
Ann. Inst. H. Poincaré
Anal. Non Linéaire 40 (2023), 803–861
DOI 10.4171/AIHPC/61

© 2022 Association Publications de l’Institut Henri Poincaré
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the self-similar behavior of coagulation systems
with injection

Marina A. Ferreira, Eugenia Franco, and Juan J. L. Velázquez

Abstract. In this paper we prove the existence of a family of self-similar solutions for a class
of coagulation equations with a constant flux of particles from the origin. These solutions are
expected to describe the longtime asymptotics of Smoluchowski’s coagulation equations with a
time-independent source of clusters concentrated in small sizes. The self-similar profiles are shown
to be smooth, provided the coagulation kernel is also smooth. Moreover, the self-similar profiles are
estimated from above and from below by x�.C3/=2 as x ! 0, where  < 1 is the homogeneity of
the kernel, and are proven to decay at least exponentially as x !1.

1. Introduction

1.1. Aim of the paper

Smoluchowski’s coagulation equation, introduced by the physicist Marian von Smolu-
chowski in 1916 (cf. [28]), is a mean field model describing a system of clusters evolving
in time due to coagulation upon binary collision between clusters. The solution of Smolu-
chowski’s equation, f .t; x/, represents the number density of clusters of size x at time t
and is governed by the integro-differential equation

@tf .t; x/ D KŒf �.t; x/; (1.1)

where K is the coagulation operator defined by

KŒf �.t; x/ WD
1

2

Z x

0

K.x � y; y/f .t; x � y/f .t; y/ dy

�

Z 1
0

K.x; y/f .t; x/f .t; y/ dy: (1.2)

The kernel K.x; y/ is the coagulation rate of a cluster of size y with a cluster of size
x, and it summarizes the microscopical mechanisms underlying coagulation. Different
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kernels may induce completely different dynamics. For an overview on Smoluchowski’s
coagulation equations with different kernels we refer to [1] and [2].

Equation (1.1), as well as its discrete counterpart, has been extensively used as a
modeling tool. Polymerization [3], animal grouping [15], hemagglutination [25], plan-
etesimal aggregation [17] and atmospheric aerosol formation [12], [21], [26] are just some
examples of applications.

Several classes of coagulation kernels have been derived in the physical/chemical lit-
erature. The specific form of the kernels depends on mechanisms yielding the aggregation
of the particles (cf. [12]). Many of the kernels relevant in applications satisfy

c1.x
C�y�� C yC�x��/ � K.x; y/ � c2.x

C�y�� C yC�x��/; (1.3)

where 0 < c1 � c2 <1 and ; � 2 R.
Two relevant kernels in aerosol science are the Brownian kernel and the free molecular

coagulation kernel [12]. The exponents  and � in (1.3), associated to these two kernels are
.; �/ D .0; 1=3/ and .; �/ D .1=6; 1=2/ respectively. Both kernels yield the aggregation
rate for a set of molecules (monomers) immersed in the air. The difference between the
two kernels is that, in the first case, the mean free path of the molecules is smaller than
the cluster sizes, while it is much larger in the second case (for a more detailed discussion
see [10] and [12]).

We focus on the coagulation equation with source

@tf .t; x/ D KŒf �.t; x/C �.x/; (1.4)

with K defined by (1.2). The term � in (1.4) is a measure that represents a time-independent
source of particles, which is the main difference of this equation compared to the classical
pure coagulation equation (1.1).

Equation (1.4) has not been studied as much as the classical coagulation equation in
the mathematical literature, despite its relevance in atmospheric physics (see for instance
[21]). The existence of weak time-dependent solutions of (1.4) has been proven, under
specific assumptions on the coagulation kernel, in [5] and [7]. The long-term asymptotic
behavior of (1.4) has been studied in [4] with a combination of numerical simulations and
matched asymptotics expansions for the kernels

K.x; y/ D xayb C yaxb; a; b � 0: (1.5)

This corresponds to  D aC b and b D �� in (1.3).
In the non-gelling regime, aC b < 1 (and a; b � 0), the results of [4] suggest that the

long-term behavior of a large class of solutions to (1.4) behave as the self-similar solution

fs.t; x/ D
1

t
3C
1�

�s.y/ with y D
x

t
2
1�

(1.6)

as time goes to infinity. According to [4] the self-similar profile �s behaves as the power
law y�

C3
2 as y tends to zero and decays at least exponentially as y tends to infinity.
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For x of order 1we expect f to behave as a steady-state solution to (1.4) i.e. a solution
to

KŒf �.x/C �.x/ D 0: (1.7)

The solutions of (1.7) have been studied in [5] for bounded kernels, and in [16] for
the discrete coagulation equation for kernels of the form (1.5) when a and b can take both
positive and negative values. It is then proved that a solution to the discrete version of (1.7)
exists for the range of exponents max¹ C �;��º < 1, �1 �  � 2 and j C 2�j < 1.

More recently, the existence of a solution to (1.7) has been studied in [10], for both
the continuous and the discrete cases for kernels of the form (1.3). Specifically, it has been
proven there that, if j C 2�j < 1, then there exists at least a solution of (1.7) and, instead,
if j C 2�j � 1, then equation (1.7) does not have any solution. This implies that if the
coagulation kernel is the Brownian kernel then there exists a solution of (1.7) and, if the
coagulation kernel is the free molecular kernel, then (1.7) does not have any solution. We
remark that for the kernels of the form (1.5) considered in [4] if a C b < 1, then, since
a; b � 0, we have j C 2�j < 1 and a steady state solving (1.7) always exists.

Results analogous to those in [10] have been obtained in [19] under different regularity
assumptions on the coagulation kernels, the source � and the solutions, as well as an
additional monotonicity assumption on the kernel.

In this paper we prove, under assumptions on the parameters  and �, the existence
of a self-similar solution of the coagulation equation with constant flux coming from the
origin, that can be formally written as

@t .xf .x// D xKŒf �.x/C ı0; (1.8)

where ı0 is the Dirac mass at ¹0º. A precise definition of equation (1.8) will be presented
in Definition 3.5. This result on the existence of self-similar solutions of equation (1.8)
is the main novelty presented in this work. In agreement with the results obtained in [4],
these self-similar solutions are expected to represent the longtime behavior of the solutions
of (1.4), where we consider � to be a Radon measure with bounded first moment and
decreasing fast enough for large sizes.

The self-similar profiles �s characterizing the self-similar solutions are constructed as
the limit as "! 0 of a sequence of stationary solutions of certain coagulation equations
with source �", where we assume that x�".x/ tends to the Dirac measure supported at
¹0º as " ! 0. This is the main technical novelty of this paper and it requires uniform
estimates to be proved for the solutions. We also present some results on the regularity of
the self-similar profiles and on their asymptotic behavior for small and large clusters.

We focus on non-gelling kernels (see [8] for a complete explanation of the gelation
regimes), for which a stationary solution exists, i.e. we will consider

 < 1;

j C 2�j < 1:
(1.9)
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By [10] we know that, since j C 2�j< 1, equation (1.4) admits a steady-state solution
f . Hence, we expect the solutions of equation (1.4) to approach a steady-state solution
when x is of order 1 and time goes to infinity. For every integrable function f we denote
by Jf the flux associated with equation (1.7),

Jf .z/ WD

Z z

0

Z 1
z�x

xK.y; x/f .y/f .x/ dy dx: (1.10)

The analysis in [10] shows that the reason there exists at least a solution of (1.7) is that
the contribution to Jf due to the interaction of particles of very different sizes, x � y or
y � x, is negligible compared to the contribution to Jf due to the interaction of particles
of comparable sizes, x � y. On the contrary, when j C 2�j � 1 (to be considered in
another paper), the fact that a solution to (1.7) does not exist is due to the fact that the
collisions between particles of very different sizes very quickly drive the mass towards
infinity. Therefore, in the time-dependent problem we expect that if j C 2�j � 1 one
will need to take into account the interaction between particles of different sizes, and the
behavior of the time-dependent solutions of (1.4) is expected to be different. In this case
we expect that f .t; x/ ! 0 for x of order 1 as time goes to infinity. For this range of
parameters, the existence of self-similar solutions is not studied in [4] and might be the
object of a future work.

1.2. Notation and plan of the paper

Before beginning with the technical content of the paper, hoping to help the reader, we
clarify the notation that we adopt in this work.

First of all we employ the notation R� WD .0;1/, RC WD Œ0;1/. Moreover, we denote
by L the Lebesgue measure. For any interval I � R, we denote by Cc.I / the space of
continuous functions with compact support endowed with the supremum norm, denoted
by k � k1. We denote by C0.R�/ the space of continuous functions vanishing at infinity,
which is the completion of Cc.R�/. As before, we endow C0.R�/ with the supremum
norm.

We denote by MC.I / the space of non-negative Radon measures on I . In the fol-
lowing, justified by the Riesz–Markov–Kakutani representation theorem, we frequently
identify MC.I / with the set of positive linear functionals on Cc.R�/. We adopt the nota-
tion

MC;b.I / WD ¹� 2MC.I / W �.I / <1º

and endow this space with the total variation norm, which we denote by k � k. Since we
consider positive measures, we can easily compute the total variation norm of any measure
� 2MC.I /, indeed k�k D �.I /. We will sometimes endow MC;b.R�/ with the weak-�
topology generated by the functionals h'; �i D

R
I
'.x/�.dx/.

We denote by C.I;MC;b.R�// the space of continuous functions from the compact
set I � RC to the space of Radon bounded measures. We endow this space with the norm
kf kI WD supt2I kf .t; �/k.
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Notice that kf kI < 1 because I is a compact set and f .t; �/ is a Radon bounded
measure. Assume Y is a normed space and S � Y . We use the notation C 1.Œ0; T �IS IY /
for the collection of maps f W Œ0; T � ! S such that f is continuous and there is Pf 2
C.Œ0; T �I Y / for which the Fréchet derivative of f at any point t 2 Œ0; T � is given by
Pf . We also drop the normed space Y from the notation if it is clear from the context, in

particular, if S DMC;b.I / and Y DMC.I / or Y D S . Clearly, if f 2 C 1.Œ0; T �IS IY /,
the function Pf is unique and it can be found by requiring that for all t 2 .0; 1/,

lim
"!0

kf .t C "/ � f .t/ � " Pf .t/kY

j"j
D 0

and then taking the left and right limits to obtain the values Pf .0/ and Pf .T /. To keep the
notation lighter, in some of the proofs we will denote by C or c a constant that may be
different from line to line.

We denote by Of the Fourier transform of f WR! R defined by

Of .y/ WD
1

.2�/1=2

Z
R
e�ixyf .x/ dx:

We define the Sobolev spaces of fractional order s (negative or positive) as

H s.R/ WD
®
f 2 � 0.R/ W kf kH s.R/ <1

¯
;

where �.R/ is the space of infinitely differentiable and rapidly decreasing functions and
� 0.R/ is its dual (we refer to [6, Definition 14.6] for a precise definition), and the norm
k � kH s.R/ is given by

kf k2H s.R/ WD

Z
R
.1C jxj2/sj Of .x/j2 dx:

Let � be an open set and let s 2 R. The space H s.�/ is the set of the restricted functions
fj� with f WR! R belonging to H s.R/. It is a Banach space equipped with the norm

kf kH s.�/ WD inf
®
g 2 H s.�/ W gj� D f

¯
:

This definition is the same as in [22].
Finally, we will use the notation f � g as x! x0 to indicate the asymptotic equival-

ence between the function f and the function g, i.e. limx!x0
f .x/
g.x/
D 1. Instead, we will

use the notation f � g to say that there exists a constant M > 0 such that 1
M
�

f
g
�M .

The organization of the paper is the following. In Section 2 we discuss the heuristic
justification to study the self-similar solutions constructed in this paper. In Section 3 we
explain in detail the setting in which we work, we present the definition of self-similar
profile and state the main results of the paper. In Section 4 we prove the existence of a
self-similar profile, while in Sections 5 and 6 we prove its properties. Finally, in Section
7, we prove that the self-similar solution fs defined by (1.6), solves equation (1.8).
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2. Heuristic argument

2.1. Scaling parameters

In this subsection, we explain how the exponents in (1.6) are computed. Since we are
only considering non-gelling kernels, the change of mass in the system is only due to the
contribution of the source. Indeed, multiplying equation (1.4) by x and integrating in x
from 0 to1 we obtain formally

d

dt

Z 1
0

xf .t; x/ dx D

Z 1
0

x�.dx/ <1: (2.1)

As a consequence, using the change of variables

f .t; x/ D
1

t˛
�
�

ln t;
x

tˇ

�
; � D

x

tˇ
; � D ln t (2.2)

and considering the initial condition f .0; x/D 0, motivated by the fact that the total mass
in the system is proportional to time, we conclude that

t2ˇ�˛
Z 1
0

��.�; �/ d� D

Z 1
0

x

t˛
�
�

ln t;
x

tˇ

�
dx D

Z 1
0

xf .t; x/ dx D t

Z 1
0

x�.dx/;

which implies that 2ˇ � ˛ D 1. Hence the mass of the source is equal to the mass of �.
Moreover, using (2.2) in the coagulation term (1.2) and using (1.3) yields the scaling

KŒf �.t; x/ � tˇ�2˛CˇKŒ��.�; �/:

On the other hand, the fact that

@t

�
t�˛�

�
ln t;

x

tˇ
;
��
D �t�˛�1

�
˛�
�

ln t;
x

tˇ

�
C ˇ�@��

�
ln t;

x

tˇ

�
� @��

�
ln t;

x

tˇ

��
implies that �1 � ˛ D ˇ � 2˛ C ˇ . Recalling the condition 2ˇ � ˛ D 1 we conclude
that

ˇ D
2

1 � 
; ˛ D

3C 

1 � 
: (2.3)

Notice that this scaling is in agreement with [4].
We now conclude this section by noticing that equation (1.4) has a scaling-invariance

property. Indeed, if f solves (1.4) with a source of mass
R1
0
x�.dx/DM� , then Qf .t;y/D

.M�/
=.1�/f .t;M

1=.1�/
� y/ solves (1.4) with a source of mass 1. Without loss of gener-

ality we therefore assume from now on that the source � has mass equal to 1.

2.2. Formal derivation of the equation for the self-similar profile

In this subsection we explain why we expect the solution of equation (1.4) to approach,
as time tends to infinity, a self-similar solution for x � 1 and a steady state for x � 1,
following an argument inspired by the one in [4].
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When j C 2�j < 1, holds we know, from [10], that a stationary solution Nf exists and
we expect, in view of the numerical simulations in [4], that

f .t; x/! Nf .x/ as t !1 for x of order 1: (2.4)

The fact that J Nf .x/! 1 as x !1 (proven in [10]) and that the simplest solution

of J�.x/ D 1 is �.x/ D c0x
�
3C
2 , with c0 D .

R 1
0

R1
1
K.y; z/z�

C3
2 y�

C1
2 dy dz/�1=2,

suggests that Nf .x/ � c0x�
3C
2 as x !1. This yields the following matching condition:

f .t; x/ � c0x
�
3C
2 (2.5)

for 1� x � t
2
1� or equivalently 1� x � e

2
1� � .

We now describe the asymptotic behavior of f .t; x/ in the self-similar region x �
t

2
1� . Using the self-similar change of variables (2.2) in (1.4), we deduce that � satisfies

the following transport-coagulation equation with source,

@��.�; �/ D
3C 

1 � 
�.�; �/C

2

1 � 
�@��.�; �/CKŒ��.�; �/C e

4
1� ��.�e

2
1� � / (2.6)

for � > 0 and � > 0.
Since

R1
0
x�.dx/D 1, then in the region � � 1 the term e

4
1� ��.�e

2
1� � / tends to zero

in the sense of measures as � !1.
We make the self-similar ansatz, i.e. we assume that there exists a self-similar profile

�s such that
�.�; �/! �s.�/ as � !1 (2.7)

and conclude that �s solves

0 D
3C 

1 � 
�s.�/C

2

1 � 
�@��s.�/CKŒ�s�.�/ for � > 0: (2.8)

By the matching condition (2.5), we know that

�s � c0�
�
3C
2 as � ! 0: (2.9)

The fact that
R1
0
��s.�/ d� <1 and the shape of the equation suggest that �s decays

at least exponentially (see also the statement of Theorem 3.2); later we will justify the
precise ansatz

�s.�/ � ce
�L��� as � !1; (2.10)

for some L > 0. Rigorous upper estimates for �s supporting this asymptotic behavior will
be also derived in Theorem 3.2. The matching condition (2.9), together with (2.10) then
implies

lim
�!0

J�s .�/ D 1: (2.11)
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We conclude that the self-similar profile satisfies equation (2.8) with the boundary condi-
tion (2.11).

