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Nonlinear modulational dynamics of spectrally stable
Lugiato–Lefever periodic waves

Mariana Haragus, Mathew A. Johnson, Wesley R. Perkins, and
Björn de Rijk

Abstract. We consider the nonlinear stability of spectrally stable periodic waves in the Lugiato–
Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that arises in nonlin-
ear optics. So far, nonlinear stability of such solutions has only been established against co-periodic
perturbations by exploiting the existence of a spectral gap. In this paper, we consider perturba-
tions which are localized, i.e., integrable on the line. Such localized perturbations naturally yield
the absence of a spectral gap, so we must rely on a substantially different method with origins in
the stability analysis of periodic waves in reaction–diffusion systems. The relevant linear estimates
have been obtained in recent work by the first three authors through a delicate decomposition of the
associated linearized solution operator. Since its most critical part just decays diffusively, the non-
linear iteration can only be closed if one allows for a spatio-temporal phase modulation. However,
the modulated perturbation satisfies a quasilinear equation yielding an apparent loss of regularity.
To overcome this obstacle, we incorporate tame estimates on the unmodulated perturbation, which
satisfies a semilinear equation in which no derivatives are lost, yet where decay is too slow to close
an independent iteration scheme. We obtain nonlinear stability of periodic steady waves in the LLE
against localized perturbations with precisely the same decay rates as predicted by the linear theory.

1. Introduction

We consider the nonlinear stability and asymptotic behavior of periodic steady waves in
the Lugiato–Lefever equation (LLE)

@t D �iˇ xx � .1C i˛/ C ij j2 C F; (1.1)

with parameters ˛; ˇ 2 R and F > 0. The unknown  D  .x; t/ in (1.1) is a complex-
valued function depending on the temporal variable t 2 R and the spatial variable x 2 R.
The LLE was derived in 1987 from Maxwell’s equations in [22] as a model to study
pattern formation within the optical field in a dissipative and nonlinear cavity filled with a
Kerr medium and subjected to a continuous laser pump. In that context,  .x; t/ represents
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the field envelope, ˛ > 0 is a detuning parameter, jˇj D 1 is a dispersion parameter, and
F > 0 represents a normalized pump strength. Note that the case ˇ D 1, corresponding
to a defocusing nonlinearity, is referred to as the “normal” dispersion case while ˇ D �1,
corresponding to a focusing nonlinearity, is referred to as the “anomalous” dispersion
case. More recently, the LLE has become a model for high-frequency combs generated
by microresonators in periodic optical waveguides, and as such has become the subject of
intense study in the physics literature; see, for example, [3] and references therein.

Until recently, however, there have been relatively few mathematically rigorous stud-
ies of the Lugiato–Lefever equation (1.1). The main mathematical questions raised by
the physical problem concern the existence, dynamics, and stability of both periodic and
localized stationary solutions. Obtaining periodic stationary solutions  .x; t/ D �.x/ of
the LLE (1.1) boils down to finding periodic solutions of the associated profile equation

iˇ�00 D �.1C i˛/� C ij�j2� C F: (1.2)

This has been carried out using a variety of methods, including local bifurcation theory [5,
6, 9, 25], global bifurcation theory [23], and perturbative arguments [10]. Clearly, such
solutions are smooth as (1.2) corresponds to a spatial dynamical system in � with smooth
nonlinearity.

In this work, we are interested in the nonlinear stability of these periodic steady waves
against small perturbations which are localized, i.e., are integrable on the line, comple-
menting the linear stability analysis carried out in [11]. To this end, let � be a T -periodic
stationary solution of the LLE (1.1) and decompose � D �r C i�i into its real and imag-
inary parts. We capture the local dynamics about � by considering the perturbed solution
 .x; t/ D �.x/C Qv.x; t/ of (1.1). Writing the perturbation as Qv D Qvr C i Qvi , we find that
the real functions Qvr and Qvi satisfy the system

@t

�
Qvr
Qvi

�
D AŒ��

�
Qvr
Qvi

�
CN . Qv/; (1.3)

where here N . Qv/ is at least quadratic in Qv and AŒ�� is the matrix differential operator

AŒ�� D �I C JLŒ��; (1.4)

with

J D

�
0 �1

1 0

�
; LŒ�� D

�
�ˇ@2x � ˛ C 3�

2
r C �

2
i 2�r�i

2�r�i �ˇ@2x � ˛ C �
2
r C 3�

2
i

�
:

1.1. Spectral stability assumptions

Naturally, the local dynamics of (1.1) about the periodic steady wave � are heavily influ-
enced by the spectrum of the linearization AŒ��. As we are considering localized per-
turbations, we consider AŒ�� as a linear differential operator on the Hilbert space L2.R/
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with dense domainH 2.R/.1 Since AŒ�� has periodic coefficients, standard Floquet–Bloch
theory implies that its spectrum as an operator acting on L2.R/ is entirely essential and
comprised of a countable union of continuous curves which, thanks to the spatial transla-
tion invariance of (1.1), necessarily touches the imaginary axis at the origin. This spectral
feature makes the stability analysis for localized perturbations significantly different and
more challenging than for two other types of perturbations which are naturally consid-
ered for periodic waves, namely co-periodic perturbations, which are periodic with period
equal to that of the steady wave, and subharmonic perturbations, whose period is an integer
multiple of the period of the background wave. The spectrum associated with co-periodic
and subharmonic perturbations is discrete and the translational eigenvalue at the origin can
be separated from the rest of the spectrum. Yet, in our setting of localized perturbations,
the best one can hope for is that the spectrum is confined to the open left half-plane except
for a single critical curve touching the origin in a quadratic tangency, which leads to the
following definition.

Definition 1.1. Let T > 0. A smooth T -periodic stationary solution � of (1.1) is said to
be diffusively spectrally stable provided the following conditions hold:

(i) the spectrum of the linear operator AŒ�� given by (1.4) and acting on L2.R/
satisfies

�.AŒ��/ �
®
� 2 C W <.�/ < 0

¯
[
®
0
¯
I

(ii) there exists � > 0 such that for any � 2 Œ��=T; �=T / the spectrum of the Bloch
operator A� Œ�� WDM�1

�
AŒ��M� , acting on L2per.0; T /, satisfies

<�.A� Œ��/ � ���
2;

where here M� denotes the multiplication operator .M�f /.x/ D ei�xf .x/;

(iii) � D 0 is a simple eigenvalue of the Bloch operator A0Œ��, and the derivative
�0 2 L2per.0; T / of the periodic wave is an associated eigenfunction.

Since the pioneering work of Schneider [30–32], the above spectral stability assump-
tion has been standard in the analysis of periodic traveling or steady waves in dissipative
systems. It has been shown [7,13,14,29] to imply important properties regarding the non-
linear dynamics against localized, or general bounded, perturbations, including long-time
dynamics of the associated modulation functions. Moreover, extensions of this to systems
with more symmetries (hence more spectral curves passing through the origin) are regu-
larly used; see, for example, [1, 15].

The existence of diffusively spectrally stable periodic steady waves in the LLE (1.1)
was established in [6] using local bifurcation theory. Such waves were found in parameter
regimes of anomalous dispersion, which were investigated in the original work of Lugiato
and Lefever [22]; see Remark 1.2 below for further details.

1Throughout, we will suppress the co-domain and simply write L2.R/ or H 2.R/ instead of
L2.R;C2/ or H 2.R;C2/, and similarly for all other Lebesgue or Sobolev spaces.
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Remark 1.2. Let ˇ D �1 and fix ˛ < 41=30 in (1.1). Upon setting F 21 D .1 � ˛/
2 C 1,

it was shown in [6] that there exists �0 > 0 such that for any � 2 .0; �0/ the LLE (1.1)
has at parameter value F 2 D F 21 C � an even periodic and smooth steady solution with
Taylor expansion

��.x/ D �
�
C
3.˛ C i.2 � ˛//

F1
p
41 � 30˛

cos.
p
2 � ˛x/

p
�CO.�/;

where �� 2 R satisfies the algebraic equation

.1C i˛/� � i�j�j2 D F1:

These solutions are T -periodic with period T D 2�=
p
2 � ˛, and are diffusively spectrally

stable in the sense of Definition 1.1. We note that ˛c D 41=30 was already identified as
an instability threshold in the original work of Lugiato and Lefever [22].

1.2. Main result

We state our main result, which establishes nonlinear stability of diffusively spectrally
stable periodic steady waves in the LLE (1.1) against localized perturbations.

Theorem 1.3. Let T > 0 and suppose � is a smooth T -periodic steady solution of (1.1)
that is diffusively spectrally stable.2 Then there exist constants ";M > 0 such that, when-
ever v0 2 L1.R/ \H 4.R/ satisfies

E0 WD kv0kL1\H4 < ";

there exist functions

Qv; 
 2 C.Œ0;1/;H 4.R// \ C 1.Œ0;1/;H 2.R//;

with Qv.0/ D v0 and 
.0/ D 0 such that  .t/ D � C Qv.t/ is the unique global solution
of (1.1) with initial condition  .0/ D � C v0, and the inequalities

max
®
k .t/ � �kL2 ; k
.t/kL2

¯
�ME0.1C t /

� 14 ;

and

max
®
k .� � 
.�; t /; t/ � �kL2 ; k@x
.t/kH3 ; k@t
.t/kH2

¯
�ME0.1C t /

� 34 ;

hold for all t � 0.

Theorem 1.3 is the first nonlinear stability result for T -periodic steady waves in the
LLE (1.1) against localized perturbations. So far, nonlinear (in)stability of such solutions
has only been established against co-periodic perturbations with the aid of standard orbital
stability techniques, which exploit the presence of a spectral gap and lead to exponential
decay of the perturbed solution to a time-dependent phase modulation of the periodic
wave; see [5, 25, 26, 33].3 In contrast, Theorem 1.3 establishes algebraic decay of the

2These hypotheses on � are made throughout the whole paper.
3The extension of these works toNT -periodic, i.e., subharmonic, perturbations with arbitrary but fixed

N > 1, however, is straightforward.
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perturbed solution to a spatio-temporal phase modulation of the underlying wave. That is,
if  is a solution of (1.1) which is initially close in L1.R/\H 4.R/ to the periodic steady
wave �, then there exists a phase function 
.x; t/ such that for large time  should behave
approximately like

 .x; t/ � �.x/C 
.x; t/�0.x/ � �.x C 
.x; t//; t � 1: (1.5)

We note that linear stability of periodic steady waves in the LLE against localized
perturbations has been established in preliminary work by the first three authors; see [11]
and Section 3.3. Comparing the linear and nonlinear results one finds that the algebraic
decay rates in Theorem 1.3 are optimal in the sense that they coincide with the sharp
rates obtained in the linear result in [11]. On the other hand, Theorem 1.3 has stronger
regularity assumptions than the linear result in [11]. The choice of regularity is an artifact
of our method and is motivated in Remark 4.10. While we expect that it is possible to
allow for less regular initial data, we emphasize that the focus of this paper is not to obtain
optimal regularity with respect to localized perturbations, but rather to introduce a working
scheme.

