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Lifting of fractional Sobolev mappings to noncompact
covering spaces

Jean Van Schaftingen

Abstract. Given compact Riemannian manifolds M and N, a Riemannian covering � W zN! N by a
noncompact covering space zN, 1 < p <1 and 0 < s < 1, the space of liftings of fractional Sobolev
maps in PW s;p.M;N/ is characterized when sp > 1 and an optimal nonlinear fractional Sobolev
estimate is obtained when moreover sp � dimM. A nonlinear characterization of the sum of spaces
PW s;p.M;R/C PW 1;sp.M;R/ is also provided.

1. Introduction

Given a covering map � W zN! N, that is, a map � such that for every y 2 N there exists
some open set U � N such that y 2 U and ��1.U / is a disjoint union of open subsets of
zN on which � is a homeomorphism, the classical topological lifting theory states that if
M is a simply connected topological manifold and if � is surjective, then every mapping
u 2 C.M;N/ can be written as u D � ı Qu for some map Qu 2 C.M; zN/ (see for example
[15, Prop. 1.33]). For instance, the universal covering of the circle � WR! S1 defined for
each Qy 2 R by �. Qy/ WD ei Qy 2 S1 � R2 ' C allows one to classify the homotopy classes
of maps from the circle S1 to itself (see for example [15, Thm. 1.7]).

When the manifolds N and zN are both endowed with a Riemannian metric, we say that
� W zN! N is a Riemannian covering whenever it is a covering and it is a local isometry,
that is, it preserves the metric tensor. In fact, if N is a Riemannian manifold and � is a
topological covering map, there exists a unique Riemannian metric on zN such that � W zN!
N is a Riemannian covering (see [16, Prop. 2.31], [13, §2.A.4]).

Given a Riemannian covering � W zN!N, a Riemannian manifold M, s 2 .0;1� and p 2
Œ1;1/, the lifting problem in Sobolev spaces amounts to determining whether each map-
ping u 2 PW s;p.M;N/ can be written as u D � ı Qu on M, for some map Qu 2 PW s;p.M; zN/

[2, 5].
When s D 1, the space PW 1;p.M;N/ is the homogeneous first-order Sobolev space

defined – if the Riemannian manifold N is assumed without loss of generality in view of
Nash’s embedding theorem [26] to be isometrically embedded into some Euclidean space
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R� – as

PW 1;p.M;N/ WD
®
uWM! N

ˇ̌
u is weakly differentiable and

R
M
jDujp <1

¯
:

If the domain manifold M is simply connected, then the first-order Sobolev spaces in
which each map admits a lifting have been characterized for the universal covering of
the circle � WR! S1 by Bourgain, Brezis and Mironescu [5, Thm. 3] and for a general
Riemannian covering map � W zN ! N by Bethuel and Chiron [2, Thm. 1] (see also [11,
Thm. 1.1]): if the covering � is surjective and not injective, every map u 2 PW 1;p.M;N/

can be written as u D � ı Qu for some mapping Qu 2 PW 1;p.M; zN/ if and only if p �
min¹2; dimMº; moreover one has thenZ

M

jD Qujp D

Z
M

jDujpI (1)

once the existence of the lifting Qu is known, the identity (1) follows directly from the chain
rule for the Sobolev functions since the covering map � is a local Riemannian isometry
so that jD Quj D jDuj almost everywhere on M.

In the fractional case 0 < s < 1, the corresponding homogeneous fractional Sobolev–
Slobodeckiı̆ space PW s;p.M;N/ can be defined through the finiteness of the Gagliardo
fractional energy as

PW s;p.M;N/ WD
®
uWM! N

ˇ̌
kuk

p
PW s;p.M/

WD
’

M�M
dN.u.y/;u.x//

p

dM.y;x/mCsp
dy dx <1

¯
;

where dM and dN respectively denote the geodesic distances on the connected Riemann-
ian manifolds M and N and where m WD dimM.

When sp < 1, by the works of Bourgain, Brezis and Mironescu for the universal cover-
ing of the circle � WR! S1 [5, Thm. 2], [11, Thms. 5.1 & 5.2] and of Bethuel and Chiron
[2, Thm. 3], every map u2 PW s;p.M;N/ can be written as uD � ı Quwith Qu2 PW s;p.M; zN/

and one then has the lifting estimate“
M�M

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCsp
dy dx � C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx: (2)

In this régime sp < 1, fractional Sobolev maps are quite rough mappings, and the pos-
sibility of jumps leaves much room for the construction of the lifting, which is quite
challenging because of the highly nonunique character of the lifting.

When the covering space zN is compact, fractional Sobolev spaces PW s;p.M;N/ for
which any map admits a lifting have been characterized in the works of Bethuel and Chiron
[2, Thm. 3], and of Mironescu and Van Schaftingen [24]: if the covering � is surjective
and not injective, every map u 2 PW s;p.M;N/ can be written as u D � ı Qu for some
Qu 2 PW s;p.M; zN/ if and only if sp � min¹2; dim Mº. Moreover, if sp > 1, estimate (2)
holds for any u 2 PW s;p.M;N/ that can be written as u D � ı Qu with Qu 2 PW s;p.M; zN/;
this crucial estimate is a consequence of a reverse oscillation estimate, combined with the
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observation that the diameter of the covering space zN can be bounded by a multiple of
inj.N/, the injectivity radius of the manifold N.

When the covering space zN is not compact, one encounters an analytical obstruction
for 1 � sp < m: there exist maps in PW s;p.M;N/ that are smooth except at a single point
and that cannot be written as u D � ı Qu for some map Qu 2 PW s;p.M; zN/ [5, Thm. 2],
[2, Thm. 3]. This does not end the story, as one can still try to describe the functional
space of liftings.

In the case of the universal covering of the circle � WR! S1, the liftings have been
characterized in a sequence of works by Bourgain, Brezis, Mironescu and Nguyen [4, 11,
19–22, 27]:

Theorem 1.1. Let M be a compact Riemannian manifold, let m WD dimM, let s 2 .0; 1/
and let p 2 .1;1/. If M is simply connected and if sp � 2, then there exists a constant
C 2 .0;1/ such that every map u 2 PW s;p.M; S1/ can be written as u D � ı Qu on M

with Qu D Qv C zw, where the functions Qv 2 PW s;p.M;R/ and zw 2 PW 1;sp.M;R/ satisfy the
estimate“

M�M

j Qv.y/ � Qv.x/jp

dM.y; x/mCsp
dy dx C

Z
M

jD zwjsp � C

“
M�M

ju.y/ � u.x/jp

dM.y; x/mCsp
dy dx: (3)

In other words, Theorem 1.1 states that any map u 2 PW s;p.M;S1/ has a lifting Qu 2
PW s;p.M;R/C PW 1;sp.M;R/.

Conversely to Theorem 1.1, in view of the fractional Gagliardo–Nirenberg interpola-
tion inequality (see for example [8, Cor. 3.2], [33, Lem. 2.1], [10]), if Qu D Qv C zw with
Qv 2 PW s;p.M;R/ and zw 2 PW 1;sp.M;R/, then u WD � ı Qu 2 PW s;p.M;S1/, with inequality
(3) reversed. Theorem 1.1 characterizes thus completely the lifting space of PW s;p.M;S1/
for sp � 2 as the sum of linear spaces PW s;p.M;R/C PW 1;sp.M;R/.

The first goal of the present work is to obtain a counterpart of Theorem 1.1 for a gen-
eral covering map � W zN! N when the covering space zN is not compact. This endeavour
is delicate from its very beginning, since PW s;p.M; zN/C PW 1;sp.M; zN/ has no straight-
forward definition or generalization when the covering space zN is not a linear space. We
characterize the lifting space as follows.

Theorem 1.2. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN ! N be a surjective Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/.
If M is simply connected and if sp � 2, then there exists a constant C 2 .0;1/ such
that for every map u 2 PW s;p.M;N/ there exists a measurable map QuWM! zN satisfying
� ı Qu D u almost everywhere on M and“

M�M

d zN. Qu.y/; Qu.x//
p ^ 1

dM.y; x/mCsp
dy dx � C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx: (4)

The integrand in the left-hand side of (4) only differs from the classical Gagliardo
energy in the right-hand side by truncating, through the minimum ^ operation, the value
of the distance at 1; in terms of metric space, this can be interpreted as taking, on the
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covering space zN, a bounded distance for which the covering map � is an isometry at
small scales.

The characterization of liftings of Theorem 1.2 is sharp, in the sense that if for some
mapping QuWM! zN the left-hand side of (4) is finite, then by the local isometry property
of liftings one has u D � ı Qu 2 PW s;p.M;N/ together with estimate (4) reversed.

The core of the proof of Theorem 1.2 is the reverse oscillation estimate of Miron-
escu and Van Schaftingen [24, Lem. 3.1] (see Proposition 2.1 below), combined with the
approximation of maps that are smooth outside a finite union of manifolds of dimension
dm � sp � 1e by Brezis and Mironescu [9], a suitable variant of the fractional Rellich
compactness theorem under a boundedness assumption on the left-hand side of (4) (see
Proposition 2.8 below) and, at a more technical level, the equivalent characterization of
the lifting space (see Proposition 1.5 below).

The lifting in the space of functions such that the left-hand side of (4) is finite enjoys
a uniqueness property. In order to state this, we define the space

X.M; zN/ WD
°
QuWM! zN

ˇ̌̌
Qu is measurable and’

x;y2M
d zN. Qu.x/; Qu.y//�inj.N/=2

1
dM.x;y/mC1

dy dx <1
±
I

the latter space contains mappings for which the left-hand side of (4) is finite (see Propos-
ition 2.15 below) and the uniqueness of the lifting then follows from the next proposition.

Proposition 1.3. Let M be a compact Riemannian manifold and let � W zN! N be a Rie-
mannian covering. If M is connected, if Qu0; Qu1 2 X.M; zN/ and if � ı Qu0 D � ı Qu1 almost
everywhere on M, then either Qu0 D Qu1 almost everywhere on M or Qu0 ¤ Qu1 almost every-
where on M.

When 1 < sp � 2 or when the manifold M is not simply connected, topological
obstructions can exclude the existence of a lifting; it turns out however that when a lifting
exists in X.M; zN/, then such a lifting has to satisfy the estimate of Theorem 1.2.

Theorem 1.4. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN! N be a Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/. If sp > 1,
then there exists a constant C 2 .0;1/ such that if Qu 2 X.M; zN/ and if u WD � ı Qu 2
PW s;p.M;N/, then“

M�M

d zN. Qu.y/; Qu.x//
p ^ 1

dM.y; x/mCsp
dy dx � C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx:

The restriction to sp > 1 is essential in Theorem 1.4 in both the compact and noncom-
pact cases: if sp D 1 and if � is surjective and not injective, then there is no estimate on
the lifting [24, Lem. 5.1].

Theorems 1.2 and 1.4 motivate studying the quantity on the left-hand side of (4), which
turns out be equivalent to a wide family of similar quantities.



Lifting of fractional Sobolev mappings to noncompact covering spaces 5

Proposition 1.5. Let M be a compact Riemannian manifold withm WD dimM, let zN be a
Riemannian manifold, let s 2 .0;1/, let p 2 .1;1/ and let q0; q1 2 Œ0;1/. If q0 _ q1 _ 1 <
sp, then there exists a constantC 2 .0;1/ such that every measurable mapping QuWM! zN
satisfies “

M�M

d zN. Qu.y/; Qu.x//
p ^ d zN. Qu.y/; Qu.x//

q0

dM.y; x/mCsp
dy dx

� C

“
M�M

d zN. Qu.y/; Qu.x//
p ^ d zN. Qu.y/; Qu.x//

q1

dM.y; x/mCsp
dy dx:

In Proposition 1.5, the case q0 � q1 is trivial. The estimate of Proposition 1.5 gen-
eralizes similar estimates obtained in the context of estimates of homotopy classes with
sp D dimM [36, §5].

As a consequence of Theorems 1.1, 1.2 and Proposition 1.5, we obtain the following
nonlinear characterization of the linear sum of Sobolev spaces.

Theorem 1.6. Let M be a compact Riemannian manifold, let m WD dimM, let s 2 .0; 1/
and let p 2 .1;1/. If sp > 1 and if 0 < q < sp, then®

f WM! R
ˇ̌ ’

M�M
jf .y/�f .x/jp^jf .y/�f .x/jq

dM.y;x/mCsp
dy dx <1

¯
D PW s;p.M;R/C PW 1;sp.M;R/: (5)

Moreover, the quantities“
M�M

jf .y/ � f .x/jp ^ jf .y/ � f .x/jq

dM.y; x/mCsp
dy dx

and

inf
g2 PW s;p.M;R/
h2 PW 1;sp.M;R/

fDgCh

“
M�M

jg.y/ � g.x/jp

dM.y; x/mCsp
dy dx C

Z
M

jDhjsp

are equivalent in the sense that each of them is bounded by a constant multiple of the
other.

