
Doc. Math. 28 (2023), 11–53
DOI 10.4171/DM/912

© 2023 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Hochschild cohomology of generalised Grassmannians

Pieter Belmans and Maxim Smirnov

Abstract. We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild co-
homology of generalised Grassmannians, i.e., partial flag varieties associated to maximal parabolic
subgroups in a simple algebraic group, in terms of representation-theoretic data. We explain how the
decomposition is concentrated in global sections for the (co)minuscule and (co)adjoint generalised
Grassmannians, and conjecture that for (almost) all other cases the same vanishing of the higher
cohomology does not hold. Our methods give an explicit partial description of the Gerstenhaber
algebra structure for the Hochschild cohomology of cominuscule and adjoint generalised Grass-
mannians. We also consider the case of adjoint partial flag varieties in type A, which are associated
to certain submaximal parabolic subgroups.

1. Introduction

For partial flag varieties, or compact homogeneous spaces, it has been an important ques-
tion to compute topological and geometric invariants of G=P in terms of representation-
theoretic data. This has a long and rich history, starting with the works of Borel and
Hirzebruch. Examples of these invariants are singular cohomology [5] or quantum coho-
mology [19], and equivariant variations thereupon [10, 38].

In this paper we consider another important algebro-geometric invariant: Hochschild
cohomology, denoted HH�.G=P /D

L
i�0HHi .G=P /. It controls the (generalised) defor-

mation theory [34, 35], it is related to Poisson geometry [42], and it comes equipped with
a rich algebraic structure. It has not been considered before for partial flag varieties, and
the results in this paper suggest many interesting features arising in this setting.

One can explicitly compute HHi .X/ of a smooth variety X (at least as a vector space,
and in characteristic 0), using the Hochschild–Kostant–Rosenberg decomposition [15],
which expresses it as the direct sum

HHi .X/ Š
M
pCqDi

Hq
�
X;
^p

TX
�

(1.1)

in terms of polyvector fields. Whilst formally similar to the Hodge decomposition of the
cohomology of X , the right-hand side is more complicated to compute, as for instance
there are no symmetries induced by Serre duality or Hodge symmetry.
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In this paper we discuss the case where X is of the form G=P , where G is a simple
algebraic group defined over an algebraically closed field of characteristic 0, and P is
either

• a maximal parabolic subgroup, in which case we call G=P a generalised Grassman-
nian, including when G is of exceptional type;

• the submaximal parabolic subgroup in type An corresponding to the adjoint case, in
which case we have that G=P D Fl.1; n; nC 1/.

The starting point for this paper is the question whether these varieties are what we
will call Hochschild global, i.e., whether

Hq
�
G=P;

^p
TG=P

�
D 0 8q � 1; (1.2)

so that the Hochschild–Kostant–Rosenberg decomposition (1.1) is concentrated in global
sections. Amongst experts there was the expectation that this would indeed be the case for
partial flag varieties.

Upon replacing exterior powers of the tangent bundle by symmetric powers of the
tangent bundle, it can be shown using Grauert–Riemenschneider vanishing and the Leray
spectral sequence (see [7, Section A2]) that

Hq.G=P;Symp TG=P / D 0 8q � 1; (1.3)

as Sym� TG=P are the functions on the total space of the cotangent bundle. So (1.2) can
be seen as an odd version of the vanishing in (1.3).

Instead of Hochschild cohomology, one could also study Hochschild homology. Here
the Hochschild–Kostant–Rosenberg decomposition takes on the form

HHi .X/ Š
M
p�qDi

Hq.X;�pX /;

which involves more familiar invariants when working over the complex numbers: the
pieces of the Hodge decomposition. The description of these is amenable to topological
methods as in [6, Section 24]. For Hochschild cohomology such topological methods are
not available and new tools are needed.

Algebraic structures. Hochschild cohomology comes equipped with a rich structure,
namely that of a Gerstenhaber algebra. This combines a graded-commutative cup product
with a graded Lie algebra structure of degree �1, the Gerstenhaber bracket, which are
related via the Poisson identity. Two important features of the Gerstenhaber bracket are
that

(1) in the setting of G=P the degree-1 component HH1.G=P / is a Lie subalgebra
given by LieG D g (outside a few exceptional cases, see Remark 3 and Lemma 4),
which equips all the HHi .G=P / with the structure of a g-representation;
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(2) the self-bracket Œ˛; ˛� 2 HH3.G=P / for a class

˛ 2 HH2.G=P / D H0
�
G=P;

^2
TG=P

�
can be identified with the Schouten self-bracket1, whose vanishing is precisely the
condition that a bivector ˛ 2 H0.G=P;

V2 TG=P / gives a Poisson structure.

The first feature gives us a convenient method to describe the vector spaces HHi .G=P /
as representations of g. The second feature on the other hand highlights that one of the
natural next steps in the description of the Gerstenhaber algebra structure (namely the
self-bracket of two classes in degree 2) is very complicated, as this description is only
known for the generalised Grassmannians P3 and Q3 [33, 42], with a classification in
higher dimensions being wide open, see also Remark 20.

Vanishing. The first result we describe is a positive answer to the vanishing question
suggested above in an important class of examples. The notions of (co)minuscule and
(co)adjoint are recalled in Section 2.2, in particular the following theorem concerns the
varieties listed in Tables 2–4.

Theorem A (Vanishing). Let G=P be either a generalised Grassmannian which is
(co)minuscule or (co)adjoint, or an adjoint partial flag variety in type An. Then

Hq
�
G=P;

^p
TG=P

�
D 0 8q � 1:

For generalised Grassmannians this vanishing result can in fact be deduced from the
vanishing results in [29], but we will give a streamlined proof below. The vanishing in the
adjoint case in type An is new and a representation-theoretic proof is given. Alternatively
the vanishing can be deduced using the description of the adjoint partial flag variety in
type An as P .TPn/.

The complication (outside the cominuscule case) is that
Vi TG=P is an equivariant

vector bundle, but it is not completely reducible. Therefore one cannot immediately apply
the Borel–Weil–Bott theorem. This can be dealt with by using an appropriate filtration
on the exterior powers of the tangent bundle so that the associated graded is completely
reducible, and one has a spectral sequence (3.3) computing the cohomology we are inter-
ested in.

An explicit description. In almost all cases covered by Theorem A we can actually give
a description of the Hochschild cohomology HHi .G=P / as a representation of the Lie
algebra HH1.G=P / Š g. By Remark 7 we can and will ignore the minuscule case. In the
cominuscule case we can state the following theorem giving this description.

1This identification needs to use Kontsevich’s refined Hochschild–Kostant–Rosenberg isomorphism
giving an isomorphism of Gerstenhaber algebras between Hochschild cohomology and the cohomology
of exterior powers of the tangent bundle. But by the vanishing Hi .G=P;TG=P / D 0 for all i � 1 [8, The-
orem VII], so that G=P is (locally) rigid as a variety, we obtain an identification of the two brackets for
classes of degree 2. See Section 2.4 for more details.
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Theorem B (Cominuscule decomposition). LetG=P be a cominuscule generalised Grass-
mannian, where P is associated to the cominuscule weight !k . Then

HHi .G=P / Š H0
�
G=P;

^i
TG=P

�
Š

M
w2 lW

`.w/DdimG=P�i

V
w �0CiG=P !k
g (1.4)

as representations of HH1.G=P /Š g, where l is the Lie algebra of the Levi quotient of P .

Here iG=P denotes the index ofG=P , i.e., the maximal integer r such that we can write
the anticanonical line bundle !_

G=P
as L˝r for an ample line bundle L, and lW are the

minimal length coset representatives of the Weyl group Wl in Wg. This decomposition
is obtained from Kostant’s theorem on the Lie algebra cohomology for the nilradical of a
parabolic subalgebra [30, Corollary 8.2].

Outside this particularly nice situation the description of the Hochschild cohomology
becomes more complicated, and no existing results can be applied. The adjoint case is
closest in complexity to the cominuscule case, in which case we obtain the following
description. For notational ease, we will write

K.G; P; i; j / WD
M
w2 lW

`.w/DdimG=P�i

V
w �0C.iG=P Cj /!k
g

as a g-representation, where the right-hand side describes the result of a suitable modific-
ation of Kostant’s description of the Lie algebra cohomology of the nilradical of LieP .
For our application we want to restrict this sum to those weights w � 0 C .iG=P Cj /!k
which are regular, for which we will use the notation

K.G; P; i; j /reg: (1.5)

Theorem C (Adjoint decomposition). LetG=P be an adjoint generalised Grassmannian,
or the adjoint partial flag variety of type An. Then dimG=P D 2r C 1 for some r , and

HHi .G=P / Š H0
�
G=P;

^i
TG=P

�

Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

 
b i2 cL
pD0

Kreg.G; P; i � 2p; p/

!
˚

 
b i�12 cL
pD0

Kreg.G; P; i � 2p � 1; p C 1/

!
i � r 

b 2r�i2 cL
pD0

Kreg.G; P; i C 1C 2p;�p � 1/

!
˚

 
b
2r�iC1

2 cL
pD0

Kreg.G; P; i C 2p;�p � 2/

!
i � r

(1.6)

as representations of HH1.G=P / Š g.
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All these results only give a small piece of the whole Gerstenhaber algebra structure,
see Remark 20 for more details.

Non-vanishing. In addition to the vanishing results and explicit descriptions obtained
above we want to highlight the following surprising phenomenon, showing that the expec-
ted vanishing does not always hold, even for maximal parabolic subgroups, contrary to
experts’ belief.

Proposition D. For all n � 4 we have that

H1
�

SGr.3; 2n/;
^2

TSGr.3;2n/

�
Š V!4sp2n

;

as representations of HH1.SGr.3; 2n// Š sp2n.

Here SGr.3; 2n/ is the symplectic Grassmannian parametrising 3-dimensional iso-
tropic subspaces of a 2n-dimensional symplectic vector space, associated to the maximal
parabolic subgroup P3 of a simple group of type Cn.

In particular, not every generalised Grassmannian is Hochschild global in the sense
of (1.2). That this can happen for full flag varieties became clear after computer calcula-
tions by Knutson and Schedler for the flag variety G=B in type A (see [39, Remark 2.2])
and the generalisation of these computer calculations to all Dynkin types (but still for
the full flag variety) by the authors. But any systematic description is out of reach in
this setting.

Bott vanishing. Bott vanishing is a strong vanishing property for the sheaf cohomology
of certain vector bundles on Pn, subsequently generalised to certain other settings. We
refer to Section 5.3 for more context. In particular, it is expected to fail for all G=P which
are not projective space. Proposition D gives the following corollary.

