RW x

2

8
� x C 1 � 0

¯
D .�1; 4 � 2

p
2� [ Œ4C 2

p
2;C1/:

Since ‚ is continuous on .0; T / and ‚.0C/ � 1 < 4 � 2
p
2, we deduce that ‚.t/ �

4 � 2
p
2 � 2 for all t 2 .0; T /.

We apply Lemma 2.2 to

f .t/ D ketw.t/kL1 ; h.t/ D A"2et .e2t � 1/1=2;

whereA� 1 is the constant hidden in the sign . in (2.5). By Lemma 2.1, applied tow and
F D �e�tN .v; etw/ � e�tR which satisfies jF j . 1 for 0 < t < 1, the map w satisfies
ketw.t/kL1 . t for 0 < t < 1 so lim sup0C.f =h/D 0, and thanks to (2.5) we deduce that

ketw.t/kL1 . "2et .e2t � 1/1=2 for 0 � t � T D ln 1
"
� ln.16A2/; (2.6)

since h is nondecreasing, and for this value of T we have

8A

Z T

0

eT�sh.s/ ds � 8A2"2e2T �
1

2
:

Estimate (2.6) tells us that u is close to v. Note in particular that (2.6) is valid up to
t D ln .1="/ � 1

2
ln ln .1="/ if " is small enough. From (2.6) we also deduce a bound on

rw, using equation (2.2) again.

Lemma 2.3. If w solves @tw � "2�w D G with w.0/ D 0 in the torus T2, then we have

krw.t/kL1 .
1

"

Z t

0

kG.s/kL1
p
t � s

ds:
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Proof. We can consider w and G as periodic maps defined on R2; then w is given by the
Duhamel formula

w.t/ D

Z t

0

H"
p
t�s �G.s/ ds;

where the convolution is on R2 andHı.x/D ı�2H.x=ı/,H.x/D .4�/�1e�jxj
2=4. There-

fore, we have

krw.t/kL1 .
Z t

0

krH"
p
t�skL1kG.s/kL1 ds;

and the estimate follows from

krH"
p
t�skL1 .

1

"
p
t � s

krHkL1 :

Applying Lemma 2.3 to equation (2.2) satisfied by w and noting that the choice of T
in (2.6) ensures that the right-hand side G of (2.2) satisfies

jGj . kwkL1 C "2.e2t � 1/1=2 . "2.e2t � 1/1=2;

we obtain

krwkL1 .
1

"

Z t

0

"2.e2s � 1/1=2
p
t � s

ds . "
p
t .e2t � 1/1=2 (2.7)

for all t � T D ln .1="/ � ln.16A2/.
All assertions of Theorem 1.1 will follow from the bounds (2.6)–(2.7) on etw D u� v

and the explicit expression of v D ˆ.t; g/. First, we need to gather some information on
g.t/ WD g.t; �/ D e"

2t�u0. To that end we use the nondegeneracy assumption (1.2). It
implies that u0 has a finite number of zeros, all of degree˙1. We denote

¹u0 D 0º D
®
z01 ; : : : ; z

0
N

¯
:

Since g.t;x/D Qg."2t; x/, where Qg.Qt /D eQt�u0 is C 1 in Œ0;1/�T2, we deduce that there
exist t0, ˇ0, r0 > 0 such that, for all t � t0="2,

jg.t/j C jdet.rg.t//j �
˛0

2
;

jg.t; x/j � ˇ0 for dist.x; ¹z0j º/ � r0;

g.t/ is invertible and jrg.t/�1j . 1 on B.z0j ; r0/:

In each disk B.z0j ; r0/, the map g.t/ has exactly one zero Ozj .t/, so

¹g.t/ D 0º D
®
Oz1.t/; : : : ; OzN .t/

¯
;

and we have
dist. �; ¹Ozj .t/º/ . jg.t; � /j . dist. �; ¹Ozj .t/º/: (2.8)
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Thanks to the implicit function theorem, the maps t 7! Ozj .t/ are C 1, and

d

dt
Ozj .t/ D �rg.t; Ozj /

�1@tg.t; Ozj /;

hence ˇ̌̌ d
dt
Ozj

ˇ̌̌
. k@tgk1 . "2k�gkL1 :

Viewing g and u0 as periodic maps defined on R2, g is given by the formula

g.t/ D H"
p
t � u0;

where the convolution is on R2 and Hı.x/ D ı�2H.x=ı/, H.x/ D .4�/�1e�jxj
2=4, so

k�gkL1 � krH"
p
tkL1kru0kL1 .

