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Modified energies for the periodic generalized KdV
equation and applications

Fabrice Planchon, Nikolay Tzvetkov, and Nicola Visciglia

Abstract. We construct modified energies for the generalized KdV equation. As a consequence,
we obtain quasi-invariance of the high-order Gaussian measures, along with Lq regularity on the
corresponding Radon–Nikodym density, as well as new bounds on the growth of the Sobolev norms
of the solutions.

Dedicated to the memory of Professor Jean Ginibre

1. Introduction

1.1. Integrable KdV models and their conservation laws

The Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are
canonical integrable partial differential equations which read

@tu � @
3
xuC @x.u

pC1/ D 0; p D 1; 2; (1.1)

with p D 1 for the KdV equation and p D 2 for mKdV. The well-known Miura transform
may be used to connect solutions of KdV and mKdV. Both equations (1.1) have a Lax
pair formulation and, as a consequence, possess infinitely many conservation laws (see
e.g. [20,42,51] and references therein). One important consequence of these conservation
laws is a priori global in time bound for the Sobolev norm H k of the solutions of (1.1):
for every k 2 N, there exists a first integral that is writtenZ

.@kxu/
2 dx C lower-order terms;

where integration holds on the line R or on a torus R=.2�Z/ depending on which back-
ground (1.1) is considered. Following [51], another interesting consequence of the afore-
mentioned conservation laws is the existence of invariant measures along the flow asso-
ciated with (1.1); such measures are also absolutely continuous with respect to Gaussian
measures (see Section 1.4 for their definition).
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1.2. Generalized KdV models and their almost conservation laws

The Lax pair formulation is no longer known to hold if the power p is replaced by p¤ 1;2
in (1.1). Therefore a natural question is whether conservation laws for KdV and mKdV
may still hold in the case of a general power p. We introduce in this paper a family of
energies which are not exact conservation laws, however will be useful to get new results
for the long time behavior of the solutions to (1.2), as we shall specify in the sequel.

Consequently, we consider the Cauchy problem, which we call the generalized KdV
(gKdV) equation, ´

@tu � @
3
xuC @x.u

pC1/ D 0; p � 3; p 2 2N;

u.0; x/ D '.x/ 2 H k.T /;
(1.2)

where T denotes the one-dimensional torus R=.2�Z/. Even if (1.2) does not have a Lax
pair formulation it still has a Hamiltonian formulation, with conserved Hamiltonian H .u/:

H .u/ D
1

2

Z
T
.@xu/

2 dx C
1

p C 2

Z
T
upC2 dx:

That H is preserved along the flow of (1.2) and some of its truncations will play a key
role in our analysis.

Equation (1.2) is the so-called defocusing model. The focusing model can be obtained
by a change of sign in front of the nonlinear term in (1.2) (which also changes the sign in
front of the second term defining H ). Most of the results that we will obtain below can
be extended to either odd p or to the focusing gKdV for even p, provided that a uniform
bound on the H 1 norm of the solution is assumed. These extensions do not require any
new significant argument and therefore we restrict ourselves to (1.2).

The Cauchy problem (1.1) has a long and interesting history. The first results dealt
mainly with (1.2) on the spatial domain R rather than the torus T . A classical reference
is the work by Saut [41]. In the fundamental paper [21], Kato initiated the use of the
dispersive properties in the analysis of (1.2). In [22–24] Kenig–Ponce–Vega implemented
tools from harmonic analysis allowing a deeper view of the dispersive effect. However,
these tools were not efficient in the periodic case. The dispersive effect in the periodic
case was understood by Bourgain in [1]. The methods developed by Bourgain had far-
reaching consequences in the field of dispersive PDEs. We will benefit from Bourgain’s
seminal work in this paper too. In the case p D 4 and focusing nonlinearity, when (1.2) is
posed on the real line, there are remarkable results by Martel–Merle–Raphaël on solutions
developing singularities in finite time; see [27–29] and the references therein. It is not clear
how to extend the results of [27–29] to the periodic case because on R the blow-up point
may escape to infinity, and therefore its localization seems a considerable challenge. For
recent progress in this direction, we refer to [30].

Throughout the paper we shall also need to analyze Fourier truncations of (1.2). For a
given even integer p � 3 and M 2 N, we consider the following truncated version of the
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gKdV equation (1.2): ´
@tu � @

3
xuC �M@x..�Mu/

pC1/ D 0;

u.0; x/ D '.x/;
(1.3)

where forM 2N we denote by �M the Dirichlet projector defined by �M .
P
n2Z cne

inx/

D
P
jnj�M cne

inx . Thanks to the aforementioned references on the Cauchy problem for
(1.2), solving (1.3) will not be an issue here because we know from [1, 3, 7, 44] that
(1.3) is globally well posed in H s.T /, s � 1 (and even locally well posed for s � 1

2
),

where H s.T / is defined through the Fourier transform as ..1 C jnjs/cn/n 2 l2.Z/. In
fact, for M <1 an easier argument can be applied by using that for frequencies � M
equation (1.3) becomes an ODE (with a Lipschitz vector field) for which global well-
posedness holds thanks to the L2 conservation law, while for frequencies > M equation
(1.3) becomes a linear equation. However, if one wishes to haveH s.T / bounds uniformly
with respect to M , the analysis of [1, 3, 7, 44] cannot be avoided. Let us denote by ˆM .t/
the flow of (1.3) and ˆ.t/ the flow of (1.2). We shall not specify the dependence on p in
this notation.

Our aims are twofold: first, we provide new a priori polynomial bounds on the growth
of high-order Sobolev norm for solutions to (1.2) (see Theorem 1.1); second, we gain
knowledge about the transport of Gaussian measures along the flow associated with (1.2)
(see Theorem 1.4).

Let us introduce some notation that will be used in the sequel: for every s 2 R and for
every p 2 Œ1;1� denote H s D H s.T / and Lp D Lp.T /; H s� will denote any Sobolev
spaceH s�" with " > 0 small enough. Similarly, given a real number ˛, denote by ˛C any
real number larger than ˛. We shall denote N D ¹0; 1; 2; : : :º, and for every k 2 N n ¹0º
we shall use the following specific Sobolev norm: k'k2

Hk D k'k
2
L2
Ck@kx'k

2
L2

. We recall
that ˆ.t/ and ˆM .t/ denote respectively the nonlinear flows associated with (1.2) and
(1.3). We shall also sometimes use the notationˆ.t/Dˆ1.t/. The Dirichlet projector on
frequencies smaller than or equal to M is denoted by �M and we also sometimes use the
notation �1 to denote the identity operator.

We can now state our main results.

1.3. Growth of Sobolev norms

The first main result of this paper is the following one.

Theorem 1.1. Let k > 1 be an integer. Then for every ' 2 H k and for every " > 0 there
exists a constant C > 0 such that

kˆ.t/'kHk � k'kHk C Ct
k�1
2 C" 8t > 0: (1.4)

Although Theorem 1.1 is stated for t > 0, it can be extended to every t 2 R by the
reversibility of the flow associated with (1.2). Moreover, the constant C may be chosen
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uniformly with respect to bounded sets in H k , and, even better, in H 1, once " has been
chosen (through the use of Proposition 2.1).

The line of research leading to results such as the one in Theorem 1.1 was initiated
in [5]. We improve results obtained in [44] (where the growth had exponent 2k) and [31]
(where the growth was lowered to k � 1C ".)

It would be very interesting to construct solutions of the defocusing gKdV such that
the H k norms do not remain bounded in time for k > 1. Unfortunately, such results are
rare in the context of canonical dispersive models (with the notable exception of [19]). Our
approach is restricted so far to one-dimensional models and it would be very interesting to
extend it to higher dimensions; however, we believe it does apply to the one-dimensional
nonlinear Schrödinger (NLS) equation, modulo some additional difficulties related to
complex-valued functions. This will be addressed elsewhere.

The proof of Theorem 1.1 stems from constructing suitable modified energies at the
level of H k norms: while we are unable to obtain invariant energies, we quantify how far
they are from being exact conservation laws. The closer we are to conservation laws, the
better are polynomial bounds for corresponding nonlinear solutions.

Theorem 1.2. Let k > 1 be an integer. Then for every T > 0 there exist functionals

Ek WH
k
! R; G Tk WH

k
! R

such that

• for all ' 2 H k and all T > 0 we have

Ek.ˆ.T /'/ � Ek.'/ D G Tk .'/I (1.5)

• the energy Ek has the structure

Ek.u/ D k@
k
xuk

2
L2
CRk.u/; (1.6)

with Rk.u/ satisfying for all u 2 H k ,

jRk.u/j � C C Ckuk
2k�4
k�1

Hk kuk
pC 2

k�1

H1 I (1.7)

• for every fixed R > 0 and T > 0, there exists a constant C > 0 such that, for all
' 2 H k such that k'kH1 < R, we have

jG Tk .'/j � C C Ck'k
. 2k�4
k�1

/C

Hk : (1.8)

We emphasize that Theorem 1.2 immediately holds, in a stronger form, for k D 0; 1,
with energies E0.u/ D kuk

2
L2

, E1.u/ D H .u/; these energies are indeed conserved along
the flow associated with (1.2). However, for k > 1, such exact conservation laws are not
available and hence the r.h.s. in (1.5) is nonzero.

The proof of Theorem 1.2 relies on a key improvement in some ideas developed in
[38] in the context of NLS, together with bounds resulting from dispersive estimates such
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as Bourgain’sL6 Strichartz inequality for (linear) KdV. Let us now briefly sketch the main
point: adapting the argument in [38] would allow us to get suitable energies zEk such that
zEk.ˆ.T /'/ � zEk.'/ D zG

T
k
.'/, where zG T

k
would satisfy j zG T

k
.'/j � C C Ck'k

˛.k/

Hk , but
with ˛.k/ > .2k�4

k�1
/C. Here, we get a significantly smaller power of the H k norm of the

initial datum in (1.8) for G T
k

. This improvement on ˛.k/, which in turn is crucial in order
to obtain the growth of the Sobolev norms in Theorem 1.1, follows from a refinement of
the construction of the energies Ek compared with zEk . In particular, once we compute the
variation of the energies introduced in this paper along solutions, we get that G T

k
.'/ can

be expressed as the space-time integral of multilinear expressions of densities in which
the worse single terms (namely those that carry the maximal number of derivatives) have
at least five factors involving at least one derivative. This key property of distributing
derivatives on several factors was out of reach with our previous constructions of modified
energies. For details we refer to Section 3. Then the dispersive effect, through the L6

Strichartz bound, allows us to transform the aforementioned distribution of derivatives in
terms of powers of Sobolev norms of the initial datum, as discussed above.

We should point out that, in the context of gKdV, modified energies similar to those
we get in Theorem 1.2 have already appeared, at the level of k D 2, in [26], where they
are used in connection with N -soliton asymptotics.

For details on how Theorem 1.2 implies Theorem 1.1 we refer to [38]; however for
the sake of completeness we briefly outline the argument. By local Cauchy theory, for any
given ' 2 H k with k > 1, there exists T D T .k'kH1/ and a constant C D C.k'kH1/

such that supt2.0;T / kˆ.t/'kHk � Ck'kHk . From supt kˆ.t/'kH1 <1 (recall we are
considering the defocusing equation), we may use the estimate above uniformly, selecting
as initial condition ˆ.s/' for arbitrary s and hence

sup
t2.s;sCT /

kˆ.t/'kHk � Ckˆ.s/'kHk 8s > 0: (1.9)

Combining (1.5) with (1.6) and recalling the conservation of the L2 norm, we get, for our
chosen T ,

kˆ.t C T /'k2
Hk � kˆ.t/'k

2
Hk D G Tk .ˆ.t/'/ �Rk.ˆ.t C T /'/CRk.ˆ.t/'/:

In turn, (1.8) and (1.7) (recalling that the H 1 norm on the r.h.s. is uniformly bounded)
together imply

kˆ.t C T /'k2
Hk � kˆ.t/'k

2
Hk � C C Ckˆ.t C T /'k

. 2k�4
k�1

/C

Hk C Ckˆ.t/'k
. 2k�4
k�1

/C

Hk

� C C Ckˆ.t/'k
. 2k�4
k�1

/C

Hk

for all t > 0, where we used (1.9) in the last step. Choosing t D nT and defining ˛n D
kˆnT .'/k

2
Hk we get a discrete Gronwall-type inequality

˛nC1 � ˛n � C C C˛
. k�2
k�1

/C

n I
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this yields ˛n �Cn.k�1/
C

which in turn implies (1.4) for t D nT . Using (1.9), this extends
to all t .

1.4. Quasi-invariant Gaussian measures

Next we focus on the quasi-invariance of certain Gaussian measures underˆ.t/. For k� 1,
we denote by �k the measure induced by the map

! 7!
X
n2Z

gn.!/

.1C n2/k=2
einx ;

where gn D g�n, g0 D 0 and .gn/n>0 is a sequence of independent, identically distributed
complex Gaussian random variables. We can see�k as a probability measure onH .k� 12 /

�

.
We aim to understand how �k is transported under the flow of (1.2). This is a delicate
task because infinite-dimensional measures become easily mutually singular. As H is
preserved along the flow of (1.2), studying the transport of �R.H .u// d�k.u/ is more
natural, where R > 0 is a fixed energy level and �RWR ! R is a continuous function
vanishing outside Œ�R; R�. Such cutoffs were first introduced in the field of dispersive
PDEs in [25].

For M < 1, verifying that the transport of the measure �R.H .�Mu// d�k.u/ by
ˆM .T / is absolutely continuous with respect to its initial value will be relatively easy,
with a Radon–Nikodym derivative given by

gT;M .u/ D e
k�Muk

2

Hk
�k�M .ˆM .T /u/k

2

Hk : (1.10)

The main difficulty is passing to the limitM !1 in fT;M . The issue is that each term in
the exponential in (1.10) strongly diverges in the limit M !1 and therefore subtle can-
cellations should be exploited. A suitable adaptation of the modified energies introduced
in Theorem 1.2 can be useful to overcome this difficulty; more precisely we shall need the
following result.

Theorem 1.3. Let k > 1 be an integer. Then for every T > 0, M 2 N [ ¹1º there exist
functionals

xEk WH
k
! R; xG Tk;M WH

.k� 12 /
�

! R

such that

• for every M 2 N [ ¹1º, T > 0 and ' 2 H k we have

xEk.�M .ˆM .T /'// � xEk.�M'/ D xG
T
k;M .�M'/I (1.11)

• the energy xEk has the structure

xEk.u/ D k@
k
xuk

2
L2
C xRk.u/;

where xRk WH
.k� 12 /

�

! R satisfies for all u 2 H .k� 12 /
�

the bound

j xRk.u/j � C C Ckuk
. 4k�8
2k�3

/C

H
.k� 12 /

�
kuk

pC 2
2k�3

H1 I (1.12)
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• for every fixed R > 0 and T > 0, there exists a constant C > 0, uniform w.r.t. to
M 2 N [ ¹1º, such that for all ' 2 H .k� 12 /

�

such that k'kH1 < R we have

j xG Tk;M .�M'//j � C C Ck'k
. 4k�8
2k�3

/C

H
.k� 12 /

�
I (1.13)

• for every ' 2 H .k� 12 /
�

and for every T > 0 we have the convergence

xG Tk;M .�M'/
M!1
����! xG Tk;1.'/: (1.14)

Let us compare Theorems 1.2 and 1.3: we point out that both energies Ek and xEk coin-
cide; however, we elected to use different notation, as the corresponding lower-order part
of Ek , namely Rk , introduced in Theorem 1.2, is defined on H k , while xRk introduced
in Theorem 1.3 is defined on the larger space H .k� 12 /

�

. It will be clear in the proof that
Rk.u/ D xRk.u/ for u 2 H k but xRk to be defined on H .k� 12 /

�

is crucial for our pur-
pose: when dealing with the analysis of transported Gaussian measures �k , working at
regularity H k is not sufficient and one needs to go below at lower regularity H .k� 12 /

�

,
as �k.H .k� 12 /

�

/ D 1 and �k.H k/ D 0. The same comment applies to functionals G T
k

and xG T
k;1

appearing in Theorems 1.2 and 1.3. While they coincide on H k , we consider
the second one as defined on the larger space H .k� 12 /

�

. Estimates (1.12) and (1.13) will
be crucial in the sequel and should be compared with (1.7) and (1.8). Notice how the
power of the H 1 norm differs in (1.7) and (1.12), while in (1.13) we lose more deriva-
tives but we gain a smaller power compared to (1.8): in the r.h.s. of (1.12) and (1.13)
we have the H .k� 12 /

�

norm of the initial datum to a power that is less than 2, and this
is crucial for using some standard Gaussian analysis. This is the key to proving, beyond
quasi-invariance, Lq regularity for the density of the transported Gaussian measure (see
Theorem 1.4).