Theorem 1.6 complements the characterization of sums of fractional Sobolev spaces
by Rodiac and Van Schaftingen [32], which states that if q > sp,®

f WM! R
ˇ̌ ’

M�M
jf .y/�f .x/jp^jf .y/�f .x/jq

dM.y;x/mCsp
dy dx <1

¯
D PW s;p.M;R/C PW

sp
q ;q.M;R/: (6)

We give a proof of Theorem 1.6 relying on the characterization of liftings of mappings
into the circle Theorem 1.1; it would be enlightening to have a direct proof.

Open Problem 1. Give a direct proof of Theorem 1.6.
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In the case q D sp, it turns out that the identifications (5) and (6) fail (see Proposi-
tion 3.2), leading to the following question.

Open Problem 2. Given a compact Riemannian manifold M withmD dimM, p 2 Œ1;1/
and s 2 .0; 1/ such that sp > 1, characterize the set

X s;p.M;R/ WD
®
f WM! R

ˇ̌ ’
M�M

jf .y/�f .x/jp^jf .y/�f .x/jsp

dM.y;x/mCsp
dy dx <1

¯
:

We have some information about what the space X s;p.M; R/ could be: by The-
orem 1.6 and by (6), we have[

s<�<1

�
PW s;p.M;R/C PW s=�;�p.M;R/

�
� X s;p.M;R/

� PW s;p.M;R/C PW 1;sp.M;R/; (7)

whereas by Proposition 3.2 below, we have

PW 1;sp.M;R/ 6� X s;p.M;R/; (8)

so that the second inclusion in (7) cannot be an equality.
The second goal of the present work is to investigate estimates for the lifting when

sp � m. In this case every map u 2 PW s;p.M;N/ can be written as � ı Qu with Qu 2
PW s;p.M; zN/ [5, Thm. 2], [2, Thm. 3] (see also [11, Thms. 5.1 & 5.2]). When sp D 1Dm,

it is known that there is no estimate on the lifting when the covering map � is surjective
and not injective [5, Rem. 3], [24, Lem. 5.1] (see also [11, Prop. 9.2]). If the covering
space zN is not compact, then it is also known that there cannot be any estimate of the form
(2) (see [23, Prop. 5.7] for the universal covering of the circle � WR! S1).

For the universal covering of the circle � WR! S1, Merlet and Mironescu and Molnar
have obtained the following nonlinear estimate [18, Thm. 1.1], [23, Thm. 5.4] (see also
[11, Thm. 9.6]).

Theorem 1.7. Let M be a compact Riemannian manifold, let m WD dimM, let s 2 .0; 1/
and let p 2 .1;1/. If sp � m and sp > 1, then there exists a constant C 2 .0;1/ such
that if Qu 2 PW s;p.M;R/ and if u WD ei Qu, we have“

M�M

j Qu.y/ � Qu.x/jp

dM.y; x/mCsp
dy dx

� C

�“
M�M

ju.y/ � u.x/jp

dM.y; x/mCsp
dy dx C

�“
M�M

ju.y/ � u.x/jp

dM.y; x/mCsp
dy dx

� 1
s
�
:

We generalize Theorem 1.7 to a general covering � W zN! N.

Theorem 1.8. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN! N be a Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/. If sp � m
and sp > 1, then there exists a constant C 2 .0;1/ such that if Qu 2 X.M; zN/ and if
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u WD � ı Qu 2 PW s;p.M;N/, we have Qu 2 PW s;p.M; zN/ and“
M�M

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCsp
dy dx � C

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

C

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

� 1
s
�
: (9)

Theorem 1.7 can be proved by combining estimate (3) on the linear decomposition of
the lifting with a fractional Sobolev embedding [23]; the latter embedding turns out to be
a consequence of Theorem 1.8 (see Remark 4.2 below). Since the decomposition of the
lifting into a sum (3) does not subsist for a general covering space zN, we give a direct
proof of Theorem 1.8; the structure of the proof with weak-type estimates on some level
sets of differences is akin to the proof of Marcinkiewicz’s real interpolation theorem and
Sobolev’s embedding theorem by interpolation (see for example [35, Chap. I, Thm. 5]).

As a consequence of Theorem 1.7 and of the classical extension of traces in the frac-
tional space PW 1�1=p;p.M;R/ into PW 1;p.M� .0; 1/;R/, one gets the following extension
estimate: if p � dimMC 1, then there exists a constant C 2 .0;1/ such that every map
u 2 PW 1�1=p;p.M;S1/ is the trace on M � ¹0º of a mapping U 2 PW 1;p.M � .0; 1/;S1/
satisfying the estimateZ

M�.0;1/

jDU jp � C

�“
M�M

ju.y/ � u.x/jp

dM.y; x/mCsp
dy dx

C

�“
M�M

ju.y/ � u.x/jp

dM.y; x/mCsp
dy dx

� p
p�1
�
: (10)

For a general target manifold N, it is known that if p � dim M C 1, every map
u 2 PW 1�1=p;p.M;N/ is the trace of a mapping U 2 PW 1;p.M � .0; 1/;N/ [3, Thm. 1].
When p > dim M C 1, a compactness argument shows that the extension U can be
taken to remain in a bounded set of PW 1;p.M � .0; 1/;N/ when the trace u remains
bounded in PW 1�1=p;p.M;N/ (see for example [30, Thm. 4]). When p D dim M C 1

and �p�1.N/ 6' ¹0º, such a boundedness cannot hold [29, Prop. 2.8], [25, Thm. 1.10];
one still gets estimates when the mapping u has a small fractional Sobolev energy and
weak-type estimates in general [29, 30].

In the particular case where �1.N/' � � � ' �bp�1c.N/' ¹0º, where brc 2 Z denotes
the integer part of r 2 R, Hardt and Lin [14, Thm. 6.2] have proved that there exists a
constant C 2 .0;1/ such that every map u 2 PW 1�1=p;p.M;N/ is the trace of a mapping
U 2 PW 1;p.M � .0; 1/;N/ satisfying the estimateZ

M�.0;1/

jDU jp � C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx: (11)

The surjectivity of the trace with the linear estimate (11) fails when the homotopy group
�bp�1c.N/ is nontrivial or when one of the homotopy groups �1.N/; : : : ; �bp�2c.N/ is
infinite [14, §6.3], [3, Thm. 4], [1, Prop. 1.13], [25, Thm. 1.10].

Estimates (10) and (11) naturally raise the following question.
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Open Problem 3. Given compact Riemannian manifolds M and N and p � dimMC 1,
is there a constant C 2 .0;1/ such that every map u 2 PW 1�1=p;p.M;N/ is the trace on
M � ¹0º of a mapping U 2 PW 1;p.M � .0; 1/;N/ satisfying the estimateZ

M�.0;1/

jDU jp � C

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

C

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

� p
p�1
�
‹

In the case where the fundamental group �1.N/ is infinite and where �2.N/ ' � � � '
�bp�1c.N/ ' ¹0º, although Theorem 1.8 provides a lifting in PW 1�1=p;p.M; zN/, a univer-
sal covering space zN fails to be compact, so that Hardt and Lin’s theorem on the extension
of traces [14, Thm. 6.2] is not applicable.

2. Characterizations of the lifting space and related estimates

2.1. A priori estimate for regular liftings

We begin by proving an priori estimate on the lifting that will be the main analytical tool
for the construction and estimate of liftings in Theorems 1.2 and 1.4. Given a convex open
set � � Rm, we define the space of mappings that are essentially continuous on almost
every segment of �:

Y.�; zN/ WD
®
QuW�! zN

ˇ̌
for almost every x; y 2 �, there exists Qux;y 2 C.Œx; y�; zN/

such that Qux;y.x/ D Qu.x/; Qux;y.y/ D Qu.y/

and Qux;y D QujŒx;y� almost everywhere on Œx; y�
¯
; (12)

for which we prove the following a priori estimate.

Proposition 2.1. Let m 2 N n ¹0º, let s 2 .0; 1/ and let p 2 .1;1/. If sp > 1, then there
exists a constant C 2 .0;1/ such that if� � Rm is open and convex, if Qu 2 Y.�; zN/ and
if u WD � ı Qu 2 PW s;p.�;N/, then“

���

d zN. Qu.y/; Qu.x//
p ^ 1

jy � xjmCsp
dy dx � C

“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx: (13)

Proposition 2.1 was initially stated and proved in the case where the covering space
zN is compact [24], where it was an essential tool in the construction of liftings; the same
argument also yields reverse superposition estimates in fractional Sobolev spaces [37].
We perform here a straightforward adaptation of the proof to the case where the covering
space zN is not compact.

As in the proof in the compact case [24], the main analytic ingredient of the proof of
Proposition 2.1 is the following estimate on Gagliardo seminorms on segments.
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Lemma 2.2. Let m 2 N n ¹0º, let s; � 2 .0; 1/ and let p 2 .1;1/. If the set � � Rm is
open and convex, if 0 < � < s and if the mapping uW�! N is measurable, then“

���

�“
Œ0;1��Œ0;1�

dN
�
u..1 � t /x C ty/; u..1 � r/x C ry/

�p
jt � r j1C�pjy � xjmCsp

dr dt
�

dy dx

�
8

.2.s � �/p C 1/2 � 1

“
���

dN.u.y/; u.x//
p

jx � yjmCsp
dy dx: (14)

It will appear in the proof of Lemma 2.2 that the constant in inequality (14) is sharp:
equality holds in (14) if�DRm. The left-hand side of (14) cannot be bounded for � D s.

Proof of Lemma 2.2. We apply the change of variable .z;w/D ..1� t /xC ty; .1� r/xC
ry/ in the integral on the left-hand side of (14), and we obtain, since z �w D .t � r/.y �
x/ and det.

�
1�t t
1�r r

�
/ D �.t � r/,“

���

�“
Œ0;1��Œ0;1�

dN
�
u..1 � t /x C ty/; u..1 � r/x C ry/

�p
jt � r j1C�pjy � xjmCsp

dt dr
�

dy dx

D

“
���

“
†z;w

dN.u.z/; u.w//
p

jt � r j1�.s��/pjz � wjmCsp
dt dr dz dw; (15)

where we have defined for each z; w 2 � the set

†z;w WD
®
.r; t/ 2 Œ0; 1� � Œ0; 1�

ˇ̌
rz�tw
r�t

2 � and .1�r/z�.1�t/w
t�r

2 �
¯
:

We observe that, since s > � , we have by domain-monotonicity of the integral and by
direct computation for each z; w 2 �,“

†z;w

1

jt � r j1�.s��/p
dt dr �

Z 1

0

Z 1

0

1

jt � r j1�.s��/p
dt dr

D
1

.s � �/p

Z 1

0

j1 � r j.s��/p C jr j.s��/p dr

D
8

.2.s � �/p C 1/2 � 1
<1; (16)

and conclusion (14) follows from identity (15) and estimate (16).

Our second tool is the following elementary geometric result on covering space.

Lemma 2.3. Let � W zN ! N be a Riemannian covering map. If the manifold N has a
positive injectivity radius inj.N/ > 0, then for every Qx; Qy 2 zN such that d zN. Qx; Qy/� inj.N/,
one has d zN. Qx; Qy/ D dN.�. Qx/; �. Qy//.