1

"
p
t
;

and we infer ˇ̌̌ d
dt
Ozj

ˇ̌̌
.

"
p
t
; jzj .t/ � z

0
j j . "

p
t : (2.9)

Next we combine these properties of g.t/ with the explicit expression v D ˆ.t; g/ and
the bounds (2.6)–(2.7) on etw D u � v to obtain the desired properties on u. We denote
by C > 0 a generic constant depending on u0 and which may change from line to line.
We start by bounding the modulus juj from below: using (2.1) and (2.6) we obtain, for
0 � t � ln.1="/ � C ,

juj � jvj � et jwj �
et jgjp

1C jgj2.e2t � 1/
� C"2e2t

�
1

2
min.et jgj; 1/ � C"2e2t :

The last quantity is positive whenever et jgj � 1 and e2t < 1=.2C"2/, or et jgj � 1 and
jgj2 > 2C"2. Hence we deduce that

juj > 0 in
®
jgj � C"

¯
for 0 � t � ln 1

"
� C :

In the case without initial zeros, this proves in particular Corollary 1.3. Moreover, com-
bining this with (2.8) we have ju.t/j > 0 outside the disks B. Ozj .t/; C "/. By homotopy
invariance of the topological degree, u.t/must have at least one zero zj .t/2B. Ozj .t/;C "/.
Next we verify that this zero is unique.

Recall that g.t/ is invertible on B.z0; r/, and maps B.zj .t/; C "/ into B.0; K"/, for
some constantK depending on u0, thanks to (2.8). The flow map ˆ.t/D ˆ.t; �/ is invert-
ible from B.0;K"/ onto B.0;R/ given by R D ŷ .t;K"/, with inverse ˆ.t/�1 D ˆ.�t /.
Here, ŷ .t; r/ D jˆ.t; rei� /j for any r > 0 and � 2 R.
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Therefore, v.t/ D ˆ.t/ ı g.t/ is invertible on B.zj .t/; C "/, and

sup
v.B. Ozj .t/;C"//

jrv.t/�1j . sup
jX j� ŷ .t;K"/

jrˆ.�t; X/j:

For t � ln .1="/ � C we have

ˆ.t;K"/ D
etK"p

1CK2"2.e2t � 1/
� etK" �

1

2
;

provided C is large enough, and, for jX j � 1=2,

rˆ.�t; X/ D
e�tp

1 � jX j2.1 � e�2t /

�
I C

1 � e�2t

1 � jX j2.1 � e�2t /
X ˝X

�
;

so we infer
sup

v.B. Ozj .t/;C"//

jrv.t/�1j . e�t :

We use this to show that u.t/ is injective on B. Ozj .t/;C "/. Since the equation y D u.x/D
v.x/C etw.x/ is equivalent to x D v�1.y � etw.x//, it suffices to check that the map
F W x 7! v�1.y � etw.x// is a contraction on B. Ozj .t/; C "/, for jyj < ı. Here, ı > 0 is a
small constant such that v�1 is well defined onB.0;2ı/. Thanks to (2.6) we have jetwj � ı
provided C is large enough, and

sup
B. Ozj .t/;C"/

jrF j . e�tketrwk1 . krwk1:

Since krwk1 . "
p
tet thanks to (2.7), we deduce that F is a contraction for

0 � t � T" D ln 1
"
�
1
2

ln ln 1
"
� C0;

if the constant C0 is large enough, depending on u0. By the above discussion this shows
that u.t/ is injective on B. Ozj .t/; C "/, and

¹u.t/ D 0º D ¹z1.t/; : : : ; zN .t/º;

for some zj .t/ 2B. Ozj .t/;C "/. This proves Theorem 1.1, except for its last assertion (1.3).
To verify (1.3), we note that (2.6) ensures ju� vj D jetwj � 1=4 for t D T", so it suffices
to check that jv.T"; x/j � 3=4 for dist.x; ¹z0j º/ & "

p
ln.1="/. We have

jv.T"/j D
eT" jgjp

1C jgj2.e2T" � 1/
D

1p
1C .1 � jgj2/e�2T" jgj�2

D
1q

1C .1 � jgj2/eC0
�
"
p

ln.1="/
g

�2 :
If jgj � M"

p
ln.1="/ for some large enough M > 0, we deduce jv.T"/j � 3=4. Thanks

to (2.8) this implies that jv.T"; x/j � 3=4 for dist.x; ¹z0j º/& "
p

ln.1="/ and concludes the
proof of Theorem 1.1.
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3. Energy of u: Proof of Theorem 1.4