We now derive a relation between the flux coming from the origin, (2.11), andR1
0
��s.d�/. Multiplying (2.8) by � and noticing that �KŒ�s�.�/ D �@�J�s .�/ we obtain

0 D ���s.�/C @�

� 2

1 � 
�2�s.�/ � J�s .�/

�
:

Integrating from 0 to infinity we deduce thatZ 1
0

��s.�/ d� D lim
�!1

� 2

1 � 
�2�s.�/ � J�s .�/

�
� lim
�!0

� 2

1 � 
�2�s.�/ � J�s .�/

�
: (2.12)

Thanks to (2.9), and the assumption  < 1 we deduce that lim�!0 �
2�s.�/ D 0.

Moreover, thanks to (2.10) we deduce that lim�!1 J�s .�/D 0 and lim�!1 �
2�s.�/D 0.

Therefore, combining (2.12) with (2.11) we obtainZ 1
0

��s.�/ d� D 1:

Using the self-similar change of variables (2.2) we deduce that the self-similar solution fs
satisfies Z 1

0

xfs.t; x/ dx D t;

which is consistent with (2.1).
Finally, we justify (2.10). To this end we substitute in equation (2.8) the ansatz �s.�/�

ce�L��a as � !1 and formally estimate the behavior at infinity of all the terms in (2.8),
to deduce that a D � . We start by considering the coagulation term

KŒe�L��a�

D
c2

2
e�L��a

Z �

0

K.y; � � y/ya.� � y/a dy � c2e�L��a
Z 1
0

K.�; y/e�Lyya dy

D c2e�L��C1C2a
�
1

2

Z 1

0

K.y; 1 � y/ya.1 � y/a dy �

Z 1
0

K.1; y/e�L�yya dy

�
�
c2

2
e�L��C1C2a

Z 1

0

K.y; 1 � y/ya.1 � y/a dy

and therefore

KŒe�L��a� � c2
�Z 1

0

K.y; 1 � y/ya.1 � y/a dy

�
e�L��C1C2a as � !1: (2.13)
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On the other hand,

3C 

1 � 
�s.�/C

2

1 � 
��0s.�/ � �

2cL

1 � 
e�L��1Ca as � !1: (2.14)

Combining (2.13) and (2.14) we deduce that �s.�/ � ce�L��� and

c D
2L

1 � 

�Z 1

0

K.y; 1 � y/y� .1 � y/� dy

��1
:

The power law behavior near the origin and the exponential behavior at infinity are
supported by the numerical simulations in [4]. The estimates (3.3), (3.4) show that the
mean of �s behaves as x�.C3/=2 near the origin and the inequality (3.6) shows that �s
decays at least exponentially for large sizes.

2.3. Longtime asymptotics

In this section we present a different argument justifying the self-similar behavior of solu-
tions of (1.4). We show that, if the self-similar profile can be uniquely identified as the
solution of a coagulation equation with constant flux coming from the origin (equation
(1.8)), then the self-similar solution describes the longtime behavior of the solutions to
the coagulation equation with source (1.4). Since the investigation of the uniqueness of
the coagulation equation with constant flux coming from the origin is still an open prob-
lem, the following argument represents only a formal heuristic motivation for the study of
self-similar solutions of equation (1.4).

Nevertheless, the self-similar ansatz (1.6) is corroborated, at least for some of the
kernels considered here, by the numerical simulations and heuristic explanations in [4]
and by [20] from the point of view of physics.

Let us consider a solution f to (1.4) with initial condition f0 such that f0.y/ < cy!

with ! < � C3
2

and c > 0, and a positive constant R. Since we are interested in the long-
time behavior and we are assuming  < 1, we consider the following change of variables:

x D �R; t D R
1�
2 s; s > 0:

The scaling in size balances the scaling in time in such a way that the function FR defined
by

FR.s; �/ WD R
.C3/=2f .R�;R

1�
2 s/ (2.15)

satisfies the coagulation equation

@sFR.s; �/ D KŒFR�.s; �/C �R.�/ (2.16)

with the source
�R.�/ WD R

2�.R�/

and the initial condition FR.0; �/ D R
C3
2 f0.R�/.
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Integrating equation (2.16) against a test function ' 2 C.Œ0; T � �RC/ we obtainZ
R�

�'.t; �/FR.t; �/ d�

D

Z
R�

�'.0; �/FR.0; �/ d� C

Z t

0

Z
R�

�@s'.s; �/FR.s; �/ d� ds

C

Z t

0

Z
R�

Z
R�

K.y; �/

2

�
'.s; � C y/.� C y/ � �'.s; �/ � y'.s; y/

�
�

�FR.s; �/FR.s; y/ d� dy ds

C

Z t

0

Z
R�

�'.s; �/�R.�/ d� ds: (2.17)

Since the source �R decays fast enough andZ 1
0

��R.�/ d� D 1;

we infer that

lim
R!1

Z
R�

�'.s; �/�R.�/ d� D lim
R!1

Z
R�

'
�
s;
y

R

�
y�.y/ dy D '.s; 0/

and y�R.y/! ı0.y/ as R!1.
Assuming that the solution FR is unique and that the limit of FR whenR!1 exists,

passing to the limit as R ! 1 in equation (2.16), we deduce that F , the limit of FR,
solves the coagulation equation with constant flux coming from the origin in the sense of
Definition 3.5.

We will prove in Theorem 3.6 that the function s�
C3
1� �s.�s

� 2
1� /, with �s solving

(2.8) with the boundary condition (2.11), satisfies equation (3.10) for every test function
' 2 C 1.Œ0; T �; C.RC//. Assuming that (3.10) has a unique solution we conclude that

F.s; �/ D lim
R!1

FR.s; �/ D s
�
C3
1� �s.�s

� 2
1� /: (2.18)

Choosing R D e
2
1� � and s D 1 in (2.15), we conclude that

F
e
2�
1�
.1; �/ D e

3C
1� �f .e� ; �e

2�
1� /;

where f is a solution of equation (1.4).
From (2.18) and the fact that F.1; �/ D �s.�/, we deduce that, as � tends to infinity,

e
3C
1� �f .e� ; �e

2
1� � /! �s.�/:

This implies the self-similar ansatz (1.6).
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3. Setting and main results

Given ; � 2 R and c1; c2 > 0, a continuous symmetric function KWR� �R� ! RC is a
coagulation kernel of parameters  and � if it satisfies the inequalities

c1w.x; y/ � K.x; y/ � c2w.x; y/ 8x; y 2 R�; (3.1)

where

w.x; y/ D
xC�

y�
C
yC�

x�
:

We assume that the coagulation kernel is homogeneous, with homogeneity  , that is, for
any b > 0 it satisfies

K.bx; by/ D bK.x; y/ 8x; y 2 R�:

We now give the definition of a self-similar profile for equation (1.8).

Definition 3.1. LetK be a homogeneous symmetric coagulation kernelK 2 C.R� �R�/
satisfying (3.1) with homogeneity  < 1. A self-similar profile of equation (1.8) with
respect to the kernel K is a measurable function � � 0 withZ

R�

x�.x/ dx D 1 and J� 2 L
1
loc.R�/;

where J� is defined by (1.10), and it satisfies

J�.z/ D 1 �

Z z

0

x�.x/ dx C
2

1 � 
z2�.z/ a.e. z > 0: (3.2)

Theorem 3.2 (Existence). Let K be a homogeneous symmetric coagulation kernel K 2
C.R� �R�/ satisfying (3.1), with homogeneity  < 1 and j C 2�j < 1. Then there exists
a self-similar profile � as in Definition 3.1. Moreover, there exist positive constants C and
b1 with b1 < 1 such that

1

z

Z z

b1z

�.x/ dx �
C

z.3C/=2
for any z > 0 (3.3)

and there exist two constants b2 2 .0; 1/ and c > 0, depending on the parameters of the
kernel  , � as well as on c1, c2 in (3.1), such that

1

z

Z z

b2z

�.x/ dx �
c

z.3C/=2
; z 2 .0; 1�: (3.4)

There exists a positive constant L such thatZ 1
1

eLx�.x/ dx <1 (3.5)

and a positive constant � such that

lim sup
z!1

�.z/e�z <1: (3.6)
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Theorem 3.3 (Regularity). Assume K, � and  are as in the assumptions of Theorem
3.2 and assume � to be the self-similar profile whose existence is proven in Theorem 3.2.
Assume that for every 0 < y � 1 we have K.�; y/ 2 H l .R�/ with

sup
0<y�1

y�min¹C�;��º
kK.�; y/kH l .1=2;2/ <1: (3.7)

Then the self-similar profile � is such that x2�.x/ 2 H l .R�/.
If l � 3=2 then � 2 C 1.R�/ and it satisfiesZ x=2

0

�
K.x � y; y/�.x � y/ �K.x; y/�.x/

�
�.y/ dy C

Z 1
x=2

K.x; y/�.x/�.y/ dy

C
3C 

1 � 
�.x/C

2

1 � 
x@x�.x/ D 0 8x 2 R�; (3.8)

with the boundary condition (2.11).

Remark 3.4. Due to the homogeneity and the symmetry of the kernel, inequality (3.7)
implies that for every .a; b/ � RC with 0 < a < b, we have

sup
0<y�1

y�min¹C�;��º
kK.�; y/kH l ..a;b// <1:

Definition 3.5 (Coagulation equation with constant flux coming from the origin). Let K
be a homogeneous symmetric coagulation kernel K 2 C.R� � R�/ satisfying (3.1) with
homogeneity  < 1, and let T > 0. We say that F 2 C.Œ0; T �;MC.RC// is a solution of
the coagulation equation with constant flux coming from the origin with initial condition
F.0; �/ D 0, if

sup
s2Œ0;T �

Z
.0;1�

�qF.s; d�/ <1 sup
s2Œ0;T �

Z
Œ1;1/

�pF.s; d�/ <1 (3.9)

for q D min¹1C  C �; 1 � �; 1º and p D max¹ C �;��º and if it solves the equationZ
R�

�'.t; �/F.t; d�/

D

Z t

0

Z
R�

�@s'.s; �/F.s; d�/ ds C

Z t

0

'.s; 0/ ds

C
1

2

Z t

0

Z
R�

Z
R�

K.�; �/
�
.� C �/'.s; � C �/ � �'.s; �/ � �'.s; �/

�
� F.s; d�/F.s; d�/ ds (3.10)

for every test function ' 2 C 1.Œ0; T �; C 1c .RC// and every 0 � t < T .

Theorem 3.6. Assume K, � and  are as in the assumptions of Theorem 3.2. Let � be a

self-similar profile as in Definition 3.1. Then F.t; d�/ WD t�
C3
1� �.�t

� 2
1� / d� solves the

coagulation equation with flux coming from the origin in the sense of Definition 3.5.
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Remark 3.7. We underline that the moment bounds (3.3), (3.4), (3.5), estimate (3.6) and
the regularity properties in Theorem 3.3 are proven only for the self-similar profile whose
existence is stated in Theorem 3.2. We do not know whether these properties are more
general, i.e. whether they hold for all the self-similar profiles as in Definition 3.1. (Since
we do not prove uniqueness of the self-similar profile, the existence of many self-similar
profiles is not excluded).

4. Existence of a self-similar profile

We briefly explain the technique we adopt to prove the existence of a solution of equation
(2.8) with the boundary condition (2.11).

The main idea is to approximate a solution of (2.8) with a sequence of solutions �" of
equation

0 D
3C 

1 � 
�".�/C

2

1 � 
�@��".�/CKŒ�"�.�/C �".�/; (4.1)

where �" is a smooth function with support Œ"; 2"� and such thatZ
R�

x�".x/ dx D

Z
R�

y�.dy/ D 1:

To prove the existence of a solution of (4.1) we follow an approach which is extens-
ively used in the analysis of kinetic equations; see for instance [9] and [13]. We first
prove the existence of solutions of (4.1) by considering the corresponding truncated time-
dependent evolution problem:

@t�".�; �/ D ��".�; �/C
2

1 � 

1

�
@�.�

2„".�/�".�; �//CKa;RŒ�"�.�; �/C �".�/; (4.2)

where „" is a smooth monotone function „"WR� ! RC such that „".x/ D 1 if x � 2"
and „".x/ D 0 if x � ", while KR;a is the truncated coagulation operator defined by

KR;aŒf �.�; �/ WD
�R.�/

2

Z �

0

Ka.� � z; z/f .t; � � z/f .t; z/ dz

�

Z 1
0

Ka.�; z/f .t; �/f .t; z/ dz;

where Ka is a kernel bounded from above by a and from below by 1=a and �R is a
truncation function of parameter R > 0, i.e. it is a smooth function �RWR� ! RC such
that �R.x/D 1 if x � R while �R.x/D 0 if x � 2R. The specific truncation in the growth
term of (4.2) has been chosen in order to ensure that the set ¹� W

R1
0
��.�/ d� � 1º is

invariant under the evolution equation corresponding to (4.2).
In Section 4.1 we prove the existence of a weak solution to (4.2). In Section 4.2 we

prove, using the Tychonoff fixed point theorem, the existence of a stationary weak solution
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of equation (4.2),

0 D ��".�/C
2

1 � 

1

�
@�.�

2„".�/�".�//CKa;RŒ�"�.�/C �".�/; (4.3)

and in Section 4.3 we study the properties of �". In Section 4.4 we show that the solu-
tions of (4.3) approximate a self-similar profile in the sense of Definition 3.1 as R!1,
a!1, "! 0.

4.1. Truncated time-dependent coagulation equation with source written in
self-similar variables

We introduce now some terminology that will enable us to define the truncated equation.
As we will see in the proof of Proposition 4.4, to prove the existence of a solution of
equation (4.2), we prove the existence of a solution of an auxiliary equation, obtained via
a time-dependent change of variables.

The aim of the rest of this section is to prove the existence of a solution, for every
' 2 C 1.Œ0; T �; C 1c .R�//, of the following truncated equation:Z

R�

ˆ.t; d�/'.t; �/ �

Z
R�

ˆ0.d�/'.0; �/ �

Z t

0

Z
R�

@s'.s; �/ˆ.s; d�/ ds

D
1

2

Z t

0

Z
R�

Z
R�

Ka.�; z/
�
'.s; � C z/�R.� C z/ � '.s; �/ � '.s; z/

�
�ˆ.s; d�/ˆ.s; dz/ ds

�

Z t

0

Z
R�

'.s; �/ˆ.s; d�/ ds �
2

1 � 

Z t

0

Z
R�

„".�/@�'.s; �/�ˆ.s; d�/ ds

C
2

1 � 

Z t

0

Z
R�

„".�/'.s; �/ˆ.s; d�/C

Z t

0

Z
R�

'.s; �/�".�/ d� ds; (4.4)

where we are assuming that  < 1 and ˆ0 2MC;b.R�/ with ˆ0..0; "� [ Œ2R;1// D 0.
The proof of the existence of a solution of equation (4.4) is standard, in the sense that

it is based on the Banach fixed point theorem. More precisely, we will use a change of
variables to obtain an equation which is easier to analyze (cf. (4.12)). This equation looks
complicated, but it does not contain any transport terms, and, therefore, it is suitable for a
fixed point argument.

To prepare the change of variables, we introduce the following notation. We denote by
X.t; x/ the solution of the characteristic ODE,

@X.t; x/

@t
D �ˇX.t; x/„".X.t; x//; X.0; x/ D x: (4.5)

We also introduce the function `W Œ0; T � � R� � R� ! RC which is the function that
satisfies

X.t; `.t; x; y// D X.t; x/CX.t; y/: (4.6)
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The function ` is well defined because the map x 7!X.t; x/ is a diffeomorphism for every
time t .