The absence of a spectral gap in our case of localized perturbations renders our
approach to proving Theorem 1.3 substantially different from those for co-periodic or sub-
harmonic perturbations. We rely on the methodologies developed by Johnson et al. for the
nonlinear stability analysis of periodic traveling waves in reaction–diffusion systems and
systems of viscous conservation laws; see [13, 15, 18–20]. The relevant linear estimates
have already been obtained in [11] by decomposing the linear solution operator eAŒ��t

in a high-frequency part, exhibiting exponential decay, and a low-frequency part, which
decays algebraically and accounts for the critical translational mode. However, the non-
linear analyses in the aforementioned works of Johnson et al. seem to not fully extend to
the current setting of the LLE. In particular, standard techniques exploiting total parabol-
icity of the equation are seemingly not available to compensate for an apparent loss of
derivatives experienced in the associated nonlinear iteration scheme.

Let us explain how this loss of regularity arises. Since the low-frequency part of the
linear solution operator just decays diffusively, the nonlinear iteration can only be closed
if one accommodates its translational behavior by allowing for a spatio-temporal phase
modulation 
.x; t/ leading to the “modulated perturbation”

v.x; t/ D  .x � 
.x; t/; t/ � �.x/:

As shown in Section 4.2, this yields a quasilinear perturbation equation of the form

.@t �AŒ��/.v C 
�0/ D N.v; 
xvx ; 
xxvx ; 
tvx ; 
xvxx ; 
t ; 
x ; 
xx ; 
xxx ; 
xt /; (1.6)

where N is some nonlinear function. Attempting to control the norm of the right-hand
side of (1.6) in, for example, H 1 naturally requires control over the perturbation v in H 3.

In several previous works this loss of derivatives was compensated by using so-called
nonlinear damping estimates, which are L2-energy estimates of the form

@tE.t/ � ��E.t/C Ckv.t/k
2
L2
; (1.7)
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where �, C are positive constants and E.t/ is an energy controlling the norm k@kxv.t/k
2
L2

for some k 2 N. Integrating this differential inequality yields

E.t/ � e��tE.0/C C
Z t

0

e��.t�s/kv.s/k2
L2

ds;

which effectively controls the H k-norm of the modulated perturbation v in terms of its
L2-norm and theH k-norm of the initial perturbation v.0/, thereby allowing one to regain
the lost regularity and potentially close the iteration scheme. Although nonlinear damping
estimates can be obtained without much effort if the equation is totally parabolic (see for
instance [13, Proposition 2.5] or [20, Proposition 4.5]), their existence in other contexts
is not guaranteed and, in general, their derivation could be tedious and lengthy: see, for
instance, the delicate analyses [21, Appendix A], [24, Section 5], and [28] in the case of
hyperbolic–parabolic systems.

Despite the linear damping term � present in (1.1), we were unable to establish a
nonlinear damping estimate of the form (1.7) for the modulated perturbation in the current
setting of the LLE. The main reason is that we do not manage to control the derivatives of
v arising in the nonlinearity of (1.6): see Remark A.1 for details. One can, however, show
that the linear damping term is sufficient to establish such a nonlinear damping estimate
for the “unmodulated perturbation”

Qv.x; t/ D  .x; t/ � �.x/

since, in this case the perturbation Qv satisfies a semilinear equation. We refer to Section
4.1 and Appendix A for more details.

Consequently, in this work we adopt a different approach to address the loss of deriva-
tives in the nonlinear iteration scheme, which circumvents the use of nonlinear damping
estimates. Specifically, we combine the strategies in the works by Johnson et al. with a
recent method developed by de Rijk and Sandstede in [4] to establish nonlinear stabil-
ity of periodic traveling waves in planar reaction–diffusion systems against perturbations
which are bounded along a line in R2 and decay in the distance from this line. Since such
nonintegrable perturbations prohibit the use of L2-estimates (and thus, in particular, non-
linear damping estimates), the nonlinear analysis in [4] is based on pointwise estimates
and their approach to controlling regularity is to incorporate the unmodulated perturbation
Qv.x; t/ D  .x; t/� �.x/ into the nonlinear iteration scheme, which, in our case, satisfies
the semilinear equation (1.3) obtained by setting 
 � 0 in (1.6). While the Duhamel-
principle-based iteration scheme associated to Qv does not experience a loss of derivatives,
the associated decay rates of Qv are too slow to close an independent iteration scheme; see
Remark 4.3.

Nevertheless, our work shows that the proof of Theorem 1.3 follows by coupling the
iteration schemes for the modulated and unmodulated perturbations, exploiting a subtle
trade-off between smoothing and decay. That is, the algebraically decaying low-frequency
part of the evolution semigroup eAŒ��t is infinitely smoothing and thus compensates for
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a loss of derivatives. In our analysis this is manifested by integration by parts formulas,
which move derivatives off factors that may lead to a loss of regularity onto the low-
frequency part of the semigroup. On the other hand, since the linearization AŒ�� of the
weakly dissipative LLE is obviously not a sectorial operator, the high-frequency part
of eAŒ��t cannot be infinitely smoothing, yet it exhibits exponential decay, so that tame
bounds on the derivatives of the unmodulated perturbation can be used to compensate for
the loss of derivatives and close the nonlinear iteration.

Remark 1.4. In the proof of Theorem 1.3 we obtain tame bounds on the unmodulated
perturbation through iterative estimates on its Duhamel formulation, coupled with bounds
on the modulated perturbation. However, since equation (1.3) is semilinear and inherits
the linear damping term �Qv from the LLE, it is not surprising that a nonlinear damping
estimate of the form (1.7) can be obtained for the unmodulated perturbation. As outlined
in Appendix A, this nonlinear damping estimate (again, coupled with bounds on the mod-
ulated perturbation) yields an alternative to establish tame bounds on the unmodulated
perturbation. We emphasize once again that we were unable to extend this nonlinear damp-
ing estimate to the modulated perturbation equation; cf. Remark A.1.

1.3. Outline of paper

In Section 2 we review several preliminary results, including Floquet–Bloch theory and
the characterization of the spectrum of AŒ�� in terms of the one-parameter family of Bloch
operators A� Œ��. In Section 3 we collect and extend the relevant linear results obtained
in [11]. That is, we decompose the semigroup eAŒ��t in low- and high-frequency parts,
state associated L2- and Hm-estimates and establish integration by parts formulas. In
Section 4 we detail the construction of our coupled iteration scheme, as well as explain our
general strategy for compensating for the resulting loss of derivatives. Finally, Section 5
is devoted to the proof of Theorem 1.3, and we include in Appendix B some details of the
local existence and regularity theory utilized in our nonlinear analysis.

1.4. Discussion and outlook

This work establishes the first nonlinear stability result of steady T -periodic waves in the
LLE (1.1) against localized perturbations, underlining their robustness, i.e., they are stable
against larger classes of perturbations than only the co-periodic or subharmonic ones. Our
work indicates that the methodology developed by Johnson et al. for reaction–diffusion
systems and systems of viscous conservation laws can be extended to wide classes of
semilinear evolution equations, even to those that do not admit nonlinear damping esti-
mates to control higher-order derivatives. In fact, we expect that our approach works in the
semilinear setting as long as the linearization about the periodic wave generates a semi-
group, which can be decomposed in low- and high-frequency part, where the diffusive
low-frequency part is infinitely smoothing and the high-frequency part decays exponen-
tially. Here, one could extend the class of initial data by looking at modulated initial
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conditions of the form
 .x; 0/ D �.x � 
0.x//C v0.x/;

where the phase offset 
0 might be nonlocalized as in [13, 14].
We also expect that our method could substantially improve nonlinear stability results

for periodic waves of the LLE (and for semilinear equations more generally) to subhar-
monic perturbations, i.e., NT -periodic perturbations with N 2 N. For example, we point
out in the case of the LLE that current techniques [33] exploit the presence of a spectral
gap yielding stability results, which are not uniform in N , since the exponential decay
rate and the allowable size of initial perturbations are both controlled by the size of the
spectral gap which tends to zero as N !1; see [11] and also [16, 17]. We aim, through
an extension of the stability theory for localized perturbations presented in this paper, to
establish a nonlinear stability result against subharmonic perturbations, which is uniform
in N ; see the forthcoming work [12].

2. Preliminaries

We begin by reviewing some elements of Floquet–Bloch theory, and then record spectral
and semigroup properties of the linearization AŒ�� about the smooth T -periodic steady
wave solution � of the LLE (1.1) under the diffusive spectral stability assumption. These
properties are Hm-analogues of those obtained for L2-spaces in [11].

