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Dispersive estimates for the Schrödinger equation in a
model convex domain and applications

Oana Ivanovici

Abstract. We consider an anisotropic model case for a strictly convex domain � � Rd of dimen-
sion d � 2 with smooth boundary @� ¤ ; and we describe dispersion for the semiclassical Schrö-
dinger equation with Dirichlet boundary condition. More specifically, we obtain the following fixed
time decay rate for the linear semiclassical flow: a loss of .ht /

1=4 occurs with respect to the bound-
aryless case due to repeated swallowtail-type singularities, and is proven optimal. Corresponding
Strichartz estimates allow us to solve the cubic nonlinear Schrödinger equation on such a three-
dimensional model convex domain, hence matching known results on generic compact boundaryless
manifolds.

1. Introduction

Let us consider the Schrödinger equation on a manifold .�; g/, with a strictly convex
boundary @� (a precise definition of strict convexity will be provided later on in the intro-
duction):

� i@tv C�gv D �jvj
2v; vjtD0 D v0; vjR�@� D 0; (1)

where �g denotes the Laplace operator with Dirichlet boundary condition, and � D 0

(linear equation) or � D˙1 (defocusing or focusing nonlinear cubic equation, abbreviated
to NLS from now on).

For nonlinear partial differential equations on manifolds, understanding the linear
flow is a prerequisite to studying nonlinear problems: addressing the Cauchy problem
for nonlinear wave equations starts with perturbative techniques and faces the difficulty
of controlling solutions to the linear equation in terms of the size of the initial data. Espe-
cially at low regularities, mixed norms of Strichartz type (LqtL

r
x) are particularly useful.

For the linear Schrödinger flow e�it�gv0 ((1) with � D 0), local Strichartz estimates (in
their most general form) read

ke�it�gv0kLq.0;T /Lr .�/ � CT kv0kH� .�/; (2)

where 2 � q; r � 1 satisfy the Schrödinger admissibility condition, 2
q
C

d
r
�

d
2

,
.q; r; d/ ¤ .2;1; 2/ and 2

q
C

d
r
�

d
2
� � (scale invariant when equality; otherwise, loss
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of derivatives in estimate (2) as it deviates from the optimal regularity predicted by scale
invariance). In Euclidean space Rd with g D .ıij /, (2) holds with � D 0 and extends
globally in time, T D C1.

The canonical path leading to such Strichartz estimates is to obtain a stronger, fixed
time, dispersion estimate, which is then combined with energy conservation, interpolation
and a duality argument to obtain (2). Dispersion for the linear Schrödinger flow in Rd

reads
ke˙it�Rd kL1.Rd /!L1.Rd / � C.d/t

�d=2 for all t ¤ 0: (3)

Indeed, (3) and the unitary property of the flow on L2.Rd / are sufficient to obtain all
known Strichartz estimates; endpoint cases are more delicate (see [8, 17, 30]).

On any boundaryless Riemann manifold .�;g/ one may follow the same path, replac-
ing the exact formula by a parametrix, constructed locally within a small ball, thanks to
finite speed of propagation for waves or in semiclassical time for Schrödinger – short-
time, wavelength-sized intervals (e.g. their size is the inverse of the frequency), allowing
for almost finite speed of propagation. By time rescaling, dispersion for the semiclassical
Schrödinger equation in Euclidean space reads, with  2 C10 being a smooth cutoff to
localize frequencies and Dt D �i@t , and t0 depending on the injectivity radius of .�; g/,

k .hDt /e
˙ith�

Rd kL1.Rd /!L1.Rd / �
C.d/

hd
min

�
1;
�h
t

� d
2
�

for all 0 < jt j � t0:

While for � D Rd , dispersive properties of (1) are well understood, studying dispersive
equations of Schrödinger type on manifolds (curved geometry, variable metric) started
with Bourgain’s work on KdV and Schrödinger on the torus, and then expanded in dif-
ferent directions, all of them with low regularity requirements (e.g. Staffilani–Tataru [27],
Burq–Gérard–Tzvetkov [6, 7] for Schrödinger; Smith [22, 23], Tataru [28], Bahouri–
Chemin [2, 3], Klainerman–Rodnianski [18] and Smith–Tataru [25, 26] for wave equa-
tions). In [7], these linear estimates were used, together with a classical argument due to
Yudovitch, to obtain global well-posedness for the defocusing cubic NLS on a generic
three-dimensional compact manifold without boundary. We aim to match this result in our
context, with a model convex boundary.

For compact manifolds (even without boundary) one cannot expect linear estimates to
behave like in the Euclidean case: eventually a loss will occur, due to the volume being
finite. No long-time dispersion of wave packets may occur as they have nowhere to dis-
perse. Long-time estimates for the wave equation are unknown, while in the case of the
Schrödinger equation, the infinite speed of propagation immediately produces unavoid-
able losses of derivatives in dispersive estimates. Informally, this may be related to the
existence of eigenfunctions, but the complete understanding of the loss mechanism is still
a delicate issue, even on the torus. On domains with boundaries, there are additional dif-
ficulties related to reflected waves. Partial progress was made in [1] and then in [4, 5],
following the general strategy of the low-regularity, boundaryless case: reflect the metric
across the boundary and deal with a boundaryless domain whose metric is only Lipschitz
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at the interface. Such results hold for any (smooth) boundary, regardless of its shape: how-
ever, they apply to three-dimensional NLS only for nonlinearities that are weaker than
cubic: [5] obtains global well-posedness for smooth nonlinearities F.v/ with growth at
most jvj2=5v.

In the last decade, additional progress has been made for the wave equation on domains
with convex boundary. Our first result [13], which deals with the model case of a strictly
convex domain, highlights a loss in dispersion for the solution to the linear wave equation
that we informally relate to caustics, generated in arbitrarily small time near the boundary.
Such caustics appear when optical rays are no longer diverging from each other in the
normal direction, where less dispersion occurs as compared to the Rd case. Our so-called
Friedlander model domain is the half-space, for d � 2,�d D ¹.x; y/ j x > 0; y 2 Rd�1º
with the metric gF inherited from the Laplace operator

�F D @
2
x C

X
j

@2yj C x
X
j;k

qj;k@yj @yk ; (4)

where qj;k are constants and q.�/ D
P
j;k qj;k�j �k is a positive definite quadratic form.

Note that q is not, in general, invariant by rotations and we cannot reduce to the radial
case in y, unlike [13], where q.�/ D j� j2. One may see �F as the Laplace operator in
geodesic normal coordinates near the boundary, but where one would freeze all coeffi-
cients qj;k.x; y/ to their value on the boundary. Strict convexity of �d with the metric
inherited from �F is equivalent to ellipticity of

P
j;k qj;k@yj @yk . When qj;j D 1 and

qj¤k D 0 (i.e. when q.�/ D j� j2) the domain .�d ; gF / is, indeed, a first-order approxi-
mation of the unit disk in polar coordinates .r; �/: set r D 1 � x=2, � D y.

Let h; a 2 .0; 1/: if ua.t; x; y/ D cos.t
p
j�F j/.ıxDa;yD0/ denotes the linear wave

flow on .�; g/ D .�d ; gF / with data ıxDa;yD0 and Dirichlet boundary condition, then,
for jt j � h, [13] proves

k .hDt /ua.t; �/kL1

� C.d/h�d min
°
1; .h=t/

d�2
2

��h
t

�1=2
C

�h
t

�1=3
C a1=4

�h
t

�1=4�±
: (5)

Moreover, (5) is sharp, as there exists a sequence .tn/n such that equality holds. This
optimal 1

4
loss in the h

t
exponent is unavoidable for small a and is due to swallowtail-type

singularities in the wave front set of ua. This first result opened several directions, from
the generic convex case [11] to understanding more complicated boundary shapes [19].

In the present work, we address the same set of issues for the Schrödinger equation,
where parallel developments were expected, at least in the so-called semiclassical setting
(recall that “semiclassical” means, in our setting, dealing with time intervals whose size
is comparable to the wavelength h, which reduces to almost finite speed of propagation).
In the nontrapping case, results for the classical Schrödinger equation may follow when
combined with smoothing effects, but we will not address this situation (we model the
interior of a convex). In the case of a convex boundary, even the wavelength-sized time
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behavior is complicated due to the existence of gliding rays. Let h 2 .0; 1/ and consider
the semiclassical Schrödinger equation inside the Friedlander domain .�d ; gF /, with�F
given in (4) and Dirichlet boundary condition

ih@tvh � h
2�F vh D 0; vhjtD0 D vh;0; vhj@�d D 0: (6)

With this rescaling, we are dealing with (uniformly) bounded intervals rather than h-sized
intervals.

Theorem 1. Let  2 C10 .Œ
1
2
; 3
2
�/, 0 �  � 1. There exists C.d/ > 0, T0 > 0 and a0 � 1

such that, for all a 2 .0; a0�, h 2 .0; 1/, jt j 2 .h; T0�, vh.t; �/ solution to (6) with data
vh;0.x; y/ D  .hDy/ıxDa;yD0,

k .hDt /vh.t; x; y/kL1.�d / �
C.d/

hd

� h
jt j

� .d�1/
2 C

1
4
:

Moreover, for all h2=3 < a, for all jt j 2 .
p
a;min.T0; ah�1=3/�, our bound is saturated:

k .hDt /vh.t; x; y/kL1.�d / �
a
1
4

hd

� h
jt j

� .d�1/
2 C

1
4
:

Important additional difficulties appear as compared to the wave equation: for not
too small a, the Green function for the wave flow can be explicitly expressed as a sum of
“time-almost-orthogonal” waves, which are essentially supported between a finite number
of consecutive reflections; in [13], we were therefore reduced to obtaining good dispersion
bounds for a finite sum of waves well localized in both time and tangential variables. We
will establish a suitable subordination formula that yields a similar representation of the
Schrödinger flow as a sum of wave packets (see formula (16)); nonetheless, at a given
time t , all waves in this sum provide important contributions, because they travel with
different speeds. To sum all these contributions we need sharp bounds for each of them,
similar to those obtained in [15] for waves. Such refined bounds are obtained, for each
wave in the sum over consecutive reflections, in Propositions 4, 5 and 6. The dispersive
bounds for the Green function are then obtained in Propositions 7, 8, 9 and 10.

For very small a, writing a parametrix as a sum over reflections no longer helps. Using
the spectral decomposition of the data in terms of eigenfunctions of the Laplace operator
allows us to obtain a parametrix as a sum over the zeros of the Airy function (see formula
(11)). With the wave equation, the usual dispersion estimate holds for each term, hence
we can sum sufficiently many of them and still get good bounds. However, for the semi-
classical Schrödinger flow, even the very first modes – localized at distance h2=3 from
@� (known as gallery modes) yield a sharp loss of 1

6
in both dispersion and Strichartz

estimates (see [10]). This regime will be dealt with in Section 3.2.

Theorem 2. Let d � 2, .q; r/ such that 1
q
� .d

2
�
1
4
/.1
2
�
1
r
/ and s D d

2
�
2
q
�
d
r

. There
exist C.d/ > 0, T0 > 0 such that, for v a solution to (6) with data vh;0 2 L2.�d /,

k .hDt /vhkLq.Œ�T0;T0�;Lr .�d // � C.d/h
�s
kvh;0kL2.�d /:
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The proof of Theorem 2 follows from Theorem 1 using the classical T T � argument
and the endpoint argument of Keel–Tao [17] for q D 2 when d � 3. The (scale-invariant)
loss at the semiclassical level corresponds to 1

4
derivative in space, as illustrated with

d D 2, for which the (forbidden) endpoint .2;1/ with s D 0 is replaced by .8=3;1/ with
s D 1=4. This improves [4] where for d D 2, one has .3;1/. More generally, [4] obtains
.2;1/ as an endpoint for d � 3, e.g. s D d=2 � 1, whereas we have .2; 2.2d � 1/=
.2d � 5// as our endpoint pair, with s D 1=.2d � 1/. For d D 3, our endpoint pair is
.2;10/: that 10 <C1 allows us to adapt the argument from [7] and obtain well-posedness
for the cubic equation, as alluded to earlier.

We set� to be a compact manifold such that, in a local coordinate chart that intersects
its boundary, the metric may be expressed as in our model domain with metric inherited
from �F given in (4). One may easily construct such three-dimensional manifolds: for
simplicity, we illustrate what can be done in two dimensions, where one can better visu-
alize the corresponding manifold as embedded in R3. If one periodizes the y variable in
�2, we may see it as the surface of an upper cylinder x > 0 of radius 1 in R3, where y
is really an angle in the two-dimensional plane ¹x D 0º. This surface may be truncated
at x D 1 and we may extend it smoothly with a (compact) cap to get a Riemannian man-
ifold, say with the induced Euclidean metric within a subset of the cap, the metric from
our model in the bottom part of the upper cylinder and a smooth transition in between.
One could alternatively connect two copies of our truncated upper cylinder, or connect
one with another one where the operator is chosen to be @2x C .1C x/

�1@2y (so as to have
a convex boundary on one side and a concave one on the other). These last two examples
may also be seen as subdomains of a two-dimensional torus (either sliced circularly in the
middle or sliced horizontally). For such a manifold � and d D 3 we have the following
theorem:

Theorem 3. Let d D 3 and v0 2 H 1
0 .�/. There exists a unique global-in-time solution

v 2Ct .H
1
0 .�// to (1) with � D 1 (defocusing equation), and its energy is conserved along

the flow. For � D �1 (focusing equation), the result holds locally in time, and globally
provided the mass of v0 is sufficiently small.

Moreover, as in the boundaryless case, preservation of regularity holds and one may
adapt the argument of [21] to obtain exponential growth for the Hm norm of the solution,
where m 2 N, m > 1. Here we state and prove such growth for m D 2; 4 as higher regu-
larity would require dealing with suitable compatibility conditions for the data, which are
outside our scope here.

Theorem 4. Let d D 3 and v0 2 H 1
0 .�/ \H

m.�/ with m D 2; 4, �gv0 2 H 1
0 .�/ if

m D 4. Then the solution v from Theorem 3 is Ct .Hm.�//, and its norm grows at most
exponentially: there exists C D C.m; kv0kHm.�// such that

kv.t; �/kHm.�/ � C exp.C t/:



O. Ivanovici 964

Therefore, well-posedness (and growth of the H 2 norm) for the defocusing cubic
equation on such model convex domains is similar to that of generic boundaryless mani-
folds, and we expect it will hold on any generic three-dimensional compact manifold with
strictly convex boundary once Theorem 2 is generalized to such manifolds.

We now briefly discuss linear Strichartz estimates and their optimality. In [9] we
proved that there must be a loss of at least 1

6
derivatives in Strichartz estimates for (6),

which is obtained when the data is a gallery mode. Whether this result is sharp, or whether
a loss in the semiclassical setting should provide losses in classical time in the case of a
generic nontrapping domain where concave portions of the boundary could act like mir-
rors and refocus wave packets (yielding unavoidable losses in dispersion), is unknown at
present. In fact, understanding Strichartz estimates in exterior domains seems to be a very
delicate task: obstructions from the compact case no longer apply, at least in the case of
nontrapping obstacles. Thus, one may ask whether all Strichartz estimates hold. The con-
flict between this questioning and the failure of semiclassical Strichartz (and dispersion)
near the boundary is only apparent: for nontrapping domains, a wave packet would spend
too short a time in too narrow a region near the boundary to be a contradiction to classical
Strichartz.

For the wave equation, Strichartz estimates with losses were obtained in [4] using
short-time parametrices constructions from [24]. As already noticed, the main advantage
of [4] is also its main weakness: by considering only time intervals that allow for no more
than one reflection of a given wave packet, one may handle any boundary but one does
not see the full effect of dispersion in the tangential variables. New results in both positive
and negative directions were obtained recently, for strictly convex domains: [15] proves
Strichartz estimates for the wave equation to hold true on the domain .�dD2; gF / with at
most 1

9
loss. For d D 2, [4] obtained 1

6
instead of 1

9
(but for any boundary), while [13]

provides 1
4

. Arguments from [15] rely on improving the parametrix construction of [13]
and the resulting bounds on the Green function: degenerate stationary phase estimates in
[13] may be refined to pinpoint the space-time location of swallowtail singularities (worst-
case scenario). It turns out that, for the wave equation, such singularities only happen at an
exceptional, discrete set of times. The proof of Theorem 1 will rely on similar refinements
of degenerate stationary phase estimates, together with refined estimates on gallery modes
from [9], all of which are of independent interest.

Adapting the parametrix construction for the wave flow from [11], one may extend
Theorem 1 to a domain � whose boundary is everywhere strictly (geodesically) convex:
for every point .0; y0/ 2 @� there exists .0; y0; �0; �0/ 2 T �� where the boundary is
micro-locally strictly convex, i.e. such that there exists a bicharacteristic passing through
.0; y0; �0; �0/ that intersects @� tangentially having exactly second-order contact with the
boundary and remaining in the complement of @x�. This will be addressed elsewhere.

It should be mentioned that, although �2 is a good approximation of the unit disk in
polar coordinates, the proof of Theorem 1 does not (immediately) provide the same results
for the disk: in fact, one of the main features of the Friedlander model is that ��F (given
in (4)) with Dirichlet boundary condition has explicit eigenfunctions depending on the
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zeros of the Airy function (see Lemma 2) which form a Hilbert basis of L2. Decomposing
the initial data in terms of these eigenfunctions allows us to obtain a precise parametrix
as a spectral sum (which may be further transformed, via a Poisson-type summation, in a
sum of oscillating integrals, depending on the number of reflections on the boundary).
Although a complete system of eigenfunctions on the unit disk ¹r � 1; � 2 Œ0; 2�/º
is also explicit and given by en;m.r; �/ WD ein�Jn.�n;mr/ (where Jn is the nth Bessel
function and �n;m the mth positive zero of Jn), the same approach may turn out to be
much more complicated as the expansion of �n;m does not seem to allow us to proceed as
in Lemmas 1 and 3 below to obtain a suitable form of the solution in terms of oscillatory
integrals. Hence for “not too small a” one would need to solve the eikonal equation (as
done in [9, 13] in the case of the wave equation) in order to force a solution as a sum
of integrals with Airy phase functions in order to obtain a good parametrix: the main
difficulty with this approach is to obtain a “good control” of the symbols as the number
of such integrals in the sum defining the parametrix is very large (as, in the Schrödinger
case, all the waves overlap at a given time). Combining both methods (the use of Bessel
functions for a . h2=3 and of the Airy phase functions for a� h2=3) may work, but we
think that the best approach for the disk is the one in [11] (that gets simplified by the
particular form of the operator).

