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Quantum limits of sub-Laplacians via joint spectral
calculus

Cyril Letrouit

Abstract. We establish two results concerning the quantum limits (QLs) of some sub-Laplacians.
First, under a commutativity assumption on the vector fields involved in the definition of the sub-
Laplacian, we prove that it is possible to split any QL into several pieces which can be studied
separately, and which come from well-characterized parts of the associated sequence of eigenfunc-
tions.

Secondly, building upon this result, we study in detail the QLs of a particular family of sub-
Laplacians defined on products of compact quotients of Heisenberg groups. We express the QLs
through a disintegration of measure result which follows from a natural spectral decomposition of
the sub-Laplacian in which harmonic oscillators appear.

Both results are based on the construction of an adequate elliptic operator commuting with the
sub-Laplacian, and on the associated joint spectral calculus. They illustrate the fact that, because of
the possible high degeneracies in the spectrum, the spectral theory of sub-Laplacians is very rich.

1. Introduction and main results

1.1. Motivation

The main goal of this paper is to establish some properties of the eigenfunctions of families
of hypoelliptic operators in the high-frequency limit. A typical problem is the description
of the quantum limits (QLs) of the operator, i.e., measures that are weak limits of a sub-
sequence of squares of eigenfunctions. All the operators we consider in the sequel are
sub-Laplacians, and they are in particular hypoelliptic as we will see shortly.

1.1.1. Sub-Laplacians. Let us now recall the general definition of a sub-Laplacian. Let
n 2 N� and let M be a smooth, connected and compact manifold of dimension n without
boundary. Let X1; : : : ;XN be smooth vector fields onM that are not necessarily indepen-
dent but which satisfy the so-called Hörmander bracketing condition

The vector fields X1; : : : ; XN and their iterated Lie brackets ŒXi ; Xj �;�
Xi ; ŒXj ; Xk �

�
, etc. span the tangent space TxM at every point x 2M . (1.1)
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Let also � be a smooth (positive) volume form on M . We consider the operator

�sR D �

NX
iD1

X�i Xi D

NX
iD1

�
X2i C div�.Xi /Xi

�
(1.2)

where X�i is the transpose of Xi in L2.M; �/. The “sR” index in �sR stands for “sub-
Riemannian”. The operator �sR is non-positive and self-adjoint. Then

D D Span.X1; : : : ; XN / � TM

is called the distribution. We note that Laplace–Beltrami operators are particular kinds of
sub-Laplacians.1

Under the assumption (1.1),�sR is hypoelliptic (see [19]) and has a compact resolvent:
this follows from subelliptic regularity estimates of the form

9r 2 N; 9C > 0; kuk2
H1=r .M/

� C
�
k�sRuk

2
L2.M/

C kuk2
L2.M/

�
(see [32, Theorem 17 and estimate (17.20)]). Thus there exists a sequence of (complex-
valued) eigenfunctions of ��sR associated to the eigenvalues in increasing order

0 D �1 < �2 � � � � .with �j !C1 as j !C1/

which is orthonormal for the L2.M;�/ scalar product.

1.1.2. Quantum limits. The main purpose of this paper is to understand the weak limits
of the sequence of probability measures j'kj2d� where .'k/k2N� is a sequence of nor-
malized eigenfunctions of ��sR associated to eigenvalues tending to C1, for particular
sub-Laplacians �sR.

There is a phase space extension of these weak limits whose behaviour is also of
interest. Let us recall the following definition (see [16]).

Definition 1. Let .uk/k2N� be a bounded sequence in L2.M/ and weakly converging
to 0. A microlocal defect measure of .uk/k2N� is any Radon measure � on S�M for which
there exists an extraction � W N� ! N� such that for any zeroth-order pseudodifferential
operators A with principal symbol a D �P .A/ (see Appendix A.1), there holds

.Au�.k/; u�.k// �����!
k!C1

Z
S�M

ad�:

Here, .�; �/ denotes the L2.M;�/ scalar product.

1To see that the Laplace–Beltrami operator on a Riemannian manifold .M; g/ is a sub-Laplacian, take
� to be the Riemannian volume and take X1.q/; : : : ; XN .q/ spanning TqM for any q (without necessarily
being independent, since this is not always possible globally), with lengths adjusted in a way that the
principal symbol of ��g coincides with the principal symbol of

PN
iD1 X

�
i Xi . One can check that �g D

�
PN
iD1X

�
i Xi .



Quantum limits of sub-Laplacians via joint spectral calculus 57

Microlocal defect measures are useful tools for studying the (asymptotic) concen-
tration and oscillation properties of sequences; note they are necessarily non-negative
(see [16]).

Definition 2. Given a sequence .'k/k2N� of eigenfunctions of ��sR with k'kkL2.M;�/
D 1, we call quantum limit (QL) any microlocal defect measure of .'k/k2N� .

Remark 3. Since 'k , k 2 N� is normalized, any QL is a probability measure on S�M .

For any Riemannian manifold .M; g/, it is well known that any QL � of the Laplace–
Beltrami operator�g is invariant under the geodesic flow exp.t EG/. HereG D �P .

p
��g/

and EG is the associated Hamiltonian vector field (the geodesic vector field), and the claim
is that exp.t EG/� D � for any t 2 R. To prove it, we note that for any sequence .'k/k2N�

consisting of normalized eigenfunctions of ��g , there holds

.A
p
��g'k ; 'k/L2 � .

p
��gA'k ; 'k/L2 D 0 (1.3)

for any t 2 R, any k 2N� and any zeroth-order pseudodifferential operators A. It follows
from the commutation rule for pseudodifferential operators that

R
S�M
¹�P .A/;Gºd� D 0,

which in turn implies EG� D 0 and exp.t EG/� D � for any t 2 R.
The structure and the invariance properties of the QLs of sub-Laplacians are more

complicated than that of Riemannian Laplacians. To see it, let us consider a general sub-
Laplacian �sR, the principal symbol

g� D �P .��sR/;

and the associated sub-Riemannian geodesic flow Eg�. The invariance of QLs of�sR under
the sub-Riemannian geodesic flow Eg� is still true, but it does not provide any informa-
tion about the part of the QL lying in .g�/�1.0/ since the geodesic flow is stationary at
such points. Indeed, we note that the above computation (1.3) does not work anymore for
general sub-Laplacians since

p
��sR is not a pseudodifferential operator near its charac-

teristic cone .g�/�1.0/ (due to the blow-up of some derivatives of
p
g�).

We denote by
† D .g�/�1.0/ D D? � T �M

the characteristic cone (where ? is in the sense of duality). We make the identification

S�M D U �M [ S† (1.4)

where S�M is the cosphere bundle obtained by taking the quotient of the fibers of T �M
by RC, U �M D ¹g� D 1º has any of its points identified with some point in S�M by
homogeneity, and the remaining elements in S�M are the directions along which g� D 0.
This last set can be identified with S†, the quotient of † by RC.

In the sequel, we denote by P.E/ the set of Radon probability measures on a given
Hausdorff space E. The following result due to Colin de Verdière, Hillairet and Trélat,
which is valid for any sub-Laplacian �sR, is the starting point of our analysis.
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Proposition ([9, Theorem B and Remark 1.4]). Let .'k/k2N� be anL2.M;�/-normalized
sequence of eigenfunctions of��sR with eigenvalues .�k/k2N� labeled in non-decreasing
order and tending to C1. Let � be a QL associated with .'k/k2N� . Using the identifica-
tion (1.4), the probability measure � can be written as the sum

� D ˇ�0 C .1 � ˇ/�1 (1.5)

of two mutually singular measures with �0; �1 2 P.S�M/, ˇ 2 Œ0; 1� and

(1) �0.S†/ D 0 and �0 is invariant under the sub-Riemannian geodesic flow Eg�;

(2) �1 is supported on S†.

Moreover, if .'k/k2N� is an orthonormal basis of L2.M; �/, there exists an increasing
sequence .k`/`2N of positive integers, of density 1, i.e.,

lim
˛!C1

#¹` 2 N j k` � ˛º

˛
D 1;

such that, if � is a QL associated with a subsequence of .'k`/`2N , then the support of � is
contained in S†, i.e., ˇ D 0 in the previous decomposition.2

The last part of the above proposition shows that �1 is the “main part” of the QL.
In [9], its invariance properties are determined in the following particular case (we do
not recall here the definitions of three-dimensional contact sub-Laplacian and Reeb flow
which can be found in [9]):

Theorem. If �sR is a three-dimensional contact sub-Laplacian, then �1 is invariant
under the lift of the Reeb flow to S†.

Our main results, namely Theorems 1, 2, and 3, establish invariance properties of �1
for other sub-Laplacians, showing a richer behavior than in the three-dimensional contact
case.

Remark 4. Explicit examples of QLs for which ˇ¤ 0 are given in [9, Proposition 3.2 (1)].

Remark 5. In this paper, we take the Euclidean point of view, in that we do not use pseu-
dodifferential calculus adapted to the stratified Lie algebra, a calculus that is frequently
involved with sub-Laplacians. Nevertheless, our results share connexions with important
problems in non-commutative Fourier analysis, as explained in Section 1.4.

2The proof of this last fact follows from the results in [9], although it is not explicitely stated there. Let
us sketch the proof. By [9, Proposition 4.3], we know that the microlocal Weyl measure of�sR is supported
in S†. It then follows from [9, Corollary 4.1] that for every A 2 ‰0.M/ whose principal symbol vanishes
on†, there holds V.A/D 0, where V.A/ is the variance introduced in [9, Definition 4.1]. Finally, following
the proof of Theorem B (2) in [9], we get the result.
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1.2. A preliminary result under a commutativity assumption

The description of QLs for general sub-Laplacians is a difficult problem, as is the case for
Riemannian Laplacians (see Section 1.4).

In this paper, we restrict our attention to particular sub-Laplacians, for which, despite
their lack of ellipticity, techniques of joint (elliptic) spectral calculus apply in the presence
of additional commutativity assumptions.

The preliminary result which we present in this section holds under a commutativity
assumption which we now introduce.

1.2.1. The commutativity assumption. Let us fix a sub-Laplacian�sR onM as in (1.2).
In this paper, we take the notation N D ¹0; 1; : : :º for the set of non-negative integers. We
make the following assumption:

Assumption 6. There exist m 2 N and Z1; : : : ; Zm smooth global vector fields on M
such that:

(i) At any point x 2 M where Dx ¤ TxM , the vector fields Z1.x/; : : : ; Zm.x/
complete Dx into a basis of TxM (in particular, they are independent and thus
do not vanish at these points);

(ii) For any 1 � i , j � m, there holds Œ�sR; Z
�
i Zi � D ŒZ

�
i Zi ; Z

�
j Zj � D 0.

Point (ii) is a strong assumption, sometimes related to the action of a group of sym-
metries. Assumption 6 is satisfied for example in the following cases:

• For (elliptic) Laplace–Beltrami operators. In this case, m D 0.

• For sub-Laplacians on (quotients of) step 2 Carnot groups. A Carnot group is a simply
connected nilpotent Lie group G which is stratified of step 2, in the sense that its left-
invariant Lie algebra g, assumed to be real-valued and of finite dimension, is endowed
with a vector space decomposition gD v˚ z where zD Œv;v�¤ ¹0º and Œv; z�D ¹0º.
The exponential map exp W G ! g, which is a diffeomorphism, allows to identify G
and g. We also assume that g carries a scalar product h�; �i for which v and z are
mutually orthogonal. There exists an orthonormal basis of left-invariant vector fields
X1; : : : ; XN of v for h�; �ijv. The associated sub-Laplacian is �g D

PN
iD1X

2
i , which

can also be defined on any compact left-quotient H of G. Then, taking the family
.Zj /1�j�m as a basis of z, we see that Assumption 6 is satisfied. This setting encom-
passes the case of sub-Laplacians defined on quotients of the .2d C 1/-dimensional
Heisenberg group, or more generally for H-type (Heisenberg-type) sub-Laplacians
(see [12, 24] and Appendix A.3).

• For Baouendi–Grushin-type sub-Laplacians: e.g., for @2x C sin.x/2@2y in .R=2�Z/2,
the set of points x such that Dx ¤ TxM consists of the singular lines ¹x D 0º and
¹x D �º, and we can take Z1 D @y . Note that the usual Baouendi–Grushin operator is
@2x C x

2@2y , but we put here a sine in order to define it on a compact manifold without
boundary.
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• For the horizontal Laplacian associated to a connection on a principal bundle over a
Riemannian manifold. The Zi are then generated by the Lie algebra of the structure
group and sweep out the fiber (see [28, Section 11.2 and Appendix B]). Joint eigen-
functions of horizontal Laplacians on principal bundles have already been studied in
several papers, see for instance [17, 37].

• The above examples are “step 2,” but it is also possible to build ad hoc sub-Laplacians
satisfying Assumption 6 and requiring higher-order brackets of the Xi to generate the
whole tangent bundle (see Appendix A.2).

• For manifolds obtained as products of the previous examples (and associated sub-
Laplacians obtained by sum), since Assumption 6 is stable under product.

Assumption 6 may be regarded as a quantum integrability assumption (see [39]). There
is an Rm action generated by the Poisson commuting Hamiltonians hZj on T �M induced
by theZj , with momentum map .

p
g�; jhZ1 j; : : : ; jhZm j/ W T

�M !RmC1. Therefore, the
present work has to be compared with [42] (notably Section 3), where the quantum limits
for on- and off-diagonal matrix elements are computed in the case where there is a torus
action. The main difference is that the present work deals with a non-compact abelian
action.

1.2.2. The cotangent bundle T �M under Assumption 6. Our goal in this section is to
describe the cotangent bundle T �M when Assumption 6 is satisfied. Along the way, we
introduce a bunch of useful notations.

In this paper, we denote by ! the canonical symplectic form on the cotangent bundle
T �M ofM . In local coordinates .q; p/ of T �M , we have ! D

P
j dpj ^ dqj where q D

.q1; : : : ; qN / and pD .p1; : : : ;pN /. Given a smooth Hamiltonian function h W T �M !R,
we denote by Eh the corresponding Hamiltonian vector field on T �M , defined by �Eh! D
�dh. Given any smooth vector field V on M , we denote by hV the Hamiltonian function
(momentum map) on T �M associated with V , defined in local coordinates by hV .q;p/D
p.V.q//. The Hamiltonian flow exp.t EhV / of hV projects onto the integral curves of V .