Corollary E. Bott vanishing fails for SGr.3; 2n/.

This gives the first instance of the failure of Bott vanishing for generalised Grassman-
nians in the non-cominuscule case. For generalised Grassmannians this was only known
in the cominuscule case [11, Section 4.3] using the method used for Theorem B.

Conjectural non-vanishing. The methods to prove the non-vanishing in Proposition D
can be implemented in computer algebra, and computations up to rank 10 for maximal
parabolic subgroups show that the vanishing result in Theorem A is in fact (very close to)
an if and only if in these cases. Let us phrase this optimistically as the following conjec-
ture, with an important caveat being discussed in Remark 1.

Conjecture F. Let G=P be a generalised Grassmannian which is not (co)minuscule or
(co)adjoint. Then

Hq
�
G=P;

^p
TG=P

�
¤ 0

for some p � 2 and q � 1.
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Remark 1. The conjecture is phrased optimistically: there is one family of generalised
Grassmannians where our computational methods do not give a definitive answer. These
are the orthogonal Grassmannians OGr.n � 1; 2nC 1/ for n � 4 associated to a simple
algebraic group of type Bn and the maximal parabolic subgroup Pn�1. As explained in
Section 5.2 our methods are inconclusive because it is possible that all higher cohomo-
logy gets cancelled in the spectral sequence we use to analyse the Hochschild–Kostant–
Rosenberg decomposition.

For all other cases up to rank 10 (except E8) the computer calculations precisely tell
us that all generalised Grassmannians in Conjecture F are not Hochschild global in the
sense of (1.2). Hence there is ample computational evidence for the conjecture.

The conjecture is only phrased for generalised Grassmannians. For G of rank up to 3,
and also in type A4, it has been computationally confirmed in [22] thatG=P is Hochschild
global in the sense of (1.2) for all possible parabolic subgroups P . For G=B in type A4
this was also confirmed in [25, Example 3.3]. This is consistent with the computations
due to Knutson–Schedler and ourselves for full flag varieties in arbitrary type, where the
non-vanishing in type A starts for rank � 5, and e.g. in other types occurs for G=B in
type D5 or F4.

Related works. Some related computations appear in [22, 25]. The methods in op. cit.
are different from ours, using the Bernstein–Gelfand–Gelfand resolution in relative Lie
algebra cohomology to compute multiplicities of representations in the sheaf cohomology
of polyvector fields, using [31, Proposition 2.8].

We expect the interaction between the methods from op. cit. and this paper will prove
useful in understanding the precise conjecture for generalised Grassmannians, and the
general picture for arbitrary partial flag varieties.

In [3] the Hochschild cohomology of Fano 3-folds is computed, also using represen-
tation-theoretic methods.

Structure of the paper. We start with a lengthy introduction in Section 2, in order
to make the computations accessible to algebraic geometers without a representation-
theoretic background. In Section 3 we give a self-contained proof of Theorem A. This
result can be deduced from [29], but we will reprove it to set up the notation and machinery
for later arguments.

In Section 4 we will then prove Theorems B and C. We will illustrate both descriptions
in some examples.

In Section 5 we show that not every generalised Grassmannian is Hochschild global in
sense of (1.2) by explicitly studying the first example where this is the case. We moreover
discuss the phenomenon discussed in Remark 1, and the link with Bott vanishing.
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2. Preliminaries

2.1. Setup and notation

For the purposes of our paper it is enough to work with homogenous spaces G=P , where
G is assumed to be a connected simply-connected simple algebraic group over k. Most of
the time the parabolic subgroup P is assumed to be maximal. Below we recall the relevant
notation, mostly following [27, Section II.1].

Roots and coroots. Let G be a connected simply-connected simple algebraic group
over k. Let T � G be a maximal torus and let X.T / be its group of characters. The group
G acts on its Lie algebra gD Lie.G/ via the adjoint action and we obtain a decomposition
into root spaces

g D t˚
M
˛2R

g˛;

where t D Lie.T / and R D R.G/ � X.T / are the roots of G.
Let Y.T / be the group of cocharacters of T . We denote by

h�;�iWX.T / � Y.T /! Z (2.1)

the natural perfect pairing that gives rise to an isomorphism of abelian groups

Y.T / Š HomZ

�
X.T /;Z

�
:

For each root ˛ 2 R there is a uniquely defined coroot ˛_ 2 Y.T /, and the set of roots
R together with the map ˛ 7! ˛_ defines a root system in X.T /R in the sense of [9,
Chapter VI, Section 1, no. 1]. For each ˛ 2 R we denote by s˛ the corresponding reflection
on X.T /

s˛.�/ D � � h�; ˛
_
i˛;

and we extend it to X.T /R (resp. X.T /Q) by extending ˛_ 2 Y.T / Š X.T /_ to X.T /R
(resp. X.T /Q).

The reflections s˛ for ˛ 2 R generate the Weyl group of G

WG D hs˛ j ˛ 2 Ri Š NG.T /=T:

The Weyl group acts linearly on X.T / and Y.T / and leaves pairing (2.1) invariant.

Weights and coweights. Let RC � R be a subset of positive roots and S � RC be the
simple roots. We denote by R� D �RC the negative roots. We define an order � on X.T /
by setting

� � � ” � � � 2
X
˛2S

Z�0 ˛:

Since G is semisimple, the simple roots S form a basis of X.T /Q and the corresponding
simple coroots S_ D ¹˛_ j ˛ 2 Sº � Y.T / form a basis of Y.T /Q.
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We define the fundamental weights .!˛/˛2S 2 X.T /Q by

h!˛; ˇ
_
i D ı˛;ˇ for ˛; ˇ 2 S;

and the fundamental coweights .!_˛ /˛2S 2 Y.T /Q by

h˛; !_ˇ i D ı˛;ˇ for ˛; ˇ 2 S:

A priori the fundamental weights !˛ live in X.T /Q. However, since we assume G to
be simply-connected, they live in X.T / and form a basis of it. Consequently, the simple
coroots form the dual basis of Y.T /.

A weight � D
P
˛2S `˛!˛ 2 X.T / is called G-dominant (or simply dominant) if

h�; ˛_i � 0 for all ˛ 2 S ” `˛ � 0 for all ˛ 2 S:

Fundamental weights form a cone X.T /CG � X.T / called the dominant cone.
A weight �D

P
˛2S `˛!˛ 2 X.T /CG is called strictly dominant if `˛ > 0 for all ˛ 2 S.

For � 2 X.T / we denote by �_ the unique coweight defined by the identity

h�; ˛_i D h˛; �_i for all ˛ 2 S:

Thus, for �D
P
˛2S `˛!˛ we have �_D

P
˛2S `˛!

_
˛ . In particular, we have .!˛/_D!_˛ .

We define the weight

� D
X
˛2S

!˛ D
1

2

X
˛2RC

˛

and the dot-action of WG on X.T / by the formula

w � � D w.�C �/ � �:

Since G is simple, its root system is irreducible, and therefore there exists (up to a
non-zero factor) a unique WG-invariant scalar product on X.T /R, (see [9, Chapter VI,
Section 1, no. 2])

.�;�/WX.T /R � X.T /R ! R: (2.2)

We choose the standard scaling as in [9]. Now using (2.2) we can identify X.T /R and
Y.T /R. Thus, for us both roots and coroots will live in the same space X.T /R and we
have

˛_ D
2

.˛; ˛/
˛ for ˛ 2 R:

Parabolic subgroups. We denote by BC and B the Borel subgroups of G corresponding
to the positive and negative roots respectively. We have

BC \ B D T:

We want to stress that B corresponds to the negative roots.
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For subset I � S one defines the standard parabolic subgroup P containing B such
that

P D LU D L⋉ U

where L is the Levi factor of P and U is the unipotent radical of P , and the subset of
simple roots of the (reductive) groupL is precisely I . The groupL is a reductive subgroup
of G containing T and its roots with respect to T are

RL D R \ ZI:

We also introduce the notation

SL D S \ RL D I and R˙L D RL \ R˙:

For the Weyl group of L we have

WL D hs˛ j ˛ 2 RLi;

and it is generated by the simple reflections s˛ with ˛ 2 I .

Associated Lie algebras. We denote Lie algebras of the aforementioned algebraic groups
by

g D Lie.G/; t D Lie.T /; b D Lie.B/;

p D Lie.P /; l D Lie.L/; n D Lie.U /:

We have the following decompositions

g D t˚
M
˛2R

g˛; b D t˚
M
˛2R�

g˛;

p D l˚ n;

l D t˚
M
˛2RL

g˛; p D t˚
M

˛2R�[RL

g˛; n D
M

˛2R�nR�L

g˛:

Varieties. In Section 2.2 we will introduce the partial flag varieties of interest, for which
we use the following notation:

• Qn, the n-dimensional smooth quadric hypersurface in PnC1;

• Gr.d; n/, the Grassmannian of d -subspaces in an n-dimensional vector space;

• OGr.d; n/, the orthogonal Grassmannian of isotropic d -dimensional subspaces in an
n-dimensional vector space equipped with a nondegenerate symmetric bilinear form,
which is an isotropic Grassmannian in type B (resp. D) depending on the parity of n;

• SGr.d; 2n/, the symplectic Grassmannian of isotropic d -dimensional subspaces in
a 2n-dimensional vector space equipped with a nondegenerate skew-symmetric bilin-
ear form, which is an isotropic Grassmannian in type C.
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Representations and equivariant vector bundles. The representation theory of simple
Lie algebras and algebraic groups allows us to describe irreducible representations using
highest weights; and as the categories of representations are equivalent we will inter-
changeably use g and G. We will denote

• V�g (resp. V�G), the irreducible g-representation (resp. G-representation) associated to
the g-dominant highest weight � 2 X.T /Cg ;

• V�l (resp. V�L), the irreducible l-representation (resp. L-representation) associated to
the l-dominant highest weight � 2 X.T /Cl ;

• E�, the G-equivariant vector bundle on G=P associated to V�l .