One expects the interior of a strictly convex domain to be a worst-case scenario. At the
opposite end, we now have a much better understanding outside a strictly convex obstacle,
where the full set of Strichartz estimates are known to hold ([10]) and where dispersion
was recently addressed in [12], where diffraction effects related to the Arago–Poisson spot
turn out to be significant for d � 4.

We conclude this introduction with a brief overview of the content in the next sec-
tions. In Section 2 we express the (spectrally localized) Green function for (6) first as
a spectral sum over the spectrum of (4), then, using the Poisson summation formula, as
a sum of oscillatory integrals indexed by the number of reflections on the boundary. In
Section 3, both these formulas are used to obtain the dispersive bounds of Theorem 1,
depending on the size of the distance to the boundary a > 0 of the initial data: firstly,
when a > max.h2=3��; .ht/1=2/, the sum of oscillating integrals (16) is particularly use-
ful as it allows us to apply the stationary phase arguments in order to reduce the Green
function to a simpler form (as in Corollary 1). As only the waves that leave at t D 0 from
x D a within a small cone of directions of aperture

p
a may provide 1

4
loss, we separate

this “tangential” case, dealt with in Section 3.1.1, from the “transverse” case dealt with
in Section 3.1.2. In particular, in the tangential case, we state three main results (Propo-
sitions 4, 5, 6) which provide refined estimates for each integral in the sum defining the
Green function in this regime, depending on the number of reflections and the position of
the spatial variables: these results allow us to achieve the proof of Theorem 1 for “not too
small” a. The optimality is shown in Section 3.1.3. The case of small values of a is dealt
with in Section 3.2 when we use the spectral formula (11) and provide, as before, sharp
dispersive bounds for each term and sum all the contributions.
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In Section 4 we prove Propositions 4, 5, 6 in full detail. In Section 5 we deal with
nonlinear applications and prove first Theorem 3 (in Section 5.1), then Theorem 4 (in
Section 5.2).

In the remainder of the paper, A . B means that there exists a constant C such that
A � CB; this constant may change from line to line and is independent of all parameters
except the dimension d . It will be explicit when (very occasionally) needed. Similarly,
A � B means both A . B and B . A.

2. The semiclassical Schrödinger propagator: spectral analysis and
parametrix construction

We recall some notation, where Ai denotes the standard Airy function (see e.g. [29] for
well-known properties of the Airy function), Ai.x/ D 1

2�

R
R e

i. �
3

3 C �x/ d� . Define

A˙.z/ D e
�i�=3 Ai.e�i�=3z/ D �e˙2i�=3 Ai.e˙2i�=3.�z// for z 2 C:

Then one checks that Ai.�z/ D AC.z/ C A�.z/ (see [29, equation (2.3)]). The next
lemma is proved in [14, Lemma 1] and requires the classical notion of asymptotic expan-
sion: a function f .w/ admits an asymptotic expansion for w ! 0 when there exists a
(unique) sequence .cn/n such that, for any n, limw!0 w

�.nC1/.f .w/ �
Pn
0 cnw

n/ D

cnC1. We denote f .w/ �w
P
n cnw

n.

Lemma 1 (See [14, Lemma 1]). For ! 2 R, define L.!/ D � C i log A�.!/
AC.!/

. Then L is
real analytic and strictly increasing. We also have

L.0/ D
�

3
; lim

!!�1
L.!/ D 0; L.!/ D

4

3
!
3
2 C

�

2
� B.!

3
2 / for ! � 1;

with B.u/ �1=u
P1
kD1 bku

�k , bk 2 R, b1 > 0. Finally, L.!k/ D 2�k and L0.!k/ D
2�

R1
0

Ai2.x � !k/ dx, where here and hereafter, ¹�!kºk�1 denotes the zeros of the
Airy function in decreasing order.

2.1. Spectral analysis of the Friedlander model

Our domain is �d D ¹.x; y/ 2 Rd j x > 0; y 2 Rd�1º and the Laplacian �F given by
(4). As ��F has constant coefficients in y, taking the Fourier transform in the y variable,
it transforms into �@2x C j� j

2 C xq.�/. For � ¤ 0, this operator is a positive self-adjoint
operator on L2.RC/, with compact resolvent.

Lemma 2 (See [14, Lemma 2]). There exist eigenfunctions ¹ek.x; �/ºk�0 of �@2x C
j� j2 C xq.�/ with corresponding eigenvalues �k.�/ D j� j2 C !kq.�/2=3, that form a
Hilbert basis for L2.RC/. These eigenfunctions are explicit in terms of Airy functions:

ek.x; �/ D

p
2�q.�/1=3p
L0.!k/

Ai.xq.�/1=3 � !k/;

and L0.!k/ (with L from Lemma 1) is such that kek.�; �/kL2.RC/ D 1.
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For x0 > 0, ıxDx0 on RC may be decomposed as

ıxDx0 D
X
k�1

ek.x; �/ek.x0; �/:

At fixed t0, consider u.t0; x; y/D  .hDy/ıxDx0;yDy0 , where h 2 .0; 1/ is a small param-
eter and  2 C10 .Œ

1
2
; 3
2
�/. Then the (localized in � ) Green function for (6) on �d reads

Gh..t; x; y/; .t0; x0; y0//

D

X
k�1

Z
Rd�1

eih.t�t0/�k.�/eihy�y0;�i .hj� j/ek.x; �/ek.x0; �/ d�: (7)

In addition to the cutoff  .hj� j/, we may add a spectral cutoff  1.h
p
�k.�// under the

� integral without changing its contribution modulo O.h1/ terms, where  1 is also such
that  1 2 C10 .Œ

1
2
; 3
2
�/. Indeed, as Dy commutes with �F and using Lemma 2,

��F
�
 .hj� j/eihy;�iek.x; �/

�
D �k.�/ .hj� j/e

ihy;�iek.x; �/:

On the flow, this is nothing but  1.hDt / and this smoothes out the Green function that
solves (6). As remarked in [13] (see also [15]) for the wave propagator, after adding
 1.h

p
�k.�//, the significant part of the sum over k in (7) becomes a finite sum over

k. 1
h

. Indeed, with � DDy , � D h
i
@t D hDt , �D h

i
@x D hDx , �D h

i
ry D hDy D h� , the

characteristic set of ih@t � h2�F is � D �2C j�j2C xq.�/. Using � D hDt D h�k.Dy/,
one obtains (at the symbolic level) that on the micro-support of any gallery mode associ-
ated to !k we have

h2=3!kq
2=3.�/ D j�j2 C xq.�/;

� D Dy D �=h:
(8)

We may assume that, on the support of  .�/ 1.h
p
�k.�=h//, one has h2=3!k � "0 with

a small "0: this is compatible with (8) as this amounts to j�j2 . "0. Taking into account
the asymptotic expansion !k � k2=3, the condition h2=3!k � "0 yields k . "0=h, which
is the desired finite sum.

As in [13], the remaining part of the Green function (corresponding to larger values
of k) will essentially be transverse: at most one reflection for t 2 Œ0; T0� with T0 small
(depending on the above choice of "0). Hence, this regime can be dealt with as in [4] to
get the free space decay and we will ignore it in the upcoming analysis.

Reducing the sum to k � "0=h is equivalent to adding a spectral cutoff �"0.x C
h2D2

x=q.�// in the Green function, where �"0 D �.�="0/ for some smooth cut-off func-
tion � 2 C10 .Œ�1; 1�/. Using that the eigenfunctions of the operator �@2x C xq.�/ are also
ek.x;�/ but associated to the eigenvalues �k.�/� j� j2D!kq2=3.�/, we can localize with
respect to x C h2D2

x=q.�/. Notice that�
x C

h2D2
x

q.�/

�
ek.x; �/ D

�!kq2=3.�/
q.�/

�
ek.x; �/;
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and this new localization operator is exactly associated by symbolic calculus to the cutoff
�"0.!k=q.�/

1=3/. We therefore set, for .t0; x0; y0/ D .0; a; 0/,

G
"0
h
.t; x; y; 0; a; 0/ WD

X
k�1

Z
Rd�1

eiht�k.�/eihy;�i .hj� j/ 1.h
p
�k.�//

� �"0.!k=q.�/
1=3/ek.x; �/ek.a; �/ d�: (9)

Set a\ D max .a; h2=3/: in the following we introduce a new, small parameter 
 satisfying
a\ . 
 � "0 and then split the (tangential part of the) Green function G"0

h
into a dyadic

sum Gh;
 corresponding to a dyadic partition of unity supported for !k=q.�/1=3 � 
 �
2ja\ � "0. Let 2.�=
/ WD �
 .�/� �
=2.�/, set �l .a\/D ¹
 D 2ja\; l � j < log2."0=a

\/º

(we will use l D 0; 1; 3) and decompose �"0 as

�"0.�/ D �a\.�/C
X


2�1.a\/

 2.�=
/; (10)

which allows us to write Gh;"0 D
P
a\�
<1 Gh;
 , where the sum is understood as over

dyadic 
 ’s, and (rescaling the � variable for later convenience) Gh;
 is written

Gh;
 .t; x; a; y/

D

X
k�1

1

hd�1

Z
Rd�1

eiht�k.�=h/e
i
h
hy;�i .j�j/ 1.h

p
�k.�=h//

�  2.h
2=3!k=.q.�/

1=3
//ek.x; �=h/ek.a; �=h/ d�: (11)

Notice that, when 
 D a\, according to (10), we should, in (11), write �a\ instead of
 2.�=a

\/. However, for values h2=3!k . 1
2
a\, the corresponding Airy factors are expo-

nentially decreasing and provide an irrelevant contribution: writing �a\ or  2.�=a\/ yields
the same contribution inGh;a\ moduloO.h1/. In fact, when a<h2=3 is sufficiently small,
there are no !k satisfying h2=3!k=q1=3.�/ < h2=3=2 as !k � !1 > 2:33 and j�j 2 Œ1

2
; 3
2
�;

on the other hand, when a & h2=3 and h2=3!k=q1=3.�/ � a=2 then the Airy factor of
ek.a; �=h/ is exponentially decreasing (see [29, Section 2.1.4.3] for details). In order to
streamline notation, we use the same formula (11) for each Gh;
 . From an operator point
of view, with Gh.�/ the semiclassical Schrödinger propagator, we are considering (with
iD D @) Gh;
 D  .hDy/ 1.h

p
��F / 2..x C h

2D2
x=q.hDy//=
/Gh.

Remark 1. For a . h2=3, [9] proved kGh;h2=3.t; �; a; �/kL1 . 1

hd
.h
t
/.d�1/=2h1=3. The

proof in [9] has q.�/ D j�j2 but easily extends to a positive definite quadratic form q. The
subsequent 1

6
loss in homogeneous Strichartz estimates is optimal for a. h2=3: in [9, The-

orem 1.8] we suitably chose Gaussian data whose associated semiclassical Schrödinger
flow saturates the above bound (the so-called gallery modes).

We briefly recall a variant of the Poisson summation formula that will be crucial to
analyze the spectral sum defining Gh;
 (see [14, Lemma 3] for the proof).
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Lemma 3. In D 0.R!/, one has
P
N2Z e

�iNL.!/ D 2�
P
k2N�

1
L0.!k/

ı.! � !k/, e.g. for
all � 2 C10 , X

N2Z

Z
e�iNL.!/�.!/ d! D 2�

X
k2N�

1

L0.!k/
�.!k/: (12)

Using (12) on Gh;
 , we transform the sum over k into a sum over N 2 Z, as

yGh;
 .t; x; a; �=h/

D
1

2�

X
N2Z

Z
R
e�iNL.!/.j�j=h/2=3q1=3.�=j�j/e

i
h
t j�j2.1Ch2=3!q2=3.�=j�j/=j�j2=3/

�  1
�
j�j

q
1C h2=3!q2=3.�=j�j/=j�j2=3

�
 2
�
h2=3!=.q1=3.�/
/

�
� Ai.xq1=3.�/=h2=3 � !/Ai.aq1=3.�/=h2=3 � !/ d!; (13)

where yGh;
 is the Fourier transform in y. For sup .a; h2=3/ � 
 < 1, we let �
 D

3=2

h
;

when h2=3 . a and 
 � a we write � WD a3=2

h
. The Airy factors are (after rescaling)

Ai.xq1=3.�/=h2=3 � !/ D
q1=6.�/�

1=3



2�

Z
e
iq1=2.�/�


�
�3

3 C�
�
x

 �!=.q

1=3.�/�
2=3

 /
��
d�:

Rescaling ! D q1=3.�/�2=3
 ˛ D q1=3.�/
˛=h2=3 in (13) yields

yGh;
 .t; x; a; �=h/ D
�
4=3



.2�/3h2=3

X
N2Z

Z
R

Z
R2

e
i
h
ẑ
N;a;
 .�;˛;s;�;t;x/q.�/

�  1
�
j�j
p
1C 
˛q.�=j�j/

�
�  2.˛/ ds d� d˛; (14)

ẑ
N;a;
 .�; ˛; s; �; t; x/ D t j�j

2.1C 
˛q.�=j�j// �NhL.q1=3.�/�2=3
 ˛/

C 
3=2q1=2.�/
��3
3
C �

�x


� ˛

�
C
s3

3
C s

�a


� ˛

��
: (15)

Here,

NhL.q1=3.�/�2=3
 ˛/ D
4

3
Nq1=2.�/.
˛/3=2 �NhB.q1=2.�/�
˛

3=2/CNh�=2;

and we recall that, asymptotically,

B.q1=2.�/�
˛
3=2/ �1=.��˛3=2/

X
k�1

bk

.q1=2.�/�
˛3=2/k
;

where on the support of  2.˛/ we have ˛ � 1. At this point, as j�j 2 Œ1
2
; 3
2
�, we may

drop the  1 localization in (14) by support considerations (slightly changing any cut-off
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support if necessary). Therefore,

Gh;
 .t; x; a; y/ D
1

.2�/3

2

hdC1

X
N2Z

Z
Rd

Z
R2

e
i
h
.hy;�iC ẑN;a;
 /q.�/ .j�j/

�  2.˛/ ds d� d˛ d�: (16)

Both formulas (16) and (11) define exactly the same object and both will be necessary
to prove the dispersive estimates. The sum over the eigenmodes ek will be particularly
useful for small values of a . .ht/1=2, while for large values of the initial distance to the
boundary the sum over N will take over. While both formulas coincide, they are in some
sense the dual of each other: for small a, there are fewer terms in the sum over k in (11),
while for a > .ht/1=2 there are fewer terms in the sum over the reflections N .

As noticed in [13], the symmetry of the Green function (or its suitable spectral trun-
cations) with respect to x and a allows us to restrict the computations of the L1 norm to
the region 0 � x � a. In other words, instead of evaluating kG"0

h
kL1.0�x;y/.t; �/ it will be

enough to bound kG"0
h
kL1.0�x�a;y/.t; �/.

Remark 2. In order to generalize Theorem 1 to a convex domain as outlined in the intro-
duction, our construction of “quasi-modes” from [11] will turn out to be crucial. In the
general situation, the regime a � h turns out to have its own difficulties: even deciding
how the initial data should be chosen in order for the Dirichlet condition to be satisfied on
the boundary becomes a nontrivial issue. In [11], we bypass our lack of understanding of
the eigenfunctions for the Laplace operator and use spectral theory for the model Laplace
operator (4) in order to construct suitable initial data for very small a. Thus, constructing
a parametrix in the model case (in terms of both eigenmodes and the sum over reflections)
and obtaining its best possible decay properties is important in order to further generalize
Theorem 1.

3. Dispersive estimates for the semiclassical Schrödinger flow

We now prove dispersive bounds forG"0
h
.t;x;a;y/ on�d for fixed jt j 2 Œh;T0�, with small

T0 > 0. We will separately estimate kGh;
 .t; �/kL1.�d / for every 
 such that a\ . 
 � "0.
Henceforth we assume t > 0. We sort out several situations, with a fixed (small) � > 0.
First, max .h2=3��; .ht/1=2/� a � "0: in this case, for all 
 such that a\ . 
 � "0 we have
max .h2=3��; .ht/1=2/ � a . 
 � "0. This is our main case, where only formula (16) is
useful; integrals with respect to � , s have up to third-order degenerate critical points and
we need to perform a very detailed analysis of these integrals. In particular, the “tangen-
tial” case 
 � a provides the worst decay estimates. When 8a � 
 , integrals in (16) have
degenerate critical points of order at most 2. We call this regime “transverse”: summing upP
8a�
 kGh;
 .t; �/kL1 still provides a better contribution than kGh;a.t; �/kL1 . Second, for

a . max .h2=3��; .ht/1=2/, we further subdivide: either max .h2=3��; .ht/1=2/ � 
 � "0,
which is similar to the previous “transverse” regime, and estimates will follow using (16);
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or a\ . 
 . max .h2=3��; .ht/1=2/, and we will use (11) to evaluate the L1 norm of Gh;

and its sum over relevant 
 ’s.

3.1. Case max .h2=3��; .ht/1=2/ � a � "0, with (small) � > 0

Here we use (16). As a\ D a, we consider 
 such that a . 
 � "0. Let �
 WD 
3=2=h,
then �
 � h�3�=2. It is worth mentioning that the approach in this section applies for all
h2=3�� . a � "0, providing sharp estimates for each Gh;
 for all h2=3�� . a . 
 � "0;
however, when summing over a . 
 � .ht/1=2, bounds for G"0

h
get worse than those

from Theorem 1. Hence we restrict to values max .h2=3��; .ht/1=2/� a � "0, while lesser
values will be dealt with differently later.