In the entirety of the sequel, we consider a sub-Laplacian�sR satisfying Assumption 6.
Let P be the set of all subsets of ¹1; : : : ; mº. We write † as a disjoint union

† D
G

J2P

†J (1.6)

where, for J 2 P , †J is defined as the set of points .q; p/ 2 † for which®
j 2 ¹1; : : : ; mº; hZj .q; p/ ¤ 0

¯
D J: (1.7)

Note that (1.6) is a disjoint union. Also, let us justify that the sets †J are non-empty. We
denote by � W T �M !M the canonical projection. We notice that �.†/D ¹x 2M; Dx ¤

TxM º ¤ ¿. We pick q 2 �.†/, then the non-vanishing vector fields Zj are independent
at q (point (i) in Assumption 6). Since hZj .q; p/ D p.Zj .q//, we conclude that for any
J 2 P there exists p such that .q; p/ 2 †J .
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1.2.3. Quantum limits under Assumption 6. Our first preliminary result states that it is
possible to split any QL into several pieces that come from well-characterized parts of the
associated sequence of eigenfunctions. In practice, it will be possible to study each piece
separately, and then to glue the results together. In order to give a precise statement, we
need to define joint microlocal defect measures.

Definition 7. Let .uk/k2N� , .vk/k2N� be bounded sequences in L2.M/ such that uk and
vk weakly converge to 0 as k ! C1. A joint microlocal defect measure of .uk/k2N�

and .vk/k2N� is any Radon measure �joint on S�M for which there exists an extraction
� WN�!N� such that for any zeroth-order pseudodifferential operators A with principal
symbol a D �P .A/, there holds

.Au�.k/; v�.k// �����!
k!C1

Z
S�M

ad�joint:

In case uk D vk for any k 2 N�, we recover the microlocal defect measures of Def-
inition 1. Note that joint microlocal defect measures are signed measures, and that joint
QLs (defined as joint microlocal defect measures of two sequences of normalized eigen-
functions) are not necessarily invariant under the geodesic flow, even in the Riemannian
case.

The following proposition will be instrumental to the proof of our main results.

Proposition 8. Let �sR satisfy Assumption 6. We assume that .'k/k2N� is a normalized
sequence of eigenfunctions of ��sR with associated eigenvalues �k ! C1. Then, up to
extraction of a subsequence, one can decompose

'k D '
¿

k C

X
J2Pn¹¿º

'
J

k
; (1.8)

with the following properties:

• The sequence .'k/k2N� has a unique QL �;

• For any J 2 P and any k 2 N�, 'J

k
is an eigenfunction of ��sR with eigenvalue �k;

• Using the identification (1.4), the sequence .'¿

k
/k2N� admits a unique microlocal

defect measure ˇ�¿, where ˇ 2 Œ0; 1�, �¿ 2 P.S�M/ and �¿.S†/ D 0;

• For any J 2 P n ¹¿º, the sequence .'J

k
/k2N� also admits a unique microlocal defect

measure �J , having all its mass contained in S†J;

• For any J ¤ J0 2 P , the joint microlocal defect measure of the sequences .'J

k
/k2N�

and .'J0

k
/k2N� vanishes. As a consequence,

� D ˇ�¿
C

X
J2Pn¹¿º

�J (1.9)

and the sum .1 � ˇ/�1 WD
P

J2Pn¹¿º �
J is supported in S†.
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In (1.9), we separated the empty set from the other subsets J 2 P n ¹¿º to emphasize
on the concentration of ˇ�¿ onU �M , while the rest of the measure � in (1.9) is supported
in S†. This is purely artificial, since one could have included ˇ�¿ into the sum over
J. Besides, the notation �¿ used above corresponds to the notation �0 in [9] (see the
aforementioned proposition from [9, Theorem B and Remark 1.4] in Section 1.1.2): we
changed it to get a unified notation for the different parts of the QL, namely �¿ and �J .

Proposition 8 is proved with joint spectral calculus (see [30, VII and VIII.5]) for the
operators Z�1Z1; : : : ; Z

�
mZm and ��sR which is made possible thanks to Assumption 6.

The ideas underlying Proposition 8 are close to those of [6, Theorem 0.6] and the proof is
inspired by the seminal paper [16].

1.3. Main results on products of the three-dimensional Heisenberg group

1.3.1. Products of the three-dimensional Heisenberg group. Our main results give fur-
ther information on QLs, but are restricted to a specific family of sub-Laplacians, which
in particular satisfy Assumption 6. In order to define these operators, let us first recall the
definition of the three-dimensional Heisenberg group. If we endow R3 with the product
law

.x; y; z/ ? .x0; y0; z0/ D .x C x0; y C y0; z C z0 � xy0/; (1.10)

then, with this law, zH D .R3; ?/ is a Lie group, which is isomorphic to the group of
matrices ´0@1 x �z

0 1 y

0 0 1

1A ; x; y; z 2 R

µ
endowed with the standard product law on matrices.

We consider the left quotient H D �nzH where � D .
p
2�Z/2 � 2�Z is a cocompact

subgroup of zH (so that H is compact). Note that H is not homeomorphic to an abelian
torus since its fundamental group is .�; ?/, which is non-commutative. The vector fields
on H

X D @x and Y D @y � x@z

are left invariant, and we consider

�H D X
2
C Y 2

the associated sub-Laplacian; here � is the Lebesgue measure � D dxdydz and .X; Y /
is orthonormal for g.

Then, we consider the product manifold Hm and the associated sub-Laplacian � for
some integer m � 2, that is

� D �H ˝ .Id/˝m�1 C Id˝�H ˝ .Id/m�2 C � � � C .Id/˝m�1 ˝�H; (1.11)

which is a second-order pseudodifferential operator. Below, we give an expression (1.12)
for� which is more tractable. All the eigenvalues of �� are integers and we will describe
them more precisely in Section 5.1.1. In the sequel, we fix once for all an integer m � 2.
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Remark 9. If .'k/k2N� denotes an orthonormal basis of L2.H/ consisting of eigenfunc-
tions of ��H, then

¹'k1 ˝ � � � ˝ 'km j k1; : : : ; km 2 N�º

is an orthonormal basis of L2.Hm/ consisting of eigenfunctions of ��. However, there
exist orthonormal bases of L2.Hm/ which cannot be put in this tensorized form.

In this introductory section, the sub-Laplacian we consider is either �H, or �, or
an arbitrary sub-Laplacian �sR on a general sub-Riemannian manifold .M;D ; g/. In all
cases, we keep the same notations g�, † and S† to denote the objects introduced in
Section 1.2.2, without any reference in the notation to the underlying manifold even for
the particular sub-Laplacians �H and �. It should not lead to any confusion since the
context is precisely stated when necessary.

In order to give a precise statement of our main results, it is necessary to introduce a
decomposition of the sub-Laplacian � defined by (1.11). Taking coordinates .xj ; yj ; zj /
on the j -th copy of H, we can write

� D

mX
jD1

.X2j C Y
2
j / (1.12)

withXj D @xj and Yj D @yj � xj @zj . We note that� satisfies Assumption 6 (forZj D @zj
for j D 1; : : : ; m).

For 1 � j � m, we consider the operator Rj D
q
@�zj @zj and we make an L2.Hm/

Fourier expansion with respect to the zj -variable in the j -th copy of H. On the eigenspaces
corresponding to non-zero modes of this Fourier decomposition, we define the operator

�j D �R
�1
j �j D ��jR

�1
j

where �j D X2j C Y
2
j . Thus, �� acts as

�� D

mX
jD1

Rj�j (1.13)

on any eigenspace of �� on which Rj ¤ 0 for any 1 � j � m. Moreover, Rj and �j
are pseudodifferential operators of order 1 in any cone of T �Hm whose intersection with
some conic neighborhood of the set ¹pzj D 0º is reduced to 0 (but not near ¹pzj D 0º

since the principal symbol jpzj j of Rj is not differentiable there).
The operator �j , seen as an operator on the j -th copy of H, is an harmonic oscillator,

having in particular eigenvalues 2nC 1, n 2 N (see [9, Section 3.1]). Moreover, the oper-
ators�i (considered this time as operators on Hm) commute with each other and with the
operators Rj .

1.3.2. Flows and probabilities on†. Let us briefly describe† for the sub-Laplacian�.
Denoting by .q; p/ the canonical coordinates in T �Hm as

q D .x1; y1; z1; : : : ; xm; ym; zm/
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and
p D .px1 ; py1 ; pz1 ; : : : ; pxm ; pym ; pzm/;

we obtain that

† D
®
.q; p/ 2 T �Hm

j pxj D pyj � xjpzj D 0 for any 1 � j � m
¯
:

The map

†! Hm
�Rm

.q; p/ 7! .q; pz1 ; : : : ; pzm/

is one-to-one. Above any point q 2 Hm, the fiber of † is of dimension m, and therefore,
above any point q 2 Hm, S† consists of an .m � 1/-dimensional sphere. At some point
in Section 5, we will consider the coordinates .q; pz1 ; : : : ; pzm/ on † and the coordinates
.q; Œpz1 W � � � W pzm �/ on S†, where the notation Œpz1 W � � � W pzm � stands for homogeneous
coordinates.

Writing † as a disjoint union (1.6), we notice that †J is the set of points .q; p/ 2 †
with p D .px1 ; py1 ; pz1 ; : : : ; pxm ; pym ; pzm/ such that®

j 2 ¹1; : : : ; mº; pzj ¤ 0
¯
D J:

The notation S†J designates in the sequel the set of points .q; p/ of S† which have null
(homogeneous) coordinate pzi for any i … J and non-null pzj for j 2 J. Note that this
set is, in general, neither open nor closed.

For J 2 P n ¹¿º, we consider the simplex

SJ D

²
s D .sj / 2 RJ

C;
X
j2J

sj D 1

³
and, for s D .sj / 2 SJ and .q; p/ 2 †J , we set

�J
s .q; p/ D

X
j2J

sj jpzj j:

We denote by �P the principal symbol (see Appendix A.1). We have

�J
s .q; p/ D

�
�P .Rs/

�
j†J

where Rs D
X
j2J

sjRj ; (1.14)

noting that Rs is a pseudodifferential operator in †J . Moreover, the vector field

E�J
s D

X
j2J

sgn.pzj /sj @zj : (1.15)

is well defined on †J and smooth.3

3Roughly speaking, E�J
s is some kind of Hamiltonian vector field associated to �J

s , but note that †J is
not necessarily a symplectic manifold since it may be odd-dimensional, hence the term “Hamiltonian” is
not meaningful here.
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Remark 10. All coordinates xi , yi (for 1 � i �m) and zi (for i … J) are preserved under
the flow of E�J

s . Once fixed these coordinates, any trajectory of the flow of E�J
s is conju-

gated to a geodesic trajectory in the flat jJj-dimensional Euclidean torus. This trajectory
depends only on s and the signs of the pzj , which are preserved by the flow.

Finally, we introduce a set of probability measures on S�Hm having specific invari-
ance properties:

P1D

²
�12P.S

�Hm/ which can be written as �1D
X

J2Pn¹¿º

Z
SJ

�J
s dQ

J.s/;

where for any J 2 P ; QJ is a non-negative Radon measure on SJ ;

and 8J 2 P ; 8s 2 SJ ; �
J
s 2 P.S�Hm/; �J

s .S
�Hm

n S†J/ D 0;

and for QJ-almost any s 2 SJ ; �
J
s is invariant under E�J

s

³
: (1.16)

This means that for any continuous function a W S†! R, there holdsZ
S†

ad�1 D
X

J2Pn¹¿º

Z
SJ

�Z
S†J

ad�J
s

�
dQJ.s/:

Any measure �1 2 P1 is supported in S†, and its invariance properties are given sepa-
rately on each set S†J (for J 2 P n ¹¿º). Its restriction to any of these sets, denoted in
the sequel by

�J
D

Z
SJ

�J
s dQ

J.s/;

can be disintegrated with respect to SJ , and for QJ-almost any s 2 SJ , there is a corre-

sponding measure �J
s which is invariant under the flow et E�

J
s .

1.3.3. Main results. Our first main result is the following.

Theorem 1. Let .'k/k2N� be an L2.Hm/-normalized sequence of eigenfunctions of ��
associated with the eigenvalues �k ! C1. Let � be a QL associated to the sequence
.'k/k2N� . Then the measure �1 defined in (1.5) satisfies �1 2 P1 where P1 has been
introduced in (1.16).

Note that Theorem 1 holds for any L2.Hm/-normalized sequence of eigenfunctions of
��, and not only for the bases described in Remark 9.

We were not able to prove that all elements of P1 can be realized as a QL, which
would be some kind of converse of Theorem 1. We do not know whether it is true. How-
ever, we were able to prove two results in this direction.

The first one realizes a family of probability measures strictly included in P1 as QLs.
Any element in this family is obtained as the tensorial product of two measures: J being
fixed, the first measure is a kind of Lebesgue measure in the copies of H corresponding to
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i … J, and the second measure is a measure “invariant in the zj variable” in the copies of
H corresponding to j 2 J.

To make it rigorous, we denote by HJ (resp. H…J) the product of copies of H with
variables xj , yj , zj , for j 2 J (resp. j … J). We define MJ as the set of Radon proba-
bility measures on S�HJ which are invariant under @zj for j 2 J. Then, we define the
probability measure `…J on T �H…J as the tensorial product of the Haar measure on H…J

and the Dirac mass on the zero section in the fibers. And finally we set

DJ
D ¹mJ

˝ `…J
j mJ

2MJ
º (1.17)

which is viewed as a set of Radon probability measures on S�Hm.
Our second main result is the following.

Theorem 2. For any J 2 P n ¹¿º, let �J 2 DJ , and let cJ � 0 so thatX
J2Pn¹¿º

cJ D 1:

Then
� D

X
J2Pn¹¿º

cJ�
J

is a QL.

Theorem 2 has the drawback that any measure � as in the statement is invariant under
all vector fields @zj at the same time, and thus Theorem 2 does not prove the existence
of QLs which are invariant under a single flow E�J

s . Our last result shows that such QLs
indeed exist:

Theorem 3. Ifm � 2, there exists a QL � such that the equation E�J
s � D 0 is satisfied only

for a unique J 2 P n ¹¿º and a unique s 2 SJ .

This last result shows that all vector fields E�J
s play a role at the quantum level.

1.3.4. Comments on the main results.

Spectrum of ��. The particularly rich structure of the QLs of the sub-Laplacian ��
described in Theorem 1 is due to the high degeneracy of its spectrum. To make an analogy
with the Riemannian case, the QLs of the usual flat Riemannian torus T2 DR2=Z2 have a
rich structure (see [22]), whereas the eigenfunctions and the QLs of irrational Riemannian
tori are simply obtained as tensor products.

Recall that the spectrum spec.��H/ is given by

spec.��H/

D
®
�`;˛ D .2`C 1/j˛j j ` 2 N; ˛ 2 N�

¯
[
®
�k1;k2 D 2�.k

2
1 C k

2
2/ j .k1; k2/ 2 Z2

¯
where �`;˛ is of multiplicity j˛j, multiplied by the number of decompositions of �`;˛ into
the form .2`0 C 1/j˛0j (see [14, Corollary 3.3], [9, Proposition 3.1]). Therefore, using a
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tensorial orthonormal basis of L2.Hm/ consisting of eigenfunctions of ��, we get that

spec.��/

D

² JX
jD1

.2nj C 1/j j̨ j C 2�

2.m�J/X
iD1

k2i with 0 � J � m; ki 2 Z; nj 2 N; j̨ 2 N�
³

(see Section 5 for a detailed proof) and the multiplicities in spec.��/ can be deduced from
those in spec.��H/. For a description of the eigenfunctions of �H, see [14, Section 3];
the eigenfunctions of� are sums of tensor products of these eigenfunctions. Note that the
eigenvalues for which J D m form a density-one subsequence of all eigenvalues labeled
in increasing order.