The proof of Lemma 2.3 follows from the definition of injectivity radius inj.N/ and
from the lifting of geodesics (see for example [24, Lem. 2.1]).
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Proof of Proposition 2.1. We first assume that the set��Rm is open and convex. By the
convexity of � and by the definition of Y.�; zN/ in (12), for almost every x; y 2 �, we
have Œx; y� � �, the restriction Qu�Œx;y� of Qu to the segment Œx; y� satisfies Qu�Œx;y�D
Qux;y almost everywhere on Œx; y�, Qux;y.x/ D Qu.x/ and Qux;y.y/ D Qu.y/, with Qux;y 2
C.Œx; y�; zN/. By the intermediate value theorem, there exists z 2 Œx; y� such that

inj.N/ ^ d zN. Qu.y/; Qu.x// D inj.N/ ^ d zN. Qux;y.y/; Qux;y.x// D d zN. Qux;y.z/; Qux;y.y//I

by Lemma 2.3, we have thus

inj.N/ ^ d zN. Qu.y/; Qu.x// D dN.ux;y.z/; ux;y.y//;

with ux;y WD � ı Qux;y 2 C.Œx; y�;N/. We have thus proved that

inj.N/ ^ d zN. Qu.y/; Qu.x// � sup
z2Œx;y�

dN.ux;y.z/; ux;y.y//: (17)

Fixing � 2 .0; 1/ such that 1=p < � < s, we deduce from the one-dimensional fractional
Morrey–Sobolev embedding (see for example [17, Thm. 2.8]) and from (17) that

inj.N/p ^ d zN. Qu.y/; Qu.x//p

� C1

“
Œ0;1��Œ0;1�

dN
�
ux;y..1 � t /x C ty/; ux;y..1 � r/x C ry/

�p
jt � r j1C�p

dt dr

D C1

“
Œ0;1��Œ0;1�

dN
�
u..1 � t /x C ty/; u..1 � r/x C ry/

�p
jt � r j1C�p

dt dr; (18)

since �p > 1 and ux;y D u�Œx;y� almost everywhere on Œx; y�. The conclusion follows
then by integration of (18) thanks to Lemma 2.2.

2.2. Variations on the lower exponent

We exhibit a whole family of characterizations of the space appearing in the description of
liftings of Theorem 1.2; our analysis follows and extends the results obtained for m D sp
in the context of homotopy estimates [36, §5]. The results of the present section are valid
under the quite general assumption that the target E is any metric space.

Proposition 2.4 (Exponent improvement). Let M be a Riemannian manifold, let E be a
metric space, let s 2 .0; 1/, let p 2 .1;1/ and let q0; q1 2 .0;1/. If sp > 1 _ q0 _ q1,
then there exists a constant C 2 .0;1/ such that for every measurable map f WM! E

one has “
M�M

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q1

dM.y; x/mCsp
dy dx

� C

“
M�M

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q0

dM.y; x/mCsp
dy dx; (19)

with m WD dimM.

The main tool to prove Proposition 2.4 is the following estimate which was already
known in the special case  D m [36, Prop. 5.5].
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Proposition 2.5. Let q0; q1 2 Œ0;C1/, let � 2 .0; 1/ and let  2 .0;1/. If q1 <  and
if either q0 � 1 or  > 1, then there exists a constant C 2 .0;1/ such that for every
m 2N n ¹0º, for every convex open set��Rm and for every measurable map f W�! E,
one has “

.x;y/2���
dE.f .y/;f .x//��

�
dE.f .y/; f .x// � �

�q1
jy � xjmC

dy dx

� C�q1�q0
“

.x;y/2���
dE.f .y/;f .x//���

�
dE.f .y/; f .x// � ��

�q0
jy � xjmC

dy dx: (20)

In the particular case q1 � q0, one has the pointwise estimate

.t � �/q1 � .t � ��/q0=..1 � �/�/q0�q1 ;

and (20) follows immediately by integration.
Proposition 2.5 is reminiscent of an estimate of Nguyen that appears in characteriza-

tions of first-order Sobolev spaces [28, Thm. 1 (a)].
Our first tool to prove Proposition 2.5 in general, is the following scaling inequality

(when  D m see [36, Prop. 5.1]).

Lemma 2.6. For every m 2 N n ¹0º, for every convex open set � � Rm, for every meas-
urable map f W�! E, for every q 2 Œ0;1/ and for every  2 R, if �0 < �1 one has“

.x;y/2���
dE.f .y/;f .x//��1

�
dE.f .y/; f .x// � �1

�q
jy � xjmC

dy dx

� 2.�1�.q�1/C/C
��1
�0

�.q�1/C�C1
�

“
.x;y/2���

dE.f .y/;f .x//��0

�
dE.f .y/; f .x// � �0

�q
jy � xjmC

dy dx: (21)

Proof of Lemma 2.6. Since the set � is convex, for every x; y 2 �, we have xCy
2
2 �

and thus by the triangle inequality,

dE.f .y/; f .x// � �1 � dE.f .y/; f .
xCy
2
// � �1

2
C dE.f .

xCy
2
/; f .x// � �1

2
;

so that“
.x;y/2���

dE.f .y/;f .x//��1

�
dE.f .y/; f .x// � �1

�q
jy � xjmC

dy dx

� 2.q�1/C
“

.x;y/2���

dE.f .y/;f .
xCy
2 //�

�1
2

�
dE.f .y/; f .

xCy
2
// � �1

2

�q
jy � xjmC

dy dx

C 2.q�1/C
“

.x;y/2���

dE.f .
xCy
2 /;f .x//�

�1
2

�
dE.f .

xCy
2
/; f .x// � �1

2

�q
jy � xjmC

dy dx: (22)
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Therefore, by symmetry between both terms in the right-hand side of (22) under exchange
of the variables x and y in the integral, we have“

.x;y/2���
dE.f .y/;f .x//��1

�
dE.f .y/; f .x// � �1

�q
jy � xjmC

dy dx

D 2.q�1/CC1
“

.x;y/2���

dE.f .
xCy
2 /;f .x//�

�1
2

�
dE.f .

xCy
2
/; f .x// � �1

2

�q
jy � xjmC

dy dx: (23)

By the change of variable y D 2z � x, we have jy � xj D 2jz � xj and thus“
.x;y/2���

dE.f .
xCy
2 /;f .x//�

�1
2

�
dE.f .

xCy
2
/; f .x// � �1

2

�q
jy � xjmC

dy dx

D
1

2

Z
�

�Z
†x

�
dE.f .z/; f .x// �

�1
2

�q
jz � xjmC

dz
�

dx

�
1

2

“
.x;y/2���

dE.f .y/;f .x//�
�1
2

�
dE.f .y/; f .x// �

�1
2

�q
jy � xjmC

dy dx; (24)

where for every x 2 �, the set †x is defined as

†x WD
®
z 2 �

ˇ̌
2z � x 2 � and dE.f .z/; f .x// � �1

2

¯
:

By (23) and (24), we deduce that for every �1 > 0,“
.x;y/2���

dE.f .y/;f .x//��1

�
dE.f .y/; f .x// � �1

�q
jy � xjmC

dy dx

� 2.q�1/C�.�1/
“

.x;y/2���

dE.f .y/;f .x//�
�1
2

�
dE.f .y/; f .x// �

�1
2

�q
jy � xjmC

dy dx: (25)

Iterating estimate (25), we deduce that for every nonnegative integer ` 2 N,“
.x;y/2���

dE.f .y/;f .x//��1

�
dE.f .y/; f .x// � �1

�q
jy � xjmC

dy dx

� 2`..q�1/C�.�1//
“

.x;y/2���

dE.f .y/;f .x//�
�1

2`

�
dE.f .y/; f .x// �

�1
2`

�q
jy � xjmC

dy dx: (26)

If �0 2 .0; �1/, we let ` 2 N in (26) be defined by the condition 2�.`C1/�1 � �0 < 2�`�1
and we conclude that (21) holds.

Our second tool for the proof of Proposition 2.5 is the next elementary integral inequal-
ity [36, Lem. 5.6].
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Lemma 2.7 (Integral estimate of truncated powers). For every q0; q1 2 Œ0;1/ and every
� 2 .0; 1/, there exists a constant C > 0 such that for every t 2 Œ1;1/,

.t � 1/q1 � C

Z t

�

.t � r/q0

r1Cq0�q1
dr:

Proof of Proposition 2.5. Applying Lemma 2.7 with t WD dE.f .y/; f .x//=� at each
x; y 2 �, integrating the result and interchanging the integrals, we have“

.x;y/2���
dE.f .y/;f .x//��

�
dE.f .y/; f .x// � �

�q1
jy � xjmC

dy dx

� C1�
q1�q0

Z 1
�

“
.x;y/2���

dE.f .y/;f .x//�r�

�
dE.f .y/; f .x// � r�

�q0
r1Cq0�q1 jy � xjmC

dy dx dr: (27)

Since the set � � Rm is convex, by Lemma 2.6, we have for every r 2 .�;1/,“
.x;y/2���

dE.f .y/;f .x//�r�

�
dE.f .y/; f .x// � r�

�q0
jy � xjmC

dy dx

� C2
1

r .�1/�.q0�1/C

“
.x;y/2���

dE.f .y/;f .x//���

�
dE.f .y/; f .x// � ��

�q0
jy � xjmC

dy dx: (28)

Combining estimates (27) and (28), we deduce that“
.x;y/2���

dE.f .y/;f .x//��

�
dE.f .y/; f .x// � �

�q1
jy � xjmC

dy dx

� C3�
q1�q0

Z 1
�

1

rC1�.1�q0/C�q1
dr

�

“
.x;y/2���

dE.f .y/;f .x//���

�
dE.f .y/; f .x// � ��

�q1
jy � xjmC

dy dx; (29)

since q0 � 1 � .q0 � 1/C D �.1 � q0/C. If q1 <  � .1 � q0/C, thenZ 1
�

1

rC1�.1�q0/C�q1
dr D

1

. � .1 � q0/C � q1/��.1�q0/C�q1
<1;

and estimate (20) follows from (29).
If q0 � 1, then we have proved the estimate for q1 <  . Otherwise, q0 < 1, and we

have proved estimate (20) for q1 < q0C . � 1/. Iterating the estimate finitely many times
we reach the interval q1 2 Œ0; 1� and conclusion (20) then follows for q1 <  .

We are now in a position to prove Proposition 2.4.
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Proof of Proposition 2.4. Since the case q1 � q0 follows from the fact that for every t 2
.0;1/, we have tp ^ tq0 � tp ^ tq1 , we consider the case q1 > q0. Letting � � Rm be
a convex open set and the mapping f W�! E be measurable, and defining the set

A WD
®
.x; y/ 2 � ��

ˇ̌
dE.f .y/; f .x// � 1

¯
;

we decompose, since q1 < sp < p, the integral in the left-hand side of (19) as“
���

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q1

jy � xjmCsp
dy dx

D

“
���nA

dE.f .y/; f .x//
p

jy � xjmCsp
dy dx C

“
A

dE.f .y/; f .x//
q1

jy � xjmCsp
dy dx: (30)

On the one hand, we immediately have“
���nA

dE.f .y/; f .x//
p

jy � xjmCsp
dy dx

�

“
���

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q0

jy � xjmCsp
dy dx: (31)

On the other hand, by Proposition 2.5, since sp > 1 and q1 < sp, we have“
A

dE.f .y/; f .x//
q1

jy � xjmCsp
dy dx

� 2q1
“

.x;y/2���

dE.f .y/;f .x//�
1
2

�
dE.f .y/; f .x// �

1
2

�q1
jy � xjmCsp

dy dx

� C1

“
.x;y/2���

dE.f .y/;f .x//�
1
3

�
dE.f .y/; f .x// �

1
3

�q0
jy � xjmCsp

dy dx; (32)

and it follows thus from (30), (31) and (32) that“
���

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q1

jy � xjmCsp
dy dx

� C2

“
���

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q0

jy � xjmCsp
dy dx; (33)

since q0 < p. The announced conclusion (19) then follows from (33) and the covering of
Lemma 2.11.

Thanks to Proposition 2.4, we can now prove Proposition 1.5.

Proof of Proposition 1.5. This follows from Proposition 2.4, with E D zN.
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2.3. Compactness in the space of liftings

Given the estimate on the lifting of Proposition 2.1 on a set which is dense in the fractional
Sobolev space PW s;p.M;N/ [9], a classical approach to prove the existence of a lifting
would be to consider the limit of the liftings of an approximating sequence. In order to
perform this, we need a compactness result on sets for which the left-hand side of (13) is
uniformly bounded.

Proposition 2.8. Let M be a Riemannian manifold with finite volume, let E be a metric
space, let 0 � q � p and let 0 < s < 1. Assume that every bounded subset of E is totally
bounded. If � is a set of measurable functions from M to E such that

sup
f 2�

“
M�M

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q

dM.y; x/mCsp
dy dx <1; (34)

with m WD dimM, and such that

inf
f;g2�

Z
M

1

1C dE.g; f /
> 0; (35)

then the set � is totally bounded for the distance

d�.f; g/ WD

Z
M

dE.f; g/

1C dE.f; g/
: (36)

Although the case p D q D 0 is covered in Proposition 2.8, it is not particulary inter-
esting since in view of Lemma 2.14, the mapping f should be constant on every connected
component of M.

If the metric space E is complete, the assumption that any of its subsets is totally
bounded is equivalent to E having the Bolzano–Weierstraß property or to E being a proper
space.