Let us also comment on the introduction, in Theorem 1.3, unlike in Theorem 1.2, of
a family of functionals xG T

k;M
for M 2 N. In order to study properties of the transported

Gaussian measures along the infinite-dimensional flow associated with (1.2), we first need
to analyze the variation of the energy xEk along the flow ˆM .t/ associated with (1.3)
(see (1.11)). The functionals xG T

k;M
turn out to be strongly related to xG T

k;1
(and hence to

the functional G T
k

in Theorem 1.2). Actually they do look alike except for the Dirichlet
projector �M that appears in xG T

k;M
for M 2 N. However, the nice properties enjoyed by

projectors �M allow us to estimate xG T
k;M

uniformly w.r.t. M .
As Theorem 1.2, Theorem 1.3 relies similarly on a key improvement in [39]. The

energies that we introduce in Theorem 1.3 allow us to improve on the power that we get
on the r.h.s. in (1.12) and (1.13) when compared to what we would get by simply adapting
the construction used in [39] in the NLS context.

We can now give the precise statement of our quasi-invariance result for gKdV.

Theorem 1.4. Let k > 1 be an integer. The Gaussian measure �k is quasi-invariant by
the flow ˆ.T / for every T > 0. Moreover, for every fixed R > 0 and T > 0 we have, for
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A a Borel subset of H .k� 12 /
�

,Z
ˆ.T /A

�R.H .u// d�k.u/ D

Z
A

gT .u/�R.H .u// d�k.u/;

where gT .u/�R.H .u// 2 Lq.�k/ with q 2 Œ1;1/ for k > 2 and q D 1 for k D 2. In
addition, we have

gT .u/ D exp
�
� xRk.u/C xRk.ˆ.T /u/ � xG

T
k;1.u/

�
;

where xRk and xG T
k;1

, as introduced in Theorem 1.3, are well-defined quantities on the
support of �k . More precisely, with gT;M defined in (1.10), we have

lim
M!1

kgT;M .u/�R.H .�Mu// � gT .u/�R.H .u//kLq.d�k.u// D 0:

We point out that with such quasi-invariance we also get Lq regularity for the Radon–
Nikodym density. Exactly as for Theorem 1.1, the result in Theorem 1.4 can be extended
to the case T < 0 by using the reversibility of the flow associated with (1.2). However, for
simplicity we shall focus on the case T > 0.

Theorem 1.4 fits in the line of research aiming to describe macroscopical (statistical
dynamics) properties of Hamiltonian PDEs. In particular, it implies a stability property
of the corresponding infinite-dimensional Liouville equation (see [45, Corollary 1.3]).
The earliest reference we are aware of is [13], followed by [2, 4, 25, 51]. Inspired by the
work on invariant measures for the Benjamin–Ono equation [10,48–50], quasi-invariance
of Gaussian measure for several dispersive models was obtained in recent years; see
[9,11,12,15,16,18,33–37,39,43,47]. The method to identify the densities in Theorem 1.4
is inspired by recent works [9, 14]. In Theorem 1.4, we provide much more information
on the densities when compared to [39], which used modified energies on the nonlinear
Schrödinger equation. It should be underlined that a key novelty in the proof of Theo-
rem 1.4 with respect to [14] and [39] is that we crucially use dispersive estimates in the
analysis.

We hope that the approach developed here may allow us to identify the Radon–
Nikodym derivatives in the quasi-invariance obtained in [39], up to additional difficulties
related to complex-valued functions in the context of NLS.

Let us finally comment on the case k D 1. In this case the Gibbs measure, which is
absolutely continuous with respect to �1, is an invariant measure. This is precisely the
result obtained in [40] in the case p D 3 and [6] in the general case p � 3 (see also [32]
for weak solutions in the case p > 3).

1.5. An informal conclusion

The results of this paper and previous works of the second and third authors [10, 48–50]
can be summarized as follows. In the case of integrable models, exact conservation laws
for all Sobolev regularities imply existence of invariant measures; the modified energies
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we construct in the context of nonintegrable models imply the existence of quasi-invariant
measures. Concerning the deterministic behavior of the solutions, exact conservation laws
imply uniform bounds on Sobolev norms of solutions, while the modified energies we
construct imply polynomial bounds on Sobolev norms of solutions.

1.6. Organization of the paper

In Section 2 we get dispersive estimates that play a crucial role in the analysis. For com-
pleteness, the proof of the key nonlinear estimate is presented in the appendix. In Section
3 we prove Theorem 1.2 and in Section 4 we prove Theorem 1.3. Section 5 is devoted to
the proof of Theorem 1.4.

2. Dispersive estimates

The aim of this section is to collect useful results on the flows associated with (1.2) and
(1.3). First, global existence and uniqueness of solutions for the truncated flows follow
by a straightforward ODE argument, along with conservation of L2 mass. From now on
we assume without further comment existence and uniqueness of global flows ˆM .t/ for
M 2 N. The Cauchy problem associated with (1.2) is much more involved. In particular,
we quote [1, 3, 7, 44] whose analyses imply that for every s � 1 there exists a unique
global solution associated with the initial datum ' 2 H s; moreover, we have continuous
dependence on the initial datum. The analysis in [7] allows local Cauchy theory to be
treated down to low regularity H

1
2 .

It will later be important to have a series of uniform bounds with respect toM (in par-
ticular, suitable L6 bounds), as well as some delicate convergences in suitable topologies
of the finite-dimensional flows to the infinite-dimensional one. To the best of our knowl-
edge, these properties do not follow in a straightforward way from the aforementioned
works and their proofs require some further arguments. Indeed, in our analysis we shall
borrow many ideas from the references above (in particular [7]), which in conjunction with
new ingredients will imply several properties for the flows ˆM .t/ with M 2 N [ ¹1º.

In order to provide a precise statement we first define our resolution space. First recall
X s;b spaces, introduced in the fundamental work [1]. For real numbers s, b and a function
u on R � T , we define the X s;b norm associated with the KdV dispersive relation by

kukXs;b D khni
s
h� C n3ib Ou.�; n/kL2n;� ;

where Ou.�; n/, � 2 R, n 2 Z is the space-time Fourier transform of u. For T > 0, we
denote byX s;bT the restriction space of a function on .�T;T /�T equipped with the norm

kuk
X
s;b
T

D inf
Qu2Xs;b

Quj.�T;T /Du

k QukXs;b :
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In our analysis one needs to take b D 1=2 and we are led to work in the space Y s equipped
with the norm

kukY s D kuk
X
s; 12
C khnis Ou.�; n/kl2nL1� :

One can introduce as above the restriction spaces Y sT . We recall the embedding Y sT �
C.Œ0; T �IH s/.

Proposition 2.1. Let s � 1 and T > 0; then

8' 2 H s; 9Š ˆ.t/' 2 Y sT ; a solution to (1.2) (2.1)

and we have convergence of the truncated flow, for all compact K � H s ,

sup
'2K

k�M .ˆM .t/'/ �ˆ.t/'kL1.Œ0;T �IH s/

M!1
����! 0: (2.2)

For every " > 0 and R > 0 there exists C > 0 independent of M 2 N [ ¹1º such that

8' 2 H s s.t. k'kH1 < R; k�MˆM .t/'kH s � Ck'kH s ; (2.3)

8' 2 H sC" s.t. k'kH1 < R; k�M .ˆM .t/'/kL6..0;T /IW s;6/ � Ck'kH sC" ; (2.4)

8' 2 H sC"; k�M .ˆM .t/'/ �ˆ.t/'kL6..0;T /IW s;6/

M!1
����! 0: (2.5)

We remark that (2.2) (with K D ¹'º) and (2.4) imply (2.5): using the interpolation
inequality, for ı > 0,

kukW s;6 � Ckuk
s
sCı

W sCı;6kuk
ı
sCı

L6
;

we get, by time integration, the Hölder inequality in time and the Sobolev embedding
H s � L6,

kukL6.0;T /IW s;6/ � Ckuk
s
sCı

L6..0;T /IW sCı;6/
kuk

ı
sCı

L1.0;T /IH s/
: (2.6)

Next one can choose u D �M .ˆM .t/'/ �ˆ.t/' and we get (2.5) since the second term
on the r.h.s. in (2.6) converges to zero by (2.2) and the first term on the r.h.s. is bounded
provided we choose ı D "

2
and apply (2.4), replacing s by s C "

2
(there is room to play

with " > 0).
Hence we are reduced to proving (2.1), (2.2), (2.3) and (2.4). The main idea is to

perform a gauge transform on gKdV, work on the gauged equation and then transfer results
back to the original flow. To prove (2.2) it will be of importance to have a lemma about the
continuity of time-dependent translations for time-dependent functions (see Lemma 2.1
below).

2.1. The gauged gKdV equation

We now present the gauge transform following [7]. Set uM .t; x/ D �M .ˆM .t/'/ and
introduce a change of unknown,

vM .t; x/ D uM

�
t; x C .p C 1/

Z t

0

Z
T
u
p
M dx dt

�
;
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taming the derivative loss in the nonlinearity. By invariance of the Lebesgue norm by
translation,

uM .t; x/ D vM

�
t; x � .p C 1/

Z t

0

Z
T
v
p
M dx dt

�
: (2.7)

Therefore, vM is a solution to8̂<̂
:@tvM � @

3
xvM C �M@x.v

pC1
M / � .p C 1/

�Z
v
p
M dx

�
@xvM D 0;

vM .0; x/ D �M'.x/:

Let… be the orthogonal projector on the nonzero frequencies defined by…f.x/D f .x/�R
T f dx for x 2 T , and observe that �MvM D vM . Therefore, we can write

�M@x.v
pC1
M / � .p C 1/

�Z
T
v
p
M dx

�
@xvM D .p C 1/�M .v

p
M@xvM /

� .p C 1/

�Z
T
v
p
M dx

�
�M@xvM

D .p C 1/�M .@xvM…v
p
M /:

Next, notice that since ….@xvM / D @xvM , we can writeZ
T
@xvM…v

p
M dxD

Z
T
v
p
M…@xvM dxD

Z
T
v
p
M@xvM dxD

1

p C 1

Z
T
@x.v

pC1
M /dxD 0I

therefore we have .p C 1/�M .@xvM…v
p
M / D .p C 1/�M….@xvM…v

p
M / and the equa-

tion for vM can be written as´
@tvM � @

3
xvM C .p C 1/�M….@xvM…v

p
M / D 0;

vM .0; x/ D �M'.x/:
(2.8)

The projector … in the nonlinear term of (2.8) is of fundamental importance because it
allows cancellation of resonant nonlinear interactions in Bourgain spaces. Next we denote
by ˆG

M .t/' the flow associated with´
@tv � @

3
xv C .p C 1/�M…..@x�Mv/….�Mv/

p/ D 0;

v.0; x/ D '.x/;

and by ˆG
1.t/' the flow associated with´

@tv � @
3
xv C .p C 1/….@xv …v

p/ D 0;

v.0; x/ D '.x/:
(2.9)

We abuse notation, writing ˆG
1.t/ D ˆ

G .t/. Notice that the solution to (2.8) is provided
by �M .ˆG

M .t/'/.
In order to prove Proposition 2.1, we work with the flow ˆG

M .t/ and then go back to
the original flow ˆM .t/.
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Proposition 2.2. Let s � 1 and T > 0; then

8' 2 H s; 9Š ˆG .t/' 2 Y sT ; a solution to (2.9): (2.10)

For every R > 0, the map from H s \ ¹' 2 H s s.t. k'kH1 < Rº to Y sT ,

' ! �Mˆ
G
M .t/' is uniformly Lipschitz w.r.t. M 2 N [ ¹1º; (2.11)

and there exists C > 0, independent of M 2 N [ ¹1º, such that

8' 2 H s s.t. k'kH1 < R; k�Mˆ
G
M .t/'kL1.Œ0;T �IH s/ � Ck'kH s : (2.12)

We also have the following convergence, for all compact K � H s:

sup
'2K

k�M .ˆ
G
M .t/'/ �ˆ

G .t/'kL1.Œ0;T �IH s/

M!1
����! 0: (2.13)

Finally, for all " > 0 there exists C > 0, independent of M 2 N [ ¹1º, such that

8' 2 H sC" s.t. k'kH1 < R; k�M .ˆ
G
M .t/'/kL6..0;T /IW s;6/ � Ck'kH sC" : (2.14)

Notice that in the statement of Proposition 2.2 we claim Lipschitz continuity of the
flow. This property will be crucial in order to prove (2.13). Once we are done with this
proposition, we can go back to the original flow ˆM .t/ by using the following result
concerning a time-dependent version of the continuity of the translation operator.

Lemma 2.1. Let s � 0 and W � C.Œ0; T �IH s/ be compact. Assume that for every
w.t; x/ 2 W there exists a sequence wM .t; x/ 2 C.Œ0; T �IH s/ and functions �wM ; �

w 2

C.Œ0; T �IR/ such that

sup
w2K

kwM .t; x/ � w.t; x/kL1.Œ0;T �IH s/

M!1
����! 0 (2.15)

and
sup
w2K

k�wM .t/ � �
w.t/kL1.Œ0;T �IR/

M!1
����! 0: (2.16)

Then we have

sup
w2K

kwM .t; x C �
w
M .t// � w.t; x C �

w.t//kL1..0;T /IH s/

M!1
����! 0: (2.17)

Proof of Proposition 2.1. Together, Proposition 2.2 and Lemma 2.1 imply Proposition
2.1. From (2.7),

Œ�M .ˆM .t/'/�.x/ D Œ�M .ˆ
G
M .t/'/�.x C �

'
M .t//;

where

�
'
M .t/ D �.p C 1/

Z t

0

Z
T
ŒˆG
M .t/'�

pC1 dx dt; (2.18)
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hence (2.1) follows by (2.10). AsW s;6 is translation invariant, (2.4) follows by (2.14), and
(2.3) follows by (2.12). Moreover, (2.2) follows by (2.13) in conjunction with Lemma 2.1,
where we choose W D ¹ˆG .t/' s.t. ' 2 Kº, and if we denote w D ˆG .t/' then the
corresponding translation parameters �wM .t/ that appear in Lemma 2.1 are given by (2.18).
Notice that the compactness of ¹ˆG .t/' j '2Kº in C.Œ0;T �IH s/, required in Lemma 2.1,
comes as a by-product of continuity of the flow map ˆG .t/ (see (2.11)) along with the
embedding Y sT � C.Œ0; T �IH s/. Uniform convergence of the translation parameters as
M !1 follows by (2.13) in conjunction with Sobolev embedding H s � LpC1.