The specific algebraic structure of spec.��/ will be exploited in particular to prove
Theorems 2 and 3.

Remark 11. Contrarily to those of flat tori (see [22]), the QLs of Hm (or, more precisely,
their pushforward under the canonical projection onto Hm) are not necessarily absolutely
continuous. This fact has already been noticed in the casemD 1 in [9, Proposition 3.2 (2)]
– in this case the Dirac measure on a Reeb orbit is a (projected) QL. This can be understood
as follows: on flat tori the microlocal defect measures of joint eigenfunctions are Lebesgue
measures on phase space tori, which project without singularities to the base. But for Hm,
since there exist Hermite eigenfunctions which concentrate on closed orbits, the associated
QLs have singular projections.

Remark 12. There is no clear link of our result with the concept of “second microlocal-
ization,” although such a link may seem possible at first sight. Focusing on a QL supported
in S†, our study builds upon a spectral decomposition of it, and not upon a second direc-
tion of microlocalization as is usually done while studying fine properties of sequences of
solutions of an operator (see for example [11]).

1.4. Related problems and bibliographical comments

Quantum limits of Riemannian Laplacians. The study of QLs for Riemannian Lapla-
cians is a long-standing question. Over the years, a particular attention has been drawn
towards Riemannian manifolds whose geodesic flow is ergodic since in this case, up to
extraction of a density-one subsequence, the set of QLs is reduced to the Liouville mea-
sure, a phenomenon which is called Quantum Ergodicity (see for example [8, 33, 41]).
For compact arithmetic surfaces, a detailed study of invariant measures lead to the resolu-
tion of the Quantum Unique Ergodicity conjecture for these manifolds, meaning that the
extraction of a density-one subsequence in the previous result is even not necessary for
these particular manifolds [25]. In manifolds which have a degenerate spectrum, the set of
QLs is generally richer: see for example [22] for the description of QLs on flat tori or [3]
for the case of the disk. Also, the QLs of the sphere Sd equipped with its canonical metric
(see [23]) have been fully characterized. However, to the author’s knowledge, few papers
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until now have been devoted to the study of QLs of product of Riemannian manifolds (see
[2], [21, Corollary 2], and [4] for recent results).

Quantum limits of sub-Laplacians. The understanding of QLs of general sub-Lapla-
cians remains a largely unexplored question. Their study was undertaken in the work [9],
which was mainly devoted to the three-dimensional contact case – encompassing for ex-
ample the case of the manifold H – although some results are valid for any sub-Laplacian
(see the aforementioned proposition from [9, Theorem B and Remark 1.4] in Section
1.1.2). The authors proved Weyl laws (i.e., results “in average” on eigenfunctions), a result
of decomposition of QLs, and also quantum ergodicity properties (i.e., equidistribution
of QLs under an ergodicity assumption) for three-dimensional contact sub-Laplacians.
The QLs of H-type (or Heisenberg-type) sub-Laplacians were also implicitly studied in
[12] thanks to a detailed study of the Schrödinger flow: the authors developed a notion
of semiclassical measures adapted to “Heisenberg type” sub-Laplacians thanks to non-
commutative Fourier analysis and a subsequent adapted definition of pseudodifferential
operators. Taking in Theorem 2.10 (ii) (2) of [12] eigenfunctions of the sub-Laplacian as
initial data of the Schrödinger equation yields a decomposition of QLs which may be
regarded as an analog of Theorem 1 in the context of H-type groups (more precisely, one
should use the adaptation to the compact (quotient) setting of these results which was
done in [13], among other things); however, the result of [12] is proved by totally different
techniques, and in particular the splitting of QLs which we obtain through joint spectral
calculus (see below) is replaced in [12] by non-commutative harmonic analysis.

Non-commutative harmonic analysis. As already mentioned in Remark 5, it is pos-
sible to use the stratified Lie algebra structure to study the spectral theory of (nilpotent)
sub-Laplacians, as done for example in [12]. This work builds upon non-commutative har-
monic analysis (see [36]) to develop a pseudodifferential calculus and semiclassical tools
“naturally attached to the sub-Laplacian”. It is likely that one could have given a proof of
Theorems 1, 2 and 3 based on similar tools as in [12]. The point of view we adopt in the
present paper is different: it only requires “classical” pseudodifferential calculus (briefly
recalled in Appendix A.1) since there is still enough commutativity and ellipticity from
the choice of operators under study. Beside making the results more accessible to some
readers, it allows us to isolate in each eigenfunction the piece which is responsible, in the
high-frequency limit, for a given part of the QL. Moreover, our method only builds upon
abstract commutation arguments, at least for Proposition 8, and in particular it avoids the
computation of irreducible representations which are always specific to certain families of
groups (e.g., H-type groups in [12]).

Part of our results can be reinterpreted through the light of noncommutative harmonic
analysis. For example, the part of the QL in U �M , namely ˇ�¿ (see (1.9)), is described in
[12] as the part of the semiclassical measure supported above the finite dimensional repre-
sentations �0;!x (see [12, Section 2.2.1]), and the fact that ˇ�¿ D 0 for “almost all” QLs
(see [9, Theorem B and Remark 1.4]) can be recovered from the fact that the Plancherel
measure denoted by j�jdd� in [12] gives no mass to finite-dimensional representations.
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Also, in the setting covered by Theorems 1, 2 and 3, i.e., products of quotients of the
Heisenberg group, the joint spectrum of .�1; : : : ;�m; i�1@z1 ; : : : ; i

�1@zm/, which can be
drawn in R2m, is called “Heisenberg fan”. This terminology was introduced in [34] for the
three-dimensional Heisenberg sub-Laplacian; in our case, this fan consists in a discrete set
of points which can be gathered into lines (see [34, Figure 1]). In case m D 1, the subset
of points (or joint eigenvalues) corresponding to '¿

k
and �¿ in the statement of Theorem

1 can be seen as points close to the vertical line ¹0º � R � R2. Similar descriptions can
be given in case m � 2. Also, let us mention that we could derive from the proof of
Proposition 8 a generalization of the definition of the Heisenberg fan to any sub-Laplacian
satisfying Assumption 6, as the joint spectrum of .��sR;

p
Z�1Z1; : : : ;

p
Z�mZm/.

Let us also mention that sub-Laplacians on products of Heisenberg groups (and, more
generally, on “decomposable groups”) were analysed in [5] with a non-commutative har-
monic analysis point of view in order to establish Strichartz estimates (see notably [5,
Section 1.4 and Corollary 1.6]).

Joint spectral calculus. A key ingredient in the proof of all results of the present paper
is the joint spectral calculus (see [30, VII and VIII.5] and [6]) associated to the operators
Z�1Z1; : : : ; Z

�
mZm and ��sR. This joint calculus, at least for Heisenberg groups, is well

known, see for example [10, Section 2], or [38] for the quotient case. It was used for
instance in [29] to prove a Marcinkiewicz multiplier theorem in H-type groups.

Structure of the paper. In Section 2 we prove Proposition 8 using joint spectral calcu-
lus. Section 3 is devoted to preliminary steps in the proof of Theorem 1. Building upon
Proposition 8, we establish Theorem 1 in Section 4. In Section 5, we prove Theorem 2 by
constructing explicitly a sequence of eigenfunctions with prescribed QL. In Section 6, we
prove Theorem 3.

In Appendix A.1, we recall some basic facts of pseudodifferential calculus and a
related elementary lemma. In Appendix A.2, we build an example of step 3 sub-Laplacian
satisfying Assumption 6. Finally, in Appendix A.3, we prove a result concerning QLs of
flat contact manifolds in any dimension: for such manifolds, the invariance properties of
QLs are essentially the same as in the three-dimensional case. Although this is a direct
consequence of the results in [12], we decided to provide here a short and self-contained
proof since this can be seen as a toy model for the averaging techniques used repeatedly
in the proof of Theorem 1.

2. Proof of Proposition 8

2.1. Notation

We fix a sub-Laplacian �sR satisfying Assumption 6, we fix .'k/k2N� a sequence of
eigenfunctions of ��sR associated with the eigenvalues .�k/k2N� with �k ! C1 and
k'kkL2 D 1, and, possibly after extraction of a subsequence, we assume that .'k/k2N�

has a unique QL �.
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Let us first give an intuition of how the proof goes. Set

E D Id ��sR C

mX
jD1

Z�j Zj 2 ‰
2.M/: (2.1)

We decompose 'k as a sum of functions which are joint eigenfunctions of ��sR and of all
the Z�j Zj for 1 � j � m. Thus they are also eigenfunctions of E. Each of these functions
is an eigenfunction of ��sR with same eigenvalue �k as 'k . Then, roughly speaking, we
gather some of these functions into '¿

k
or into 'J

k
for some J 2 P n ¹¿º, depending on

their eigenvalues with respect to the operators Z�j Zj (for 1 � j � m) and ��sR.

Fix J 2 P n ¹¿º. The functions we select (asymptotically as k ! C1) to be in 'J

k

are those such that the following spectral inequalities are satisfied:

(1) ��sR � E;

(2) if i … J, then Z�i Zi � E;

(3) if j 2 J, then Z�j Zj & E.

Here, since we consider joint eigenfunctions of ��sR, E and Z�j Zj for any 1 � j � m,
the above notation A� B (resp. A & B) means that as k ! C1 the ratio between the
eigenvalue with respect to A and the eigenvalue with respect to B tends to 0 (resp. is
bounded below).

Before proceeding towards a rigorous proof, we introduce a few notations. The prin-
cipal symbol of E is

�P .E/ D g
�
C

mX
jD1

�P .Z
�
j Zj /

henceE is elliptic, thanks to point (i) in Assumption 6. For n 2N�, let �n 2C1c .R; Œ0;1�/
such that �n.x/D 1 for jxj � 1

2n
and �n.x/D 0 for jxj � 1

n
. Thanks to functional calculus

(see [30, VII and VIII.5]), for J 2 P n ¹¿º, the operator

P J
n D �n

�
Id ��sR

E

�Y
i…J

�n

�
Z�i Zi

E

�Y
j2J

.1 � �n/

�
Z�j Zj

E

�
(2.2)

is well defined. Note that, thanks to point (ii) in Assumption 6, we know that E commutes
with Z�j Zj , for any 1 � j � m, and with ��sR, which explains why we are allowed to
use the quotients of operators in (2.2). Similarly, we consider

P¿
n D .1 � �n/

�
Id ��sR

E

�
C �n

�
Id ��sR

E

� mY
iD1

�n

�
Z�i Zi

E

�
: (2.3)

We note that for any n 2 N, X
J2P

P J
n D Id: (2.4)
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2.2. A preliminary lemma

Lemma 13. For any J 2 P , the following properties hold:

(1) P J
n 2 ‰

0.M/;

(2) ŒP J
n ; �sR� D 0;

(3) If J ¤ ¿, then �P .P
J
n /! 1†J

pointwise as n! C1, where 1†J
is the char-

acteristic function of †J (defined in (1.6)). If J D ¿, then �P .P
J
n /! 1U �M

pointwise as n!C1, where 1U �M is the characteristic function of U �M .

Proof. Let us prove point (1). Since E 2 ‰2.M/ is elliptic, it is invertible, and thus

.Id ��sR/E
�1
D E�1.Id ��sR/ 2 ‰

0.M/

is self-adjoint. Hence, by [18, Theorem 1 (ii)], .1 � �n/. Id��sR
E

/ 2 ‰0.M/ with principal
symbol

.1 � �n/

�
g�

�P .E/

�
:

Similarly, the operators �n. Id��sR
E

/, �n.
Z�i Zi
E

/, and .1��n/.
Z�j Zj

E
/ (for any 1� i; j �m)

belong to ‰0.M/ with respective principal symbols

�n

�
g�

�P .E/

�
; �n

�
jhZi j

2

�P .E/

�
and .1 � �n/

�
jhZj j

2

�P .E/

�
:

Hence, P J
n 2 ‰

0.M/.
Point (2) is an immediate consequence of functional calculus, since �sR commutes

with E and with Z�j Zj for any 1 � j � m.
Let us prove point (3). For � > 0, we consider the cone

S� WD

²
g�

�P .E/
� �

³
� T �M

and, for 1 � j � m, we also consider the cone

T j� D

²
jhZj j

2

�P .E/
� �

³
� T �M:

For the moment, we assume J ¤ ¿. Then, the support of �P .P
J
n / is contained in S 1

n
,

in T i1
n

for i … J and in the complementary set .T j1
2n

/c for j 2 J. It follows that, in the
limit n! C1, �P .P

J
n / vanishes everywhere outside the set of points .q; p/ satisfying

g�.q; p/ D 0,

hZi .q; p/ D 0; 8i … J

hZj .q; p/ ¤ 0; 8j 2 J:

We note that these relations exactly define the set †J .
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Conversely, let .q;p/2†J . Our goal is to show that �P .P
J
n /.q;p/D 1 for sufficiently

large n 2 N�. It follows from a separate analysis of the principal symbol of each factor in
the product (2.2):

• Since .q; p/ 2 †, there holds g�.q; p/ D 0, hence

�n

�
g�

�P .E/

�
D 1I

• For i … J, since hZi .q; p/ D 0, there holds

�n

�
jhZi j

2

�P .E/

�
.q; p/ D 1I

• For j 2 J, we know that hZj .q; p/ ¤ 0. Hence, for n sufficiently large, at .q; p/,

.1 � �n/

�
jhZj j

2

�P .E/

�
.q; p/ D 1:

All in all, �P .P
J
n /.q;p/D 1 for sufficiently large n, which proves point (3) in case J¤¿.

For the proof in the case J D ¿, we note that by definition of E (2.1), we have

�n

�
Id ��sR

E

� mY
iD1

�n

�
Z�i Zi

E

�
D 0

as soon as n � mC 1. The rest of the proof for J D ¿ is very similar to the case J D ¿,
for the sake of brevity we do not repeat it here.

2.3. Proof of Proposition 8

We finally prove Proposition 8. We consider, for fixed n 2 N and J 2 P , the sequence
.P

J
n 'k/k2N� , which, thanks to point (2) of Lemma 13, is also a sequence of eigenfunc-

tions of ��sR with the same eigenvalues as 'k . For any A 2 ‰0.M/, using that P J
n is

self-adjoint, there holds

.AP J
n 'k ; P

J
n 'k/ D .P

J
n AP

J
n 'k ; 'k/ �����!

k!C1

Z
S�M

�P .P
J
n /

2�P .A/d�:

Hence .P J
n 'k/k2N� has a unique microlocal defect measure �J

n D �P .P
J
n /

2�. Finally,
we take �J a weak-star limit of .�J

n /n2N and ˇ�¿ a weak-star limit of .�¿
n /n2N , with

�¿ 2 P.S�M/ and ˇ 2 Œ0; 1�. Up to successive extractions we can assume that all these
weak-star limits are obtained with the same extraction �1 W N� ! N�.