2.1. Floquet–Bloch theory

Floquet–Bloch theory is a standard tool for the analysis of linear differential operators
with periodic coefficients. It relies upon a Bloch decomposition of functions g 2 L2.R/,

g.x/D
1

2�

Z �=T

��=T

ei�x
Lg.�;x/d�; where Lg.�; x/ WD

X
`2Z

e2� i`x=T
Og.� C 2�`=T /; (2.1)

and Og.�/ denotes the Fourier transform of g,

Og.�/ D

Z 1
�1

e�i�xg.x/ dx:

The equality (2.1) is a consequence of the inverse Fourier transform formula,

g.x/ D
1

2�

Z 1
�1

ei�x
Og.�/ d�

D
1

2�

X
`2Z

Z �=T

��=T

ei.�C2�`=T /x
Og.� C 2�`=T / d�

D
1

2�

Z �=T

��=T

ei�x
Lg.�; x/ d�:
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Thus, Parseval’s equality implies

kgk2
L2.R/ D

1

2�

Z 1
�1

j Og.�/j2 d� D
1

2�

X
`2Z

Z �=T

��=T

j Og.� C 2�`=T /j2 d�

D
1

2�T

Z �=T

��=T

Z T

0

j Lg.�; x/j2 dx d�

D
1

2�T
k Lgk2

L2.Œ��=T;�=T /IL2per.0;T //
: (2.2)

In particular, the Bloch transform

BWL2.R/! L2.Œ��=T; �=T /IL2per.0; T //; Bg D Lg

is a bounded linear operator. For fixedm 2 N, we have an analogue of Parseval’s equality
for the Hm-norm,4

kgk2Hm.R/ '

Z 1
�1

.1C �2/mj Og.�/j2 d�

'

X
`2Z

Z �=T

��=T

.1C .2�`=T /2/mj Og.� C 2�`=T /j2 d�

'

Z �=T

��=T

k Lg.�; �/k2Hm
per.0;T /

d�

D k Lgk2
L2.Œ��=T;�=T /IHm

per.0;T //
; (2.3)

with g 2 Hm.R/, yielding that the Bloch transform can also be regarded as a bounded
linear operator

BWHm.R/! L2.Œ��=T; �=T /IHm
per.0; T //:

In particular, for each g 2 H 1.R/ we have that B.g/.�; �/ is differentiable with

@xB.g/.�; x/ D B.@xg/.�; x/ � i� Lg.�; x/: (2.4)

Taking a differential operator A with smooth T -periodic coefficients acting onL2.R/,
the associated Bloch operators are defined by

A� DM�1� AM� ; � 2 Œ��=T; �=T /;

where here M� denotes the multiplication operator .M�f /.x/D ei�xf .x/. The operators
A� act in L2per.0; T /, and their dependency on � is analytic. For v 2 D.A/ we have the
representation formula

Av.x/ D
1

2�

Z �=T

��=T

ei�xA� Lv.�; x/ d�;

4Throughout the paper, the notation A . B means that there exists a constant C > 0, independent of
A and B , such that A � CB , and we write A ' B if A . B and B . A.
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and a similar formula holds for the associated semigroups, provided they exist,

eAtv.x/ D
1

2�

Z �=T

��=T

ei�xeA� t Lv.�; x/ d�: (2.5)

An important property of the Bloch operators A� is that their domains are compactly
embedded inL2per.0;T /, and therefore their spectra consist entirely of isolated eigenvalues
of finite algebraic multiplicities. The spectral decomposition formula

�.A/ D
[

�2Œ��=T;�=T /

�.A�/;

characterizes theL2.R/-spectrum of A as the union of countably many continuous curves
�.�/ corresponding to the eigenvalues of the associated Bloch operators A� . We refer
to [11, Section 2] for more details and further properties.

2.2. Spectral properties

The Bloch operators associated with the periodic differential operator AŒ�� given by (1.4)
are defined for � 2 Œ��=T; �=T / by the formula

A� Œ�� D �I C JL� Œ��;

where

J D

�
0 �1

1 0

�
;

L� Œ�� D

�
�ˇ.@x C i�/2 � ˛ C 3�2r C �

2
i 2�r�i

2�r�i �ˇ.@x C i�/2 � ˛ C �2r C 3�
2
i

�
:

As the T -periodic solution � of the LLE (1.1) is smooth, the operators A� Œ�� are closed in
L2per.0; T / and Hm

per.0; T / for any m 2 N, with compactly embedded domains H 2
per.0; T /

and HmC2
per .0; T /, respectively. A standard bootstrapping argument, just as for stationary

solutions of (1.1), shows that eigenfunctions and generalized eigenfunctions of A� Œ��

are smooth. As a consequence, the operators A� Œ�� have the same spectral properties
when acting on L2per.0; T / or on Hm

per.0; T /, and the following lemma, which is a direct
consequence of the diffusive spectral stability of � and which was proved in [11] for
L2per.0; T /, remains valid for Hm

per.0; T /.

Lemma 2.1 (Spectral preparation). The Bloch operators A� Œ�� acting on Hm
per.0; T / for

some m 2 N0, have the following properties:5

5We use the notation H 0
per.0; T / D L

2
per.0; T /.
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(i) For any fixed �0 2 .0; �=T /, there exists a positive constant ı0 such that

<�.A� Œ��/ < �ı0

for all � 2 Œ��=T; �=T / with j�j > �0.

(ii) There exist constants �1 2 .0; �=T / and ı1 > 0 such that for any j�j < �1 the
spectrum of A� Œ�� decomposes into two disjoint subsets

�.A� Œ��/ D ��.A� Œ��/ [ �0.A� Œ��/;

with the following properties:

(a) <��.A� Œ��/ < �ı1 and <�0.A� Œ��/ > �ı1;

(b) the set �0.A� Œ��/ consists of a single eigenvalue �c.�/ which is simple, ana-
lytic in �, and expands as

�c.�/ D ia� � d�2 CO.j�j3/ (2.6)

for some a 2 R and d > 0;

(c) the eigenfunction ˆ� associated with �c.�/ is a smooth function, depends
analytically on �, and there exists a constant C > 0 such that

kˆ� � �
0
kHm

per.0;T /
� C j�j;

where �0 is the derivative of the T -periodic solution �.

We point out that the expansion (2.6) of the simple eigenvalue �c.�/ is a consequence
of the property

A� Œ�� D A�� Œ��;

which holds in general for Bloch operators A� associated with real periodic differential
operators A. So, the eigenvalue �c.�/, being the only eigenvalue of A� Œ�� with real part
larger than�ı1 for all j�j< �1, satisfies �c.�/D �c.��/, which gives the expansion (2.6).
In addition, if the periodic solution � of the LLE is an even function, which is the case
for the diffusively spectrally stable periodic solutions constructed in [6], then the operator
AŒ�� is invariant under the reflection x 7! �x, and the Bloch operators satisfy

RA� Œ�� D A�� Œ��R; .Rv/.x/ D v.�x/;

which implies �c.�/ D �c.��/ and gives a D 0 in the expansion (2.6) in this case.
Finally, notice that the adjoint operator A�

�
Œ�� has similar spectral properties, its spec-

trum being equal to the complex conjugated spectrum of A� Œ��. In particular, �c.�/ is a
simple eigenvalue of A�

�
Œ�� with smooth associated eigenfunction ẑ � depending analyti-

cally on �.
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2.3. Semigroup properties

As for the spectral properties above, the semigroup properties of the operators A� Œ�� are
the same when acting on L2per.0; T / or onHm

per.0; T / for anym 2N. The following result,
proved in [11] for L2per.0; T /, remains valid in Hm

per.0; T /.

Lemma 2.2 (Bloch semigroups). The Bloch operators A� Œ�� acting on Hm
per.0; T /, for

some m 2 N0, generate C 0-semigroups with the following properties:

(i) For any fixed �0 2 .0; �=T /, there exist positive constants C0 and �0 such that

keA� Œ��tkL.Hm
per.0;T //

� C0e��0t

for all t � 0 and all � 2 Œ��=T; �=T / with j�j > �0.

(ii) With �1 chosen as in Lemma 2.1 (ii), there exist positive constants C1 and �1 such
that for any j�j < �1, if….�/ is the spectral projection onto the (one-dimensional)
eigenspace associated with the eigenvalue �c.�/ given by Lemma 2.1 (ii), then

keA� Œ��t .I �….�//kL.Hm
per.0;T //

� C1e��1t

for all t � 0.

3. Linear estimates

In this section we review the decomposition of the evolution semigroup eAŒ��t into low-
and high-frequency parts that was recently obtained in [11]. We extend the L2-estimates
from [11] on the high-frequency part to Hm-estimates, which will be needed in our sub-
sequent nonlinear stability analysis. Moreover, we exploit the smoothing properties of the
low-frequency part to extend the L2 \L1! L2-estimates from [11] to L2 \L1!Hm-
estimates and establish associated integration by parts identities.

3.1. Decomposition of the evolution semigroup

Following [11], we decompose the C 0-semigroup eAŒ��t into an exponentially decaying
part and a critical part exhibiting algebraic decay. Take �1 2 .0;�=T / as in Lemma 2.2 and
a smooth nonnegative cutoff function � satisfying �.�/D 1 for j�j< �1=2 and �.�/D 0 for
j�j> �1. For each j�j< �1, consider the spectral projection….�/ onto the one-dimensional
eigenspace of A� Œ�� associated with the eigenvalue �c.�/, given explicitly by

….�/g D h ẑ � ; giL2.0;T /ˆ�

for any g 2 L2per.0; T /, where ẑ � is the smooth eigenfunction of the adjoint operator
A�
�
Œ�� associated with the eigenvalue �c.�/ that satisfies h ẑ � ; ˆ�iL2.0;T / D 1.
Starting from the representation formula (2.5), we write

eAŒ��tv.x/ D
1

2�

Z �=T

��=T

ei�xeA� Œ��t Lv.�; x/ d� D Sc.t/v.x/C Se.t/v.x/ (3.1)
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for t � 0 and x 2 R, with

Sc.t/v.x/ WD
1

2�

Z �=T

��=T

�.�/ei�xeA� Œ��t….�/ Lv.�; x/ d�

and

Se.t/v.x/ WD
1

2�

Z �=T

��=T

.1 � �.�//ei�xeA� Œ��t Lv.�; x/ d�

C
1

2�

Z �=T

��=T

�.�/ei�xeA� Œ��t .1 �….�// Lv.�; x/ d�:

The component Se.t/ is the exponentially decaying part of the evolution semigroup eAŒ��t .

Lemma 3.1 (Exponential decay). For any integer m � 0, there exist constants �;C > 0

such that the inequality
kSe.t/vkL.Hm/ � C e��t

holds for any t � 0.

Proof. This estimate has been established in the casemD 0 in [11]. The proof relies upon
Parseval’s equality for L2-functions (2.2) and the L2-estimates on the Bloch semigroups
from Lemma 2.2. It is easily transferred to m 2 N using Parseval’s equality for Hm-
functions (2.3) and the Hm-estimates for the Bloch semigroups in Lemma 2.2.