Convergence with respect to the distance d� defined in (36) is convergence in measure.
We first remark that this distance can be controlled on finite-measure sets by a quantity
reminiscent of the integrand in (34).

Lemma 2.9. Let � be a measure on � and let E be a metric space. If 0 � q � p and if
the mappings f; gW�! E are measurable, thenZ

M

dE.f; g/

1C dE.f; g/
d� � �.�/.1�1=p/C

�Z
�

dE.f; g/
p
^ dE.f; g/

q d�
� 1
p^1

: (37)

Proof. When 0 � p � 1, (37) follows from the fact that for every t 2 Œ0;1/ one has

t=.1C t / � t ^ 1 � tp ^ tq;

whereas when p > 1, (37) follows from the fact that

t=.1C t / � t ^ 1 � t ^ tq=p

and Hölder’s inequality.
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The proof of Proposition 2.8 will rely on the following inequality.

Lemma 2.10. If p; q 2 Œ0;1/, then for every ` 2 N and a1; : : : ; a` 2 Œ0;1/, we have�X̀
iD1

ai

�p
^

�X̀
iD1

ai

�q
� max
i2¹1;:::;`º

.`ai /
p
^ .`ai /

q :

Proof. Without loss of generality, we can assume that for each i 2 ¹1; : : : ; `º one has
ai � a1, so that

P`
iD1 ai � `a1 and�X̀

iD1

ai

�p
^

�X̀
iD1

ai

�q
� .`a1/

p
^ .`a1/

q
D max
i2¹1;:::;`º

.`ai /
p
^ .`ai /

q :

Proof of Proposition 2.8. By the finiteness of the volume and a local charts argument, we
assume that � D Qm WD Œ0; 1�m. For every k 2 N n ¹0º, we subdivide the cube Qm in a
set Qk of km cubes of edge length 1=k. Given f 2 � , we define the map fk WQm ! E in
such a way that fk is constant on each cube Q 2 Qk and for every x 2 Q 2 Qk ,Z

Q

dE.f .x/; fk.x//
p
^ dE.f .x/; fk.x//

q dx

� km
“
Q�Q

dE.f .y/; f .x//
p
^ dE.f .y/; f .x//

q dy dx: (38)

It follows immediately from (38) thatZ
Qm

dE.f .x/; fk.x//
p
^ dE.f .x/; fk.x//

q dx

�
m

mCsp
2

ksp

“
Qm�Qm

dE.f .y/; f .x//
p ^ dE.f .y/; f .x//

q

jy � xjmCsp
dy dx; (39)

and thus by Lemma 2.9 thatZ
Qm

dE.f .x/; fk.x//

1C dE.f .x/; fk.x//
dx

�

�
m

mCsp
2

ksp

“
Qm�Qm

dE.f .x/; f .y//
p ^ dE.f .x/; f .y//

q

jy � xjmCsp
dy dx

�1^ 1p
: (40)

Assumption (34) and estimate (40) imply that for k 2 N n ¹0º large enough, the set �

is contained in an arbitrarily small neighbourhood of the set of mappings fk . Since for
every k 2 N, the set of mappings taking constant value on each Q 2 Qk is bi-Lipschitz
equivalent to the manifold Ek

m
, and since bounded subsets of E are totally bounded, it

remains to prove that for any k 2 N, the mappings fk are contained in a bounded set.
For every � 2 .0;1/ and f; gWM! E, we haveZ

Q

1

1C dE.g.x/; f .x//
dx �

ˇ̌®
x 2 Qm

ˇ̌
dE.g.x/; f .x// � �

¯ˇ̌
C

1

1C �
;
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and therefore by our assumption (35), there exist � 2 .0;1/ and � 2 .0;1/ such that for
every f; g 2 � , ˇ̌®

x 2 Qm
ˇ̌
dE.g.x/; f .x// � �

¯ˇ̌
� �: (41)

For every x; y 2 Qm, we have by the triangle inequality,

dE.gk.x/; fk.x// � dE.gk.x/; g.x//C dE.g.x/; g.y//

C dE.g.y/; f .y//C dE.f .y/; f .x//C dE.f .x/; fk.x//;

and thus by Lemma 2.10,Z
Qm

dE.gk.x/; fk.x//
p
^ dE.gk.x/; fk.x//

q dx

�

Z
Qm

�
5dE.gk.x/; g.x//

�p
^
�
5dE.gk.x/; g.x//

�q dx

C

Z
Qm

−
A

�
5dE.g.y/; g.x//

�p
^
�
5dE.g.y/; g.x//

�q dy dx

C

−
A

�
5dE.g.y/; f .y//

�p
^
�
5dE.g.y/; f .y//

�q dy

C

Z
Qm

−
A

�
5dE.f .y/; f .x//

�p
^
�
5dE.f .y/; f .x//

�q dy dx

C

Z
Qm

�
5dE.fk.x/; f .x//

�p
^
�
5dE.fk.x/; f .x//

�q dx; (42)

with
A WD

®
x 2 Qm

ˇ̌
dE.g.x/; f .x// � �

¯
: (43)

Inserting (34), (39) and (41) in (42) combined with (43) and with Lemma 2.9, we getZ
Qm

dE.gk.x/; fk.x//

1C dE.gk.x/; fk.x//
dx � C1

� 1

ksp
C
1

�
C �p ^ �q

� 1
p^1

;

and the announced boundedness follows.

2.4. Existence of a lifting

The last tool we will use to prove Theorem 1.2 is the existence of local charts that cover
the product.

Lemma 2.11. If M is a connected compact manifold with m WD dimM, then there exist
open sets V1; : : : ; V` �M such that for each i 2 ¹1; : : : ; `º, the set xVi is diffeomorphic to
the closed ball xB1 � Rm and such that

M �M �
[̀
iD1

Vi � Vi :
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Proof. Since the manifold M is connected, every doubleton ¹x;yº �M is contained in an
open set V �M such that xV is diffeomorphic to the closed ball xB1 � Rm. In particular,
.x; y/ 2 V � V . We conclude by compactness of M �M.

The proof of Theorem 1.2 will rely on the notion of normal covering. A covering map
� W zN! N is normal (or regular) whenever, for every Qy 2 zN, we have

��1.¹�. Qy/º/ D
®
�. Qy/

ˇ̌
� 2 Aut.�/

¯
; (44)

where the group of deck transformations (or group of covering transformations or Galois
group) of the covering � is the group

Aut.�/ D
®
� W zN! zN

ˇ̌
� is a homeomorphism and � ı � D �

¯
endowed with the composition operation [15, §1.3], [34, Chap. 2, §6]. When � is a Rie-
mannian covering, � is a local isometry and any � 2 Aut.�/ is a global isometry of zN.

If � W zN ! N is a universal covering, that is when � is surjective and zN is simply
connected, then � is normal.

We proceed to the proof of existence of a lifting.

Proof of Theorem 1.2. We first assume that � W zN! N is a normal covering of N.
Given a map u 2 PW s;p.M;N/, by Brezis and Mironescu’s approximation result for

fractional Sobolev mappings [9], there exists a sequence of mappings .uj /j2N in the set
R0
m�2.M;N/ \

PW s;p.M;N/ that converges strongly to the mapping u in PW s;p.M;N/,
where R0

k
.M;N/ denotes for k 2 ¹0; : : : ; m � 1º the set of maps from a manifold M to a

manifold N that are continuous outside a finite union of k-dimensional submanifolds with
boundary of M.

For every j 2N, the mapping uj is continuous outside an .m� 2/-dimensional subset
†j �M. Since the manifold M is simply connected, the set M n†j is also simply connec-
ted and there exists Quj 2 C.M n†j ; zN/ such that � ı Quj D uj �Mn†j , where uj �Mn†j is
the restriction of uj to the set M n†j . In particular, we have Quj 2R0

m�2.M;
zN/. Since for

every convex open set��Rm we have R0
m�2.�;

zN/� Y.�; zN/ and since sp > 1, by the
a priori estimate on the lifting (Proposition 2.1), by the diagonal covering (Lemma 2.11)
and by Proposition 2.4, we have

sup
j2N

“
M�M

d zN. Quj .x/; Quj .y//
p ^ d zN. Quj .x/; Quj .y//

dM.y; x/mCsp
dy dx <1: (45)

By (45), there exists thus � 2 .0;1/ such that for every j 2 N, there exists xj 2M for
which if we set

Aj WD
®
x 2M

ˇ̌
d zN. Quj .x/; Quj .xj // � �

¯
(46)

we have then
jAj j �

2
3
jMj: (47)
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Since the manifold N is compact and since the covering � is normal, there exists an
open bounded set zW � zN such that �. zW / D N and

zN D
[

�2Aut.�/

��1. zW /; (48)

in view of (44). By (48), for every j 2 N, there exists thus �j 2 Aut.�/ such that
�j . Quj .xj // 2 zW . Without loss of generality we assume that for each j 2 N we have
�j D id zN, so that Quj .xj / 2 zW .

We deduce from (46) that for every i; j 2 N and x 2 Ai;j WD Ai \ Aj ,

d zN. Quj .x/; Qui .x// � d zN. Quj .x/; Quj .xj //C d zN. Quj .xj /; Qui .xi //C d zN. Qui .xi /; Qui .x//

� 2�C diam. zW /I (49)

by (47), we have

jAi;j j D jAi \ Aj j D jAi j C jAj j � jAi [ Aj j �
2
3
jMj C 2

3
jMj � jMj D 1

3
jMj: (50)

Therefore, we have by (49) and (50),“
M�M

1

1C d zN. Quj ; Qui /
�

jAi;j j

1C 2�C diam. zW /
�

jMj

3.1C 2�C diam. zW //
;

and it follows from Propositions 2.1 and 2.8 and from the completeness of the manifold
zN that, up to a subsequence, the sequence . Quj /j2N converges almost everywhere on M to
some mapping QuWM! zN; we also have � ı QuD limj!1� ı Quj D limj!1uj D u almost
everywhere; by Fatou’s lemma, by the a priori estimate on the lifting (Proposition 2.1) and
by the diagonal covering (Lemma 2.11) we have“

M�M

d zN. Qu.y/; Qu.x//
p ^ 1

dM.y; x/mCsp
dy dx � lim inf

j!1

“
M�M

d zN. Quj .y/; Quj .x//
p ^ 1

dM.y; x/mCsp
dy dx

� C1 lim inf
j!1

“
M�M

dN.uj .y/; uj .x//
p

dM.y; x/mCsp
dy dx

D C1

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx;

which proves the statement and estimate (4) when � W zN! N is a normal covering.
If � W zN!N is not a normal covering, we choose ��W zN�! zN to be a universal cover-

ing of zN, so that in particular � ı ��W zN�! N is a universal covering of N and thus also a
normal covering. Applying the first part of the proof, we get a mapping Qu� 2 PW s;p.M; zN�/

such that � ı �� ı Qu� D u on M; setting Qu WD �� ı Qu�, we reach the conclusion in the gen-
eral case.

As a by-product of the proof of Theorem 1.2, we get under the weaker condition
sp > 1 the existence of a lifting with an estimate for maps that are continuous outside a
submanifold of codimension 2.
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Theorem 2.12. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN! N be a surjective Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/. If
M is simply connected and if sp > 1, then there exists a constant C 2 .0;1/ such that for
every map u 2 R0

m�2.M;N/ \
PW s;p.M;N/ there exists a measurable map QuWM! zN

such that � ı Qu D u almost everywhere on M and (4) holds.

As a consequence of Theorem 2.12 and Proposition 2.8, any map which is the almost
everywhere limit of a sequence of maps .uj /j2N in R0

m�2.M;N/ \
PW s;p.M;N/ that is

bounded in PW s;p.M;N/ has a lifting QuWM! zN satisfying“
M�M

d zN. Qu.y/; Qu.x//
p ^ 1

dM.y; x/mCsp
dy dx � lim inf

j!1
C

“
M�M

dN.uj .y/; uj .x//
p

dM.y; x/mCsp
dy dx:

When 1 < sp < 2, the assumption that the domain M is simply connected in Theor-
ems 1.2 and 2.12 can be replaced by a smallness assumption on the map to be lifted.

Theorem 2.13. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN ! N be a surjective Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/.
If sp > 1, then there exist constants "; C 2 .0;1/ such for every map u 2 PW s;p.M;N/

satisfying “
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx � "; (51)

and also satisfying u 2 R0
m�2.M;N/ when 1 < sp < 2, there exists a measurable map

QuWM! zN such that � ı Qu D u almost everywhere on M and (4) holds.

When � WR! S1 is the universal covering of the circle, Theorem 2.13 is a reformu-
lation of a result of Brezis and Mironescu [11, Thm. 14.5 & §14.6.2].