First, we prove that the sum defining Gh;
 in (16) over N is essentially finite and we
estimate the number of terms in the relevant sum.

Proposition 1. For a fixed t 2 .h; T0� the sum (16) over N is essentially finite and 0 �
N . tp



. In other words, if M is a sufficiently large constant (depending only on q), then

1

.2�/3

2

hdC1

X
N2Z;N�Mtp




Z
R�Rd�1

Z
R2

e
i
h
.hy;�iC ẑN;a;
 /q.�/ .j�j/ 2.˛/ ds d� d˛ d�

D O.h1/:

Proof. The proof follows easily using nonstationary phase arguments for N �M tp



for
some M sufficiently large. Critical points with respect to � , s are such that

�2 D ˛ � x=
; s2 D ˛ � a=
; (17)

and as x � 0, ẑN;a;
 may be stationary in � , s only if j.�; s/j �
p
˛. As 2.˛/ is supported

near 1, it follows that we must also have x � 2
 , otherwise ẑN;a;
 is nonstationary with
respect to � . If j.�;s/j � .1CN �/

p
˛ for some � > 0we can perform repeated integrations

by parts in � , s to obtain O...1 C N �/�
 /
�n/ for all n � 1. Let � be a smooth cutoff

supported in Œ�1; 1� and write 1 D �.�=.N �
p
˛//C .1 � �/.�=.N �

p
˛//. Then

 .j�j/
X
N2Z

Z
R

Z
R2

e
i
h
ẑ
N;a;
 2.˛/�.s=.N

�
p
˛//.1 � �/.�=.N �

p
˛// ds d� d˛

. ��1=3
 sup
˛;j�j2Œ 12 ;

3
2 �

ˇ̌
Ai
�
.a � 
˛/q1=3.�/=h2=3

�ˇ̌ X
N2Z

..1CN �/�
 /
�n/

D O.h1/;

where in the last line we used �
 � h�3�=2, � > 0. In the same way, we can sum on the
support of .1 � �/.s=.N �

p
˛// and obtain an O.h1/ contribution. Therefore, we may

add cutoffs �.�=.N �
p
˛// and �.s=.N �

p
˛// in Gh;
 without changing its contribution

modulo O.h1/. Using (15) again, we have, at the critical point of ẑN;a;
 with respect
to ˛,

t


1=2
q.�/ � q1=2.�/.s C �/ D 2Nq1=2.�/

p
˛
�
1 �

3

4
B 0.��˛3=2/

�
; (18)
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and as j.�; s/j=
p
˛ . 1 C N � on the support of �.�=.N �

p
˛//�.s=.N �

p
˛//, ẑN;a;


may be stationary with respect to ˛ only when tp


� 2N . As B 0.��˛3=2/ D O.��3
 / D

O.h9�=2/, its contribution is irrelevant. From (17) and (18), if

t


1=2
q1=2.�/
p
˛
… Œ2.N � 1/; 2.N C 1/�; (19)

then the phase is nonstationary in ˛. Recall that q is positive definite and let

m0 WD inf
‚2Sd�2

q1=2.‚/; M0 D sup
‚2Sd�2

q1=2.‚/: (20)

As j�j;˛ 2 Œ1
2
; 3
2
� on the support of the symbol and q1=2.�/Dj�jq1=2.�=j�j/, if 2.N � 1/>

tp


�M0

3=2
p
1=2

or if 2.N C 1/ < tp


�m0

1=2
p
3=2

, then the phase is nonstationary in ˛ as
its first-order derivative behaves like N . Repeated integrations by parts allow us to sum in
N as above, and conclude.

Remark 3. We can in fact add an even better localization with respect to � and s: on
the support of .1 � �/.�=.2

p
˛// and .1 � �/.s=.2

p
˛// the phase is nonstationary in

� or s, and integrations by parts yield an O.��1
 / contribution. According to Proposi-
tion 1, the sum over N has finitely many terms, and therefore summing yields an O.h1/
contribution.

Lemma 4. For 
 & a � .ht/1=2, the factor eiNB.q
1=2.�/�
˛

3=2/ can be moved into the
symbol.

Proof. As ˛; q.�/ 2 Œ1
2
; 3
2
� on the support of  2,  and N � tp



, we obtain, using

Lemma 1,

NB.q1=2.�/�
˛
3=2/ � N

X
k�1

bk

.q1=2.�/�
˛3=2/k
�

Nb1

q1=2.�/�

�
ht


2
:

As here we consider only values .ht/1=2 . 
 , this term remains bounded (so it does not
oscillate).

We set ˆN;a;
 D hy; �i C ẑN;a;
 � NhB.q1=2.�/�
˛3=2/: from Lemma 4, in this
regime, ˆN;a;
 are the phase functions in the sum of Gh;
 defined by (16). We have

ˆN;a;
 .�; ˛; s; �; t; x; y/

D hy; �i C t j�j2.1C 
˛q.�=j�j//

C 
3=2q1=2.�/
��3
3
C �

�x


� ˛

�
C
s3

3
C s

�a


� ˛

�
�
4

3
N˛3=2

�
:

In the following we study, at fixed jN j. 1p



, the integral appearing in the sum (16), which
we denote by VN;h;
 .t; x; y/. Notice that when N D 0 we deal with the free semiclassical
Schrödinger flow.
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Proposition 2. For all a 2 .0; a0�, h 2 .0; 1/ and t 2 .h; T0�,ˇ̌̌̌ X

2�0.a/

V0;h;
 .t; x; y/

ˇ̌̌̌
.

1

hd

�h
t

�d=2
:

Proof. In this case (N D 0) we use (9), (10) and (16) to write the sum over 
 asX

2�0.a/

V0;h;
 .t; x; y/

D
1

.2�/3
1

hdC1

Z
 .j�j/q.�/�"0.˛/

� e
i
h
.hy;�iCt j�j2.1C˛q.�=j�j//Cq1=2.�/. �

3

3 C�.x�˛/C
s3

3 Cs.a�˛/// d� ds d˛ d�:

Set �1 D sC�
2

and �2 D ��s
2

. Then � D �1 C �2 and s D �1 � �2. The phase in the above
integral becomes

hy; �i C t j�j2.1C ˛q.�=j�j//C q1=2.�/
�2
3
�31 C 2�1�

2
2 C �1.x C a � 2˛/C �2.x � a/

�
D ˆ0;a;1:

As @2˛ˆ0;a;1 D 0 and @2
�1;˛

ˆ0;a;1 D �2q
1=2.�/, the usual stationary phase applies in both

�1, ˛ and yields a factor h. The critical points are �1;c D
tq1=2.�/

2
, ˛c D �21;c C �

2
2 C

xCa
2

. The critical point with respect to �2 satisfies @�2ˆ0;a;1j�1;c ;˛c D q1=2.�/.4�1;c�2
C x � a/ and the second derivative equals @2

�2
ˆ0;a;1j�1;c ;˛c D q

1=2.�/ � 4�1;c D 2tq.�/.
For t=h� 1, the stationary phase applies and yields a factor .h=t/1=2. We are left with
the integration with respect to �. Using ˛ � "0 on the support of �"0.˛/ and x � 0, it
follows that �21;c C �

2
2;c � "0. Writing t j�j2q.�=j�j/ D tq.�/ D 2q1=2.�/�1;c , the critical

value equals

t j�j2.1C ˛cq.�=j�j// � q
1=2.�/

�4
3
�31;c C 4�1;c�

2
2;c

�
D t j�j2 C 2q1=2.�/�1;c

�
˛c �

2

3
�21;c � 2�

2
2;c

�
;

and a derivative with respect to �j equals yj C 2t�j C @�j .q
1=2.�//�1;c.

4
3
�21;c C x C a/.

We conclude by the stationary phase as this yields r2�ˆ0;a;1j�1;c ;�2;c ;˛c D 2tId�1.1 C
O."0//. The proof above applies also separately yielding dispersive bounds without loss
for each V0;h;
 .

As we set t > 0, from now on we only consider N � 1.

Proposition 3. Let N � 1. The phase function ˆN;a;
 can have at most one critical point
.˛c ; �c/ on the support Œ1

2
; 3
2
� of the symbol. At critical points in .˛; �/, the determinant of

the Hessian matrix is comparable to td�1 � 
3=2N . The stationary phase applies in both
˛ 2 Œ1

2
; 3
2
� and � 2 Rd�1 and yields a decay factor .h=t/.d�1/=2 � .�
N/�1=2.
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Proof. The derivatives of the phase ˆN;a;
 with respect to ˛, � are

@˛ˆN;a;
 D 

3=2q1=2.�/

� t
p


q1=2.�/ � .� C s/ � 2N

p
˛
�
;

r�ˆN;a;
 D y C 2�t C

3=2rq.�/

2q1=2.�/

��3
3
C �

�x


� ˛

�
C
s3

3
C s

�a


� ˛

�
�
4

3
N˛3=2 C

2˛t
p


q1=2.�/

�
:

At @˛ˆN;a;
 D 0 and r�ˆN;a;
 D 0, the critical points are such that

p
˛ D

tq1=2.�/

2N
p


�
s C �

2N
(21)

and also (replacing 2N
p
˛ by tp



q1=2.�/ � .� C s/ in the expression of r�ˆN;a;
 )

2t
�
�C

1

2

˛rq.�/

�
D�y � 
3=2

rq.�/

2q1=2.�/

h�3
3
C �

x



C
s3

s
C s

a



�
.s C �/˛

3

i
: (22)

From (19) (and the support condition on �, ˛), the critical points �c , ˛c 2 Œ12 ;
3
2
� do exist

only if

.1 � 1=N/

p
1=2

3M0=2
�

t

2N
p


� .1C 1=N/

p
3=2

m0=2
: (23)

For N � 2, fix M sufficiently large that Œ.1 � 1
2
/
p
1=2

3M0=2
; .1C 1

2
/
p
3=2

m0=2
� � Œ 1

M
;M �. Then

(21) may have a solution on the support of  2 only when t
2N
p


2 Œ 1

M
;M �. ForN D 1, we

obtain the upper bound t
2
p


�

4
m0

p
3=2 but also, using (17), the following lower bounds:

either s C � � �3
2

p
˛, in which case t

2
p


�

p
˛

4j�jM0
, or .s C �/ � �3

2

p
˛ in which case

both s and � must take nonpositive values and in this case,

t

2
p


q1=2.�/ �

p
˛ C

s C �

2
�

a=


2.
p
˛ � s/

C
x=


2.
p
˛ � �/

�
a=


4
p
˛
:

Hence, for tp


�

a=


3
p
3=2M0

the flow does not reach the boundary (no reflections).
Let N � 1 and t=

p

 � a=


3
p
3=2M0

(as otherwise the phase is nonstationary). As ˛ 2
Œ1
2
; 3
2
� and 
 � "0, (22) may have a critical point �c only when jyj=2t 2 Œ1

2
CO."0/;

3
2
C

O."0/�. Using @�j q.�/ D 2qj;j�j C
P
k¤j qj;k�k , qj;k D qk;j the second-order deriva-

tives become

@2˛;˛ˆN;a;
 D �

3=2q1=2.�/

N
p
˛
;

@�j @˛ˆN;a;
 D
@�j q.�/

2q.�/
@˛ˆN;a;
 C 


3=2 t

2
p


@�j q.�/;
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@2�j ;�jˆN;a;
 D 2t
�
1C 
˛

.@�j q.�//
2

4q.�/

�
C


3=2

q1=2.�/

�
qj;j �

.@�j q.�//
2

4q.�/

�
�

��3
3
C�

�x


�˛

�
C
s3

3
C s

�a


�˛

�
�
4

3
N˛3=2C2˛

t
p


q1=2.�/

�
;

@2�j ;�kˆN;a;
 D 2t
˛
@�j q.�/

2q1=2.�/

@�kq.�/

2q1=2.�/
C


3=2

q1=2.�/

�
qj;k �

@�j q.�/@�kq.�/

4q.�/

�
�

��3
3
C �

�x


� ˛

�
C
s3

3
C s

�a


� ˛

�
�
4

3
N˛3=2 C 2˛

t
p


q1=2.�/

�
:

At the stationary points, r2�;�ˆN;a;
 � 2t.1 C O.
//Id�1 C O.

3=2/, where Id�1 de-

notes the identity matrix in dimension d � 1. As "0 < 1 is small, we deduce that
r2�;�ˆN;a;
 � 2tId�1. Hence, the stationary phase with respect to � yields a factor of
.h=t/

d�1
2 , while the stationary phase in ˛ yields a factor .�
N/�1=2 for N � 1.

Lemma 5. Let N � 1 and a . 
 � "0. The critical point �c of ˆN;a;
 is a function of
s C � , .� � s/2, .� � s/ .x�a/



, y
2t

and t
2N
p



. There exist smooth, uniformly bounded
(vector-valued) functions ‚; z‚ depending on the small parameter 
 , such that

�0c WD �c j�DsD0 D �
y

2t
C 
‚

� y
2t
;

t

2N
p


; 

�
;

‚
� y
2t
;

t

2N
p


; 

�
D �

1

2

� t

2N
p



�2
.qrq/

�
�
y

2t

�
C 
 z‚

� y
2t
;

t

2N
p


; 

�
:

Moreover,‚1 WD t


3=2
@��c and‚2 WD t


3=2
@s�c are smooth, uniformly bounded functions.

Proof. We start with the second statement. First, let N � 2 and define M as

M WD 3max
°p3=2
m0

;
M0p
1=2

±
; with m0, M0 introduced in (20): (24)

Then M is large enough that Œ.1 � 1
2
/
p
1=2

3M0=2
; .1C 1

2
/
p
3=2

m0=2
� � Œ 1

M
;M � and for t

2N
p


2

Œ 1
M
;M � and jyj

2t
2 Œ1

4
; 2�, the critical points ˛c and �c of ˆN;a;
 solve (21) and (22). Let

�0c WD �c j�DsD0 denote the value of �c at � D s D 0, then, using (22), �0c solves the
equation

�0c C
1

2


� t

2N
p



�2
q.�0c/rq.�

0
c/ D �

y

2t
:

For t
2N
p


2 Œ 1

M
;M �, writing �0c D �

y
2t
C 
‚. y

2t
; t
2N
p


; 
/ yields, for‚. y

2t
; t
2N
p


; 
/,

‚C
1

2

� t

2N
p



�2
.qrq/

�
�
y

2t
C 
‚

�
D 0; (25)

which further reads, with ‚ D .‚.1/; : : : ; ‚.d�1// and for all 1 � l � d � 1, as

‚.l/ C
� t

2N
p



�2 X
j;k;p

qj;kqp;l

�
�
yj

2t
C 
‚.j /

��
�
yk

2tk
C 
‚.k/

��
�
yp

2t
C 
‚.p/

�
D 0:
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As 
 � "0 � 1, this equation has a unique solution, which is a smooth function of
. y
2t
; t
2N
p


; 
/ and ‚.l/ D . t

2N
p


/2.
P
j;k;p qj;kqp;l .

yj
2t
/.
yk
2t
/.
yp
2t
//C 
 z‚.l/, where z‚ D

.z‚.1/; : : : ; z‚.d�1// is a smooth function of . y
2t
; t
2N
p


; 
/. For N D 1, t may take (very)

small values but does not vanish where ˆND1;a;
 may be stationary and therefore (25)
still holds and jyj

2t
2 Œ1

4
; 2�, hence we obtain ‚ in the same way.

We now prove that for all N � 1, �c is a function of s C � , .� � s/2, .� � s/ .x�a/



,
y
2t

and t
2N
p



. This will be useful later on, especially in the proof of the upcoming Propo-
sition 6. Inserting (21) in (22) yields

�c C



2

� t

2N
p


q1=2.�c/ �

� C s

2N

�2
rq.�c/

D �
y

2t
�

3=2

2t

rq.�c/

2q1=2.�c/

�

h�3
3
C �

x



C
s3

3
C s

a



�
.s C �/

3

� t

2N
p


q1=2.�c/ �

� C s

2N

�2i
: (26)

It follows that �c is a function of .s C �/ and �3

3
C � x



C

s3

3
C s a



and writing the last

term in the form .sC�/3

3
� 4.sC �/..sC �/2 � .s � �/2/C .sC �/ .xCa/

2

C .� � s/ .x�a/

2


allows us to conclude. Now taking the derivative with respect to � in (26) yields

@��c

�
Id�1 CO.
/CO

�
 32
t

��
D

rq.�c/

2N
C


3
2rq.�c/

4tq
1
2 .�c/

h
�2 C

x



C
˛
1
2
c

3

�s C �
N
� ˛

1
2
c

�i
; (27)

where the second and third terms in brackets in the first line of (27) are smooth, bounded
functions of �c , t

2N
p



, .s C �/ and �3

3
C � x



C

s3

3
C s a



with coefficients 
 and 
3=2=t ,

respectively. First, let N � 2. Then, using t
2N
p


2 Œ 1

M
;M �, we find 
3=2=t � 
=N and

therefore @��c D O.
3=2=t/. In the same way we obtain @s�c D O.
3=2=t/. Now let
N D 1. Then 
3=2=t & 
 whenever the phase may be stationary, and therefore we still
find @��c D O.
3=2=t/ and @s�c D O.
3=2=t/. Therefore, ‚1 WD t


3=2
@��c (and ‚2 WD

t


3=2
@s�c) is a smooth and uniformly bounded vector-valued function depending on

� C s; �2 C
x



;

�3

3
C �

x



C
s3

3
C s

a



;

� t

2N
p


;
y

2t
; 

�

(and, respectively, on � C s; s2 C a



, �
3

3
C � x



C

s3

3
C s a



and . t

2N
p


; y
2t
; 
/). In the

following we write ‚j D ‚j .�; s; t
2N
p


; x


; a


; y
2t
; 
/ for j 2 ¹1; 2º.