Notation for tables. In some cases we will give a description of the associated graded
of
Vp TG=P in the sense of Definition 22, see Tables 5–7. Each row is an irreducible

summand, and the columns are to be interpreted as:

weight the weight of the (irreducible) vector bundle, as a coefficient vector for the
fundamental weights

rank the rank of the vector bundle

degree the degree in which its cohomology lives according to the Borel–Weil–
Bott theorem, or empty if the weight is not regular in the setting of Borel–
Weil–Bott

representation if the cohomology is nonzero, the highest weight of the representation
obtained from the Borel–Weil–Bott theorem

dimension the dimension of this representation, if nonzero

sum of roots the weight of the vector bundle, as a coefficient vector for the simple roots

The coefficient vectors are given with respect to the fundamental weights (resp. the simple
roots) instead of an explicit description of the weight, using the labeling of the vertices
from Bourbaki [9] and recalled in Table 1.

2.2. Partial flag varieties

Here we fix notation and terminology related to partial flag varieties G=P .

Classification of partial flag varieties. To isolate certain well-behaved families of partial
flag varieties, we need to talk about their explicit geometric realisation, although the proofs
will not use this. We will use the Bourbaki convention for labelling the simple roots, which
is recalled in Table 1.

To a G-dominant weight � 2 X.T /CG , we associate the unique closed G-orbit in
P ..V�G/

_/. This is the orbit of the (line spanned by) the lowest weight vector v�� of
weight�� of the representation .V�G/

_ and its stabiliser is the standard parabolic subgroup
P associated to the subset I � S defined by

I WD
®
˛ 2 S j .˛; �/ D 0

¯
� S:

This gives an explicit realisation of G=P .
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type labelling

An
1 2 n � 1 n

Bn
1 2 n � 2 n � 1 n

Cn
1 2 n � 2 n � 1 n

Dn

1 2 n � 3

n � 2

n � 1

n

E6
1

2

3 4 5 6

E7
1

2

3 4 5 6 7

E8
1

2

3 4 5 6 7 8

F4
1 2 3 4

G2
1 2

Table 1. Bourbaki labelling for simple roots.

We will specify a partial flag variety by describing the (sum of) simple roots which are
not included in the parabolic subgroup, e.g. .An; ˛1/ corresponds to PnC1. For a maximal
parabolic subgroup there thus is a single simple root. In general we can describe P by
crossing out these simple roots in the Dynkin diagram. Hence .An; ˛1/ is described by

:

When P is a maximal parabolic subgroup we will say that the partial flag variety G=P is
a generalised Grassmannian.

The two following remarks explain why we can and will ignore certain descriptions of
generalised Grassmannians.

Remark 2. Exceptional isomorphisms of Lie algebras in low rank and symmetries of the
Dynkin diagrams account for the following isomorphisms of generalised Grassmannians:

• .An; ˛i / D .An; ˛nC1�i /, as Gr.i; nC 1/ Š Gr.n � i; nC 1/;

• .A3; ˛2/ D .D3; ˛1/, which are isomorphic to Q4;

• .Dn; ˛n�1/ D .Dn; ˛n/, the n.n � 1/=2-dimensional spinor variety, which is one of
the connected components of the space of maximal isotropic subspaces for a nonde-
generate symmetric bilinear form in a 2n-dimensional vector space;
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• .D4; ˛1/ D .D4; ˛3/ D .D4; ˛4/, which are isomorphic to Q6;

• .E6; ˛1/ D .E6; ˛6/, the Cayley plane;

• .E6; ˛3/ D .E6; ˛5/.

Remark 3. On the other hand one also has the following exotic isomorphisms which are
not related to an exceptional isomorphism of the associated simple Lie algebras or an
obvious symmetry of the Dynkin diagram:

(1) .Bn�1; ˛n�1/D .Dn; ˛n/, giving an alternative description of the spinor varieties;

(2) .Cn; ˛1/ D .A2n�1; ˛1/, isomorphic to P2n�1;

(3) .G2; ˛1/ D .B3; ˛1/, isomorphic to Q5.

This second class of exotic isomorphisms explains the caveat in the following lemma
[18, Section 2].

Lemma 4. Let G=P be a partial flag variety. Then

H0.G=P;TG=P / Š g;

unless P is a maximal parabolic subgroup and G=P is of type .Bn; ˛n/, .Cn; ˛1/ or
.G2; ˛1/.

In the cases which are ruled out in the statement of the lemma, we notice that we
obtain a Lie subalgebra of the Lie algebra associated to the automorphism group of G=P .
We will exclude these cases without further mention from our analysis.

Cominuscule and (co)adjoint partial flag varieties. We will now introduce the termin-
ology used to distinguish several special classes of partial flag varieties. These go by
different names in the literature, but we will be using the terminology from [17] and men-
tion other terminology as we go along. Here we will use the explicit geometric realisation
of G=P as the unique closed orbit in P ..V�G/

_/.

Definition 5. Let � 2 X.T /CG be a dominant weight of G. We will say that � is

(1) minuscule if
.�; ˛_/ � 1 8˛ 2 RC

(2) cominuscule if
.˛; �_/ � 1 8˛ 2 RC (2.3)

(3) adjoint if � is the highest weight of the adjoint representation2 of G, i.e., � D ‚
is the highest (long) root of G;

(4) coadjoint if � is the highest short root � .

2Since G is assumed to be simple, its adjoint representation is irreducible.
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type variety diagram dimension index Cartan label

.An; ˛1/ Pn n nC 1 AIII

.An; ˛2/ Gr.2; nC 1/ 2.n � 1/ nC 1 AIII

.An; ˛i /
:::

:::
:::

:::

.An; ˛n�1/ Gr.n � 2; nC 1/ Š Gr.2; nC 1/ 2.n � 1/ nC 1 AIII

.An; ˛n/ Pn;_ Š Pn n nC 1 AIII

.Bn; ˛1/ Q2n�1 2n � 1 2n � 1 BDI

.Cn; ˛n/ SGr.n; 2n/ D LGr.2n/ n.nC 1/=2 nC 1 CI

.Dn; ˛1/ Q2n�2 2n � 2 2n � 2 BDI

.Dn; ˛n�1/ D .Dn; ˛n/ OGr.n � 1; 2n/ n.n � 1/=2 2n � 2 DIII

.E6; ˛1/ D .E6; ˛6/ Cayley plane 16 12 EIII

.E7; ˛7/ Freudenthal variety 27 17 EVII

Table 2. Cominuscule partial flag varieties.

Note that if G is simply-laced, then the notions of minuscule and cominuscule (resp.
adjoint and coadjoint) coincide.

Definition 6. Let P be the standard parabolic subgroup of G associated to a weight �.
Then we say that the partial flag variety G=P is minuscule (resp. cominuscule, adjoint,
coadjoint) if � is. In such a case we also call the parabolicP minuscule (resp. cominuscule,
adjoint, coadjoint).

Remark 7. For the purposes of our analysis we can ignore the minuscule case. The
only generalised Grassmannians which are minuscule but not cominuscule are associ-
ated to .Bn; ˛n/ and .Cn; ˛1/ respectively. But by Remark 3 these are isomorphic to the
generalised Grassmannians associated to .DnC1; ˛nC1/ and .A2n; ˛1/ respectively, which
are cominuscule as can be seen in Table 2, and we will use the latter realisations for our
analysis.

In Table 2 we have collected the cominuscule generalised Grassmannians, and their
relevant properties.

Remark 8. Over the complex numbers cominuscule generalised Grassmannians are also
known as compact hermitian symmetric spaces, and they are often referred to as such in
the literature. We have included the Cartan labelling for them in Table 2.

For each Dynkin type and rank there is a unique adjoint partial flag variety. In Table 3
we have collected the adjoint partial flag varieties (excluding type C, see below), and their
relevant properties.

Two special cases for us are

• in type A, where it is not a generalised Grassmannian, as the associated parabolic sub-
group is submaximal such that rk PicG=P D 2: in this case it is isomorphic to P .TPn/,
the relative Proj of Sym� T_Pn ;
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type variety diagram dimension index
.An; ˛1 C ˛n/ P .TPn/ 2n � 1 n

.Bn; ˛2/ OGr.2; 2nC 1/ 4n � 5 2n � 2

.Dn; ˛2/ OGr.2; 2n/ 4n � 7 2n � 3

.E6; ˛2/ 21 11

.E7; ˛1/ 33 17

.E8; ˛8/ 57 29

.F4; ˛1/ 15 8

.G2; ˛2/ G2Gr.2; 7/ 5 3

Table 3. Adjoint partial flag varieties.

type variety diagram dimension index
.Cn; ˛2/ SGr.2; 2n/ 4n � 5 nC 1

.F4; ˛4/ 15 11

Table 4. Coadjoint but not adjoint partial flag varieties.

• in type C, where the highest root is 2!1, but by Remark 3 these generalised Grass-
mannians are isomorphic to P2n�1 (and the adjoint realisation is the second Veronese
embedding) and will be omitted from the analysis.

Finally, similar to Remark 7 we need to consider the non-simply-laced case and clas-
sify the coadjoint but not adjoint partial flag varieties. These cannot be omitted from the
analysis. In Table 4 we have collected the remaining coadjoint partial flag varieties, and
their relevant properties.

For more on the geometry of generalised Grassmannians one is referred to [2].

Equivariant vector bundles and Borel–Weil–Bott. For a partial flag variety there exists
an equivalence

cohG G=P Š repP (2.4)

of monoidal abelian categories between the category of G-equivariant vector bundles on
G=P and the category of finite-dimensional representations of P [4, 23]; under this equi-
valence a G-equivariant vector bundle E is sent to its fiber EŒP � at the point ŒP � 2 G=P .
As P is not reductive, the category repP is not semisimple and its representation theory
is hard to understand. An interesting full subcategory of repP is given by repss P , with
objects the completely reducible representations, which is a semisimple category. We have

repss P Š repL � repP Š cohG G=P; (2.5)

where L is the Levi factor L � P (see Section 2.1).
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Given an L-dominant weight � 2 X.T /CL we get an irreducible L-representation V�L
with the highest weight �, which we can extend to a representation of P by letting the
unipotent radical U act trivially, and hence a G-equivariant vector bundle E� on G=P .

Unfortunately, the inclusion in (2.5) is strict, and not all equivariant vector bundles we
are interested in arise as representations of L, see Section 3.1. But for those which are
associated to completely reducible representations, there is a strong tool to compute their
sheaf cohomology: the Borel–Weil–Bott theorem.

Recall that a weight � 2 X.T /G is called G-regular (or regular), if it does not lie on
a wall of a Weyl chamber of G. Equivalently, a weight � is regular if and only if

.�; ˛/ ¤ 0 8˛ 2 R:

Otherwise the weight is called G-singular (or singular).