A time-dependent truncation of parameterR is a function �R 2C1.Œ1;T ��R� �R�/
defined by

�R.t; x; y/ WD �R.X.ln t; x/CX.ln t; y//; (4.7)

where �R is a truncation function of parameter R.
We also define a truncated time-dependent kernel. A time-dependent coagulation ker-

nel of parameter a > 0 is a continuous map Ka;T W Œ1; T � �R� �R� ! RC defined by

Ka;T .t; x; y/ WD t
�2Ka.X.ln t; x/; X.ln t; y//; (4.8)

where Ka is a bounded coagulation kernel of bound a. We also introduce a new auxiliary
source z�" defined by

z�".t; x/ D e
�g.ln t;x/ @X.ln t; x/

@x
�".X.ln t; x//; t > 1; x > 0; (4.9)

where g is defined by

g.�; x/ WD ˇ

Z �

0

„".X.s; x// ds for every � > 0, x > 0: (4.10)

Notice that, by the change of variables formula, this implies that for every test function '
and every time t > 0,Z

R�

'.�/�".�/ d� D

Z
R�

'.X.t; x//eg.t;x/ z�".e
t ; x/ dx: (4.11)

Proposition 4.1. Let T > 1,  < 1, ˇ D 2=.1 � /, and consider a source z�", a kernel
Ka;T , a truncation �R and a truncation„". Let ` be the function defined by (4.6). Consider
an initial condition f1 2MC;b.R�/ with f1..0; "� [ .2R;1// D 0. Then there exists a
unique solution to the equationZ

R�

'.x/ Pf .t; dx/

D

Z
R�

'.x/ z�".t; x/ dx

C

Z
R�

Z
R�

Ka;T .t; x; y/

2

�
ƒŒ'�.t; x; y/ � '.x/eg.ln t;y/ � '.y/eg.ln t;x/

�
� f .t; dx/f .t; dy/ (4.12)

for any ' 2 Cc.R�/ and t 2 Œ1; T �, with f .1; �/ D f1.�/ and where

ƒŒ'�.t; x; y/ WD '.`.ln t; x; y//e�g.ln t;`.ln t;x;y//Cg.ln t;x/Cg.ln t;y/�R.t; x; y/: (4.13)



M. A. Ferreira, E. Franco, and J. J. L. Velázquez 818

The solution f 2 C 1.Œ1; T �;MC;b.R�// has the following properties for every t 2 Œ1; T �:Z
R�

f .t; dx/ � T k�"k C kf1k (4.14)

and

f .t; .0; "� [ .2Rtˇ ;1// D 0: (4.15)

Before starting with the proof of this proposition we provide some definitions and
two auxiliary lemmas that help in its proof. Let us define the operator F , which is a
contraction, as will be shown in the proof of Proposition 4.1, whose fixed point is the
solution of (4.12).

Consider f 2 C.Œ1; T �;MC;b.R�// with f .1; �/ D f1.�/. We denote by b and hR the
following expressions:

bŒf �.t; x/ WD

Z
R�

Ka;T .t; x; y/f .t; dy/e
g.ln t;x/;

hR.t; s; x; y/ WD �R.s; x; y/e
�
R t
s bŒf �.�;x/ d� :

The operator F Œf �.t/WC0.R�/ 7! R� is defined by

hF Œf �.t/; 'i WD hF1Œf �.t/; 'i C hF2Œf �.t/; 'i C hF3Œf �.t/; 'i (4.16)

for t 2 Œ1; T �, where the operators Fi WC0.R�/ 7! R� are defined by

hF1Œf �.t/; 'i WD

Z
R�

'.x/e�
R t
1 bŒf �.s;x/ dsf1.dx/;

hF2Œf �.t/; 'i WD

Z t

1

Z
R�

Z
R�

ƒŒ'�.s; x; y/e�
R t
s bŒf �.�;x/ d�

Ka;T .s; x; y/

2

� f .s; dx/f .s; dy/ ds;

hF3Œf �.t/; 'i WD

Z
R�

'.x/

Z t

1

e�
R t
s bŒf �.v;x/dv z�".s; x/ ds dx:

We define the set X" as

X" WD
®
f 2MC.R�/ W f ..0; "�/ D 0

¯
: (4.17)

The set X" is a closed set both with respect to the weak-� topology and the norm topology
on Mb.R�/; thus it is a Banach space with respect to the total variation norm.

Lemma 4.2. Assume  , ˇ, �",Ka;T ,„", ` and �R are as in Proposition 4.1. The operator
F defined by (4.16), for any initial condition f1 2 X", maps C.Œ1; T �;X"/ into itself.

Consider an initial condition f1 for equation (4.12); we denote by XT the set defined
by

XT WD
®
f 2 C.Œ1; T �;X"/ W kf � f1kŒ1;T � � 1C kf1k

¯
: (4.18)
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Lemma 4.3. Under the assumptions of Lemma 4.2, we deduce that if

T � 1 �
C.�"; a/

1C kf1k
(4.19)

for a suitable constant C.�"; a/ > 0, then, for every f; g 2 XT , it holds that

kF Œf �.�/ � F Œg�.�/kŒ1;T � � CT kf � gkŒ1;T � (4.20)

with 0 < CT < 1
2

and

kF Œf1� � f1kŒ1;T � � DT .1C kf1kŒ1;T �/ (4.21)

with 0 < DT < 1
2

.

The proofs of these lemmas are postponed to the appendix, as they are based on ele-
mentary sequences of inequalities.

Proof of Proposition 4.1. Thanks to Lemma 4.2 we already know that F maps C.Œ1; T �;
X"/ into itself.

By Lemma 4.3 we also know that if T satisfies (4.19), then F is a contraction and for
every f 2 XT ,

kF Œf � � f1kŒ1;T � � .CT CDT /.1C kf1kŒ1;T �/

with CT CDT < 1.
By the Banach fixed point theorem we deduce that if T satisfies (4.19), then the

operator F has a unique fixed point f in XT . Notice that if f 2 C.Œ1; T �;X"/, then
F Œf � 2 C 1.Œ1; T �;X"/, therefore the map f W Œ1; T �! X" is Fréchet differentiable. Dif-
ferentiating F Œf � D f we deduce that f satisfies equation (4.12). (For the details of this
computation we refer to [29, proof of Lemma 5.6].)

For the moment we only know that the solution of equation (4.12) exists if T is small
enough. Let us show, following the strategy of [10] and [29], that we can extend this
solution to the whole line Œ1;1/. To this end we first prove inequality (4.14). Considering
in (4.12) a test function ' 2 Cc.RC/ such that 0 � ' � 1 and ' D 1 on Œ"; 2T ˇR� we
obtain the following a priori estimate, for every t > 1:Z

R�

'.x/ Pf .t; dx/

D

Z
R�

'.x/ z�".t; x/ dx

C

Z
.";1/

Z
.";1/

Ka;T .t; x; y/

2

�
ƒŒ'�.t; x; y/ � '.x/eg.ln t;y/ � '.y/eg.ln t;x/

�
� f .t; dx/f .t; dy/

� k�"k;
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where the last inequality is a consequence of (4.11) and of the fact that, due to the defini-
tion of ` and the monotonicity of„", max¹g.ln t; x/;g.ln t; y/º � g.ln t; `.ln t; x;y//� 0,
hence

ƒŒ'�.t; x; y/ � '.x/eg.ln t;y/ � '.y/eg.ln t;x/ � 0 t > 0; x; y > " (4.22)

for our choice of test function.
Therefore, for every t 2 Œ1; T �, inequality (4.14) holds and a unique solution of (4.12)

exists in the interval Œ1; T1� with

T1 � 1 WD
C.�"; a/

1C kf1k
:

To extend the solution, preserving uniqueness and differentiability, we update the initial
condition to f2.�/ WD f .T12 ; �/ and by (4.19) and (4.14) we deduce that there exists a unique
solution on Œ1; T1

2
C T2� with

T2 � 1 WD
C.�"; a/

1C kf1k C
C.�";a/k�"k
1Ckf1k

�
C.�"; a/

1C kf2k
:

Iterating this argument, thanks to (4.14) and (4.19) we deduce that a unique solution exists
on the whole real line. We refer to [29, proof of Proposition 5.8] for the details.

We show that f .t; .2Rtˇ ;1// D 0. Considering a test function 'n which approaches
�.2Rtˇ ;1/ in equation (4.12), we deduce that

R
R�
'n.x/ Pf .t; dx/ � 0 for every n � 0 and

the desired conclusion follows by the Lebesgue dominated convergence theorem.

Proposition 4.4. Let  , ˇ, Ka;T , �", „" and �R be as in Proposition 4.1 and let f
denote the solution of equation (4.12) with respect to Ka;T , �", „" and �R. Then ˆ 2
C 1.Œ0; T �;MC;b.R�//, defined, by duality, as the function with measure values that satis-
fies, for every ' 2 Cb.R�/ and every � 2 Œ0; T �, the equalityZ

R�

'.�/ˆ.�; d�/ D

Z
R�

'.X.�; x//e��Cg.�;x/f .e� ; dx/; (4.23)

where g is given by (4.10), is a solution of equation (4.4) with respect to Ka, �", �R and
„" and the initial condition ˆ0 2MC.R�/ with ˆ0..0; "� [ .2R;1// D 0. The solution
ˆ has the following properties for every � 2 Œ0; T �:

ˆ.�; .0; "� [ .2R;1// D 0;Z
R�

ˆ.�; d�/ � e
1C
1� T .eT k�"k C kˆ0k/: (4.24)

Proof. By the change of variables (4.23), for every ' 2 C 1.Œ0; T �; C 1c .R�//,

d

d�

�Z
R�

'.�; �/ˆ.�; d�/

�
D

d

d�

�Z
R�

'.�;X.�; x//e��Cg.�;x/f .e� ; dx/

�
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D

Z
R�

d

d�

�
'.�;X.�; x//e��Cg.�;x/

�
f .e� ; dx/

C

Z
R�

'.�;X.�; x//eg.�;x/
d

de�
f .e� ; dx/:

Expanding the first term and using the definition of g, (4.10), we obtainZ
R�

d

d�

�
'.�;X.�; x//e��Cˇ

R �
0 „".X.s;x// ds

�
f .e� ; dx/

D

Z
R�

�
@1'.�;X.�; x// � ˇX.�; x/„".X.�; x//@2'.�;X.�; x// � '.�;X.�; x//

C ˇ„".X.�; x//'.�;X.�; x//
�
e��Cˇ

R �
0 „".X.s;x// dsf .e� ; dx/

D

Z
R�

�
@1'.�; z/ � ˇz„".z/@2'.�; z/ � '.�; z/C ˇ„".z/'.�; z/

�
ˆ.�; dz/:

On the other hand, since f is the fixed point of F , choosing the test function

 .�; x/ WD '.�;X.�; x//eg.�;x/ (4.25)

in (4.12) we deduce thatZ
R�

 .�; x/
d

de�
f .e� ; dx/

D

Z
R�

 .�; x/ z�".e
� ; x/ dx

C

Z
R�

Z
R�

Ka;T .e
� ; x; y/

2

�
ƒŒ .�; �/�.e� ; x; y/ �  .�; x/eg.�;y/

�  .�; y/eg.�;x/
�
f .e� ; dx/f .e� ; dy/;

which together with (4.8), (4.11) and (4.25) implies thatZ
R�

'.�;X.�; x//eg.�;x/
d

de�
f .e� ; dx/

D

Z
R�

'.�;X.�; x//eg.�;x/ z�".e
� ; x/ dx

C

Z
R�

Z
R�

Ka;T .e
� ; x; y/

2
eg.�;y/Cg.�;x/

�
'.�;X.�; x/CX.�; y//�R.e

� ; x; y/

� '.�;X.�; x// � '.�;X.�; y//
�

� f .e� ; dx/f .e� ; dy/

D

Z
R�

'.�; �/�".�/ d�

C

Z
R�

Z
R�

Ka.X.�; x/; X.�; y//

2

�
'.�;X.�; x/CX.�; y//�R.X.�; x/CX.�; y//

� '.�;X.�; x// � '.�;X.�; y//
�

� e��Cg.�;x/f .e� ; dx/e��Cg.�;y/f .e� ; dy/:
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By the change of variables (4.23), we deduce thatZ
R�

'.�;X.�; x//eg.�;x/
d

de�
f .e� ; dx/

D

Z
R�

'.�; �/�".�/ d�

D

Z
R�

Z
R�

Ka.�; z/

2

�
�R.z C �/'.�; z C �/ � '.�; �/ � '.�; z/

�
ˆ.�; d�/ˆ.�; dz/:

Summarizing, we have proven that ˆ satisfies (4.4) for all ' 2 C 1.Œ0; T �; C 1c .R�//.
Since f is a solution of equation (4.12), then (4.15) holds. Considering a test function

' D 1 in .0; "� [ .2Rtˇ ;1/ in (4.23) and recalling that, if x > 2", then X.t; x/ D t�ˇx
and for every " � x > 0 and every t > 1 we have X.t; x/ D x, we conclude that for every
� 2 Œ0; T �,

ˆ.�; .0; "� [ .2R;1// D 0:

By inequality (4.14) and by the fact that f1 D ˆ0, we deduce that

sup
�2Œ0;T �

Z
R�

ˆ.�; d�/ D sup
�2Œ0;T �

Z
R�

e��Cˇ
R �
0 „".X.s;x// dsf .e� ; dx/

� sup
t2Œ1;eT �

Z
R�

t�1Cˇf .t; dx/ � e
1C
1� T .eT k�"k C kˆ0k/:

The bound (4.24) follows.

4.2. Existence of steady-state solutions for the truncated coagulation equation with
source written in self-similar variables

In this subsection we prove the existence of steady-state solutions of equation (4.4) (see
Proposition 4.6).

Definition 4.5. Let  < 1. We say that a measureˆ 2MC;b.R�/ is a steady-state solution
of equation (4.4) with respect to Ka, �R, „" and �" if it solves the following equation for
every ' 2 C 1c .R�/:Z

R�

'.x/ˆ.dx/

D

Z
R�

'.x/�".x/ dx C
2

1 � 

Z
R�

„".x/.'.x/ � x'
0.x//ˆ.dx/

C

Z
R�

Z
R�

Ka.x; y/

2

�
�R.x C y/'.x C y/ � '.x/ � '.y/

�
ˆ.dx/ˆ.dy/: (4.26)

In the following we will denote by �z;n the mollification of the characteristic function
�.0;z�,

�z;n.x/ D

Z
R�

�.0;z�.x � y/�n.y/ dy; (4.27)
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where �n are the mollifiers considered in [14]. In the following, we use the notation

gz;n.x/ WD

Z 1
n

x�z

cne
1

.ny/2�1 dy: (4.28)

Classical results for mollifiers yield �z;n ! �Œ0;z� in L1.R�/.

Proposition 4.6. Let  < 1. There exists a steady-state solution for equation (4.4) corres-
ponding to Ka, �", „" and �R, ˆ ¤ 0, as in (4.5), satisfying

ˆ..0; "� [ .2R;1// D 0; (4.29)

0 <

Z
R�

xˆ.dx/ � 1: (4.30)

Before proceeding with the proof of Proposition 4.6 we present and prove two auxili-
ary results.

Lemma 4.7. Under the assumptions of Proposition 4.4, we have that each solution ˆ 2
C 1.Œ1; T �;MC;b.R�// of (4.4) corresponding to an initial condition ˆ0 2 MC;b.R�/
such that

R
R�
�ˆ0.d�/ � 1, and to Ka, �", �R, „" satisfies

R
R�
�ˆ.t; d�/ � 1.

Proof. We consider the test function 'Mn .�/ WD ��M;n.�/ , with �M;n defined by (4.27)
in equation (4.4) and we pass to the limit as M tends to infinity in all the terms of (4.4).
First, we notice thatZ

.M;MC1=n�

�gM;n.�/ˆ.t; d�/! 0 as M !1I

indeed, for every � 2 R�, we have �.M;MC1=n�.�/gM;n.�/ � 1 andZ
R�

�ˆ.t; d�/ � 2Rˆ.t;R�/ <1:

Therefore, by the Lebesgue dominated convergence theorem,

lim
M!1

Z
R�

'Mn .�/ˆ.t; d�/ D

Z
R�

�ˆ.t; d�/:

A similar argument can be used to prove thatZ
R�

'Mn .�/�".�/ d� ds !

Z
R�

��".�/ d� as M !1:

If M > 2R, then

'Mn .� C z/�R.� C z/ � '
M
n .�/ � '

M
n .z/ D ���M;n.�/ � z�M;n.z/:



M. A. Ferreira, E. Franco, and J. J. L. Velázquez 824

This implies that

lim
M!1

Z t

0

Z
R�

Z
R�

Ka.�; z/
�
'Mn .� C z/�R.� C z/ � '

M
n .�/ � '

M
n .z/

�
�ˆ.s; d�/ˆ.s; dz/ ds � 0:

Let us now consider the termZ
Œ0;MC1=n�

�2„".�/@�.�M;n.�//ˆ.t; d�/ D

Z
.M;MC1=n�

„".�/�
2@�.gM;n.�//ˆ.t; d�/:

Since g0M;n.x/ D �cne
1

.n.x�M//2�1 , by the Lebesgue dominated convergence theorem we
can conclude that

lim
M!1

Z
R�

„".�/�.M;MC1=n�.�/�
2@�.gM;n.�//ˆ.t; d�/ D 0:

Passing to the limit as M !1 in equation (4.4), thanks to the specific form of the
truncation for small particles in (4.2), we deduce that

@t

Z 1
0

xˆ.t; dx/ � 1 �

Z 1
0

xˆ.t; dx/:

Therefore, since by assumption
R1
0
xˆ0.dx/ � 1, we deduce that

R1
0
xˆ.t; dx/ � 1 for

every t > 0.