Lemma 14. There holds �¿.S†/ D 0 and, for J 2 P n ¹¿º, �J gives no mass to the
complement of S†J in S�M .
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Proof. For J 2P (possibly J D¿) and anyA 2‰0.M/, using that P J

�1.n/
is self-adjoint,Z

S�M

�P .A/d�
J

�1.n/
D

Z
S�M

�P .P
J

�1.n/
/2�P .A/d�

�����!
n!C1

´R
S�M

�P .A/1S†J
d� if J ¤ ¿R

S�M
�P .A/1U �Md� if J D ¿

by the dominated convergence theorem and Lemma 13, which proves the result.

Let us summarize the situation: there exists an extraction �1 W N�! N� such that for
any a 2 S0hom.M/ (see Appendix A.1),Z

S�M

ad�
J

�1.n/
�����!
n!C1

´R
S�M

ad�J if J ¤ ¿R
S�M

aˇd�¿ if J D ¿
(2.5)

and for any n 2 N� and any A 2 ‰0.M/ with principal symbol a,

.AP
J

�1.n/
'k ; P

J

�1.n/
'k/ �����!

k!C1

Z
S�M

ad�
J

�1.n/
: (2.6)

Choosing first n large, and then k large, the combination of (2.5) and (2.6) yields the
existence of a function r tending toC1 atC1 with r.k/� k atC1 such that P J

r.k/
'k

has a unique microlocal defect measure which is �J for J ¤ ¿ and ˇ�¿ for J D ¿.
Setting 'J

k
D P

J

r.k/
'k , due to (2.4), we have

'k D '
¿

k C

X
J2Pn¹¿º

'
J

k
: (2.7)

Let us prove that (2.7) implies (1.9). For that, we first recall an elementary lemma concern-
ing the microlocal defect measure of a sum of sequences. It is proved in the case p D 2 in
[15, Proposition 3.3] and a direct induction gives the general case.

Lemma 15. Let p 2 N� and .u1
k
/k2N ; .u

2
k
/k2N ; : : : ; .u

p

k
/k2N be sequences of functions

weakly converging to 0, each with a unique microlocal defect measure �1; : : : ;�p , respec-
tively. We assume that �1; : : : ; �p are pairwise mutually singular. Then the sequence
.u1
k
C � � � C u

p

k
/k2N has a unique microlocal defect measure, which is �1 C � � � C �p .

Combining Lemmas 14, 15 and (2.7), we obtain (1.9), which finishes the proof of
Proposition 8.

3. Preliminaries for the proof of Theorem 1

This section is devoted to preliminary steps for the proof of Theorem 1. We fix m �
2 and �sR D � as in Section 1.3. Recall that the case m D 1 has been handled in [9,
Proposition 3.2].
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3.1. Reduction to a fixed J 2 P n ¹¿º

The first step in the proof consists in reducing the analysis to the part of the QL above †J

for some J 2P n ¹¿º, and it is achieved thanks to Proposition 8. Thanks to Proposition 8,
it is possible to assume that .'k/k2N� is a sequence of eigenfunctions with eigenvalue
tending toC1, and with a unique microlocal defect measure �, which can be assumed to
be supported in S†. Indeed, thanks to Proposition 8, we can even assume that all the mass
of � is contained in S†J for some J 2 P n ¹¿º, i.e., � D �J (simply by considering only
the term '

J

k
). Once we have established the decomposition

�J
D

Z
SJ

�J
s dQ

J.s/; (3.1)

Theorem 1 follows by just gluing all pieces of � together thanks to Proposition 8.
Therefore, in order to establish Theorem 1, we assume that the unique microlocal

defect measure of .'k/k2N� has no mass outside S†J for some J 2 P n ¹¿º. Due to
the analysis done in Section 2.3, there exists a function r.k/ tending toC1 as k !C1
such that 'J

k
D P

J

r.k/
'k has the same microlocal defect measure as 'k . Thus, to analyze

this microlocal defect measure, we can replace without loss of generality 'k by P J

r.k/
'k

which is still an eigenfunction with same eigenvalue. The new 'k satisfies (3.2) below. By
symmetry, we can also assume that J D ¹1; : : : ; J º with J D Card.J/.

To sum up, the sequence .'k/k2N� that we consider is no more a general sequence of
normalized eigenfunctions with eigenvalues tending to C1, but it satisfies the following
property:

Property 16. The sequence .'k/k2N� is a bounded sequence of eigenfunctions of ��
labeled with increasing eigenvalues tending to C1, and with unique microlocal defect
measure �. Moreover, there exist J � m and r.k/!C1 as k !C1 such that

'k D P
J

r.k/
'k (3.2)

for J D ¹1; : : : ; J º and for any k 2 N�, where P J
n is defined in (2.2). In particular, � has

no mass outside S†J .

3.2. Illustration and sketch of proof

Since the rest of the proof is slightly involved, in this section we provide an illustration
and a sketch of proof. The proof is written in full details in Section 4. Logically, one may
omit the discussion which follows and proceed directly to the next section.

Illustration of Theorem 1. To get an intuition of Theorem 1, fix .n1; : : : ; nm/ 2Nm, and
consider a sequence of normalized eigenfunctions . k/k2N� of�� given in a tensor form
as in Remark 9, such that, for any k 2 N�,  k is also, for any 1 � j � m, a sequence of
eigenfunctions ofRj with eigenvalue tending toC1, and of�j with eigenvalue 2nj C 1.
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We notice that any associated QL � is supported in S†: it follows directly from the argu-
ments developed in the proof of Proposition 8, since for any 1 � j � m, the eigenvalues
with respect to R2j (which plays the role of Z�j Zj in Assumption 6) are much larger than
the eigenvalues with respect to ��.

Let J D ¹1; : : : ; mº 2 P . Then, � is necessarily invariant under the vector field E�J
s ,

where s D .s1; : : : ; sm/ 2 SJ is defined by sj D
2njC1

2n1C1C���C2nmC1
for j D 1; : : : ; m. To

see it, we set

R D

Pm
jD1.2nj C 1/RjPm
jD1 2nj C 1

and we note that for any A 2 ‰0.Hm/, we have�
ŒA;R� k ;  k

�
D .AR k ;  k/ � .A k ; R k/ D 0

since  k is an eigenfunction of R. In the limit k !C1, taking the principal symbol, we
obtain Z

S†

.�J
s a/d� D 0;

where a D �P .A/. Since it is true for any a 2 S0.Hm/ (the set of symbols of order 0, see
Appendix A.1 for notations), this implies E�J

s � D 0. Hence, for such sequences . k/k2N� ,
any QL � is invariant under E�J

s and QJ is a Dirac mass on s in the decomposition (3.1).
Roughly speaking, any QL supported on S† is a linear combination of sequences as

in the above example, for different J 2 P n ¹¿º and different s 2 SJ .

Roles of Rj and�j . The operators Rj and �j play a key role in the proofs of Theorem
1, 2 and 3. As illustrated in the previous paragraph, the operators �j are linked with
the parameters s 2 SJ : in some sense, once the eigenfunctions have been orthogonally
decomposed with respect to the operators Rj and �j (as explained in Section 3.3), the
ratios between the �j -s determine the invariance property of the associated QLs through
the parameter s and the vector field E�J

s . On the other side, the operators Rj ‘determine’
the microlocal support of the associated QLs, for example they determine the element
J 2 P n ¹¿º for which the QL concentrates on S†J .

Sketch of proof. In order to simplify the presentation, in this sketch of proof, we assume
that JD ¹1; : : : ;mº and we omit the use of subscripts involving J, but the ideas are similar
for any J 2 P n ¹¿º.

We notice that (3.2) together with the fact that J D ¹1; : : : ; mº ensures that 'k has
no zero Fourier modes along the zj variables for any j 2 ¹1; : : : ; mº. Let us use the
decomposition (1.13) to write each 'k as a sum of eigenfunctions of operators of the formPm
jD1.2nj C 1/Rj for some integers n1; : : : ; nm:

'k D
X

.n1;:::;nm/2Nm

'k;.n1;:::;nm/; (3.3)

with �j'k;.n1;:::;nm/ D .2nj C 1/'k;.n1;:::;nm/, 81 � j � m.
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We will see in Section 3.3 that the decomposition (3.3) is orthogonal, and therefore
each eigenfunction 'k;.n1;:::;nm/ has the same eigenvalue �k as 'k . Then, we do a care-
ful analysis of this decomposition into modes, which, in the limit k ! C1, gives the
disintegration � D

R
S �sdQ.s/.

We take a partition of Nm into 2N thin positive cones CN
`

(with 0 � ` � 2N � 1) with
vertex V D .�1

2
; : : : ;�1

2
/ (see Figure 1), and we group the eigenfunctions 'k;.n1;:::;nm/

with index .n1; : : : ; nm/ in the same cone CN
`

into a single eigenfunction

'Nk;` D
X

.n1;:::;nm/2C
N
`

'k;.n1;:::;nm/

of ��. Since the cones CN
`

partition Nm, we have

'k D

2N�1X
`D0

'Nk;` (3.4)

for any N 2 N�.
Taking a microlocal defect measure �N

`
in each sequence .'N

k;`
/k2N� and makingN !

C1, we obtain from (3.4) the disintegration � D
R

S �sdQ.s/. This follows from the fact
that for any s D .s1; : : : ; sm/ 2 S, there exists a sequence of positive cones CN

`.N/
in the

partition degenerating as N !C1 to the half-line with vertex V and parametrized by s:
for this, choose a sequence of cones .CN

`.N/
/N2N for which the indices

.n1;N ; : : : ; nm;N / 2 .N
m/N

satisfy �
2n1;N C 1

2n1;N C 1C � � � C 2n1;N C 1
; : : : ;

2n1;N C 1

2n1;N C 1C � � � C 2n1;N C 1

�
�����!
N!C1

.s1; : : : ; sm/:

For this choice of cones CN
`.N/

, dQ.s/ accounts for the relative mass, in the limitN !
C1, of the eigenfunction 'N

k;`.N/
in the sum (3.4).

The invariance property E�s�sD0 can be seen from the fact that, for any largeN and any
`D `.N / satisfying 0 � ` � 2N � 1, each eigenfunction 'k;.n1;:::;nm/ with .n1; : : : ; nm/ 2
CN
`.N/

is indeed an eigenfunction of the operator

mX
iD1

�
2ni C 1

2n1 C 1C � � � C 2nm C 1

�
Ri

and thus a quasimode of Rs D s1R1 C � � � C smRm if s D .s1; : : : ; sm/ 2 S denotes the
parameter of the limiting half-line (with vertex V ) of the positive cones CN

`.N/
as N !

C1. Hence, 'N
k;`

is an approximate eigenfunction of Rs , from which it follows by a
classical argument that �s is invariant under the vector field E�s of �s D .�P .Rs//j†.
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3.3. Spectral and symplectic preliminaries

In this section, we gather a few facts which will be used in the proof of Theorem 1.
We use the notations introduced in Section 1.3, notably Rj , �j for the operators

defined through a Fourier expansion with respect to the zj -variables, and satisfying (1.13).

Lemma 17. The following properties hold:

(1) The operator �j , seen as an operator on the j -th copy of H, has eigenvalues
2nC 1, n 2 N.

(2) Œ�i ;�j �' D ŒRi ;Rj �' D Œ�i ;Rj �' D 0 for any i; j and any ' whose 0-th Fourier
mode with respect to zi and zj vanishes.

(3) The operators Rj and �j are pseudodifferential operators in any cone of T �Hm

whose intersection with some conic neighborhood of the set ¹pzj D 0º is reduced
to 0, in particular on †J .

(4) The Hamiltonian vector field associated to the Hamiltonian �P .Rj / D jpzj j is
sgn.pzj /@zj .

(5) The Hamiltonian flow �j .�/ associated to �P .�j / is stationary on†J when j 2J.

Proof. Point (1) is proved in [9, Section 3.1]. Point (2) follows from the definition of
�i ; Rj in Section 1.3.1 (they are defined only on the direct sum of the eigenspaces corre-
sponding to non-zero eigenvalues of the operators @zi and @zj ).

Point (3) follows from the fact that in any conic set U � S�Hm which is the comple-
ment of a conic neighborhood of ¹pzj D 0º, jpzj j is infinitely differentiable. It is indeed an
elliptic first-order classical symbol in U . The standard quantization of jpzj j is Rj , which
is an elliptic first-order pseudodifferential operators when acting on functions microlocal-
ized in U . Then �j D �j =Rj is also an elliptic first-order pseudodifferential operators
when acting on functions microlocalized in U .

Point (4) then follows from a direct computation.
For point (5), we notice that

�P .�j / D
h2Xj C h

2
Yj

jh@zj j

in the cones where �j is a pseudodifferential operator. Since hXj D hYj D 0 on †, this
Hamiltonian vector field vanishes on †J , and �j is stationary on †J .

4. Proof of Theorem 1

In this section, building upon Section 3, we prove Theorem 1. In the sequel, the notation
.�; �/ stands for the L2.Hm/ scalar product, and the associated norm is denoted by k�kL2 .
Also, we recall that we assumed J D ¹1; : : : ; J º.
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Figure 1. The positive cones CN
`

, for J D 2, N D 3.

4.1. Positive cones

We consider the quadrant

C D

²
.x1; : : : ; xJ / 2 RJ j xj � �

1

2
for any 1 � j � J

³
:

and we define

V D

�
�
1

2
; : : : ;�

1

2

�
2 RJ :

A positive cone with vertex at V is a subset K of C n ¹V º such that

W 2 K ) V C �.W � V / 2 K

for any � > 0 and any W 2 C . We notice that any positive cone K with vertex at V can
be split into two non-empty positive cones K1, K2 with vertex at V : for this, we choose
a half-space H containing V in its boundary and containing some of the points of K but
not all, and we set K1 D K \H and K2 D K \H c . We call this a “bisection of K”.

We now define a sequence of partitions of C into positive cones with vertex at V . We
first partition C into 2 cones by bisection of C . This gives a first partition of C . Then we
obtain a second partition of C by bisecting each of these two cones. And so on and so
forth, refining our partition at each step by bisecting all cones of the previous partition.
The N -th partition is made of 2N positive cones with vertex at V .