We continue by further decomposing the critical component Sc.t/ of the semigroup in
order to identify its slowest decaying component. We introduce a smooth cutoff function
�W Œ0;1/ ! R, which vanishes on Œ0; 1� and equals 1 on Œ2;1/.6 Using the explicit
formula for the spectral projection ….�/ and Lemma 2.1 we write

Sc.t/v.x/ D �.t/Sc.t/v.x/C .1 � �.t//Sc.t/v.x/

D
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t h ẑ � ; Lv.�; �/iL2.0;T /ˆ�.x/ d�

C .1 � �.t//Sc.t/v.x/

D �0.x/

�
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t h ẑ � ; Lv.�; �/iL2.0;T / d�
�

C .1 � �.t//Sc.t/v.x/

C
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t i�
�ˆ�.x/ � �0.x/

i�

�
h ẑ � ; Lv.�; �/iL2.0;T / d�

DW �0.x/sp.t/v.x/C zSc.t/v.x/; (3.2)

6The reason for introducing the cutoff function �.t/ becomes apparent only in the forthcoming nonlin-
ear stability analysis; we refer to Remark 4.7 for further details.
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with

sp.t/v.x/ D
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t h ẑ � ; Lv.�; �/iL2.0;T / d�

for t � 0 and x 2 R. The motivation behind the decomposition (3.2) is that the sp.t/-
contribution precisely captures the slowest (diffusive) decay at rate .1C t /�1=4 exhibited
by Sc.t/, whereas the remaining part zSc.t/ decays faster, at rate .1C t /�3=4. The follow-
ing lemma establishes these algebraic decay properties, which are needed in the upcoming
nonlinear analysis.

Lemma 3.2 (Critical component). For all integers `; j; m � 0 there exist constants
C`;j ; Cm > 0 such that

k@`x@
j
t sp.t/vkL2 � C`;j .1C t /

�
`Cj
2 kvkL2 ; v 2 L2.R/;

k@`x@
j
t sp.t/vkL2 � C`;j .1C t /

� 14�
`Cj
2 kvkL1 ; v 2 L1.R/ \ L2.R/;

and

k@mx
zSc.t/vkL2 � Cm.1C t /

� 34 kvkL1 ; v 2 L1.R/ \ L2.R/;

for all t � 0.

Remark 3.3. Lemma 3.2 shows that the critical part Sc.t/ of the evolution semigroup
eAŒ��t is infinitely smoothing, i.e., it defines a bounded linear map from L1.R/ \ L2.R/
intoHm.R/ for eachm 2 N0. Since the linearization AŒ�� of the weakly dissipative LLE
is obviously not a sectorial operator, the same cannot be expected for the high-frequency
part Se.t/ of eAŒ��t .

Proof of Lemma 3.2. First, from [11, Section 3] we have the estimates

jh ẑ � ; Lv.�; �/iL2.0;T /j . k Lv.�; �/kL2.0;T /; jh ẑ � ; Lw.�; �/iL2.0;T /j . kwkL1 (3.3)

for v 2 L2.R/ and w 2 L1.R/ \ L2.R/. Next, take t � 2, so that �.t/ D 1. Then

@`x@
j
t sp.t/v.x/ D

1

2�

Z �=T

��=T

ei�x�.�/.i�/`.�c.�//j e�c.�/t h ẑ � ; Lv.�; �/iL2.0;T / d�;

and Parseval’s equality (2.2) implies that

k@`x@
j
t sp.t/vk

2
L2
D

1

2�T

Z �=T

��=T

Z T

0

j�.�/.i�/`.�c.�//j e�c.�/t h ẑ � ; Lv.�; �/iL2.0;T /j
2 dx d�

for v 2 L2.R/. Using (2.6) and (3.3) we find

k@`x@
j
t sp.t/vkL2 . k�`Cj e�d�2t

kL1
�
Œ� �T ;

�
T /
kvkL2

. .1C t /�
`Cj
2 kvkL2 ; v 2 L2.R/;

k@`x@
j
t sp.t/wkL2 . k�`Cj e�d�2t

kL2
�
Œ� �T ;

�
T /
kvkL1

. .1C t /�
1
4�

`Cj
2 kwkL1 ; w 2 L1.R/ \ L2.R/;
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which prove the first two inequalities for t � 2. Similarly, for zSc.t/, using in addition that
the quantity

sup
�2Œ��=T;�=T /




@kx�ˆ� � �0i�

�



L1
; k D 0; : : : ; m

is finite by Lemma 2.1, we find

k@mx
zSc.t/vkL2 .

�
k�mC1e�d�2t

kL2
�
Œ� �T ;

�
T /
C � � � C k�e�d�2t

kL2
�
Œ� �T ;

�
T /

�
kvkL1

. .1C t /�3=4kvkL1 ;

which proves the third inequality for t � 2.
The corresponding short-time bounds for t 2 Œ0; 2� on sp.t/ and zSc.t/ follow similarly

using that �.t/, and thus sp.t/, vanishes on Œ0; 1�, and that �.t/ and its derivatives are
bounded on Œ1; 2�.

3.2. Integration by parts identities

In addition to the above linear estimates, our forthcoming nonlinear iteration scheme
requires the following integration-by-parts-type identities to move derivatives off factors
that may lead to a loss of regularity onto the smoothing low-frequency part of the semi-
group.

Proposition 3.4 (Integration by parts). Given f; g 2 H 1.R/, we have the following iden-
tities for all t � 0 and x 2 R:

sp.t/.f � @xg/.x/ D �sp.t/.@xf � g/C @xsp.t/.fg/.x/

�
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t h@x ẑ � ;B.fg/.�; �/iL2.0;T / d�

and

zSc.t/.f � @xg/.x/

D �zSc.t/.@xf � g/

C
.1 � �.t//

2�

Z �=T

��=T

�.�/ei�xC�c.�/t i�ˆ�.x/h ẑ � ;B.fg/.�; �/iL2.0;T / d�

�
.1 � �.t//

2�

Z �=T

��=T

�.�/ei�xC�c.�/tˆ�.x/h@x ẑ � ;B.fg/.�; �/iL2.0;T / d�

C
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t .i�/2
�ˆ�.x/ � �0.x/

i�

�
h ẑ � ;B.fg/.�; �/iL2.0;T / d�

�
�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t i�
�ˆ�.x/ � �0.x/

i�

�
h@x ẑ � ;B.fg/.�; �/iL2.0;T / d�:
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Proof. The proofs of the above identities are essentially the same, so we will just prove
the one for sp.t/. Applying (2.4) and integrating by parts gives

h@x ẑ � ;B.f � g/.�; �/iL2.0;T / D �h ẑ � ;B.@xf � g C f � @xg/.�; �/iL2.0;T /

C i�h ẑ � ;B.f � g/.�; �/iL2.0;T /:

Multiplying this equality by �.�/ei�xC�c.�/t , integrating, and rearranging terms yields the
desired result.

By combining the above identities with our previous linear estimates we obtain the
following result.

Lemma 3.5. There exists a constant C > 0, and for all integers `; j � 0 there exists a
constant C`;j > 0, such that the following inequalities hold:

k@`x@
j
t sp.t/.f � @xg/kL2 � C`;j .1C t /

� 14�
`Cj
2 .kfgkL1 C k@xf � gkL1/;

k zSc.t/.f � @xg/kL2 � C.1C t /
� 34 .kfgkL1 C k@xf � gkL1/

for all f; g 2 H 1.R/ and t � 0, and

k@`x@
j
t sp.t/.f � @

2
xg/kL2 � C`;j .1C t /

� 14�
`Cj
2 .kfgkL1 Ck@xf � gkL1 C k@

2
xf � gkL1/;

k zSc.t/.f � @
2
xg/kL2 � C.1C t /

� 34 .kfgkL1 C k@xf � gkL1 C k@
2
xf � gkL1/

for all f; g 2 H 2.R/ and t � 0.

Proof. The first two inequalities follow directly from the identities in Proposition 3.4 and
the estimates in Lemma 3.2. For the latter ones, we use

@2xB.f /.�; x/ D B.@2xf /.�; x/ � 2i�@xB.f /.�; x/C �2 Lf .�; x/

D B.@2xf /.�; x/ � 2i�B.@xf /.�; x/ � �2 Lf .�; x/

to derive second-order analogues of the identities in Proposition 3.4. For example, we
obtain

�.t/

2�

Z �=T

��=T

�.�/ei�xC�c.�/t h@2x
ẑ
� ;B.fg/.�; �/iL2.0;T / d�

D sp.t/.@
2
xf � g C 2@xf � @xg C f � @

2
xg/

� 2@xsp.t/.@xf � g C f � @xg/C @
2
xsp.t/.fg/:

Then using the estimates in Lemma 3.2 as well as Proposition 3.4 to eliminate first-order
derivatives on g yields the estimate on sp.t/.f � @2xg/ and its derivatives. The estimate on
zSc is obtained in the same way.
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3.3. Linear stability result

For the sake of completeness we state the linear stability result against localized pertur-
bations established in [11], which can be readily obtained by combining the estimates in
Lemmas 3.1 and 3.2 with the semigroup decomposition in (3.1) and (3.2).

Theorem 3.6 (Localized linear stability [11]). Let T > 0 and suppose � is a smooth
T -periodic steady solution of (1.1) that is diffusively spectrally stable in the sense of
Definition 1.1. Then there exists a constant C > 0 such that for any f 2 L1.R/ \ L2.R/
we have

keAŒ��tf kL2 � C.1C t /
� 14 kf kL1\L2

for all t � 0. Furthermore, for each f 2 L1.R/ \ L2.R/ the function 
.x; t/ D

.sp.t/f /.x/ is smooth in both of its variables and enjoys the estimates

k
.; t/kL2 � C.1C t /
� 14 kf kL1\L2 ; ke

AŒ��tf � �0
.t/kL2 � C.1C t /
� 34 kf kL1\L2

for all t � 0.

Theorem 3.6 confirms on the linear level that if  is a solution of (1.1) which is
initially close in L1.R/\L2.R/ to �, then for large time  should behave approximately
like (1.5), i.e.,  should asymptotically behave like a spatio-temporal phase modulation
of the underlying periodic wave �.