Theorem 9 (Borel–Weil–Bott). Let E� be theG-equivariant vector bundle onG=P given
by the irreducible L-representation with highest weight � 2 X.T /CL . Then one of the fol-
lowing holds:

(1) if �C � is G-singular, then

Hi .G=P;E�/ D 0

for all i ;

(2) if �C � is G-regular, then there exists a unique w 2 WG such that w.�C �/ is
G-dominant, and then

Hi .G=P;E�/ Š

´
Vw.�C�/��G i D `.w/

0 i ¤ `.w/;

as G-representations, where `.w/ denotes the length of the element w 2WG .

In most cases we cannot apply the Borel–Weil–Bott theorem on the nose to compute
the sheaf cohomology of

Vp TG=P . These are the vector bundles we will be interested in
when studying Hochschild cohomology, but in general these equivariant vector bundles
are not completely reducible. This fact is the main reason for the existence of this paper.

Remark 10. When describing Hochschild cohomology it is more natural to emphasise
the structure as a representation of the Lie algebra, i.e., we will rather write Vw.�C�/��g .

On dominant weights. The following lemma summarises some standard properties.

Lemma 11. Let G and P be as before.

(1) Let � be anL-dominant weight. If we have .�;˛/� 0 for ˛ 2 S n SL, then .�;˛/�
0 for any ˛ 2 RC.

(2) Let � be an L-dominant weight. Then

(a) .�C �; ˛/ > 0 for any ˛ 2 RCL ;

(b) If .�C �; ˛/ ¤ 0 for any ˛ 2 RC n RCL , then the weight �C � is regular.
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(3) Let � be a strictly G-dominant weight and ˛ 2 R a root. Then we have

(a) ˛is positive, .�; ˛/ > 0;

(b) ˛is negative, .�; ˛/ < 0.

(4) For w 2WG we have
`.w/ D #R.w/;

where
R.w/ D

®
˛ 2 RC j w.˛/ 2 R�

¯
:

(5) Let � be an L-dominant weight, such that �C � is regular, and let w 2 WG be
the unique Weyl group element, such that w.�C �/ is strictly G-dominant. Then
we have

`.w/ D #
®
˛ 2 RC n RCL j .�C �; ˛/ < 0

¯
:

Proof. Items (1), (2), and (3) follow immediately from the definitions given Section 2.1.
For Item (4) we refer to [26, Lemma 10.3A].

Let us prove Item (5). Let � be the unique G-dominant weight such that

w.�C �/ D �C �:

By Items (3) and (4) and WG-invariance of the scalar product we have

R.w/ D
®
˛ 2 RC j

�
�C �;w.˛/

�
< 0

¯
D
®
˛ 2 RC j .�C �; ˛/ < 0

¯
:

Applying Item (2) we get

R.w/ D
®
˛ 2 RC n RCL j .�C �; ˛

_/ < 0
¯
:

Now the desired equality follows from Item (4).

2.3. Lie algebra cohomology

In the description of the Hochschild–Kostant–Rosenberg decomposition for cominuscule
and adjoint varieties we will need some results on Lie algebra cohomology. Let us briefly
introduce the required notions.

Definition 12. Let g be a Lie algebra, and V a representation of g. Then the i th Lie
algebra cohomology of g with values in V is

HiCE.g; V / WD ExtiUg.k; V /

where Ug is the universal enveloping algebra of g.

Although confusion between sheaf cohomology and Lie algebra cohomology is un-
likely, we will always denote Lie algebra cohomology as H�CE.g; V /.
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To compute it one often uses an explicit projective resolution of the trivial Ug-mod-
ule k which gives rise to the Chevalley–Eilenberg complex Homk.

V� g; V /, with differ-
ential

d.f /.g1 ^ � � � ^ gnC1/

WD

X
i

.�1/iC1gif .g1 ^ � � � ^ Ogi ^ � � � ^ gnC1/

C

X
i<j

.�1/iCjf
�
Œgi ; gj � ^ g1 ^ � � � ^ Ogi ^ � � � ^ Ogj ^ � � � ^ gnC1

�
for f 2 Homk.

Vn g; V /.
The straightforward observation to make from this definition is that if g is abelian

and the action of g on V is trivial, then the differentials in this complex vanish, and
HiCE.g; V / Š

Vi g˝k V .
We will compute Lie algebra cohomology for the nilpotent radical of parabolic sub-

algebras in (semi)simple Lie algebras, and Lie algebras constructed out of it. For this we
will use a result of Kostant [30, Corollary 8.2]. The setting we work in is that of a simple
Lie algebra g, with parabolic subalgebra p and unipotent radical n,

n � p � g:

We have the Levi decomposition pD l˚n, where l is the Levi subalgebra. If V is a p-rep-
resentation, then H�CE.n; V / has the structure of a l-representation.

We need one more piece of notation. If I denotes the set of simple roots added to the
Borel subalgebra to obtain p, then we denote

lW WD
®
w 2Wg j 8˛ 2 I W `.s˛w/D `.w/C 1

¯
D
®
w 2Wg j w

�1
�

X.T /Cl
�
� X.T /Cg

¯
the set of minimal length (right) coset representatives of the Weyl group Wl in Wg.

The statement of Kostant’s theorem, computing the l-structure of the Lie algebra co-
homology of n with values in V D k the trivial representation – there exists a more general
version with coefficients, but we will not need it – reads as follows.

Theorem 13 (Kostant). There exists an isomorphism

HiCE.n;k/ Š
M
w2 lW
`.w/Di

Vw �0l

of l-modules.

This result is particularly interesting when n has an easy structure. In this paper we
consider the cases where n is abelian (see Lemma 25 (3)) or Heisenberg (see Lemma 28).
This allows us to obtain the descriptions in Sections 4.1 and 4.2.
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Figure 1. Parabolic Bruhat graph for the (cominuscule) parabolic .
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Figure 2. Parabolic Bruhat graph for the (adjoint) parabolic .

Example 14. We can conveniently visualise the result of Kostant’s theorem, by giving the
parabolic Bruhat graph of lW. An introductory reference (where it is called the Hasse
diagram) is [16, Section 3.2]. We will only need that lW can be interpreted as a subset
of Wg, which has the Bruhat order, which we will write from left to right. We then restrict
this Bruhat order to lW to obtain the parabolic Bruhat graph, and we label an edge by
the Weyl group element which sends the source to the target, and this will be a simple
reflection.

For example, let us consider the parabolic subalgebra of sl4 (of type A3) correspond-
ing to

:

Computing lW in this case gives rise to the parabolic Bruhat graph in Figure 1. We will
revisit this example in Example 36.

We can also consider the parabolic subalgebra of sl4 given by

:

This is associated to an adjoint parabolic subalgebra. The parabolic Bruhat graph is given
in Figure 2. We will revisit this example in Example 41.

2.4. Hochschild cohomology

We now introduce the invariant we are trying to compute in this paper. Originally Hoch-
schild cohomology was introduced for associative algebras, where it governs the deforma-
tion theory (as an associative algebra). Later its definition has been generalised to algebraic
geometry, and more generally abelian and suitably enhanced triangulated categories.

Definition 15. LetX be a smooth projective variety. Then the i th Hochschild cohomology
of X is

HHi .X/ WD ExtiX�X .��OX ; ��OX /

where �WX ,! X �X is the diagonal embedding.
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To compute Hochschild cohomology one needs a convenient resolution of ��OX .
It turns out that L�� ı ��.OX / is quasi-isomorphic to

LdimX
iD0 �iX Œ�i �. In the affine

setting this result is due to Hochschild–Kostant–Rosenberg [24], and various general-
isations to the (quasi)projective setting (without an attempt to be exhaustive) are due to
e.g. Gerstenhaber–Schack [20], Swan [45], Markarian [36] and Yekutieli [48].

Theorem 16 (Hochschild–Kostant–Rosenberg). Let X be a smooth projective variety.
Then

HHi .X/ Š
M
pCqDi

Hq
�
X;
^p

TX
�
;

as vector spaces.

In the study of partial flag varieties we wish to reduce to the case of G a simple, and
not just semisimple, algebraic group. This is done using the following two lemmas. By
the Künneth formula and the isomorphism TX�Y Š ��XTX ˚ ��Y TY we obtain the first
lemma.

Lemma 17 (Künneth formula for Hochschild cohomology). Let X and Y be smooth pro-
jective varieties. Then

HHi .X � Y / Š
M
pCqDi

Hq
�
X � Y;

^p
TX�Y

�
Š

M
pCqDi

M
nCmDp

Hq
�
X � Y;

^n
TX ⊠

^m
TY
�

Š

M
pCqDi

M
nCmDp

M
aCbDq

Ha
�
X;
^n

TX
�
˝k Hb

�
Y;
^m

TY
�

If a partial flag variety G=P is associated to a semisimple but not simple algebraic
group G, then we always have an isomorphism

G=P Š G1=P1 � � � � �Gr=Pr

where Gi is simple and Pi is a parabolic subgroup of Gi . Hence in order to answer
questions about the (non-)vanishing of components in the Hochschild–Kostant–Rosenberg
decomposition, by Lemma 17 it suffices to consider only simple algebraic groups G.

Algebraic structure. Hochschild cohomology comes in complete generality equipped
with the extra structure of a Gerstenhaber algebra. This is a graded-commutative algebra
together with a Lie bracket of degree �1 which are compatible in a way which is not
relevant for this paper.

Because the Lie bracket has degree �1, we get that every HH1.X/ has the structure of
a Lie algebra, and every HHi .X/ is a representation for this Lie algebra.

On the level of polyvector fields we have that H1.X;OX /˚ H0.X; TX / also has the
structure of a Lie algebra: H1.X;OX / is the tangent space at the Picard variety and is an
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abelian Lie algebra, whilst H0.X;TX / is the Lie algebra of the automorphism group of X .
In the case of X D G=P there is only the contribution of the automorphism group, and by
Lemma 4 we have that H0.G=P;TG=P / Š g in all relevant cases.

The Hochschild–Kostant–Rosenberg decomposition from Theorem 16 is only on the
level of vector spaces. But by twisting the isomorphism by the square root of the Todd
class

p
tdX 2

LdimX
iD0 Hi .X;�iX / it is possible to upgrade it to an isomorphism of Ger-

stenhaber algebras [13, 14].

Remark 18. If X is Hochschild global in the sense of (1.2), then the twist by the square
root of the Todd class is necessarily trivial, as in each component it is the cup product

Hi .X;�iX /˝k Hq
�
X;
^p

TX
�
! HqCi

�
X;
^p�i

TX
�
;

with .
p

tdX /i , which for i D 0 is the identity. In this case the vector space isomorphism is
in fact a Gerstenhaber algebra isomorphism, and this paper provides new instances where
this is the case.