Formalizing this, these positive cones CN
`
� C , for N 2 N� and 0 � ` � 2N � 1,

satisfy the following properties (see Figure 1):
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(1) For anyN 2N� and any 0 � ` � 2N � 1, CN
`

is a positive cone with vertex at V ,
i.e.,

V C �.W � V / 2 CN` ; 8� > 0; 8W 2 C
N
` I

(2) For any N 2 N�, .CN
`
/0�`�2N�1 is a partition of C , i.e.,

2N�1[
`D0

CN` D C and CN` \ C
N
`0 D ¿; 8` ¤ `0I

(3) Each partition is a refinement of the preceding one: for any N � 2 and any 0 �
` � 2N � 1, there exists a unique 0 � `0 � 2N�1 � 1 such that CN

`
� CN�1

`0
.

We also impose that the aperture of the positive cones CN0 ; : : : ; C
N
2N�1

tends uniformly to
0 as N ! C1. To give a precise statement of this last assumption, we denote by L the
set of half-lines issued from V and contained in C , and we note that L is parametrized by
s 2 SJ . We assume the following

(4) There exists d W N ! RC with d ! 0 as N ! C1, such that for any N 2 N,
any ` 2 ¹0; : : : ; 2N � 1º and any s0; s00 parametrizing lines in CN

`
, we have

ks0 � s00k1 � d.N /: (4.1)

As a consequence, for any L 2 L parametrized by s 2 SJ , there exists a subse-
quence .CN

`.s;N/
/N2N� that converges to L in the sense that\

N2N

CN`.s;N/ D L:

Remark 18. The positive cones CN
`

can be seen as positive sub-cones of the Heisenberg
fan (whose definition has been recalled in Section 1.4).

4.2. Spectral decomposition of quantum limits

Recall that we assumed J D ¹1; : : : ; J º. We notice that (2.2) and (3.2) guarantee that
'k has no zero Fourier modes along the zj variables for any j 2 J. Using point (2) of
Lemma 17, we can simultaneously diagonalize the operators �j for j 2 J. This yields a
decomposition of 'k on the joint eigenspaces of the �j for j 2 J: according to (3.3), we
obtain for any .nj / 2 NJ , k 2 N� and j 2 J a function 'k;.n1;:::;nJ ;0;:::;0/ such that

�j'k;.n1;:::;nJ ;0;:::;0/ D .2nj C 1/'k;.n1;:::;nJ ;0;:::;0/:

Moreover we have

'k D

2N�1X
`D0

'Nk;` (4.2)

where
'Nk;` D

X
.n1;:::;nJ /2C

N
`

'k;.n1;:::;nJ ;0;:::;0/: (4.3)
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For any N 2 N� and any 0 � ` � 2N � 1, we take

�N` a microlocal defect measure of the sequence .'Nk;`/k2N� :

By diagonal extraction in k 2 N� (which we omit in the notations), we can assume that
any of these microlocal defect measures is obtained with respect to the same subsequence.

Lemma 19. The following properties hold:

(1) All the mass of �N
`

is contained in S†J for anyN 2N� and any 0� `� 2N � 1;

(2) For N 2 N� and ` ¤ `0 with 0 � `, `0 � 2N � 1, the joint microlocal defect
measure (see Definition 7) of .'N

k;`
/k2N� and .'N

k;`0
/k2N� vanishes. In particular,

for any N 2 N�,

� D

2N�1X
`D0

�N` : (4.4)

and also for any N0 � N fixed and any 0 � `0 � 2N0 � 1,

�
N0
`0
D

X
` such that
CN
`
�C

N0
`0

�N` : (4.5)

Proof. The proof mainly relies on averaging techniques (see also Appendix A.3 for a
result obtained by these techniques in the much simpler context of flat contact sub-
Laplacians).

We first prove point (1). Applying P J

r.k/
(see (3.2)) on both sides of (4.2), we get that

2N�1X
`D0

P
J

r.k/
'Nk;` D P

J

r.k/
'k D 'k D

2N�1X
`D0

'Nk;`:

We observe that P J
n 2 ‰

0.Hm/ commutes with the operators �j for j 2 J, thanks to
its explicit expression (2.2). Hence P J

r.k/
.'k;.n1;:::;nm;0;:::;0// D 'k;.n1;:::;nm;0;:::;0/ for any

.n1; : : : ; nm/ 2 Nm, and we deduce

'Nk;` D P
J

r.k/
'Nk;`:

Point (1) now follows from the fact that �P .P
J

r.k/
/! 1†J

as k !C1 (see Lemma 13).
We now turn to the proof of point (2).
Let B 2‰0.Hm/ be microlocally supported in a conic set in whichRj ;�j act as first-

order pseudodifferential operators for any j 2 J. A typical example of microlocal support
forB is given by any conic subset of T �Hm whose intersection with some conic neighbor-
hood of the set ¹pzj D 0º is reduced to 0, for any j 2 J. We set U.t/ D U.t1; : : : ; tJ / D
ei.t1�1C���CtJ�J / for t D .t1; : : : ; tJ / 2 .R=2�Z/J .

The average of B is then defined by (see [40])

A D

Z
.R=2�Z/J

U.�t /BU.t/dt: (4.6)
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Fact 20. There holds ŒA;�j � D 0 for any 1 � j � J . Also, �P .A/ D �P .B/ on S†J .

We postpone the proof of this fact to the end of the present section.
Let N; `; `0 be as in the statement of point (2). The joint microlocal defect measure of

.'N
k;`
/k2N� and .'N

k;`0
/k2N� has no mass outside S†J (due to the fact that 'N

k;`
DP

J

r.k/
'N
k;`

).
This, combined with the second part of Fact 20, yields

.B'Nk;`; '
N
k;`0/ � .A'

N
k;`; '

N
k;`0/ �����!

k!C1
0: (4.7)

Fact 21. LetD 2 ‰0.Hm/ satisfy ŒD;�j � D 0 for any j 2 J. Let f , g be each in a joint
eigenspace of the �j , meaning that for any j 2 J, �jf D njf , �jg D n0jg for some
nj , n0j 2 2N C 1. We assume that there exists j 2 J such that nj ¤ n0j . Then .Df; g/D 0
[because D leaves any joint eigenspace of the �j (j 2 J) invariant, and the eigenspaces
are orthogonal].

Since A commutes with �j for any 1 � j � J , by (4.3) and Fact 21, we know that
.A'N

k;`
; 'N
k;`0
/ D 0. Hence, plugging into (4.7), we get that .B'N

k;`
; 'N
k;`0
/ tends to 0 as

k!C1. Using this result for all possibleB 2‰0.M/with microlocal support satisfying
the property recalled at the beginning of the proof, we obtain that the joint microlocal
defect measure of .'N

k;`
/k2N� and of .'N

k;`0
/k2N� vanishes. Evaluating .B'k ; 'k/ in the

limit k !C1 and using (4.2), we conclude the proof of point (2).

Proof of Fact 20. For 1 � j � J , since

d

dtj
U.�t /BU.t/ D iU.�t /ŒB;�j �U.t/;

integrating in the tj variable, using that �j commutes with U.t/, and that exp.2i��j / D
Id (since the eigenvalues of �j belong to N), we get that ŒA;�j � D 0 for any 1 � j � J .

For 1 � j � J , recall that �j .�/ denotes the flow of the Hamiltonian vector field of
�P .�j /. By Egorov’s theorem, A has principal symbol

a WD �P .A/ D

Z
.R=2�Z/J

�P .B/ ı �1.t1/ ı � � � ı �J .tJ / dt (4.8)

(see [9, Lemma 6.1] for similar arguments). Since �j is stationary on †J for 1 � j � J
(see Lemma 17), we get that �P .A/ D �P .B/ on S†J .

4.3. Disintegration of measures

From the equality (4.4) taken in the limit N !C1, we will deduce in this section that

�J
D

Z
SJ

�J
s dQ

J.s/:

Note that a simple Fubini argument does not suffice since QJ is not the Lebesgue mea-
sure in general (it may contain Dirac masses). Instead, we have to adapt the proof of the
classical disintegration of measure theorem (see [31]).
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First of all, we define a measure QJ over the simplex SJ as follows. It has been
explained at the beginning of Section 4 that the set L of half-lines issued from V and
contained in C is parametrized by s 2 SJ . For N 2 N� and 0 � ` � 2N � 1, we consider
the subset of SJ given by

SN` D
®
s 2 SJ ; s parametrizes a half-line of L contained in CN`

¯
: (4.9)

Then we define
QJ.SN` / D �

N
` .S†/ (4.10)

and we extend it by finite additivity and complementation to the algebra of subsets of SJ

generated by the SN
`

for N 2 N and ` 2 ¹0; : : : ; 2N � 1º. Due to (4.5), QJ is a sigma-
additive function on this algebra. Therefore, by the Carathéodory (or Hahn–Kolmogorov)
extension theorem, (4.10) defines a (unique) non-negative Radon measure QJ on the
sigma-algebra generated by the cones CN

`
, which consists of the Borel sets of SJ .

Given N � 1, 0 � ` � 2N � 1 and a continuous function f W S†J ! R, we set

f N` D
1

�N
`
.S†J/

Z
S†J

fd�N` (4.11)

if �N
`
.S†J/ ¤ 0, and f N

`
D 0 otherwise.

Proposition 22. Given any continuous function f W S†! R, for QJ-almost all s 2 SJ ,
there exists a real number e.f /.s/ such that

f N`.s;N/ �����!
N!C1

e.f /.s/;

where, for any N 2 N�, `.s; N / is the unique integer 0 � `.s; N / � 2N � 1 such that
s 2 SN

`.s;N/
.

In the sequel, we call `.s; N / the approximation at order N of s.

We postpone the proof of Proposition 22 to Section 22.
From (4.4) and (4.11), we infer that for any N � 1,Z

S†J

fd�J
D

2N�1X
`D0

Z
S†J

fd�N` D

2N�1X
`D0

f N` �
N
` .S†J/;

and the dominated convergence theorem together with the definition of QJ and Proposi-
tion 22 yield Z

S†J

fd�J
D

Z
SJ

e.f /.s/dQJ.s/: (4.12)

We see that for a fixed s 2 SJ ,

C 0.S†J ;R/ 3 f 7! e.f /.s/ 2 R
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is a non-negative linear functional on C 0.S†J ;R/. By the Riesz–Markov theorem, there
exists a unique Radon probability measure �J

s on S†J such that

e.f /.s/ D

Z
S†J

fd�J
s : (4.13)

Putting (4.12) and (4.13) together, we getZ
S†J

fd�J
D

Z
SJ

�Z
S†J

fd�J
s

�
dQJ.s/

which is the desired disintegration of measures formula.

4.4. Invariance of the measures �J
s

There remains to show that �J
s is invariant under the flow generated by E�J

s . We start with
an “approximate invariance” lemma.

Lemma 23. Let A be a zeroth-order pseudodifferential operator microlocally supported
in a conic set where Rj ; �j act as first-order pseudodifferential operators for any j 2 J.
Then there exists CA > 0 such that for any N 2 N�, any 0 � ` � 2N � 1 and any s 2 SJ

such that the half-line issued from V and defined by the J equations 2xjC1

2x1C1C���C2xJC1
D sj

(and xj � �1=2) lies in CN
`

, there holdsˇ̌̌̌ Z
S†J

.E�J
s a/d�

N
`

ˇ̌̌̌
� CAd.N /�

N
` .S†J/: (4.14)

where a D �P .A/.

Proof. For the moment, we assume in addition to the assumptions of the statement that A
commutes with �1; : : : ; �J and with �j D X2j C Y

2
j for any J C 1 � j � m. The fact

that it is sufficient to consider such A will be justified later in the proof. Recall that Rs has
been defined in (1.14).

Using that ŒA; Rs� commutes with �1; : : : ; �J in order to kill crossed terms (see
Fact 21), we have�

ŒA;Rs�'
N
k;`; '

N
k;`

�
D

�
ŒA;Rs�

X
.n1;:::;nJ /2C

N
`

'k;.n1;:::;nJ ;0;:::;0/;
X

.n1;:::;nJ /2C
N
`

'k;.n1;:::;nJ ;0;:::;0/

�
D

X
.n1;:::;nJ /2C

N
`

�
ŒA;Rs�'k;.n1;:::;nJ ;0;:::;0/; 'k;.n1;:::;nJ ;0;:::;0/

�
: (4.15)

Let us fix .n1; : : : ; nJ / 2 CN` . For simplicity of notations, we set ' D 'k;.n1;:::;nJ ;0;:::;0/.
We prove that �

ŒA;Rs�'; '
�
D

JX
jD1

�
sj �

2nj C 1PJ
iD1 2ni C 1

��
ŒA;Rj �'; '

�
: (4.16)
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We set

R D

PJ
jD1.2nj C 1/Rj �

Pm
iDJC1�iPJ

jD1 2nj C 1
;

which, up to a constant, is the restriction of �� to the joint eigenspace of the �j with
eigenvalues 2nj C 1. Using that R is selfadjoint (since Rj is selfadjoint for any j ) and
that ' is an eigenfunction of R, we get�

ŒA;R�'; '
�
D .AR'; '/ � .A';R'/ D 0

and therefore, since A commutes with �JC1; : : : ; �m, we get�
ŒA;Rs�'; '

�
D
�
ŒA;Rs �R�'; '

�
D

JX
jD1

�
sj �

2nj C 1PJ
iD1 2ni C 1

��
ŒA;Rj �'; '

�
which is exactly (4.16).

Thanks to our choice of microlocal support for A, we know that ŒA; Rj � 2 ‰0.Hm/

for 1 � j � J , and thus is it bounded in L2.Hm/. Combining (4.15) and (4.16), we obtain
the existence of a constant CA > 0 depending on A such thatˇ̌�

ŒA;Rs�'
N
k;`; '

N
k;`

�ˇ̌
� CA

X
.n1;:::;nJ /2C

N
`

JX
jD1

ˇ̌̌̌
sj �

2nj C 1PJ
iD1 2ni C 1

ˇ̌̌̌
k'k;.n1;:::;nJ ;0;:::;0/k

2
L2

� CAd.N /k'
N
k;`k

2
L2

(4.17)

where in the last line, we used (4.1) and the fact that distinct joint eigenspaces of the �j
are orthogonal.

In order to pass to the limit k ! C1 in these last inequalities, we use the following
lemma.

Lemma 24. On †J , there holds

�P
�
ŒA;Rs�

�
j†J
D i E�J

s a

where a D �P .A/.

Proof of Lemma 24. Denoting by ¹�; �º the Poisson bracket on the symplectic manifold
T �Hm, we have for .q; p/ 2 †J

�P
�
ŒA;Rs�

�
.q; p/ D

1

i

°
a;
X
j2J

sgn.pzj /sjh@zj

±
.q; p/ D i

X
j2J

sgn.pzj /sj .Eh@zj a/.q; p/

D i.E�J
s a/.q; p/

where in the last equality we used (1.15).