4. Nonlinear iteration scheme

The goal of this section is to introduce the nonlinear iteration scheme that will be
employed in Section 5 to prove our nonlinear stability result, Theorem 1.3. Thus, let
� be a smooth T -periodic steady wave solution of the LLE (1.1), which is diffusively
spectrally stable, and consider the perturbed solution  .t/ of (1.1) with initial condition
 .0/ D � C v0, where v0 2 L1.R/ \H 4.R/ is sufficiently small.

In Section 4.1 we study the nonlinear dynamics of the perturbation Qv.t/ D  .t/ � �,
and conclude that the associated linear and nonlinear estimates are too weak to close a
nonlinear iteration scheme. Hence, to account for the most critical behavior (which orig-
inates from translational invariance of the steady wave �), we introduce in Section 4.2 a
spatio-temporal phase modulation that tracks the shift of the perturbed solution in space
relative to �. We establish a nonlinear iteration scheme for the modulated perturbation
and the phase modulation itself. However, this scheme does not provide control over spa-
tial derivatives of the modulated perturbation, i.e., it exhibits a loss of derivatives. We
address this loss of derivatives in Section 4.3 using integration by parts and by appending
equations for the unmodulated perturbation to the scheme.
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4.1. The unmodulated perturbation

Setting
Qv.t/ WD  .t/ � �;

the unmodulated perturbation Qv satisfies

.@t �AŒ��/ Qv D zN . Qv/; (4.1)

where AŒ�� is the linear operator defined by (1.4) and the nonlinearity zN is given by

zN . Qv/ WD J

��
3 Qv2r C Qv

2
i 2 Qvr Qvi

2 Qvr Qvi Qv2r C 3 Qv
2
i

�
� C j Qvj2 Qv

�
:

Using the embeddingH 1.R/ ,! L1.R/ it is straightforward to check the following esti-
mates on the nonlinearity zN .

Lemma 4.1. For any constant C > 0, the inequalities

k zN . Qv/kL1 . k Qvk2
L2
;

k zN . Qv/kH4 . k QvkH3k QvkH2 C kQvkH4k QvkH1

(4.2)

hold for all Qv 2 H 4.R/ with k QvkH2 � C .

The local existence and uniqueness of the perturbation Qv.t/ as a solution to (4.1) is
an immediate consequence of the existence of the semigroup eAŒ��t acting on H 2.R/, the
estimates above on the nonlinearity zN , and classical local existence theory for semilinear
evolution problems; see, for instance, [2, Proposition 4.3.9] and [27, Theorem 6.1.3].

Proposition 4.2 (Local theory for the unmodulated perturbation). For any v0 2 H 4.R/,
there exists a maximal time Tmax 2 .0;1� such that (4.1) admits a unique solution

Qv 2 C.Œ0; Tmax/;H
4.R// \ C 1.Œ0; Tmax/;H

2.R//; (4.3)

with initial condition Qv.0/ D v0. In addition, if Tmax <1, then

lim
t"Tmax

k Qv.t/kH2 D1: (4.4)

Ideally, one would hope to control the perturbation Qv.t/ over time, and prove that (4.4)
cannot occur, which implies that Qv.t/, and thus  .t/, are global solutions. Naively, one
might expect this to be accomplished by integrating (4.1) and bounding the perturbation
Qv.t/ iteratively using the Duhamel formulation

Qv.t/ D eAŒ��tv0 C

Z t

0

eAŒ��.t�s/ zN . Qv.s// ds (4.5)

for t 2 Œ0; Tmax/. However, as outlined in Remark 4.3 below, the temporal bounds on the
semigroup eAŒ��t , established in Section 3, are too weak to close the resulting nonlinear
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iteration scheme. Thus, in order to obtain faster linear decay rates, we introduce a spatio-
temporal phase modulation 
.x; t/ for the perturbed solution  in the next subsection,
which accounts for the most critical behavior of the linear solution operator.

Remark 4.3. The estimates on the critical component Sc.t/ of the semigroup eAŒ��t

in Lemma 3.2 indicate that the perturbation Qv.t/ decays in H 1.R/ at most with rate
.1 C t /�1=4. Thus, in an attempt to close a nonlinear iteration scheme, it makes sense
to take t > 0 and assume that we have indeed k Qv.s/kH1 . .1C s/�1=4 for s 2 Œ0; t/. For
the next iteration, we then need to show that the right-hand side of (4.5) decays at least
with rate .1C t /�1=4. However, Lemma 3.2 and estimate (4.2) are insufficient to bound
the contribution Z t

0

�0sp.t � s/ zN . Qv.s// ds;

occurring on the right-hand side of (4.5), where we recall the decomposition (3.2) of
critical component Sc.t/ of the semigroup. Indeed, one finds the latter to be bounded byZ t

0

.1C t � s/�
1
4 .1C s/�

1
2 ds . .1C t /

1
4 :

We conclude that the temporal bounds on the critical component Sc.t/ of the semigroup
eAŒ��t , established in Lemma 3.2, are too weak to close a nonlinear iteration scheme. This
is no surprise as the same bounds on the semigroup and nonlinearity can be obtained for
the nonlinear heat equation ut D uxx C u2 in which all nonnegative, nontrivial initial data
in H 1.R/ blow up in finite time [8].

4.2. The modulated perturbation

We now introduce the modulated perturbation by taking

v.x; t/ D  .x � 
.x; t/; t/ � �.x/; (4.6)

in which the spatio-temporal phase modulation 
.x; t/ satisfies 
.�; 0/D 0, i.e., it vanishes
identically at t D 0. Substituting (4.6) into the LLE (1.1), we obtain the equation

.@t �AŒ��/.v C 
�0/ D N .v; 
; @t
/C .@t �AŒ��/.
xv/; (4.7)

where
N .v; 
; 
t / D Q.v; 
/C @xR.v; 
; 
t /; (4.8)

with

Q.v; 
/ D .1 � 
x/J

��
3v2r C v

2
i 2vrvi

2vrvi v2r C 3v
2
i

�
� C jvj2v

�
and

R.v; 
; 
t / D �
tv � ˇJ
h

xxv C 2
xvx C


2x
1 � 
x

.�0 C vx/
i
:

Using the embeddingH 1.R/ ,! L1.R/ it is straightforward to check the following esti-
mate on the nonlinearity N in (4.7).
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Lemma 4.4. Fix a constant C > 0. The inequality

kN .v; 
; 
t /kL2 . kvkL2kvkH1 C k.
x ; 
t /kH2�H1.kvkH2 C k
xkL2/

holds for v 2 H 2.R/ and .
; 
t / 2 H 3.R/ �H 1.R/ satisfying kvkH1 � C and k
kH2

�
1
2

.

Integrating (4.7) yields the Duhamel formulation

v.t/C 
.t/�0 D eAŒ��tv0 C

Z t

0

eAŒ��.t�s/N .v.s/; 
.s/; @t
.s// ds C 
x.t/v.t/; (4.9)

where we used the property that both 
.�; 0/ and 
x.�; 0/ are identically zero. We grouped
terms that are nonlinear in v, 
 and their derivatives on the right-hand side of (4.9),
whereas the left-hand side contains all contributions that are linear in v, 
 and their
derivatives. The key idea is to make a judicious choice for 
.t/ such that the linear term

.t/�0 compensates for the most critical nonlinear contributions in (4.9). For this, we
recall from (3.1) and (3.2) that the semigroup eAŒ��t can be decomposed as

eAŒ��t
D �0sp.t/C zS.t/; (4.10)

with
zS.t/ WD zSc.t/C Se.t/:

By Lemmas 3.1 and 3.2 the slowest temporal decay in (4.10) is exhibited by �0sp.t/. This
recommends the (implicit) choice


.t/ D sp.t/v0 C

Z t

0

sp.t � s/N .v.s/; 
.s/; @t
.s// ds: (4.11)

We use this equality as a definition for 
 . Noting that the modulated perturbation v can be
written in terms of the unmodulated perturbation Qv as

v.x; t/ D Qv.x � 
.x; t/; t/C �.x � 
.x; t// � �.x/; (4.12)

the equality (4.11) (implicitly) defines 
 as a function of the unmodulated perturbation Qv.
The existence and uniqueness of a local solution 
 , for a given Qv, is established in the
following result.

Proposition 4.5 (Local theory for the phase modulation). For Qv and Tmax as in Proposi-
tion 4.2, there exists a maximal time �max 2 .0;Tmax� such that (4.11) with v given by (4.12)
has a unique solution


 2 C.Œ0; �max/;H
4.R// \ C 1.Œ0; �max/;H

2.R//;

with 
.0/ D 0. In addition, if �max < Tmax, then

lim
t"�max

k.
.t/; @t
.t//kH4�H2 D1:
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We prove this proposition in Appendix B. Given now the phase modulation 
.t/ in
Proposition 4.5 and the unmodulated perturbation Qv.t/ in Proposition 4.2, the modulated
perturbation v.t/ is uniquely determined by (4.12). More precisely, we have the following
result.

Corollary 4.6 (The modulated perturbation). For Qv as in Proposition 4.2 and 
 and �max

given by Proposition 4.5, the modulated perturbation v defined by (4.12) satisfies v 2
C.Œ0; �max/;H

2.R//. Moreover, the Duhamel formulation (4.9) holds for t 2 Œ0; �max/.

Subtracting (4.11) from (4.9) we obtain the equation for the modulated perturbation,

v.t/ D zS.t/v0 C

Z t

0

zS.t � s/N .v.s/; 
.s/; @t
.s// ds C 
x.t/v.t/; (4.13)

which holds for t 2 Œ0; �max/. Notice that those terms exhibiting the slowest temporal decay
in (4.9) are canceled out in (4.13) by our choice of 
.t/. Indeed, by Lemmas 3.1 and 3.2,
the component zS.t/ exhibits decay at rate .1C t /�3=4, which is faster than the (diffusive)
decay at rate .1C t /�1=4 of the full semigroup eAŒ��t . Moreover, the nonlinear residual
N depends on derivatives of 
 only, which, exploiting that sp.0/ D 0, satisfy

@`x@
j
t 
.t/ D @

`
x@
j
t sp.t/v0 C

Z t

0

@`x@
j
t sp.t � s/N .v.s/; 
.s/; @t
.s// ds (4.14)

for `; j 2 N0 and t 2 Œ0; �max/. By Lemma 3.2 the operators @`x@
j
t sp.t/ also exhibit fast

decay at rate .1 C t /�3=4 for ` C j � 1. Therefore, one could try to close a nonlinear
iteration scheme consisting of (4.13) and (4.14). This requires control over the spatial
derivatives of v appearing in the nonlinearity N , which we establish in the upcoming
subsection.