First, we obtain more precise estimates forw away from the bad disksB.z0j ;C"
p

ln.1="//.
To this end we localize the equation by setting

zw D �2w;

for some appropriate smooth cutoff function 0 � �.x/ � 1, to be chosen later. From equa-
tion (2.2) satisfied by w we deduce

@t zw � "
2� zw D �2.v � zw/v � jvj2 zw � e�t�2N .v; etw/ � e�t�2R

� "2.��2/w � 2"2r�2 � rw: (3.1)

Applying Lemma 2.1 to equation (3.1) satisfied by zw, and using (2.6)–(2.7) to estimate
the two last terms, we deduce

ket zwkL1 .
Z t

0

et�skes zwk2L1 ds C

Z t

0

et�sk�2R.s/kL1 ds

C ."
p
tkr�kL1 C "

2
kr

2�kL1/"
2et .e2t � 1/1=2

for all t � ln.1="/ � C . Applying Lemma 2.2 we therefore have

ket�2wkL1 .
Z t

0

et�sk�2R.s/kL1 ds

C ."
p
tkr�kL1 C "

2
kr

2�kL1/"
2et .e2t � 1/1=2; (3.2)

provided t � ln.1="/ � C and "
p
tkr�kL1 C "

2kr2�kL1 � 1. Using properties (2.8)
of g, the fact that j Ozj .t/ � z0j j . "

p
ln.1="/ for t � ln.1="/ thanks to (2.9), and letting

D.x/ D dist.x; ¹z0j º/;

we have
D . jgj . D in

®
D �M"

p
ln .1="/

¯
;

for t � ln.1="/. Here, M > 0 is a large constant that depends only on u0. More pre-
cisely, it suffices to chooseM such that 2j Ozj .t/� z0j j �M"

p
ln.1="/, which implies that

D=2� dist.�; Ozj .t//� 3D=2 in ¹D �M"
p

ln.1="/º. Since jrgj. 1, recalling the explicit
formulas (2.3) and (2.1) we deduce

jRj . "2
et jgj.e2t � 1/

.1C jgj2.e2t � 1//3=2

. "2et .e2t � 1/
D

.1C C�2D2.e2t � 1//3=2
;
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in ¹D � M"
p

ln.1="/º for t � ln.1="/ � C . Therefore, choosing cutoff functions � sat-
isfying

12��D�3� � � � 1��D�4�; jr�j .
1

�
; jr2�j .

1

�2
;

for some � & "
p

ln.1="/, from (3.2) we infer

jetwj . "2etD

Z t

0

e2s � 1

.1C C�2D2.e2s � 1//3=2
ds

C
"

D

p
1C t"2et .e2t � 1/1=2 (3.3)

in ¹D �M"
p

ln.1="/º for t � ln.1="/ � C and " small enough.
For any ˛ 2 .0; 1=2/ we haveZ t

0

e2s � 1

.1C ˛2.e2s � 1//3=2
ds

D
1

˛2

Z .1C˛2.e2t�1//1=2

1

.x2 � 1/

x2.x2 � 1C ˛2/
dx �

1

˛2

Z 1
1

dx

x2
;

thanks to the change of variable x D .1C ˛2.e2s � 1//1=2. Hence, taking C large enough
that D=C < 1=2, from (3.3) we deduce

1

"
jetwj . "et

p
1C t

D
(3.4)

in ¹D � M"
p

ln.1="/º for t � ln.1="/ � C and " small enough. Using Lemma 2.3 and
(3.4) to estimate the right-hand side of (3.1), we also obtain gradient bounds

et jrwj . "et
p
t

p
1C t

D
(3.5)

in ¹D �M"
p

ln.1="/º for t � ln.1="/ � C and " small enough.
Next we refine these estimates by including the effect of the second term �jvj2 zw in

the right-hand side of (3.1). We choose as above a cutoff function � supported in ¹� �
D � 4�º, with jr�j . ��1 and jr2�j . ��2, for some � � M"

p
ln .1="/. Combining

(2.6)–(2.7) and (3.4)–(3.5) to bound the two last terms in (3.1), we have

@t zw � "
2� zw D �2.v � zw/v � jvj2 zw C zF ; (3.6)

j zF j . e�tket zwk2L1 C e
�t
k�2RkL1

C
"3

�

p
1C t min

�p1C t
�

; .e2t � 1/1=2
�
:

Arguing as in the proof of Lemma 2.1 but retaining the second term in the right-hand side
of (3.6), we have

@t j zwj C jvj
2
j zwj � "2�j zwj � j zF j:
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In the support of � we have

jvj2 D
e2t jgj2

1C jgj2.e2t � 1/
D 1 �

1 � jgj2

1C jgj2.e2t � 1/

� max
�
1 �

e�2t

C 2�2
; 0
�
I

hence

@t j zwj Cmax
�
1 �

e�2t

C 2�2
; 0
�
j zwj � "2�j zwj � j zF j:

We rewrite this as
@te

h.t/
j zwj � "2�eh.t/j zwj � eh.t/j zF j;

where

h.t/ D

Z t

0

max
�
1 �

e�2t

C 2�2
; 0
�
ds

D

8<:0 for 0 < t < t�;

t � t� �
1

2C 2�2
.e�2t � e�2t�/ for t > t�;

where t� D ln.1=.C�// is such that 1 � e�2t�=.C 2�2/ D 0. Arguing again as in Lem-
ma 2.1 we deduce

k zw.t/kL1 �

Z t

0

eh.s/�h.t/k zF .s/kL1 ds

D

Z t�

0

k zF .s/kL1 ds

C

Z t

t�

es�te
1

2C2�2
.e�2t�e�2s/

k zF .s/kL1 ds

�

Z t�

0

k zF .s/kL1 ds C C

Z t

t�

es�tk zF .s/kL1 dsI

hence, from the bound on zF in (3.6), and estimating the term �2R exactly as before
(because the worst term in (3.6) is the last one anyway),

ket zw.t/kL1 .
Z t

0

et�skes zw.s/k2L1 ds C

Z t

0

et�sk�2R.s/kL1 ds

C
"3

�
et
Z t�

0

p
1C s.e2s � 1/1=2 ds C

"3

�2

Z t

t�

.1C s/es ds

.
Z t

0

et�skes zw.s/k2L1 ds C
"2

�
et C

"3

�2
et .1C t /:

Applying Lemma 2.2 we obtain

1

"
jetwj . "et

1C ."=D/.1C t /

D
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and, with the help of Lemma 2.3, the gradient bound

jetrwj . "et
p
t
1C ."=D/.1C t /

D
:

These bounds are valid in ¹D �M"
p

ln.1="/º for t � ln.1="/ � C and " small enough.
Using Z

¹D�M"
p

ln .1="/º

1C ."2=D2/.1C t /2

D2
dx

.
Z 1

"
p

ln .1="/

dr

r
C "2.1C t /2

Z 1

"
p

ln .1="/

dr

r3
. ln

1

"
;

and u � v D etw, we deduce the energy boundsZ
¹D�M"

p
ln .1="/º

ju � vj2

"2
dx . "2e2t ln

1

"
;Z

¹D�M"
p

ln .1="/º
jru � rvj2 dx . "2e2t t ln

1

"
;

and, using (2.6)–(2.7) to estimate the contributions from ¹D . "
p

ln.1="/º,Z
�

�
jru � rvj2 C

ju � vj2

"2

�
dx . "2e2t t ln

1

"
: (3.7)

Note that this upper bound is . ln.1="/ at t D T" � ln.1="
p

ln.1="//. Next we derive
energy bounds for v. We have

1 � jvj2 D 1 �
e2t jgj2

1C jgj2.e2t � 1/
D

1 � jgj2

1C jgj2.e2t � 1/

�
1

1C jgj2.e2t � 1/
;

and since jgj is of the same order as dist.�; ¹Ozj .t/º/ thanks to (2.8) we deduce

1

"2

Z
�

.1 � jvj2/2 dx �
1

"2

Z
�

1

.1C jgj2.e2t � 1//2
dx

.
1

"2

Z 1

0

1

.1C C�2r2.e2t � 1//2
r dr

.
1

"2
1

e2t � 1
:

We also have

jrvj D jDXˆ.t; g/rgj .
et

.1C jgj2.e2t � 1//1=2
I
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hence Z
�

jrvj2 . e2t
Z 1

0

1

1C C�2r2.e2t � 1/
r dr

.
e2t

e2t � 1
ln.1C C�2.e2t � 1//:

Gathering the above and recalling T" D ln.1="/ � 1
2

ln ln.1="/ � C0, we obtainZ
�

�
jrvj2 C

1

"2
.1 � jvj2/2

�
dx . ln

1

"
at t D T":

Combining this with the bounds (3.7) concludes the proof of Theorem 1.4.