Since all the mass of �N
`

is contained in S†J by Lemma 19, we finally deduce the
upper bound (4.14) from (4.17) and Lemma 24.
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We have established this upper bound only for an operator A of order 0 which com-
mutes with �1; : : : ; �J and �j for any J C 1 � j � m. We would now like to remove
this commutation assumption.

Let b 2 S0.Hm/ be an arbitrary zeroth-order symbol supported in a subset of T �HJ

where Rj ;�j act as first-order pseudodifferential operators for any j 2 J. Let also .q; p/
denote the coordinates in T �Hm and .qj ; pj / the coordinates in the cotangent bundle of
the j -th copy of H.

We notice that S†J is invariant under translation in qi for i … J. Hence, considering
the averaged symbol

Nb.q1; : : : ; qm; p1; : : : ; pm/

D
1ˇ̌

Vol.Hm�J /
ˇ̌ Z

Hm�J
b.q1; : : : ; qm; p1; : : : ; pJ ; 0; : : : ; 0/ dqJC1 � � � dqm;

we have the following properties:

(i) Nb 2 S0.Hm/ does not depend on qi ; pi for J C 1 � i � m;

(ii) for any vector field X on S†J depending only on the coordinates q1, : : :, qJ ,
p1, : : :, pJ , there holdsZ

S†J

.X Nb/d�N` D

Z
S†J

.Xb/d�N` : (4.18)

We denote by Opst the standard quantization (see Appendix A.1). We set

A D

Z
.R=2�Z/J

U.�t /Opst. Nb/U.t/dt 2 ‰0.Hm/ (4.19)

where U.t/ D U.t1; : : : ; tJ / D ei.t1�1C���CtJ�J / for t D .t1; : : : ; tJ / 2 .R=2�Z/J .

• A commutes with�j for any 1 � j � J . This follows from an argument that we have
already described in the proof of point (2) of Lemma 19, applied to the formula (4.19).

• A also commutes with �j for any J C 1 � j � m thanks to (i), combined with the
fact that the standard quantization preserves the product structure of the manifold Hm

(see after (A.1)).

The principal symbol of A on S†J coincides with Nb, due to (4.8) and the fact that �j
is stationary on †J for j 2 J. Using (4.14) for A, this proves thatˇ̌̌̌ Z

S†J

E�J
s
Nb d�N`

ˇ̌̌̌
� CAd.N /�

N
` .S†J/:

But thanks to (4.18) applied with X D E�J
s (recall that by formula (1.15), E�J

s does not
depend on qi for J C 1 � i � m) there holdsZ

S†J

.E�J
s
Nb/d�N` D

Z
S†J

.E�J
s b/d�

N
`

hence the conclusion.
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We finally show how to deduce from Lemma 23 that �J
s is invariant under the flow et E�

J
s .

Let A 2 ‰0.Hm/ be microlocally supported in a cone of T �Hm whose intersection with
some conic neighborhood of the set ¹pzj D 0º is reduced to 0, for any j 2 J. We set
a D �P .A/. For QJ-almost every s 2 SJ , we haveˇ̌̌̌ Z

S†J

.E�J
s a/d�

J
s

ˇ̌̌̌
D
ˇ̌
e.E�J

s a/.s/
ˇ̌ �

by (4.13)
�

D

ˇ̌̌̌
lim

N!C1

1

�N
`.s;N/

.S†J/

Z
S†J

.E�J
s a/d�

N
`.s;N/

ˇ̌̌̌
� lim
N!C1

CAd.N /
�
by (4.14)

�
D 0 (4.20)

with the convention that if the denominator in (4.20) is null, then the whole expression is
null. Then we conclude the proof by applying the following fact to E�J

s which is a vector
field on S†J :

Fact. Let W be a manifold, equipped with a measure ı, and let T be a complete vector
field on W . If

R
W
.T�/dı D 0 for every � 2 C1c .W;R/, then the measure ı is invariant

under the flow of T . This is proved by considering the derivative d
dt

R
W
�.etTw/dı.w/ at

t D 0.

4.5. Proof of Proposition 22

In this section, we finally prove Proposition 22. By linearity of formula (4.11), it is suffi-
cient to prove the statement for f � 0. Therefore, in the sequel, we fix f � 0. For N � 1,
we define the function f N W SJ ! R by

f N .s/ D f N`.s;N/;

where `.s; N / is the approximation at order N of s. Note that f N is constant on SN
`

for
0 � ` � 2N � 1.

For 0 � ˛ < ˇ � 1, we define S.˛; ˇ/ as the set of s 2 SJ such that

lim inf
N!C1

f N .s/ < ˛ < ˇ < lim sup
N!C1

f N .s/:

To prove Proposition 22, it is sufficient to prove that S.˛; ˇ/ has QJ-measure 0 for any
0 � ˛ < ˇ � 1. Fix such ˛; ˇ. For s 2 S.˛; ˇ/, take a sequence

1 � N ˛
1 .s/ < N

ˇ
1 .s/ < N

˛
2 .s/ < N

ˇ
2 .s/ < � � � < N

˛
k .s/ < N

ˇ

k
.s/ < � � �

of integers such that f N
˛
k
.s/.s/ < ˛ and f N

ˇ
k
.s/.s/ > ˇ for any k � 1. We finally define

the following sets:

Ak D
[

s2S.˛;ˇ/

SN
˛
k
.s/

`.s;N ˛
k
.s//
;
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Bk D
[

s2S.˛;ˇ/

SN
ˇ
k
.s/

`.s;N
ˇ
k
.s//
:

We have S.˛; ˇ/ � AkC1 � Bk � Ak for every k � 1. In particular,

S.˛; ˇ/ � zS.˛; ˇ/ WD
\
k2N�

Ak D
\
k2N�

Bk : (4.21)

Given any two of the sets SN
˛
k
.s/

`.s;N ˛
k
.s//

that form Ak , either they are disjoint or one
is contained in the other. Consequently, Ak may be written as a disjoint union of such
sets, denoted by Ak

0

k
. This union is countable, since the number of sets SN

`
(N 2 N�,

0 � ` � 2N � 1) is countable. Therefore,Z
Ak

fdQJ
D

X
k0

Z
Ak
0

k

fdQJ <
X
k0

˛QJ.Ak
0

k / D ˛Q
J.Ak/

and analogously, with similar notations,Z
Bk

fdQJ
D

X
k0

Z
Bk
0

k

fdQJ >
X
k0

ˇQJ.Bk
0

k / D ˇQ
J.Bk/:

Since Bk � Ak , we get ˛QJ.Ak/ > ˇQ
J.Bk/. Taking the limit k !C1, it yields

˛QJ
�
zS.˛; ˇ/

�
> ˇQJ

�
zS.˛; ˇ/

�
;

which is possible only if QJ. zS.˛; ˇ// D 0. Therefore, using (4.21), we get

QJ
�
S.˛; ˇ/

�
D 0;

which concludes the proof of the proposition.

5. Proof of Theorem 2

5.1. Preliminary steps

In this subsection, we introduce the tools used in the proof of Theorem 2.

5.1.1. Spectral decomposition. We first introduce a spectral decomposition of ��. Fix
j 2 ¹1; : : : ; mº, consider the j -th copy of L2.H/ in L2.Hm/ Š L2.H/˝m, and take the
Fourier decomposition with respect to zj in this copy:

L2.H/ D L20 ˚
M

n2N;˛2Zn¹0º

En;˛

where @zj acts as 0 on L20, and on En;˛ , 1
i
@zj acts as ˛ and �j as 2nC 1.
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Recall that P stands for the set of all subsets of ¹1; : : : ;mº. We fix J 2 P . For .nj / 2
NJ , . j̨ / 2 .Z n ¹0º/J we set

H
J

.nj /;. j̨ /
D F 1 ˝ � � � ˝ Fm � L2.Hm/

where F j D Enj ; j̨ for j 2 J and F j D L20 for j … J.
We have the orthogonal decomposition

L2.Hm/ D
M
J2P

M
.nj /2NJ

. j̨ /2.Zn¹0º/J

H
J

.nj /;. j̨ /
: (5.1)

We can also write the associated decomposition of �� as

�� D
M
J2P

M
.nj /2NJ

. j̨ /2.Zn¹0º/J

H
J

.nj /;. j̨ /

with
H

J

.nj /;. j̨ /
D

X
j2J

.2nj C 1/j j̨ j �
X
i…J

.@2xi C @
2
yi
/:

From this, we deduce

spec.��/

D

²X
j2J

.2njC1/j j̨ jC2�
X
i…J

.k2i C`
2
i /; with ki ; `i 2Z; J2P ; nj 2N; j̨ 2Z n ¹0º

³
where spec denotes the spectrum.

5.1.2. Notations. In this section, we define two sets BJ and CJ of Radon probability
measures, contained in DJ , and which can be seen as “elementary building blocks” for
proving Theorem 2. For this we introduce a few more notations, in addition to those intro-
duced in Section 1.3.3.

Fix J 2P n ¹¿º. We first define an equivalence relation
J
� on points in HJ : two points

q; q0 are in relation if they can be obtained from each other by following the flows of @zj ,
j 2 J, i.e., if there exists .sj / 2 RJ such that

q0 D exp
�X
j2J

sj @zj

�
q:

Fix q 2 HJ . From the group law (1.10), we see that the equivalence class of q is an
embedded submanifold of HJ , homeomorphic to the torus .R=2�Z/J . There is a prob-
ability measure on HJ which is a uniform Dirac delta measure supported on this torus.
Tensorizing this measure with the Lebesgue measure in H…J we obtain a Radon probabil-
ity measure on Hm, which we denote by ˛q . Its support is denoted by MJ

q � Hm.
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We now lift ˛q to S�M : we define a probability measure on S�Hm supported on S†J

and whose pushforward under the canonical projection from T �Hm to Hm is exactly ˛q .
For that, we notice that if .q; p/ 2 S†J , for any q0 2 Hm it makes sense to consider
the point .q0; p/ 2 S†J , which is the point in the fiber of S† over q that has the same
homogeneous coordinates Œpz1 W � � � W pzm � as p. This allows us to define

HJ
q;p D ˛q ˝ ıp

where ıp denotes the Dirac mass on p.
In addition to DJ , which has been introduced in (1.3.3), we introduce two other sets:

• The set
BJ
D
®
HJ
q;p j .q; p/ 2 S†J

¯
(5.2)

which is a subset of DJ . This follows from the definition of DJ and the fact that ˛q is
invariant under @zj for any j 2 J.

• The set of convex combinations of measures in BJ , which consequently is also a
subset of DJ :

CJ
D

²X
i2F

ˇi�i j F is a finite set;
X
i2F

ˇi D 1; 8i ˇi � 0; �i 2 BJ

³
:

5.2. Core of the proof

In this section, we provide a fully detailed proof of Theorem 2. Proofs with relatively
similar ideas can be found in [4, 23, 26, 35]. The proof uses two main ingredients:

• On the “classical side,” the knowledge of the flows of the vector fields E�J
s given by

(1.15) (see also Remark 10).

• On the “quantum side,” the specific algebraic structure of spec.��/ (see Section
5.1.1).

5.2.1. Step 1: Homogeneity. In this preliminary step, we describe the homogeneity prop-
erties of Hm.

The manifold H has a Lie group structure recalled in Section 1.3.1, and thus Hm also
has a Lie group structure obtained by product, whose composition law is denoted by ?m.
The left-translation by g is denoted by �g : �gq D g ?m q. The vector fields Xj and Yj are
left-invariant for ?m, and thus� is also left-invariant. This implies that the left-translation
by g 2 Hm of an eigenfunction ' of � is also an eigenfunction with same eigenvalue,
denoted by �g' D ' ı ��1g .

Lemma 25. The QLs of a sequence of L2.Hm/-normalized eigenfunctions .�g'k/k2N�

are the left-translates by g of the QLs of the sequence .'k/k2N� .

Proof. The left-translation �g induces an action on ‰0.Hm/. The image of A 2 ‰0.Hm/

under left-translation by g is denoted by z�gA 2 ‰0.Hm/: it is defined as

.z�gA/.'/.q/ D A.�
�1
g '/.��1g q/:
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We have �
.z�gA/.�g'/; �g'

�
L2.Hm;�/ D .A'; '/L2.Hm;�/ (5.3)

using that the Haar measure � is left-invariant.
The left-translation �g also induces an action x�g on the cotangent bundle T �Hm. We

have
�P .z�gA/ D �P .A/ ı x�

�1
g : (5.4)

Combining (5.3), (5.4) and the definition of QLs, we get the result.

5.2.2. Step 2. Our goal in this subsection is to prove:

Lemma 26. Any �J 2 DJ is a QL, associated to an L2.Hm/-normalized sequence of
eigenfunctions which are also eigenfunctions of �j for j 2 J (with eigenvalue 1).

We loosely follow the scheme of proof (and some proofs) of [35].
According to the Calderón–Vaillancourt theorem, there existsK 2N such that for any

a 2 S0.Hm/, there holds �
Op.a/u; u

�
� CkakCK .S�Hm/kuk

2
L2
: (5.5)

To avoid any confusion, we call weak-�K topology the weak-* topology associated to
testing against elements of CK.S�Hm/, and keep the terminology weak-* topology for
the one associated to testing against elements of C 0.S�Hm/.

We prove two facts, which combined together imply Lemma 26.

Fact 27. CJ is dense in the weak-�K topology in DJ .

Fact 28. Any � 2 CJ is a QL, associated to an L2.Hm/-normalized sequence of eigen-
functions which are also eigenfunctions of �j for j 2 J (with eigenvalue 1).

To explain how to deduce Lemma 26 from these two facts, we first need to metrize
the weak-�K topology (a direct diagonal extraction argument using Facts 27 and 28 is not
sufficient to prove Lemma 26).

We denote by X the unit ball of the topological dual of CK.S�Hm/. When equipped
with the weak-�K topology, X is denoted by X�K . We construct a metric ı on X defining
the same topology as the weak-�K convergence. We pick a countable sequence .ar /r2N

which is dense in CK.S�Hm/ (this space is separable), and we define ı WX �X! R by

ı.`; `0/ D
X
r2N

min
�
.` � `0/.ar /; 2

�r
�
:

This is a metric on X, and Id WX�K ! .X; ı/ is a continuous bijection, hence an homeo-
morphism (since X�K is compact by the Banach–Alaoglu theorem). We conclude that

the topology induced by ı coincides with the weak-�K topology on X. (5.6)



Quantum limits of sub-Laplacians via joint spectral calculus 91

Proof of Lemma 26. We notice that both CJ and DJ are included in X. Let �J 2DJ . For
r 2 N let �r 2 CJ with �r ! �J in the weak-�K topology as r !C1. Such a sequence
exists thanks to Fact 27.