Proof of Theorem 2.13. We follow the proof of Theorem 1.2, noting that �1.M/ has
finitely many generators, so that if "2 .0;1/ is taken small enough, the smallness assump-
tion (51) implies that uj has a lifting on a finite set of loops generating �1.N/ and not
intersecting the singular set of uj , and hence uj has a lifting outside its singular set.

2.5. Uniqueness of the lifting

The lifting given by Theorem 1.2 turns out to be essentially unique, as it is well established
for the lifting in fractional Sobolev spaces [5, App. B], [2, Lem. A.4].

The main analytical tool is the following result of Bourgain, Brezis and Mironescu
[7, App. B], [6, Cor. 6.4] (see also [11, 12, 31]).

Lemma 2.14. Let M be a connected Riemannian manifold with m WD dim M. If the set
A �M is measurable and ifZ

A

Z
MnA

1

distM.y; x/mC1
dy dx <1;

then either jAj D 0 or jM n Aj D 0.
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Proof of Proposition 1.3. We define the set

A WD
®
x 2M

ˇ̌
Qu1.x/ D Qu0.x/

¯
: (52)

We observe that if x 2A and y 2M nA, then by Lemma 2.3 and by the triangle inequality,

inj.N/ � d zN. Qu1.y/; Qu0.y//

� d zN. Qu1.y/; Qu1.x//C d zN. Qu1.x/; Qu0.x//C d zN. Qu0.x/; Qu0.y//

D d zN. Qu1.y/; Qu1.x//C d zN. Qu0.x/; Qu0.y//;

and thus either d zN. Qu0.x/; Qu0.y// � inj.N/=2 or d zN. Qu1.x/; Qu1.y// � inj.N/=2, and thusZ
A

Z
MnA

1

dM.x; y/mC1
dy dx

�

X
j2¹0;1º

“
x;y2M

d zN. Quj .x/; Quj .y//�inj.N/=2

1

dM.x; y/mC1
dy dx <1:

It follows then from Lemma 2.14 that either jAj D 0 or jM n Aj D 0 and the conclusion
follows from the definition of A in (52).

The space X.M; zN/ contains all functions such that the left-hand side of (4) in The-
orem 1.2 is finite.

Proposition 2.15. Let M be a compact Riemannian manifold, let � W zN ! N be a Rie-
mannian covering, let s 2 .0; 1/, let p 2 .1;1/ and let q 2 Œ0;1/. If sp > 1 and if the
mapping uWM! zN is measurable and satisfies“

M�M

d zN. Qu.x/; Qu.y//
p ^ d zN. Qu.x/; Qu.y//

q

dM.y; x/mCsp
dy dx <1;

with m WD dimM, then Qu 2 X.M; zN/.

Proof. We have“
x;y2M

d zN. Qu.x/; Qu.y//�inj.N/=2

.inj.N/=2/p ^ .inj.N/=2/q

dM.x; y/mC1
dy dx

� diam.M/sp�1
“

M�M

d zN. Qu.x/; Qu.y//
p ^ d zN. Qu.x/; Qu.y//

q

dM.y; x/mCsp
dy dx <1:

Classical fractional uniqueness results for u0; u1 2 PW s;p.M; zN/ with 0 < s < 1 [2,6]
can be recovered from Propositions 1.3 and 2.15.

The uniqueness property of the lifting also allows one to write any lifting in terms of
a fixed lifting over a normal covering.



J. Van Schaftingen 22

Proposition 2.16. Let M be a Riemannian manifold, let �]W zN]! zN[ and �[W zN[!N be
Riemannian coverings and let Qu] 2 X.M; zN]/ and Qu[ 2 X.M; zN[/. If M is connected, if
the covering �] is surjective, if the covering �[ ı�] is normal and if �[ ı Qu[D �[ ı�] ı Qu]
almost everywhere on M, then there exists � 2 Aut.�[ ı �]/ such that Qu[ D �] ı � ı Qu]
almost everywhere on M.

Proof. Since the covering �] is surjective, for every x 2M, there exists Qy] 2 zN] such that
�]. Qy]/D Qu[.x/. For almost every x 2M, since �[.�]. Qy]//D �[. Qu[.x//D �[.�]. Qu].x///
and since the covering �[ ı �] is normal, there exists � 2 Aut.�[ ı �]/ such that Qy] D
�. Qu].x// and thus Qu[.x/ D �].�. Qu].x///. Hence we have

M D
[

�2Aut.�[ı�]/

®
x 2M

ˇ̌
Qu[.x/ D �].�. Qu].x///

¯
[E;

where E � M satisfies jEj D 0. Since the set Aut.�[ ı �]/ is countable, there exists
� 2 Aut.�[ ı �]/ such that Qu[ D �] ı � ı Qu] on a set of positive measure of M and the
identity then holds outside a null set by the uniqueness of lifting (Proposition 1.3) since
M is connected.

As a consequence of Proposition 2.16, we get that a lifting inX.M; zN/ of a continuous
map is necessarily essentially continuous.

Proposition 2.17. Let M be a Riemannian manifold and let � W zN! zN be a Riemannian
covering. If Qu 2 X.M; zN/ and if u D � ı Qu is continuous, then there exists Qv 2 C.M; zN/
such that Qv D Qu almost everywhere on M.

Proof. We first assume that the manifold M is simply connected. We then apply Proposi-
tion 2.16 with �[ D � W zN!N, �]W zN�! zN a universal covering and Qv 2 C.M; zN�/ such
that � ı Qv D � ı Qu. The conclusion then follows from Proposition 2.16.

In the general case, we cover the manifold M by simply connected open sets Uj �
M, with j 2 J . By the first part of the proof, for every j 2 J , there exists a mapping
Qvj 2 C.Uj ; zN/ such that Qu D Qvj almost everywhere in Uj . For every j; ` 2 J , it follows
in view of the continuity of the mappings Qvj and Qv` that Qvj D Qv` everywhere in Uj \ U`.
Therefore the map Qv can be defined in such a way that for every j 2 J its restriction Qv�Uj
to the set Uj satisfies Qv�UjD Qvj and that Qv is continuous on M.

2.6. A priori estimate on the lifting

Theorem 1.4 will be proved as a consequence of Proposition 2.18, once one notices that
liftings in X.�; zN/ of maps in PW s;p.�;N/ with sp > 1 turn out to be in Y.�; zN/.

Proposition 2.18. Let m 2 N n ¹0º, let � � Rm be open and convex, let N be a compact
Riemannian manifold, let � W zN! N be a Riemannian covering map, let s 2 .0; 1/ and let
p 2 .1;1/. If sp > 1, if Qu 2X.�; zN/ and if u WD � ı Qu 2 PW s;p.�;N/, then Qu 2 Y.�; zN/.
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In order to prove Proposition 2.18, we will use the following consequence of Fubini’s
theorem, which implements the rotation method on the space X.�; zN/.

Lemma 2.19. For every m 2 N n ¹0º, there exists a constant C 2 .0;1/ such that for
every convex open set � � Rm, every metric space E, every ı 2 .0;1/ and every meas-
urable function f W�! E, we have“

x;y2�
dE.f .y/;f .x//�ı

1

jy � xjmC1
dy dx

D C

Z
Sm�1

Z
w?

“
x;y2�\.zCRw/
dE.f .y/;f .x//�ı

1

jy � xj2
dy dx dz dw:

Proof of Proposition 2.18. Since sp > 1, by Fubini’s theorem and the fractional Morrey–
Sobolev embedding, for every straight line L � Rm, there exists a mapping uL 2

C.�\L; zN/ such that u��\LD uL D � ı Qu��\L almost everywhere in �\L. Simil-
arly, by Lemma 2.19, we have Qu��\L2 X.� \ L;N/. By Proposition 2.17, there exists
a mapping QuL 2 C.� \ L; zN/ such that Qu��\LD QuL almost everywhere on � \ L. It
follows thus by definition (12) that Qu 2 Y.�; zN/.

Proof of Theorem 1.4. By Proposition 2.18, the a priori estimate Proposition 2.1 holds on
any local chart. We reach the conclusion by the covering of Lemma 2.11.

3. Relationship to linear Sobolev spaces

3.1. Characterization as a sum of Sobolev spaces

Our proof of Theorem 1.6 that characterizes the space of liftings appearing in Theorem 1.2
and Proposition 1.5 will use the following density result.

Proposition 3.1. Let m 2 N n ¹0º, let s 2 .0; 1/ and let p 2 Œ1;1/. If U � Rm is open
and if f WU ! R is a measurable function satisfying“

U�U

jf .y/ � f .x/jp ^ jf .y/ � f .x/j

jy � xjmCsp
dy dx <1; (53)

then for every set� � U such that dist.�;Rm nU/ > 0, there exists a sequence .fj /j2N

in C1.x�;R/ such that fj ! f almost everywhere in � as j !1 and

sup
j2N

“
���

jfj .y/ � fj .x/j
p ^ jfj .y/ � fj .x/j

jy � xjmCsp
dy dx <1: (54)

Proof. We define the function ˆWR! R for each t 2 R by

ˆ.t/ WD

´
jt jp if jt j � 1;

1C p.jt j � 1/ if jt j � 1:
(55)
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We observe that the function ˆ is convex and that it satisfies for every t 2 R,

jt jp ^ jt j � ˆ.t/ � jt jp ^ .pjt j/ � p.jt jp ^ jt j/: (56)

We fix a function � 2 C1c .R
m;R/ such that � � 0 and

R
Rm � D 1. Since condition (53)

implies the local integrability of the function f , there exists a sequence .ıj /j2N in .0;1/
such that the function fj W x�! R defined for each x 2 � by

fj .x/ WD

Z
Rm

�.z/f .x � ıj z/ dz

is well defined and fj ! f almost everywhere in � as j ! 1. Moreover, since the
function ˆ is convex, we have for every j 2 N,“

���

ˆ.fj .y/ � fj .x//

jy � xjmCsp
dy dx �

“
U�U

ˆ.f .y/ � f .x//

jy � xjmCsp
dy dx; (57)

and (54) follows from (56) and (57).

We now prove the characterization of the sum W s;p.M;R/CW 1;sp.M;R/.

Proof of Theorem 1.6. In order to prove the inclusion � in (5), we first assume that the
set � � Rm is bounded and open with a smooth boundary @�, that � � U , with dist.�;
Rm n U/ > 0 for some open set U � x�, and that, in view of Proposition 1.5,“

U�U

jf .x/ � f .y/jp ^ jf .x/ � f .x/j

jy � xjmCsp
dy dx

�

“
U�U

jf .x/ � f .y/jp ^ jf .x/ � f .x/jq

jy � xjmCsp
dy dx <1: (58)

By Proposition 3.1 and by (58), there exists a sequence .fj /j2N in C1.x�;R/ such that
fj ! f almost everywhere in � and

sup
j2N

“
���

jfj .y/ � fj .x/j
p ^ 1

jy � xjmCsp
dy dx

� C1

“
U�U

jf .y/ � f .x/jp ^ jf .y/ � f .x/j

jy � xjmCsp
dy dx <1: (59)

For every j 2 N, setting uj WD eifj , we have“
���

juj .y/ � uj .x/j
p

jy � xjmCsp
dy dx � C2

“
���

jfj .x/ � fj .y/j
p ^ 1

jy � xjmCsp
dy dx <1: (60)

Since sp > 1, by the lifting in the sum of Sobolev spaces [11, Thm. 8.8], [22, Thm. 2] (see
also [6, 19, 20, 27]), we can write fj D gj C hj with the functions gj 2 PW s;p.�;R/ and



Lifting of fractional Sobolev mappings to noncompact covering spaces 25

hj 2 PW
1;sp.�;R/ satisfying the estimates“

���

jgj .y/ � gj .x/j
p

jy � xjmCsp
dy dx � C3

“
���

juj .x/ � uj .y/j
p

jy � xjmCsp
dy dx; (61)Z

�

jDhj j
sp
� C4

“
���

juj .x/ � uj .y/j
p

jy � xjmCsp
dy dx (62)

and the conditions Z
�

gj D

Z
�

hj D
1

2

Z
�

fj : (63)

Up to a subsequence, we can assume that gj ! g and hj ! h almost everywhere in� as
j !1, with the functions g 2 PW s;p.�;R/ and h 2 PW 1;sp.�;R/ satisfying in view of
(59), (60), (61) and (62),“