We obtain the following

Lemma 19. Let G=P be a partial flag variety. Then each HHi .X/ has the structure of
a g-representation.

In the setting of Remark 3 we opt to use the largest possible Lie algebra, to get the
most economical description.

Remark 20. What we describe in this paper is only a portion of the full Gerstenhaber
structure on HH�.G=P /, namely the part involving the Gerstenhaber bracket of classes
in degrees 1 and i . Other interesting questions, aside from the (non-)vanishing of the
components, are e.g.

(1) whether HH�.G=P / is generated as an algebra by HH1.G=P / (the answer can be
checked to be yes for Pn);

(2) what the other Gerstenhaber brackets are, in particular those involving HH2.G=P/,
to get a classification of the Poisson structures on G=P .

As already mentioned in the introduction, the classification of Poisson structures is seem-
ingly a very hard problem, and the answer (in case it is non-trivial) is only known for the
generalised Grassmannians P3 and Q3 [33, 41]. Observe that on G=P there is always the
(non-zero) standard Poisson structure, see e.g. [21].

3. Vanishing for cominuscule and (co)adjoint varieties

In this section we prove Theorem A. It is possible to deduce this result for generalised
Grassmannians from the vanishing result [29, Theorem 4.2.3 (i)] due to Konno. In the
notation of loc. cit. we need that the difference between the index k.G=P / (denoted iG=P
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in this work) and k0.G=P / as defined in equation (4.2.1) of op. cit. is at most 1. One
can check that this is the case if and only if G=P is of (co)minuscule or (co)adjoint type,
following the description in Section 2.2.

We give an alternative proof, relying more on the geometry of the varieties involved
and which also covers the adjoint variety in type A. Along the way we also set up the
machinery used in the proofs of Theorems B and C.

3.1. Tangent bundle of a partial flag variety

We will discuss some preliminary facts on the tangent bundle TG=P of G=P and its exter-
ior powers.

Lemma 21. Let G and P be as before.

(1) The tangent bundle TG=P is G-equivariant and corresponds via (2.5) to the quo-
tient g=p endowed with the adjoint action of P .

(2) The weights of g=p are the non-parabolic positive roots RC n RCL . These are those
positive roots of G, whose decomposition in terms of simple roots necessarily
involves ˛k with a positive coefficient.

(3) There is an isomorphism of P -representations n_ Š g=p.

(4) The exterior powers
Vp TG=P are G-equivariant and correspond to the repres-

entations
Vp g=p.

(5) Weights of
Vp g=p are sums of p distinct non-parabolic positive roots RC n RCL .

In particular, for any weight ˇ appearing in
Vp g=p we have

.ˇ; !_k / � p:

Proof. Items (1), (2), and (3) can be found in [1, Section 3]. Item (4) follows from the equi-
valence (2.4) and the identification of P -representations with p-representations. Item (5)
follows from Item (2).

A filtration for exterior powers of the tangent bundle. Often the tangent bundle TG=P
and its exterior powers

Vp TG=P are not completely reducible, see Lemma 25. Hence,
one cannot directly apply Borel–Weil–Bott to compute cohomology of

Vp TG=P .
However, one can try to bypass this obstacle by considering a filtration of

Vp TG=P , or
equivalently of

Vp g=p, whose associated graded is completely reducible. One possibility
is using a composition series in the setting of the Jordan–Hölder theorem, but following
Konno [28, Section 3] we define the following filtration, which is shorter but nevertheless
gives a completely reducible associated graded.

Definition 22. Fix p � 0. We define a filtration^p
g=p D F0

�^p
g=p

�
� F1

�^p
g=p

�
� � � � (3.1)
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where

Fi
�^p

g=p
�
WD
®
subspace with weights ˇ such that .ˇ; !_k / �Mp � i

¯
(3.2)

with Mp being the maximum of .ˇ; !_
k
/ with ˇ ranging over the weights of

Vp g=p.
Using the equivalence (2.5) we have an associated filtration^p

TG=P D F0
�^p

TG=P
�
� F1

�^p
TG=P

�
� � � �

of equivariant vector bundles.

This filtration has the desired properties, by the following lemma.

Lemma 23. The filtration (3.1) is a finite decreasing filtration of
Vp g=p by subrepres-

entations of P . Its associated graded pieces are completely reducible P -representations.

Proof. Since
Vpg=p is finite-dimensional, it is clear that the filtration is finite and decreas-

ing.
To prove the complete reducibility of Fi =FiC1 it is enough to show that n acts trivially

on Fi =FiC1. Indeed, in such a case the representation is induced from the Levi subalgebra
l, and is automatically completely reducible.

Recall from Section 2.1 that we have the decomposition

n D
M

ˇ2R�nR�L

gˇ :

Hence, for any gˇ appearing in this decompositon the root ˇ must have ˛k with a negative
coefficient in its expression in terms of simple roots.

Let V be a representation of p, and recall the basic fact that a root space gˇ maps
a weight space V˛ to the weight space V˛Cˇ , if such a weight space exists, or to zero
otherwise. Applying this to our situation, we immediately see that n maps Fi to FiC1.
Therefore, the action of n on Fi =FiC1 is trivial.

Remark 24. For p D 1 this filtration is dual to the lower central series for n.

Spectral sequence associated to the filtration. We will denote the i th piece of the asso-
ciated graded as

Gi
�^p

TG=P
�
WD Fi

�^p
TG=P

�
=Fi

�^p
TG=P

!
:

We obtain the following spectral sequence for every p � 0:

Ei;q�i1 D Hq
�
G=P;Gi

�^p
TG=P

��
) Hq

�
G=P;

^p
TG=P

�
: (3.3)

On the E1-page only cohomology of completely reducible equivariant vector bundles
appears, for which one can use the Borel–Weil–Bott theorem. All maps in the spectral
sequence are equivariant.
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3.2. Vanishing for cominuscule varieties

We have the following characterisation of cominuscule maximal parabolics.

Lemma 25. Let G and B be as before.

(1) P is cominuscule if and only if the filtration (3.1) on
Vp g=p is a one-step filtra-

tion for all p;

(2) If P is cominuscule, then the P -representations
Vp g=p are completely reducible

for all p;

(3) P is cominuscule if and only if the nilradical n is an abelian Lie algebra.

Proof. (1) This follows from (2.3), Lemma 21 (5), and (3.2).
(2) This follows from the first claim and Lemma 23.
(3) This fact is well-known [43, Lemma 2.2].

Let G=P be a cominuscule variety. By Lemma 25 the tangent bundle TG=P and its
exterior powers

Vp TG=P are completely reducible G-equivariant vector bundles. Hence,
one can use the Borel–Weil–Bott theorem to compute their cohomology by applying it to
each irreducible summand E� individually.

Proposition 26. The highest weight � of an irreducible summand E� of
Vp TG=P on

a cominuscule variety G=P is G-dominant. In particular,
Vp TG=P have no higher

cohomology.

Proof. Recall that our maximal parabolic P corresponds to the kth vertex of the Dynkin
diagram. Thus, it is enough to show .�; ˛k/ � 0. By Lemma 21, any such � is of the form
ˇ1 C � � � C p̌ with ˇi 2 RC n RCL . Hence, it is enough to show that .ˇ; ˛k/ � 0 for all
ˇ 2 RC n RCL , which in turn is equivalent to showing that .
; ˛k/ � 0 for all 
 2 R� n R�L .

Recall from Section 2.1 that we have

n D
M


2R�nR�L

g
 :

Since n is abelian by Lemma 25, it follows that for any 
1;2 2R� nR�L their sum 
1C 
2 is
never a root of g. Therefore, as�˛k is in R� nR�L , we obtain that for any 
 2 R� n R�L the
difference 
 � ˛k is never a root of g. Hence, we obtain .
;˛k/� 0 (see [26, Lemma 9.4]).

3.3. Vanishing for adjoint varieties

We begin with the description of the nilradical n in the adjoint case.

Definition 27. The r th Heisenberg Lie algebra nr is the 2r C 1-dimensional Lie algebra
defined as a central extension by k � e0 of a 2r-dimensional abelian Lie algebra spanned
by elements e1; : : : ; e2r such that Œei ; eiCr � D �ŒeiCr ; ei � D e0 for all i D 1; : : : ; r with
all other brackets of basis vectors being zero.
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In particular, the lower central series of the Heisenberg Lie algebra n D nr is of the
form

0! Œn;n�! n! n=Œn;n� D nab
! 0; (3.4)

with dimkŒn;n� D 1.
We have an ample supply of parabolic subalgebras whose nilradical has this property.

Lemma 28. Let G=P be an adjoint generalised Grassmannian. Then the nilradical n is
a Heisenberg Lie algebra.

Proof. Recall that our maximal parabolic P corresponds to the kth vertex of the Dynkin
diagram. From the description of the highest root in [9, Appendix] we obtain that

.˛; !_k / � 1 for ˛ 2 RC n ¹‚º;

.‚; !_k / D 2;
(3.5)

where ‚ is the highest root. This corresponds to the classification of quasi-cominuscule
non-cominuscule weights in [32, Remark 2.3]. From the root decomposition for n and
(3.5) it follows that Œn;n� D g�‚ � Z.n/. One can conclude as in [16, Section 4.2.1] that
the induced pairing is actually non-degenerate.

Thus, for an adjoint generalised GrassmannianG=P we have the following description
of the nilradical

n D g
0 ˚

� rM
iD1

g
i

�
˚

� 2rM
iDrC1

g
i

�
; (3.6)

where 
i 2 R� n R�L corresponds to ei in Definition 27.
Let G=P be an adjoint generalised Grassmannian. In this case neither the tangent

bundle TG=P , nor its exterior powers
Vp TG=P , are completely reducible, and, therefore,

we cannot directly apply the Borel–Weil–Bott theorem to prove vanishing and we need to
appeal to an appropriate filtration whose associated graded is completely reducible.

Let E� be an irreducible direct summand of a graded piece of the filtration with highest
weight �. To show vanishing of higher cohomology of

Vp TG=P it is enough to show
vanishing of higher cohomology of any such E�.

Proposition 29. Let G=P be an adjoint generalised Grassmannian. Any irreducible dir-
ect summand E� of a graded piece of the filtration on

Vp TG=P has no higher cohomology.