Proof of Lemma 2.1. By translation invariance of the H s norm and by (2.15) we get

sup
w2W

kwM .t; x C �
w.t// � w.t; x C �w.t//kL1.Œ0;T �IH s/

M!1
����! 0I

hence, it will be enough to prove

sup
w2W

kwM .t; x C �
w
M .t// � wM .t; x C �

w.t//kL1.Œ0;T �IH s/

M!1
����! 0 (2.19)

in order for (2.17) to hold. Again by translation invariance of the H s norm, (2.19) is
equivalent to

sup
w2W

kwM .t; x C �
w
M .t/ � �

w.t// � wM .t; x/kL1.Œ0;T �IH s/

M!1
����! 0:

Assume by contradiction there existwk 2W and times tk
M.k/
2 Œ0;T �withM.k/

k!1
����!1

such that

kwkM .t
k
M.k/; x C �

wk

M .tkM.k// � �
wk .tkM.k/// � w

k
M .t

k
M.k/; x/kH s > "0 > 0:

By (2.15) we get

kwk.tkM.k/; x C �
wk

M.k/.t
k
M.k// � �

wk .tkM.k/// � w
k.tkM.k/; x/kH s >

"0

2
> 0:

We claim that this cannot be: by compactness of W we can assume that

wk
k!1
����! w� 2 W in C.Œ0; T �IH s/;

and therefore

kw�.tkM.k/; x C �
wk

M.k/.t
k
M.k// � �

wk .tkM.k/// � w
�.tkM.k/; x/kH s >

"0

4
> 0:

Next, up to a subsequence, tk
M.k/

k!1
����! t� and by continuity of the function w� w.r.t.

time, we get

kw�.t�; x C �w
k

M.k/.t
k
M.k// � �

wk .tkM.k/// � w
�.t�; x/kH s >

"0

8
> 0: (2.20)
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But by (2.16) we have

j�w
k

M.k/.t
k
M.k// � �

wk .tkM.k//j
k!1
����! 0

and (2.20) contradicts the boundedness of the translation operator in (time-independent)
H s .

Proposition 2.2 follows from the proposition below, which holds for finite time inter-
vals. The defocusing character of our equation is crucial in order to extend these local-in-
time properties to large times.

Proposition 2.3. Let s � 1 and R > 0; then there exists T > 0 such that

8' 2 H s
\
®
' 2 H s s.t. k'kH1 < R

¯
; 9Š ˆG .t/' 2 Y sT ; a solution to (2.9)I (2.21)

the solution maps from H s \ ¹' 2 H s s.t. k'kH1 < Rº to Y sT ,

' ! �Mˆ
G
M .t/' are uniformly Lipschitz w.r.t. M 2 N [ ¹1º: (2.22)

Moreover, there exists a constant C > 0 independent of M 2 N [ ¹1º such that

8' 2 H s s.t. k'kH1 < R; k�MˆM .t/'kL1.Œ0;T �IH s/ � Ck'kH s : (2.23)

We also have, for all compact K � H s , the convergence

sup
'2K

k�M .ˆ
G
M .t/'/ �ˆ

G .t/'kL1.Œ0;T �IH s/

M!1
����! 0; (2.24)

and for every " > 0 there exists C > 0 independent of M 2 N [ ¹1º such that

8' 2 H sC" s.t. k'kH1 < R; k�M .ˆ
G
M .t/'/kL6..0;T /IW s;6/ � Ck'kH sC" : (2.25)

Proof of Proposition 2.2. We now prove that Proposition 2.3 implies Proposition 2.2. The
quantity

1

2

Z �
�M .ˆ

G
M .t/'/

�2
C
�
@x�M .ˆ

G
M .t/'/

�2
C

1

p C 2

Z �
�M .ˆ

G
M .t/'/

�pC2 (2.26)

is conserved by (1.3) for M 2 N [ ¹1º. In particular, if we set M D 1 and R > 0 we
get

sup
t2Œ0;T max

' /

'2H s s.t. k'kH1 < R

kˆG .t/'kH1 D K.R/ <1;

where T max
' is the maximal time of existence of a solution in the iteration space Y sT . The

solution ˆG .t/' retains Sobolev regularity H s and the corresponding H 1 norm stays
below K.R/ up to T max

' . Hence we have T max
' D 1 as we can iterate the local existence
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result provided by (2.21) infinitely many times, whereR is replaced byK.R/ and T is the
corresponding time of local existence in (2.21). We also have, by (2.26),

sup
M2N[¹1º; t2Œ0;1/
'2H s s.t. k'kH1 < R

k�Mˆ
G
M .t/'kH1 D zK.R/ <1;

and arguing as above one easily checks that (2.11) follows by iterations of (2.22), with
RD zK.R/. By a similar iteration argument, (2.14) follows by (2.25) and (2.12) follows by
(2.23). Finally (2.24) and (2.11) imply (2.13) following a general argument from [47].

Proof of Proposition 2.3. Denote by S.t/ the linear group associated with the linear KdV
equation, namely S.t/ D et@

3
x . Then (2.8) is rewritten, in integral form, as

vM .t/ D S.t/.�M'/C .p C 1/

Z t

0

S.t � �/�M….@xvM .�/…v
p
M .�// d�: (2.27)

The analysis of [7, pp. 183–186 and pp. 197–200] may be used to obtain that, for s � 1,



Z t

0

S.t � �/�M….@xw.�/…w
p.�// d�






Y sT

� CT �kwk
p

Y 1T
kwkY sT ; (2.28)

where � > 0 and T 2 .0; 1/. We refer to the appendix for the proof of (2.28). Notice that
(2.28) is a slightly modified version compared with the one available in the literature: we
gain a power of T , which is very important later. By a similar argument one proves a
multilinear estimate for s � 1:



Z t

0

S.t � �/�M….@xwpC1.�/….w1.�/ � � � � � wp.�/// d�






Y sT

� CT �
pC1X
iD1

�
kwikY sT

Y
jD1;:::;pC1

j¤i

kwj kY 1T

�
; (2.29)

and existence and uniqueness follow by a classical fixed point argument in the space Y sT .
Applying (2.28) with sD1,wDvN and recalling (2.27), we obtain kvMkY 1T �Ck'kH1

provided T is small enough, depending only on a bound for ' inH 1. Applying (2.28) once
again, we get

kvMkY sT � Ck'kH
s C CT �.Ck'kH1/pkvMkY sT ;

which implies
kvMkY sT � Ck'kH

s

by possibly taking T smaller but still depending only on an H 1 bound for '. By the
embedding Y sT � L

1.Œ0; T �IH s/, (2.23) follows and we also get

kvMk
X
s; 12
T

� Ck'kH s : (2.30)
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Now we invoke the Strichartz estimate of [1, (8.37)]:

kS.t/gkL6..0;T /IL6/ � CkgkH� ; � > 0;

which together with the transfer principle from [17, Lemma 2.3] yields

kwkL6..0;T /IL6/ � CkwkX�;bT
; b >

1

2
: (2.31)

Next letw 2X
1
3 ;
1
3

T ; then we may assume without loss of generality thatw is a global space-
time function such that kwk

X
1
3 ;
1
3
� 2kwk

X
1
3 ;
1
3

T

. By the Sobolev embeddingH
1
3 � L6 and

S.t/ being an isometry on H s ,

kwkL6.RIL6.T// � CkS.�t /w.t; :/k
L6.RIH

1
3 .T//

� CkhDi
1
3
x .S.�t /w.t; ://kL6.RIL2.T//;

and by the Minkowski inequality and Sobolev embedding (which we now exploit w.r.t.
the time variable),

� � � � CkhDi
1
3
x .S.�t /w.t; ://kL2.T IL6.R//

� CkhDi
1
3
xS.�t /w.t; :/k

L2.T IH
1
3 .R//

D CkhDi
1
3
t hDi

1
3
x .S.�t /w.t; ://kL2.R�T/

D Ckwk
X
1
3 ;
1
3
� 2Ckwk

X
1
3 ;
1
3

T

;

so that kwkL6..0;T /IL6/ � Ckwk
X
1
3 ;
1
3

T

. Interpolation with (2.31) yields

8" > 0; kwkL6..0;T /IL6/ � Ckwk
X
"; 12
T

:

By choosing w D vM and recalling (2.30) where we replace s by s C ",

kvMkL6..0;T /IW s;6/ � CkvMk
X
sC"; 12
T

� Ck'kH sC" 8" > 0;

and we get (2.25). The proof of (2.22) follows by (2.29) by considering the difference of
two solutions.

Finally,

�M….@xvM…v
p
M / �….@xv…v

p/ D �M….@xvM….v
p
M � v

p//C .@xvM � @xv/…v
p

� .1 � �M /….@xv…v
p/;

where vM , v are solutions to (2.8) and (2.9). Therefore, using (2.29), where we choose p
factors wi equal to either vM , v and one factor equal to v � vM , writing the fixed point
equation solved by v � vM , and recalling (2.22), we get (see e.g. [47, Proposition 2.7] for
details), with K being compact in H s ,

sup
'2K

k�Mˆ
G
M .t/' �ˆ

G .t/'kY sT
M!1
����! 0:

Therefore, we get (2.24) by using the continuous embedding Y sT � L
1.Œ0; T �IH s/.
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3. The energy Ek.u/ and proof of Theorem 1.2

Recall p 2 2N is the integer involved in the nonlinearity in (1.2) and the following notation
will be used without any further comment. For any time-independent function u.x/ we
write

R
uD

R
T u.x/dx and, similarly, for any time-dependent functionw.t;x/ and T > 0

we write
R T
0

R
w D

R T
0

R
T w.t; x/ dx dt .

We now introduce suitable densities that will be needed to construct the modified
energy Ek.u/. We start with densities that represent the “worse contributions” that will
appear when we compute the time derivative of Ek.u/ along solutions to (1.2). The specific
structure of Ek.u/ will allow us to erase the aforementioned “worse” contributions due to
algebraic cancellations.

Definition 3.1. For all .j0; j1; j2/ 2 N3, let 	j0;j1;j2.u/ D up�2.@
j0
x u/

2@
j1
x u@

j2
x u. For

every integer k > 1 we define sets of densities

‡k D
®
	j0;j1;j2.u/ s.t. .j0; j1; j2/ 2 Ak

¯
; „k D

®
	j0;j1;j2.u/ s.t. .j0; j1; j2/ 2 Bk

¯
;

where sets of indices Ak , Bk are defined as

Ak
D ¹.j0; j1; j2/ 2 N3 s.t. j2 � j1 � j0, 2j0 C j1 C j2 D 2k � 2º;

Bk
D ¹.j0; j1; j2/ 2 N3 s.t. j2 � j1 � j0, 2j0 C j1 C j2 D 2k C 1º:

We next introduce “good densities”, namely densities that appear once we compute
the time derivative of Ek.u/ along solutions to (1.2), but are harmless since they can be
handled thanks to the dispersive effect of (1.2).

Definition 3.2. Let Ji0;:::;im.u/ D
Qm
lD0 @

il
xu. For every k > 1 we define

‚k D
®
Jj0;:::;j2pC1.u/ s.t. .j0; : : : ; j2pC1/ 2 Ck

¯
;

�k D
®
Jj0;:::;jpC1.u/ s.t. .j0; : : : ; jpC1/ 2 Dk

¯
;

with

Ck D
®
.j0; : : : ; j2pC1/ 2 N2pC2 s.t. j2pC1 � � � � � j0;

P2pC1

lD0
jl � 2k � 1;

j2 � 1; j0 � k � 1
¯
;

Dk
D
®
.j0; : : : ; jpC1/ 2 NpC2 s.t. jpC1 � � � � � j0,

PpC1

lD0
jl D 2k C 1, j4 � 1

¯
:

Remark 3.1. Roughly speaking, densities in ‚k are homogeneous of order 2p C 2, the
sum of the derivatives on each factor is 2k � 1 and derivatives are distributed on at least
three factors. Densities in�k are homogeneous of order pC 2, the sum of the derivatives
is 2k C 1 and derivatives are shared on at least five factors.

Definition 3.3. For any .j0; j1; j2/ 2 Ak we define

	�j0;j1;j2.u/ D .p � 2/u
p�3@3xu.@

j0
x u/

2@j1x u@
j2
x uC 2u

p�2@j0x u@
j0C3
x u@j1x u@

j2
x u

C up�2.@j0x u/
2@j1C3x u@j2x uC u

p�2.@j0x u/
2@j1x u@

j2C3
x u
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and

	��j0;j1;j2.u/ D .p � 2/u
p�3@x.u

pC1/.@j0x u/
2@j1x u@

j2
x u

C 2up�2@j0x u@
j0C1
x .upC1/@j1x u@

j2
x uC u

p�2.@j0x u/
2@j1C1x .upC1/u@j2x u

C up�2.@j0x u/
2@j1x u@

j2C1
x .upC1/:

Remark 3.2. The expression 	�j0;j1;j2.u/ is obtained by considering the time derivative
of the density 	j0;j1;j2.u/ and by replacing @tu with @3xu. Similarly, 	��j0;j1;j2.u/ is con-
structed by considering the time derivative of the density 	j0;j1;j2.u/ and by replacing @tu
with @x.upC1/. Then, if v.t; x/ is a solution to (1.2),

d

dt

Z
	j0;j1;j2.v/ D

Z
	�j0;j1;j2.v/ �

Z
	��j0;j1;j2.v/: (3.1)

The next proposition, on the structure of Ek.u/, will be key in obtaining Theorem 1.2.
We shall assume in the next proposition that v.t; x/ is smooth in order to justify all the
necessary computations. Then this smoothness assumption may be removed once we inte-
grate (3.3) in time and use a density argument.

Proposition 3.1. Let k > 1. Then for all .j0; j1; j2/ 2 Ak there exists �j0;j1;j2 2 R, for
all .j0; : : : ; j2pC1/ 2 Ck there exists �j0;:::;j2pC1 2 R and for all .j0; : : : ; jpC1/ 2 Dk

there exists �j0;:::;jpC1 2 R such that, with

Ek.u/ D k@
k
xuk

2
L2
�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z
	j0;j1;j2.u/; (3.2)

the following identity holds for any smooth solution v.t; x/ to (1.2):

d

dt
Ek.v/ D

X
.j0;:::;j2pC1/2Ck

�j0;:::;j2pC1

Z
Jj0;:::;j2pC1.v/

C

X
.j0;:::;jpC1/2Dk

�j0;:::;jpC1

Z
Jj0;:::;jpC1.v/

�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z
	��j0;j1;j2.v/: (3.3)

Remark 3.3. The energy Ek.u/ has leading-order term k@kxuk
2
L2

, plus a lower-order
remainder that is a linear combination of densities belonging to ‡k , whose coefficients
�j0;j1;j2 are well prepared in such a way that on the r.h.s. in (3.3) we get a linear com-
bination of densities belonging to ‚k and �k . In particular, densities 	��j0;j1;j2.v/ can be
expressed as linear combinations of terms belonging to ‚k computed along v.t; x/.