Lemma 6. For all N � 1, the critical point ˛c is such that

p
˛c D

t

2N
p


q1=2.�0c/ �

�

2N
.1 � 
E1/ �

s

2N
.1 � 
E2/; (28)
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where Ej are smooth, uniformly bounded functions:

E1 WD

�Z 1

0

‚1

�
o�; os;

t

2N
p


;
x



;
a



;
y

2t
; 

�
do;

Z 1

0

rq

2q1=2
.o�0c C .1 � o/�c/do

�
; (29)

E2 WD

�Z 1

0

‚2

�
o�; os;

t

2N
p


;
x



;
a



;
y

2t
; 

�
do;

Z 1

0

rq

2q1=2
.o�0c C .1 � o/�c/do

�
: (30)

Proof. Rewrite (21) as

p
˛c D

t

2N
p


q1=2.�0c/ �

.� C s/

2N
C

t

2N
p


.q1=2.�c/ � q

1=2.�0c//:

As we have

�c � �
0
c D


3=2

t

�
.�; s/;

Z 1

0

.‚1; ‚2/
�
o�; os;

t

2N
p


;
x



;
a



;
y

2t
; 

�
do

�
and

q1=2.�c/ � q
1=2.�0c/ D .�c � �

0
c/

Z 1

0

�
rq

2q1=2

�
.o�0c C .1 � o/�c/do; (31)

defining Ej as in (29) and (30) yields (28).

Corollary 1. There exist C ¤ 0 (independent of h; a; 
) and Q 2 C10 .Œ
1
4
; 2�/ with Q D 1

on the support of  such that

Gh;
 .t; x; y/ D
C

hd

�h
t

�.d�1/=2
Q 
�
jyj

2t

� X
tp


�N. 1p




VN;h;
 .t; x; y/CO.h
1/;

VN;h;
 .t; x; y/ D

2

h

1p
�
N

Z
e
i
h
�N;a;
 .�;s;t;x;y/~.�; s; t; x; yI h; 
; 1=N / d� ds;

with phase �N;a;
 .�; s; t; x; y/ D ˆN;a;
 .�c ; ˛c ; �; s; t; x; y/ and symbol ~.�I h; 
; 1=N /.

This immediately follows from the stationary phase in ˛ and �, with a leading-order
term for ~ being q.�c/ .j�c j/ 2.˛c/eiNB.q

1=2.�c/�
˛
3=2
c /. Notice that this main contri-

bution to the symbol ~.�I h; 
; 1=N / has a harmless dependence on the parameters h,
a, 
 , 1=N , as ~.�I h; 
; 1=N / reads as an asymptotic expansion with small parameters
.�
N/

�1 D h=.N
3=2/ in ˛ and .h=t/ in �, and all terms in the expansions are smooth
functions of ˛c , �c . Using Remark 3, we may introduce cutoffs �.�=.2

p
˛c// and

�.s=.2
p
˛c//, supported for j.�; s/j � 2

p
˛c in VN;h;
 without changing its contribution

modulo O.h1/ (as for j.s; �/j=
p
˛ � 3=2, the phase functions are nonstationary).

We are left with integrals with respect to the variables s, � to estimate kVN;h;
 .t; �/kL1 .
We first compute higher-order derivatives of the critical value ˆN;a;
 .�c ; ˛c ; s; �; t; y; x/,
with

@� .ˆN;a;
 .�c ; ˛c ; s; �; �// D 

3=2q1=2.�c/

�
�2 C

x



� ˛c

�
; (32)

@s.ˆN;a;
 .�c ; ˛c ; s; �; �// D 

3=2q1=2.�c/

�
s2 C

a



� ˛c

�
: (33)
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Higher-order derivatives of �N;a;
 .�; s; �/ WD ˆN;a;
 .�c ; ˛c ; �; s; �/ involve derivatives of
critical points ˛c , �c with respect to � , s:

@2�;� .ˆN;a;
 .�c ; ˛c ; �// D @��c
rq.�/

2q.�/

ˇ̌̌
�D�c

@��N;a;


C 
3=2q1=2.�c/.2� � 2
p
˛c@�
p
˛c/; (34)

@2s;s.ˆN;a;
 .�c ; ˛c ; �// D @s�c
rq.�/

2q.�/

ˇ̌̌
�D�c

@s�N;a;


C 
3=2q1=2.�c/.2s � 2
p
˛c@s
p
˛c/; (35)

@2�;s.ˆN;a;
 .�c ; ˛c ; �// D @��c
rq.�/

2q.�/

ˇ̌̌
�D�c

@s�N;a;


� 
3=2q1=2.�c/.2
p
˛c@�
p
˛c/; (36)

and therefore, when @s�N;a;
 D @��N;a;
 D 0, we have

@2�;��N;a;
 .�c ; ˛c ; s; �; �/j@s�N;a;
D@��N;a;
D0 D 2

3=2q1=2.�c/.� �

p
˛c@�
p
˛c/;

@2s;s�N;a;
 .�c ; ˛c ; s; �; �/j@s�N;a;
D@��N;a;
D0 D 2

3=2q1=2.�c/.s �

p
˛c@s
p
˛c/;

@2�;s�N;a;
 .�c ; ˛c ; s; �; �/j@s�N;a;
D@��N;a;
D0 D �2

3=2q1=2.�c/

p
˛c@�
p
˛c :

Remark 4. At critical points we have @�
p
˛c D @s

p
˛c : derivatives of ˛c depend on �c

which solves (22); from (22), @��c (and @s�c) depends upon .sC �/, �2C x



and �3=3C
� x


C s3=3C s a



(and upon .s C �/, s2 C a



and �3=3C � x



C s3=3C s a



respectively);

at the critical points � , s we have �2 C x


D s2 C a



D ˛c and we find @��c D @s�c .

3.1.1. “Tangential” waves a 2 Œ1
8

; 8
�. We abuse notation and write Gh;a D Gh;
�a,

� D a3=2=h D �
�a and from Corollary 1, with �N;a.�; s; t; x; y/ D ˆN;a;a.�c ; ˛c ; �;

s; t; x; y/,

Gh;a.t; x; y/ D
C

hd

�h
t

�.d�1/=2
Q 
�
jyj

2t

� X
tp
a
�N. 1p

a

VN;h;a.t; x; y/CO.h
1/; (37)

VN;h;a.t; x; y/ D
a2

h

1
p
�N

Z
e
i
h
�N;a.�;s;t;x;y/~.�; s; t; x; y; h; a; 1=N / d� ds: (38)

As in the proof of Lemma 4, only values N . � are of interest: indeed, as 
 & .ht/1=2,
we then obtain N . t=

p

 . 
3=2=h D �
 . It will turn out that one needs to separate the

casesN <�1=3 and �1=3 .N . Fix t and set T D tp
a

: if �1=3 . T �N , then �N;a behaves
like the phase of a product of two Airy functions and can be bounded using mainly their
respective asymptotic behaviors. WhenN � T . �1=3, �N;a may have degenerate critical
points up to order 3. We claim that for any t such that T WD tp

a
� �1=3 and for anyN � T

there exists a locus of points

YN .T / WD
®
Y 2 Rd�1jKa.

Y
4N
; T
4N
/ D 1

¯
;
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where Ka is the smooth function to be defined in (39) such that, for all y 2
p
aYN .T /,

we have

kGh;a.t; �/kL1.�/ D jGh;a.t; a; a; y/j
ˇ̌
y2
p
aYN .t=

p
a/
�

1

hd

�h
t

�.d�1/=2
a1=4

�h
t

�1=4
for all .ht/1=2 . a . "0. Optimality then follows.

When dealing with the wave flow in [15], a parametrix is also obtained as a sum of
reflected waves: due to the finite speed of propagation, the main contribution at fixed t
is provided by waves located between the .N � 1/th and .N C 1/th reflections, where
N D Œ tp

a
�. For eachN � �1=3, the worst bound occurs at a unique time tN , at x D a and

for a unique yN . In contrast, for the Schrödinger flow, for all t=
p
a� �1=3 and all N �

t=
p
a, we have jVN;h;a.t; a; y/j

ˇ̌
y2
p
aYN .t=

p
a/
� kGh;a.t; �/kL1 , where YN .t=

p
a/ \

YN 0.t=
p
a/ D ; for N ¤ N 0. In other words, the worst bound is reached for any t but

only for a small interval in y.
We denote ˛0c D ˛c jsD�D0, with ˛c obtained in (28). Recall from Lemma 5 (with 


replaced by a) that �0c D �
y
2t
C a‚. y

2t
; t

2N
p
a
; a/ is a smooth function of . y

2t
; t

2N
p
a
; a/,

hence so is
p
˛0c D

t

2N
p
a
q1=2.�0c/. Let T D tp

a
, Y D y

p
a

and define

Ka

� Y
4N

;
T

2N

�
D

r
˛0c

� Y
4N

2N

T
;
T

2N
; a
�
:

Then Ka is smooth in all variables and

Ka

� Y
4N

;
T

2N

�
D
jY j

4N
q1=2

�
�
Y

jY j
C a

T

2N

4N

jY j
‚
� Y
4N

2N

T
;
T

2N
; a
��
: (39)

Proposition 4. For �1=3 . T � N , x
a
� 1, we have

jVN;h;a.t; x; y/j .
h1=3

.N=�1=3/1=2 C �1=6
p
4N jKa.

Y
4N
; T
2N
/ � 1j1=2

:

Proposition 5. For 1 � N < �1=3 and jKa. Y4N ;
T
2N
/ � 1j & 1=N 2, x

a
� 1 we have

jVN;h;a.t; x; y/j .
h1=3

.1C 2N jKa.
Y
4N
; T
2N
/ � 1j1=2/

:

Proposition 6. For 1 � N < �1=3 and jKa. Y4N ;
T
2N
/ � 1j � 1

4N 2 , x
a
� 1 we have

jVN;h;a.t; x; y/j .
h1=3

.N=�1=3/1=4 CN 1=3jKa.
Y
4N
; T
2N
/ � 1j1=6

: (40)

Moreover, at x D a and Ka. Y4N ;
T
2N
/ D 1 we have

jVN;h;a.t; a; y/j �
h1=3

.N=�1=3/1=4
:



O. Ivanovici 980

We postpone the proofs of Propositions 4, 5 and 6 to Section 4 and we complete the
proof of Theorem 1 in the case .ht/1=2 . a � 
 � "0 < 1. Therefore, let

p
a . t . 1 be

fixed and let Nt � 1 be the unique positive integer such that T D tp
a
> Nt �

tp
a
� 1 D

T � 1, hence Nt D ŒT �, where ŒT � denotes the integer part of T . If Nt is bounded then
the number of VN;h;a with N � Nt in the sum (37) is also bounded and we can easily
conclude, adding the (worst) bound from Proposition 6 a finite number of times. Assume
Nt � 2 is large enough. We introduce the following notation: for k 2 Z let INt ;k WD
Œ4.Nt C k/ � 2; 4.Nt C k/ C 2/. As ˛c ; �c 2 Œ12 ;

3
2
� and

p
˛c D

T
2N
q1=2.�c/ �

.�Cs/
2N

with j.�; s/j � 2
p
˛c on the support of � (see Remark 3), we deduce (using (23)) that,

for M defined in (24), we have 2N 2 Œ T
M
;MT � � ŒNt

M
;M.Nt C 1/�. Using (37), we then

bound Gh;a.t; �/ as

kGh;a.t; �/kL1.0�x�a;y/ .
1

hd

�h
t

�.d�1/=2
sup
x�a;y

X
Nt
M �2N�M.NtC1/

jVN;h;a.t; x; y/j:

It will follow from the proof of Proposition 6 that the worst dispersive bounds for VN;h;a
occurs at x D a (when �N;a may have a critical point of order 3). Therefore, we will seek
bounds for Gh;a especially at x D a.

For a fixed y on the support of Q . jyj
2t
/, recall Y D y

p
a

, then 1
4
�
jY j
2T
� 2, and therefore

jY j 2 ŒT
2
; 4T � � ŒNt

2
; 4.Nt C 1/�. Using (39) and the fact that q1=2 is homogeneous of

order 1, it follows that Ka. Y4N ;
T
2N
/ is close to 1 when q1=2.�Y C 2aT‚. Y

2T
; T
2N
; a//

is sufficiently close to 4N . As 2 < Nt � T � 1=
p
a, jY j=T 2 Œ1

2
; 4�, ‚ is bounded and

0 < a � "0 is small, then, for m0 and M0 defined in (20),

q1=2
�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� Œ1

2
Nt .m0 � "0/; 4.Nt C 1/.M0 C "0/�:

Setting k1D�Nt .1� .m0� "0/=8/, k2D .Nt C 1/.M0C "0� 1/C 1, we haveNt C k�
Nt and Œ1

2
Nt .m0 � "0/; 4.Nt C 1/.M0 C "0/� �

S
k1�k�k2

INt ;k . Let

QINt ;k WD .4.Nt C k/ � 1; 4.Nt C k/C 1/ � INt ;k :

As INt ;k are disjoint intervals, write

sup
x;y

� X
Nt
M �2N�M.NtC1/

jVN;h;a.t; x; y/j

�

D sup
k1�k�k2

�
sup

q1=2.�YC2aT‚. Y2T ;
T
2N ;a//

2INt ;k

� X
Nt
M �2N�M.NtC1/

jVN;h;a.t; a; y/j

��

� sup
k1�k�k2

�
sup

q1=2.�YC2aT‚. Y2T ;
T
2N ;a//

2 QINt ;k

� X
Nt
M �2N�M.NtC1/

jVN;h;a.t; a; y/j

��
: (41)

We will use the equality for our upper bound while the last inequality will be relevant for
the optimality, through a corresponding lower bound.
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Proposition 7. There exists C > 0 (independent of h, a) such that, ifNt WD Œ tpa �� �1=3,

kGh;a.t; �/kL1.�d / �
C

hd

�h
t

�.d�1/=2�ht
a

�1=2
:

Proof. If �1=3 � Nt , then Nt C k � �1=3 for all k 2 Œk1; k2� and we estimate the L1

norms of Gh;a.t; �/ using the first equality in (41) and Proposition 4: if ky 2 Œk1; k2� is
such that q1=2.�Y / 2 INt ;ky , then

4NKa

� Y
4N

;
T

2N

�
D q1=2

�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
2

[
jk0�ky j�1

INt ;k0

(using that a is small) and therefore the second line in (41) can be (uniformly) bounded as

sup
k1�k�k2

�
sup

4NKa.
Y
4N ;

T
2N /

2INt ;k

� X
2N2Œ

Nt
M ;M.NtC1/�

jVN;h;a.t; a; y/j

��

� sup
jk0�ky j�1

�
sup

4NKa.
Y
4N ;

T
2N /

2INt ;k0

� X
2N2Œ

Nt
M ;M.NtC1/�

jVN;h;a.t; a; y/j

��

� sup
4NKa.

Y
4N ;

T
2N /

2
S
jk0�ky j�1

INt ;k0

� X
2N2Œ

Nt
M ;M.NtC1/

h1=3

.N=�1=3/1=2

C �1=6j4NKa.
Y
4N
; T
2N
/ � 4N j1=2

�
: (42)

As 4NKa. Y4N ;
T
2N
/ 2

S
jk0�ky j�1

INt ;k0 , we find, for N D Nt C ky C j and jj j � 2, thatˇ̌̌
4NKa

� Y
4N

;
T

2N

�
� 4N

ˇ̌̌
� jj j � 1;

and therefore the last line in (42) can be bounded by

h
1
3

.Nt C ky/
1
2

 
3�

1
6 C

X
jN�.NtCky/jDjj j�2

�
1
6

.1C j=.Nt C ky//
1=2

C �
1
3 j.jj j � 1/=.Nt C ky/j

1
2

!
: (43)

The sums over N D Nt C ky ˙ .j C 1/, j � 1, read

h1=3.Nt C ky/
1=2

�1=6.Nt C ky/

X
NDNtCky˙.jC1/

j�1

1

.1˙ .j C 1/=.Nt C ky//
1=2��1=3

C jj=.Nt C ky/j
1=2

� h1=3
.Nt C ky/

1=2

�1=6

X
˙

Z 1�
1CNt =.2M/
NtCky

0

dx
p
x C ��1=3.1˙ .Nt C ky/�1 ˙ x/1=2

;
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where the last integral is taken on Œ0; 1 � 1CNt=.2M/
NtCky

� as N D Nt C ky ˙ .j C 1/ �
Ny
2M

.
As ky � k1, we have Nt C ky � Nt .1C .m0 � "0/=8/ and using (24),

Nt

2M.Nt C ky/
�

4

M.m0 � "0/
�

1p
3=2

:

Both integrals (with ˙ signs) are bounded by 1
2

, so the contribution coming from the
sum over jN � .Nt C ky/j � 2 in (43) is h1=3.Nt C ky/1=2=�1=6. As Nt C ky � .Nt C
1/.M0 C "0 � 1/, where M0 is fixed, depending only on q, and Nt 2 Œ tpa � 1;

tp
a
�, we

obtain

sup
4NKa.

Y
4N ;

T
2N /

2
S
jk0�ky j�1

INt ;k0

� X
2N2Œ

Nt
M ;M.NtC1/�

jVN;h;a.t; a; y/j

�
�
p
M0h

1=3
� t=pa
�1=3

�1=2
.
�ht
a

�1=2
;

which concludes the proof of Proposition 7.

We need to introduce one more piece of notation. If y is such that

q1=2
�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
2 QINt ;k for some k1 � k � k2;

then k is unique and we denote it k#
y . If 2.Nt C k#

y/ 2 Œ
Nt
M
;M.Nt C 1/�, we have either

�1=3 . Nt C k
#
y , or Nt C k#

y < �
1=3.