Remark 4.7. The above analysis stresses the importance of the temporal cutoff function
�.t/ in the decomposition (3.2) of the critical, algebraically decaying, part Sc.t/ of the
semigroup eAŒ��t . Indeed, due to our choice of �.t/, the function 
.t/ is identically zero
on Œ0; 1� so that the initial conditions of the modulated and unmodulated perturbation
are compatible; cf. (4.5) and (4.13). In addition, taking the temporal derivative of (4.11)
yields the contribution sp.0/N .v.t/; 
.t/; @t
.t//, which vanishes due to our choice of
�.t/. This is crucial for obtaining sufficient regularity of @t
.t/; cf. Proposition B.2. We
emphasize that the introduction of the cutoff function �.t/ in (3.2) does not influence the
temporal decay rates established in Lemma 3.2. Indeed, the decay rates of sp.t/ and zSc.t/
are determined by their behavior for large t (for which �.t/ equals 1).

4.3. Compensating the loss of derivatives

Our goal now is to close the nonlinear iteration scheme consisting of (4.13) and (4.14)
by exploiting the fast temporal decay exhibited by the operators zS.t/ and @`x@

j
t sp.t/ for

`C j � 1. As discussed in the introduction, the main obstruction to closing the scheme
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is the lack of control over the spatial derivatives vx and vxx occurring in the nonlinearity
N in (4.13) and (4.14). Naively, one would hope to control vx and vxx through their
respective integral equations. However, simply differentiating (4.13), or (4.7), introduces
third and fourth derivatives of v in the nonlinearities, and thus does not resolve the issue.
In addition, we were unable to establish a nonlinear damping estimate for the modulated
perturbation equation (4.7), which would provide control over higher-order derivatives
of the modulated perturbation in terms of its lower-order derivatives; cf. Remark A.1.
Instead, we address this loss of derivatives by following the approach developed in [4].

The approach in [4] relies on four crucial observations. The first is that no loss of
derivatives arises in the semilinear equations (4.1) and (4.5) for the unmodulated pertur-
bation, as zN . Qv/ does not contain any derivatives of Qv. The second is that, using the mean
value theorem, the derivatives vx and vxx of the modulated perturbation can be bounded
in terms of the phase modulation 
 , the unmodulated perturbation Qv and their derivatives.
Hence, by appending equation (4.5) for the unmodulated perturbation Qv to the nonlinear
iteration scheme we can establish estimates on Qv and its derivatives, and thus on vx and
vxx , without losing derivatives of v or Qv. However, the most critical behavior of the semi-
group eAŒ��t is not factored out in (4.5). Consequently, the estimates on vx and vxx will
be tame. Therefore, it is important to avoid derivatives of v at points where the nonlinear-
ity is paired with the slowest decaying parts of the semigroup. Here, the third and fourth
observation come into play: all spatial derivatives of v in the nonlinearity N are paired
with a spatial or temporal derivative of 
 and the slowest, algebraically decaying, parts
sp.t/ and zSc.t/ of the semigroup eAŒ��t are smoothing; cf. Lemma 3.2. Therefore, when-
ever possible, we use the integration by parts identities established in Section 3.2 to move
derivatives off v onto 
 , sp.t/, or zSc.t/.

4.3.1. Integration by parts. We integrate by parts to get rid of spatial derivatives of v in
the algebraically decaying contributions

zSc.t � s/N .v.s/; 
.s/; @t
.s// and @`x@
j
t sp.t � s/N .v.s/; 
.s/; @t
.s// (4.15)

in (4.13) and (4.14), respectively. To this end, we decompose N as in (4.8), where Q

contains no derivatives of v, and where @xR is linear in v, vx , and vxx and can be written
as

@xR.v; 
; 
t / D R1.
; 
t /vxx CR2.
; 
t /vx CR3.
; 
t /v CR4.
/:

Using the integration by parts formulas in Section 3.2, we establish the following esti-
mates.

Lemma 4.8. Fix a constant C > 0. For all integers `, j with 0� `; j � 4, the inequalities

kQ.v; 
/kL1 . kvk2
L2
;

k@`x@
j
t sp.t/.@xR.v; 
; 
t //kL2 . .1C t /�

1
4�

`Cj
2 k.
x ; 
t /kH2�H1

� .kvkL2 C k
xkL2/;

k zSc.t/.@xR.v; 
; 
t //kL2 . .1C t /�
3
4 k.
x ; 
t /kH2�H1.kvkL2 Ck
xkL2/

(4.16)
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hold for t � 0, v 2 H 2.R/, and .
; 
t / 2 H 3.R/ �H 1.R/ satisfying kvkH1 � C and
k
kH3 �

1
2

.

Proof. The first inequality in (4.16) is an immediate consequence of the embedding
H 1.R/ ,! L1.R/. Moreover, the same embedding also yields

k@`xRk.
; 
t /kL2 ; kR4.
/kL2 . k.
x ; 
t /kH2�H1 ;

for k D 1; 2; 3, nonnegative integers ` with kC ` � 3, and any .
; 
t / 2H 3.R/�H 1.R/
satisfying k
kH3 �

1
2

. Now the last two inequalities in (4.16) follow by applying the
integration by parts formulas in Lemma 3.5.

Note that the right-hand side of (4.16) does not depend on any derivative of the mod-
ulated perturbation v. Thus, we have addressed the loss of derivatives in the algebraically
decaying contributions (4.15).

4.3.2. Mean value inequalities. In our forthcoming analysis, we need the following
inequalities on the difference between the modulated and unmodulated perturbations.

Lemma 4.9 (Mean value inequalities). For Qv and v given by Proposition 4.2 and Corol-
lary 4.6, respectively, the inequalities

kv.t/ � Qv.t/kL2 � .k�
0
kL1 C kQv.t/kH2/k
.t/kL2 ;

kvx.t/ � Qvx.t/kL2 � .k�
0
kL1 C kQv.t/kH2/k
x.t/kL2

C .k�00kL1 C kQv.t/kH3/k
.t/kL2 ;

kvxx.t/ � Qvxx.t/kL2 � .k�
0
kL1 C kQv.t/kH2/k
xx.t/kL2

C .k�000kL1 C kQv.t/kH4/k
.t/kL2

C .k�00kL1 C kQv.t/kH3/k
x.t/kL2.2C k
.t/kH2/

(4.17)

hold for all t 2 Œ0; �max/.

Proof. Recall that by (4.6) we have

v.x; t/ � Qv.x; t/ D  .x � 
.x; t/; t/ �  .x; t/ (4.18)

for x 2 R and t 2 Œ0; �max/. By applying the mean value theorem to (4.18) we obtain the
inequalities

jv.x; t/ � Qv.x; t/j � k x.t/kL1 j
.x; t/j;

jvx.x; t/ � Qvx.x; t/j � k x.t/kL1 j
x.x; t/j C k xx.t/kL1 j
.x; t/j;

jvxx.x; t/ � Qvxx.x; t/j � k x.t/kL1 j
xx.x; t/j C 2k xx.t/kL1 j
x.x; t/j

C k xx.t/kL1 j
x.x; t/j
2
C k xxx.t/kL1 j
.x; t/j;

(4.19)

for x 2 R and t 2 Œ0; �max/. Substituting  .t/ D � C Qv.t/ in the above inequalities and
using the embedding H 1.R/ ,! L1.R/, yields the result.
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These mean value inequalities connecting the unmodulated perturbation Qv to the mod-
ulated perturbation v allow us to append equation (4.5) for Qv to the integral system con-
sisting of the equations (4.13) and (4.14) for v and 
 , and obtain a nonlinear iteration
scheme in

@ixv.t/; @
j
x@t
.t/; @

`
x
.t/; @

k
x Qv.t/; 0 � i; j � 2; 0 � k; ` � 4:

We show in the next section that this nonlinear iteration scheme closes, which yields the
proof of Theorem 1.3.

Remark 4.10. The mean value inequalities (4.19) provide pointwise approximations of
the spatial derivatives of the modulated perturbation v by those of the unmodulated per-
turbation Qv. Bounding the right-hand side of (4.19) requires L1-estimates on the first,
second, and third spatial derivatives of the perturbed solution  .t/ D � C Qv.t/. Hence,
any nonlinear iteration scheme exploiting the mean value inequalities (4.19) should pro-
vide control over the L1-norm of Qvx , Qvxx , and Qvxxx . In a Hilbertian framework, as
ours, such control is given by the H 4-norm of Qv, k D 4 being the smallest integer for
which the embedding H k.R/ ,! W 3;1.R/ holds. This explains the choice v0 2 H 4.R/
in Theorem 1.3. We expect that it is possible to allow for less regular initial data in Theo-
rem 1.3. However, the main purpose of this paper is to introduce a working methodology to
establish nonlinear stability of steady T -periodic waves for the LLE rather than to obtain
optimal regularity with respect to localized perturbations.

5. Nonlinear stability analysis

In this section we establish the proof of our main result, Theorem 1.3, by applying the
linear estimates obtained in Section 3 to the nonlinear iteration scheme consisting of the
equations (4.5), (4.13), (4.14) and the inequalities (4.17) relating Qv, v, 
 .