Proof of Theorem 1.2. We prove how Proposition 3.1 implies Theorem 1.2. We first define
the quantity

Rk.u/ D
X

.j0;j1;j2/2Ak

�j0;j1;j2

Z
	j0;j1;j2.u/ (3.4)
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and we show (1.7). We have by the Hölder and Sobolev embedding,ˇ̌̌̌Z
.@j0x u/

2@j1x u@
j2
x uu

p�2

ˇ̌̌̌
� k@j0x uk

2
L2
k@j1x ukL1k@

j2
x ukL1kuk

p�2
L1

� Ckuk2
H j0
kukH j1C1kukH j2C1kuk

p�2

H1

� Ckuk
2�0C�1C�2
Hk kuk

2�2�0��1��2Cp

H1

D Ckuk
2k�4
k�1

Hk kuk
pC 2

k�1

H1 ; (3.5)

where we performed interpolation with �0kC .1� �0/D j0, �lkC .1� �l /D jl C 1 for
l D 1; 2 and hence 2�0 C �1 C �2 D .2k � 4/=.k � 1/. Next we define the functional

G Tk .'/ D
X

.j0;:::;j2pC1/2Ck

�j0;:::;j2pC1

Z T

0

Z
Jj0;:::;j2pC1.ˆ.�/'/ d�

C

X
.j0;:::;jpC1/2Dk

�j0;:::;jpC1

Z T

0

Z
Jj0;:::;jpC1.ˆ.�/'/ d�

�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z T

0

Z
	��j0;j1;j2.ˆ.�/'/ d�; (3.6)

and we shall prove (1.8). Notice that the identity (1.5) follows after integration in time of
the identity (3.3) provided that ' is regular enough that all computations may be justified.
Then by a straightforward density argument we get identity (1.5) for ' 2 H k by adapting
the proof of (1.8) that we give below. By looking at the structure of the densities involved
in the definition of (3.6) we deduce (1.8) provided that for any R > 0 and T > 0 there
exists C > 0 such that for all ' 2 H k with k'kH1 < R, we have the following bound for
v.t; x/ D ˆ.t/':ˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
� C C Ck'k

. 2k�4
k�1

/C

Hk ; jpC1 � � � � � j0;

pC1X
lD0

jl D 2k C 1;

j4 � 1; (3.7)ˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� C C Ck'k

. 2k�4
k�1

/C

Hk ; j2pC1 � � � � � j0;

2pC1X
lD0

jl � 2k � 1;

j2 � 1: (3.8)

One easily checks that, by integration by parts, for every .j0; j1; j2/ 2 Ak ,
R

	��j0;j1;j2.u/

can be expressed as the integral of a linear combination of densities belonging to ‚k :
if .j0; j1; j2/ ¤ .k � 1; 0; 0/ then 	��j0;j1;j2.u/ is a linear combination of densities with
homogeneity 2p C 2 and the top-order derivative is at most k � 1; for .j0; j1; j2/ D
.k � 1; 0; 0/ we have

	��k�1;0;0.u/ D 2@
k
x.u

pC1/@k�1x uup C p.@k�1x u/2@x.u
pC1/up�1:
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The second term on the r.h.s. belongs to ‚k , and the first term on the r.h.s. can be writ-
ten, by using the Leibniz rule to develop @kx.u

pC1/, as a linear combination of terms
belonging to‚k plus a multiple of @kxu@

k�1
x uu2p . We conclude using

R
@kxu@

k�1
x uu2p D

1
2

R
@x.@

k�1
x u/2u2p D �p

R
.@k�1x u/2@xuu

2p�1, and the last one is the integral of a den-
sity in ‚k . Hence, all terms on the r.h.s. of (3.3) can be expressed as linear combinations
of terms in ‚k and �k and therefore (3.7) and (3.8) are enough to conclude.

Next we prove (3.7) and (3.8) by splitting the proof into four subcases.

Proof of (3.7), j5 D 0. By the Hölder inequality we getˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
�

4Y
lD0

k@jlx vkL6..0;T /IL6/kvkL6..0;T /IL6/kvk
p�4

L1..0;T /IL1/
(3.9)

and by Sobolev embedding, conservation of the Hamiltonian and (2.4) we proceed as
follows:

.� � � / � C

� 4Y
lD0

k'k
H
jC
l

�
k'k

p�3

H1 � C

4Y
lD0

.k'k
�l
Hkk'k

1��l
H1 /k'k

p�3

H1

D Ck'k
P4
lD0 �l

Hk k'k
pC2�

P4
lD0 �l

H1 ;

where �lk C .1 � �l / D jCl for j D 0; : : : ; 4, namely �l D
jC
l
�1

k�1
, and

�0 C �1 C �2 C �3 C �4 D
�2k � 4
k � 1

�C
:

Summarizing, we get (3.7) by using the uniform a priori bound on k'kH1 .

Proof of (3.7), j5¤ 0. We follow the previous argument closely. By the Hölder inequality,
Sobolev embedding, (2.4) and interpolation, we getˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
�

5Y
lD0

k@jlx vkL6..0;T /IL6/

pC1Y
lD6

k@jlx vkL1..0;T /IL1/

� C

5Y
lD0

k'k
H
jC
l

pC1Y
lD6

kvk
L1..0;T /IH

jC
l
C1
/

� C

5Y
lD0

k'k
H
jC
l

pC1Y
lD6

k'k
H
jC
l
C1

� C

5Y
lD0

.k'k
1��l
H1 k'k

�l
Hk /

pC1Y
lD6

.k'k
1��l
H1 k'k

�l
Hk /

D Ck'k

P5
lD0 �lC

PpC1
lD6

�l

Hk k'k
pC2�

P5
lD0 �l�

PpC1
lD6

�l

H1 ; (3.10)
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where �lk C .1 � �l / D jC
l

for l D 0; : : : ; 5 and �lk C .1 � �l / D jC
l
C 1 for l D

6; : : : ; p C 1, hence
5X
lD0

�l C

pC1X
lD6

�l D
�2k � 5
k � 1

�C
:

The estimates above, along with the uniform bound assumed on k'kH1 , implyˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
� Ck'k

. 2k�5
k�1

/C

Hk ;

hence we get (3.7) (indeed, in this subcase we get even better bounds as the corresponding
powers are smaller than the ones that appear in (3.7)).

Proof of (3.8), j3 D 0. Again, by the Hölder inequality we getˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
�

2Y
lD0

k@jlx vkL4..0;T /IL4/kvkL4..0;T /IL4/kvk
2p�2

L1..0;T /IL1/

� C

2Y
lD0

k@jlx vkL6..0;T /IL6/kvkL6..0;T /IL6/kvk
2p�2

L1..0;T /IL1/
(3.11)

and by Sobolev embedding, conservation of the Hamiltonian and (2.4),

.� � � / � C

� 2Y
lD0

k'k
H
jC
l

�
k'k

2p�4

H1 � C

2Y
lD0

.k'k
�l
Hkk'k

1��l
H1 /k'k

2p�1

H1

D Ck'k
P2
lD0 �l

Hk k'k
2pC2�

P2
lD0 �l

H1 ;

where �lkC .1� �l /D jCl for l D 0;1;2 and hence �0C �1C �2D .2k�4k�1
/C. Combining

the above estimates with the uniform bound on k'kH1 we getˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� Ck'k

. 2k�4
k�1

/C

Hk :

Proof of (3.8), j3 ¤ 0. By the Hölder inequality, Sobolev embedding, (2.4) and interpo-
lation,ˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
�

3Y
lD0

k@jlx vkL4..0;T /IL4/

2pC1Y
lD4

k@jlx vkL1..0;T /IL1/

� C

3Y
lD0

k@jlx vkL6..0;T /IL6/

2pC1Y
lD4

k@jlx vkL1..0;T /IL1/

� C

3Y
lD0

k'k
H
jC
l

2pC1Y
lD4

kvk
L1..0;T /IH

jC
l
C1
/
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� C

3Y
lD0

k'k
H
jC
l

2pC1Y
lD4

k'k
H
jC
l
C1

� C

3Y
lD0

.k'k
1��l
H1 k'k

�l
Hk /

2pC1Y
lD4

.k'k
1��l
H1 k'k

�l
Hk /

� Ck'k

P3
lD0 �lC

P2pC1
lD4

�l

Hk k'k
2pC2�

P5
lD0 �l�

PpC1
lD6

�l

H1 ; (3.12)

where �lk C .1 � �l / D jC
l

for l D 0; 1; 2; 3 and �lk C .1 � �l / D jC
l
C 1 for l D

4; : : : ; 2p C 1, then
3X
lD0

�l C

2pC1X
lD4

�l D
�2k � 5
k � 1

�C
:

Combining the above estimates with the uniform bound on k'kH1 ,ˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� Ck'k

. 2k�5
k�1

/C

Hk :

3.1. Proof of Proposition 3.1

We first define an ordering on the sets Ak and Bk .

Definition 3.4. Given .i0; i1; i2/, .l0; l1; l2/ 2 Ak or Bk , we define

.i0; i1; i2/ � .l0; l1; l2/,

´
either i0 < l0
or i0 D l0; i1 < l1;

.i0; i1; i2/ � .l0; l1; l2/,

´
either .i0; i1; i2/ � .l0; l1; l2/

or .i0; i1; i2/ D .l0; l1; l2/:

For any given . Nj0; Nj1; Nj2/ 2 Ak we define

A
�. Nj0; Nj1; Nj2/

k
D
®
.j0; j1; j2/ 2 Ak j .j0; j1; j2/ � . Nj0; Nj1; Nj2/

¯
;

as well as A
�. Nj0; Nj1; Nj2/

k
, A
�. Nj0; Nj1; Nj2/

k
, A
�. Nj0; Nj1; Nj2/

k
by modifying the order accordingly.

The next propositions will be of importance:

Proposition 3.2. For every .j0; j1; j2/ 2 Ak there exists ıj0;j1;j2 2 R and for every
.j0; : : : ; jpC1/ 2 Dk there exists 
j0;:::;jpC1 2 R such thatZ

@kxu@
kC1
x .upC1/ D

X
.j0;j1;j2/2Ak

ıj0;j1;j2

Z
	j0C1;j1C1;j2.u/

C

X
.j0;:::;jpC1/2Dk


j0;:::;jpC1

Z
Jj0;:::;jpC1.u/:
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Proof. The map .j0; j1; j2/! .j0 C 1; j1 C 1; j2/ is one to one from Ak to Bk , hence
the statement is equivalent toZ

@kxu@
kC1
x .upC1/ D

X
.j0;j1;j2/2Bk

ıj0;j1;j2

Z
	j0;j1;j2.u/

C

X
.j0;:::;jpC1/2Dk


j0;:::;jpC1

Z
Jj0;:::;jpC1.u/: (3.13)

Expanding the .kC 1/st derivative on the l.h.s. by the chain rule, we get integrals of linear
combinations of the densities Y

j0�j1�����jpC1�0

j0C���CjpC1D2kC1

@jlx u:

We shall denote by l.o.t. all the densities belonging to �k , namely densities that can be
absorbed in the second term on the r.h.s. in (3.13). Hence we are reduced to considering
only terms like Z

@j0x u@
j1
x u@

j2
x u@

j3
x uu

p�2;

j0 C j1 C j2 C j3 D 2k C 1; j0 � j1 � j2 � j3; (3.14)

and we will prove that, up to l.o.t., they can be expressed as a linear combination of termsZ
	i0;i1;i2.u/; .i0; i1; i2/ 2 Bk :

For every density defined in (3.14) we also define �.j0; j1; j2; j3/ D j0 � j1, so that by
integration by parts we are done if �.j0; j1; j2; j3/ 2 ¹0; 1º. We claim that if �.j0; j1;
j2; j3/ > 1 then, up to l.o.t., we can express the terms in (3.14) as a linear combination
of densities such that �.j0; j1; j2; j3/ 2 ¹0; 1º. In order to do so, assume that we have
a density like (3.14) such that �.j0; j1; j2; j3/ > 1. Then by integration by parts, more
precisely by moving one derivative from the higher-order derivative @j0x u on the other
factors we get, up to l.o.t., a linear combination of termsZ

@
Qj0
x u@

Qj1
x u@

Qj2
x u@

Qj3
x uu

p�2;

Qj0 C Qj1 C Qj2 C Qj3 D 2k C 1; Qj0 � Qj1 � Qj2 � Qj3;

�. Qj0; Qj1; Qj2; Qj3/ 2
®
�.j0; j1; j2; j3/ � 1;�.j0; j1; j2; j3/ � 2

¯
:

We can further iterate this argument, and conclude after a finite number of steps.

Our next proposition will be used in the proof of Proposition 3.1 and we postpone its
proof for now.
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Proposition 3.3. Let .j0; j1; j2/ 2 Ak . There exists j̨0;j1;j2 2 R n ¹0º such thatZ
	�j0;j1;j2.u/ D j̨0;j1;j2

Z
	j0C1;j1C1;j2.u/

C

X
.i0;i1;i2/2Bk

.i0;i1;i2/�.j0C1;j1C1;j2/

�i0;i1;i2

Z
	i0;i1;i2.u/

C

X
.j0;:::;jpC1/2Dk

"j0;:::;jpC1

Z
Jj0;:::;jpC1.u/; (3.15)

where "j0;:::;jpC1 ; �i0;i1;i2 2 R.

Proof of Proposition 3.1. Propositions 3.2 and 3.3 will imply Proposition 3.1. If v.t; x/ is
a solution to (1.2) then

d

dt
k@kxvk

2
L2
D 2

Z
@t@

k
xv@

k
xv D 2

Z
@kC3x v@kxv � 2

Z
@kC1x .vpC1/@kxv

D �2

Z
@kC1x .vpC1/@kxv:

Hence, by Proposition 3.2,

d

dt
k@kxvk

2
L2
D

X
.j0;j1;j2/2Ak

ǰ0;j1;j2

Z
	j0C1;j1C1;j2.v/C l.o.t.; (3.16)

where ǰ0;j1;j2 D �2ıj0;j1;j2 and l.o.t. denotes the integral of a linear combination of den-
sities belonging to ‚k and �k . Next we prove that we can select the coefficients �j0;j1;j2
in such a way that X

.j0;j1;j2/2Ak

ǰ0;j1;j2

Z
	j0C1;j1C1;j2.v/

�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z
	�j0;j1;j2.v/ D l.o.t; (3.17)

where again l.o.t. denotes the integral of a linear combination of densities belonging to‚k
and �k . Of course, (3.17) allows us to conclude the proof thanks to (3.1) and by recalling
that terms

R
	��j0;j1;j2.v/ dx can be absorbed in l.o.t. (more precisely those densities are a

linear combination of terms belonging to ‚k).
We proceed with (3.17): we claim that for every .j0; j1; j2/ 2 Ak we can select a real

number �j0;j1;j2 such that the following holds: for any given . Nj0; Nj1; Nj2/ 2Ak there exists
a function

�.
Nj0; Nj1; Nj2/WA

�. Nj0; Nj1; Nj2/

k
3 .j0; j1; j2/! �

. Nj0; Nj1; Nj2/
j0;j1;j2

2 R
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such that X
.j0;j1;j2/2A

�. Nj0;
Nj1;
Nj2/

k

Z �
ǰ0;j1;j2	j0C1;j1C1;j2.u/ � �j0;j1;j2	

�
j0;j1;j2

.u/
�

D

X
.j0;j1;j2/2A

�. Nj0;
Nj1;
Nj2/

k

�
. Nj0; Nj1; Nj2/
j0;j1;j2

Z
	j0C1;j1C1;j2.u/C l.o.t. (3.18)

If we prove the claim then (3.17) holds by choosing . Nj0; Nj1; Nj2/ 2 Ak such that, for all
.j0; j1; j2/ 2 Ak , . Nj0; Nj1; Nj2/ � .j0; j1; j2/.

We first select �.k�1;0;0/ where .k � 1; 0; 0/ D max¹.j0; j1; j2/ 2 Akº; in a second
step we define �.j 00;j 01;j 02/, where .j 00; j

0
1; j
0
2/ D max¹.j0; j1; j2/ 2 A

�.k�1;0;0/

k
º. Then we

proceed in a similar way until we get to defining �.j0 00;j1 00;j2 00/, where .j000; j100; j200/ D
min¹.j0; j1; j2/ 2Akº. We start by choosing �k�1;0;0. Notice that by (3.15), if we impose
the condition �k�1;0;0˛k�1;0;0 D ˇk�1;0;0, then we get

ˇk�1;0;0

Z
	k;1;0.u/ � �k�1;0;0

Z
	�k�1;0;0.u/

D

X
.j0;j1;j2/2A

�.k�1;0;0/
k

�
.k�1;0;0/
j0;j1;j2

Z
	j0C1;j1C1;j2.u/C l.o.t.

Assume that we have selected �j0;j1;j2 for every .j0; j1; j2/� . Nj0; Nj1; Nj2/ and assume that
(3.18) holds. In the next step we select � Qj0; Qj1; Qj2 where . Qj0; Qj1; Qj2/ D max¹.j0; j1; j2/ 2
A
�. Nj0; Nj1; Nj2/

k
º. Then, by using the same construction as above, we can select � Qj0; Qj1; Qj2 , with

the condition � Qj0; Qj1; Qj2˛ Qj0; Qj1; Qj2 D �
. Nj0; Nj1; Nj2/

Qj0; Qj1; Qj2
. This concludes the proof.