Remark 5. When Nt C k#
y < �

1=3, Proposition 6 may apply only for N D Nt C k#
y , as

for k#
y ¤ k 2 Œk1; k2� and n D Nt C k we must haveˇ̌̌

q1=2
�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� 4n

ˇ̌̌
� 4jn � .Nt C k

#
y/j

�

ˇ̌̌
q1=2

�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� 4.Nt C k

#
y/
ˇ̌̌

� 3�
1

n
:

Proposition 8. There exists C > 0 (independent of h, a) such that, ifNt WD Œ tpa �� �1=3,

kGh;a.t; �/kL1.�d / �
C

hd

�h
t

�.d�1/=2�ha
t

�1=4
: (44)

Proof. If y is such that q1=2.�Y / 2 INt ;ky for ky 2 Œk1; k2�, then, using a � "0,ˇ̌̌
q1=2

�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� 4n

ˇ̌̌
� 4jn � .Nt C ky/j

�

ˇ̌̌
q1=2

�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� 4.Nt C ky/

ˇ̌̌
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for all n¤Nt C ky ; the second term on the right-hand side is smaller than 2, while the first
one is at least 4; therefore the assumption of Proposition 6 cannot hold for n ¤ Nt C ky .
For all such n we then use Proposition 5 to obtain

sup
q1=2.�Y /2INt ;ky

� X
2n2Œ

Nt
M ;M.NtC1/�

n¤NtCky

jVn;h;a.t; a; y/j

�

. h1=3
X

2n2Œ
Nt
M ;M.NtC1/�

n¤NtCky

1

1C jn.q1=2.�Y C 2aT‚. Y
2T
; T
2n
; a// � 4n/j1=2

. h1=3
X

nDNtCkyCj

1�jj j.Nt

1

1C .Nt C ky C j /1=2jj j1=2

� h1=3
X
˙

Z 1�
1CNt =.2M/
NtCky

0

dx

x1=2.1˙ x/1=2 C .Nt C ky/�1
; (45)

where the last two integrals are uniform bounds for the sum over N < Nt C ky and N >

Nt C ky , respectively; whenN >Nt C ky , the integral over Œ0;1� is bounded by a uniform
constant; when N < Nt C ky , write x D sin2 � , � 2 Œ0; �

2
/, therefore 1 � x D cos2 � ,

dx D 2 sin � cos � : the corresponding integral is also bounded by at most � .
We are left with N D Nt C ky . If q1=2.�Y C 2aT‚. Y

2T
; T
2N
; a// … QINt ;ky , then we

use Proposition 5 again. If, on the contrary, q1=2.�Y C 2aT‚. Y
2T
; T
2N
; a// 2 QINt ;ky , then

k#
y D ky 2 Œk1; k2� and we may apply Proposition 6 with N D Nt C k#

y provided thatˇ̌̌
q1=2

�
�Y C 2aT‚

� Y
2T
;
T

2N
; a
��
� 4N

ˇ̌̌
.
1

N
:

We then have

sup
q1=2.�Y /
2INt ;ky

jVNtCky ;h;a.t; a; y/j .
h
1
3

.N=�
1
3 /

1
4

C
h
1
3

.1C jN.q
1
2 .2aT‚. Y

2T
; T
2N
; a/ � Y / � 4N/j

1
2 /

.
�ha
t

�1=4
C h1=3:

As for Nt � tp
a
�

p
a

h1=3
D �1=3 we have h1=3 � .ha

t
/1=4, it follows that at fixed t ,

the supremum of the sum over VN;h;a.t; x; y/ is reached for y such that q1=2.�Y C
2aT‚. Y

2T
; T
2N
; a// D 4N with N D Nt C k

#
y and at x D a. As the contribution from

(45) in the sum over n¤ Nt C ky is � h1=3, we obtain an upper bound for Gh;a.t; �/. The
last line of (41) and h1=3� .ha

t
/1=4 provide a similar lower bound for Gh;a and therefore

(44) holds true, concluding the proof of Proposition 8.
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Proposition 9. There exists C > 0 (independent of h, a) such that, if Nt WD Œ tpa � � �
1=3,

kGh;a.t; �/kL1.�d / �
C

hd

�h
t

�.d�1/=2��ha
t

�1=4
C

�ht
a

�1=2
C h1=3

�
; (46)

which yields kGh;a.t; �/kL1.�d / . 1

hd
.h
t
/.d�1/=2h1=3.

Proof. AsNt � �1=3 and k �Nt , we separately consider y such thatNt C ky < �1=3 and
y such that Nt C ky � �1=3; we then proceed as in the previous cases using Propositions
4, 5 and 6. For such Nt , .hat /

1=4 � h1=3 � . th
a
/1=2, and the uniform bound h1=3 for the

three terms summed on the right-hand side of (46) follows.

Gathering Propositions 7, 8 and 9, we obtain, for our tangential contribution, the upper
bound from Theorem 1, using that we are in the restricted range .ht/1=2 . a.

3.1.2. Transverse waves. Let 
 > 8a and recall �
 WD

3=2

h
.

Proposition 10. Let t > h and "0 > 
 > 8a. Then

kGh;
 .t; �/kL1.x�a;y/ .

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1

hd

�h
t

� d�1
2
� th



�1=2
if tp



& �1=3
 ;

1

hd

�h
t

� d�1
2
h1=3 if a



. tp



. �1=3
 ;

1

hd

�h
t

� d
2

if h < t and tp


�

1

3
p
3=2M0

a


:

(47)

Moreover, for h < t < a we have kG"0
h
.t; �/kL1.x�a;y/ . 1

hd
.h
t
/d=2, while for a . t � T0,X


2�3.a/

kGh;
 .t; �/kL1.x�a;y/

.

8̂̂<̂
:̂
1

hd

�h
t

� d�1
2
h1=3 log2

�"0
a

�
if a . t � a

h1=3
(< 


h1=3
);

1

hd

�h
t

� d�1
2
h�ht
a

� 1
2
C h1=3 log2

�"0
a

�i
if t � a

h1=3
:

(48)

Proof. According to Proposition 3, if tp


�

1

3
p
3=2M0

a



then VN;h;
 .t; �/ D O.h1/ for all
a � 
 � "0 and all N � 1, hence Gh;
 .t; �/ D V0;h;
 .t; �/. The last line in (47) follows
using the proof of Proposition 2 applied to V0;h;
 .t; �/. If h < t . a, then tp



�

a



for all
a � 
 � "0, so G"0

h
.t; �/ D

P

 Gh;
 .t; �/ D

P

 V0;h;
 .t; �/ and we use Proposition 2.

Let tp



& a



. Let T D tp



, Y D y
p



and let K
 be given by (39) (with a replaced
by 
 ). Let VN;h;
 be as in Corollary 1. Then Gh;
 .t; x; y/ D

P
N� tp



VN;h;
 .t; x; y/. For

x � a, 8a < 
 and 1 � N � T , we have

jVN;h;
 .t; x; y/j .

2

h
�

1p
N�


�
1

�

: (49)



Schrödinger equation in a strictly convex domain 985

Indeed, as long as x � a, we easily see that, for each N , the phase function of VN;h;

has nondegenerate critical points with respect to both � , s and the estimates (49) follow.
Summing over N & �

1=3

 as in the proof of Proposition 7 yields the first line of (47).

Summing over N . �
1=3

 as in the proof of Proposition 8 yields the second line of (47).

Let a . t . a=h1=3. Then t � 
=h1=3 for all 8a � 
 � "0. Summing for 
j D 2ja
yields the first line in (48), as j � log2.

"0
a
/. Now let a=h1=3 . t � T0. Then for a � 
 .

th1=3, jGh;
 .t; �/j is bounded by the term in the first line of (47), while for th1=3 � 
 � "0,
jGh;
 .t; �/j is bounded by the term in the second line of (47). The sum for 
j D 2ja

over 0 � j � log2.
max."0;th1=3/

a
/ yields the first contribution in the second line of (48) and

the sum over max."0;th1=3/
a

< j � log2.
"0
a
/ yields the second one.

We then obtain the upper bound in Theorem 1 from Propositions 9 and 10, using again
that we are in the regime .ht/

1
2 . a.

3.1.3. Optimality for
p
a � t � a

h1=3
(� 


h^1=3 ). The equivalence bound in Theorem 1
follows easily from the next lemma, considering the reductions we performed earlier.

Lemma 7. For
p
a � t � a

h1=3
(� 


h1=3
) we have

kG
"0
h
.t; �/kL1.�d / �

1

hd

�h
t

�.d�1/=2�ah
t

�1=4
:

Proof. Write, for 1 � tp
a
� �1=3 D

p
a

h1=3
,

kG
"0
h
.t; �/kL1.�d / � kGh;a.t; �/kL1.�d / �

X

2�0.a/

kGh;
j .t; �/kL1.�d /:

From (44) we have kGh;a.t; �/kL1.�d / �
1

hd
.h
t
/.d�1/=2.ah

t
/1=4 and from the first line of

(48) we have X

2�0.a/

kGh;
j .t; �/kL1.�d / �
1

hd

�h
t

�.d�1/=2
h1=3 log2

�"0
a

�
:

We now remark that .ah
t
/1=4 � h1=3 log2.

"0
a
/ for all t such that 1 � tp

a
� �1=3�� D

p
a

h1=3
��� , � > 0: as in the regime we consider here we have a � h2=3�� , then � D a3=2

h
�

h�3�=2, hence ��� � h3�
2=2 and we obtain t � a

h1=3
h3�

2=2, which further yields�ah
t

�1=4
� h1=3�3�

2=8
� h1=3 log2

�1
h

�
& h1=3 log2

�"0
a

�
(again using a � h2=3��). This concludes our proof.

3.2. Case a . max .h2=3��; .ht/1=2/ for (small) � > 0

3.2.1. The sum over 8max .h2=3��; .ht/1=2/ � 
 � "0. This part is easy to deal with,
as it is transverse and we can apply the estimates obtained in the previous section (with
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a replaced by .ht/1=2). Indeed, we have 8a � 
 and as in this regime we can use the
parametrix (16), we obtain



 X
8a.8max.h2=3�� ;.ht/1=2/

�
�"0

Gh;
 .t; �/






L1.�d /

.
1

hd

�h
t

�.d�1/=2 .ht/1=2

max .h2=3��; .ht/1=2/1=2
: (50)

When t � h1=3�2� then max .h2=3��; .ht/1=2/ D .ht/1=2 and the last factor in (50) equals
.ht/1=4. When t � h1=3�2� the last factor in (50) is bounded by .ht/1=2=h.2=3��/=2 �
h1=3��=2.

3.2.2. The sum over a\ . 
 . max .h2=3��; .ht/1=2/. This part will be dealt with
entirely by the spectral sum, using formula (11), and the next lemma.

Lemma 8 (See [13]). There exists C0 such that for L � 1 the following holds true:

sup
b2R

� X
1�k�L

!
�1=2

k
Ai2.b � !k/

�
� C0L

1=3;

sup
b2RC

� X
1�k�L

!
�1=2

k
Ai02.b � !k/

�
� C0L:

(51)

Write, for 
max WD sup .h2=3��; .ht/1=2/, 
min WD sup .a; h2=3/,X

min�
�
max

Gh;
 .t; x; a; y/

D

X
k��



min�
�
max

h1=3

hd

Z
e
i
h
hy;�i .j�j/e

i
h
t.j�j2C!kh

2=3q2=3.�// q
1=3.�/

L0.!k/

�  2.h
2=3!k=.q

1=3.�/
//Ai.xq1=3.�/=h2=3 � !k/

� Ai.aq1=3.�/=h2=3 � !k/ d�CO.h1/; (52)

where we used that  2 and  are supported on Œ1
2
; 3
2
� to deduce k � !3=2

k
� �
q

1=2.�/ �

�
 on the support of  2.h2=3!k=.q1=3.�/
// .j�j/; the term O.h1/ comes from the
(finite) sum over 1� k� �
 and �
� k . 1=h. Notice that if t � h1=3�2� then .ht/1=2 �
h2=3�� , which yields 
max D h2=3�� , hence for such t we have to consider only values
a � h2=3�� . For t � h1=3�2� and 
 � 
max D h

2=3�� , �
 . h�3=2� for small � > 0 and we
cannot perform stationary phase arguments with the parameter �
 ; formula (16) becomes
useless and we have to resort to (11). We consider separately the situations t � h1=3�2� and
t � h1=3�2� , although the arguments in the corresponding proofs are of the same nature
and rely on (11).

3.2.3. Let t � h1=3�2�, in which case .ht/1=2 � h2=3��. We will bring the Airy func-
tions into the symbol and apply the stationary phase in � 2 Rd�1. The sum over k is
taken over 1 � k . .ht/3=4=h and on the support of  2 we have k2=3 � !k � �

2=3

 with


 � 
max WD .ht/
1=2.
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Proposition 11. For t � h1=3�2� , the following dispersive estimate holds:



 X
a\�
�.ht/1=2

Gh;
 .t; �/






L1.�d /

.
1

hd

�h
t

�.d�1/=2
.ht/1=4:

Proof. Let z D y=t and let t
h

be the large parameter in the integrals in the fourth line
of (52) whose phase function is, for each !k � �

2=3

 , of the form hz; �i C j�j2 C

!kh
2=3q2=3.�/. For each !k . 
max=h

2=3 D .ht/1=2=h2=3, the corresponding critical
point �c satisfies z C 2�c C O.!kh2=3/ D 0 and using !kh2=3 � "0, we obtain that the
Hessian behaves like 2Id�1 CO."0/. In order to apply the stationary phase with symbol

q1=3.�/ .j�j/ 2

� !k

q1=3.�/�
2=3



�
Ai
�
q1=3.�/�2=3


x



� !k

�
Ai
�
q1=3.�/�2=3


a



� !k

�
we check that there exists some � > 0 such that for all j � 1 and for all ˛ with j˛j D j ,ˇ̌̌

@˛�

�
Ai
�
q1=3.�/�2=3


x



� !k

��ˇ̌̌
� Cj

� t
h

�j.1�2�/=2
:

In particular, this allows us to deduce that, for � on the support of  we have

@2ij

�
q
1
3 .�/ 2

� !k

q
1
3 .�/�

2
3



�
Ai
�
q
1
3 .�/�

2
3



x



� !k

�
Ai
�
q
1
3 .�/�

2
3



a



� !k

��
.
� t
h

�1�2�
and ensures that the stationary phase can be applied with the Airy factors as part of the
symbol. As one has, for all l � 0, supb�0 jb

l Ai.l/.b � !k/j � Cl!
3l=2

k
, it is sufficient to

check that for t � h1=3�2� and k � .ht/3=4=h, we have

!
3=2

k
.
� t
h

�.1�2�/=2
: (53)

As !k � k2=3 . �
2=3

max � ..ht/

3=4=h/2=3 for k � .ht/3=4=h, (53) holds if we prove
t1=2.t=h/1=4 D .ht/3=4=h . .t=h/.1�2�/=2, which is obviously true as it reduces to t .
.t=h/1=2�2� for some � > 0 (recall that we consider here only values t . 1). The sum of
the main contributions of the symbols obtained after applying the stationary phase in �
equalsˇ̌̌̌ X
k..ht/3=4=h

!
�1=2

k
Ai
�
x
q1=3.�c.z; !kh

2=3//

h2=3
� !k

�
Ai
�
a
q1=3.�c.z; !kh

2=3//

h2=3
� !k

�ˇ̌̌̌

�

ˇ̌̌̌ X
k..ht/3=4=h

!
�1=2

k
Ai2

�
x
q1=3.�c.z; !kh

2=3//

h2=3
� !k

�ˇ̌̌̌1=2
�

ˇ̌̌̌ X
k..ht/3=4=h

!
�1=2

k
Ai2

�
a
q1=3.�c.z; !kh

2=3//

h2=3
� !k

�ˇ̌̌̌1=2
. �1=3
max

;
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where we applied Cauchy–Schwarz followed by (51) from Lemma 8 with L � �
max D

.ht/3=4=h. However, this is not enough to conclude: we also need to prove that lower-
order terms in the symbol obtained after the stationary phase do sum and provide smaller
contributions. This can be done using the second inequality in (51), as well as the equation
satisfied by the Airy function.

3.2.4. Let t � h1=3�2�, with (small) � > 0. Then max .h2=3��; .ht/1=2/ D h2=3�� and
we consider only 
 such that a\ . 
 . h2=3�� , as the sum over 
 > h2=3�� > .ht/1=2 can
be handled as in (50). Then �
max D .h

2=3��/3=2=h D h�3�=2.

Proposition 12. Let 0 < � < 1
6

and d � 1. For h1=3C� . t � h1=3�2� we have



 X
a\.
.h2=3��

Gh;
 .t; �/






L1.�d /

.
1

hd

�h
t

� d�1
2
h
1
3�

�
2 :

For 0 < t . h1=3C� we have k
P
a\.
.h2=3�� Gh;
 .t; �/kL1.�d / . 1

hd
.h
t
/d=2.

Proof. Let 0 < � < 1
6

and � D �.�; d/ > 0 such that �. 1
d
C

3
1�2�

/ D 2
3d

with d � 1.
Moreover, we set t .h; �/ WD h1�

3�
1�2� . This implies t .h; �/ D h1C

�
d
� 2
3d , t .h; �/� h1=3C�

(as � < 2=3) and also h�
3�
2 . . t

h
/
1
2�� for all t � t .h; �/. We apply the stationary phase with

the Airy factors in the symbol as the condition (53) is satisfied for all k . �
max and we
obtain the first bound for t � t .h; �/. As � < 1=6, we obtain h1=3��=2� h1=4 � .h=t/1=4.

Now let t . t .h; �/ andL WD 8h�3�=2. Then the sum over k in (52) is limited to k �L.
Using (51) yields ˇ̌̌̌ X

a\.
.h2=3��

Gh;
 .t; �/

ˇ̌̌̌
.
h
1
3

hd
L
1
3 :

As t . t .h; �/, then 1
t.h;�/

. 1
t

and as . h
t.h;�/

/d=2 D .h��=dC2=.3d//d=2 D h1=3��=2 we find

h1=3L1=3 D 2h1=3��=2 D 2
� h

t.h; �/

�d=2
. 2

�h
t

�d=2
;

which concludes our proof.

Gathering the bounds from Propositions 11 and 12, we therefore complete the proof
of the upper bound of Theorem 1, now using that we are in the remaining regime a .
max.h2=3��; .ht/1=2/.