Lemma 4.8. Under the assumptions of Proposition 4.6, for every T > 0 there exists a
unique solution ' 2 C 1.Œ0; T �; C 1c .R�//, with '.T; �/ WD  2 C 1c .R�/, of the equation

@s'.s; x/ � '.s; x/C
2

1 � 
„".x/.'.s; x/ � x@x'.s; x//C LŒ'�.s; x/ D 0; (4.31)

where L is defined by

LŒ'�.s;x/ WD
1

2

Z
R�

Ka.x;y/
�
'.s;xC y/�R.xC y/� '.s;x/� '.s;y/

�
�s.dy/; (4.32)

where�s Dˆ.s; �/C‰.s; �/ andˆ and‰ are two solutions of (4.4) with initial conditions
ˆ0 and ‰0 respectively.

Proof. Equation (4.31) includes a transport term. Therefore, we proceed by integrating
along the characteristics. Since the associated ODE is (4.5), we can rewrite equation (4.31)
as

d

ds
'.s; X.s; y// D '.s; X.s; y// � LŒ'�.s; X.s; y//

�
2

1 � 
„".X.s; y//'.s; X.s; y//:
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We aim now to apply the Banach fixed point theorem. We therefore rewrite the equation
in a fixed point form '.s; X.s; y// D T Œ'�.s; X.s; y//, where

T Œ'�.s; y/ WD  .X.t; y//C

Z t

s

� 2

1 � 
„".X.r; y//'.r; X.r; y// � '.r; X.r; y//

�
dr

C

Z t

s

LŒ'�.r; X.r; y// dr:

Recall that ' 2 Y WD C.Œ0; T �; Cc.R�// and Y is a Banach space with the norm k � kY WD
supŒ0;T � supR� j � j. We show that the operator T WY ! Y is a contraction.

Let us consider '1; '2 2 Y ; then

T Œ'1�.s; y/ � T Œ'2�.s; y/ D

Z t

s

.LŒ'1� � LŒ'2�/.r; X.r; y// dr

C

Z t

s

�2„".X.r; y//
1 � 

�
'1.r; X.r; y// � '2.r; X.r; y//

�
�
�
'1.r; X.r; y// � '2.r; X.r; y//

��
dr:

We start by estimating the last term,ˇ̌̌̌Z t

s

�2„".X.r; y//
1 � 

�
'1.r; X.r; y// � '2.r; X.r; y//

�
�
�
'1.r; X.r; y// � '2.r; X.r; y//

��
dr

ˇ̌̌̌
� T

ˇ̌̌3 � 
1 � 

ˇ̌̌
k'1 � '2kY ; (4.33)

and then we analyze the first term,Z t

s

.LŒ'1� � LŒ'2�/.r; X.r; y// dr

�
a

2

Z t

s

Z 1
0

�
.'1 � '2/.r; x CX.r; y//�R.x C y/ � .'1 � '2/.r; x/

� .'1 � '2/.r; X.r; y//
�
�r .dx/

�
3a

2
k'1 � '2kY

Z t

s

�r .R�/ dr D
3a

2
k'1 � '2kY

Z t

s

.ˆ.r;R�/C‰.r;R�// dr:

To prove that T is a contraction, we need to control the quantityZ t

s

.ˆ.r;R�/C‰.r;R�// dr:

Thanks to (4.24) and to the fact that  < 1, we know that for every r > 0,

‰.r;R�/ � e
r
1C
1� .k‰0k C e

r
k�"k/ � e

r 2
1� .k‰0k C k�"k/

and
ˆ.r;R�/ � e

r
1C
1� .kˆ0k C e

r
k�"k/ � e

r 2
1� .kˆ0k C k�"k/:
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Therefore,Z t

s

.ˆ.r;R�/C‰.r;R�// dr � 2.max¹k‰0k; kˆ0kº C k�"k/
Z t

s

e
r 2
1� dr

D 2.max¹k‰0k; kˆ0kº C k�"k/
1 � 

3 � 
.e
t
3�
1� � e

s
3�
1� /:

Since for any ˛ > 0 and 1 > t > s > 0 then e˛t � e˛s � e˛t � 1� t .e˛ � 1/, we conclude,
recalling (4.33), that for every T � 0,

kT Œ'1� � T Œ'2�kY � k'1 � '2kY

�ˇ̌̌3 � 
1 � 

ˇ̌̌
T C

3a

2

Z t

s

.ˆ.R�; r/C‰.R�; r// dr

�
� cT k'1 � '2kY ;

where
c WD

ˇ̌̌3 � 
1 � 

ˇ̌̌
C 3a

1 � 

3 � 
.e

3�
1� � 1/.max¹k‰0k; kˆ0kº C k�"k/:

If T < min¹1
c
; 1º, then the operator T is a contraction. By the Banach fixed point theorem

we conclude there exists a unique solution to the equation '.t; �/D T '.�; t / for t 2 Œ0; T �.
Since T '.�; x/ defines a differentiable function for every x 2 R� we conclude that

' 2 C 1.Œ0; T �;Cc.R�//. We can now extend the existence of a fixed point for the operator
T on C 1.Œ0; T �; Cc.R�// for an arbitrary T > 0. For this it is enough to notice that, since
c and T do not depend on the initial condition  , we can iterate the argument and deduce
that there exists a unique solution of (4.31).

Proof of Proposition 4.6. We introduce the semigroup ¹S.t/ºt�0 with values in MC;b.R�/
and defined by S.0/ˆ0.�/Dˆ0.�/ and S.t/ˆ0.�/Dˆ.t; �/, whereˆ is the solution of (4.4)
with respect to Ka, „", �", �R and the initial condition ˆ0, defined by (4.23). Namely, ˆ
is the measure defined by equality (4.23) for every ' 2 Cc.R�/ with f being the unique
solution of the fixed point equation (4.12)

We split the proof into steps: first of all we show the existence of a weak-� compact
invariant region. Then we prove the weak-� continuity of the operator ˆ0 7! S.t/ˆ0. By
the Tychonoff fixed point theorem we conclude that for every t > 0 the operator S.t/ has
a fixed point ŷ t . As a last step we show that a steady state of (4.4), as in Definition 4.5,
can be obtained from ŷ t by passing to the limit as t goes to zero.

Step 1: Existence of an invariant region. Let us consider the set P �MC;b.R�/ defined
by

P WD
®
H 2MC;b.R�/ W H..0; "� [ .2R;1// D 0;

R1
0
xH.dx/ � 1

¯
:

Notice thatP �B.0; 1
"
/ WD ¹H 2MC.R�/ W kHk�

1
"
ºwhere k � k is the total variation

norm. By the Banach–Alaoglu theorem we conclude that P is compact in the weak-�
topology, since it is a closed subset of the set B.0; 1

"
/, which is compact in the weak-�

topology.
Proposition 4.4 implies that if ˆ0..0; "� [ .2R;1// D 0, then S.t/ˆ0..0; "� [

.2R;1// D 0. By Lemma 4.7 we conclude that P is an invariant region.
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Step 2: Weak-� continuity. To be able to apply the Tychonoff fixed point theorem, we
need to check that the map ˆ0 7! S.t/ˆ0 is continuous in the weak-� topology.

To this end, it is enough to show that, for every test function  2 Cc.R�/,Z
R�

 .x/.ˆ �‰/.t; dx/ D

Z
R�

 .x/.ˆ0 �‰0/.dx/; (4.34)

where ˆ and ‰ are two solutions of (4.4) corresponding to the two initial conditions ˆ0
and ‰0, respectively.

With this aim, we notice that the measure .ˆ �‰/.t; �/ is a solution ofZ
R�

'.t; x/.ˆ �‰/.t; dx/

D

Z
R�

'.t; x/.ˆ0 �‰0/.dx/

C

Z t

0

Z
R�

@s'.s; x/.ˆ �‰/.s; dx/ ds C

Z t

0

Z
R�

LŒ'�.x; s/.ˆ �‰/.s; dx/ ds

C

Z t

0

Z
R�

h2„".x/
1 � 

.'.s; x/ � @x'.s; x/x/ � '.x/
i
.ˆ �‰/.s; dx/ ds;

where L is given by (4.32). By Lemma 4.8 we conclude that (4.34) holds and, hence, we
can prove that the mapˆ0 7! S.t/ˆ0 is weak-� continuous as in [23, proof of Proposition
2.8].

Step 3: Time continuity. The function S.t/ has a fixed point ŷ t for every time t � 0. We
now show that the map

t ! S.t/ˆ0 (4.35)

is weak-� continuous for any ˆ0 in MC.R�/.
Since ˆ solves (4.4), for every ' 2 C 1c .R�/ it holds thatZ 1
0

'.x/
�
ˆ.�1; dx/ �ˆ.�2; dx/

�
D

Z �2

�1

Z
R�

'.x/ˆ.�; dx/

�
2

1 � 

Z �2

�1

Z
R�

„".x/@x'.x/xˆ.�; dx/d� C

Z �2

�1

Z
R�

'.x/�".dx/

C
1

2

Z �2

�1

Z
R�

Z
R�

Ka.x; y/
�
'.x C y/ � '.x/ � '.y/

�
ˆ.�; dx/ˆ.�; dy/d�

C
2

1 � 

Z �2

�1

Z
R�

„".x/'.x/xˆ.�; dx/d�

� .�2 � �1/C.�"; '; /C .�2 � �1/
2C.a; '; /;

where C.�"; '; / and C.a; '; / are positive constants. Therefore, the function (4.35) is
continuous in the weak-� topology.



M. A. Ferreira, E. Franco, and J. J. L. Velázquez 828

Since the set P is compact and metrizable and the map (4.35) is continuous, we con-
clude by [9, Theorem 1.2] that there exists a measure ŷ such that S.t/ ŷ D ŷ . The measure
ŷ is a solution of equation (4.26).

Finally, ˆ ¤ 0 because 0 does not solve (4.26), whence
R1
0
xˆ.dx/ > 0.

4.3. Properties of the steady-state solutions

We state now some important properties of the solutions of equation (4.26).

Lemma 4.9 (Regularity). If ˆ 2MC.R�/ is a solution of equation (4.26) with respect to
Ka, �", „" and �R, as in (4.5), then ˆ� L.

Proof. We follow a similar strategy to the one used in [18]. If we consider the test function

'.x/ WD �

Z
.x;1/

1

z
�.z/ dz; (4.36)

with � 2 Cc.R�/ in (4.26), then we obtain, for any p; q 2 R� such that 1=p C 1=q D 1,

2

1 � 

ˇ̌̌̌Z
R�

„".x/�.x/ˆ.dx/

ˇ̌̌̌
�

�
�".R�/C

j1C  j

1 � 
ˆ.R�/C

3a

2
ˆ.R�/

2
�

�

1
z


Lp.K/

k�kLq.K/;

where K is the support of �. By the density of Cc.R�/ in Lq.R�/, we conclude that for
any q <1 and any compact set K ,ˇ̌̌̌Z

R�

�.x/„".x/ˆ.dx/

ˇ̌̌̌
� C.K; ; "; ˆ/k�kLq.K/ 8� 2 L

q.K/:

This implies that the measure „".x/ˆ.dx/ is absolutely continuous with respect to the
Lebesgue measure. Thusˆ is absolutely continuous with respect to the Lebesgue measure
on .0; "/ and since ˆ..0; "�/ D 0 we deduce that hence ˆ� L.

Lemma 4.10. Every steady-state solution ˆ of (4.4), defined as in Definition 4.5, with
density �, corresponding to Ka, �", „" and �R, satisfies the inequalityZ z

0

Z 1
z�x

Ka.x; y/x�.x/�.y/ dy dx �

Z z

0

x�".dx/C
2

1 � 
z2�.z/ (4.37)

for almost every z > 0.

Proof. If we consider the test function 'nz .x/ D x�z;n.x/, with �z;n given by formula
(4.27), in equation (4.26), we obtainZ zC 1

n

0

'nz .x/�".x/ dx �

Z zC 1
n

0

'nz .x/�.x/ dx �
2

1 � 

Z zC 1
n

0

„".x/x'
n
z
0
.x/�.x/ dx

C
2

1 � 

Z zC 1
n

0

„".x/'
n
z .x/�.x/ dx
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D �
1

2

Z zC 1
n

0

Z zC 1
n

0

Ka.x; y/
�
�R.x C y/'

n
z .x C y/ � '

n
z .x/ � '

n
z .y/

�
� �.x/ dx �.y/ dy:

Applying the Lebesgue dominated convergence theorem we prove that

lim
n!1

Z 1
0

'nz .x/�".dx/ D

Z z

0

x�".dx/; lim
n!1

Z 1
0

'nz .x/�.x/ dx D

Z z

0

x�.x/ dx

and

lim
n!1

Z 1
0

„".x/'
n
z .x/�.x/ dx D

Z z

0

„".x/x�.x/ dx:

We now aim to show thatZ zC1=n

0

„".x/x.x�z;n.x//
0�.x/ dx !

Z z

0

„".x/x�.x/ dx �„".z/z
2�.z/

as n!1. Notice that �0z;n.x/ D �n.x � z/, where �n are the mollifiers introduced in
Section 4.2. As a consequence of the properties of the mollifiers, we know that for every
f 2 L1.R�/,

k�n � f � f k1 ! 0 as n!1;

where with k � k1 we denote the L1 norm and with � the classical convolution product.
This implies that, up to a subsequence,Z

R�

„".x/x
2�.x/�0z;n.x/ dx D

Z
R�

„".x/x
2�.x/�n.x � z/ dx ! „".z/z

2�.z/ a.e.

as n goes to infinity.
On the other hand, it is possible to prove as in [10, proof of Lemma 2.7] that

� lim
n!1

Z zC 1
n

0

Z zC 1
n

0

Ka.x; y/
�
'nz .x C y/ � '

n
z .x/ � '

n
z .y/

�
�.x/ dx �.y/ dy

D

Z z

0

Z 1
z�x

Ka.x; y/x�.x/ dx �.y/ dy

as n goes to infinity. Since, by definition of the truncation we have �R � 1,

�

Z zC 1
n

0

Z zC 1
n

0

Ka.x; y/
�
�R.x C y/'

n
z .x C y/ � '

n
z .x/ � '

n
z .y/

�
�.x/ dx �.y/ dy

� �

Z zC 1
n

0

Z zC 1
n

0

Ka.x; y/
�
'nz .x C y/ � '

n
z .x/ � '

n
z .y/

�
� �.x/ dx �.y/ dy;

the statement of the lemma follows.

To prove the estimates for the solutions of (4.26), [10, Lemma 2.10] will be useful.
We recall the statement here.
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Lemma 4.11. Suppose d > 0 and b 2 .0; 1/ and assume that L 2 .0;1� is such that
L � d . Consider some � 2MC.R�/ and ' 2 C.R�/, with ' � 0.

(1) Suppose L <1, and assume that there is g 2 L1.Œd; L�/ such that g � 0 and

1

z

Z
Œbz;z�

'.x/�.dx/ � g.z/ for z 2 Œd; L�: (4.38)

Then Z
Œd;L�

'.x/�.dx/ �

R
Œd;L�

g.z/ dz

jln bj
C Lg.L/:

(2) If L D1 and there is g 2 L1.Œd;1// such that g � 0 and

1

z

Z
Œbz;z�

'.x/�.dx/ � g.z/ for z � d;

then Z
Œd;1/

'.x/�.dx/ �

R
Œd;1/

g.z/ dz

jln bj
:

Lemma 4.12. The density � of every solution of equation (4.26) with respect to Ka, „",
�" and �R satisfying (4.30) and (4.29) is such that

1

z

Z z

8z=9

�.x/ dx � C
� a
z3

�1=2
; z 2 Œ0; 2R�; (4.39)

for some C > 0 independent of ", a, R, and such thatZ 1
y

�.x/ dx � Ca;"y
�1=2; y 2 Œ1; 2R�; (4.40)

for a positive constant Ca;" > 0 independent of R.