Proof of Proposition 3.3. To streamline our proof, for a given density D.u/, we say thatR
D.u/ � 0 if and only if D.u/ is a linear combination of densities in �k and densi-

ties 	i0;i1;i2.u/ 2 „k such that .i0; i1; i2/ � .j0 C 1; j1 C 1; j2/. If, moreover, D1.u/

and D2.u/ are two densities then we say
R

D1.u/ �
R

D2.u/ if and only if
R
.D1.u/ �

D2.u// � 0. Hence we aim to prove
R

	�j0;j1;j2.u/ � j̨0;j1;j2

R
	j0C1;j1C1;j2.u/, where

j̨0;j1;j2 ¤ 0.
We may write

	�j0;j1;j2.u/ D 2AC B C C C .p � 2/D (3.19)

with

A D

Z
up�2@j0C3x u@j0x u@

j1
x u@

j2
x u; B D

Z
up�2.@j0x u/

2@j1C3x u@j2x u;

C D

Z
up�2.@j0x u/

2@j1x u@
j2C3
x u; D D

Z
up�3@3xu.@

j0
x u/

2@j1x u@
j2
x u:

(3.20)

We split the proof into three cases, each with subcases. Define �.j0; j1; j2/ D j0 � j1.
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First case: �.j0; j1; j2/ � 2. First we prove that

B � C � D � 0: (3.21)

The condition �.j0; j1; j2/ � 2 is equivalent to j1 C 3 � j0 C 1, hence we get B � 0 as
at most one derivative involved in the density of B is of order j0C 1 and all the remaining
factors have lower-order derivatives. By a similar argument we get C � 0. Regarding D,
�.j0; j1; j2/� 2 implies j0 � 2 and henceD� 0 as again at most one derivative involved
in the density of D can be of order j0 C 1 and all the other factors involve lower-order
derivatives.

In order to deal with A notice that by integration by parts we can move one derivative
from @

j0C3
x u to the other factors in the density of A:

A D �

Z �
up�2@j0C2x u@j0C1x u@j1x u@

j2
x uC u

p�2@j0C2x u@j0x u@
j1C1
x u@j2x u

C up�2@j0C2x u@j0x u@
j1
x u@

j2C1
x u

�
� .p � 2/

Z
up�3@xu@

j0C2
x u@j0x u@

j1
x u@

j2
x u

D .IA C IIA C IIIA/C IVA: (3.22)

As IA D �12
R
up�2@x..@

j0C1
x u/2/@

j1
x u@

j2
x u, by integration by parts,

IA D
1

2

Z
up�2.@j0C1x u/2@j1C1x u@j2x uC

1

2

Z
up�2.@j0C1x u/2@j1x u@

j2C1
x u

C
p � 2

2

Z
up�3@xu.@

j0C1
x u/2@j1x u@

j2
x u:

For IIA, again by integration by parts we move one derivative from factor @j0C2x u onto the
others:

IIA D
Z
up�2.@j0C1x u/2@j1C1x u@j2x uC

Z
up�2@j0C1x u@j0x u@

j1C2
x u@j2x u„ ƒ‚ …

�0

C

Z
up�2@j0C1x u@j0x u@

j1C1
x u@j2C1x u„ ƒ‚ …

�0

C .p � 2/

Z
up�3@xu@

j0C1
x u@j0x u@

j1C1
x u@j2x u„ ƒ‚ …

�0

:

Indeed, the second, third and fourth terms on the r.h.s. are equivalent to zero as, with
�.j0; j1; j2/ � 2, in the corresponding densities we have at most one derivative of order
j0 C 1 and all the others are lower order.
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Similarly, for the third term IIIA we get by integration by parts,

IIIA D
Z
up�2.@j0C1x u/2@j1x u@

j2C1
x uC

Z
up�2@j0C1x u@j0x u@

j1C1
x u@j2C1x u„ ƒ‚ …

�0

C

Z
up�2@j0C1x u@j0x u@

j1
x u@

j2C2
x u„ ƒ‚ …

�0

C.p � 2/

Z
up�3@xu@

j0C1
x u@j0x u@

j1
x u@

j2C1
x u„ ƒ‚ …

�0

;

where similarly to IIA we get that the second, third and fourth terms on the r.h.s. are
equivalent to zero from �.j0; j1; j2/ � 2.

Summarizing, we get from (3.22) the following equivalence:

A �
3

2

Z
up�2.@j0C1x u/2@j1C1x u@j2x uC

3

2

Z
up�2.@j0C1x u/2@j1x u@

j2C1
x u

C
p � 2

2

Z
up�3@xu.@

j0C1
x u/2@j1x u@

j2
x u

� .p � 2/

Z
up�3@xu@

j0C2
x u@j0x u@

j1
x u@

j2
x u: (3.23)

Notice that no integration by parts was performed on IVA as its contribution will depend
on the value of j2. Next we consider two subcases.

First subcase: �.j0; j1; j2/ � 2, j2 > 0. We have
R
up�3@xu@

j0C2
x u@

j0
x u@

j1
x u@

j2
x u � 0

as the density under the integral has five factors with a nontrivial derivative. Similarly we
have

R
up�3@xu.@

j0C1
x u/2@

j1
x u@

j2
x u � 0, hence by (3.23) we get

A �
3

2

Z
up�2.@j0C1x u/2@j1C1x u@j2x uC

3

2

Z
up�2.@j0C1x u/2@j1x u@

j2C1
x u:

Summarizing, we obtain that, for j1 D j2,

A � 3

Z
	j0C1;j1C1;j2.u/; (3.24)

while for j1 > j2,

A �
3

2

Z
	j0C1;j1C1;j2.u/: (3.25)

In any case by (3.24), (3.25), (3.21) and (3.19) we get the desired conclusion in this sub-
case.

Second subcase: �.j0; j1; j2/ � 2, j2 D 0. By (3.23), we get

A �
3

2

Z
up�1.@j0C1x u/2@j1C1x uC

3

2

Z
up�2.@j0C1x u/2@j1x u@xu

C
p � 2

2

Z
up�2@xu.@

j0C1
x u/2@j1x u � .p � 2/

Z
up�2@xu@

j0C2
x u@j0x u@

j1
x u

D IA C IIA C IIIA C IVA: (3.26)
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For the term IVA, we move one derivative from factor @j0C2x u onto the other factors,

IVA D .p � 2/
Z
up�2@xu.@

j0C1
x u/2@j1x uC .p � 2/

Z
up�2@xu@

j0C1
x u@j0x u@

j1C1
x u„ ƒ‚ …

�0

C .p � 2/

Z
up�2@2xu@

j0C1
x u@j0x u@

j1
x u„ ƒ‚ …

�0

C .p � 2/2
Z
up�3.@xu/

2@j0C1x u@j0x u@
j1
x u„ ƒ‚ …

�0

:

Again, the second, third and fourth terms on the r.h.s. are equivalent to zero. Indeed, at
most one derivative involved in the densities is of order j0C 1 and all the others are lower
order: from�.j0; j1; j2/� 2we get j0C 1� 3 and that settles the third term on the r.h.s.;
for the fourth term the argument is even easier and for the second term, �.j0; j1; j2/ � 2
implies j1 C 1 < j0 C 1. Hence we get from (3.26),

A �
3

2

Z
up�1.@j0C1x u/2@j1C1x uC

3

2

Z
up�2.@j0C1x u/2@j1x u@xu

C
3

2
.p � 2/

Z
up�2@xu.@

j0C1
x u/2@j1x u:

Notice that if j1 > 0 then the second and third terms on the r.h.s. in (3.26) are equivalent to
zero: the corresponding densities involve two derivatives of order j0C 1 but the remaining
derivatives necessarily have order below j1 C 1, and we conclude that

A �
3

2

Z
	j0C1;j1C1;j2.u/: (3.27)

If j1 D 0, densities are multiples of
R
up�1.@

j0C1
x u/2@xu. By computing the sum of the

coefficients we get

A �
3

2
p

Z
	j0C1;j1C1;j2.u/: (3.28)

Combining (3.27), (3.28), (3.21) and (3.19) we get the desired conclusion in this subcase.

Second case: �.j0; j1; j2/ D 1. As j0 D j1 C 1 we have by integration by parts (see
(3.20) for the definition of B),

B D

Z
up�2.@j0x u/

2@j0C2x u@j2x u

D �

Z
up�2.@j0x u/

2@j0C1x u@j2C1x u„ ƒ‚ …
�0

�2

Z
up�2@j0x u.@

j0C1
x u/2@j2x u

� .p � 2/

Z
up�3@xu.@

j0
x u/

2@j0C1x u@j2x u„ ƒ‚ …
�0

;
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where the first and third terms on the r.h.s. are equivalent to zero, as one can easily check
that only one derivative involved in the corresponding densities has order j0 C 1 and all
the others are lower order. Then

B � �2

Z
	j0C1;j1C1;j2.u/: (3.29)

Moreover, we have (see (3.20)) A D
R
up�2@

j0C3
x u@

j0
x u@

j0�1
x u@

j2
x u, and if we move one

derivative by integration by parts, from @
j0C3
x u onto the other factors we get

A D �

Z
up�2

�
@j0C2x u@j0C1x u@j0�1x u@j2x uC u

p�2@j0C2x u.@j0x u/
2@j2x u

C up�2@j0C2x u@j0x u@
j0�1
x u@j2C1x u

�
� .p � 2/

Z
up�3@xu@

j0C2
x u@j0x u@

j0�1
x u@j2x u

D .IA C IIA C IIIA/C IVA: (3.30)

We have IA D �12
R
up�2@x..@

j0C1
x u/2/@

j0�1
x u@

j2
x u and by integration by parts,

IA D
1

2

Z
up�2.@j0C1x u/2@j0x u@

j2
x uC

1

2

Z
up�2.@j0C1x u/2@j0�1x u@j2C1x u

C
p � 2

2

Z
up�3@xu.@

j0C1
x u/2@j0�1x u@j2x u:

Regarding IIA, integration by parts moves one derivative from @
j0C2
x u onto the other fac-

tors and we get

IIA D 2
Z
up�2.@j0C1x u/2@j0x u@

j2
x uC

Z
up�2@j0C1x u.@j0x u/

2@j2C1x u„ ƒ‚ …
�0

C .p � 2/

Z
up�3@xu@

j0C1
x u.@j0x u/

2@j2x u„ ƒ‚ …
�0

:

Again, the second and third terms on the r.h.s. are equivalent to zero, as �.j0; j1; j2/ D 1
implies at most one derivative in the corresponding densities has order j0 C 1 and all the
others are lower order.

Similarly, by integration by parts, we rewrite IIIA as

IIIA D
Z
up�2.@j0C1x u/2@j0�1x u@j2C1x uC

Z
up�2@j0C1x u.@j0x u/

2@j2C1x u„ ƒ‚ …
�0

C

Z
up�2@j0C1x u@j0x u@

j0�1
x u@j2C2x u

C .p � 2/

Z
up�3@xu@

j0C1
x u@j0x u@

j0�1
x u@j2C1x u„ ƒ‚ …

�0

:
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Again, on the r.h.s. we have terms equivalent to zero as, exactly as above, in the corre-
sponding densities only one derivative has order j0 C 1 and all the others are lower order.

By integration by parts, moving one derivative from @
j0C2
x u onto other factors, we get

IVA D .p � 2/
Z
up�3@xu.@

j0C1
x u/2@j0�1x u@j2x u

C .p � 2/

Z
up�3@xu@

j0C1
x u.@j0x u/

2@j2x u„ ƒ‚ …
�0

C .p � 2/

Z
up�3@xu@

j0C1
x u@j0x u@

j0�1
x u@j2C1x u„ ƒ‚ …

�0

C .p � 2/

Z
up�3@2xu@

j0C1
x u@j0x u@

j0�1
x u@j2x u

C .p � 2/.p � 3/

Z
up�4.@xu/

2@j0C1x u@j0x u@
j0�1
x u@j2x u„ ƒ‚ …

�0

:

On the r.h.s. we get several terms equivalent to zero as, once again, the corresponding den-
sities have one derivative of order j0 C 1 and all the others are lower order. Summarizing,
we get from (3.30) the equivalence

A �
1

2

Z
up�2.@j0C1x u/2@j0x u@

j2
x uC

1

2

Z
up�2.@j0C1x u/2@j0�1x u@j2C1x u

C
p � 2

2

Z
up�3@xu.@

j0C1
x u/2@j0�1x u@j2x uC 2

Z
up�2.@j0C1x u/2@j0x u@

j2
x u

C

Z
up�2.@j0C1x u/2@j0�1x u@j2C1x uC

Z
up�2@j0C1x u@j0x u@

j0�1
x u@j2C2x u

C .p � 2/

Z
up�3@xu.@

j0C1
x u/2@j0�1x u@j2x u

C .p � 2/

Z
up�3@2xu@

j0C1
x u@j0x u@

j0�1
x u@j2x u: (3.31)

Moreover, by (3.20) and integration by parts,

D D

Z
up�3@3xu.@

j0
x u/

2@j0�1x u@j2x u

D �2

Z
up�3@2xu@

j0C1
x u@j0x u@

j0�1
x u@j2x u �

Z
up�3@2xu.@

j0
x u/

3@j2x u„ ƒ‚ …
�0

�

Z
up�3@2xu.@

j0
x u/

2@j0�1x u@j2C1x u„ ƒ‚ …
�0

�.p � 3/

Z
up�4@xu@

2
xu.@

j0
x u/

2@j0�1x u@j2x u„ ƒ‚ …
�0

;
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where three terms on the r.h.s. are equivalent to zero as the corresponding densities have
at most one derivative of order j0 C 1 and all the others are lower order. Hence we get

D � �2

Z
up�3@2xu@

j0C1
x u@j0x u@

j0�1
x u@j2x u: (3.32)

Next we split into three subcases.

First subcase: �.j0; j1; j2/ D 1, j1 > j2. Here all terms except the first and the fourth
on the r.h.s. in (3.31) are equivalent to zero and

A �
5

2

Z
	j0C1;j1C1;j2.u/: (3.33)

In fact, densities involved at the second, third, fifth and seventh terms on the r.h.s. in (3.31)
involve two derivatives of order j0 C 1 but all the remaining factors involve derivatives
of order less than j0. Notice also that sixth and eighth terms on the r.h.s. in (3.31) are
equivalent to zero as, in the corresponding densities, only one derivative has order j0 C 1
and all the remaining ones are lower order. Moreover, j2 C 3 � j0 C 1 and (3.20) yield

C � 0 (3.34)

as at most one derivative in the corresponding density is of order j0 C 1 and all the others
have lower order. Notice also that

D � 0 (3.35)

from (3.32), as necessarily j0 > 1, hence only one derivative in the density is of order
j0C 1 and all the others are lower order. We conclude by combining (3.33), (3.34), (3.35),
(3.29) and (3.19).

Second subcase: �.j0; j1; j2/ D 1, j1 D j2 > 0. All terms on the r.h.s. in (3.31) are
equivalent to zero, except the first, second, fourth, fifth, sixth, and hence

A � 5

Z
	j0C1;j1C1;j2.u/: (3.36)

In fact, one can check that the remaining terms on the r.h.s. in (3.31) are equivalent to zero
as either the corresponding densities involve at most one derivative of order j0 C 1 and
the others are lower order, or two derivatives are of order j0 C 1 but the other derivatives
are of order less than j0. Moreover, we have from (3.20),

C D

Z
up�2.@j0x u/

2@j0�1x u@j0C2x u

D �

Z
up�2.@j0x u/

2@j0x u@
j0C1
x u„ ƒ‚ …

�0

�2

Z
up�2@j0x u@

j0�1
x u.@j0C1x u/2

� .p � 2/

Z
up�3@xu.@

j0
x u/

2@j0�1x u@j0C1x u„ ƒ‚ …
�0

;
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where we used integration by parts and noticed that the first and third terms on the r.h.s.
are equivalent to zero as the corresponding densities have only one derivative of order
j0 C 1 and the others are lower order. Hence,

C � �2

Z
	j0C1;j1C1;j2.u/: (3.37)

Notice also that by (3.32) and j0 > 1, we get

D � 0 (3.38)

as in the corresponding density at most one derivative is of order j0C 1. We conclude this
subcase by combining (3.36), (3.37), (3.38), (3.29) and (3.19).