���

jg.y/�g.x/jp

jy � xjmCsp
dy dx � C5

“
U�U

jf .x/�f .y/jp ^ jf .x/�f .x/j

jy � xjmCsp
dy dx; (64)Z

�

jDhjsp � C6

“
U�U

jf .x/�f .y/jp ^ jf .x/�f .x/j

jy � xjmCsp
dy dx; (65)

and in view of (63), Z
�

g D

Z
�

h D
1

2

Z
�

f: (66)

In the general case we follow Rodiac and Van Schaftingen [32, proof of Prop. 4.1].
Since M is a compact manifold with boundary, there existN 2N and, for k 2 ¹1; : : : ;N º, a
diffeomorphism  k WUk ! Rm such that either  k.Uk/D Bm � Rm or  k.Uk/D Bm \
Rm�1 � Œ0;1/ and such that M D

SN
kD1 Uk . We take a partition of unity .'k/1�k�N

associated to the sets Uk , that is, for every k 2 ¹1; : : : ; N º, 'k 2 C 1.M;R/ and 'k D
0 in M n Uk , and

PN
iD1 'k D 1 on M. Given a measurable function f WM ! R, for

each k 2 ¹1; : : : ; N º, we define the function fk WD f ı  �1
k
W  k.Uk/ ! R to which

we apply the first part of the proof which yields functions gk 2 PW s;p. k.Uk/;R/ and
hk 2 PW

1;sp. k.Uk/;R/ satisfying (64), (65) and (66) with � D  k.Uk/. Defining the
functions

g� WD

NX
kD1

'k

�
gk ı  k �

−
Uk

gk ı  k

�
;

h� WD

NX
kD1

'k

�
hk ı  k �

−
Uk

hk ı  k

�
;

and the low-frequency component

f0 WD

NX
kD1

'k

−
Uk

f;
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we have f D f0 C g� C h� on M. Moreover, since

f0 WD

NX
kD1

'k

�−
Uk

f �

−
M

f

�
C

−
M

f;

where the last term is constant, we have

kDf0kL1.M/ � C7

“
M�M

jf .y/ � f .x/j dy dx

and

ˆ.kDf0kL1.M// � C8

“
M�M

ˆ.jf .y/ � f .x/j/ dy dx;

with the convex function ˆ defined as in (55). Since 1 < sp < p, by (56), we have

kDf0k
p

L1.M/
^ kDf0k

sp

L1.M/
� kDf0k

p

L1.M/
^ kDf0kL1.M/

� C9

“
M�M

jf .y/ � f .x/jp ^ jf .y/ � f .x/j

dM.y; x/mCsp
dy dx;

so that “
M�M

jf0.x/ � f0.y/j
p

dM.y; x/mCsp
dy dx ^

Z
M

jDf0j
sp

� C10

“
M�M

jf .x/ � f .y/jp ^ jf .x/ � f .x/j

dM.y; x/mCsp
dy dx:

By either taking g WD g� and h WD h� C f0 or g WD g� C f0 and h WD h�, we finally get,
in view of Proposition 1.5,“

M�M

jg.y/ � g.x/jp

dM.y; x/mCsp
dy dx C

Z
M

jDhjsp

� C11

“
M�M

jf .y/ � f .x/jp ^ jf .y/ � f .x/jq

dM.y; x/mCsp
dy dx;

which gives the first estimate and inclusion.
We now prove the reverse inclusion � in (5). If f D g C h with g 2 PW s;p.M;R/

and h 2 PW 1;sp.M;R/, there exist sequences of smooth maps .gj /j2N and .hj /j2N in
C1.M;R/, such that, as j !1, gj ! g in PW s;p.M;R/ and hj ! h in PW 1;sp.M;R/.
For every j 2 N, defining fj WD gj C hj and uj WD eifj , we have by the fractional
Gagliardo–Nirenberg interpolation inequality (see for example [8, Cor. 3.2], [33, Lem.
2.1], [10]), since sp > 1 and jeihj j � 1,“

M�M

juj .y/ � uj .x/j
p

dM.y; x/mCsp
dy dx

�

“
M�M

jeigj .y/ � eigj .x/jp

dM.y; x/mCsp
dy dx C

“
M�M

jeihj .y/ � eihj .x/jp

dM.y; x/mCsp
dy dx

� C12

�“
M�M

jgj .y/ � gj .x/j
p

dM.y; x/mCsp
dy dx C

Z
M

jDhj j
sp

�
: (67)
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By Theorem 1.4, we have for every j 2 N,“
M�M

jfj .y/ � fj .x/j
p ^ 1

dM.y; x/mCsp
dy dx �

“
M�M

juj .y/ � uj .x/j
p

dM.y; x/mCsp
dy dx: (68)

Letting j !1 in (67) and (68) and applying Proposition 1.5, we get“
M�M

jf .y/ � f .x/jp ^ jf .y/ � f .x/jq

dM.y; x/mCsp
dy dx

� C13

�“
M�M

jg.y/ � g.x/jp

dM.y; x/mCsp
dy dx C

Z
M

jDhjsp
�
;

which proves the announced reverse inclusion and estimate.

3.2. About the critical lower exponent

If the function f WBm ! R is measurable and if q 2 Œ1;1/, then it is known that“
Bm�Bm

jf .y/ � f .x/jq

jy � xjmCq
dy dx D1

unless the function f is constant [7, Prop. 2]. Although the integral restricted to a region
of large oscillation “

.x;y/2Bm�Bm

jf .y/�f .x/j�1

jf .y/ � f .x/jq

jy � xjmCq
dy dx D1 (69)

might be finite for a function of small oscillation, there are still Sobolev functions for
which the large oscillation part of the integral (69) blows up.

Proposition 3.2. Letm 2N n ¹0;1º. If 1� q <m, then there is a function f 2 PW 1;q
0 .Bm;

R/ such that “
.x;y/2Bm�Bm

jf .y/�f .x/j�1

jf .y/ � f .x/jq

jy � xjmCq
dy dx D1:

As a consequence of Proposition 3.2, if 1 � sp < m, there exists some function f 2
PW
1;sp
0 .Bm1 ;R/ such that“

.x;y/2M�M
jf .y/�f .x/j�1

jf .y/ � f .x/jp ^ jf .y/ � f .x/jsp

dM.y; x/mCsp
dy dx D1

and thus the noninclusion (8) holds.

Proof of Proposition 3.2. We choose a function  2 C1c .R
m;R/ such that  .x/ D x1

when x 2 B1=2 and supp � B1. For every � 2 .2;1/, we have“
.x;y/2Bm�Bm

j� .y/�� .x/j�1

j� .y/ � � .x/jq

jy � xjmCq
dy dx � �q

“
.x;y/2B1=2�B1=2
�jy1�x1j�1

1

jy � xjm
dy dx

� C1�
q ln.�

2
� 1/; (70)
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for some constant C1 2 .0;1/. We now define for each j 2 N the numbers

�j WD �02
j 2 and �j WD .�

q
j ln.�j

2
� 1//�1=.m�q/; (71)

with �0 2 .2;1/ large enough so that there exists a sequence of points .aj /j2N for which
the closed balls xB�j .aj / are pairwise disjoint and all contained in Bm (this is possible
since q < m). We define the function f WBm ! R for every x 2 Bm by

f .x/ WD

8<:�j 
�x � aj

�j

�
if x 2 B�j .aj /;

0 otherwise:

By the disjointness of the balls, by scaling and by (71), we haveZ
Bm
jDf jq D

X
j2N

Z
B�j .aj /

jDf jq D
X
j2N

�
q
j �
m�q
j

Z
Bm
jD jq

D

X
j2N

1

ln.�02j
2�1 � 1/

Z
Bm
jD jq <1;

so that f 2 W 1;q
0 .Bm;R/. On the other hand, by the disjointness of the balls, by scaling,

by (70) and by (71), we have“
.x;y/2Bm�Bm

jf .y/�f .x/j�1

jf .y/ � f .x/jq

jy � xjmCq
dy dx

�

X
j2N

�
m�q
j

“
.x;y/2Bm�Bm

j�j .y/��j .x/j�1

j�j .y/ � �j .x/j
q

jy � xjmCq
dy dx

�

X
j2N

C1 D1:

4. Estimate of the lifting in subcritical dimension

This section is devoted to the proof of Theorem 1.8. We first observe that by Theorem 1.4,
for every ı 2 .0;1/, the map QuWM! zN immediately satisfies the small-scale estimate“

.x;y/2M�M
d zN. Qu.y/; Qu.x//�ı

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCsp
dy dx � C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx;

so that it will be sufficient to estimate the large-scale integral“
.x;y/2M�M

d zN. Qu.y/; Qu.x//>ı

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCsp
dy dx:
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We will prove the following counterpart of Proposition 2.1 for large-scale oscillations.

Proposition 4.1. Letm 2N n ¹0º, let s; s� 2 .0; 1/ and let p;p� 2 Œ1;1/. If sp > 1, then
there exists a constant C 2 .0;1/ such that if � W zN ! N is a Riemannian covering, if
� � Rm is open and convex, if Qu 2 Y.�; zN/, if u WD � ı Qu, if ı � inj.N/ and if

1 � s�

m
D

1

sp
�
1

p�
; (72)

then “
.x;y/2���

d zN. Qu.y/; Qu.x//�ı

d zN. Qu.y/; Qu.x//
p�

jy � xjmCs�p�
dy dx

� C

�
1

ı.1�s/p

“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

� p�
sp

: (73)

We recall that the space Y.�; zN/ was defined in (12) as the set of maps whose restric-
tion on almost every segment coincides almost everywhere with a continuous function
taking the same value at the extremities.

Remark 4.2. Proposition 4.1 implies a fractional Sobolev embedding: for s� 2 .0; 1/ and
p; p� 2 .1;1/ such that 1=p� D 1=p � .1 � s�/=m, letting � WR! S1 be the universal
covering of the circle and choosing Qu WD tf for t > 0 in (73) with ı D 1, one gets by the
fractional Gagliardo–Nirenberg interpolation inequality, since jeitf j � 1 in �,“

.x;y/2���
jf .y/�f .x/j�t

jf .y/ � f .x/jp�

jy � xjmCs�p�
dy dx

�
C2

tp�

�“
���

jeitf .y/ � eitf .x/jp=s�

jy � xjmCp
dy dx

�p�=p
�
C3

tp�

�Z
�

jDeitf jp
�p�=p

D C3

�Z
�

jDf jp
�p�=p

I (74)

letting t ! 0 in (74), one gets the fractional Sobolev embedding“
���

jf .y/ � f .x/jp�

jy � xjmCs�p�
dy dx � C3

�Z
�

jDf jp
�p�=p

:

4.1. One-dimensional estimates

Our first tool towards the proof of Proposition 4.1 is the following truncated fractional
Morrey–Sobolev inequality.

Lemma 4.3. Let s 2 .0; 1/ and let p 2 Œ1;1/. If sp > 1, then there exists a constant
C 2 .0;1/ such that if I �R is an interval, if N is a Riemannian manifold, if the mapping
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uW I ! N is measurable and if � 2 Œ0;1/, then for almost every x; y 2 I , we have

dN.u.y/; u.x// � C

��“
Œx;y��Œx;y�

�dN.u.w/; u.v//
jw � vjs

� �
�p
C

dw dv
jw � vj

� 1
p

jy � xj
s� 1p

C �jy � xjs
�
: (75)

When�D 0, estimate (75) reduces to the fractional Morrey–Sobolev inequality; when
� > 0, (75) shows that when small values of the difference quotient are removed, one still
gets some truncated uniform bound.

The proof will use the following Minkowski inequality for mean oscillations.

Lemma 4.4. Let m 2 N n ¹0º, let p 2 Œ1;C1/, let � � Rm be measurable and let the
mapping uW�!N be measurable. For every k 2N and measurable setsA0; : : : ;Ak ��
such that for every j 2 ¹0; : : : ; kº, Ld .Aj / > 0, one has�−

A0

−
Ak

dN.u.y/; u.x//
p dy dx

� 1
p

�

k�1X
jD0

�−
Aj

−
AjC1

dN.u.y/; u.x//
p dy dx

� 1
p

: (76)

Proof. We have by the triangle inequality and by Minkowski’s inequality,�−
A0

−
Ak

dN.u.y/; u.x//
p dy dx

� 1
p

D

�−
A0

� � �

−
Ak

dN.u.xk/; u.x0//
p dxk � � � dx0

� 1
p

�

k�1X
jD0

�−
A0

� � �

−
Ak

dN.u.xjC1/; u.xj //
p dxk � � � dx0

� 1
p

D

k�1X
jD0

�−
Aj

−
AjC1

dN.u.y/; u.x//
p dy dx

� 1
p

;

which proves (76).