Proof. Recall that our maximal parabolic P corresponds to the kth vertex of the Dynkin
diagram. Let � be the highest weight of such an irreducible direct summand E�. As E� is
irreducible, we can use Borel–Weil–Bott to compute its cohomology. Assume that E� has
non-trivial cohomology, then the weight �C � has to be regular. We are going to show
that this non-trivial cohomology can only live in degree zero.

By Lemma 11 (5) it is enough to show that .� C �; ˛_
k
/ � 0, which in its turn is

equivalent to .�; ˛_
k
/ � �1. By Lemma 21 (5), any such � is of the form ˇ1 C � � � C p̌
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with ˇi 2 RC n RCL . Hence, the statement of the proposition follows from the following
simple lemma.

Lemma 30. If dimkŒn;n�D1, then there exists a unique ˇ2RC nRCL such that .ˇ;˛_
k
/<0.

Namely, we have
ˇ D ‚ � ˛k and .ˇ; ˛_k / D �1;

where ‚ is the highest root.

Proof. We begin by proving that there exists at most one ˇ 2 RC n RCL with .ˇ; ˛_
k
/ < 0.

If ˇ 2 RC n RCL is such an element, then by [26, Lemma 9.4] the sum ˇ C ˛k is a root
(and lies in RC n RCL ). Since ˇ C ˛k is a root, the root subspaces g�ˇ and g�˛k have a
non-trivial Lie bracket equal to g�ˇ�˛k . Using (3.6), we obtain that �ˇ � ˛k D 
i for
some i 2 ¹0; 1; : : : ; 2mº. From the explicit description of the Lie bracket of a Heisenberg
Lie algebra (see Definition 27) we conclude that �ˇ � ˛k D 
0 D �‚, and obtain the
desired ˇ D ‚ � ˛k .

Since ‚ is the kth fundamental weight and since by definition we have .˛k ; ˛_k / D 2,
the equality .ˇ; ˛_

k
/ D �1 follows.

Remark 31. We will now explain how the discussion changes for the adjoint partial flag
variety in type A, which is not a generalised Grassmannian.

First we note that Lemma 28 and its proof carry over almost verbatim to this case. The
coweight !_

k
needs to be replaced by the coweight .!1 C !n/_ (defined in Section 2.1).

The setup for Proposition 29 carries over as follows: taking any filtration of TG=P with
completely reducible associated graded (e.g. the Jordan–Hölder filtration, or a suitable
generalisation of Konno’s filtration) we again apply Lemma 11 (5) and need to show

.�; ˛_k / � �1 for k D 1; n:

Hence, the statement of the proposition follows from the analogue of Lemma 30 given
below. Thus, we have the desired vanishing.

Lemma 32. Let G=P be the adjoint variety in type A. For k D 1; n there exists a unique
ˇ 2 RC n RCL such that .ˇ; ˛_

k
/ < 0. Namely, we have

ˇ D ‚ � ˛k and .ˇ; ˛_k / D �1;

where ‚ is the highest root.

Proof. As in the proof of Lemma 30 for k D 1; n one shows that an element ˇ 2 RC nRCL
with the property .ˇ; ˛_

k
/ < 0 must be of the form ˇ D ‚� ˛k . Since ‚ D !1 C !n, the

equality .ˇ; ˛_
k
/ D �1 also follows.

3.4. Vanishing for coadjoint non-adjoint varieties

Now we are left with just two cases: the symplectic Grassmannians SGr.2; 2n/ and the
exceptional Grassmannian .F4; ˛4/. We need an analogue of Lemma 30 for these cases.
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Instead of adapting the argument from the previous section to the dual root system we
are going to show this by a direct computation, using the description of roots from [9,
Appendix].

Lemma 33. For the symplectic Grassmannian SGr.2; 2n/D .Cn; ˛2/ there exist a unique
ˇ 2 RC n RCL such that .ˇ; ˛_2 / < 0. Namely, we have

ˇ D � � ˛2 and .ˇ; ˛_2 / D �1;

where � is the highest short root.

Proof. The second coroot is
˛_2 D e2 � e3:

Computing the pairing .˛;˛_2 / for all ˛ 2 RC we see that the only possible negative values
of the pairing are �1 and �2.

(1) The value �2 arises only once as .2e3; ˛_2 / D �2. However, since

2e3 D 2˛3 C 2˛4 C � � � C 2˛n�1 C ˛n;

the root 2e3 in not in RC n RCL .

(2) The value �1 arises multiple times. Namely, the positive root ˛ can be e1 C e3,
e3 C ej with j > 3, e1 � e2 or e3 � ej with j > 3. Now one checks easily that in
all cases except the first one the roots are not in RC n RCL . In the first case we have

e1 C e3 D ˛1 C ˛2 C 2˛3 C � � � C 2˛n�1 C ˛n D � � ˛2:

This finishes the proof.

Lemma 34. For the generalised Grassmannian .F4;˛4/ there exist a unique ˇ 2RC nRCL
such that .ˇ; ˛_4 / < 0. Namely, we have

ˇ D � � ˛4 and .ˇ; ˛_4 / D �1;

where � is the highest short root.

Proof. The fourth coroot is

˛_4 D e1 � e2 � e3 � e4:

One checks easily that the positive roots with negative pairing with ˛_4 are

ei for 2 � i � 4
1

2
.e1 C e2 C e3 C e4/
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in which case the pairing is �1, and

ei C ej for 2 � i < j � 4;

in which case the pairing is �2. Rewriting all of them in terms of simple roots we obtain
the list ˛1 C ˛2 C ˛3, ˛2 C ˛3, ˛3, ˛1 C 2˛2 C 3˛3 C ˛4, ˛2 C 2˛3, ˛1 C ˛2 C 2˛3,
˛1 C 2˛2 C 2˛3 and we see that the only non-parabolic root is

˛1 C 2˛2 C 3˛3 C ˛4 D
1

2
.e1 C e2 C e3 C e4/ D � � ˛4:

This finishes the proof.

4. Description for cominuscule and adjoint varieties

We will now prove Theorems B and C, by explicitly computing the global sections ofVi TG=P for cominuscule and adjoint varieties, as representations of g. In this way we
will have described a part of the Gerstenhaber algebra structure on HH�.G=P /.

4.1. Hochschild cohomology of cominuscule varieties

As a warmup for the proof in Section 4.2 and to keep the discussion in this paper self-
contained, we will give some details on the proof of Theorem B. This result is classical,
and follows readily from Kostant’s theorem. Recall that the nilpotent radical n as a rep-
resentation of P is associated to the cotangent bundle, with its dual g=p associated to the
tangent bundle.

Proof of Theorem B. Let G=P be a cominuscule variety associated to the fundamental
weight !k . By Lemma 25 (3) we have that n is an abelian Lie algebra. Therefore we get
that the differential in the Chevalley–Eilenberg complex vanishes, hence

HiCE.n; k/ Š
^i

n

whilst Kostant’s theorem gives

HiCE.n; k/ Š
M
w2 lW
`.w/Di

Vw �0l

as l-representations, but also as p-representations as n acts trivially (see Lemma 25 (2)).
Therefore under the equivalences from (2.5) we have that

�iG=P Š
M
w2 lW
`.w/Di

Ew �0
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weight rank degree representation dimension sum of roots
.0; 0; 0/ 1 0 .0; 0; 0/ 1 .0; 0; 0/

.1; 0; 1/ 4 0 .1; 0; 1/ 15 .1; 1; 1/

.0; 1; 2/ 3 0 .0; 1; 2/ 45 .1; 2; 2/

.2; 1; 0/ 3 0 .2; 1; 0/ 45 .2; 2; 1/

.1; 2; 1/ 4 0 .1; 2; 1/ 175 .2; 3; 2/

.0; 4; 0/ 1 0 .0; 4; 0/ 105 .2; 4; 2/

Table 5. Associated graded for
V� TGr.2;4/.

as equivariant vector bundles. Using that^i
TG=P Š �

dimG=P�i
G=P

˝ !_G=P ;

and !_
G=P
Š E iG=P !k where iG=P is the index of G=P , we apply the Borel–Weil–Bott

theorem. As already observed in Proposition 26, the resulting weights for the summands
of
Vi TG=P are all dominant, thus contribute (non-trivially) to the global sections (and not

in higher degree), leading to the decomposition (1.4) in the statement of Theorem B.

So what allowed us to conclude in this case is the fact that n is abelian, effectively
reducing the computation to Kostant’s theorem and applying Borel–Weil–Bott.

Remark 35. Without the twist by !_
G=P

one is actually computing the Hodge numbers
of G=P . By Borel–Hirzebruch we know that the non-zero Hodge numbers hi;i .G=P / are
given by the cardinality of the subset of lW of elements of length i , i.e., if one were to
use Borel–Weil–Bott to compute this, all weights are regular but not dominant for i � 1,
and their index is precisely i .

Because this result is standard, we will only give one small example.

Example 36. In type A every Grassmannian is a cominuscule partial flag variety. Let us
consider the case Gr.2; 4/, which has dimension 4 and index 4 (and it is isomorphic to the
quadric Q4). The parabolic Bruhat graph describing lW is given in Figure 1, so we just
compute the weights w � 0C 4!2 and obtain Table 5.

4.2. Hochschild cohomology of adjoint varieties

In this section we prove Theorem C. By Lemma 28 the nilradical in this case is a Heisen-
berg Lie algebra, which means that Kostant’s theorem doesn’t compute the exterior powers
of the tangent bundle on the nose. But it is possible to bootstrap from this theorem, as the
structure of n is still manageable.

One of the ingredients in the proof of Theorem C is the following description of the
Betti numbers of H�CE.n; k/, for which an elementary proof can be found as [44, The-
orem 2.2 (i)]. A more conceptual (and lengthier) proof can be found as [12, Corollary 4.4].
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Proposition 37 (Santharoubane). Let nr be the Heisenberg Lie algebra of dimension
2r C 1. Then

dimk HiCE.n;k/ D

´ �
2r
i

�
�
�
2r
i�2

�
i D 0; : : : ; r�

2r
i�2

�
�
�
2r
i

�
i D r C 1; : : : ; 2r C 1:

The Hochschild–Serre spectral sequence. The Hochschild–Serre spectral sequence as-
sociated to the sequence (3.4) is

Ep;q2 D HpCE

�
nab;HqCE

�
Œn;n�;k

��
) HpCqCE .n;k/:

In the adjoint case, Œn; n� is 1-dimensional, so the sequence is concentrated in 2 rows,
and it degenerates at the E3-page. As will become clear, the spectral sequence is highly
non-degenerate on the E2-page.