4. Refined estimates for degenerate oscillatory integrals

In this section we prove Propositions 4, 5 and 6. Here we need to analyze in detail the
structure of higher-order derivatives of the phase functions �N;a. The proof of Propo-
sition 4 closely follows that of [15, Proposition 7] (in the case x � a); the proofs of
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Propositions 5 and 6 become much more delicate in the case of Schrödinger flow, due
to the presence of the critical point �c which is a function depending on s, � . As these
propositions are crucial in the proof of Theorem 1, we provide a detailed proof.

Let VN;h;a be defined in (38) and let N < �1=3. Using Remark 3, we assume (without
changing the contribution of VN;h;a modulo O.h1/) that its symbol ~ is supported on
j.�; s/j � 2

p
˛c . Fix T , N 2 Œ T

M
; MT � with M > 8 large enough and let X D x

a
� 1,

Y D y
p
a

with Y
2T
2 Œ1

4
; 2�.

Proof of Proposition 4

We start with the case where �1=3 . N and we closely follow the proof of [15, Proposi-
tion 7]. We will prove the following:ˇ̌̌̌Z

R2

e
i
h
�N;a~.�; s; t; x; y; h; a; 1=N / ds d�

ˇ̌̌̌
.

��2=3

1C �1=3jK2a.
Y
4N
; T
2N
/ � 1j1=2

: (54)

We rescale variables with � D ��1=3p and s D ��1=3q and define

A D �2=3
�
K2a

� Y
4N

;
T

2N

�
�X

�
and B D �2=3

�
K2a

� Y
4N

;
T

2N

�
� 1

�
; (55)

and we are reduced to proving that the following holds uniformly in .A;B/:ˇ̌̌̌Z
R2

eiGN;a;�.p;q;t;x;y/~.��1=3p; ��1=3q; t; x; y; h; a; 1=N / dp dq

ˇ̌̌̌
.

1

1C jBj1=2
; (56)

where the rescaled phase is

GN;a;�.p; q; t; x; y/ WD
1

h

�
�N;a.�

�1=3p; ��1=3q; t; x; y/ � �N;a.0; 0; t; x; y/
�
:

Replacing 
 by a in first-order derivatives of �N;a;
 ((32) and (33)) yields

@pGN;a;� D
1

h

@�

@p
@� .�N;a/j.�;s/D.��1=3p;��1=3q/ D q

1=2.�c/.p
2
� �2=3.˛c �X//;

@qGN;a;� D
1

h

@s

@q
@s.�N;a/j.�;s/D.��1=3p;��1=3q/ D q

1=2.�c/.q
2
� �2=3.˛c � 1//:

From (28), in our new variables, ˛c has the expansion

˛c j.��1=3p;��1=3q/ D
�
Ka

� Y
4N

;
T

2N

�
� ��1=3

p

2N
.1 � aE1/ � �

�1=3 q

2N
.1 � aE2/

�2
;

where fj are smooth functions of .�; s/ D ��1=3.p; q/ and of T
2N

, X , Y
4N

. With this
notation and with Ka D Ka. Y4N ;

T
2N
/, we rewrite the first-order derivatives of GN;a;� as

@pGN;a;� D q
1=2.�c/

�
p2 � AC

�1=3

N
Ka.p.1 � aE1/C q.1 � aE2//

�
1

4N 2
.p.1 � aE1/C q.1 � aE2//

2
�
;
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@qGN;a;� D q
1=2.�c/

�
q2 � B C

�1=3

N
Ka.p.1 � aE1/C q.1 � aE2//

�
1

4N 2
.p.1 � aE1/C q.1 � aE2//

2
�
:

As �1=3 � N , if A, B are bounded, then (56) obviously holds for j.p; q/j bounded and by
integration by parts if j.p; q/j is large. So we can assume that j.A;B/j � r0 with r0 � 1.
Set .A;B/ D r.cos.�/; sin.�// and again rescale .p; q/ D r1=2. Qp; Qq/: we aim forˇ̌̌̌Z

R2

eir
3=2 zGN;a;
~.��1=3r1=2 Qp; ��1=3r1=2 Qq; t; x; y; h; a; 1=N / d Qp d Qq

ˇ̌̌̌
.

1

r5=4
; (57)

where r is our large parameter, and zGN;a;�. Qp; Qq; t; x; y/ D r�3=2GN;a;�.r
1=2p; r1=2q;

t; x; y/. Let us compute, using the formulas for the first-order derivatives of GN;a;�,

@ Qp zGN;a;�

q1=2.�c/
D Qp2 � cos � C

�
1
3Ka

Nr
1
2

. Qp.1 � aE1/C Qq.1 � aE2//

�
. Qp.1 � aE1/C Qq.1 � aE2//

2

4N 2
;

@ Qq zGN;a;�

q1=2.�c/
D Qq2 � sin � C

�
1
3Ka

Nr
1
2

. Qp.1 � aE1/C Qq.1 � aE2//

�
. Qp.1 � aE1/C Qq.1 � aE2//

2

4N 2
;

where, abusing notation, Ej is now Ej .r
1=2��1=3. Qq; Qp/; T

2N
; Y
4N
/. On the support of ~.� � � /

we have j. Qp; Qq/j. �1=3r�1=2 . �1=3r
�1=2
0 : for �1=3 .N , the last term in both derivatives

isO.r�10 /, while the next to last term is r�1=20 O. Qp; Qq/; indeed, using boundedness of E1;2
and Ka, we obtainˇ̌̌�1=3

N
Ka

. Qp.1 � aE1/C Qq.1 � aE2//

r1=2

ˇ̌̌
. r
�1=2
0 j Qp C Qqj:

Hence, when j. Qp; Qq/j > zC with zC sufficiently large, the corresponding part of the integral
isO.r�1/ by integration by parts. So we are left with restricting our integral to a compact
region in . Qp; Qq/.

We remark that, from X � 1, we have A � B (and A D B if and only if X D 1), e.g.
cos � � sin � and therefore � 2 .�3�

4
; �
4
/. We proceed differently upon the size of B D

r sin � . If sin � < �C=r1=2 for some C > 0 sufficiently large then @ Qq zGN;a;� > c=.2r1=2/
for some C > c > 0 and the phase is nonstationary. Indeed, in this case

@ Qq zGN;a;�

q1=2.�c/
� Qq2 C

C

2r1=2
C
�1=3Ka

Nr1=2
. Qp.1 � aE1/C Qq.1 � aE2//

�
. Qp.1 � aE1/C Qq.1 � aE2//

2

4N 2
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and using that Qp, Qq are bounded, that on the support of ~ we have jr1=2. Qp; Qq/j . �1=3 and
that 1

N
. 1

�1=3
� 1, we then have, for some C large enough,

�1=3

N
. Qp C Qq/

� Ka
r1=2
�
. Qp.1 � aE1/C Qq.1 � aE2//

4N�1=3

�
.

C

4r1=2
:

We recall that on the support of  2.˛/ we had ˛ 2 Œ1
2
; 3
2
� and the critical point ˛c is such

that (21) holds (with 
 replaced by a in this case), henceKa DKa. Y4N ;
T
2N
/ introduced in

(39) stays close to 1 as the main contribution to ˛c . It follows that @ Qq zGN;a;� > C=.2r1=2/
and integrations by parts yield a bound O.r�n/ for all n � 1.

Next, let sin� >�C=r1=2 and assumeA> 0 (since otherwise the nonstationary phase
applies), which in turn implies A > r0=2. Indeed, cos � � sin � > �C=r1=2 implies � 2
.� Cp

r0
; �
4
/ and therefore in this regime cos � �

p
2
2

. Consider first the case jsin � j <
C=r1=2. The nondegenerate stationary phase always applies in Qp, at two (almost) opposite
values of Qp, such that j Qp˙j � j˙

p
cos � j � 1=4, and the integral in (57) is rewritten

r

Z
R2

eir
3=2 zGN;a;�~.��1=3r1=2 Qp; ��1=3r1=2 Qq; t; x; y; h; a; 1=N / d Qp d Qq

D
r

r3=4

�Z
R
e
ir3=2 zGC

N;a;�~C. Qq; t; x; y; h; a; 1=N / d Qq

C

Z
R
e
ir3=2 zG�

N;a;�~�. Qq; h; a; 1=N / d Qq

�
: (58)

Indeed, the phase is stationary in Qp when

Qp2 D cos � �
�1=3Ka

Nr1=2
. Qp.1 � aE1/C Qq.1 � aE2//C

. Qp.1 � aE1/C Qq.1 � aE2//
2

4N 2
;

and from cos � �
p
2
2

and 1
r
�

1
r0
� 1, there are exactly two disjoint solutions to

@ Qp zGN;a;� D 0, which we denote Qp˙ D ˙
p

cos � C O.r�1=2/. We compute, at critical
points,

@2
Qp; Qp
zGN;a;�jp˙ D q

1=2.�c/
�
2 Qp C

�1=3Ka

Nr1=2
.1CO.a//

�
CO.N�2/j Qp˙ ;

where we used Qp, Qq bounded and @ QpEj D O.
r1=2��1=3

N
/ to deduce that all the terms except

the first one are small. As �1=3 . N , r�1=2 � 1, Ka bounded, close to 1, for Qp 2 ¹ Qp˙º
we get @2

Qp; Qp
zGN;a;�j Qp˙ � 2 Qp˙ C O.r

�1=2/, and as j Qp˙j � 1
4
� O.r�1=2/, the stationary

phase applies. The critical values of the phase at Qp˙, denoted zG˙
N;a;�

, are such that

@ Qq zG
˙
N;a;�. Qq; �/ WD @ Qq

zGN;a;�. Qq; Qp˙; �/

D q1=2.�c/
�
Qq2 � sin � C

�1=3Ka. Qp.1 � aE1/C Qq.1 � aE2//

Nr1=2

�
. Qp.1 � aE1/C Qq.1 � aE2//

2

4N 2
j QpD Qp˙

�
: (59)
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As jsin � j < C=r1=2, the phases zG˙
N;a;�

may be stationary but degenerate; taking two
derivatives in (59), one easily checks that j@3

Qq
zG˙
N;a;�
j � q1=2.�c/.2 � O.r

�1=2
0 //. Hence

we get, by the Van der Corput lemma,ˇ̌̌̌Z
R
e
ir3=2 zG˙

N;a;�~˙. Qq; t; x; y; h; a; 1=N / d Qq

ˇ̌̌̌
. .r3=2/�1=3: (60)

Using (58) and (60) eventually yieldsˇ̌̌̌
r

Z
R2

eir
3=2 zGN;a;�~.��1=3r1=2 Qp; ��1=3r1=2 Qq; t; x; y; h; a; 1=N / d Qp d Qq

ˇ̌̌̌
. r�1=4:

Notice moreover that jBj D jr sin� j � Cr1=2; hence from r2 D A2CB2, we have A� r
(large) and r�1=4 . 1=.1C jBj1=2/: (56) holds true and, replacing B by �2=3.K2a � 1/, it
yields (54). Substitution with (55) and using a2 D .h�/4=3, we obtain from (54),

jVN;h;a.t; x; y/j �
a2

h

1
p
�N

��
2
3

.1C �
1
3 jK2a � 1j

1
2 /

D
2h

1
3

2

q
N=�

1
3 C �

1
6
p
Ka C 1j4NKa � 4N j

1
2

:

In the last case sin � > C=r1=2 (A � B � Cr1=2), the stationary phase holds in . Qp; Qq/:
the determinant of the Hessian is at least C

p
cos �
p

sin � and we get

j(LHS) of (57)j .
1

.
p

cos �
p

sin �/1=2r3=2
.
1

r

1

.r
p

cos �
p

sin �/1=2
.
1

r

1

jABj1=4
;

so in this case our estimate is slightly better than (54), as we haveˇ̌̌̌Z
R2

e
i
h
�N;a~.s; �; t; x; y; h; a; 1=N / ds d�

ˇ̌̌̌
.

1

�2=3jABj1=4
�

1

�2=3jBj1=2
:

This completes the proof of Proposition 4 as it eventually yields

jVN;h;a.t; x; y/j .
.h�/4=3

h

��1=2

N 1=2

1

�2=3jBj1=2
� h1=3

�1=6

N 1=2

1

�1=3jK2a � 1j
1=2
:

Proof of Propositions 5 and 6

The main differences between the proof of Proposition 5 and that of [15, Proposition 5]
occur from the additional critical point �c , which is not considered in the case of the wave
equation. Similarly, the proof of Proposition 6 follows the same path as [15, Proposition 6],
but one has to deal carefully with contributions coming from the higher-order derivatives
of �c . Let 1 � N < �1=3: we aim to proveˇ̌̌̌Z

R2

e
i
h
�N;a~.�; s; t; x; y; h; a; 1=N / ds d�

ˇ̌̌̌
. N 1=4��3=4:
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AsN is bounded by �1=3, ignoring the last two terms in the first-order derivatives of �N;a,
as we did in the previous case, is no longer possible. Set ƒ D �=N 3 to be the new large
parameter. Rescale variables � D p0=N and s D q0=N again and now set

ƒGN;a.p
0; q0; t; x; y/ D

1

h

�
�N;a.�; s; t; x; y/ � �N;a.0; 0; t; x; y/

�
:

We are reduced to proving j
R

R2 e
iƒGN;a~.p0=N; q0=N; : : :/ dp0 dq0j . ƒ�3=4. Compute

r.p0;q0/GN;a D
N 3

h

� @�
@p0

@��N;a;
@s

@q0
@s�N;a

�ˇ̌̌
.p0=N;q0=N/

D q1=2.�c/
�
p02 CN 2.X � ˛c/; q

02
CN 2.1 � ˛c/

�
; (61)

where, using (28),

˛c.�; s; �/j.�Dp0=N;sDq0=N/ D
�
Ka �

p0

2N 2
.1 � af1/ �

q0

2N 2
.1 � af2/

�2
:

Recall that Ka D
p
˛0c and stays close to 1 on the support of the symbol. We define

A0 D .K2a �X/N
2 and B 0 D .K2a � 1/N

2. First-order derivatives of GN;a;� read

@p0GN;a D q
1=2.�c/

�
p02 � A0 CKa.p

0.1 � aE1/C q
0.1 � aE2//

�
1

4N 2
.p0.1 � aE1/C q

0.1 � aE2//
2
�
;

@q0GN;a D q
1=2.�c/

�
q02 � B 0 CKa.p

0.1 � aE1/C q
0.1 � aE2//

�
1

4N 2
.p0.1 � aE1/C q

0.1 � aE2//
2
�
:

Unlike the previous case, the two last terms are no longer disposable. We start with
j.A0; B 0/j � r0 for some large, fixed r0, in which case we can follow the same approach
as in the previous case. Again, set A0 D r cos � and B 0 D r sin � . If j.p0; q0/j < r0=2, then
the corresponding integral is nonstationary and we get decay by integration by parts. We
change variables .p0; q0/ D r1=2. Qp0; Qq0/ with r0 � r . N 2 and aim to proveˇ̌̌̌

r

Z
R2

eir
3=2ƒ zGN;a~.r1=2 Qp0=N; r1=2 Qq0=N; t; x; y; h; a; 1=N / d Qp0 d Qq0

ˇ̌̌̌
. r�1=4ƒ�5=6; (62)

The new phase is zGN;a. Qp0; Qq0; t; x; y/ D r�3=2GN;a.r1=2 Qp0; r1=2 Qq0; t; x; y/. We compute

@ Qp0 zGN;a

q1=2.�c/
D Qp02 � cos � C

Ka

r1=2
. Qp0.1 � aE1/C Qq

0.1 � aE2//

�
. Qp0.1 � aE1/C Qq

0.1 � aE2//
2

4N 2
;
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@ Qq0 zGN;a

q1=2.�c/
D Qq02 � sin � C

Ka

r1=2
. Qq0.1 � aE1/C Qq

0.1 � aE2//

�
. Qp0.1 � aE1/C Qq

0.1 � aE2//
2

4N 2
:

To the extent it is possible to do so, we follow the previous case �1=3 . N . From X � 1,
A0 � B 0 implying cos � � sin � . If j. Qp0; Qq0/j � zC for some large zC � 1, then . Qp0c ; Qq

0
c/ are

such that Qp02c � Qq
02
c and if zC is sufficiently large the nonstationary phase applies (pick any

zC > 4). Therefore, we are reduced to bounding j. Qp0; Qq0/j. We sort out cases, depending
upon B 0 D r sin � : if sin � < � Cp

r
for some sufficiently large constant C > 0, then

@ Qq0 zGN;a

q1=2.�c/
� Qq02 C

C

r1=2
C
Ka

r1=2
. Qp0.1 � aE1/C Qq

0.1 � aE2//

�
. Qp0.1 � aE1/C Qq

0.1 � aE2//
2

4N 2
;

and E1;2 are bounded, N is sufficiently large in this case (indeed, recall that r0 � r . N 2

so that 1p
r
�

1
N

); then the nonstationary phase applies as the sum of the last three terms
in the previous inequality is greater than C=.2r1=2/ if C is large enough. If jsin � j �
Cp
r

then, again, � 2 .� Cp
r0
; �
4
/ and cos � �

p
2
2

. We have jB 0j D jr sin � j � C
p
r ; if

jB 0j < C , then 1C jB 0j . r1=2, while jA0j � r . The stationary phase applies in Qp0 with
nondegenerate critical points Qp0

˙
and yields a factor .r3=2ƒ/�1=2; the critical value of

the phase function at these critical points, which we denote zG˙N;a, is always such that
j@3
Qq0
zG˙N;aj � q

1=2.�c/.2 � O.
1

r
1=2
0

// and the integral in Qq0 is bounded by .r3=2ƒ/�1=3 by
Van der Corput. Therefore, we obtain (62) which yields, using that jB 0j D jN 2.K2a � 1/j �

r1=2,

jVN;a;h.t; x; y/j

D
h1=3�4=3
p
�NN 2

ˇ̌̌̌
r

Z
R2

eir
3=2ƒ zGN;a~.r1=2 Qp0=N; r1=2 Qq0=N; t; x; y; h; a; 1=N / d Qp0 d Qq0

ˇ̌̌̌
.
h1=3�5=6

N 5=2
r�1=4

� �

N 3

��5=6
.

h1=3

.1C jB 0j1=2/
�

h1=3

.1CN jKa.
Y
4N
; T
2N
/ � 1j1=2/

:

If sin � > Cp
r

, then B 0 D r sin � > C
p
r and therefore N 2jK2a � 1j > Cr

1=2. We do the
stationary phase in both variables with large parameter r3=2ƒ as the determinant of the
Hessian at critical points is at least C

p
cos � sin � , and obtain, for the left-hand-side term

in (62), a bound

cr

.
p

sin �
p

cos �/1=2r3=2ƒ
D
1

ƒ

1

jA0B 0j1=4
�
1

ƒ

1

jB 0j1=2
:
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We just proved that for N < �1=3 and not too small N 2jKa.
Y
4N
; T
2N
/ � 1j,

jVN;h;a.t; x; y/j .
h1=3

�1=6
p
N jKa.