Proof. Since � satisfies (4.37), it follows that for almost every z > 0,

J�.z/ � 1C
2

1 � 
z2�.z/: (4.41)

Noting that �
2z=3; z

�2
�
®
.x; y/ 2 R2� j 0 < x � z; y > z � x

¯
DW �z ; (4.42)

as well as the lower bound for the kernel

J�.z/�

Z z

2z
3

Z z

2z
3

Ka.x;y/x�.x/�.y/dx dy �
cz

a

�Z z

2z
3

�.x/dx

�2
for z � 2R; (4.43)

for some constant c > 0 independent of a, R and ".
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Combining (4.41) and (4.43) we conclude thatZ
Œ2z=3;z�

�.x/ dx �
�a
c

�1=2�1C 2
1�

z2�.z/

z

� 1
2
; a.e. z � 2R: (4.44)

Since 2
1�

z2�.z/ � 0, integrating (4.44) over Œw; 2w�, with w 2 Œ0; R�, we obtainZ 2w

w

Z z

2z
3

�.x/ dx dz �
�a
c

�1=2�Z 2w

w

�1
z

� 1
2
dz C

Z 2w

w

� 2

1 � 
z�.z/

� 1
2
dz

�
:

By the Cauchy–Schwarz inequality we conclude thatZ 2w

w

.z�.z//
1
2 dz �

�Z 2w

w

dz

�1=2�Z 2w

w

z�.z/ dz

�1=2
� w1=2:

Notice that, for the last inequality, we have used (4.30).
Combining all the above inequalities we conclude thatZ 2w

w

Z z

2z
3

�.x/ dx dz �
�a
c

�
1C

2

.1 � /

��1=2
w1=2:

Moreover, by observing that�
8w=9;w

�
�
�
w; 4w=3

�
�
®
.x; z/ 2 R2� W 2z=3 < x < z; z 2 Œw; 2w�

¯
;

we deduce thatZ 2w

w

Z z

2z
3

�.x/ dx dz �

Z 4w=3

w

Z w

8w=9

�.x/ dx dz D w=3

Z w

8w=9

�.x/ dx:

Consequently, adopting the notation zC D 3c�1=2.3�
1�

/1=2, we conclude that for any w 2
Œ0; 2R�,

w

Z w

8w=9

�.x/ dx � zCa1=2w1=2:

Let us prove (4.40). Thanks to inequality (4.39), hypothesis (4.38) of Lemma 4.11
holds with d D y, b D 8=9, L D 2R, g.z/ D Cz�3=2a1=2, and impliesZ 2R

y

�.x/ dx �
�
C
a

R

� 1
2
C C

R 2R
y
. a
z3
/
1
2 dz

ln .3=2/
:

Since Z 2R

y

� a
z3

� 1
2
dz � 2

�a
y

� 1
2
;

� a
R

� 1
2
� 21=2

�a
y

�1=2
and

Z 1
2R

ˆ.dx/ D 0

and the result follows.



M. A. Ferreira, E. Franco, and J. J. L. Velázquez 832

4.4. Proof of the existence of a self-similar solution

The aim of this section is to prove that, as R !1, a !1 and "! 0, each solution
ˆ";a;R of (4.26) with respect to Ka, �R, „" and �", converges, in the weak-� topology, to
a measure ˆ whose density is a self-similar profile as in Definition 3.1.

Lemmas 4.13 and 4.16 describe the bounds and the properties that the limiting meas-
uresˆ";a andˆ" respectively satisfy. In the proof of Theorem 3.2 we will use these bounds
and properties to prove the existence of a self-similar profile.

Lemma 4.13. Consider a sequence ¹Rnº � R� such that limn!1Rn D 1. Let ˆ";a;Rn
be a solution of (4.26) with respect to Ka, „", �" and �Rn . There exists a measure ˆ";a 2
MC.R�/ such that

ˆ";a;Rn * ˆ";a as n!1, in the weak-� topology: (4.45)

The measure ˆ";a is absolutely continuous with respect to the Lebesgue measure and
satisfies the equationZ

R�

ˆ";a.dx/'.x/

D

Z
R�

'.x/�".dx/C
2

1 � 

Z
R�

„".x/.'.x/ � x'
0.x//ˆ";a.dx/

C
1

2

Z
R�

Z
R�

Ka.x; y/
�
'.x C y/ � '.x/ � '.y/

�
ˆ";a.dx/ˆ";a.dy/ (4.46)

for every ' 2 C 1c .R�/. Moreover, ˆ";a satisfies the growth bound

1

z

Z
Œ8z=9;z�

ˆ";a.dx/ � C
� 1

z3 min¹a; zº

�1=2
; z > 0; (4.47)

for some positive C .

Proof. We use inequality (4.39), proven in Lemma 4.12, and apply Lemma 4.11 with
d D ", b D 8=9, L D 2Rn, g.z/ D Cz�3=2a1=2 to conclude thatZ

Œ";2Rn�

ˆ";a;Rn.dx/ � 2a"
�1=2:

From (4.29) we deduce that the sequence ¹ˆ";a;Rnº is bounded in the weak-� topology.
By the Banach–Alaoglu theorem we deduce that the sequence ¹ˆ";a;Rnº admits a sub-

sequence, ¹ˆ";a;Rnk º, which converges in the weak-� topology, namely, there exists a
measure ˆ";a such that

ˆ";a;Rnk * ˆ";a as k !1, in the weak-� topology:

Since for every n > 0, Z
R�

ˆ";a;Rn.dx/ � C";a;
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we conclude, by passing to the limit as n tends to infinity, thatZ
R�

ˆ";a.dx/ � C";a: (4.48)

We would like to show that ˆ";a satisfies equation (4.46). Since ˆ";a;Rn * ˆ";a as
n!1 in the weak-� topology, we immediately conclude that, for every ' 2 C 1c .R�/,Z

R�

'.x/ˆ";a;Rn.dx/!

Z
R�

'.x/ˆ";a.dx/ as n!1;Z
R�

„".x/'.x/ˆ";a;Rn.dx/!

Z
R�

„".x/'.x/ˆ";a.dx/ as n!1;Z
R�

„".x/x'
0.x/ˆ";a;Rn.dx/!

Z
R�

„".x/x'
0.x/ˆ";a.dx/ as n!1:

It is not straightforward to conclude thatZ
R�

Z
R�

Ka.x; y/
�
�Rn.x C y/'.x C y/ � '.x/ � '.y/

�
ˆ";a;Rn.dx/ˆ";a;Rn.dy/

!

Z
R�

Z
R�

Ka.x; y/
�
'.x C y/ � '.x/ � '.y/

�
ˆ";a.dx/ˆ";a.dy/ as n!1:

The main difficulty lies in the fact that the function

.x; y/ 7! Ka.x; y/
�
�Rn.x C y/'.x C y/ � '.x/ � '.y/

�
has not, in general, a compact support. Here, the estimate (4.40) can be used. The details
of the proof are shown in [10, proof of Theorem 2.3] and we omit them here. We conclude
that ˆ";a is a solution of equation (4.46).

An adaptation of the proof of Lemma 4.9 allows us to conclude thatˆ";a�L. Indeed,
if we consider the test function defined by (4.36), then for any p; q 2 R� such that 1=p C
1=q D 1, we deduce that for some C."; a; / > 0 we have

2

1 � 

ˇ̌̌̌Z
R�

�.x/ˆ";a.dx/

ˇ̌̌̌
� C."; a; /

1
z


Lp.supp.�//

k�kLq.supp.�//:

By the density of Cc.R�/ in Lq.R�/ we conclude that for any q and any compact set K ,ˇ̌̌̌Z
R�

�.x/ˆ";a.dx/

ˇ̌̌̌
� C.K; ; "; a/k�kLq.K/ 8� 2 L

q.K/:

This implies that the measure ˆ";a is absolutely continuous with respect to the Lebesgue
measure.

Let us prove estimate (4.47). First of all, as in the proof of Lemma 4.10, we can
conclude that, if ˆ";a satisfies (4.46), then the density �a;" satisfies

QJ�";a.z/ D

Z z

0

x�".dx/ �

Z z

0

x�";a.x/ dx C
2

1 � 
„".z/z

2�";a.z/ (4.49)
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for almost every z > 0 and where

QJ�";a.z/ WD

Z z

0

Z 1
z�x

Ka.x; y/x�";a.x/ dx �";a.y/ dy: (4.50)

From (4.49), it follows that for almost every z > 0,

QJ�";a.z/ � 1C
2

1 � 
z2�";a.z/: (4.51)

Noting that Œ2z=3; z�2 � �z , where �z is defined by (4.42), as well as the condition on
the kernel (3.1), we write

QJ�";a.z/ � czmin¹z ; aº
�Z z

2z
3

�";a.x/ dx

�2
(4.52)

for some constant c > 0 independent of a and ".
Combining (4.51) and (4.52) we conclude thatZ z

2z
3

�";a.x/ dx �
�1
c

�1=2�1C 2
1�

z2�";a.z/

zmin¹z ; aº

� 1
2
; a.e. z > 0: (4.53)

Since z2�";a.z/ � 0, by integrating (4.53) over Œw; 2w�, with w � 0, we obtain that there
exists a constant Qc./ > 0 such thatZ 2w

w

Z z

2z
3

�";a.x/dx dz� Qc./

�Z 2w

w

� 1

zmin¹z ; aº

� 1
2
dzC

Z 2w

w

� z2�";a.z/

zmin¹z ; aº

� 1
2
dz

�
:

By the Cauchy–Schwarz inequality we conclude thatZ 2w

w

� 1

zmin¹z ; aº

� 1
2
dz � .ln 2/1=2

�Z 2w

w

1

min¹z ; aº
dz

�1=2
and Z 2w

w

� z�";a.z/

min¹z ; aº

� 1
2
dz �

�Z 2w

w

1

min¹z ; aº
dz

�1=2
:

Combining all the above inequalities we conclude that there exists a constant c./ > 0
such that Z 2w

w

Z z

2z
3

�";a.x/ dx dz � c./

�Z 2w

w

1

min¹z ; aº
dz

�1=2
:

Moreover, by observing that Œ8w
9
;w�� Œw; 4w

3
�� ¹.x; z/ 2R2� W

2z
3
< x < z; z 2 Œw; 2w�º

we deduce thatZ 4w=3

w

Z w

8w=9

�";a.x/ dx dz �

Z 4w=3

w

Z w

8w=9

�";a.x/ dx dz D w=3

Z w

8w=9

�";a.x/ dx
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and, consequently, adopting the notation zC D 3c./ we conclude that for any w > 0,

w

Z w

8w=9

�";a.x/ dx � zC

�Z 2w

w

1

min¹z ; aº
dz

�1=2
:

Notice that zC is independent of a, ".
If a1= … Œw; 2w�, then

w

Z w

8w=9

�";a.x/ dx � 2
1=2 zC max

°
1;
� 1

1 � 

�1=2±� w

min¹a;wº

�1=2
;

whereas if a1= 2 Œw; 2w�, then

w

Z w

8w=9

�";a.x/ dx � zC

�Z a1=

w

1

z
dz C

Z 2w

a1=

1

a
dz

�1=2
� zC

�a1=�1
1 � 

C
2w

a

�1=2
� 21=2 zC

� w

a.1 � /
C
w

a

�1=2
� 21=2 zC max

°
1;
� 1

1 � 

�1=2±� w

min¹a;wº

�1=2
:

The statement of the lemma follows by selecting C D 21=2 zC max¹1; . 1
1�

/1=2º.

In the following definition we explain how we truncate the coagulation kernel K to
obtain a bounded coagulation kernel. Let us adopt the notation

p WD max
®
�;�. C �/

¯
: (4.54)

Each homogeneous coagulation kernelK of parameters  , � and with homogeneity  can
be written as

K.x; y/ D .x C y/F
� x

x C y

�
; (4.55)

with F W .0; 1/! RC being a smooth function such that

F.s/ D F.1 � s/ and
C1

sp.1 � s/p
� F.s/ �

C2

sp.1 � s/p
(4.56)

for any s 2 .0; 1/ and for some constants C1, C2 satisfying 0 < C1 � C2 <1.

Definition 4.14. Assume K is a homogeneous coagulation kernel of parameters ; � 2 R
and homogeneity  . We say that Ka is the bounded coagulation kernel corresponding to
K and of bound a > 0 if

Ka.x; y/ WD 1=aCmin
®
.x C y/ ; a

¯
Fa

� x

x C y

�
; x; y 2 R�;
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where Fa is a smooth non-negative function such that

Fa.s/ WD

´
F.s/ if F.s/ � Aa� ;

0 if F.s/ � Aa� ;

where A > 0 is a constant independent of a, � D 0 if p � 0 while � > 0 if p > 0 and
 � 0 and, finally, 0 < � < p


if p > 0 and  > 0.

This definition is taken from [10] and even if it might seem odd, it allows us to pass to
the limit as a goes to infinity in (4.46). The main properties of this truncation of the kernel,
which motivated us to introduce Definition 4.14, are exposed in the following lemma.

Lemma 4.15. Let ¹anº � R� such that an !1 as n!1. For every n, let Kan be a
bounded coagulation kernel of bound an, corresponding to a homogeneous coagulation
kernel K of parameters  and �, with homogeneity  < 1 and j C 2�j < 1. Let C be a
compact subset of R� and M > 0. For each x 2 C and y > M it holds that

(1) if ; p � 0, then

min
®
.x C y/ ; an

¯
Fan

� x

x C y

�
� c3; c3 > 0I

(2) if p � 0 and  > 0, then

min
®
.x C y/ ; an

¯
Fan

� x

x C y

�
� c4.y

��
C yC�/�¹y�an1= º.y/

C c4an.y
�
C y���/�¹y>an1= º.y/; c4 > 0I

(3) if p > 0 then

min
®
.x C y/ ; an

¯
Fan

� x

x C y

�
� c5.y

��
C yC�/�¹y�c�an��=pº.y/; c5; c� > 0:

Letˆ";an be a solution of (4.46), with respect toKan and �". Then, for every ' 2 Cc.R�/,
we haveZ

R�

Z
.M;1/

min
®
.x C y/ ; an

¯
Fan

� x

x C y

�
'.y/ˆ";an.dx/ˆ";an.dy/! 0 (4.57)

as M !1.

For the proof of Lemma 4.15 we refer to [10, proof of Theorem 2.3]. The main idea
is that Definition 4.14 allows us to prove the inequalities presented in the lemma, which
imply (4.57).
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Lemma 4.16. Assume K is a homogeneous symmetric coagulation kernel K 2C.R� �
R�/ satisfying (3.1) with homogeneity  < 1 and j C 2�j < 1. Consider a sequence
¹anº � R� such that limn!1 an D 1 and the sequence of bounded coagulation kernels
¹Kanº corresponding to K. Let ˆ";an be a solution of (4.46) with respect to �", „" and
with respect to Kan . There exists a measure ˆ" such that

ˆ";an * ˆ" as n!1, in the weak-� topology: (4.58)

The measureˆ" is absolutely continuous with respect to the Lebesgue measure, with dens-
ity �". It satisfies the boundsZ

R�

xC�ˆ".dx/ <1;

Z
R�

x��ˆ".dx/ <1 (4.59)

and
1

z

Z
Œ8z=9;z�

ˆ".dx/ �
� C

z3C

� 1
2
; z > 0: (4.60)

Moreover, it solves for every ' 2 Cc.R�/ the equationZ 1
0

ˆ".dx/'.x/

D

Z 1
0

'.x/�".dx/C
2

1 � 

Z 1
0

„".x/.'.x/ � x'
0.x//ˆ".dx/ dx

C
1

2

Z 1
0

Z 1
0

K.x; y/
�
'.x C y/ � '.x/ � '.y/

�
ˆ".dx/ˆ".dy/: (4.61)

Proof. We know that ˆ";a..0; "�/ D 0. Therefore inequality (4.47) is non-trivial when
z > ". Let us consider the case  � 0. In this case we have z � " . Since " is fixed and
an !1 as n!1, there exists an Nn such that z < an for every n � Nn.

Consequently, for every n � Nn, we conclude that

1

z

Z
Œ8z=9;z�

ˆ";an.dx/ �
C 1=2

z.C3/=2
:

Applying Lemma 4.11 to the rescaled measure xC�ˆ";an.dx/we conclude that, if n� Nn,
then Z

Œ";1/

xC�ˆ";an.dx/ � C
1=2

Z
Œ";1/

z�.C3/=2zC� dz < C";

where C" is a constant which depends only on " and where the last inequality comes from
the bound j C 2�j < 1.