Proof of Theorem 1.3. We close a nonlinear iteration scheme, controlling the unmodu-
lated perturbation QvW Œ0; Tmax/ ! H 4.R/, the phase modulation 
 W Œ0; �max/ ! H 4.R/,
and the modulated perturbation vW Œ0; �max/!H 2.R/, all defined in Section 4. By Propo-
sitions 4.2 and 4.5 and Corollary 4.6, the template function �W Œ0; �max/! R given by7

�.t/ D sup
0�s�t

�
.1C s/

3
4 .kv.s/kL2 C k@x
.s/kH3 C k@t
.s/kH2/

C .1C s/
1
4 .k Qv.s/kL2 C k
.s/kL2/

C .1C s/
1
8 .k Qvx.s/kL2 C kvxkL2/C kQvxx.s/kL2 C kvxx.s/kL2

C .1C s/�
1
8 k Qvxxx.s/kL2 C .1C s/

� 14 k Qvxxxx.s/kL2
�

7For the motivation behind the choice of temporal weights in the template function �.t/, we refer to
Remark 5.1 below.
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is continuous, positive, and monotonically increasing. Moreover, if �max <1, then it holds
that

lim
t"�max

�.t/ D1: (5.1)

Our approach to closing the nonlinear iteration scheme is to prove that there exist constants
B > 0 and C > 1 such that for all t 2 Œ0; �max/ with �.t/ � B we have

�.t/ � C.E0 C �.t/
2/; (5.2)

with E0 defined in Theorem 1.3. Then, provided that E0 < min¹ 1
4C 2

; B
2C
º, it follows that

�.t/ � 2CE0 � B

for all t 2 Œ0; �max/, by applying continuous induction. Indeed, given that �.s/ � 2CE0 for
each s 2 Œ0; t/, it follows that

�.t/ � C.E0 C 4C
2E20 / < 2CE0

by estimate (5.2) and continuity of �. All in all, if (5.2) holds, then we have �.t/ � 2CE0
for all t 2 Œ0; �max/, which shows that (5.1) cannot occur. Consequently, it holds that �maxD

1 and �.t/ � 2CE0 for all t � 0. Upon taking " D min¹ 1
4C 2

; B
2C
º > 0 andM D 2C this

yields the desired result.
It remains to prove the key estimate (5.2). To this end, take B D 1

2
and assume t 2

Œ0; �max/ is such that �.t/ � B . We begin by bounding the modulated perturbation v.t/
and the phase modulation 
.t/ via the integral equations (4.13) and (4.14), respectively.
Recalling from (4.10) that zS.t/ D zSc.t/C Se.t/, we control the contributions from the
operators zSc.t/ and Se.t/ in (4.13) separately. To account for the Se.t/-contribution in the
convolution term of (4.13), note that Lemma 4.4 implies that

kN .v.s/; 
.s/; @t
.s//kL2 . �.s/2.1C s/�
3
4

for s 2 Œ0; t �, where we use �.t/ � B . Hence, applying Lemma 3.1 we arrive at



Z t

0

Se.t � s/N .v.s/; 
.s/; @t
.s// ds





L2

.
Z t

0

�.s/2e��.t�s/

.1C s/
3
4

ds

.
�.t/2

.1C t /
3
4

: (5.3)

To control the remaining terms in (4.13)–(4.14) we note that Lemma 4.8 implies

kQ.v.s/; 
.s//kL1 . �.s/2.1C s/�
3
2 ;

k@`x@
j
t sp.t � s/.@xR.v.s/; 
.s/; @t
.s///kL2 . �.s/2.1C t � s/�

1
4�

`Cj
2 .1C s/�

3
2 ;

k zSc.t � s/.@xR.v.s/; 
.s/; @t
.s///kL2 . �.s/2.1C t � s/�
3
4 .1C s/�

3
2
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for s 2 Œ0; t � and `; j 2N0 with `; j � 4, where we use �.t/�B . So, applying Lemma 3.2
and recalling (4.8), we establish that



Z t

0

sp.t � s/N .v.s/; 
.s/; @t
.s// ds





L2

.
Z t

0

�.s/2

.1C t � s/
1
4 .1C s/

3
2

ds

.
�.t/2

.1C t /
1
4

;



Z t

0

@`x@
j
t sp.t � s/N .v.s/; 
.s/; @t
.s// ds






L2

.
Z t

0

�.s/2

.1C t � s/
3
4 .1C s/

3
2

ds

.
�.t/2

.1C t /
3
4

;



Z t

0

zSc.t � s/N .v.s/; 
.s/; @t
.s// ds





L2

.
Z t

0

�.s/2

.1C t � s/
3
4 .1C s/

3
2

ds

.
�.t/2

.1C t /
3
4

;

(5.4)

for `; j 2 N0 with 1 � `C 2j � 4. Thus, using Lemma 3.2, the decomposition (4.10)
of zS.t/, and estimates (5.3) and (5.4), we bound the right-hand sides of (4.11), (4.13),
and (4.14) to obtain

k
.t/kL2 .
E0 C �.t/

2

.1C t /
1
4

;

kv.t/kL2 ; k@x
.t/kH3 ; k@t
.t/kH2 .
E0 C �.t/

2

.1C t /
3
4

:

(5.5)

It remains now to provide control over the L2-norms of vx and vxx . To this end, we
proceed with establishing estimates on the unmodulated perturbation Qv.t/ and its deriva-
tives, with the goal of then using the mean value inequalities in Lemma 4.9 to infer control
on the derivatives of v. An estimate on the L2-norm of Qv.t/ follows readily by the mean
value inequalities. Indeed, combining Lemma 4.9 with (5.5) yields

k Qv.t/kL2 . kv.t/kL2 C .k�0kL1 C kQv.t/kH2/k
.t/kL2 .
E0 C �.t/

2

.1C t /
1
4

; (5.6)

where we use �.t/ � B . Next we establish a bound on the derivative Qvxxxx.t/. To this
end, note that Lemma 4.1 implies that

k zN . Qv.s//kL1 . �.s/2.1C s/�
1
2 ; k zN . Qv.s//kH4 . �.s/2.1C s/

1
8 (5.7)

for s 2 Œ0; t �, where we use �.t/ � B . Thus, differentiating (4.5) four times with respect
to x, and using Lemma 3.1, the decomposition (3.1) of the semigroup eAŒ��t , and the
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estimates (5.7) we obtain the bound

k Qvxxxx.t/kL2 . .e��t C .1C t /�
3
4 /E0 C

Z t

0

�.s/2.1C s/
1
8

e�.t�s/
ds

C

Z t

0

�.s/2

.1C t � s/
1
4 .1C s/

1
2

ds

. .E0 C �.t/
2/.1C t /

1
4 : (5.8)

Using the Gagliardo–Nirenberg inequality

k@jx Qv.t/kL2 . k@4x Qv.t/k
j=4

L2
k Qv.t/k

1�j=4

L2
; j D 1; 2; 3;

to interpolate between (5.6) and (5.8), we readily arrive at

k Qvx.t/kL2 .
E0 C �.t/

2

.1C t /
1
8

; k Qvxx.t/kL2 . E0 C �.t/
2;

k Qvxxx.t/kL2 . .E0 C �.t/
2/.1C t /

1
8 :

(5.9)

Subsequently, we employ the mean value inequalities in Lemma 4.9 to bound the
derivatives of the modulated perturbation v.t/ in terms of derivatives of the unmodu-
lated perturbation Qv.t/. Specifically, combining the bounds (4.17) with the estimates (5.5)
and (5.9), we obtain

kvx.t/kL2 . k Qvx.t/kL2 C .k�kW 2;1 C kQv.t/kH3/k
.t/kH1 .
E0 C �.t/

2

.1C t /
1
8

;

kvxx.t/kL2 . k Qvxx.t/kL2 C .k�kW 3;1 C kQv.t/kH4/k
.t/kH2 . E0 C �.t/
2;

(5.10)

where we use �.t/ � B .
Finally, by estimates (5.5), (5.6), (5.8), (5.9), and (5.10) it follows that there exists a

constant C > 1, which is independent of E0 and t , such that the key inequality (5.2) is
satisfied, which, as discussed previously, completes the proof of Theorem 1.3.

Remark 5.1. The choice of temporal weights in the template function �.t/ used in the
proof of Theorem 1.3 can be motivated as follows. First, the weights applied to the terms in
�.t/ involving kv.t/kL2 , k Qv.t/kL2 , k
.t/kL2 , k@t
.t/kH2 , and k@x
.t/kH3 are given by
the linear theory. Indeed, Lemmas 3.1 and 3.2 imply that the linear term zS.t/v0 in the inte-
gral equation (4.13) for v.t/ exhibits .1C t /�3=4-decay, whereas the linear terms eAŒ��tv0
and @`x@

j
t sp.t/ in the integral equations (4.5) and (4.14) for Qv.t/ and 
.t/ exhibit decay at

rates .1C t /�1=4 and .1C t /�1=4�.`Cj /=2, respectively. Next, the temporal weight applied
to the contribution k Qvxxxx.t/kL2 in �.t/ arises by bounding the most critical nonlinear
term in the integral equation (4.5) for Qv.t/, which, as outlined in Remark 4.3, grows at rate
.1C t /1=4. Finally, the weights applied to k Qvx.t/kL2 ; k Qvxx.t/kL2 , and k Qvxxx.t/kL2 arise
by interpolation, whereas the weights applied to kvx.t/kL2 and kvxx.t/kL2 are directly
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linked to those applied to k Qvx.t/kL2 and k Qvxx.t/kL2 . In particular, while the bounds stated
in Theorem 1.3 are sharp, the above proof yields additional L2-bounds on the derivatives
of v which are not expected to be sharp. Indeed, their estimates rely on tame estimates on
the unmodulated perturbation Qv.

A. Nonlinear damping estimates for the unmodulated perturbation

In this subsection we establish nonlinear damping estimates of the form (1.7) for the
unmodulated perturbation Qv exploiting the fact that it satisfies the semilinear equation
(4.1). The damping estimates yield tame bounds on the derivative of Qv and, thus, provide
an alternative to the Duhamel-based estimates (5.8) and (5.9) in the proof of Theorem 1.3.