Y
4N
; T
2N
/ � 1j1=2

:

We now move to the most delicate case j.A0; B 0/j � r0. For j.p0; q0/j large, the phase
is nonstationary and integrations by parts provide O.ƒ�1/ decay. So we may replace ~
by a cutoff, which we still call ~, compactly supported in j.p0; q0/j < R. We proceed by
identifying one variable where the usual stationary phase applies and then evaluating the
remaining one-dimensional oscillatory integral using Van der Corput (with different decay
rates depending on the lower bounds on derivatives, of order at most 4). Using (61), we
compute derivatives of GN;a,

@p0GN;a D q
1=2.�c/.p

02
CN 2.X � ˛c//; @q0GN;a D q

1=2.�c/.q
02
CN 2.1 � ˛c//:

The second-order derivatives of GN;a follow from (34), (35) and (36):

@2p0p0GN;a D q
1=2.�c/.2p

0
�N 2@p0˛c/C

@p0�crq.�c/

2q1=2.�c/
.p02 CN 2.X � ˛c//;

@2q0q0GN;a D q
1=2.�c/.2q

0
�N 2@q0˛c/C

@q0�crq.�c/

2q1=2.�c/
.q02 CN 2.1 � ˛c//;

@2q0p0GN;a D q
1=2.�c/.�N

2@q0˛c/C
@q0�crq.�c/

2q1=2.�c/
.p02 CN 2.X � ˛c//

D @2p0q0GN;a D q
1=2.�c/.�N

2@p0˛c/C
@p0�crq.�c/

2q1=2.�c/
.q02 CN 2.1 � ˛c//:

At critical points, where @p0GN;a D @q0GN;a D 0, the determinant of the Hessian reads

det Hess.p0;q0/GN;ajr.p0;q0/GN;aD0 D q.�c/
�
4p0q0 �N 2.p0 C q0/@p0˛c

�
:

If jdet Hess.p0;q0/GN;aj > c > 0 for some small c > 0 we can apply the usual stationary
phase in both variables p0, q0. We expect the worst contributions to occur in a neighbor-
hood of the critical points where jdet Hess.p0;q0/GN;aj � c for some c sufficiently small.
We turn variables with �1D .p0C q0/=2 and �2D .p0 � q0/=2. Then p0D �1C �2 and q0D
�1 � �2, and we also let � WD A0 CB 0 D N 2.2K2a � 1�X/, � WD A

0 �B 0 D N 2.1�X/.
The most degenerate situation will turn out to be � D � D 0 and �1 D 0, �2 D 0. Let
gN;a.�1; �2/ D GN;a.�1 C �2; �1 � �2/.

Case c . j�1j. For �1 outside a small neighborhood of 0, the nondegenerate stationary
phase applies in �2 and the critical value gN;a.�1; �2;c/may have degenerate critical points
of order at most 2. The phase gN;a is stationary in �2 whenever @p0GN;a D @q0GN;a and
from Remark 4, we then have @p0�c D @q0�c and @p0˛c D @q0˛c . We have

@2�2;�2gN;a.�1; �2/ D .@
2
p0p0GN;a � 2@

2
p0q0GN;a C @

2
q0q0GN;a/.p

0; q0/j�1;�2 :
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Using the explicit form of the second-order derivatives of GN;a given above, at p0 D �1 C
�2, q0D �1 � �2 such that p02CN 2.X � ˛c/D q

02CN 2.1� ˛c/ and with @p0�c D @q0�c ,
we obtain

@2�2;�2gN;a.�1; �2/j@�2gN;aD0
D 2q1=2.�c/.p

0
C q0/ D 4q1=2.�c/�1:

As q.�c/ D j�c jq.�c=j�c j/ 2 Œ12m
2
0;
3
2
M 2
0 � with m0, M0 defined in (20), the stationary

phase applies in �2. We denote by �2;c the critical point, such that

@�2gN;a.�1; �2/ D .@p0GN;a � @q0GN;a/.p
0; q0/jp0D�1C�2;q0D�1��2 D 0;

which can be rewritten as .�1 C �2;c/2 C N 2.X � ˛c/ D .�1 � �2;c/
2 C N 2.1 � ˛c/,

which, in turn, yields 4�1�2;c D N 2.1 � X/ D � and therefore �2;c D �
4�1

. We will now
compute higher-order derivatives of the critical value of gN;a.�1; �2;c/ with respect to �1.

Lemma 9. For jN j � 1, the phase gN;a.�1; �2;c/ may have degenerate critical points of
order at most 2.

Proof. Again, at �2;c , Remark 4 implies @p0�c D @q0�c and @p0˛c D @q0˛c . In turn, the
functions‚1;2 in Lemma 5 coincide as well, hence the functions E1;2 defined in (29),(30)
coincide also at �2;c . We abuse notation with E1;2 as functions of .p0=N; q0=N/ D
.�1 C �2/=N; .�1 � �2/=N . Set E WD E1jp02CN 2XDq02CN 2 D E2jp02CN 2XDq02CN 2 in (28).
Then

p
˛c j@�2gN;aD0

D Ka �
�1
N 2 .1 � aE/ and therefore

@�1.gN;a.�1; �2;c//

D @�1gN;a.�1; �2;c/C
@�2;c

@�1
@�2gN;a.�1; �2/j�2D�2;c

D .@p0GN;a C @q0GN;a/.p
0; q0/j�1;�2;c

D q1=2.�c/
�
2�21

�
1 �

1

N 2
.1 � aE/

�
C 2

�2

16�21
� �C 4Ka�1.1 � aE/

�
: (63)

Taking a derivative of (63) with respect to �1 yields

@2�1;�1.gN;a.�1; �2;c//

D q1=2.�c/
h
4�1

�
1 �

1

N 2

�
1 � a

�
E C

1

2
�1@�1E

���
�
�2

8�31
C 4Ka.1 � a.E C �1@�1E//

i
C

�
@p0.q

1=2.�c//C @q0.q
1=2.�c//

C
@�2;c

@�1

�
@p0.q

1=2.�c// � @q0.q
1=2.�c//

��@�1gN;a.�1; �2;c/
q1=2.�c/

;
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where the last line vanishes when @�1gN;a.�1; �2;c/ D 0. In the same way we compute

@3�1;�1;�1.gN;a.�1; �2;c//j@�1 .gN;a.�1;�2;c//D@
2
�1;�1

.gN;a.�1;�2;c//D0

D q1=2.�c/
�
4
�
1 �

1

N 2

�
C
3�2

8�41
CO.a/

�
:

First, let jN j � 2. Then we immediately see that the third-order derivative takes positive
values and stays bounded from below by a fixed constant, @3

�1;�1;�1
.gN;a.�1; �2;c// � 2,

and therefore the critical points may be degenerate (when @2
�1;�1

.gN;a.�1; �2;c// D 0) of
order at most 2. Now let jN j D 1 when the coefficient of 2�21 in (63) isO.a/. Assume that
for c . j�1j, the first two derivatives vanish. Then �2

8�31
D 4Ka C O.a/ and therefore the

third derivative cannot vanish since its main contribution is 3�
2

8�41
.

Case j�1j . c, for small 0 < c < 1=2. First, the (usual) stationary phase applies in �1:

@�1gN;a.�1; �2/ D q
1=2.�c/

�
.�1 C �2/

2
CN 2.X � ˛c/C .�1 � �2/

2
CN 2.1 � ˛c/

�
;

and using (28), we write again, with Ka D Ka. Y4N ;
T
2N
/ D T

2N
q1=2.�0c/,

p
˛c D Ka �

.� C s/

2N
C

T

2N
.q1=2.�c/ � q

1=2.�0c//;

where in the new variables � C s D 2�1=N . Using (31), we have .q1=2.�c/� q1=2.�0c//D
a
NT

O.�1; �2/ and with j�1j � c < 1
2

small, a � "0 and ˛c 2 Œ12 ;
3
2
�, from Ka D

p
˛c C

O.c=N 2/ we have Ka 2 Œ14 ; 2� for all N � 1. The derivative of gN;a.�1; �2/ becomes

@�1gN;a.�1; �2/

D q1=2.�c/
°
2�21 C 2�

2
2 � � � 2N

2
h�
Ka �

�1

N 2
C

a

N 2
O.�1; �2/

�2
�K2a

i±
D q1=2.�c/

�
2�21

�
1 �

1

N 2

�
C 2�22 � �C 4Ka�1 C aO.�1; �2/

�
:

At the critical point, the second derivative with respect to �1 is

@2�1;�1gN;a.�1; �2/j@�1gN;a.�1;�2/D0
D q1=2.�c/

�
4�1

�
1 �

1

N 2

�
C 4Ka CO.a/

�
;

and as Ka 2 Œ14 ; 2�, the leading-order term is 4q1=2.�c/Ka. The stationary phase applies
for any jN j � 1 and provides a factor ƒ�1=2. We are left with the integral with respect to
�2. We first compute the critical point �1;c , a solution to @�1gN;a.�1; �2/D 0, as a function
of �2:

2�21;c C 2�
2
2 D �C 2N

2
h
K2a �

�
K2a �

�1

N 2
C

T

2N
.q1=2.�c/� q

1=2.�0c//
�2
j�1;�2

i
; (64)

where, using (31), T
2N
.q1=2.�c/� q

1=2.�0c// D O.
a
N 2 /. From j�1;c j � c, j�=2� �22 j . c,

as, if j�=2 � �22 j > 4c, equation (64) has no real solution �1;c such that j�1;c j � c.
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Lemma 10. For all jN j � 1 and j�=2 � �22 j � 4c, (64) has one real-valued solution,

�1;c D .�=2 � �
2
2 /„0 C a

�
.�=2 � �22 /„1 C �

2
2„2 C �2

�

N 2
„3
�
; (65)

where KaD0 D
jY j
4N
q1=2.�Y=jY j/ and „0 D „0.�=2 � �22 ; KaD0; 1=N

2/ is defined as

„0.�=2 � �
2
2 ; KaD0; 1=N

2/ D
�
KaD0 C

q
K2aD0 C .�=2 � �

2
2 /.1 � 1=N

2/
��1

(66)

and where „1;2;3 are smooth functions of .�2; �=2 � �22 ; �=N
2; Ka; 1=N; a/ such that

j@k
�2
„j j � Ck , for all k � 0, where Ck are positive constants.

Proof. For a D 0, (64) has a unique, explicit solution �1;c jaD0,

�1;c jaD0 D .�=2 � �
2
2 /
�
KaD0 C

q
K2aD0 C .�=2 � �

2
2 /.1 � 1=N

2/
��1

;

that we rename .�=2 � �22 /„0 with „0 defined in (66). Now let a ¤ 0. Using Lemma 5
with sC � D .p0C q0/=N D 2�1=N , � � sD .p0 � q0/=N D 2�2=N , .a� x/=aD �=N 2,
the critical point �c is a function of �1=N , �22=N

2 and �2�=N 3. Write �1;c as �1;c D
.�=2 � �22 /„0 C a„ for some unknown function „; introducing this in (64) allows us to
obtain „ as a sum of smooth functions with factors �=2� �22 , �22 and �2�=N 2 as follows:
„ D .�=2 � �22 /„1 C �

2
2„2 C �2

�
N 2„3, where „j are smooth functions of �=2 � �22 ,

�22=N
2 and �2�=N 3.

Let QgN;a.�2/ WD gN;a.�1;c ; �2/: the first derivative of QgN;a with respect to �2 vanishes
when .@p0GN;a � @q0GN;a/.p0; q0/j.�1;c ;�2/ D 0, which is equivalent to 4�1;c�2 D �. We
compute, using @�2 QgN;a D � � 4�1;c�2 and �1;c given in (65), @2

�2�2
QgN;a D�4.�2@�2�1;c C

�1;c/. Then the critical points �2 are degenerate if

.�=2 � �22 /„0 C a
�
.�=2 � �22 /„1 C �

2
2„2 C �2

�

N 2
„3

�
D 2�22„0.1 � .�=2 � �

2
2 /
z„0/C a

�
2�22

�
„1 �„2 �

1

2
�2@�2„2 �

�

N 2
@�2„3

�
� �2.�=2 � �

2
2 /@�2„1 � �2

�

N 2
„3

�
; (67)

where the sum of the terms in the second and third lines of (67) equals �2@�2„0. We have
thus set

z„0.�=2 � �
2
2 ; Ka; 1=N

2/ WD
.1 � 1=N 2/„0.�=2 � �

2
2 ; Ka; 1=N

2/

2

q
K2a C .�=2 � �

2
2 /.1 � 1=N

2/

:

Consider a D 0 in (67) for a moment. Then critical points are degenerate if

�=2 � �22 D 2�
2
2

�
1 � .�=2 � �22 /

z„0.�=2 � �
2
2 ; K0; 1=N

2/
�
: (68)
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Recall that Ka 2 Œ14 ; 2� and that j�=2 � �22 j � 4c with c small enough. Rewrite (68) as

.�=2 � �22 /
�
2C

1

1 � .�=2 � �22 /
z„0

�
D �;

which may have solutions only if � is also small enough, j�j � 10c. Let z D �=2 � �22 ;
for jzj � 4c and j�j � 10c with c small enough, we may now seek the solution to (68) as
z D �Z0.�;K0; 1=N

2/ and obtainZ0.�;K0; 1=N 2/ explicitly, withZ0.0;K0; 1=N 2/D
1
3

. Solutions to (67) for a D 0 are therefore functions of
p
� which both vanish at � D 0.

They are written �2;˙jaD0 D ˙
p
�
p
6
.1C ��.�;K0; 1=N

2// for some smooth function �.
Now let a ¤ 0: solutions �2 to (67) are functions of

p
�, �=N 2, a that coincide at

� D � D 0 (they both vanish). Actually, as „1 is a function of �=2 � �22 ; �
2
2 ; �2�=N

2,
�2@�2„1 is also a function of �=2 � �22 , �22 , �2�=N 2 and we write

�=2 � �22 D 2�
2
2 .1 � .�=2 � �

2
2 /
z„0.�=2 � �

2
2 ; Ka; 1=N

2//

C a
�
�22F1.�

2
2 ; �2�=N

2; �/C �2
�

N 2
F2.�

2
2 ; �2�=N

2; �/
�

(69)

for some smooth functions F1;2. Notice that, as j�=2� �22 j � 4c and a is small, (69) may
have real solutions �2 only for j�22 j � 4c. For such small �2, equation (69) has at most two
distinct solutions (that coincide at � D � D 0), which read

�2;˙ D ˙

p
�
p
6

�
1C ��

�
�;Ka;

1

N 2

��
C a <

�
p
�;

�

N 2

�
;

.�1;˙; �2;˙/ >
�
p
�;

�

N 2
; Ka; a

�
;

(70)

for some smooth functions �, �j;˙. We compute the third derivative of QgN;a at �2;˙ defined
in (70) whenever the second derivative vanishes. Using (67) yields

@3�2;�2;�2 QgN;a.�1;c ; �2/j�2D�2;˙

D �4.2@�2�1;c C �2@
2
�2;�2

�1;c/j�2;˙

D 16�2„0
�
1 � .�=2 � �22 /

z„0.�=2 � �
2
2 ; Ka; 1=N

2/
�

C 8a
�
2�2

�
„1 �„2 �

1

2
�2@�2„2 �

�

N 2
@�2„3

�
� .�=2 � �22 /@�2„1 �

�

N 2
„3

�ˇ̌̌
�2;˙

C 8�2„0.1CO.�=2 � �
2
2 /CO.a//j�2;˙ ; (71)

where the last line in (71) is �4�2;˙@2�2;�2�1;c : we do not expand this formula as �2;˙ is
sufficiently small for what we need. The second and third lines of (71) come from the
formula for �8@�2�1;c , already obtained in (67) (where @�2�1;c comes with a factor �2).
As the third derivative of QgN;a is evaluated at �2;˙ we can replace (69) in (71) and obtain

@3�2;�2;�2 QgN;a.�1;c ; �2/j�2D�2;˙ D
12�2;˙

Ka
.1CO.�22;˙/CO.a//CO.a�=N

2/:
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It follows that at � D � D 0 the order of degeneracy is higher as �2;˙j�D�D0 D 0 and
@3
�2;�2;�3

QgN;aj�2;˙;�D�D0 D 0. We now write

QgN;a.�2/ D QgN;a.�2;˙/C .�2 � �2;˙/@�2 QgN;a.�2;˙/C
.�2 � �2;˙/

3

6
@3�2;�2;�2 QgN;a.�2;˙/

CO..�2 � �2;˙/
4/;

where @4
�42
QgN;a does not cancel at �2;˙ as it stays close to 12=Ka 2 Œ6; 48�. We are to have

@�2 QgN;a.�2;˙/ D 0, from which � D 4�1;c j�2;˙�2;˙, which is written

� D 4
�
˙

p
�
p
6
.1C ��.�//C a

�
p
��1;˙ C

�

N 2
�2;˙

��
�

�
.�=2 � �22;˙/„0 C a

�
.�=2 � �22;˙/„1 C �

2
2;˙„2 C �2;˙

�

N 2
„3

��
and replacing (70) in (65) yields

� D ˙

p
2�3=2

3
p
3Ka

.1CO.a//;

which is at leading order the equation of a cusp. At degenerate critical points �2;˙ where

� D ˙

p
2�3=2

3
p
3Ka

.1CO.a//;

the phase integral behaves like

I D

Z
�2

�.�2/e
�iƒ

p
2
p
�

Ka
p
3
.�2��2;˙/

3

d�2;

and we may conclude in a small neighborhood of the set ¹�22 C j�j C j�j
2=3 . cº (as

outside this set, the nonstationary phase applies) by using the Van der Corput lemma on
the remaining oscillatory integral in �2 with phase QgN;a.�2/. In fact, on this set, @4

�2
QgN;a

is bounded from below, which yields an upper bound ƒ�1=4, uniformly in all parameters.
When � ¤ 0, the third-order derivative of the phase is bounded from below by j�2j

Ka
: either

j�=6 � �22 j � j�j=12 and then j@3
�2
QgN;aj is bounded from below by j�j1=2=.12Ka/, or

j�=6 � �22 j � j�j=12 in which case j@2
�2
QgN;aj is bounded from below by j�j=.12Ka/.