For any r 2 N, let 'r;n be an L2-normalized eigenfunction of � which is also an
eigenfunction of �j for j 2 J with eigenvalue 1, and such that �r;n 2 X defined by

8a 2 CK.S�Hm/;
�

Op.a/'r;n; 'r;n
�
D �r;n.a/

verifies
8a 2 S0.Hm/; �r;n.a/ �����!

n!C1

Z
S�M

ad�r : (5.7)

Such a sequence exists thanks to Fact 28. And due to (5.5) the convergence (5.7) can
be extended to any a 2 CK.S�Hm/. Fix " > 0. Pick r 2 N sufficiently large such that
ı.�r ; �

J/ � ". For n 2 N sufficiently large, ı.�r;n; �r / � ". Thus ı.�r;n; �J/ � 2". Taking
"! 0, we obtain a sequence of eigenfunctions . k/k2N of the form  k D 'rk ;nk such
that �

Op.a/ k ;  k
�
D

Z
S�M

ad�rk ;nk D

Z
S�M

ad�J
C o.1/

for any a 2 S0.Hm/ \ CK.S�Hm/ D S0.Hm/. It follows that �J is a QL.

5.2.3. Proof of Fact 27. For this proof of density, we argue in two steps, see (5.9) and
(5.10) below. The reason why we cannot argue directly with the Krein–Milman theorem
is that S†J being not closed, the set CJ is not compact.

Although not closed, the set S†J can be written as an increasing and countable union
of compact sets AJ

r , r 2 N, namely

AJ
r D

²
.q; p/ 2 S†J j

jpzj jP
k2J jpzk j

� 1=r for any j 2 J

³
:

For any r 2 N, we denote by D
J
r the subset of DJ (introduced in (1.17)) containing the

Radon probability measures which are supported in AJ
r .

Lemma 29. The set DJ
r is convex, and compact for the weak-�K topology.

Proof. The invariance property involved in the definition of DJ (and hence of DJ
r ) can be

equivalently stated with a set of equations involving only continuous functions on S�Hm,
and moreover AJ

r is closed, therefore D
J
r is closed for the weak-* topology. Since D

J
r

contains only Radon measures and using that CK.S�Hm/ is dense in C 0.S�Hm/, we
deduce that DJ

r is also closed for the weak-�K topology. Since X�K is compact, it follows
that DJ

r � X is compact for the weak-�K topology.
Finally, DJ

r is convex due to the inclusion

supp
�
t�1 C .1 � t /�2

�
� supp.�1/ [ supp.�2/

valid for any measures �1, �2. In order to apply the Krein–Milman theorem, we prove the
following lemma.
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Lemma 30. Any extremal point of DJ
r is in BJ .

Proof. Assume for the sake of a contradiction that � is an extremal point of DJ
r such that

� … BJ . According to (5.2), the fact that � is not in BJ gives information either on its
support “on the base” or “in the fibers”. We explore these two possibilities successively,
and we seek for a contradiction in both cases.

Case 1. First, assume that there exist two points x0; y0 2 S†J in the support of � such that
the projections x and y of x0 and y0 on HJ are not in the same equivalence class for

J
�.

Our goal is to write � under the form

� D t�1 C .1 � t /�2; with 0 < t < 1; �1; �2 2 DJ
r ; �1 ¤ �2: (5.8)

By closedness of the equivalence classesMJ
� (see definition in Section 5.1.2), there exists

a small open set U around x such that any point in xU does not belong to MJ
y . Let V be

the union of all setsMJ
� intersecting U , andW D HJ n V . Denote by V 0 � S�Hm (resp.

W 0 � S�Hm) the set of points in AJ
r whose projection to HJ belongs to V (resp. W ).

Then (5.8) holds with �1 D
�.�\V 0/
�.V 0/

, �2 D
�.�\W 0/
�.W 0/

and t D �.V 0/. Thus � is not extremal,
which is a contradiction.

Case 2. Assume now that there exist two points .q; p/; .q0; p0/ 2 S†J in the support of
� such that the homogeneous coordinates Œpz1 W � � � W pzm � and Œp0z1 W � � � W p

0
zm
� are not

equal. As in the previous case, taking V 0 as the set of points .q00; p00/ in S†J whose
homogeneous coordinates Œp00z1 W � � � W p

00
zm
� are close to Œpz1 W � � � W pzm � and W 0 as the

complementary set, we see that (5.8) holds again with �1 D
�.�\V 0/
�.V 0/

, �2 D
�.�\W 0/
�.W 0/

and
t D �.V 0/. Thus � is not extremal, which is a contradiction.

Conclusion. By case 1 we conclude that the pushforward ��� of � through the canonical
projection � W S�Hm! Hm is the tensorial product of the Lebesgue measure in the com-
ponents … J and of a measure supported on a single equivalence class MJ

q . Thanks to the
invariance of � under the flows of @zj for j 2 J, this last measure is the uniform Dirac
delta measure (see Section 5.1.2) on MJ

q . Using case 2 we see that there exist homoge-
neous coordinates Œpz1 W � � � W pzm � such that in the fibers of S�Hm, � has mass only on
points having these homogeneous coordinates. Thanks to the invariance of � under the
flows of @zj for j 2 J we obtain that � is of the form ˛q ˝ ıp , i.e., � 2 BJ .

Thanks to the Krein–Milman theorem applied in the locally convex topological vec-
tor space consisting of all measures on S�Hm endowed with the weak-�K convergence
topology, it follows from Lemmas 29 and 30 that

CJ
\DJ

r is dense in the weak-�K topology in DJ
r : (5.9)

Now, we justify that

any �J
2 DJ is the weak-�K limit of a sequence �J

r 2 DJ
r as r !C1. (5.10)



Quantum limits of sub-Laplacians via joint spectral calculus 93

Let � 2 C1.RI Œ0; 1�/ such that �.x/D 0 for x � 1 and �.x/D 1 for x � 2. Let �J 2DJ .
We set for r 2 N�

�J
r D c

J
r �

J
Y
j2J

�

�
jpzj j

r

�
2 DJ

r :

Here cJ
r is a normalizing constant. Since 1S†J�J D �J , it follows that cJ

r tends to 1 as
r ! 0. By the dominated convergence theorem, we get that �J

r converges in the weak-*
topology towards �J , which proves (5.10) since CK.S�Hm/ � C 0.S�Hm/. Combining
(5.6), (5.9), and (5.10), this concludes the proof of Fact 27.

5.2.4. Proof of Fact 28. To prove Fact 28, we start with a preliminary statement, con-
cerning BJ .

Fact 31. Any � 2 BJ is a QL, associated to an L2.Hm/-normalized sequence of eigen-
functions which are also eigenfunctions of Rj and �j for j 2 J.

Proof of Fact 31. Let � DH
J
q;p 2B

J . In particular, .q;p/ 2 S†J . Thanks to Lemma 25,
we assume in the sequel that q D 0. Without loss of generality, we assume furthermore
that J D ¹1; : : : ; J º for some 1 � J � m.

We construct a sequence of eigenfunctions .'k/k2N� of �� which admits H
J
0;p as

unique QL. In our construction, for any k 2 N�, 'k belongs to the eigenspace H
J

.0/;. j̨;k/

for some . j̨;k/ 2 .N�/J , and it does not depend on the variables in the i -th copy of H for
i …J. Note also that the .0/ appearing in H

J

.0/;. j̨;k/
means that all 'k are eigenfunctions of

�j (j 2 J) with eigenvalue 2 � 0C 1 D 1. Our goal is to choose adequately the J -tuples
. j̨;k/j2J . A similar argument formD 1 is done in the proof of point (2) of Proposition 3.2
in [9].

We fix a sequence of J -tuples .˛1;k ; : : : ; ˛J;k/ 2 .Z n ¹0º/J , for k 2 N�, such that:

• For any 1 � j � J , j̨;k !C1 as k !C1.

• For any 1 � j , j 0 � J ,
j̨;k

j̨ 0;k

�����!
k!C1

pzj

pzj 0
; (5.11)

where Œpz1 W � � � Wpzm � are the homogeneous coordinates of p in S† (see Section 1.3.2).

Now, for any k 2 N�, denoting by 1 the constant function equal to 1 (on some copy
of H), we define

'k D ˆ
1
k ˝ � � � ˝ˆ

J
k ˝ 1˝ � � � ˝ 1„ ƒ‚ …

m�J times

; (5.12)

where, for 1 � j � J ,

ˆ
j

k
.xj ; yj ; zj / D �j;k.xj ; yj /e

i j̨;kzj (5.13)

is an eigenfunction of ��j (on the j -th copy of H) with eigenvalue j j̨;kj. The precise
form of �j;k will be given below.

In the next paragraphs, we explain how to choose �j;k in order to ensure that .'k/k2N�

has a unique QL, which is HJ
0;p .
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We first follow some arguments of the proof of [9, Proposition 3.2]. A Fourier expan-
sion in the zj variable yields (see for example [7, Section 2])

��j D
M
2Z

B ; where B D A�A C  for  2 Z (5.14)

where the operatorsA ,A� , andB act on the space of functions of the form eizjg.xj;yj/,
withA D @xj C i@yj C xj (the annihilation operator) andA� D�@xj C i@yj C xj (the
creation operator). We have ŒA ; A� � D 2 , hence the eigenspace of B corresponding to
the eigenvalue j j is of the form .ker.A //eizj .

We note that the function

fj;k.xj ; yj / D exp
�
� j̨;k

x2j C y
2
j

4
C
i

2
j̨;kxjyj

�
satisfies �

� @2xj � .@yj � i j̨;k/
2
�
fj;k D j̨;kfj;k

on R2, and its mass concentrates as k!C1 at the point .xj ;yj /D .0;0/. Let � WR2!R
be a smooth cut-off function equal to 1 near 0 and with small support. Then

�.xj ; yj /fj;k.xj ; yj /

can be seen as a function on the j -th copy of H. Up to multiplying �fj;k by a constant
(depending on j; k) we can assume that its L2-norm is equal to 1. Then

B
j̨;k
.�fj;k/ D j̨;k�fj;k C oL2.1/

since B
j̨;k
D �@2xj � .@yj � i j̨;k/

2 locally.
We denote by �j;k the projection of �fj;k on the j̨;k-eigenspace of B

j̨;k
. Our goal is

to prove that
�j;k D �fj;k C oL2.1/ (5.15)

as k !C1. We can decompose

�fj;k D �j;k C rj;k (5.16)

with rj;k orthogonal to �j;k . Applying B
j̨;k

to (5.16), we obtain

B
j̨;k
rj;k D j̨;krj;k C oL2.1/: (5.17)

We know that B
j̨;k

has eigenvalues .2nC 1/ j̨;k , n 2N, hence its lowest eigenvalue j̨;k

is well separated from the rest of the spectrum. This implies that

.B
j̨;k
rj;k ; rj;k/ � . j̨;k C "/krj;kk

2
L2

for some " > 0. Combined with (5.17), we obtain that rj;k D oL2.1/, which proves (5.15).
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For the above choice of �j;k , we consider 'k given by (5.12). Setting

fk D

JY
jD1

�.xj ; yj /fj;k.xj ; yj /e
i j̨;kzj

we deduce from (5.15) that
'k D fk C oL2.1/ (5.18)

as k !C1.
Let � be a QL of .'k/k2N� . We are going to prove that necessarily � D H

J
0;p . Firstly,

� is supported where xj D yj D 0 for any j 2 J; (5.19)

� is of the form � D mJ
˝ `…J (5.20)

where `…J has been introduced in Section 1.3.3 andmJ is a probability measure on S�HJ .
The first line comes from the fact that jfj;kj concentrates as k ! C1 on xj D yj D 0.
The second line comes from the fact that 'k does not depend on xi , yi , zi for i … J.

Also, let us justify that for any n 2 N�,

P J
n 'k D 'k (5.21)

for k sufficiently large (see (2.2) for the definition of P J
n , here Zi D @zi ). For this, we

notice that

�
Id ��sR

E

�
'k D

WD"k‚ …„ ƒ�
1C

P
j2J j j̨;kj

1C
P
j2J j j̨;kj C j j̨;kj

2

�
'k ;�

Z�i Zi

E

�
'k D 0 when i … J,�

Z�j Zj

E

�
'k D

�
j j̨;kj

2

1C
P
j 02J j j̨ 0;kj C j j̨ 0;kj

2

�
„ ƒ‚ …

WD�j;k

'k when j 2 J:

Using (5.11), we see that "k converges to 0 as k!C1, and �j;k converges for any j 2 J

to a non-zero limit as k !C1. This is sufficient to deduce (5.21).
From (5.21), we conclude that the mass of any QL of .'k/k2N� is contained in S†J

according to Lemma 14 (see also Lemma 13). Applying then Lemma 33, for any 1 �
i; j � J , to the operator @zi

@zj
�
pi
pj

, and using (5.11), we obtain that

� is supported in Hm
˝ ıp . (5.22)

Together with the fact that j'kj2 does not depend on z1; : : : ; zJ , this yields that

� is invariant under @z1 ; : : : ; @zJ . (5.23)

Combining (5.19), (5.20), (5.22) and (5.23), we obtain that � D H
J
0;p , which concludes

the proof of Fact 31.
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Proof of Fact 28. . We consider � 2 CJ , and we write

� D
X
i2F

ˇi H
J
qi ;pi

where F is a finite set,
P
i2F ˇi D 1, and for any i 2 F , ˇi � 0, .qi ; pi / 2 S†J . Note

that if i ¤ i 0, either HJ
qi ;pi D H

J

q0i ;p
0
i
, or the supports (in T �Hm) of HJ

qi ;pi and H
J

q0i ;p
0
i

are disjoint. Therefore, possibly grouping terms in the above sum, we assume that the
supports of HJ

qi ;pi and H
J

q0i ;p
0
i

are disjoint as soon as i ¤ i 0.
For i 2 F , using Fact 31, we consider a sequence of eigenfunctions .'i

k
/k2N� with

eigenvalues .�i
k
/k2N� and whose unique QL is H

J
qi ;pi . According to Fact 31, we can

also assume that 'i
k
2 H

J

.0/;.˛i
j;k
/

for some J -tuples .˛i
j;k
/j2J . For the moment, the only

condition imposed on the integers ˛i
j;k

is that they satisfy (5.11). For any fixed i 2 F and
any fixed k 2 N�, we can multiply all the ˛i

j;k
by a common factor ci;k , this does not

change (5.11). Choosing these factors adequately, we can hence assume that

�ik WD
X
j2J

j˛ij;kj

does not depend on i 2 F (but it depends on k). In other words,

• for any 1 � j � J , 'i
k

is also an eigenvalue of �j with eigenvalue 1;

• for any i; i 0 2 F , �i
k
D �i

0

k
and we denote this common value by �k . This means that

for any i 2F , 'i
k

belongs to the eigenspace of�� corresponding to the eigenvalue �k .

Since H
J
qi ;pi and H

J

q0i ;p
0
i

have disjoint supports, it follows by Lemma 15 that the eigen-
function of �� with eigenvalue �k

'k WD
X
i2F

ˇi'
i
k

admits �J as unique QL in the limit k !C1.