Since ˆ";a..0; "�/ D 0, the sequence of rescaled measures ¹xC�ˆ";an.dx/ºn�Nn
belongs to a compact set, and we conclude by the Banach–Alaoglu theorem that there
exists a subsequence of ¹xC�ˆ";an.dx/º which converges, in the weak-� topology, to
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a measure �. This implies that, if we denote by ˆ" the measure defined by ˆ".dx/ WD
x�.C�/�.dx/, we have, up to a subsequence, that

ˆ";an * ˆ"

as n!1, in the weak-� topology.
Let us now consider the case 0 <  < 1. If z > a it holds that

1

z

Z
Œ8z=9;z�

ˆ";a.dx/ �
C 1=2

az3=2
:

If, instead, z � a, then

1

z

Z
Œ8z=9;z�

ˆ";a.dx/ �
C 1=2

z.3C/=2
:

By applying Lemma 4.11 to the scaled measure ˆ";an with an � 1, we conclude thatZ
Œ";1/

ˆ";an.dx/ � C
1=2."�1=2 C ".�1C/=2/:

Therefore, the sequence ¹ˆ";anº belongs to a compact set, and ˆ";an *ˆ" as n!1, in
the weak-� topology.

Passing to the limit as a!1 in inequality (4.47) we obtain

1

z

Z
Œ8z=9;z�

ˆ".dx/ �
� C

z3C

� 1
2
; z > 0:

By applying Lemma 4.11 with g.z/D z�
3C
2 and using the assumption j C 2�j < 1,

we deduce that Z
R�

x��ˆ".dx/ <1 and
Z

R�

x�Cˆ".dx/ <1:

Let us pass to the limit as n tends to infinity in all the terms of equation (4.46).
From the weak-� convergence ofˆ";an toˆ", we conclude that, for every ' 2C 1c .R�/,Z

R�

'.x/ˆ";an.dx/!

Z
R�

'.x/ˆ".dx/; n!1;Z
R�

„".x/x'
0.x/ˆ";an.dx/!

Z
R�

„".x/x'
0.x/ˆ".dx/; n!1;Z

R�

„".x/'.x/ˆ";an.dx/!

Z
R�

„".x/'.x/ˆ".dx/; n!1:

For the proof of the fact that, for every ' 2 Cc.R�/,Z
R�

Z
R�

Kan.x; y/
�
'.x C y/ � '.y/ � '.x/

�
ˆ";an.dx/ˆ";an.dy/
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converges, as n tends to infinity, toZ
R�

Z
R�

K.x; y/
�
'.x C y/ � '.y/ � '.x/

�
ˆ".dx/ˆ".dy/;

we refer to [10, proof of Theorem 2.3]. Nevertheless, we find it instructive to provide the
main steps of the proof here. First of all, since Ka and K are continuous functions we
have, for any compact subset of R�

2, .xy/qKa.x; y/! .xy/qK.x; y/, uniformly in x; y
as a!1 for any q 2 R. Consequently, for any ' 2 Cc.R�/,Z

R�

Z
R�

Kan.x; y/'.x C y/ˆ";an.dx/ˆ";an.dy/

!

Z
R�

Z
R�

K.x; y/'.x C y/ˆ".dx/ˆ".dy/

as n!1. For the same reason we know thatZ
R�

Z
.0;M�

Kan.x; y/'.x/ˆ";an.dy/ˆ";an.dx/

!

Z
R�

Z
.0;M�

K.x; y/'.x/ˆ".dy/ˆ".dx/

and Z
R�

Z
.0;M�

Kan.x; y/'.y/ˆ";an.dx/ˆ";an.dy/

!

Z
R�

Z
.0;M�

K.x; y/'.y/ˆ".dx/ˆ".dy/:

To conclude we just need now to show that, as M !1,Z
R�

Z
.M;1/

Kan.x; y/'.y/ˆ";an.dx/ˆ";an.dy/! 0

and Z
R�

Z
.M;1/

Kan.x; y/'.x/ˆ";an.dy/ˆ";an.dx/! 0:

Notice that, by the definition of Kan ,Z
R�

Z
.M;1/

Kan.x; y/'.x/ˆ";an.dy/ˆ";an.dx/

�
1

an

Z
R�

Z
.M;1/

'.x/ˆ";an.dy/ˆ";an.dx/

C

Z
R�

Z
.M;1/

min¹.x C y/ ; aºFan
� x

x C y

�
'.x/ˆ";an.dy/ˆ";an.dx/: (4.62)

Thanks to (4.40), we haveZ
R�

Z
.M;1/

'.x/ˆ";an.dy/ˆ";an.dx/ � cM
�1=2;

where c is just a positive constant.
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By Lemma 4.15 we know thatZ
R�

Z
.M;1/

min¹.x C y/ ; aºFan
� x

x C y

�
'.x/ˆ";an.dy/ˆ";an.dx/! 0

as M !1. The same holds also for the termZ
R�

Z
.M;1/

min¹.x C y/ ; aºFan
� x

x C y

�
'.y/ˆ";an.dx/ˆ";an.dy/:

We conclude that ˆ" satisfies the following equation for every ' 2 C 1.R�/:Z 1
0

ˆ".dx/'.x/ D

Z 1
0

'.x/�".dx/C
2

1 � 

Z 1
0

„".x/.'.x/ � x'
0.x//ˆ".dx/

C
1

2

Z 1
0

Z 1
0

K.x; y/
�
'.x C y/ � '.x/ � '.y/

�
ˆ".dx/ˆ".dy/:

As in the proof of Lemma 4.9, we can choose the test function ' given by expression
(4.36) to conclude that, for any p; q 2 R� such that 1=p C 1=q D 1, we have

2

1 � 

ˇ̌̌̌Z
R�

�.x/„".x/ˆ".dx/

ˇ̌̌̌
�
3

2

Z
R�

xC�ˆ".dx/

Z
R�

x��ˆ".dx/
1
z


Lp.U /

k�kLq.U /

C �".R�/
1
z


Lp.U /

k�kLq.U / C
j1C  j

1 � 
ˆ".R�/

1
z


Lp.U /

k�kLq.U /;

where we are using the notation supp.�/ WD U . By the density of Cc.R�/ in Lq.R�/ we
conclude that for any q and any compact set K ,ˇ̌̌̌Z

R�

„".x/�.x/ˆ".dx/

ˇ̌̌̌
� C.K; ; "; ˆ"/k�kLq.K/ 8� 2 L

q.K/:

Therefore, ˆ" � L.

We now introduce some notation, which will be employed in the following, and a
lemma, taken from [10], which will be important for the proof of Theorem 3.2.

For a given ı > 0, we consider the partition R2C D †1.ı/ [†2.ı/ [†3.ı/ with

†1.ı/ D
®
.x; y/ j y > x=ı

¯
;

†2.ı/ D
®
.x; y/ j ıx � y � x=ı

¯
;

†3.ı/ D
®
.x; y/ j y < ıx

¯
;

and, if � 2MC.R�/ is such that for every z > 0,Z
�z

K.x; y/x�.dx/�.dy/ <1;
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where �z is defined by (4.42), then we define

Jj .z; ı; �/ WD

Z
�z\†j .ı/

K.x; y/x�.dx/�.dy/ for z > 0;

for j D 1; 2; 3.
Notice that

3X
jD1

Jj .z; ı; �/ D

Z
�z

K.x; y/x�.dx/�.dy/:

Lemma 4.17. Let K be a homogeneous symmetric coagulation kernel K 2 C.R� �R�/
satisfying (3.1) with j C 2�j < 1. Suppose that the measure � 2MC.R�/ satisfies

1

z

Z
Œz=2;z�

�.dx/ �
A

z.C3/=2
8z > 0: (4.63)

Then, for every " > 0, there exists a ı" > 0 depending on ", as well as on  and � and on
the constants c1 and c2 of inequality (3.1), but independent of A, such that for any ı � ı"
we have

sup
z>0

J1.z; ı; �/ � "A
2; (4.64)

sup
R>0

1

R

Z
ŒR;2R�

J3.z; ı; �/ dz � "A
2: (4.65)

Proposition 4.18. AssumeK, �, � and  are as in the assumptions of Theorem 3.2. There
exists a ˆ 2MC.R�/ with

Jˆ 2 L
1
loc.R�/

solvingZ
R�

'.z/

�
Jˆ.z/ dz � dz C

Z
.0;z�

xˆ.dx/ dz �
2

1 � 
z2ˆ.dz/

�
D 0 (4.66)

for every test function ' 2 Cc.R�/ and satisfying (3.3) and the inequalitiesZ
R�

xˆ.dx/ � 1; (4.67)Z
.1;1/

xpˆ.dx/ <1;

Z
.0;1�

xqˆ.dx/ <1; (4.68)

with q D min¹ C �C 1; 1 � �º and p D max¹ C �;��º.

Proof. Consider the sequences ¹"nº, ¹amº and ¹Rkº, with limn!1 "nD 0, limm!1 amD

1 and limk!1Rn D1. Consider a sequence of measures ¹ˆ"n;am;Rk º that solve (4.26)
with respect to �Rn , Kan and �"n . By Lemmas 4.13 and 4.16 we know that ˆ"n;am;Rk
converges in the weak-� topology to the absolutely continuous measure ˆ"n as m and k
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go to infinity, solves (4.61) and satisfies the bound (4.60). We would like to prove that
there exists a measure ˆ such that ˆ"n *ˆ as n!1, in the weak-� topology, and that
ˆ solves (4.66), (4.68) and (4.67).

Consequently, we use the following diagonal argument, which is similar to the one
used in [10, Section 7]. We notice that if Ik WD Œ2�k ; 2k �, then R� D

S1
kD1 Ik . The restric-

ted sequence ¹ˆ"n jIk º on Ik has a convergent subsequence ¹ˆ"nl jIk
º. Since if k > m, then

Im � Ik , we can use a diagonal argument to conclude that, up to a subsequence, there
exists a measure ˆ 2MC.R�/ such that ˆ"n * ˆ as n!1, in the weak-� topology.

Since ˆ is the weak-� limit of ˆ"n as n!1 thanks to (4.30), we know thatZ
R�

xˆ"n.dx/ � 1:

Passing to the limit for n!1 we deduce (4.67). Similarly, passing to the limit in (4.59)
we deduce (3.3).

Thanks to inequality (3.3), Lemma 4.11 and the assumption j C 2�j<1we can prove
(4.68).

We aim now to show that Jˆ 2 L1loc.R�/. Notice that

Jˆ.z/ D

Z
.z;1/

Z
.0;z�

xK.x; y/ˆ.dx/ˆ.dy/C

Z
.0;z�

Z
.z�y;z�

xK.x; y/ˆ.dx/ˆ.dy/;

and using (4.68) and (3.3) we deduce that for every z > 0,Z
.z;1/

Z
.0;z�

xK.x; y/ˆ.dx/ˆ.dy/ � c2

Z
.z;1/

y��ˆ.dy/

Z
.0;z�

x1CC�ˆ.dx/

C c2

Z
.z;1/

yC�ˆ.dy/

Z
.0;z�

x1��ˆ.dx/

< c5 <1;

where c5 is a positive constant depending on  and � and independent of z.
On the other hand,Z
.0;z�

Z
.z�y;z�

xK.x; y/ˆ.dx/ˆ.dy/ � c2

Z
.0;z�

Z
.z�y;z�

x1��ˆ.dx/yC�ˆ.dy/

C c2

Z
.0;z�

Z
.z�y;z�

x1C�Cˆ.dx/y��ˆ.dy/:

Again, from (3.3) we conclude, applying Lemma 4.11, thatZ
.z�y;z�

x1��ˆ.dx/ � c

Z z

z�y

x1���.3C/=2 dx D z.1�2��/=2 � .z � y/.1�2��/=2:

Notice that for every p > 0, if x � y, then

.x C y/p � xp � C.p/xp�1y; (4.69)
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while if x � y,
.x C y/p � xp � c.p/yp; (4.70)

where c.p/ and C.p/ are two positive constants. We conclude that if y � z
2

, we haveZ
.z�y;z�

x1��ˆ.dx/ � z.�1�2��/=2y:

If instead y > z
2

, we obtainZ
.z�y;z�

x1��ˆ.dx/ � y.1�2��/=2:

Consequently, for every z > 0 we haveZ
.0;z=2�

Z
.z�y;z�

x1��ˆ.dx/yC�ˆ.dy/ � z.�1�2��/=2
Z
.0;z�

y1CC�ˆ.dy/ < c6 <1;

where c6 > 0 is independent of z, andZ
.z=2;z�

Z
.z�y;z�

x1��ˆ.dx/yC�ˆ.dy/ <

Z
.z=2;z�

y.C1/=2ˆ.dy/ < cz
C3
2 <1;

with c.z/ > 0 for every z.
We conclude that, if K is a compact subset of R�, then there exists a constant c > 0

such that
sup
z2K

Z
.0;z�

Z
.z�y;z�

x1��ˆ.dx/yC�ˆ.dy/ < c <1:

Similarly, it is possible to prove that there exists another constant c > 0 such thatZ
.0;z�

Z
.z�y;z�

x1C�Cˆ.dx/y��ˆ.dy/ < c <1

and we conclude that Jˆ 2 L1loc.R�/.
We now prove that ˆ solves (4.66) using a similar argument to [10, Section 7]. First

of all we prove that the measure ˆ"n satisfies, for every test function ' 2 Cc.R�/, the
equalityZ

R�

'.z/Jˆ"n .z/ dz D

Z
R�

'.z/

Z
.0;z�

x�"n.dx/ dz �

Z
R�

'.z/

Z
.0;z�

xˆ"n.dx/ dz

C
2

1 � 

Z
R�

„".z/z
2'.z/ˆ"n.dz/: (4.71)

Since the measure ˆ" satisfies (4.61), we conclude, as in Lemma 4.10, that the density
�"n of ˆ"n satisfies

J�"n .z/ D

Z z

0

x�"n.x/ dx �

Z z

0

x�"n.x/ dx C
2

1 � 
„".z/z

2�"n.z/ a.e. z > 0:
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Integrating against a test function ' 2 Cc.R�/ we conclude that equation (4.71) holds. We
aim now to pass to the limit as n goes to infinity in equation (4.71).

We plan to show that estimate (4.60) implies that ˆ satisfies the hypothesis of Lemma
4.17. To this end, we only need to ensure that

1

z

Z z

z=2

�"n.x/ dx �
� C

z3C

� 1
2
; z > 0; (4.72)

for some constant C > 0.
Notice that there exists m > 0 such that Œz=2; z� �

Sm
iD1Œ.8=9/

iz; .8=9/i�1z�. Since
for every i ,

1

z

Z .8=9/i�1z

.8=9/iz

�"n.x/ dx D
1

z

�8
9

�i�1 Z 8z=9

z

�"n.y/ dy �
� C

z3C

� 1
2
; z > 0;

then (4.72) holds and we can apply Lemma 4.17 to conclude that for any N" > 0 there is a
ı0 > 0 depending on N" and  , such that for any ı � ı0 and any ' 2 Cc.R�/,ˇ̌̌̌ X

j2¹1;3º

Z
.0;1/

Jj .z; ı;ˆ"n/'.z/ dz

ˇ̌̌̌
� C N"k'kL1.0;1/: (4.73)

Since ' is compactly supported and for every compact set K the set
S
z2K †2 \�z

is bounded, using the fact that ˆ"n converges to ˆ in the weak-� topology, we have the
following limits as n!1:Z 1

0

J2.z; ı;ˆ"n/'.z/ dz !

Z 1
0

J2.z; ı;ˆ/'.z/ dz;Z 1
0

Z
.0;z/

xˆ"n.dx/'.z/ dz !

Z 1
0

Z
.0;z/

xˆ.dx/'.z/ dz;Z 1
0

Z
.0;z/

„"n.x/xˆ"n.dx/'.z/ dz !

Z 1
0

Z
.0;z/

xˆ.dx/'.z/ dz;Z 1
0

„"n.z/z
2'.z/ˆ"n.z/ dz !

Z 1
0

z2'.z/ˆ.z/ dz:

These limits, together with (4.73), imply an upper estimate for the difference between the
right-hand side of (4.71) and

R
.0;1/

J2.z; ı;ˆ/'.z/ dz,ˇ̌̌̌Z 1
0

J2.z; ı;ˆ/'.z/ dz �

Z 1
0

'.z/ dz C

Z 1
0

Z
.0;z�

xˆ.dx/'.z/ dz

�
2

1 � 

Z 1
0

z2'.z/ˆ.z/ dz

ˇ̌̌̌
� C N"k'k1: (4.74)

Using (3.3), we can again apply Lemma 4.17 to ˆ to conclude thatˇ̌̌̌ X
j2¹1;3º

Z 1
0

Jj .z; ı;ˆ/'.z/ dz

ˇ̌̌̌
� C N"k'k1: (4.75)
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Finally, estimates (4.74) and (4.75) implyˇ̌̌̌Z 1
0

Z
�z

xK.x; y/ˆ.dx/ˆ.dy/'.z/ dz �

Z 1
0

'.z/ dz

C

Z 1
0

Z
.0;z�

xˆ.dx/'.z/ dz C
2

1 � 

Z
R�

z2'.z/ˆ.dz/

ˇ̌̌̌
� C N"k'k1

for any N" > 0 and any ' 2 Cc.0;1/, which implies that ˆ satisfies (4.66).