Third subcase:�.j0; j1; j2/D 1, j1D j2D 0. On the r.h.s. in (3.31) no term is equivalent
to zero; indeed, all of them are equivalent to

R
	j0C1;j1C1;j2.u/ dx, hence

A �
5

2
p

Z
	j0C1;j1C1;j2.u/: (3.39)

Notice also that in this subcase, by (3.20) we get by integration by parts,

C D

Z
up�1.@xu/

2@3xu

D �2

Z
up�1@xu.@

2
xu/

2
� .p � 1/

Z
up�2.@xu/

3@2xu„ ƒ‚ …
�0

;

where the second term on the r.h.s. is equivalent to zero as only one derivative has order
j0C 1 and all the other factors involve derivatives of order less than j0C 1. Hence we get

C � �2

Z
	j0C1;j1C1;j2.u/: (3.40)

Moreover, by (3.32) we get

D � �2

Z
up�1.@2xu/

2@xudx D �2

Z
	j0C1;j1C1;j2.u/: (3.41)

We conclude this subcase by combining (3.39), (3.40), (3.41), (3.29) and (3.19).

Third case: �.j0; j1; j2/ D 0. First of all, we have by (3.20),

D D

Z
up�3@3xu.@

j0
x u/

2@j0x u@
j2
x u:

For j2 > 0 we get D � 0, as the density on the r.h.s. involves five factors with nontrivial
derivatives. For j2 D 0 we have, using 2j0C j1C j2 D 2k � 2, that j1 is an even number
and as j1 D j0 we necessarily have j0 � 2, and hence

D D

Z
up�2@3xu.@

j0
x u/

2@j0x u � 0;
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where in the density above at most one derivative has order j0 C 1 due to the fact that
j0 � 2 and all the other factors have lower-order derivatives. Summarizing, we have

D � 0: (3.42)

Notice also that in this case, by (3.20) we have

A � B; (3.43)

hence we focus on A. By definition of A (see (3.20)) and integration by parts, we get

A D

Z
up�2@j0C3x u.@j0x u/

2@j2x u

D �2

Z
up�2@j0C2x u@j0C1x u@j0x u@

j2
x u �

Z
up�2@j0C2x u.@j0x u/

2@j2C1x u

� .p � 2/

Z
up�3@xu@

j0C2
x u.@j0x u/

2@j2x u

D IA C IIA C IIIA: (3.44)

We have IA D �
R
up�2@x.@

j0C1
x u/2/@

j0
x u@

j2
x u and, by integration by parts,

IA D
Z
up�2.@j0C1x u/2@j0C1x u@j2x u

C

Z
up�2.@j0C1x u/2@j0x u@

j2C1
x u

C .p � 2/

Z
up�3@xu.@

j0C1
x u/2@j0x u@

j2
x u„ ƒ‚ …

�0

:

The third term on the r.h.s. is equivalent to zero as the density involves two factors with
derivatives of order j0 C 1 and the other factors involve derivatives of order less than
j1 C 1 D j0 C 1. By integration by parts, we move one derivative from @

j0C2
x u on the

other factors and write the second term on the r.h.s. in (3.44) as

IIA D 2
Z
up�2.@j0C1x u/2@j0x u@

j2C1
x u

C

Z
up�2@j0C1x u.@j0x u/

2@j2C2x u

C .p � 2/

Z
up�3@xu@

j0C1
x u.@j0x u/

2@j2C1x u„ ƒ‚ …
�0

;

where the third term on the r.h.s. is equivalent to zero as the corresponding density involves
five factors with nontrivial derivatives. Similarly, by integration by parts we write the third
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term on the r.h.s. in (3.44) as

IIIA D 2.p � 2/
Z
up�3@xu.@

j0C1
x u/2@j0x u@

j2
x u„ ƒ‚ …

�0

C .p � 2/

Z
up�3@xu@

j0C1
x u.@j0x u/

2@j2C1x u„ ƒ‚ …
�0

C .p � 2/

Z
up�3@2xu@

j0C1
x u.@j0x u/

2@j2x u„ ƒ‚ …
�0

C .p � 2/.p � 3/

Z
up�4.@xu/

2@j0C1x u.@j0x u/
2@j2x u„ ƒ‚ …

�0

:

The first term on the r.h.s. is equivalent to zero as it is equal to the third term on the r.h.s.
of IA above. Concerning the second and fourth terms on the r.h.s., they are equivalent to
zero as in the corresponding densities there are at least five factors involving nontrivial
derivatives. Finally, the third term on the r.h.s. is zero as at most two factors may have
j0 C 1 derivatives and all the other terms have derivatives of order less than j0 C 1 D
j1 C 1. Summarizing, we get from (3.44),

A �

Z
	j0C1;j1C1;j2.u/C 3

Z
up�2.@j0C1x u/2@j0x u@

j2C1
x u

C

Z
up�2@j0C1x u.@j0x u/

2@j2C2x u: (3.45)

Next we split into two subcases.

First subcase: �.j0; j1; j2/ D 0, j0 D j1 D j2. We have from (3.20),

A D B D C D

Z
up�2@j0C3x u@j0x u@

j0
x u@

j0
x u (3.46)

and, moreover, by (3.45) we get

A �

Z
	j0C1;j1C1;j2.u/C 3

Z
up�2.@j0C1x u/3@j0x uC

Z
up�2@j0C1x u.@j0x u/

2@j0C2x u

D 4

Z
	j0C1;j1C1;j2.u/C

1

2

Z
up�2.@j0x u/

2@x..@
j0C1
x u/2/

D 4

Z
	j0C1;j1C1;j2.u/ �

Z
up�2@j0x u.@

j0C1
x u/3

�
p � 2

2

Z
up�3@xu.@

j0
x u/

2.@j0C1x u/2„ ƒ‚ …
�0

;
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where again we used integration by parts, and the third term on the r.h.s. is equivalent to
zero as the corresponding density involves five factors with nontrivial derivatives. Sum-
marizing, we get

A � 3

Z
	j0C1;j1C1;j2.u/: (3.47)

We conclude by (3.47), (3.42), (3.46) and (3.19).

Second subcase: j0 D j1 > j2. From (3.45) we get

A �

Z
	j0C1;j1C1;j2.u/C 3

Z
up�2.@j0C1x u/2@j0x u@

j2C1
x u„ ƒ‚ …

�0

C

Z
up�2@j0C1x u.@j0x u/

2@j2C2x u„ ƒ‚ …
�0

;

where the second term on the r.h.s. is equivalent to zero as the density involves two deriva-
tives of order j0 C 1 and all the other derivatives have order less than j0 C 1, while the
density of the third term on the r.h.s. involves at most two derivatives of order j0 C 1 and
all the other derivatives have order at most j0. Summarizing, we get

A �

Z
	j0C1;j1C1;j2.u/: (3.48)

Next, 2j0 C j1 C j2 D 2k � 2 implies that j1 C j2 is even and as j1 > j2 we get

j2 C 2 � j1 D j0: (3.49)

On the other hand, by (3.20) we have

C D

Z
up�2.@j0x u/

2@j0x u@
j2C3
x u � 0; (3.50)

where on the r.h.s. the density involves at most one derivative of order j0 C 1 (see (3.49))
and all the other factors have derivatives of order less than j0. We conclude by (3.42),
(3.43), (3.48), (3.50) and (3.19).

4. Proof of Theorem 1.3

The proof relies heavily on Proposition 3.1. We set xRk.u/ to be the density from the r.h.s.
of (3.4) and xG T

k;1
.'/ to be the r.h.s. in (3.6). First, we will prove (1.12). For M D 1,

identity (1.11) follows from integrating the identity from Proposition 3.1 and a density
argument like the one we used to prove (1.5). Second, we will prove (1.13) in the case
M D 1. In a further step, we will define, for M 2 N, the functionals xG T

k;M
.'/ in such

a way that (1.11) occurs and we will prove the bound (1.13) for M 2 N. Constructing
xG T
k;M

.'/ will require a slight modification of xG T
k;1

.'/. Finally, we will prove (1.13) for
M 2 N to conclude with the proof of (1.14).
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4.1. Proof of (1.12)

The proof of (1.12) follows the same ideas used in the proof of (1.7). Recall that the
structure of xRk.u/ is provided in (3.4) and hence by repeating the same computations as
in (3.5), except for a modification of the interpolation estimates at the last step, we getˇ̌̌̌Z

.@j0x u/
2@j1x u@

j2
x uu

p�2

ˇ̌̌̌
� Ckuk2

H j0
kukH j1C1kukH j2C1kuk

p�2

H1

� Ckuk
2�0C�1C�2

H
.k� 12 /

�
kuk

2�2�0��1��2Cp

H1 ;

where �0.k � 1
2
/� C .1 � �0/ D j0, �l .k � 1

2
/� C .1 � �l / D jl C 1 for l D 1; 2. We

conclude (1.12) since we have

2�0 C �1 C �2 D
�4k � 8
2k � 3

�C
:

4.2. Proof of (1.13) in the case M D1

Since the expression xG T
k;1

.'/ is defined by the r.h.s. in (3.6) we can adapt the proof of
(1.8) in order to get (1.13) in the caseM D1. In fact it is sufficient to prove the following
version of (3.7) and (3.8) for any R; T > 0 and for all ' 2 H k such that k'kH1 < R:ˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
� C C Ck'k

. 4k�8
2k�3

/C

H
.k� 12 /

�
; jpC1 � � � � � j0;

pC1X
lD0

jl D 2k C 1;

j4 � 1; (4.1)ˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� C C Ck'k

. 4k�8
2k�3

/C

H
.k� 12 /

�
; j2pC1 � � � � � j0;

2pC1X
lD0

jl � 2k � 1;

j2 � 1: (4.2)

The proof of (4.1) follows, exactly as for the proof of (3.7), by considering two subcases:
j5 D 0 and j5 ¤ 0. In the first case we start from the estimate (3.9) and the subsequent
computation, which implyˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
� C

� 4Y
lD0

k'k
H
jC
l

�
k'k

p�3

H1 ;

and hence by interpolation we can continue the estimate as follows:

.� � � / � C

� 4Y
lD0

k'k
P4
lD0 �l

H
.k� 12 /

�

�
k'k

pC2�
P4
lD0 �l

H1 ;

where �l .k � 1
2
/� C .1 � �l / D j

C

l
for l D 0; : : : ; 4, namely �l D

jC
l
�1

k� 32
and

�0 C �1 C �2 C �3 C �4 D
�4k � 8
2k � 3

�C
:
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Hence we get (4.1) in the case j5 D 0. In order to establish (4.1) in the case j5 ¤ 0 we
argue as in the proof of (3.7) for j5 ¤ 0 and hence following (3.10) we getˇ̌̌̌Z T

0

Z pC1Y
lD0

@jlx v

ˇ̌̌̌
� C

5Y
lD0

k'k
H
jC
l

pC1Y
lD6

kvk
L1..0;T /IH

jC
l
C1
/

� C

5Y
lD0

k'k
H
jC
l

pC1Y
lD6

k'k
H
jC
l
C1 ;

and we can continue the estimate as follows by interpolation:

.� � � / � C

5Y
lD0

.k'k
1��l
H1 k'k

�l

H
.k� 12 /

�
/

pC1Y
lD6

.k'k
1��l
H1 k'k

�l

H
.k� 12 /

�
/

D Ck'k

P5
lD0 �lC

PpC1
lD6

�l

H
.k� 12 /

�
k'k

pC2�
P5
lD0 �l�

PpC1
lD6

�l

H1 ;

where �l .k � 1
2
/� C .1 � �l / D j

C

l
for l D 0; : : : ; 5, �l .k � 1

2
/� C .1 � �l / D j

C

l
C 1

for l D 6; : : : ; p C 1. We conclude (4.1) for j5 ¤ 0 since

5X
lD0

�l C

pC1X
lD6

�l D
�4k � 10
2k � 3

�C
(notice that in fact we get in this case a stronger version of (4.1) since we get on the r.h.s.
an exponent even smaller than .4k�8

2k�3
/).

In order to establish (4.2) we argue as in the proof of (3.8) and hence we split into the
following subcases: j3 D 0 and j3 ¤ 0. In the case j3 D 0 we can argue as in (3.11) and
the subsequent computations in order to getˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� C

� 2Y
lD0

k'k
H
jC
l

�
k'k

2p�4

H1 ;

and hence by interpolation we can continue the estimate as follows:

.� � � / � C

2Y
lD0

.k'k
�l

H
.k� 12 /

�
k'k

1��l
H1 /k'k

2p�1

H1 D Ck'k
P2
lD0 �l

H
.k� 12 /

�
k'k

2pC2�
P2
lD0 �l

H1 ;

where �l .k � 1
2
/� C .1 � �l / D j

C

l
for l D 0; 1; 2. We get (4.2) in the case j3 D 0 since

�0 C �1 C �2 D .
4k�8
2k�3

/C: In order to prove (4.2) in the case j3 ¤ 0, we can argue as in
(3.12) and we get ˇ̌̌̌Z T

0

Z 2pC1Y
lD0

@jlx v

ˇ̌̌̌
� C

3Y
lD0

k'k
H
jC
l

2pC1Y
lD4

k'k
H
jC
l
C1 ;
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and we can continue by interpolation as follows:

.� � � / � C

3Y
lD0

.k'k
1��l
H1 k'k

�l

H
.k� 12 /

�
/

2pC1Y
lD4

.k'k
1��l
H1 k'k

�l

H
.k� 12 /

�
/

� Ck'k

P3
lD0 �lC

P2pC1
lD4

�l

H
.k� 12 /

�
k'k

2pC2�
P5
lD0 �l�

PpC1
lD6

�l

H1 ;

where �l .k � 1
2
/�C .1� �l /D j

C

l
for l D 0;1;2; 3 and �l .k � 1

2
/�C .1� �l /D j

C

l
C 1

for l D 4; : : : ; 2p C 1, then
P3
lD0 �l C

P2pC1

lD4
�l D .

4k�10
2k�3

/C: Then we conclude (4.2)
in the case j3 ¤ 0 (in fact we get an even stronger version since we have .4k�10

2k�3
/C <

.4k�8
2k�3

/).