5.2.5. Step 3. Let us now finish the proof of Theorem 2. Let

�1 D
X

J2Pn¹¿º

cJ�
J

be a probability measure with �J 2 DJ and cJ � 0 for any J 2 P n ¹¿º.
Let .'J

k
/k2N� be a sequence of eigenfunctions of �� whose unique microlocal defect

measure is cJ�
J . The fact that in the proof of Lemma 26 we only impose the condition

(5.11) on the integers j̨;k guarantees that, for any k 2 N�, one may choose all 'J

k
, for J

running over P n ¹¿º, to have the same eigenvalue with respect to ��. Therefore,

'k D
X

J2Pn¹¿º

'
J

k
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is also an eigenfunction of ��. Moreover, since S†J and S†J0 are disjoint for any
distinct J;J0 2P n ¹¿º, computing .A'k ;'k/ for anyA2‰0.Hm/ in the limit k!C1,
we obtain by Lemma 15 that the unique QL of .'k/k2N� is �1. This concludes the proof
of Theorem 2.

6. Proof of Theorem 3

In this Section, we finally prove Theorem 3. Precisely, we prove that there exists a QL �
such that the equation E�J

s � D 0 is satisfied only for J D ¹1; 2º and s D .1
2
; 1
2
/ 2 S¹1;2º.

For this, we keep the notation (5.13). For k 2 N�, we set

'k D Ck
�
eikz1�1;k.x1; y1/e

ikz2�2;k.x2; y2/

C ei.kC1/z1�1;k.x1; y1/e
i.k�1/z2�2;k.x2; y2/

�
:

where Ck > 0 is a normalizing constant, so that k'kkL2.Hm/ D 1. Here �1;k and �2;k are
eigenfunctions of Bk (see (5.14)) with eigenvalue k. Theorem 3 will be a consequence of
the following proposition:

Proposition 32. .'k/k2N� has a unique QL, which is

� D C
��
1C cos.z1 � z2/

�
ıx1;x2;y1;y2

�
˝ ıp0 (6.1)

where C > 0 is a normalizing constant so that � is a probability measure, ıx1;x2;y1;y2
stands for the Dirac mass on x1 D x2 D y1 D y2 D 0, and the only non-null coordinates
of p0 D .p0x1 ; p

0
y1
; p0z1 ; : : : ; p

0
xm
; p0ym ; p

0
zm
/ are p0z1 D p

0
z2
¤ 0.

Proof of Proposition 32. Both

�1k D e
ikz1�1;k.x1; y1/e

ikz2�2;k.x2; y2/

and
�2k D e

i.kC1/z1�1;k.x1; y1/e
i.k�1/z2�2;k.x2; y2/

are eigenfunctions of ��, hence 'k is an eigenfunction of �� (with associated eigen-
value 2k). Let � be a QL of .'k/k2N� .

Firstly, we compute

j'kj
2
D C 2k

ˇ̌
�1;k.x1; y1/

ˇ̌2 ˇ̌
�2;k.x2; y2/

ˇ̌2�
1C cos.z1 � z2/

�
:

Denote by � W S�Hm ! Hm the canonical projection, and recall that ��� is a weak-*
limit of the sequence of functions j'kj2 on Hm (this follows by taking A to run over the
multiplication operators by continuous functions on Hm in Definition 1). Using that the
mass of �1;k (resp. �2;k) concentrates at x1 D y1 D 0 (resp. x2 D y2 D 0) as justified in
the proof of Fact 31, we obtain that

��� D C
��
1C cos.z1 � z2/

�
ıx1;x2;y1;y2

�
(6.2)

for some C > 0.
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We set J D ¹1; 2º. We notice that Z�1Z1 D j@z1 j
2 and Z�2Z2 D j@z2 j

2 act as multipli-
cation by jkj2 on �1

k
, and Z�j Zj D j@zj j

2 acts as 0 on �1
k

for j … J. Since �� acts as 2k,
we have for any fixed n 2 N

P J
n �

k
1 D �

k
1

when k is sufficiently large (see definition of P J
n in (2.2)). The same is true for �k2 . Hence,

� gives no mass to S�Hm n S†J according to Lemma 14.

Applying Lemma 33 to the operator @z1
@z2
� 1 and the sequence of functions 'k , we

obtain that � is supported where pz1 D pz2 . Due to (6.2), this implies (6.1).

We now conclude the proof of Theorem 3. We already know that � is concentrated on
S†J for J D ¹1; 2º. We want now to know for which s 2 SJ there holds E�J

s � D 0. Setting
s D .s1; s2; 0; : : : ; 0/, according to (6.1) we have

E�J
s � D 0, .s1@z1 C s2@z2/ cos.z1 � z2/ D 0, s1 D s2:

Hence � is invariant under E�J
s only for s D .1

2
; 1
2
/ 2 S¹1;2º.

A. Appendix

A.1. Classical pseudodifferential calculus

We briefly gather some basic facts of pseudodifferential calculus used along this paper
(see also [20, Chapter XVIII]).

Following our notations of Section 1, we denote by M a smooth compact manifold of
dimension n. We write Skhom.M/ for the set of positively homogeneous degree k functions
on the cone T �M n ¹0º., i.e., a 2 Skhom.M/ if a 2 C1.T �M/ and there exists R > 0 such
that for any .q; p/ 2 T �M with jpj � R, and any � � 1, we have a.q; �p/ D �ka.q; p/.
We also denote by Sk.M/ the set of polyhomogeneous symbols of degree k. Hence, a 2
Sk.M/ if a 2 C1.T �M/, and for any j 2 N there exists aj 2 S

k�j
hom .M/ such that for

any N 2 N, a �
PN
jD0 aj 2 Sk�N�1.M/.

We denote by ‰k.M/ the space of classical (polyhomogeneous) pseudodifferential
operators of order k on M . The algebra ‰.M/ of classical (polyhomogeneous) pseudod-
ifferential operators on M is graded according to the chain of inclusions ‰�1.M/ �

� � � � ‰k.M/ � ‰kC1.M/ � � � � :

To a pseudodifferential operator A 2 ‰m.M/, we can associate its principal symbol
�P .A/, and the map �P W ‰k.M/=‰k�1.M/! Skhom.M/ is bijective. A quantization is
a continuous linear mapping

Op W S0.M/! ‰0.M/

with �P .Op.a// D a. An example is obtained using partitions of unity and the standard
quantization which is given in local coordinates by

Opst.a/f .q/ D .2�/�n
Z

Rn�Rn

eihq�q
0;pia.q; p/f .q0/dq0dp: (A.1)
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This is the quantization we used by default in this paper. In Hm, choosing local coordi-
nates adapted to the product structure, we see that this quantization preserves the product
structure: if J � ¹1; : : : ;mº, and a (resp. a0) depends only on the coordinates .qj ; pj /j2J

(resp. on the coordinates .qj ; pj /j…J), then ŒOpst.a/;Opst.a0/� D 0.
We have the following properties:

• If A 2 ‰k.M/ and B 2 ‰`.M/, then AB 2 ‰kC`.M/ and �P .AB/D �P .A/�P .B/.

• If A 2 ‰k.M/ and B 2 ‰`.M/, then ŒA; B� 2 ‰kC`�1.M/ and

�P
�
ŒA; B�

�
D
1

i

®
�P .A/; �P .B/

¯
;

where the Poisson bracket is taken with respect to the canonical symplectic structure
of T �M .

Lemma 33. Let us assume that ` 2 N and P 2 ‰`.M/ is elliptic in any cone contained
in the complement of a closed conic set F � T �M . Assume that .uk/k2N� is a bounded
sequence in L2.M/ weakly converging to 0 and such that Puk ! 0 strongly in L2.M/.
Then any microlocal defect measure of .uk/k2N� is supported in F .

Proof. Let � be a microlocal defect measure of .uk/k2N� , i.e.,�
Op.a/u�.k/; u�.k/

�
�����!
k!C1

Z
S�M

ad�

for any a 2 S0.M/, where � is an extraction. Let a 2 S0.M/ be supported outside F . Let
Q 2 ‰�`.M/ be such that PQ � I 2 ‰�1.M/ on the support of a. Then QOp.a/P 2
‰0.M/ has principal symbol a, and therefore�

QOp.a/Pu�.k/; u�.k/
�
�����!
k!C1

Z
S�M

ad�:

Using that Pu�.k/! 0, we get .QOp.a/Pu�.k/; u�.k//! 0 as k!C1, and thereforeR
S�M

ad� D 0. Hence, � is supported in F .

A.2. The Martinet sub-Laplacian

In this section, we provide an example of a sub-Laplacian on a compact manifold which
satisfies Assumption 6 but which is not step 2, meaning that brackets of length � 3 of the
Xi are required to generate the whole tangent bundle, see (1.1).

To this end, we consider M D .R=2�Z/3 with coordinates x; y; z, endowed with the
Lebesgue measure d�D dxdydz. Let A be a smooth 1-form AD Axdx CAydy, where
Ax and Ay depend only on x and y. The 2-form B D dA D .@xAy � @yAx/dx ^ dy is
the “magnetic field” and b D @xAy � @yAx is its “strength”. We consider the vector fields
X1 D @x C Ax@z and X2 D @y C Ay@z . Then, ŒX1; X2� D b@z . Now, we choose A so
that b vanishes along a closed curve in .R=2�Z/2x;y , and .@xb; @yb/¤ 0 along this curve.
This construction is classical, see [27]. When adding the z-variable, this yields a surface
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S � M , called Martinet surface, on which ŒX1; X2� D 0 but some bracket of length 3 of
X1; X2 generates the missing direction of the tangent bundle thanks to .@xb; @yb/ ¤ 0. In
other words, the sub-Laplacian has step 3 on S. Nevertheless, Assumption 6 is satisfied
with Z1 D @z .

A.3. Quantum limits of flat contact manifolds

The study of QLs of higher dimensional contact manifolds is also an interesting problem.
In this section, we prove that for the natural sub-Laplacian defined on the quotient of the
Heisenberg group Hd of dimension 2d C 1 by one of its discrete cocompact subgroups,
the invariance properties of QLs are much simpler than those described in Theorem 1,
even though “frequencies” show up: the part of the QL which lies in S† is invariant under
the lift of the Reeb flow, as in the three-dimensional case.

We first define the Heisenberg group in any odd dimension and the associated sub-
Laplacian. For d � 1, we consider the group law on R2dC1 given by

.x; y; z/ ? .x0; y0; z0/ D .x C x0; y C y0; z C z0 � x � y0/

where x; x0; y; y0 2 Rd and z; z0 2 R. The Heisenberg group zHd is the group zHd D

.R2dC1; ?/. We consider the subgroup �d D .
p
2�Z/2d � 2�Z of zHd , and the left quo-

tient Hd D �dnzHd . We also define the 2d left invariant vector fields on Hd given by

Xj D @xj ; Yj D @yj � xj @z

for 1 � j � d . We fix ˇ1; : : : ; ˇd > 0 satisfying
Qd
jD1 ǰ D 1, we set ˇ D .ˇ1; : : : ; ˇd /

and we consider the sub-Laplacian

�ˇ D

dX
jD1

ǰ .X
2
j C Y

2
j / (A.2)

which is an operator acting on functions on Hd . The positive real numbers ǰ are some-
times called frequencies, see [1].

We set � D hZ j†, which is the Hamiltonian lift of the Reeb vector field Z D @z to †
(see [9, Section 2.3] for properties of the Reeb vector field).

Proposition 34. Let .'k/k2N� be a sequence of L2.Hd / consisting of normalized eigen-
functions of ��ˇ . Then, any QL �1 associated to .'k/k2N� and supported in S† is
invariant under et E�, the lift of the Reeb flow.

Remark 35. This result follows from [12, Theorem 2.10 (ii) (2)], but we provide here a
simple self-contained proof which illustrates the averaging techniques used in Section 4.

Remark 36. We do not expect such a result to be true when the frequencies ǰ are not
constant on the manifold.
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Proof of Proposition 34. Denoting by .q;p/ the canonical coordinates in T �Hd , i.e., q D
.x1; : : : ; xd ; y1; : : : ; yd ; z/ and p D .px1 ; : : : ; pxd ; py1 ; : : : ; pyd ; pz/, we know that

† D
®
.q; p/ 2 T �Hd ; pxj D pyj � xjpz D 0

¯
is isomorphic to Hd �R.

Up to extraction of a subsequence, we may assume that .'k/k2N� has a unique QL
�1, which is supported in S†. We set R D

p
@�z@z and, on its eigenspaces corresponding

to non-zero eigenvalues, we define �j D �R�1.X2j C Y
2
j / D �.X

2
j C Y

2
j /R

�1 for 1 �
j � d . On these eigenspaces, the sub-Laplacian acts as

��ˇ D R� D �R with � D
dX
jD1

ǰ�j

and ŒR;�� D 0.
Replacing 'k by �. R2

Id��ˇCR2
/'k for some smooth function � 2 C1.R/ vanishing

near 0 and equal to 1 near in a neighborhood of 1 does not change the QL since �1
is supported in S†. In the sequel, an operator T is said microlocally supported in the
�-neighborhood of † if it verifies

T D �
� R2

Id ��ˇ CR2

�
T�
� R2

Id ��ˇ CR2

�
:

If B 2 ‰0.Hd / is microlocally supported in the �-neighborhood of † and commutes
with �, then�

ŒB;R�'k ; 'k
�
D

1

�k
.BR'k ;��ˇ'k/ �

1

�k

�
RB.��ˇ /'k ; 'k

�
D

1

�k
.BR'k ; R�'k/ �

1

�k

�
RBR�'k ; 'k

�
D

1

�k

�
Œ�;RBR�'k ; 'k

�
D 0: (A.3)

Let U.t/ D U.t1; : : : ; td / D ei.t1�1C���Ctd�d / for t D .t1; : : : ; td / 2 .R=2�Z/d . For A 2
‰0.Hd / microlocally supported in the �-neighborhood of †, we consider

zA D

Z
.R=2�Z/d

U.�t /AU.t/dt

which is also microlocally supported in the �-neighborhood of †. We argue as in Section
3.3: due to the definition of †,

�P .�j / D h
�1
R .h

2
Xj
C h2Yj /

vanishes at order 2 on†. Thus the Hamiltonian vector field associated to �P .�j / vanishes
on †, and the associated Hamiltonian flow is stationary on †.
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Using Egorov’s theorem as in the proof of Lemma 19, we deduce that �P .A/ and
�P . zA/ coincide on †. Moreover, as in the proof of Lemma 19, Œ zA; �� D 0. Therefore,
using the computation (A.3) with B D zA, we obtainZ

†

E�
�
�P .A/

�
d�1 D

Z
†

E�
�
�P . zA/

�
d�1 D lim

k!C1

1

i

�
Œ zA;R�'k ; 'k

�
D 0:

Combining the facts that it is true for anyAmicrolocally supported in the �-neighborhood
of † and that �1 is supported in S†, this implies that �1 is invariant under the flow et E�.
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