4. Jacobian of u: Proof of Theorem 1.5

Define u".x/ D u.T"; x/, where T" D ln.1="/� .1=2/ ln ln.1="/� C0 for a large enough
constant C0. We consider the jacobian

Ju" D det.ru"/;

and show, as "! 0, the convergence

Ju" ! �

NX
jD1

Odj ız0j
; (4.1)

in the sense of distributions, where Odj 2 ¹˙1º is the topological degree of u0 at z0j .
Note that one can check, by direct calculation, that Jv.T"/ converges to this sum of

Dirac masses. But the bounds we have obtained on etwD u� v are not enough to directly
infer (4.1). Instead, we invoke the compactness result of [11, Theorem 3.1]: thanks to the
energy bound

E".u"/ . ln
1

"
;

there exists a sequence "n ! 0, integers Qdk 2 Z n ¹0º, and distinct points ak 2 T2 such
that

Ju"n ! �

MX
kD1

Qdkıak :

We show next that we must haveM DN , ¹akº D ¹z0j º, without loss of generality aj D z0j
for j D 1; : : : ; N , and Qdj D Odj . Therefore, the limit is unique and this proves (4.1).

First, we prove that ¹akº � ¹z0j º. This is a consequence of the bounds obtained above
on the map u, and the fact that the limit of Ju" provides a lower bound forE".u"/= ln.1="/
[11, Theorem 4.1]. By that lower bound, for any ı > 0 we must have

E"n.u"n IB.ak ; ı// � �jdkj ln
1

"n
C o

�
ln
1

"n

�
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as n!1. Note that jdkj � 1. Therefore, to show that ¹akº � ¹z0j º it suffices to obtain
an upper bound of the form

E".u"IB.a; ı// �
�

2
ln
1

"
for "� 1;

for any a … ¹z0j º and some ı > 0. Recall that we have u D v C etw, and the pointwise
bounds from Section 3,

jrvj2 C
1

"2
.1 � jvj2/2 .

1

1CD2e2t

�
e2t C

1

"2
1

1CD2e2t

�
;

jretwj2 C
1

"2
jetwj2 . "2e2t

t2

D2
;

in ¹D � C" ln1=2.1="/º and for 1 � t � ln.1="/ � C0.
For t D T" D ln.1="/ � .1=2/ ln ln.1="/ � C0, we deduce

jruj2 C
1

"2
.1 � juj2/2 .

1C ."=D/2e4C0 ln2.1="/C e�2C0 ln.1="/
D2

;

in ¹D �C" ln1=2.1="/º. Hence at time t D T", for any ı� " ln.1="/ and for dist.a;¹z0j º/�
4ı, we have

E".u"IB.a; ı// . 1C
�"
ı

�2
e4C0 ln2

1

"
C e�2C0 ln

1

"
�
�

2
ln
1

"
;

for "� 1, provided C0 is chosen large enough. By the above discussion, this implies that
¹akº � ¹z

0
j º.

Therefore, we may write

Ju"n ! �

NX
jD1

Qdj ız0j
; (4.2)

where Qdj 2 Z. Here we allow the possibility that Qdj D 0 because we have not yet proven
that ¹z0j º � ¹akº. To prove (4.1), it suffices to show that Qdj D Odj . To that end, note that
for all small " > 0 we have

1

�

Z
B.z0j ;r/

det.ru"/ D deg.u"; @B.z0j ; r// D Odj

for any small r > 0 and j D 1; : : : ; N . This is because t 7! u.t/ is smooth and u.t/ does
not vanish on @B.z0j ; r/ for small " > 0 and all t 2 Œ0; T"�, so the degree of u" D u.T"/ is
equal to the degree of u0 D u.0/, which is Odj by definition. Therefore, testing (4.2) with a
test function ' � 1B.z0j ;r/, we obtain Qdj � Odj , hence Qdj D Odj because these are integers.
This concludes the proof of (4.1).
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