To control the L2-norm of the j th derivative of the unmodulated perturbation Qv, it
makes sense to look at the energy Ej .t/ D k@

j
x Qv.t/k

2
L2

, j 2 N. The relevant bilinear
terms in @tEj .t/ are

hAŒ��@jx Qv; @
j
x QviL2 C h@

j
x Qv;AŒ��@

j
x QviL2 D �2Ej .t/C hMŒ��@jx Qv; @

j
x QviL2 ;

where

MŒ�� D 2

�
�2�r�i �2r � �

2
i

�2r � �
2
i 2�r�i

�
;

corresponds to the remaining symmetric part of the linear operator AŒ��. To remove the
residual symmetric term, which is currently obstructing a damping estimate, we introduce
the modified energy

zEj .t/ D k@
j
x Qv.t/k

2
L2
�
1

2ˇ
hJMŒ��@j�1x Qv.t/; @j�1x Qv.t/iL2 :

We emphasize that zEj .t/ still provides control over the L2-norm of the j th derivative of
the unmodulated perturbation. Indeed, using Sobolev interpolation we obtain a constant
K > 0 such that

k@jx Qv.t/k
2
L2
� 2 zEj .t/CKk Qv.t/k

2
L2
: (A.1)

Denoting

BŒ�� WD

�
3�2r C �

2
i 2�r�i

2�r�i �2r C 3�
2
i

�
;

we then find
@t zEj .t/ D �2 zEj .t/CR1.t/CR2.t/;

where R1.t/ contains all irrelevant bilinear terms,

R1.t/ D
1

ˇ

�
<hJMŒ��@j�1x

�
.I C J.˛ � BŒ��// Qv.t/

�
; @j�1x Qv.t/iL2

� hJMŒ��@j�1x Qv.t/; @j�1x Qv.t/iL2
�

C 2<
�
hJ.@jx.BŒ�� Qv.t// � BŒ��@

j
x Qv.t//; @

j
x Qv.t/iL2

� h.@xMŒ��/@j�1x Qv.t/; @jx Qv.t/iL2
�
;
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and R2.t/ is the nonlinear residual

R2.t/ D 2<
�
h@jxN . Qv.t//; @jx Qv.t/iL2 �

1

2ˇ
hJMŒ��@j�1x N . Qv.t//; @j�1x Qv.t/iL2

�
:

The irrelevant bilinear terms can be estimated with the aid of Sobolev interpolation and
the Cauchy–Schwarz and Young inequalities as

jR1.t/j �
1

2
k@jx Qv.t/k

2
L2
C C1k Qv.t/k

2
L2

for some constant C1 > 0. On the other hand, using Sobolev interpolation, the Cauchy–
Schwarz and Young inequalities, and the embedding H 1.R/ ,! L1.R/, we find that the
nonlinear residual enjoys the estimate

jR2.t/j � C2k Qv.t/kH j .k@jx Qv.t/k
2
L2
C kQv.t/k2

L2
/

for some constant C2 > 0, as long as k Qv.t/kH j is bounded. Hence, assuming k Qv.t/kH j is
sufficiently small, we obtain the desired nonlinear damping estimate

@t zEj .t/ D � zEj .t/C Ck Qv.t/k
2
L2

for some constant C > 0. Integrating the latter and using (A.1), we arrive at

k@jx Qv.t/k
2
L2
� 2e�t zEj .0/CKk Qv.t/k2L2 C 2C

Z t

0

e�.t�s/k Qv.s/k2
L2

ds: (A.2)

Note that estimate (A.2) for j D 1; 2; 3; 4, coupled with (5.6), could be used to control
the derivatives of the unmodulated perturbation in the proof of Theorem 1.3, replacing
estimates (5.8) and (5.9).

Remark A.1. While the above establishes a nonlinear damping estimate for the unmodu-
lated perturbation Qv, we emphasize again that we were unable to establish such a nonlinear
damping estimate for the modulated perturbation v by following the same strategy. The
main reason is that the nonlinear term @xR.v; 
; 
t / in (4.7) gives rise to terms in @tEj .t/,
which are bilinear in .@jC1x v.t/; @

j
xv.t// and in .@jC1x v.t/; @

jC1
x v.t// (after integrating by

parts). Although it turns out that the terms which are bilinear in .@jC1x v.t/; @
jC1
x v.t//

cancel, we have not identified a reason why the same should hold for the terms which are
bilinear in .@jC1x v.t/; @

j
xv.t//. More precisely, those terms are given by

�2<
D�
@t
.t/C ˇJ@x

� 
x.t/

1 � 
x.t/

��
@jC1x v.t/; @jxv.t/

E
L2
;

and are a priori not controlled by the energy Ej .t/. Whether a nonlinear damping esti-
mate of the form (1.7) exists for the modulated perturbation remains an interesting open
question.
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B. Local theory for the phase modulation

The result in Proposition 4.5 is a consequence of the result in Proposition B.2 below. First,
we prove the following preliminary result.

Lemma B.1. For Qv given by Proposition 4.2, the mapping V WH 2.R/ � Œ0; Tmax/ !

H 2.R/ given by

V.
; t/Œx� D Qv.x � 
.x/; t/C �.x � 
.x// � �.x/

is well defined, continuous in t , and locally Lipschitz continuous in 
 (uniformly in t on
compact subintervals of Œ0; Tmax/).

Proof. First, we note that the embedding H 4.R/ ,! C 3
b
.R/ implies that

Qv 2 C.Œ0; Tmax/; C
3
b .R//; (B.1)

where C 3
b
.R/ denotes the space of three-times-differentiable functions, whose derivatives

are continuous and bounded. Therefore, the mean value theorem yields

kV.
1; t / � V.
2; t /kH2 . k Qv.t/C �kW 3;1k
1 � 
2kH2 (B.2)

for 
1;2 2 H 2.R/ and t 2 Œ0; Tmax/. Taking 
2 D 0 in (B.2) and noting that V.0; t/ D
Qv.t/ 2 H 2.R/, shows that V is well defined. Moreover, (B.1) and (B.2) yield Lipschitz
continuity of V in 
 (uniformly in t on compact subintervals of Œ0; Tmax/).

Similarly to (B.2), we employ the mean value theorem and (B.1) to obtain

kV.
; t/ � V.
; s/kH2 . k.V .
; t/ � V.
; s// � .V .0; t/ � V.0; s//kH2

C kV.0; t/ � V.0; s/kH2

. k Qv.t/ � Qv.s/kW 3;1k
kH2 C kQv.t/ � Qv.s/kH2

for 
 2H 2.R/ and s; t 2 Œ0; Tmax/. Continuity of V with respect to t now follows by (4.3)
and (B.1).

Proposition B.2. For Qv given by Proposition 4.2, let V WH 2.R/ � Œ0; Tmax/! H 2.R/ be
the mapping in Lemma B.1. Then there exists a maximal time �max 2 .0; Tmax� such that
the integral system


.t/ D sp.t/v0 C

Z t

0

sp.t � s/N .V .
.s/; s/; 
.s/; 
t .s// ds;


t .t/ D @tsp.t/v0 C

Z t

0

@tsp.t � s/N .V .
.s/; s/; 
.s/; 
t .s// ds
(B.3)

has a unique solution

.
; 
t / 2 C.Œ0; �max/;H
4.R/ �H 2.R//:
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In addition, if �max < Tmax, then

lim
t"�max

k.
; 
t /kH4�H2 D1 (B.4)

holds. Finally, 
 2 C 1.Œ0; �max/;H
2.R// and @t
.t/ D 
t .t/ for t 2 Œ0; �max/.

Proof. First, the result in Lemma 3.2 implies that the operators sp.t/WL2.R/! H 4.R/
and @tsp.t/WL2.R/!H 2.R/ are t -uniformly bounded and strongly continuous on Œ0;1/.
Next, recall that the nonlinearity N can be decomposed as in (4.8), where Q contains no
derivatives of v and @xR is linear in v, vx , and vxx . Then it follows from Lemmas 4.4
and B.1 that the nonlinear map N WH 4.R/ �H 2.R/ � Œ0; Tmax/! L2.R/ given by

N.
; 
t ; t / D N .V .
; t/; 
; 
t /

is well defined, continuous in t , and locally Lipschitz continuous in .
; 
t / (uniformly in
t on compact subintervals of Œ0; �max/), where we used the inequalities

k@`xf � @
k
xgkL2 � kf kH2kgkH4 ; 0 � k � 3; 0 � l � 2

to bound the L2-norm of products for functions f 2 H 2.R/ and g 2 H 4.R/.
Standard arguments (see for instance [2, Proposition 4.3.3] or [27, Theorem 6.1.4])

now imply that there exist constantsR>0 and � 2 .0;Tmax/ such that‰WC.Œ0;��;B.R//!
C.Œ0; ��; B.R// given by

‰.
; 
t /Œt � D

�
sp.t/v0
@tsp.t/v0

�
C

Z t

0

�
sp.t � s/N .V .
.s/; s/; 
.s/; 
t .s//

@tsp.t � s/N .V .
.s/; s/; 
.s/; 
t .s//

�
ds

is a well-defined contraction mapping, whereB.R/ is the closed ball centered at the origin
in H 4.R/ �H 2.R/ of radius R. Hence, by the Banach fixed point theorem, ‰ admits a
unique fixed point, which yields a unique solution .
; 
t / 2 C.Œ0; ��; H 4.R/ �H 2.R//
to (B.3). Letting �max 2 .0; Tmax� be the supremum of all such � , we obtain a maximally
defined solution .
; 
t / 2 C.Œ0; �max/;H

4.R/ �H 2.R// to (B.3).
Next, assume by contradiction that �max < Tmax and (B.4) does not hold. Take t0 2

Œ0; �max/. Similarly to before, one proves that there exist constants M; ı > 0, which are
independent of t0, such that ‰t0 WC.Œt0; t0 C ı�;B.M//! C.Œt0; t0 C ı�;B.M// given by

‰t0. Q
; Q
t /Œt � D

�
sp.t/v0
@tsp.t/v0

�
C

Z t0

0

�
sp.t � s/N .V .
.s/; s/; 
.s/; 
t .s//

@tsp.t � s/N .V .
.s/; s/; 
.s/; 
t .s//

�
ds

C

Z t

t0

�
sp.t � s/N .V . Q
.s/; s/; Q
.s/; Q
t .s//

@tsp.t � s/N .V . Q
.s/; s/; Q
.s/; Q
t .s//

�
ds

is a well-defined contraction mapping, which admits a unique fixed point . Q
; Q
t / 2
C.Œt0; t0C ı�;H

4.R/�H 2.R//. Setting t0 WD �max � ı=2, it readily follows that . L
; L
t / 2
C.Œ0; �max C ı=2�;H

4.R/ �H 2.R// given by

. L
.t/; L
.t// D

´
.
.t/; 
t .t//; t 2 Œ0; �max �

ı
2
�;

. Q
.t/; Q
t .t//; t 2 Œ�max �
ı
2
; �max C

ı
2
�;
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solves (B.3), which contradicts the maximality of �max. We conclude that if �max < Tmax,
then (B.4) must hold.

Finally, Lemma 3.2 readily implies that 
.t/ is differentiable on Œ0;�max/with @t
.t/D

t .t/, where we use sp.0/ D 0. This completes the proof.
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