Hence, using that Ka 2 Œ14 ; 2�, we find

j@3�2 QgN;aj C j@
3
�2
QgN;aj &

p
j�j

(recall that here � is small so
p
j�j � j�j) which yields an upper bound .

p
j�jƒ/�1=3.

Eventually we obtain

jI j . inf
° 1

ƒ1=4
;

1

j�j1=6ƒ1=3

±
:

From � D A0 C B 0 and � D A0 � B 0 � ˙j�j3=2 and j�j3=2 � j�j for � < 1, we deduce
thatA0 �B 0 and therefore j�j � 2jB 0j, which is our desired bound (40) after unraveling all
notation, as the nondegenerate stationary phase in �1 had already provided a factorƒ�1=2.
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5. The defocusing cubic nonlinear Schrödinger equation

We now turn to nonlinear applications and consider (1) with � D 1. One could state local-
in-time results for the focusing case kD�1 and extend them to global in time provided we
require a standard smallness condition on the mass of the data (identifying the threshold
is, however, a delicate issue). Our underlying manifold � is compact and such that, in
local charts intersecting its boundary, the Laplace–Beltrami operator is, to first order, our
model operator. For such a suitable manifold �, with d � 3, we may gather available
results and state homogeneous Strichartz estimates. In the next theorem, Sobolev spaces
should be understood as defined through the spectral resolution of the Dirichlet Laplacian
and they are known to match the ones defined by classical interpolation.

Theorem 5. Let d � 2, .q; r/ be such that 1
q
� .d

2
�
1
4
/.1
2
�
1
r
/, s D d

2
�
2
q
�
d
r

; there
exist C.d/ > 0, T > 0 such that, for v a solution to (1) with data v0 2 H sC1=q.�/,

kvkLq.Œ0;T �;Lr .�// � C.d/T
1=q
kv0kH sC1=q.�/: (72)

Both Lebesgue and Sobolev spaces may be localized in coordinate charts. As such, the
proof of Theorem 5 follows by standard arguments, localizing the linear solution to each
patch, and using either [7] (on patches that do not intersect the boundary), Theorem 2 (on
patches that do intersect the convex boundary) or [10] (if one considers a concave bound-
ary on one end). Because one works on semiclassical times, source terms that are produced
by cutoffs are dealt with through energy estimates, a well-established procedure that goes
back to [27]. We refer to [5] or [16] for detailed implementations of the above strategy.
Notice that (72) subsumes the underlying semiclassical estimate: assume v0 is spectrally
localized at frequency h�1, and T . h, then kv0kH sC1=q.�/ � h

�1=qkv0kH s.�/. We also
need a suitable semiclassical version of the double endpoint inhomogeneous Strichartz
estimate which follows from similar arguments: let

�i@tuC�gu D f;

ujtD0 D 0;

ujR�@� D 0;

(73)

with f supported in a time interval I such that jI j . h, I � RC. Then we have the
following proposition:

Proposition 13. Let d � 3, r be such that 1
2
D .d

2
�
1
4
/.1
2
�
1
r
/, � D�d=r C d=.2d=.d �

2//, r 0 D r=.r � 1/; there exists C.d/ > 0 such that, for u a solution to (73),

k .h2�g/ukL2.I;Lr .�// � C.d/h
�2�
k .h2�g/f kL2.I;Lr 0 .�//:

This should be understood as a weaker version of [7, Lemma 3.4]: the loss of regularity
� corresponds to a Sobolev embedding from L2d=.d�2/ (the endpoint Strichartz exponent
on a boundaryless manifold) to Lr for a spectrally localized function. The value of r will
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be irrelevant in the forthcoming argument: any r < C1 would do as long as � is chosen
accordingly (preserving scale invariance).

Remark 6. With g D dx2 C .1 C x/�1dy2, the Laplace–Beltrami operator is written
4g D .1 C x/1=2@x.1 C x/

�1=2@x C .1 C x/�y . In our model, we use instead �F D
@2x C .1 C x/�

2
y , as �F allows for explicit computations. The difference �g � �F D

�.2.1C x//�1@x is a first-order differential operator: as such, on a semiclassical timescale
in a neighborhood of the boundary, it may be treated as a lower-order perturbative term;
proving semiclassical Strichartz estimates for �F implies the same set of estimates
for �g .

We are interested in d D 3: for qD 2we have r D 10, sC 1=qD 7=10 < 1. The crucial
point is that r < C1: in [5], for q D 2, r D C1, s C 1=q D 1 and one ends up with
two successive logarithmic losses that force us to consider only lower-order nonlinearities.
In [20], Strichartz estimates are bypassed and replaced by bilinear estimates: logarithmic
losses turn out to be more manageable in that setting and one can implement a suitable
version of the Brezis–Gallouët argument, obtaining global existence of solutions to the
cubic nonlinear Schrödinger equation but only for H s.�/ data, with 1 < s � 3.

5.1. Global well-posedness in the energy space. Proof of Theorem 3

Recall that we are interested in �i@tv C �gv D jvj2v on �, with v0 2 H 1
0 .�/. Stan-

dard compactness methods provide a weak solution v 2 L1t .H
1
0 .�//, and, with E.v/ D

krvk22=2C kvk
4
4=4, we have E.v/ � E.v0/. Moreover, using Duhamel’s formula, one

may prove that v 2 Ct .L2.�//. Thus we aim to prove that v is unique and that time
continuity holds in H 1

0 .�/. To this end, [7] implement an argument of Yudovitch in a
clever way, using the inhomogeneous endpoint Strichartz estimate at the semiclassical
level. We follow them closely, having only to check that the specific value r D 6 that
they start with is irrelevant to the crux of the matter. Assume we are on .0; T /, with
T < 1 and �j is the usual spectral localization operator associated to a Littlewood–Paley
decomposition: hD 2�j ,�j D  .h2�g/,

P
j��1�j D Id, where��1 D �.�g/ with �

supported in B.0; 2/. After time localization on intervals of size h, applying their inhomo-
geneous endpoint Strichartz estimate and summing over O.h�1/ time intervals lead [7]
(on a boundaryless manifold) to

k�j vkL2TL6
. k�j v.0/kL2 C k�j v.T /kL2 C 2�j=2k�j vkL2TH1

C k�j .jvj
2v/kL2TL6=5

:

Reproducing their argument but using Proposition 13 with the .2; 10/ Strichartz pair leads
to

2�j=5k�j vkL2TL10
. k�j v.0/kL2 C k�j v.T /kL2 C 2�j=2k�j vkL2TH1

C 2j=5k�j .jvj
2v/kL2TL10=9

(74)
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(observe that, as noted earlier, this is essentially the same estimate in terms of scaling).
We now use Sobolev embedding, H 1 ,! L5 and product laws to bound the last term,

2j=5k�j .jvj
2v/kL2TL10=9

.
p
T 2�4j=5.sup

t
kvkH1/3:

We use Sobolev but on the left-hand side, with a large p (recall T � 1),

2�3j.1=10�1=p/�j=5k�j vkL2TLp
. 2�j sup

t
kvkH1 C 2�j=2k�j vkL2TH1

C 2�4j=5.sup
t
kvkH1/3;

to get

k�j vkL2TLp
. 2�3j=pk�j vkL2TH1 C 2

�3j=p�2j=5 sup
t
.kvkH1 C kvk3

H1/: (75)

Summing over j , applying Cauchy–Schwarz in j , we finally get the same bound as in [7]:

kvkL2TLp
.
p
pT C 1:

From there we may proceed similarly and conclude the uniqueness of weak solutions by
estimating the difference between two solutions in L2, the above estimate and an elemen-
tary differential inequality.

Once we have uniqueness, the inequality for E.v/ is immediately upgraded to conser-
vation, and continuity in H 1 follows as the potential part is itself continuous by interpo-
lation between L2 and L6.

This achieves the proof of Theorem 3 in the defocusing case. The focusing case may
be handled in a similar way, up to a smallness condition if one wants a global result to
preserve coercivity of E.v/ and we therefore skip it.

For preservation ofH 2 regularity, one may proceed exactly as in [7], using the Brezis–
Gallouët argument. One should notice, however, that the resulting bound on the Sobolev
norm is a double exponential (to be compared to the triple exponential from [20]).

5.2. Exponential growth for higher Sobolev normsHm,m > 1. Proof of Theorem 4

The double exponential growth for higher Sobolev norms was reduced to a single expo-
nential, for solutions on a generic compact, boundaryless manifold, in [21], using modified
energy methods. We now check that the elegant treatment of modified energies in [21] is
not spoiled if we replace the endpoint Strichartz estimate from [7] by our endpoint esti-
mate.

In [21], bounds on the H 2k norms follow from computing the time derivative of

E2k.v/ D k@
k
t vk

2
L2.Md /

�
1

2

Z
Md

j@k�1t rg.jvj
2/j2g �

Z
Md

j@k�1t .jvj2v/j2; (76)
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where all norms over the boundaryless manifold M d are understood with respect to the
metric volume form. One gets

d

dt
E2k.v/ D 2

Z
Md

@kt .jvj
2/@k�1t .jrgvj

2
g/C<

k�2X
jD0

cj

Z
Md

@kt .jvj
2/@

j
t .�gv/@

k�1�j
t Nv

C<

k�1X
jD0

cj

Z
Md

@
j
t .jvj

2/@
k�j
t v@k�1t .jvj2 Nv/

C=

k�1X
jD1

cj

Z
Md

@
j
t .jvj

2/@
k�j
t v@kt Nv; (77)

where cj are harmless numerical constants. We may perform the exact same computation
on our manifold �: there are no boundary terms due to the Dirichlet boundary condition,
provided that all the time derivatives that are involved do satisfy such a condition. For
the linear equation, that would follow from the data being in the domain of the suitable
power of the Dirichlet Laplacian. In the nonlinear setting, one has to require suitable
compatibility conditions as soon as the regularity is bigger than s D 4. Hence we restrict
ourselves to k D 1; 2 in what follows, although the computation can be carried out for any
k provided that the successive time derivatives have zero trace on the boundary. For the
linear equation,H 2 regularity may be preserved if we work with data in the domain of the
Dirichlet Laplacian, H 2.�/ \H 1

0 .�/; similarly, H 4 regularity requires v0 2 H 4.�/ \

H 1
0 .�/ and �gv0 2 H 1

0 .�/, where the latter condition is a natural compatibly condition
to match traces at t D 0.

In the nonlinear setting, we may use the equation to check that having the data in the
natural domain of the operator (for H 2 and H 4 regularity) allows for compatibility at
t D 0: define i@tv.t D 0/ D �gv0 � jv0j2v0 2 L2 if u 2 H 2. Similarly, �@2t v.t D 0/ D
�2v0 � 2.�gv � jv0j

2v0/jv0j
2C .�g Nv0 � jv0j

2 Nv0/v
2
0 2L

2 if v0 2H 4 \H 1
0 and�v0 2

H 1
0 . The next iteration would yield a term �2g.jv0j

2v0/, which has no particular reason to
have zero trace on the boundary unless we ask for it.

Remark 7. If we insist that the operator near the boundary should be�F and not the cor-
responding Laplace–Beltrami operator (from Remark 6), then one may (formally) check
that @2xvj¹xD0º D 0, and proceed with further regularity, iterating like the usual Laplacian
in the half-space where normal derivatives of even order vanish. However, such a model
is somewhat artificial and the Laplace–Beltrami version is a better match if one is trying
to be closer to the boundary of a ball.

We proceed with the growth analysis: first, we remark that one may replace the Sobo-
lev norms by the L2 norm of time derivatives:

k@tvk
2
L2.�/

D

Z
�

i@tv.�i@t Nv/ D

Z
�

.�gv � jvj
2v/..�g Nv � jvj

2
Nv/

D k�guk
2
L2.�/

C l.o.t.
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where the lower-order terms are controlled using at most one factor u 2 H 2. Similarly,
one may write

k@2t vk
2
L2.�/

D

Z
�

i@t@tv.�i@t@t Nv/ D

Z
�

.@t�gv � @t .jvj
2v//..@t�g Nv � @t .jvj

2
Nv//

D k�2guk
2
L2.�/

C l.o.t.

after further substitutions through the equation.
We will therefore address theL2 norm of @tu, replacing it with E2.v/, which we define

with (76), replacing M d by �: @2t u (through E4.v/) can be dealt with similarly (for the
top-order term, the remaining terms being lower order). The modified energy bound in
[21] proceeds with

d

dt
E2.v/ .

Z
Md

jr
2vj jrvj2jvj . kvkH2krvk2

L6
kvkL6 ;

using the equation to eliminate all time derivatives and ignoring lower-order terms; one
then uses a suitable version of Proposition 13, involving the endpoint Strichartz estimate,
for the gradient term, which is therefore bounded by (the square of) an H 3=2 with an
(important) additional power of time; by interpolation one recovers another H 2 norm and
this leads to exponential growth for the H 2 norm by standard arguments.

From the computation of the time derivative (77) (with M d replaced by �), we simi-
larly get

d

dt
E2.v/ .

Z
�

jr
2vj jrvj2jvj; (78)

ignoring, once again, lower-order terms (where spatial derivatives are distributed over at
least four factors v rather than just three of them). We now modify how we distribute
norms on the integral over � in (78): one should heuristically think that we aim to place
each rv in L4t;x (hence controlled byH 3=2) and v 2 L1t;x . We need to slightly perturb this
choice, however, in order to avoid a log loss: with a large p, we have, by our Strichartz
estimate (75) (at the scaling level ofH 1

0 data) and Sobolev embedding (starting from L6x),

�j v 2 2
3j=pL2tL

p and �j v 2 2
�3.1=6�1=p/jL1t L

p:

Hence we get, balancing regularities with .1� e/ 3
p
D e.1

2
�
3
p
/ (e D 6=p), v 2L

2
1�6=p

t Lp

in terms of the energy E.v/.

Then we will get jrvj2jvj 2 L1tL
2, with v 2 L

2
1�6=p

t Lp , provided one may estimate
both factors rv 2 LrtL

q , where .r; q/ is close to .4; 4/ and such that

1 D
1

2

�
1 �

6

p

�
C
2

r
and

1

2
D
1

p
C
2

q

�
)

1

r
C
3

q
D 1

�
:

We now prove such an estimate on rv: start over with (74) but shift regularity on v from
H 1 to H 3=2:

2�j=5Cj=2k�j vkL2TL10
. 2j=2.k�j v.0/kL2 C k�j v.T /kL2/C 2

�j=2
kr�j vkL2TH1=2

C 2j=5Cj=2k�j .jvj
2v/kL2TL10=9

;
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multiply by 2j=2 and estimate the nonlinear term placing one factor in H 3=2 and others in
H 1 ,! L5,

2�j=5kr�j vkL2TL10
. kr�j v.0/kL2 C kr�j v.T /kL2 C kr�j vkL2TH1=2

C 2�3j=10
p
T sup

t
.kvkH3=2kvk

2
H1/;

from which we easily obtain

sup
j

.2�j=5kr�j vkL2TL10
/ . E.v/1=2 C

p
T .1CE.v// sup

t
kvkH3=2 :

Then pick Q (> q) such that 1=q D .2=r/.1=Q/ C .1 � 2=r/.1=2/ and use Sobolev
embedding to go from L10 to LQ:

sup
j

.2�j=5�3j.1=10�1=Q/kr�j vkL2TLQ
/ . E.v/1=2 C

p
T .1CE.v// sup

t
kvkH3=2 :

On the other hand, from rv 2 L1T H
1=2 we have

sup
j

.2j=2kr�j vkL1T L2/ . sup
0�t�T

kvkH3=2 :

Choosing � D 2=r > 1=2, the regularities cancel as scaling dictates: from 3=qC 1=r D 1

we check that indeed �1
2
�
3

Q

�2
r
D
1

2

�
1 �

2

r

�
:

We therefore get the desired LrLq estimate for rv:

krvkLrTLq .
�
E.v/1=2 C

p
T .1CE.v// sup

0�t�T

kvkH3=2

��� sup
0�t�T

kvk1��
H3=2

�
:

Then there exists C.E/ (which may change from line to line) such that

krvkLrTLq . C.E.v//
�

sup
0�t�T

kvk1��
H3=2 C T

1=4 sup
0�t�T

kvkH3=2

�
:

Gathering all our estimates, we get that, for 0 < T < 1,

kv.�; T /k2
H2 � kv.�; 0/k

2
H2 �

Z T

0

Z
M

jr
2vj j@vj2jvj

. kvkL1T H2kvjrvj2kL1TL2

. kvkL1T H2krvk2LrTLq
kvk

L
2=.1�6=p/
T Lp

. C.E/
�

sup
0�t�T

kvk2��
H2 C T

1=2 sup
0�t�T

kvk2
H2

�
;

from which exponential growth follows as in [21]. This concludes the proof of Theorem 4.
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