We now prove the truncated fractional Morrey–Sobolev embedding.

Proof of Lemma 4.3. Since the mapping u is measurable, we can assume without loss of
generality that x and y are Lebesgue points of u and that I D .x; y/. We define for each
j 2 N the set I xj WD x C 2

�j .I � x/ � I . Since x is a Lebesgue point of u, we have

lim
j!1

−
Ij

dN.u.x/; u.z//
p dz D 0; (77)
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and then by (77), by Lemma 4.4 and by Minkowski’s inequality,�−
I

dN.u.x/; u.z//
p dz

� 1
p

�

1X
jD0

�−
Ixj

−
IxjC1

dN.u.w/; u.v//
p dw dv

� 1
p

�

1X
jD0

�−
Ixj

−
IxjC1

�
dN.u.w/; u.v// � �jw � vj

s
�p
C

dw dv
� 1
p

C

1X
jD0

�−
Ixj

−
IxjC1

�pjw � vjsp dw dv
� 1
p

: (78)

For the first term in the right-hand side of (78), we have for every j 2 N, since sp � 1,−
Ixj

−
IxjC1

�
dN.u.w/; u.v// � �jw � vj

s
�p
C

dw dv

�
2 diam.I /sp�1

2j.sp�1/

“
I�I

�dN.u.w/; u.v//
jw � vjs

� �
�p
C

dw dv
jw � vj

; (79)

while for the second term in the right-hand side of (78), we have for every j 2 N,−
Ixj

−
IxjC1

jw � vjsp dw dv �
C1 diam.I /sp

2j sp
: (80)

Inserting (79) and (80) into (78), we get, since sp > 1,�−
I

dN.u.x/; u.z//
p dz

� 1
p

(81)

� C2

�
diam.I /sp�1

“
I�I

�dN.u.w/; u.v//
jw � vjs

� �
�p
C

dw dv
jw � vj

C �p diam.I /sp
� 1
p

;

and conclusion (75) follows from (81) and the triangle inequality.

Next we use Lemma 4.3 to estimate the large-scale oscillations of a lifting by a trun-
cated fractional Sobolev seminorm.

Lemma 4.5. Let s 2 .0; 1/ and let p 2 Œ1;1/. If sp > 1, then there exists a constant
C 2 .0;1/ such that if I � R is an interval, if � W zN! N is a Riemannian covering, if
Qu 2 C.I; zN/ and if u WD � ı Qu, then for almost every x;y 2 I , every � 2 Œ0;1/ and every
ı 2 Œ0; inj.N//, one has�
d zN. Qu.y/; Qu.x// � ı

�sp
C

(82)

�
C

ıp.1�s/

�“
Œx;y��Œx;y�

�dN.u.w/; u.v//
jw� vjs

� �
�p
C

dw dv
jw� vj

jy � xjsp�1C�pjy � xjsp
�
:
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Lemma 4.5 gives a growth estimate corresponding to what the Morrey–Sobolev
embedding would give if one had Qu 2 PW 1;sp.I; zN/.

When�D 0, Lemma 4.5 shows that on large scales the lifting Qu behaves like a Hölder-
continuous mapping of exponent 1 � 1=sp, which is not as good as the exponent s �
1=p that the fractional Morrey–Sobolev embedding gives on the original function u; this
generalizes the results obtained for the universal covering of the circle by Merlet [18,
Lem. 8.25] and Mironescu and Molnar [23].

Proof of Lemma 4.5. Let ` WD bd zN. Qu.x/; Qu.y//=ıc, so that�
d zN. Qu.y/; Qu.x// � ı

�
C
� `ı: (83)

Since the mapping Qu is continuous, by the intermediate value theorem, there exist points
z0 D x � z1 � z2 � � � � � z` � y such that for every i 2 ¹1; : : : ; `º, one has d zN. Qu.zi /;
Qu.zi�1// D ı. Since ı � inj.N/, by Lemma 2.3, we also have dN.u.zi /; u.zi�1// D ı.
Therefore, since sp > 1, it follows from Lemma 4.3 that for each i 2 ¹1; : : : ; `º,

ı � C1

��“
Œzi�1;zi �2

�dN.u.z/; u.w//
jz � wjs

� �
�p
C

dz dw
jz � wj

jzi � zi�1j
sp�1

� 1
p

C �jzi � zi�1j
s

�
: (84)

Summing (84) we have

` �
�C1
ı

� 1
s
X̀
iD1

��“
Œzi�1;zi �2

�dN.u.z/; u.w//
jz � wjs

� �
�p
C

dz dw
jz � wj

� 1
sp

jzi � zi�1j
1� 1

sp

C �
1
s jzi � zi�1j

�
: (85)

Applying the discrete Hölder inequality to the right-hand side of (85), we get

` �
�C1
ı

� 1
s

��X̀
iD1

“
Œzi�1;zi �2

�dN.u.z/; u.w//
jz � wjs

� �
�p
C

dz dw
jz�wj

� 1
sp
�X̀
iD1

jzi � zi�1j

�1� 1
sp

C �
1
s

X̀
iD1

jzi � zi�1j

�
: (86)

Since x � z0 � z1 � � � � � z` � y, the sets .zi�1; zi /2 are disjoint subsets of Œx; y�2 and
we deduce from (86) that

` �
�C1
ı

� 1
s

��“
Œx;y�2

�dN.u.z/; u.w//
jz � wjs

� �
�p
C

dz dw
jz � wj

� 1
sp

jy � xj
1� 1

sp

C �
1
s jy � xj

�
: (87)

Recalling (83), conclusion (82) follows from (87).
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4.2. Mean integral oscillation estimates

Integrating the estimate of Lemma 4.5, we will obtain the following estimate on truncated
mean oscillation by a truncated fractional Sobolev norm.

Lemma 4.6. Letm 2N n ¹0º, let s 2 .0; 1/ and let p 2 .1;1/. If sp > 1, then there exists
a constant C 2 .0;1/ such that if the set � � Rm is bounded and convex, if � W zN! N

is a Riemannian covering map, if Qu 2 Y.�; zN/, if u WD � ı Qu, if ı 2 .0; inj.N/� and if
� 2 Œ0;1/, then“

���

�
d zN. Qu.y/; Qu.z// � ı

�sp
C

dy dz

�
C2

ı.1�s/p

�
diam.�/mCsp

mC sp

“
���

�dN.u.y/; u.x//
jy � xjs

� �
�p
C

dy dx
jy � xjm

C �p diam.�/2mCsp
�
: (88)

Lemma 4.6 will be deduced from Lemma 4.5 and the next integral estimate.

Lemma 4.7. Let m 2 N n ¹0º. If the set � � Rm is open and convex, if the function
F W� ��! Œ0;1/ is measurable and if  > �m, then“

���

�“
Œx;y��Œx;y�

F.w; v/ dw dv
�

dy dx
jy � xj1�

�
2 diam.�/mC

mC 

“
���

F.x; y/

jy � xjm�1
dy dx: (89)

Proof. We have by definition of an integral on a segment,“
���

�“
Œx;y��Œx;y�

F.w; v/ dw dv
�
jy � xj�1 dy dx

D

“
���

“
Œ0;1��Œ0;1�

F..1 � t /x C ty; .1 � r/x C ry/jy � xjC1 dt dr dy dx: (90)

By the change of variables v D .1 � r/x C ry, w D .1 � t /x C ty in the right-hand side
of (90), we obtain, since jv � wj D jt � r j jy � xj,“

���

�“
Œx;y��Œx;y�

F.w; v/ dw dv
�

dy dx
jy � xj1�

D

“
���

“
†v;w

F.w; v/jw � vjC1

jt � r jmCC1
dt dr dw dv; (91)

where we have defined for every v;w 2 � the set

†v;w WD
®
.t; r/ 2 Œ0; 1� � Œ0; 1�

ˇ̌
rv�tw
r�t

2 � and .1�r/v�.1�t/w
t�r

2 �
¯
:
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Since
†v;w �

®
.t; r/ 2 Œ0; 1� � Œ0; 1�

ˇ̌
jt � r j � jw�vjdiam�

¯
;

we have“
†v;w

1

jt � r jmCC1
dt dr �

Z
jsj�

jw�vj
diam�

ds
jsjmCC1

D
2 diam.�/mC

.mC /jw � vjmC
; (92)

and we deduce from (91) and (92) that (89) holds.

We proceed now to the proof of Lemma 4.6.

Proof of Lemma 4.6. We have by Lemma 4.5, since sp > 1,“
���

�
d zN. Qu.y/; Qu.x// � ı

�sp
C

dy dx

�
C1

ı.1�s/p

�“
���

“
Œx;y��Œx;y�

�dN.u.w/; u.v//
jw � vjs

� �
�p
C

dw dv
jw � vj

jy � xjsp�1 dy dx

C �p
“
���

jy � xjsp dy dx
�
: (93)

For the first term in the right-hand side of (93), we proceed by Lemma 4.7 to infer from
(93), since sp > �m, that“

���

“
Œx;y��Œx;y�

�dN.u.w/; u.v//
jw � vjs

� �
�p
C

dw dv
jw � vj

jy � xjsp�1 dy dx

�
2 diam.�/mCsp

mC sp

“
���

�dN.u.y/; u.x//
jy � xjs

� �
�p
C

dy dx
jy � xjm

; (94)

whereas for the second term in the right-hand side of (93) we have“
���

jy � xjsp dy dx � C2 diam.�/2mCsp: (95)

Estimate (88) then follows from inequalities (93), (94) and (95).

4.3. Integral truncated mean oscillation estimate

We now obtain an interpolation estimate similar to Proposition 4.1 on an integral of trun-
cated mean oscillations.

Proposition 4.8. Let M be a compact Riemannian manifold, let s; s� 2 .0; 1/, let p;p� 2
Œ1;1/ and letm WD dimM. If sp > 1, then there exists a constant C 2 .0;1/ such that if
� W zN! N is a Riemannian covering, if Qu 2 Y.M; zN/, if u WD � ı Qu, if ı � inj.N/ and if

1 � s�

m
D

1

sp
�
1

p�
; (96)
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then Z
�

Z diam�

0

�
1

r2mCs�

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz
�p� dr

r
dx

� C

�
1

ı.1�s/p

“
���

dN.u.y/; u.z//
p

jy � zjmCsp
dy dz

� p�
sp

:

The proof of Lemma 4.8 is reminiscent of the proof of the Marcinkiewicz real inter-
polation theorem, although the framework here is much more nonlinear.

Proof of Lemma 4.8. We have, by the layer-cake representation of integrals (Cavalieri’s
principle), Z

�

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz
�p�

dx

D .p� � 1/

Z 1
0

Lm.Er�/�
p��1 d�; (97)

where for each � 2 .0;1/ and r 2 .0;1/ we have defined the set

Er� WD
®
x 2 �

ˇ̌ ’
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz � �r2m
¯
:

On the one hand, fixing q 2 .1
s
; p/ – which is possible since sp > 1 – for each x 2 Er

�

and � 2 Œ0;1/, we have by Jensen’s inequality and by Lemma 4.6, since sq > 1,

�sq �

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dw
�sq

� C1
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�sq
C

dy dz

� C2
rsq�m

ı.1�s/q

“
.�\Br .x//2

�dN.u.y/; u.z//
jy � zjs

� �
�q
C

dy dz
jy � zjm

C C3
�qrsq

ı.1�s/q
: (98)

If we take now � to be given by

�r� WD C4
�sı1�s

rs
;

with C q4 C3 D
1
2

, for each x 2 Er
�

, we have by (98),

�sq � C5
rsq�m

ı.1�s/q

“
.�\Br .x//2

�dN.u.y/; u.z//
jy � zjs

� �r�

�q
C

dy dz
jy � zjm

: (99)

Hence, we have by (99),

Lm.Er�/

�
C5r

sq�m

�sqı.1�s/q

Z
�

“
.�\Br .x//2

�dN.u.y/; u.z//
jy � zjs

� �r�

�q
C

dy dz
jy � zjm

dx
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D
C5r

sq�m

�sqı.1�s/q

“
���

�dN.u.y/; u.z//
jy � zjs

� �r�

�q
C

Lm.� \ Br .y/ \ Br .z//
dy dz
jy � zjm

�
C6r

sq

�sqı.1�s/q

“
���

�dN.u.y/; u.z//
jy � zjs

� �r�

�q
C

dy dz
jy � zjm

: (100)

On the other hand, since sp > 1, if x 2 Er
�

, we have by Jensen’s inequality and by
Lemma 4.6 with � D 0,

�sp �

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz
�sp

� C7
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�sp
C

dy dz

� C8
rsp�m

ı.1�s/p

“
.�\Br .x//2

dN.u.y/; u.z//
p

jy � zjmCsp
dy dzI (101)

it follows then from (101) that®
.r; �/ 2 .0;1/2

ˇ̌
E�r ¤ ;

¯
� H WD

®
.r; �/ 2 .0;1/2

ˇ̌
�sprm�sp �

C
sp
8

ı.1�s/p

’
���

dN.u.y/;u.z//
p

jy�zjmCsp
dy dz

¯
: (102)

By (97), (100) and (102), we haveZ
�

Z diam�

0

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz
�p� dr

r1Cs�p�
dx

�
C9

ı.1�s/q

“
H

“
���

�dN.u.y/; u.z//
jy � zjs

� �r�

�q
C

dy dz
jy � zjm

�
rsq�p�

r1Cs�p��1Csq
d� dr: (103)

Applying the change of variable

� D C4
�sı1�s

rs
and t D �sprm�sp

in (103), we infer from (96) thatZ
�

Z diam.�/

0

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ı

�
C

dy dz
�p� dr

r1Cs�p�
dx

�
C10

ı.1�s/p

“
���

Z Nt
0

Z 1
0

�dN.u.y/; u.z//
jy � zjs

� �
�q
C
�p�q�1t

p�

sp �2 d� dt

�
dy dz
jy � zjm

; (104)
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with

Nt WD
C
sp
8

ı.1�s/p

“
���

dN.u.y/; u.z//
p

jy � zjmCsp
dy dz:

The conclusion follows by the integration in � and t of the right-hand side of inequality
(104), since q < p and p� > sp.