5. Moment bounds satisfied by the self-similar profile

Proposition 5.1 (Moment bounds). Assume K, �, � and  are as in the assumptions
of Theorem 3.2. The solution of (4.66) with respect to K, �, constructed in Proposition
(4.18), satisfies for every � 2 R, Z 1

1

x�ˆ.dx/ <1: (5.1)

Proof. The bound (5.1) for � < 1 follows directly from (4.67).
We now focus on proving the bound for � > 1. Integrating (3.2) against a positive test

function ' 2 L1loc.RC/ and denoting  .z/ WD
R z
0
'.x/ dx, we obtain

2

1 � 

Z
R�

z2'.z/ˆ.dz/

�

Z
R�

Z
R�

�
 .x C y/ �  .x/

�
xK.x; y/ˆ.dy/ˆ.dx/: (5.2)

Let ı be a small positive constant satisfying the two conditions

max¹;  C �;��º C ı � 1 and 1 � �C ı � 1 if � > 0; (5.3)

and choose '.x/ D xı�1�.1;1/.x/, where �A.x/ D 1 if x 2 A and �A.x/ D 0 otherwise.
Plugging ' into (5.2), we obtain

2

1 � 

Z
Œ1;1/

x1Cıˆ.dx/ �
1

ı

Z
R�

Z
Œ1;1/

�
.x C y/ı � xı

�
xK.x; y/ˆ.dx/ˆ.dy/

C
1

ı

Z
R�

Z
.1�y;1�

.x C y/ıxK.x; y/ˆ.dx/ˆ.dy/: (5.4)

Next we derive estimates for each term of the right-hand side. We start by dividing the
domain of integration of the first term into two regions defined by y < 1, x � 1 and by
x; y � 1, respectively.
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In the region y < 1, x � 1, using the upper bound for the kernel (3.1) and the estimates
(4.69)–(4.70), we haveZ

.0;1/

Z
Œ1;1/

�
.x C y/ı � xı

�
xK.x; y/ˆ.dx/ˆ.dy/

� C.ı/

Z
.0;1/

Z
Œ1;1/

xıyK.x; y/ˆ.dx/ˆ.dy/

� C.ı/c2

Z
.0;1/

Z
Œ1;1/

.xıCC�y1�� C y1CC�xı��/ˆ.dx/ˆ.dy/; (5.5)

which is finite by (4.67)–(4.68).
In the second region x; y � 1 we use the symmetry of the kernel, as well as (4.69) and

(4.70), to obtain“
Œ1;1/2

�
.x C y/ı � xı

�
xK.x; y/ˆ.dy/ˆ.dx/

� C.ı/

“
¹1�y�xº

xıyK.x; y/ˆ.dy/ˆ.dx/

C c.ı/

“
¹1�x�yº

yıxK.x; y/ˆ.dy/ˆ.dx/ (5.6)

D .C.ı/C c.ı//

“
¹1�y�xº

xıyK.x; y/ˆ.dy/ˆ.dx/: (5.7)

The upper bound for the kernel (3.1) implies

xıyK.x; y/ � c2.x
ıCC�y1�� C y1CC�xı��/;

which yields the following estimates, for 1 � y � x:

xıyK.x; y/ � c2.x
ıCC�y C x1Cı��yC�/; � > 0;

xıyK.x; y/ � c2

�
xıCy

�x
y

��
C xı��CC�y

�
; � � 0;  C � > 0;

xıyK.x; y/ � c2

�
xıCy

�x
y

��
C xı��y

�
; � � 0;  C � � 0:

The bounds (4.67)–(4.68), together with the condition on ı (5.3), then ensure that (5.7) is
finite.

We now focus on the second term of (5.4). We divide the domain of integration into
two regions, defined by y > 1, x � 1 and by 1 � y < x � 1, y � 1. In the first region
y > 1, x � 1, it holds thatZ
.1;1/

Z
.0;1�

.x C y/ıxK.x; y/ˆ.dx/ˆ.dy/ � 2ı
Z
.1;1/

Z
.0;1�

yıxK.x; y/ˆ.dx/ˆ.dy/:
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Similarly to the region y < 1; x � 1 (cf. (5.5)), this integral is finite by (3.1) and (4.67)–
(4.68). In the second region 1� y < x � 1, y � 1, we notice that .xC y/ı � 2ı . Therefore,Z
.0;1�

Z
.1�y;1�

.x C y/ıxK.x; y/ˆ.dx/ˆ.dy/ � 2ı
Z
.0;1�

Z
.1�x;1�

xK.x; y/ˆ.dx/ˆ.dy/;

which is bounded by Jˆ.1/, which is finite by Proposition 4.18.
Thus, we conclude that

2

1 � 

Z
Œ1;1/

z1Cıˆ.dz/ <1: (5.8)

Now let us select '.x/ D xnı�1�.1;1/.x/ in (5.2):

2

1 � 

Z
R�

x1Cnı�.x/ dx �
1

nı

Z
R�

Z
Œ1;1/

�
.x C y/nı � xnı

�
xK.x; y/ˆ.dx/ˆ.dy/

C
1

nı

Z
R�

Z
.1�y;1�

.x C y/nıxK.x; y/ˆ.dx/ˆ.dy/:

We divide the domains of integration as before and conclude that, for some constant cı;n
that depends on ı and n, the following estimate holds:

2

1 � 

Z
R�

x1Cnı�.x/ dx � cı;n

�Z
.0;1/

Z
Œ1;1/

xnıyK.x; y/�.y/�.x/ dx dy

C

“
¹x�y�1º

xnıyK.x; y/ˆ.dx/ˆ.dy/

C

Z
.1;1/

Z
.0;1�

ynıxK.x; y/ˆ.dx/ˆ.dy/

C

Z
.0;1�

Z
.1�x;1�

xK.x; y/ˆ.dx/ˆ.dy/

�
:

The last term is bounded by cı;nJˆ.1/ < 1. The third term may be estimated exactly
as the first term. The first and second terms may be estimated as before using the upper
bound for the kernel (3.1):

xnıyK.x; y/ � c2.x
.n�1/ıCıCC�y1�� C y1CC�x.n�1/ıCı��/:

It then follows by the choice of ı that, for some constant Qcı;n depending on ı and n, as
well as on the parameters of the kernel, we haveZ

.1;1/

x1Cnıˆ.dx/ � 3 Qcı;n

Z
.1;1/

x1C.n�1/ıˆ.dx/C cı;nJˆ.1/: (5.9)

The bound (5.1) follows by induction combining (5.8) and (5.9).

Proposition 5.2. Assume K, �, � and  are as in the assumptions of Theorem 3.2. The
solution ˆ of (4.66), constructed in Proposition 4.18, satisfies (3.5) for some positive
constant L.
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Proof. We now prove the exponential bound following the approach of [11]. Let us intro-
duce the notation ‰a.L/ WD

R
R�

x2

min¹x;aºe
Lmin¹x;aºˆ.dx/. Notice that

‰a.0/ D

Z
.0;a/

x2

min¹x; aº
ˆ.dx/C

Z
Œa;1/

x2

a
ˆ.dx/ � 1C

M2

a
(5.10)

and
‰0a.L/ D

Z
R�

x2eLmin¹x;aºˆ.dx/:

Considering the test function '0.x/ D eLmin¹x;aº in (5.2), we deduce that

‰0a.L/ � c./

Z
R�

Z
R�

xK.x; y/

Z xCy

x

eLmin¹z;aº dzˆ.dy/ˆ.dx/

� c./

Z
R�

xC��a;L.dx/

Z
R�

y���a;L.dy/;

where we are using the notation �a;L.dx/ WD xeLmin¹x;aºˆ.dx/.
Since  C � < 1 and�� < 1, the maps x 7! x�

1
� and x 7! x

1
�C are convex functions.

By the Jensen inequality we obtain

k�L;ak1

Z
R�

xC�
�L;a.dx/

k�L;ak1
� k�L;ak

1���
1

�Z
R�

x�L;a.dx/

�C�
� ‰a.L/

1���‰0a.L/
C�

and similarly

k�L;ak1

Z
R�

x��
�L;a.dx/

k�L;ak1
� ‰a.L/

1C�‰0a.L/
��:

As a consequence ‰0a.L/ � c./‰a.L/
2�‰0a.L/

 , or equivalently,

‰0a.L/ � ‰a.L/
2�
1� c./

1
1� :

This implies that if L � ‰a.0/
� 1
1� c./

� 1
1� , then

‰a.L/ � .‰a.0/
� 1
1� � c./

1
1� L/�1:

Since by (5.10) it follows that ‰a.0/! 1 as a !1, we deduce that if L � c./�
1
1�

then Z
.1;1/

eLxˆ.dx/ � lim sup
a!1

‰a.L/ <1:

Proof of Theorem 3.2. Let ˆ be a solution of (4.66) constructed in Proposition 4.18. We
know thatˆ satisfies (3.5) and (3.3). We now prove thatˆ is absolutely continuous. Since
ˆ is a solution of (4.66), by selecting '.x/ D 1

z2
�.x/ with � 2 Cc.R�/, we conclude that

2

1 � 

ˇ̌̌̌Z
R�

�.z/ˆ.dz/

ˇ̌̌̌
�

ˇ̌̌̌Z
R�

Jˆ.z/
1

z2
�.z/'.z/ dz

ˇ̌̌̌
C

ˇ̌̌̌Z
R�

Z
.z;1/

xˆ.dx/
1

z2
�.z/ dz

ˇ̌̌̌
� .1C kJj supp�k1/k1=z

2
kLp.supp�/k�kLq.supp�/ <1:
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Therefore, by density we know that for every q > 1 and any compact set K � R�,ˇ̌̌̌Z
R�

�.z/ˆ.dz/

ˇ̌̌̌
� C.�; �; ;ˆ/k�kLq.K/; � 2 Lq.K/:

This implies that ˆ is absolutely continuous and that its density � satisfies (3.2). We
now show (3.6). First of all we notice that

J�.z/ D

Z 1
z

x� dx C
2

1 � 
z2�.z/ for a.e. z > 0:

As a consequence we deduce that

�.z/ �
1 � 

2z2
J�.z/ for a.e. z > 0: (5.11)

Assume z > 1, hence we can rewrite J� in the following way:

J�.z/ D

Z z

0

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx

D

Z 1

0

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx

C

Z z

1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx: (5.12)

Using (4.68), we have that, if z is large enough, then there exists a constant zL > 0 such
that Z 1

0

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx

� c2

Z 1

0

xC�C1�.x/

Z 1
z�1

y���.y/ dy dx

C c2

Z 1

0

x1���.x/

Z 1
z�1

yC��.y/ dy dx

� e�z
zL:

We now focus on the second term of (5.12), which for large enough z can be written
as the sum of two terms in the following way:Z z

1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx

D

Z z

z�1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx

C

Z z�1

1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx: (5.13)
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Moreover, sinceZ z�1

1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx � c2

Z 1
z=2

xC�C1�.x/ dx

Z 1
1

y���.y/ dy

C c2

Z 1
z=2

x1���.x/ dx

Z 1
1

yC��.y/ dy

C c2

Z 1
1

xC�C1�.x/ dx

Z 1
z=2

y���.y/ dy

C c2

Z 1
1

x1���.x/ dx

Z 1
z=2

yC��.y/ dy;

from this we deduce, thanks to (3.5), thatZ z�1

1

Z 1
z�x

K.x; y/x�.y/�.x/ dy dx � ce�zL1

for suitable constants L1 > 0 and c > 0. We focus now on the first term of (5.13). Notice
that there exists a positive constant L4 > 0 such thatZ z

z�1

Z 1
1

xK.x; y/�.y/�.x/ dy dx � ce�L4z :

Using (5.11) we deduce thatZ z

z�1

Z 1

z�x

K.x; y/x�.y/�.x/ dy dx � c./

Z z

z�1

Z 1

z�x

K.x; y/

x
�.y/J�.x/ dy dx:

Combining all the above inequalities we have that there exists a � > 0 such that

J�.x/ � ce
�z�
C c./

Z z

z�1

Z 1

z�x

K.x; y/

x
�.y/J�.x/ dy dx:

On the other hand, using Lemma 4.11 we deduce thatZ z

z�1

Z 1

z�x

K.x; y/

x
�.y/J�.x/ dy dx

� sup
x2Œz�1;z�

J�.x/

Z z

z�1

Z 1

z�x

K.x; y/

x
�.y/ dy dx

� sup
x2Œz�1;z�

J�.x/

�Z z

z�1

xC�

x

Z 1

z�x

y
�2���3

2 dy dx C

Z z

z�1

x��

x

Z 1

z�x

y
2�C�3

2 dy dx

�
� c sup

x2Œz�1;z�

J�.x/

�Z z

z�1

xC��1.z � x/
�2���1

2 dx C

Z z

z�1

x���1.z � x/
2�C�1

2 dx

�
� c sup

x2Œz�1;z�

J�.x/

�
.z � 1/C��1

Z 1

0

y
�2���1

2 dy C .z � 1/���1
Z 1

0

y
2�C�1

2 dy

�
:
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This allows us to deduce that there exists an N" such that for every z > N",

J�.z/ � ce
�z�
C " sup

x2Œz�1;z�

J�.x/; (5.14)

with e�� > "
1�"

> 0. Let
QJn WD sup

z2Œn�1;n�

J�.z/I

then by (5.14) we deduce that

QJn � " QJn�1 C " QJn C ce
�n�; (5.15)

and by the local boundedness of J� we have that there exists a c0 > 0 such that QJN" � c0.
Formula (5.15) implies that for every k > 0,

QJN"Ck �
c

1 � "
e��.N"Ck/

kX
iD0

e�i
� "

1 � "

�i
C c0e

��k :

As a consequence, for large z we have J�.z/ � ce��z , where c is a positive constant.
The inequality �.z/ � ce��z as z !1 follows by the fact that J�.z/ � ce��z and

by equation (3.2).
We now prove the lower power-law bound (3.4). Let C be any positive constant. For

small enough positive constants z0 and " such that 1�C"�
R z0
0
x�.x/dx � 1

2
, it follows

by Lemma 4.17 that there is a ı0 > 0 depending on " and  such that for any ı � ı0 and
any ' 2 Cc.R�/,

J2.z; ı; �/ � 1C
2

1 � 
z2�.z/ � C" �

Z z

0

x�.x/x dx �
1

2
; a.e. z 2 .0; z0�: (5.16)

Moreover, using a geometrical argument, we deduce that there exists a constant b 2 .0; 1/
depending on ı such that, for all z 2 ŒR; 2R�,

�z \†2.ı/ �
� ı

ı C 1
z; z

i
�

� ı

ı C 1
z;
z

ı

i
�
�p
bR;R=

p
b
�2
;

with �z defined by (4.42), which together with the upper bound for the kernel (3.1),
xK.x; y/ � cRC1, yieldsZ

ŒR;2R�

J2.z; ı; �/ dz � cR
C2

�Z
.
p
bR;R=

p
b�

�.x/ dx

�2
; R > 0;

for a constant c > 0 depending only on  , �, c1 and c2. This together with (5.16) implies

R

2
� cRC2

�Z
.
p
bR;R=

p
b�

�.x/ dx

�2
; R 2 .0; z0�:

Hence, the result follows after substituting R=
p
b by z.

Finally,
R

R�
x�.x/ dx D 1 follows by the fact that for every sequence ¹znº such that

limn!1 zn D 1 we have limn!1 J�.zn/ D 0 and, thanks to (3.5), up to a subsequence
limn!1 z

2
n�.zn/ D 0.
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6. Regularity of the self-similar profiles

Proof of Theorem 3.3. We divide the proof into steps.

Step 1. For every  2 C1c .R/, every ˇ > 0 and 0 < s < 1 it holds that

k .� C y/ �  .�/kH�ˇ .R/ � jyj
s
k kH s�ˇ .R/; y 2 R: (6.1)

This follows by the fact that

k�y .�/k
2
H�ˇ .R/

D

Z
R
.1C jxj2/�ˇ j�y O .x/j

2 dx

D

Z
R
.1C jxj2/�ˇ j O .x/j2jeixy � 1j2 dx

� c

Z
R
.1C jxj2/�ˇ j O .x/j2jxj2sjyj2s dx

� cjyj2s
Z

R
j O .x/j2.1C jxj2/s�ˇ dx

D cjyj2sk .�/k2
H s�ˇ .R/

;

where we are using the notation �y .�/ WD  .� C y/ �  .�/.