Since H0CE.Œn;n�;k/Š k and H1CE.Œn;n�;k/Š Œn;n� as l-representations, the E2-page
of the Hochschild–Serre spectral sequence has the form

H0CE

�
nab; Œn;n�

�
H1CE

�
nab; Œn;n�

�
H2CE

�
nab; Œn;n�

�
H3CE

�
nab; Œn;n�

�
� � �

H0CE.n
ab;k/ H1CE.n

ab;k/ H2CE.n
ab;k/ H3CE.n

ab;k/ � � �

d0;12 d1;12 d2;12 (4.1)

with all terms zero outside ¹0; 1º � ¹0; 1; : : : ; 2rº. As nab is abelian, and the action of nab

on both k and Œn;n� is trivial by (3.6), the differential in the Chevalley–Eilenberg complex
vanishes, and we have that

dimk Ep;q2 D

�
2r

p

�
(4.2)

for q D 0; 1 and p D 0; : : : ; 2r .
The following lemma is the key result in describing the Hochschild cohomology of

partial flag varieties of adjoint type.

Lemma 38. The differentials di;12 WH
i
CE.n

ab; Œn; n�/ ! HiC2CE .nab; k/ in the Hochschild–
Serre spectral sequence (4.1) are

(1) injective for i � r � 1;

(2) surjective for i � r � 1.

In particular, the differential dr�1;12 is an isomorphism.

Proof. The proof for injectivity is by induction on i . The statement is vacuous for i D
�2;�1 as the domain is zero. By Proposition 37 we have that

dimk H1CE.n;k/ D
�
2r

1

�
D dimk E0;11 C dimk E1;01 :

Because E1;02 has no incoming differential and is
�
2r
1

�
-dimensional, we see that d0;12 must

be injective, so that E0;13 D E0;11 D 0. Continuing by induction for i D 2; : : : ; r we use
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Proposition 37, together with (4.2) to conclude that all differentials must be injective so
that the appropriate dimension in the abutment is reached.

The proof for surjectivity is by a descending induction on i , and is similar.

Hence the entries Ei;j3 on the E3 D E1-page look like

0 0 0 0 � � �

H0CE.n
ab;k/ H1CE.n

ab;k/ coker d0;12 coker d1;12 � � �

(4.3)

for i D 0; 1; 2; 3, resp.

� � � 0 0 ker dr;12 ker drC1;12 ker drC2;12 � � �

� � � coker dr�4;12 coker dr�3;12 coker dr�2;12 0 0 � � �

(4.4)

for i D r � 2; r � 1; : : : ; r C 2, resp.

� � � ker d2r�3;12 ker d2r�2;12 H2r�1CE

�
nab; Œn;n�

�
H2rCE

�
nab; Œn;n�

�
� � � 0 0 0 0

(4.5)

for i D 2r � 3; 2r � 2; 2r � 1; 2r .
Using Kostant’s theorem (see Theorem 13) we have a description for the Lie algebra

cohomology H�CE.n;k/, but there is no immediate link with exterior powers of the (co)tan-
gent bundle anymore. Rather we have the following lemma.

Lemma 39. Let G=P be an adjoint variety of dimension 2r C 1. There exists a short
exact sequence

0! E ! TG=P ! L! 0 (4.6)

where

• L is the line bundle OG=P .1/ (in type A more appropriately written OG=P .1; 1/),

• E is the vector bundle of rank 2r associated to the dual of the L-representation nab.

Outside type A we have that nab;_ is irreducible, in type A is the direct sum of two irredu-
cible representations.

Proof. The sequence is the dual of the short exact sequence of equivariant vector bundles
associated to (3.4). As Œn; n� is one-dimensional we have that it is irreducible, and the
highest weight of its dual corresponds to the adjoint representation. As the action of n

on nab is trivial, we have that it is completely reducible.

If we wish to compute the global sections of
Vp TG=P we are reduced to computing

the global sections of the short exact sequence

0!
^p

E !
^p

TG=P ! L˝
^p�1

E ! 0: (4.7)
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The outer terms are completely reducible equivariant vector bundles associated to the
duals of the L-representations Hp�1CE .nab; Œn; n�/ and HpCE.n

ab; k/. They can be determ-
ined inductively from the Hochschild–Serre spectral sequence and the knowledge of its
abutment as follows.

Proof of Theorem C. From the vanishing result in Proposition 29, we obtain that

HHi .G=P / Š H0
�
G=P;

^i
TG=P

�
Š H0

�
G=P;

^i
E
�
˚ H0

�
G=P;L˝

^i�1
E

�
:

Hence it suffices to describe the highest weights that determine the bundles
Vi

E , from
which the description for L˝

Vi�1
E follows. Recall that by Borel–Weil–Bott the weights

for both are either regular dominant, or singular3.
To determine HiCE.n

ab; k/ (or rather its dual) we use the description of the E3-pages
(4.3), (4.4) and (4.5). For i D 0; 1 it is given by Kostant’s description of HiCE.n;k/.

For i D 2; : : : ; r there is a recursion involving the contributions of Hi�2CE .n
ab; Œn; n�/

which are determined by the isomorphism

Hi�2CE

�
nab; Œn;n�

�
Š Hi�2CE .n

ab;k/˝k Œn;n�:

The argument is dual for the second half, starting with i D 2r and recursing downwards
to i D r . There is a shift by an extra copy of Œn; n�_ originating from the fact that (4.5)
has zeroes on the bottom row, so that Kostant’s theorem is rather describing the top row
of the E3-page.

Now the formula in (1.6) is obtained by keeping track of the recursion with steps of
size 2 and the contributions of

Vi
E and L˝

Vi�1
L.

Example 40. The necessity to restrict only to regular weights is obvious already for TG=P .
The sequence (4.6) gives rise to the short exact sequence

0! 0! g! g! 0

after taking global sections, so there is no contribution from E in the description (1.6).

We will give two examples in full detail, to illustrate the somewhat involved recursive
procedure outlined above in practice.

Example 41. The adjoint partial flag variety in type A3 is P .TP3/, which has dimension 5
and index 3. The parabolic Bruhat graph in Figure 2 can be used in conjunction with
Theorem C to determine the Hochschild cohomology.

3This observation explains why we have to consider the restricted sum in (1.5) when describing the
global sections (see also Example 40).
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weight rank degree representation dimension sum of roots
.0; 0; 0/ 1 0 .0; 0; 0/ 1 .0; 0; 0/

.1; 0; 1/ 1 0 .1; 0; 1/ 15 .1; 1; 1/

.1; 1;�1/ 2 .1; 1; 0/

.�1; 1; 1/ 2 .0; 1; 1/

.0; 1; 2/ 2 0 .0; 1; 2/ 45 .1; 2; 2/

.2; 1; 0/ 2 0 .2; 1; 0/ 45 .2; 1; 0/

.�1; 0; 3/ 1 .0; 1; 2/

.3; 0;�1/ 1 .2; 1; 0/

.1; 0; 1/ 1 0 .1; 0; 1/ 15 .1; 1; 1/

.0; 2; 0/ 3 0 .0; 2; 0/ 20 .1; 2; 1/

.4; 0; 0/ 1 0 .4; 0; 0/ 35 .3; 2; 1/

.0; 0; 4/ 1 0 .0; 0; 4/ 35 .1; 2; 3/

.2; 0; 2/ 1 0 .2; 0; 2/ 84 .2; 2; 2/

.1; 2; 1/ 3 0 .1; 2; 1/ 175 .2; 3; 2/

.0; 1; 2/ 2 0 .0; 1; 2/ 45 .1; 2; 2/

.2; 1; 0/ 2 0 .2; 1; 0/ 45 .2; 2; 1/

.1; 1; 3/ 2 0 .1; 1; 3/ 256 .2; 3; 3/

.3; 1; 1/ 2 0 .3; 1; 1/ 256 .3; 3; 2/

.2; 0; 2/ 1 0 .2; 0; 2/ 84 .2; 2; 2/

.3; 0; 3/ 1 0 .3; 0; 3/ 300 .3; 3; 3/

Table 6. Associated graded for
V� TP.TP3 /

.

In Table 6 the associated graded of
Vi TP.TP3 /

is given, for i D 0; : : : ; 5. The decom-
position obtained from (4.6) and (4.7) is indicated by the grouping of the terms: we first
give

Vi�1
˝L. Again the need for the restriction to only regular weights in Theorem C is

immediate.
For TP.TP3 /

we have 3 summands: one coming from L, the other two coming from E .
That there are two follows from the fact that there are two Weyl group elements of
colength 1 in Figure 2.

For
V2 TP.TP3 /

there are 6 summands: 2 coming from E ˝ L, the other 4 coming
from

V2
E . That there are 4 is part of the recursion: there are three Weyl group elements

of colength 2, and one of colength 0.
For

V3 TP.TP3 /
the roles are reversed: 4 summands come from

V2
E which was

determined in the previous step, whilst there are 2 summands coming from
V3

E . The
rest is similar.

Example 42. The adjoint partial flag variety in type B3 is OGr.2; 7/, which has dimen-
sion 7 and index 4. The parabolic Bruhat graph in this case is given in Figure 3.
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Figure 3. Parabolic Bruhat graph for the (adjoint) parabolic .

weight rank degree representation dimension sum of roots
.0; 0; 0/ 1 0 .0; 0; 0/ 1 .0; 0; 0/

.0; 1; 0/ 1 0 .0; 1; 0/ 21 .1; 2; 2/

.1;�1; 2/ 6 .1; 1; 2/

.1; 0; 2/ 6 0 .1; 0; 2/ 189 .2; 3; 4/

.0;�1; 4/ 5 .1; 2; 4/

.0; 1; 0/ 1 0 .0; 1; 0/ 21 .1; 2; 2/

.2;�1; 2/ 9 .2; 2; 3/

.0; 0; 4/ 5 0 .0; 0; 4/ 294 .2; 4; 6/

.0; 2; 0/ 1 0 .0; 2; 0/ 168 .2; 4; 4/

.2; 0; 2/ 9 0 .2; 0; 2/ 616 .3; 4; 5/

.1; 0; 2/ 6 0 .1; 0; 2/ 189 .2; 3; 4/

.3; 0; 0/ 4 0 .3; 0; 0/ 77 .3; 3; 3/

.1;�1; 4/ 10 .2; 3; 5/

.1; 1; 2/ 6 0 .1; 1; 2/ 1617 .3; 5; 6/

.3; 1; 0/ 4 0 .3; 1; 0/ 819 .4; 5; 5/

.1; 0; 4/ 10 0 .1; 0; 4/ 1386 .3; 5; 7/

.0; 0; 4/ 5 0 .0; 0; 4/ 294 .2; 4; 6/

.2; 0; 2/ 9 0 .2; 0; 2/ 616 .3; 4; 5/

.0; 2; 0/ 1 0 .0; 2; 0/ 168 .2; 4; 4/

.0; 1; 4/ 5 0 .0; 1; 4/ 2310 .3; 6; 8/

.2; 1; 2/ 9 0 .2; 1; 2/ 4550 .4; 6; 7/

.0; 3; 0/ 1 0 .0; 3; 0/ 825 .3; 6; 6/

.1; 1; 2/ 6 0 .1; 1; 2/ 1617 .3; 5; 6/

.1; 2; 2/ 6 0 .1; 2; 2/ 7722 .4; 7; 8/

.0; 3; 0/ 1 0 .0; 3; 0/ 825 .3; 6; 6/

.0; 4; 0/ 1 0 .0; 4; 0/ 3003 .4; 8; 8/

Table 7. Associated graded for
V� TOGr.2;7/.