4.3. Definition of xG T
k;M

for M 2 N and proof of (1.13) with constant uniform
w.r.t. M

We first introduce the energies xG T
k;M

in such a way that (1.11) occurs, and we shall also
establish (1.13) for M 2 N. We set vM .t; x/ D �M .v.t; x//, where v.t; x/ is the unique
solution to (1.3) for a givenM 2N. We retain the notation from Section 3, except that we
need to alter 	��j0;j1;j2.u/ as follows:

Definition 4.1. For any .j0; j1; j2/ 2 Ak and for every M 2 N we define

	��j0;j1;j2;M .u/ D .p � 2/u
p�3�M .@x.u

pC1//.@j0x u/
2@j1x u@

j2
x u

C 2up�2@j0x u�M .@
j0C1
x .upC1//@j1x u@

j2
x u

C up�2.@j0x u/
2�M .@

j1C1
x .upC1//u@j2x u

C up�2.@j0x u/
2@j1x u�M .@

j2C1
x .upC1//:

The main difference between 	��j0;j1;j2.u/ and 	��j0;j1;j2;M .u/ is the projector �M . The
reason for this modification is that we have the following identity (compare with (3.1)):

d

dt

Z
	j0;j1;j2.vM / D

Z
	�j0;j1;j2.vM / �

Z
	��j0;j1;j2;M .vM /; (4.3)

where vM .t; x/ D �M .v.t; x// and v.t; x/ is a solution to (1.3). Next we notice that we
have the following version of (3.16), where the solution v.t; x/ to (1.2) is replaced by
vM .t; x/:

d

dt
k@kxvMk

2
L2
D

X
.j0;j1;j2/2Ak

ǰ0;j1;j2

Z
	j0C1;j1C1;j2.vM /C l.o.t.; (4.4)

where l.o.t. denotes the integral of a linear combination of densities belonging to ‚k and
�k computed along the solution vM .t; x/. In fact we have

d

dt
k@kxvMk

2
L2
D 2

Z
@t@

k
xvM@

k
xvM D 2

Z
@kC3x vM@

k
xvM � 2

Z
@kC1x �M .v

pC1
M /@kxvM

D �2

Z
@kC1x .v

pC1
M /@kxvM ;
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where we used that �M is symmetric and �M .vM /D vM . Hence, the proof of (4.4) follows
that of (3.16). Next recall that by (3.17), which is available for any generic function u.x/,
we getX
.j0;j1;j2/2Ak

ǰ0;j1;j2

Z
	j0C1;j1C1;j2.vM /�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z
	�j0;j1;j2.vM /D l.o.t.;

where l.o.t. denotes the integral of a linear combination of densities belonging to ‚k and
�k . By combining this identity with (4.4) and (4.3) we get (by defining the energy xEk as
in (3.2))

d

dt
xEk.vM / D

X
.j0;:::;j2pC1/2Ck

�j0;:::;j2pC1

Z
Jj0;:::;j2pC1.vM /

C

X
.j0;:::;jpC1/2Dk

�j0;:::;jpC1

Z
Jj0;:::;jpC1.vM /

�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z
	��j0;j1;j2;M .vM /; (4.5)

where on the r.h.s. we have the integral of a linear combination of densities belonging to
‚k and �k , computed along the solution vM .t; x/, plus the integral of a linear combi-
nation of the expressions 	��j0;j1;j2;M .vM .t; x// where .j0; j1; j2/ 2 Ak . Notice that we
cannot expand

R
	��j0;j1;j2;M .vM .t; x// dx as the integral of a linear combination of terms

belonging to ‚k computed along vM .t; x/ because of �M appearing in 	��j0;j1;j2;M .u/.
Based on the r.h.s. in (4.5) we define

xG Tk;M .'/ D
X

.j0;:::;j2pC1/2Ck

�j0;:::;j2pC1

Z T

0

Z
Jj0;:::;j2pC1.�M .ˆM .t/'/

C

X
.j0;:::;jpC1/2Dk

�j0;:::;jpC1

Z T

0

Z
Jj0;:::;jpC1.�M .ˆM .t/'/

�

X
.j0;j1;j2/2Ak

�j0;j1;j2

Z T

0

Z
	��j0;j1;j2;M .�M .ˆM .t/'/; (4.6)

and we prove (1.13) for M 2 N with constant uniform w.r.t. M . On the r.h.s. of (4.6) we
have three types of densities. The first two groups of densities on the r.h.s. computed along
vM .t; x/ can be estimated by using (4.1) and (4.2), where v.t; x/ is replaced by vM .t; x/.
Indeed, the proof can be done mutatis mutandis by replacing v.t; x/ with vM .t; x/.

Hence we only need to estimate the third group of densities on the r.h.s. in (4.6) as
follows:ˇ̌̌̌Z T

0

Z
	��j0;j1;j2;M .vM .t; x//

ˇ̌̌̌
� C C Ck'k

. 4k�8
2k�3

/C

H
.k� 12 /

�
; .j0; j1; j2/ 2 Ak ; (4.7)
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with a constant uniform w.r.t.M , in order to conclude (1.13). Notice that 	��j0;j1;j2;M .vM /

with .j0; j1; j2/ 2 Ak can be expressed as a linear combination of densities belonging to
‚k , except that the projector �M can appear in front of a group of factors. The proof of
this fact is obvious if .j0; j1; j2/ ¤ .k � 1; 0; 0/. Assuming .j0; j1; j2/ D .k � 1; 0; 0/,
we have Z

	��k�1;0;0;M .vM / D 2

Z
@kx�M .v

pC1
M /@k�1x vMv

p
M

C p

Z
.@k�1x vM /

2v
p�1
M �M@x.v

pC1
M /: (4.8)

The density of the second integral on the r.h.s. belongs to ‚k , with factors vM up to the
projector �M . For the first term on the r.h.s., recall that by Leibniz rule we have

.p C 1/@k�1x uup D @k�1x .upC1/C
X

.˛1;:::; p̨C1/

˛1C���C p̨C1Dk�1

j̨<k�1

c˛1;:::; p̨C1

pC1Y
jD1

@
j̨
x u;

hence the first term on the r.h.s. in (4.8) can be expressed as a multiple ofZ
@kx�M .v

pC1
M /@k�1x .v

pC1
M /C

X
.˛1;:::; p̨C1/

˛1C���C p̨C1Dk�1

j̨<k�1

c˛1;:::; p̨C1

Z
@kx�M .v

pC1
M /

pC1Y
jD1

@
j̨
x vM

D

Z
@kx�M .v

pC1
M /@k�1x �M .v

pC1
M /

�

X
.˛1;:::; p̨C1/

˛1C���C p̨C1Dk�1

j̨<k�1

c˛1;:::; p̨C1

Z
@k�1x �M .v

pC1
M /@x

� pC1Y
jD1

@
j̨
x vM

�
; (4.9)

where we used that �M is a projector. Now, the first term on the r.h.s. in (4.9) is zero, as
an integral of an exact derivative, and the other terms, after expanding the derivative of a
product, can be expressed as the integral of densities belonging to ‚k up to the projector
�M . Summarizing, in order to get (4.7) it is sufficient to estimateˇ̌̌̌Z T

0

Z � mY
jD0

@

j
x vM

�
�M

� 2pC1Y
iDmC1

@ˇix vM

�ˇ̌̌̌
� C C Ck'k

. 4k�8
2k�3

/C

H
.k� 12 /

�
; (4.10)

where
Pm
jD0 
j C

P2pC1
iDmC1ˇi D 2k � 1 and at least three numbers in ¹
j ;ˇiº are nonzero.

We can assume the following alternative: the four factors with higher derivatives belong
to the first product outside the projector, the four factors with higher derivatives belong
to the second product on which we have the action of the projector or the four factors
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with higher derivatives are distributed between the two groups. Hence, depending on the
structure of the density appearing on the l.h.s. in (4.10) and by assuming that the numbers

j are decreasing as well as the numbers ˇi , we can associate with the density on the l.h.s.
in (4.10) a number J 2 ¹0; 1; 2; 3; 4º defined as

J D 4 in the case
®

k ; k D 0; 1; 2; 3

¯
� max

®

j ; ˇi j j D 4; : : : ; m; i D mC 1; : : : ; 2p C 1

¯
;

J D 0 in the case min
®
ˇk ; k D mC 1;mC 2;mC 3;mC 4

¯
� max

®

j ; ˇi j j D 0; : : : ; m; i D mC 5; : : : ; 2p C 1

¯
;

0 < J < 4 in the case min
®

h; ˇk j h D 0; : : : ; J � 1; k D mC 1; : : : ; mC 4 � J

¯
� max

®

j ; ˇi j j D J; : : : ; m; i D mC 4 � J; : : : ; 2p C 1

¯
:

In the case J D 4 we estimateˇ̌̌̌Z T

0

Z � mY
jD0

@

j
x vM

�
�M

� 2pC1Y
iDmC1

@ˇix vM

�ˇ̌̌̌

�





 mY
jD0

@

j
x vM






L1..0;T /IL1/





�M . 2pC1Y
iDmC1

@ˇix vM /






L1..0;T /IL1/

;

and by Sobolev embedding and the Hölder inequality, we proceed with

.� � � / � C

3Y
jD0

k@

j
x vMkL4..0;T /IL4/

mY
jD4

k@

j
x vMkL1..0;T /IL1/

�





�M 2pC1Y
iDmC1

@ˇix vM






L1..0;T /IH1/

� C

3Y
jD0

k@

j
x vMkL4..0;T /IL4/

mY
jD4

k@

j
x vMkL1..0;T /IH1//

�

2pC1Y
iDmC1

k@ˇix vMkL1..0;T /IH1/;

where we used that H 1 is an algebra and continuity of �M on H 1. The proof of (4.10)
can now be completed exactly following the proof of (4.2). A similar argument works for
J D 0. In the case 0 < J < 4, we alter the argument above as followsˇ̌̌̌Z T

0

Z � mY
jD0

@

j
x vM

�
�M

� 2pC1Y
iDmC1

@ˇix vM

�ˇ̌̌̌

�





 mY
jD0

@

j
x vM






L
4
J ..0;T /IL

4
J /





�M� 2pC1Y
iDmC1

@ˇix vM

�




L

4
4�J ..0;T /IL

4
4�J /

:
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By continuity of �M on Lp with p 2 .1;1/ we can remove the projector, and then we
can apply the Hölder inequality twice in order to place the four higher derivatives in L4

and the other ones in L1. Then we proceed exactly following the proof of (4.2).

4.4. Proof of (1.14)

Due to the structure of the functionals xG T
k;M

we first have to prove that, if we consider
a given density belonging to �k , then the corresponding space-time integrals computed
along vM .t; x/ converge to the same integral computed along v.t; x/. This follows from
the expression under consideration being multilinear. Indeed, by following the same com-
putations that we did to get (4.1), we estimate the difference of the two expressions we
are interested in, by the product of several factors, where each factor involves norms of
vM .t; x/, v.t; x/ in either H � , � < k � 1

2
or L6..0; T /IW s;6/, s < k � 1

2
and one factor

involves the norm of v� vM in eitherH � , � <k � 1
2

orL6..0;T /IW s;6/, s < k � 1
2

. Then
we conclude that the difference converges to zero by the result in Section 2. The proof of
(1.14) will follow provided that we prove the same convergence property as above if we
now have a density belonging to ‚k with the extra property that in the density, when
computed along vM .t; x/, the projector �M appears in front of the product of a group of
derivatives of vM .t; x/. By using the identity Id D �M C �>M , we remove the projector
�M at the expense of a remainder. Without the remainder, convergence for the correspond-
ing terms follows the same lines as above in the case of a density in �k , as in the proof of
(4.2). We now deal with a remainder given by the density belonging to‚k computed along
vM .t;x/with the projector �>M in front of a product of derivatives of vM .t;x/. In order to
show that this remainder goes to zero as M !1, notice that every factor involved in the
product on which the operator �>M acts, can itself be decomposed by using the identity
Id D �cM C �>cM , where c is a suitable small constant. Once the decomposition of each
factor is done following this last identity, then we develop the product and notice that we
get nontrivial contributions after the application of the projector �>M only for the terms
where at least one factor involves �>cMvM .t; x/. Then we conclude following the same
chain of inequalities needed in order to get (4.2). All factors that we get will be bounded
according to estimates in Section 2, except one that appears with a projector �>cM and
needs to be computed in one of the normsH � , � < k � 1

2
or L6..0;T /IW s;6/, s < k � 1

2
.

As we are allowed to lose " derivatives in our estimates, we deduce by a straightforward
argument that we are converging to zero as M !1.

5. Proof of Theorem 1.4

We denote by d�k (resp. d�?
k;M

/ the Gaussian measure induced by the random series

! 7!
X
n2Z

gn.!/

.1C n2/k=2
einx

�
resp.

X
n2Z;jnj>M

gn.!/

.1C n2/k=2
einx

�
;
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and define the following two measures:

d�k D �R.H .u// d�k ; d�k;M D �R.H .�Mu// d�k :

Next we shall also use the representation

d�k D 
M exp .�k�Muk2Hk /du1 : : : duM � d�
?
k;M ; (5.1)

where 
M is a suitable renormalization constant and du1 : : :duM is the Lebesgue measure
on CM . Next, changing variable,

�k;M .ˆM .T /A/

D 
M

Z
ˆM .t/A

�R.H .�Mu//e
�k�Muk

2

Hk du1 : : : duM � d�
?
k;M

D 
M

Z
A

�R.H .�M .ˆM .T /u///e
�.k�M .ˆM .t/.u//k

2

Hk du1 : : : duM � d�
?
k;M

D

Z
A

�R.H .�M .ˆM .T /u///e
k�Muk

2

Hk
�k�M .ˆM .T /u/k

2

Hk d�k ; (5.2)

where A is a Borel subset of H .k� 12 /
�

and we used (5.1) in the last identity; hence

�k;M .ˆM .T /A/

D

Z
A

�R.H .�M .ˆM .T /u///e
� xRk.�Mu/C xRk.�M .ˆM .T /u//

� e
xEk.�Mu/�xEk.�M .ˆM .T /u/ d�k

D

Z
A

�R.H .�M .ˆM .T /u///e
� xRk.�Mu/C xRk.�M .ˆM .T /u/e

� xGT
k;M

.�Mu/ d�k ; (5.3)

where xEk , xG T
k;M

and xRk are the functionals in Theorem 1.3. Set

fT;M .u/ D �R
�
H
�
�M .ˆM .T /u/

��
e�
xRk.�Mu/C xRk.�M .ˆM .T /u//e

� xGT
k;M

.�Mu/;

fT .u/ D �R
�
H .ˆ.T /u/

�
e�
xRk.u/C xRk..ˆ.T /u/e

� xGT
k;1

.u/
I

then by (1.14) and continuity of xRk on H .k� 12 /
�

(which follows by minor modifications
of the proof of (1.12)), we get fT;M .u/! fT .u/ almost surely w.r.t �k , when M !1.
Moreover, we claim that, for all q 2 Œ1;1/,

sup
M

kfT;M .u/kLq.�k/ <1; (5.4)

and therefore, as �k is a finite measure and by using the Egoroff theorem, we can upgrade
to convergence in Lq , namely

fT;M .u/
Lq.�k/
�����! fT .u/ 2 L

q.�k/ as M !1; (5.5)
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and we conclude, by the conservation of the Hamiltonian H , �R.H .u//gT .u/D fT .u/ 2

Lq.�k/. Next we prove (5.4). From conservation of the Hamiltonian, H .�M .ˆM .T /u//

D H .�Mu/ and due to �R there exists C > 0, uniform w.r.t. M , such that the support of
fT;M is contained in ¹u 2 H .k� 12 /

�

j k�MukH1 < C º. By combining this fact with (2.3)
(where we choose s D .k � 1

2
/� and ' D �Mu) we get that, with another constant C > 0

uniform w.r.t. M , for every u in the support of fT;M ,

sup
�2Œ0;T �

k�MˆM .�/uk
H
.k� 12 /

� � Ck�Muk
H
.k� 12 /

� :

Gathering all together and recalling (1.12) and (1.13) (where we choose ' D �Mu) we
get, with C > 0 depending on R, T > 0 and uniform w.r.t. M ,

fT;M .u/ � exp
�
C C Ckuk

. 4k�8
2k�3

/C

H
.k� 12 /

�

�
:

As .4k�8
2k�3

/ < 2, we can apply classical Gaussian bounds in order to get

exp
�
Ckuk

. 4k�8
2k�3

/C

H
.k� 12 /

�

�
2 Lq.�k/

and we conclude (5.4). Going back to (5.2) and (5.3) we get

�k;M .ˆM .T /A/ D

Z
A

fT;M .u/ d�k ; (5.6)

and hence by passing to the limit as M !1 (at least formally) we get

�k.ˆ.T /A/ D

Z
A

fT .u/ d�k ; (5.7)

where fT .u/ 2 Lq.�k/ and we could conclude the proof. Proving (5.6)) (5.7) requires
some work: we will prove the inequality

�k.ˆ.T /A/ �

Z
A

fT .u/ d�k (5.8)

and the reversed one
�k.ˆ.T /A/ �

Z
A

fT .u/ d�k ; (5.9)

which in turn imply (5.7). Assume in the sequel that A is a compact set in H .k� 12 /
�

; by
classical approximation arguments this will be sufficient to deal with any generic measur-
able set. In order to prove (5.6)) (5.8) with A compact, we use the following property of
the flows ˆM .t/, whose proof follows by combining Proposition 2.1 and the arguments
in [47]:

8A � H .k� 12 /
�

compact;8" > 0;

9M0 2 N s.t. ˆ.T /A � ˆM .T /.AC B
.k� 12 /

�

" / 8M > M0;
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where Bs" denotes the ball of radius " > 0 in H s . Then if A compact and " > 0 are given,
we get

�k;M .ˆ.T /A/ � �k;M
�
ˆM .T /.AC B

.k� 12 /
�

" /
�

D

Z
ACB

.k� 12 /
�

"

fT;M .u/ d�k 8M > M0;

where we used (5.6). By using (5.5) we can pass to the limit as M !1 and we get

lim sup
M!1

�k;M .ˆ.T /A/ �

Z
ACB

.k� 12 /
�

"

fT .u/ d�k 8" > 0:

On the other hand, one can easily check that lim supM!1 �k;M .ˆ.T /A/ D �k.ˆ.T /A/
and also, with A compact, one can prove that

lim
"!0

Z
ACB

.k� 12 /
�

"

fT .u/ d�k D

Z
A

fT .u/ d�k

and (5.8) follows. In order to prove (5.9) we take advantage of a property of the flows
ˆM .t/ that follows from Proposition 2.1:

8A � H .k� 12 /
�

compact;8" > 0;

9M0 2 N s.t. 8M > M0; ˆM .T /A � ˆ.T /AC B
.k� 12 /

�

" :

By combining this fact with (5.6) we get for any compact set A,

�k;M .ˆ.T /AC B
.k� 12 /

�

" / � �k;M .ˆM .T /A/ D

Z
A

fT;M .u/ d�k 8M > M0;

and by passing to the limit as M !1 on the l.h.s. and r.h.s. we get

�k.ˆ.T /AC B
.k� 12 /

�

" / �

Z
A

fT .u/ d�k :

From compactness of A, we easily get lim"!0 �k.ˆ.T /ACB
.k� 12 /

�

" /D �k.ˆ.T /A/ and
(5.9) follows.