Step 2. Let U be an open set and let us define the operator T WC1c .R/! C 1.U / as

T Œ �.x/ WD

Z 1

0

K.x; y/�.y/�y .x/ dy; x 2 U:

Then
kT Œ �kL2.U / � Ck kH Ns.R/ (6.2)

for some positive constant C > 0, and

1 > Ns >
 C 1

2
�min¹ C �;��º �

1

2
: (6.3)

To prove (6.2) we notice that

kT Œ �kL2.U / �

Z 1

0

kK.x; y/�.y/�y .x/kL2.U / dy

� C

Z 1

0

ymin¹C�;��º�.y/k�y .x/kL2.R/ dy

� C

Z 1

0

ymin¹C�;��ºCNs�.y/ dyk kH Ns.R/;

where, for the last inequality, we use the fact that k�y .x/kL2.R/ � C jyjNsk kH Ns.R/; see
[27].

Inequalities (3.3) and (6.3) imply that
R 1
0
ymin¹C�;��ºCNs�.y/dy <1 and, therefore,

(6.2) follows.
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Step 3. If l � ˇ > 1=2, then

kT Œ �kH�ˇ .U / � Ck kH Ns�ˇ .R/: (6.4)

First of all we notice that if f 2 H l .U / and g 2 H�ˇ .R/, then fg 2 H�ˇ .U /. This
is due to the fact that, if ˇ > 1=2,

kfgkH�ˇ .U / D inf
¹E2H�ˇ .R/WEjUDfgº

kEkH�ˇ .R/

� inf
¹F 2H�ˇ .R/WFjUDf º

kgF kH�ˇ .R/

� inf
¹F 2H�ˇ .R/WFjUDf º

kF kH�ˇ .R/kgkH�ˇ .R/

D kf kH�ˇ .U /kgkH�ˇ .R/ <1:

Since K 2 H l .R�/ as well as the fact that it satisfies (3.7), we deduce that

kT Œ �kH�ˇ .U / �

Z 1

0

K.x; y/�.y/�y .x/ dy


H�ˇ .U /

�

Z 1

0

kK.x; y/�y .x/kH�ˇ .U /�.y/ dy

� C

Z 1

0

ymin¹C�;��º�.y/k�y .x/kH�ˇ .R/ dy

� Ck kH Ns�ˇ .R/

Z 1

0

ymin¹C�;��ºCNs�.y/ dy

� Ck kH Ns�ˇ .R/

for some positive constant C . To deduce the second last inequality, we applied (6.1).

Step 4. In this last step we show how to combine the results of the previous steps to prove
the regularity of the self-similar profile. Considering a test function '.z/ D  0.z/ with
 2 C1c .R�/ and supp. / D Œa; b� for some a > b > 0 in (4.66), we deduce that

2

1 � 

Z
R�

z2 0.z/�.z/ dz D

Z
R�

x�.x/

�
 .x/C

Z
R�

�y .x/K.x; y/�.y/

�
dx dy:

Therefore,

2

1 � 

Z
R�

jz2 0.z/�.z/j dz � k kL2.Œa;b�/kx�.x/kL2.Œa;b�/

C

Z b

a

Z 1
1

�y .x/xK.x; y/�.x/�.y/ dy dx

C

Z b

a

xT Œ �.x/�.x/ dx

C

Z a

0

Z 1
a�x

 .x C y/xK.x; y/�.x/�.y/ dx dy:
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We notice that, for some C > 0,Z b

a

Z 1
1

�y .x/xK.x; y/�.x/�.y/ dy dx

� Ck kL2.Œa;b�/

Z b

a

Z 1
1

xK.x; y/�.x/�.y/ dy dx � Ck kL2.Œa;b�/

andZ a

0

Z 1
a�x

 .x C y/xK.x; y/�.x/�.y/ dy dx � k kL2.Œa;b�/J�.a/ � Ck kL2.Œa;b�/:

Thanks to Step 2 we deduce thatZ b

a

xT Œ �.x/�.x/ dx � kx�.x/kL2.Œa;b�/kT Œ �kL2.Œa;b�/

� kx�.x/kL2.Œa;b�/kT Œ �kL2.R/

� kx�.x/kL2.Œa;b�/k kH Ns.R/:

By denoting with ‚ the function z 7! z2�.z/ we conclude thatZ 1
0

 0.z/‚.z/ dz � Ck kH Ns.R/:

This inequality implies that ‚0.z/ 2 .H Ns/0.R/ D H�Ns.R/ and therefore ‚ 2 H 1�Ns.R/.
For every test function � 2 C1c .R/, we have ‚� 2 H 1�Ns.R/.

Assume now that �‚ 2 Hn.1�Ns/.R/ for any test function � and for some n � 1. Then
if l � n.Ns � 1/, considering a test function which is equal to 1

x
on Œa; b� we deduce thatZ b

a

xT Œ �.x/�.x/ dx � C

Z b

a

�.x/x2T Œ �.x/�.x/ dx

� k�‚kHn.1�Ns/.R/kT Œ �.x/kHn.Ns�1/.a;b/

� k�‚kHn.1�Ns/.R/k kH .nC1/Ns�n.R/:

This implies that Z 1
0

z2 0.z/�.z/ dz � ck kH .nC1/Ns�n.R/

and, therefore, ‚ 2 H .nC1/.1�Ns/.R/ and the desired result follows.
Recalling the Sobolev embeddings ([6]) and differentiating (3.2), we deduce that �

satisfies (2.8).

7. Self-similar solutions for the coagulation with constant flux coming
from the origin

Proof of Theorem 3.6. The fact that F satisfies (3.9) follows by (4.68).
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We notice that for every " > 0 and every ' 2 C 1.Œ0; T �; C 1c .R�//,Z
R�

�'."; �/F."; d�/ D

Z
R�

�'."; �/"
�
C3
1� �.�"

� 2
1� / d�

�

Z
R�

'."; y"
2
1� /"�.y/ dy

� "k'k1;

and therefore
R

R�
�'.t; �/F.t; �/d�! 0 as t! 0. Consequently, via a change of variables

and integral manipulations, we deduce thatZ
R�

�'.t; �/F.t; �/ d� �

Z t

0

Z
R�

�@s'.s; �/F.s; �/ d�

D

Z t

0

Z
R�

x'.s; xs
2
1� /�.x/ dx ds

C
2

1 � 

Z t

0

Z
R�

x2@x'.s; xs
2
1� /�.x/ dx ds

D

Z t

0

Z
R�

Z
.0;x�

@y'.s; ys
2
1� / dy x�.x/ dx ds

C
2

1 � 

Z t

0

Z
R�

x2@x'.s; xs
2
1� /�.x/ dx ds

D

Z t

0

Z
R�

@z'.s; zs
2
1� /

�Z
.z;1/

x�.x/ dx C
2

1 � 
z2�.z/ dz

�
ds:

Since ˆ solves (4.66), by considering the test function  .x/ D @x'.s; xs
2
1� / for a fixed

s > 0, we deduce thatZ
R�

�'.t; �/F.t; �/ d� �

Z t

0

Z
R�

�@s'.s; �/F.s; �/ d� D

Z t

0

Z
R�

@z'.s; zs
2
1� /J�.z/ dz:

SinceZ
R�

@z'.s; zs
2
1� /J�.z/ dz

D

Z
R�

Z
R�

�
'.s; .z C �/s

2
1� / � '.s; zs

2
1� /

�
zK.z; �/�.z/ dz �.�/ d�

D

Z
R�

Z
R�

K.y; x/

2

�
.y C x/'.s; x C y/ � x'.s; x/ � y'.s; y/

�
F.s; dy/F.s; dx/;

thus F solves (3.10) for every ' 2 C 1.Œ0; T �; C 1c .R�//.
Every test function ' 2 C 1.Œ0; T �; C 1c .RC// can be approximated by a sequence

of functions ¹'nº � C 1.Œ0; T �; Cc.R�// defined by 'n.s; x/ D �.xn/'.s; x/, with � 2



M. A. Ferreira, E. Franco, and J. J. L. Velázquez 856

C1.RC/ such that �.x/ D 1 if x � 1 and �.x/ D 0 if x � 1=2. For every n 2 N it holds
that Z

R�

�'n.t; �/F.t; �/ d� D

Z t

0

Z
RC

�@s'n.s; �/F.s; �/ d� ds

C

Z t

0

Z
RC

@�'n.s; �/JF.s;�/.�/ d� ds: (7.1)

Since @�'n.s; �/ D '.s; �/n�0.�n/ C �.�n/@�'.s; �/, JF.s;�/ D J�.�s
� 2
1� / < 1 and,

moreover,
R1
0
�F.t; �/ d� � t , by the Lebesgue dominated convergence theorem we

deduce thatZ t

0

Z
RC

�.�n/@�'.s; �/JF.s;�/.�/ d� ds !

Z t

0

Z
RC

@�'.s; �/JF.s;�/.�/ d� ds as n!1;Z
R�

�'n.t; �/F.t; �/ d� !

Z
R�

�'.t; �/F.t; �/ d� as n!1;Z t

0

Z
RC

�@s'n.s; �/F.s; �/ d� ds !

Z t

0

Z
RC

�@s'.s; �/F.s; �/ d� ds as n!1:

For any n > 0, Z "

0

Z
RC

n�0.�n/'.s; �/JF.s;�/.�/ d� ds ! 0 as "! 0:

This, together with the fact that for any n 2 N it holds that
R1
0
n�0.�n/ d� D 1, that

supp.n�0.�n// � Œ 1
2n
; 1
n
� and that

R1
0
x�.x/ dx D 1 impliesZ t

"

Z
RC

n�0.�n/'.s; �/JF.s;�/.�/ d� ds

D

Z t

"

Z
RC

n�0.�n/'.s; �/

�

�
1 �

Z �s
� 2
1�

0

x�.x/ dx C
2

1 � 
.�s
� 2
1� /2�.�s

� 2
1� /

�
d� ds

!

Z t

0

'.s; 0/ ds as n!1 and "! 0:

Notice that we have used the fact thatZ t

"

Z
RC

n�0.�n/'.s; �/

Z �s
� 2
1�

0

x�.x/ dx d� ds

�

Z t

"

Z
RC

n�0.�n/'.s; �/

Z s
� 2
1�

n

0

x�.x/ dx d� ds ! 0 as n!1
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and that, by Lemma 4.17,Z t

"

Z
RC

n�0.�n/'.s; �/.�s
� 2
1� /2�.�s

� 2
1� / d� ds

�

Z t

"

Z 1=n

1=2n

'.s; �/.�s
� 2
1� /2�.�s

� 2
1� / d� ds

� c
�1
n

� 3�
2
! 0 as n!1:

Passing to the limit as n!1 in equation (7.1), we deduce that F is a solution of the
coagulation with constant flux coming from the origin in the sense of Definition 3.5.

A. Proofs of Lemmas 4.2 and 4.3

In this section we write the proof of some auxiliary lemmas.

Proof of Lemma 4.2. First of all we show that, for each f 2 C.Œ1; T �;MC;b.R�// and for
every t 2 Œ1; T �, the functional F Œf �.t/ is a linear and continuous functional on C0.R�/
and, consequently, defines a measure in MC;b.R�/. The linearity follows directly from
the definition.

To check the continuity we notice that for every '1; '2 2 Cc.R�/,

jhF1Œf �.t/; '1 � '2ij � k'1 � '2k1kˆ0k

and

hF2Œf �.t/; '1 � '2i �
a

2
k'1 � '2k1max

° 1

jˇ j
tˇC1; t

±
kf k2Œ1;T �;

hF3Œf �.t/; '1 � '2i � k'1 � '2k1k�"k zT ;

where zT WD T � 1. Combining all the above inequalities we conclude that

hF Œf �.t/; '1 � '1i � k'1 � '2k
�
kˆ0k C

a

2
max

° 1

jˇ j
tˇC1; t

±
kf k2Œ1;T � C k�"k

zT
�
:

Given the fact that C �0 .R�/ is isomorphic with the space Mb.R�/ (see for instance [24]),
we conclude that the operator F Œf �.t/ defines a measure.

We now check that F maps C.Œ1; T �;X"/ into itself. We have already shown that
F Œf �.t/ 2MC;b.R�/. The fact that F Œf �.t/..0; "�/ D 0 follows easily by the fact that
Fi .t/..0; "�/ D 0 for i D 1; 2. Indeed, Fi .t/ are defined as integrals over measures that
are equal to zero in the set .0; "�. Moreover, since for any t > 0 we have `.t; x; y/ �
max¹x; yº, we deduce that for every test function with support contained in .0; "� we have
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that ƒŒ'� D 0 if x; y > ". Thus, for this choice of test function,

hF2Œf �.t/; 'i D

Z t

1

Z
.";1/

Z
.";1/

ƒŒ'�.s; x; y/e�
R t
s bŒf �.�;x/ d�

Ka;T .s; x; y/

2

� f .s; dx/f .s; dy/ ds D 0;

hence F2.t/..0; "�/ D 0.
Let us first show that F Œf � is a continuous map from Œ1; T � to MC;b.R�/. To this end

we notice that for every t2 � t1 > 0, for every ' 2 C0.R�/ with k'k � 1, we have

jh';F1Œf �.t2/ � F1Œf �.t1/ij � amax
° 1

jˇj

�
t2
ˇC1

� t1
ˇC1

�
; t2 � t1

±
kˆ0kkf kŒ1;T �:

On the other side, we have

jh';F2Œf �.t2/ � F2Œf �.t1/ij �
a

2
kf k2Œ1;T � max

° 1

jˇj
.t
ˇC1
1 � t

ˇC1
2 /; t1 � t2

±
�

�
1C amax

° 1
ˇ
zT ˇC1; zT

±
kf kŒ1;T �

�
:

Moreover,

jh';F3Œf �.t2/ � F3Œf �.t1/ij � .t2 � t1/
�
amax¹ zT ˇ ; zT ºkf kŒ1;T � C 1

�
k�"k:

If  < 0, then

max
° 1

jˇj
.t
ˇC1
1 � t

ˇC1
2 /; t1 � t2

±
� max

°
1;

1

jˇj

±
.t1 � t2/

and, if  � 0, then

max
° 1

jˇj
.t
ˇC1
1 � t

ˇC1
2 /; t1 � t2

±
� max

°
1;

1

jˇj

±
.t
ˇC1
1 � t

ˇC1
2 /:

Therefore, the continuity of F Œf � follows by the above inequalities.

Proof of Lemma 4.3. For every ' 2 Cc.R�/ with k'k � 1 we have

jh';F1Œf �.t/ � F1Œg�.t/ij � amax
° 1
ˇ
zT ˇC1; zT

±
kf � gkŒ1;T �kf1k;

jh';F3Œf �.t/ � F3Œg�.t/ij � akf � gkŒ1;T � max
° 1
ˇ
zT ˇC1; zT

±
k�"k;

h';F2Œf �.t/ � F2Œg�.t/i � 2a.1C 2kf1k/kf � gkŒ1;T � max
° 1
ˇ
zT ˇC1; zT

±
C a2kf �gkŒ1;T �.1C 2kf1k/

2 max
° 1

2ˇ2
zT 2.ˇC1/; zT 2

±
;
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where zT WD T � 1. To obtain the above inequalities we have used the fact that je�x1 �
e�x2 j � jx1 � x2j, whenever x1 > 0 and x2 > 0.

Summarizing,

sup
t2Œ1;T �

h';F Œf �.t/ � F Œg�.t/i � CT kf � gkŒ1;T �;

where

CT WD amax
° 1

jˇj
zT ˇC1; zT

±
�

�
k�"k C .1C 2kf1k/

2amax
° 1

jˇj
zT ˇC1; zT

±
C 3.1C 2kf1k/

�
: (A.1)

It is possible to verify that if

zT <
1

min¹1; 1
jˇ j
º

� 1

10a
min

° 1

k�"k
;

1

1C 2kf1k

±�
; (A.2)

then CT < 1
2

.
The inequalities

kF1Œf � � f kŒ1;T � � akf k
2
Œ1;T � max

° 1

jˇj
zT ˇC1; zT

±
;

kF2Œf �kŒ1;T � � akf k
2
Œ1;T � max

° 1

jˇj
zT ˇC1; zT

±
;

kF3Œf �kŒ1;T � � k�"kT � k�"kmax
° 1

jˇj
zT ˇC1; zT

±
imply that if T satisfies (A.2), then (4.21) holds for DT < 1

2
.
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