4.4. Proof of the large-scale estimate

We now use Lemma 4.8 to prove Proposition 4.1. The main idea consists in applying
Lemma 4.8 with the triangle inequality; because of the truncation in the left-hand side we
need to rely on Lemma 4.8 with values of ı arbitrarily close to 0.

Proof of Proposition 4.1. By a comparison argument, we have“
.x;y/2���

d zN. Qu.y/; Qu.x//�ı

d zN. Qu.y/; Qu.x//
p�

jy � xjmCs�p�
dy dx

� 2p�
“
���

�
d zN. Qu.y/; Qu.x// �

ı
2

�p�
C

jy � xjmCs�p�
dy dx: (105)

By the triangle inequality and by symmetry, we then have“
���

�
d zN. Qu.y/; Qu.x// �

ı
2

�p�
C

jy � xjmCs�p�
dy dx

� 2p��1
“
���

�−
�\Bjy�xj=2.

xCy
2 /

�
d zN. Qu.y/; Qu.z// �

ı
4

�
C

dz
�p�

C

�−
�\Bjy�xj=2.

xCy
2 /

�
d zN. Qu.z/; Qu.x// �

ı
4

�
C

dz
�p� dy dx
jy � xjmCs�p�

D 2p�
“
���

�−
�\Bjy�xj=2.

xCy
2 /

�
d zN. Qu.z/; Qu.x// �

ı
4

�
C

dz
�p�

�
dy dx

jy � xjmCs�p�
: (106)

By (105) and (106) we have by integration in spherical coordinates,“
.x;y/2���

d zN. Qu.y/; Qu.x//�ı

d zN. Qu.y/; Qu.x//
p�

jy � xjmCs�p�
dy dx

� C1

“
���

�−
�\Bjy�xj.x/

�
d zN. Qu.z/; Qu.x// �

ı
4

�
C

dz
�p� dy dx
jy � xjmCs�p�

� C2

Z
�

Z diam.�/

0

�−
�\Br .x/

�
d zN. Qu.z/; Qu.x// �

ı
4

�
C

dz
�p� dr

r1Cs�p�
dx:
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By the triangle inequality, similarly to the proof of Lemma 4.4, we have for almost every
x 2 � and every r 2 .0; diam.�//,−

�\Br .x/

�
d zN. Qu.z/; Qu.x// �

ı
4

�
C

dz

�

X
j2N

−
�\B

2�j r
.x/

−
�\B

2�j�1r
.x/

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz

� C3
r2m

22mj

X
j2N

Z
�\B

2�j r
.x/

Z
�\B

2�j r
.x/

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz; (107)

where we have set for each j 2 N,

ıj WD
ı�j

4.1 � �/
; (108)

with a constant � 2 .0; 1/ to be determined later, since
P
j2N ıj D

ı
4

. We have then by
(107) and by Minkowski’s inequality,�Z

�

Z diam�

0

�−
�\Br .x/

�
d zN. Qu.y/; Qu.x// �

ı
4

�
C

dy
�p� dr

r1Cs�p�
dx
� 1
p�

� C3
X
j2N

�Z
�

Z diam�

0

�
22mj

r2m

“
.�\B

2�j r
.x//2

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz
�p�

�
dr

r1Cs�p�
dx
� 1
p�

: (109)

For every j 2 N, we have by a change of variable in the outer integral,Z diam�

0

�
22mj

r2m

“
.�\B

2�j r
.x//2

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz
�p� dr

r1Cs�p�

D
1

2s�p�j

Z 2�j diam�

0

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz
�p�

�
dr

r1Cs�p�
; (110)

whereas by Lemma 4.8,Z diam�

0

�
1

r2m

“
.�\Br .x//2

�
d zN. Qu.y/; Qu.z// � ıj

�
C

dy dz
�p� dr

r1Cs�p�

� C4

�
1

ı
.1�s/p
j

“
���

dN.u.y/; u.z//
p

jy � zjmCsp
dy dz

�
: (111)
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Combining (109), (110) and (111), we obtain in view of (108),�Z
�

Z diam�

0

�−
�\Br .x/

�
d zN. Qu.y/; Qu.x// �

ı
4

�
C

dy
�p� dr

r1Cs�p�
dx
� 1
p�

� C5
X
j2N

1

.2s��
1�s
s /j

�
1

ı.1�s/p

“
�2

dN.u.y/; u.z//
p

jy � zjmCsp
dy dz

� 1
sp

;

and the conclusion follows provided � 2 .0; 1/ is chosen in such a way that � > 2�
s�s
1�s .

4.5. Conclusion and further estimate

We now deduce Theorem 1.8 from Proposition 4.1.

Proof of Theorem 1.8. We first assume that M D �, where the set � � Rm is open,
bounded and convex. By Proposition 2.18, we have Qu 2 Y.�; zN/. Letting p� WD p, we
have s� D s C .1 � s/.1 � m

sp
/ � s. We get, since � is bounded and s�p� � sp,“

.x;y/2���
d zN. Qu.y/; Qu.x//�inj.N/

d zN. Qu.y/; Qu.x//
p

jy � xjmCsp
dy dx

� C1

“
.x;y/2���

d zN. Qu.y/; Qu.x//�injN

d zN. Qu.y/; Qu.x//
p�

jy � xjmCs�p�
dy dx

� C2

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

� 1
s

; (112)

by Proposition 4.1 with ı D inj.N/. Combining estimate (112) with Proposition 2.1, we
get“

���

d zN. Qu.y/; Qu.x//
p

jy � xjmCsp
dy dx � C3

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dz dy

C

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

� 1
s
�
: (113)

We reach conclusion (9) on a general compact manifold M thanks to estimate (113) and
the covering of Lemma 2.11.

Remark 4.9. The exponent 1
s

in (9) is optimal. Indeed, assuming that

k Quk PW s;p � C1.kuk PW s;p C kuk

PW s;p /

holds and taking � WR! S1 to be the universal covering of the unit circle and Qu D t',
for some ' 2 C1.M;R/ and every t 2 R, one gets from (9) that jt j � C2.jt js C jt js/,
which can only hold if  � 1

s
.

Proposition 4.1 can also be applied to obtain a result in which the nonlinear part in the
estimate contains a critical fractional Sobolev energy.
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Theorem 4.10. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN! N be a Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/. If sp > 1,
then there exists a constant C 2 .0;1/ such that for every Qu 2 X.M; zN/, we have Qu 2
PW s;p.M; zN/ and“

M�M

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCsp
dy dx

� C3

�
1C

“
M�M

dN.u.y/; u.x//
p

dM.y; x/2m
dy dx

� .1�s/p
m

“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx:

Although no restriction is put on the exponent, in practice the first integral in the right-
hand side will be finite for some nonconstant function u if and only if p > m.

Proof of Theorem 4.10. We proceed as in the proof of Theorem 1.8, now applying Pro-
position 4.1 with s being given by s0 D 1

1C.1�s/p=m
, p� D p and so that s� is then given

by s in (72). Since sp > 1, we have s0p D p
1C.1�s/p=m

> 1, and thus by Proposition 4.1,“
.x;y/2���

d zN. Qu.y/; Qu.x//�inj.N/

d zN. Qu.y/; Qu.x//
p

jy � xjmCsp
dy dx

� C1

�“
���

dN.u.y/; u.x//
p

jy � xj
mC

mp
mC.1�s/p

dy dx
�mC.1�s/p

m

: (114)

If sp �m, we havem� mp
mC.1�s/p

� sp, whereas if sp �mwe have sp � mp
mC.1�s/p

�m,
and thus by Hölder’s inequality and (114) we get“

.x;y/2���
d zN. Qu.y/; Qu.x//�inj.N/

d zN. Qu.y/; Qu.x//
p

jy � xjmCsp
dy dx

� C2

�
1C

“
���

dN.u.y/; u.x//
p

jy � xj2m
dy dx

� .1�s/p
m

�

“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx: (115)

Hence, combining (115) with Proposition 2.1, we get“
���

d zN. Qu.y/; Qu.x//
p

jy � xjmCsp
dy dx

� C3

�
1C

“
���

dN.u.y/; u.x//
p

jy � xj2m
dy dx

� .1�s/p
m

�

“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx: (116)

Combining (116) with the covering of Lemma 2.11, we conclude.
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Remark 4.11. Again, the exponent 1
s

in (9) is optimal. Indeed, assuming that we have

k Quk PW s;p � C1.1C kuk

PW m=p;p /kuk PW s;p (117)

and taking � WR! S1 to be the universal covering of the unit circle and QuD t', for some
' 2C1.M;R/ and every t 2R, one gets from (117) that jt j �C2.1C jt jm=p/jt js , which
can only hold if  � .1�s/p

m
.

Finally, the same methods can be used to get an estimate on a lower-order fractional
Sobolev energy when the dimension is supercritical.

Theorem 4.12. Let M and N be compact Riemannian manifolds, let m WD dim M, let
� W zN! N be a Riemannian covering map, let s 2 .0; 1/ and let p 2 .1;1/. If

1 � s <
sp

m
< 1 (118)

and if Qu 2 X.M; zN/, then Qu 2 PW s[;p.M; zN/ and“
M�M

d zN. Qu.y/; Qu.x//
p

dM.y; x/mCs[p
dy dx � C3

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

C

�“
M�M

dN.u.y/; u.x//
p

dM.y; x/mCsp
dy dx

� 1
s
�
;

with
s[ WD s � .1 � s/

�m
sp
� 1

�
: (119)

Proof. We follow the structure of the proof of Theorem 1.8. Considering Qu 2 Y.�; zN/,
we apply Proposition 4.1 with p� D p so that s� D s[ in view of (119) since by (118),

s[p D p Cm
�1
s
� 1

�
> 1

and we get“
.x;y/2���

d zN. Qu.y/; Qu.x//�inj.N/

d zN. Qu.y/; Qu.x//
p

jy � xjmCs[p
dy dx � C1

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

� 1
s

:

On the other hand, by Proposition 2.1, since s[ < s and since the set� is bounded, we get“
���

d zN. Qu.y/; Qu.x//
p

jy � xjmCs[p
dy dx � C2

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

C

�“
���

dN.u.y/; u.x//
p

jy � xjmCsp
dy dx

� 1
s
�
: (120)

The conclusion follows from (120) and Lemma 2.11.
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Remark 4.13. The value s[ in the statement of Theorem 4.12 is optimal: taking � WR!
S1 to be the universal covering of the unit circle and defining Qu.x/ WD jxj�˛ , then u 2
PW 1;sp.Bm;R/ if and only if .˛C 1/sp < m. By the fractional Gagliardo–Nirenberg inter-

polation inequality, one then has � ı Qu 2 PW s;p.Bm;S1/. We also have u 2 PW s�;p.Bm;R/
if and only if .˛ C s�/p < m. This implies that we can have Qu 62 PW s�;p.Bm;R/ and
u 2 PW s;p.Bm;S1/, when m

p
� s� <

m
sp
� 1, or equivalently s� > s[.
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