A. A nonlinear local-in-time estimate

The aim of this appendix is to provide a proof of (2.28).

A.1. A first reduction

Let s � 1 and p � 3 be integers. For the sake of completeness, we prove



Z t

0

S.t � �/�M…
�
…
�
.v.�//p

�
@xv.�/

�
d�






Y sT

� CT �kvk
p

Y 1T
kvkY sT ; � > 0;
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for T � 1 and C > 0 independent ofM and �. The arguments that we will perform below
are standard. Our only goal is to provide a complete argument for a reader unfamiliar with
the X s;b machinery, as well as proving how to gain the positive power of T at the r.h.s.
(which was of importance for our analysis in Section 2). To the best of our knowledge,
the estimate above written in this form is not readily available in the literature, even if we
closely follow [7]. As �M is bounded on Y s , it suffices to prove



Z t

0

S.t � �/….@xv.�/…v
p.�// d�






Y sT

� CT �kvk
p

Y 1T
kvkY sT ; � > 0:

Recalling the definition of restriction spaces, proving the global-in-time estimate will be
sufficient:



 .t/ Z t

0

S.t � �/….@xv.�/…v
p.�// d�






Y s
� CT �kvk

p

Y 1T
kvkY sT ; � > 0;

where  2 C10 .R/ is such that  � 1 on Œ�1; 1�. Using [7, Lemma 3.1], we obtain



 .t/ Z t

0

S.t � �/….@xv.�/…v
p.�// d�






Y s
� Ck….@xv…v

p/kZs ;

where by definition kukZs D kuk
X
s;� 12
Ckh� C n3i�1hnis Ou.�;n/kL2nL1� . Therefore, prov-

ing
k….@xv…v

p/kZs � CT
�
kvk

p

Y 1T
kvkY sT ; � > 0 (A.1)

will be enough. Its proof follows by combining the following propositions. The next state-
ment is a slightly modified version of [7, Theorem 3].

Proposition A.1. For s � 1 there exists a constant C > 0 such that

kupk
X
s�1; 12

� CkukY skuk
p�1

Y 1
: (A.2)

We shall also need the following bilinear estimate.

Proposition A.2. For s � 1 there exists C > 0 such that, for T 2 .0; 1/,

k….…u1…u2/kZs � CT
�.ku1k

X
s�1; 12
T

ku2k
X
0; 12
T

C ku1k
X
0; 12
T

ku2k
X
s�1; 12
T

/; � > 0:

Let us see how (A.1) is a consequence of both propositions: from Proposition A.2 we
get

k….@xv…v
p/kZs D k….…@xv…v

p/kZs

� CT �.kvpk
X
s�1; 12
k@xvk

X
0; 12
C kvpk

X
0; 12
k@xvk

X
s�1; 12

/:

Next, using Proposition A.1 we get

kvpk
X
s�1; 12

� CkvkY skvk
p�1

Y 1
; kvpk

X
0; 12
� Ckvk

p

Y 1
;

and we get (A.1).
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Proof of Proposition A.1. Write

F .up/.�; n/ D

Z
�D�1C���C�p

X
nDn1C���Cnp

pY
kD1

Ou.�k ; nk/;

where F and Ou denote the space-time Fourier transform (continuous in time and discrete
in space),

kupk2
X
s�1; 12

D

Z
R

X
n2Z

hni2.s�1/h� C n3ijF .up/.�; n/j2 d�: (A.3)

Notice that the r.h.s. in (A.3) may be bounded withZ
R

X
n2Z

hni2.s�1/h� C n3i

�Z
�D�1C���C�p

X
nDn1C���Cnp

pY
kD1

j Ou.�k ; nk/j

�2
d�:

Hence, if we define w.t; x/ by yw.�; n/ D j Ou.�; n/j, we get kukXs;b D kwkXs;b , kukY s D
kwkY s , and we are reduced to estimatingZ

R

X
n2Z

hni2.s�1/h� C n3i

�Z
�D�1C���C�p

X
nDn1C���Cnp

pY
kD1

yw.�k ; nk/

�2
d�: (A.4)

Next we split the domain of integration and we consider first the contribution to (A.4) in
the region

j� C n3j � 10pj�1 C n
3
1j: (A.5)

If we define w1 by yw1.�; n/ D h� C n3i
1
2 yw.�; n/, then the contribution to (A.4) in the

region (A.5) can be controlled in the physical space variables as

Ckw1w
p�1
k
2
L2.RIH s�1/

� C.kw1k
2
L2.RIH s�1/

kwp�1k2L1.RIL1/ C kw1k
2
L2.RIL1/kw

p�1
k
2
L1.RIH s�1/

/

� C.kwk2
X
s�1; 12
kwk

2.p�1/

L1.RIH1/
C kw1k

2
L2.RIH1/

kwk2
L1.RIH s�1/

kwk
2.p�2/

L1.RIH1/
/;

where we have used standard product rules and Sobolev embedding H 1 � L1. We pro-
ceed with

.� � � / � C.kwk2
X
s�1; 12
kwk

2.p�1/

Y 1
C kw1k

2

X
1; 12
kwk2

Y s�1
kwk

2.p�2/

Y 1
/;

where we used Y 1 � L1.RIH 1/, Y s�1 � L1.RIH s�1/. Notice that we have a better
estimate, when compared with (A.2), in the region (A.5). Similarly, we can evaluate the
contributions to (A.4) of the regions

j� C n3j � 10pj�k C n
3
kj; 2 � k � p:
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Therefore, we may assume that the summation and the integration in (A.4) are performed
in the region

max
1�k�p

j�k C n
3
kj �

1

10p
j� C n3j: (A.6)

Write

.� C n3/ �

pX
kD1

.�k C n
3
k/ D

� pX
kD1

nk

�3
�

pX
kD1

n3k I

therefore, in the region (A.6) we haveˇ̌̌̌� pX
kD1

nk

�3
�

pX
kD1

n3k

ˇ̌̌̌
� j� C n3j �

pX
kD1

j�k C n
3
kj �

9

10
j� C n3j;

hence

h� C n3i � C

ˇ̌̌̌� pX
kD1

nk

�3
�

pX
kD1

n3k

ˇ̌̌̌
:

By symmetry we can assume jn1j � jn2j � � � � � jnkj and by using [7, Lemma 4.1], we
obtain ˇ̌̌̌� pX

kD1

nk

�3
�

pX
kD1

n3k

ˇ̌̌̌
� C jn1j

2
jn2j:

Consequently, in the region (A.6) we get h� C n3i � C hn1i2hn2i, and the corresponding
contribution to (A.4) can be estimated as

C

Z
R

X
n2Z

�Z
�D�1C���C�p

X
nDn1C���Cnp

hn1i
s
hn2i

1
2

pY
kD1

yw.�k ; nk/

�2
d�: (A.7)

If we define w1, w2 by yw1.�; n/ D hnis yw.�; n/, yw2.�; n/ D hni
1
2 yw.�; n/, going back to

physical space variables, we estimate (A.7) as

Ckw1w2w
p�2
k
2
L2.RIL2/ � Ckw1k

2
L1.RIL2/kw2k

2
L4.RIL1/kwk

2
L4.RIL1/kwk

2.p�3/

L1.RIL1/

� Ckwk2L1.RIH s/kw2k
2

L4.RIW
1
2 ;4/
kwk2

L4.RIW 1;4/
kwk

2.p�3/

L1.RIH1/
:

Hence, by using Y 1 � L1.RIH 1/ and Y s � L1.RIH s/, along with the estimate

kukL4.RIL4/ � Ckuk
X
0; 13

(A.8)

established in the fundamental work [1], we proceed with

.� � � / � Ckwk2Y skwk
2

X
1; 13
kwk2

X
1; 13
kwk

2.p�3/

Y 1
;

and this concludes the proof.
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Proof of Proposition A.2. We start with proving

k….…u1…u2/k
X
s;� 12
� CT �.ku1k

X
s�1; 12
T

ku2k
X
0; 12
T

C ku1k
X
0; 12
T

ku2k
X
s�1; 12
T

/: (A.9)

As a first step we prove an estimate for global-in-time functions:

k….…u1…u2/k
X
s;� 12
� C.ku1k

X
s�1; 12
ku2k

X
0; 13
C ku1k

X
s�1; 13
ku2k

X
0; 12

C ku1k
X
0; 13
ku2k

X
s�1; 12

C ku1k
X
0; 12
ku2k

X
s�1; 13

/: (A.10)

Notice that by comparing (A.9) and (A.10) in the second estimate we gain derivatives but
we lose a positive power of the time T . We will prove toward the end how to go from
(A.10) to (A.9).

The square of the l.h.s. of (A.10) may be written asZ
R

X
n¤0

hni2sh� C n3i�1jF .…u1…u2/.�; n/j
2 d�;

and moreover we easily have

jF .…u1…u2/.�; n/j �
X
n1¤0;n

Z
R
j Ou1.�1; n1/j j Ou2.� � �1; n � n1/j d�1:

For j D 1; 2, define wj .t; x/ with ywj .�; n/ D j Ouj .�; n/j. Then we estimate the l.h.s. of
(A.10) asZ

R

X
n¤0

hni2s

h� C n3i

� X
n1¤0;n

Z
R
yw1.�1; n1/ yw2.� � �1; n � n1/ d�1

�2
d�;

which in turn by a duality argument is bounded with

sup
kvk

L2t;x
�1

Z
R

X
n¤0

hnis

h� C n3i
1
2

X
n1¤0;n

Z
R
yw1.�1; n1/ yw2.� � �1; n � n1/j Ov.�; n/j d�1 d�:

For n ¤ 0 and n1 ¤ 0; n, we have hnis � C jn1j
1
2 jn� n1j

1
2 jnj

1
2 .hn1i

s�1 C hn� n1i
s�1/.

Therefore, by using a symmetry argument, it suffices to evaluate

sup
kuk

L2t;x
�1

Z
R2

X
n¤0;n1¤0;n

jn1j
1
2 jn � n1j

1
2 jnj

1
2

h� C n3i
1
2

.hn1i
s�1
yw1.�1; n1//

� yw2.� � �1; n � n1/j Ov.�; n/j d�1 d�: (A.11)

The key property for smoothing is the elementary bound

max
�
h� C n3i

1
2 ; h�1 C n

3
1i

1
2 ; h� � �1 C .n � n1/

3
i
1
2
�
� C jn1j

1
2 jn � n1j

1
2 jnj

1
2 :



F. Planchon, N. Tzvetkov, and N. Visciglia 912

We will consider a splitting of the expression in (A.11) into three contributions, taking
into account which term is the maximum in the above elementary bound. Notice that the
contribution of (A.11) in the region

h� C n3i
1
2 � C jn1j

1
2 jn � n1j

1
2 jnj

1
2 (A.12)

may be estimated as

Ckw2 � v1 � hDxi
s�1w1kL1.RIL1/ � CkvkL2t;x

khDxi
s�1w1kL4.RIL4/kw2kL4.RIL4/;

where v1.t; x/ is defined with Ov1.�; n/ D j Ov.�; n/j. Now, using (A.8), we write

khDxi
s�1w1kL4.RIL4/ � Ckw1k

X
s�1; 13

D Cku1k
X
s�1; 13

;

kw1kL4.RIL4/ � Ckw1k
X
0; 13
D Cku1k

X
0; 13
:

Hence we can estimate the contribution to (A.11) in the region (A.12) by

ku1k
X
s�1; 13
ku2k

X
0; 13
;

up to a multiplicative constant. Next we consider the contribution to (A.11) in the region

h�1 C n
3
1i

1
2 � C jn1j

1
2 jn � n1j

1
2 jnj

1
2 : (A.13)

Let v1.t; x/ be defined by

Ov1.�; n/ D h� C n
3
i
� 12 j Ov.�; n/j

and let w11.t; x/ be defined as

yw11.�; n/ D hni
s�1
h� C n3i

1
2 yw1.�; n/I

then we can estimate the contribution of (A.11) in the region (A.13) by

Ckw11 � w2 � v1kL1.RIL1/ � Ckw11kL2.RIL2/kw2kL4.RIL4/kv1kL4.RIL4/:

Using (A.8) again we obtain

kv1kL4.RIL4/ � Ckvk
X
0;� 16
� CkvkL2.RIL2/;

kw2kL4.RIL4/ � Ckw2k
X
0; 13
� Cku2k

X
0; 13
:

Moreover, we have

kw11kL2.RIL2/ D kw1k
X
s�1; 12

D ku1k
X
s�1; 12

;

and, summarizing, we control the contribution to (A.11) in the region (A.13) by
ku1k

X
s�1; 12
ku2k

X
0; 13

up to a multiplicative factor. Finally, consider the contribution to
(A.11) in the third region

h� � �1 C .n � n1/
3
i
1
2 � C jn1j

1
2 jn � n1j

1
2 jnj

1
2 : (A.14)
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Retain v1.t; x/ with Ov1.�; n/ D h� C n3i�
1
2 j Ov.�; n/j and let w21.t; x/ be defined with

yw21.�; n/ D h� C n
3i

1
2 yw2.�; n/. Then we can control the contribution to (A.11) in the

region (A.14) by

Ckw21 � v1 � hDxi
s�1w1kL1.RIL1/

� CkhDxi
s�1w1kL4.RIL4/kw21kL2.RIL2/kv1kL4.RIL4/

� Cku1k
X
s�1; 13
ku2k

X
0; 12
kvk

X
0;� 16

;

where we have used (A.8) again. Hence, the contribution of (A.11) in the region (A.14)
can be estimated, up to a multiplicative constant, by ku1k

X
s�1; 13
ku2k

X
0; 12

. Summarizing,
we estimate (A.11) by

ku1k
X
s�1; 12
ku2k

X
0; 13
C ku1k

X
s�1; 13
ku2k

X
0; 12

for functions u1 and u2 which are not localized in time. Recall that by symmetry, in order
to estimate the l.h.s. in (A.10), we need to add further terms where the roles of u1 and
u2 have been exchanged. Hence we have established (A.10) which, as already said, in
some sense is stronger than (A.9), since lower-order conormal derivatives of u1 and u2
are involved, but it is weaker than (A.9) since no gain of positive power of T has been
obtained in (A.10). We finally deal with this issue: as a consequence of [46, Lemma 2.11]
(see also [8, Lemma 3.2]) there exists � > 0 such that

kwk
X
s�1; 13
T

� CT �kwk
X
s�1; 12
T

; kwk
X
0; 13
T

� CT �kwk
X
0; 12
T

;

and we complete the proof of (A.9) by combining the estimates above with (A.10), along
with a suitable choice of extensions for u1 and u2, which a priori are defined on the strip
of time .�T; T /, on the whole space-time with a global norm of the extension which is at
most twice the corresponding localized norm.
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