In Table 7 the associated graded of
Vi TOGr.2;7/ is given, for i D 0; : : : ; 7. As before,

the parabolic Bruhat graph in Figure 3 can be used in conjunction with Theorem C to
determine the Hochschild cohomology. The decomposition obtained from (4.6) and (4.7)
is indicated by the grouping of the terms: we first give

Vi�1
˝L. Again the need for the

restriction to only regular weights in Theorem C is immediate.
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For TOGr.2;7/ we have two summands: one coming from L, the other coming from E .
That there is only a single summand here is immediately visible from the parabolic Bruhat
graph.

For
V2 TOGr.2;7/ there are three “new” summands coming from

V2
E . This is again

visible from the parabolic Bruhat graph, where there is one contribution of a line bundle
from Kostant’s theorem for i D 7 and two contributions from Kostant’s theorem for i D 5,
whose weights happen to be singular. The rest of the example proceeds along similar lines.

5. On the (possible) non-vanishing of the higher cohomologies

In this section we discuss what we know for generalised Grassmannians which are not
covered by Theorem A. The two main results are a proof of Proposition D and an elabor-
ation of the caveat in Remark 1 to Conjecture F. To conclude this section we explain the
relationship between our vanishing results and Bott vanishing: our results give new cases
in which Bott vanishing fails for generalised Grassmannians.

5.1. Non-vanishing for SGr.3; 2n/

Consider symplectic isotropic Grassmannians SGr.3; 2n/ with n � 4, which can be real-
ized as the quotient of the symplectic group Sp2n with respect to the maximal parabolic
subgroup attached to the third node of the Dynkin diagram Cn, i.e., for

:

Setup. Let V be a 2n-dimensional vector space endowed with a symplectic form !, and
let v1; : : : ;v2n be a basis of V such that!.vi ;v2nC1�i /D 1 for 1� i � n and all other pair-
ings between basis elements vanish. For 1� k � n the symplectic isotropic Grassmannian
SGr.k; V / D SGr.k; 2n/ is the variety parametrising isotropic k-dimensional subspaces
in V . As any isotropic subspace is a subspace, we have a natural closed immersion

SGr.k; 2n/ ,! Gr.k; V / D Gr.k; 2n/:

The symplectic form ! gives rise to a global section s! of the vector bundle
V2

U_ on
Gr.k; 2n/, and the subvariety SGr.k; V / is the zero locus of s! .

One can realise SGr.k; 2n/ and Gr.k; 2n/ as quotients

SGr.k; 2n/ D Sp2n =P! and Gr.k; 2n/ D GL2n =P;

where we have taken P and P! to be the stabilisers of the “standard” isotropic k-dimen-
sional subspace spanned by the basis vectors v2n; v2n�1; : : : ; v2n�kC1. Naturally, we have
the inclusion of the parabolics P! � P .

Similarly, we have the embedding of the corresponding Levi subgroups

L! D Sp2n�2k �GLk � L D GL2n�k �GLk :



Hochschild cohomology of generalised Grassmannians 45

In the setup above we have that the maximal torus T is given by the diagonal matrices
of the form .t1; : : : tn; t

�1
n ; : : : ; t�11 /. This way we identify the weight lattice of Sp2n with

Zn in such a way that the simple roots are

˛i D ei � eiC1 for 1 � i � n � 1; and ˛n D 2en;

and the fundamental weights are

!i D e1 C � � � C ei for 1 � i � n;

where e1; : : : ; en is the standard basis of Zn.

Lemma 43. For n � 4 the associated graded of TSGr.3;2n/ is given by

gr.TSGr.3;2n// D E2!1 ˚ E!1�!3C!4 :

In the special case n D 3 the tangent bundle is irreducible and we have TSGr.3;6/ D E2!1 .

Proof. Since the symplectic isotropic Grassmannian SGr.3; 2n/ is a closed subvariety of
the ordinary Grassmannian Gr.3; 2n/ cut out by a regular section of

V2
U_, we have the

short exact sequence

0! TSGr.3;2n/ ! i�TGr.3;2n/ ! i�
^2

U_ ! 0 (5.1)

of Sp2n-equivariant bundles. By (2.5) it corresponds to a short exact sequence of rep-
resentations of the parabolic subgroup P of Sp2n. By restricting these representations to
the Levi L! we will be able to deduce the desired description of the associated graded
gr.TSGr.3;2n//. That is we need to determine the representations of L! corresponding
to i�TGr.3;2n/ and i�

V2
U_, and then we can just remove the contribution of the lat-

ter bundle from the former.
The tangent bundle to Gr.3; 2n/ is TGr.3;2n/ D Q˝U_ where

0! U! V ˝OGr.3;2n/ ! Q! 0

is the universal short exact sequence on Gr.3; 2n/. Hence it is the bundle corresponding
to the representation

V=U ˝ U_;

of L D GL2n�3 �GL3 where U is the standard subspace described above. Here the rep-
resentation U_ is the dual of the standard representation of GL3, and the representation
V=U is the standard representation of GL2n�3.

Now we need to consider these representations as representations of the Levi quo-
tient L! D Sp2n�6 �GL3. Restricting to L! we get

.W ˚ U_/˝ U_;
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where W is the standard representation of Sp2n�6. We can further rewrite it as

.W ˝ U_/˚
�^2

U
�_
˚ .Sym2 U/_:

In terms of fundamental weights of Sp2n we get

W ˝ .U /_ $ .1; 0; 0I 1; 0; : : : ; 0/ D !1 � !3 C !4�^2
U
�_
$ .1; 1; 0I 0; : : : ; 0/ D !2

.Sym2 U/_ $ .2; 0; 0I 0; : : : ; 0/ D 2!1:

The summand with weight !2 gets cancelled in (5.1) and we obtain the claim.
When n D 3 it suffices to observe that W D 0.

Lemma 44. For n � 5 the associated graded of
V2 TSGr.3;2n/ is given by

gr
�^2

TSGr.3;2n/

�
D E2!1C!2 ˚ E3!1�!3C!4 ˚ E!1C!2�!3C!4

˚ E!2�2!3C2!4 ˚ E2!1�!3C!5 ˚ E2!1 :

For nD 4 the summand E2!1�!3C!5 should be omitted. For nD 3 we have
V2TSGr.3;6/D

E2!1C!2 .

Proof. Note that we have^2
.E2!1 ˚ E!1�!3C!4/ D

^2
E2!1 ˚ .E2!1 ˝ E!1�!3C!4/˚

^2
E!1�!3C!4 :

From this we compute that^2
E2!1 Š E2!1C!2

E2!1 ˝ E!1�!3C!4 D E3!1�!3C!4 ˚ E!1C!2�!3C!4^2
E!1�!3C!4 D E!2�2!3C2!4 ˚ E2!1�!3C!5 ˚ E2!1

which proves the claim for n � 5. For n D 4 (resp. n D 3) we discard the contributions
involving !5 (resp. !4 and !5).

Proof of Proposition D. Applying Borel–Weil–Bott (complemented with Items (1) and
(5) of Lemma 11) we see that the only summands of gr.

V2 TSGr.3;2n// with non-trivial
cohomology are

H�
�

SGr.3; 2n/;E2!1C!2
�
Š V2!1C!2Sp2n

Œ0� (5.2)

H�
�

SGr.3; 2n/;E2!1
�
Š V2!1Sp2n

Œ0� (5.3)

H�
�

SGr.3; 2n/;E!2�2!3C2!4
�
Š V!4Sp2n

Œ�1� (5.4)
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weight rank degree representation dimension sum of roots
.0; 0;�2; 3/ 4 .1; 2; 3; 3/

.1; 1;�1; 1/ 16 .2; 3; 3; 2/

.4; 0; 0; 0/ 15 0 .4; 0; 0; 0/ 330 .4; 4; 4; 2/

.0; 2; 0; 0/ 6 0 .0; 2; 0; 0/ 308 .2; 4; 4; 2/

.2; 1; 0; 0/ 15 0 .2; 1; 0; 0/ 594 .3; 4; 4; 2/

.2; 1;�2; 2/ 45 1 .2; 0; 0; 1/ 1155 .3; 4; 4; 3/

.1; 0;�1; 2/ 9 .2; 3; 4; 3/

.1; 2;�1; 1/ 30 .3; 5; 5; 3/

.3; 1;�1; 1/ 48 .4; 5; 5; 3/

.2; 0; 0; 1/ 12 0 .2; 0; 0; 1/ 1155 .3; 4; 5; 3/

.3; 0; 1; 0/ 10 0 .3; 0; 1; 0/ 3696 .4; 5; 6; 3/

.0; 3; 0; 0/ 10 0 .0; 3; 0; 0/ 2184 .3; 6; 6; 3/

Table 8. Associated graded for
Vp TSGr.3;8/ for p D 3; 4; 5; 6.

where Œ�i � indicates the degree in which the cohomology lives. In particular, we see
that in the spectral sequence obtained from the filtration on

V2 TSGr.3;2n/ no cancel-
lation can happen and (5.4) contributes non-trivially to HH3.SGr.3; 2n// in the term
H1.SGr.3; 2n/;

V2 TSGr.3;2n// of the Hochschild–Kostant–Rosenberg decomposition.

Remark 45. In the special case n D 3 we have that SGr.3; 6/ is a cominuscule variety,
in which case it is covered by Theorems A and B. From Lemma 44 we obtain the iso-
morphism

V2 TSGr.3;6/ Š E2!1C!2 which by the proof of Proposition D (only) has global
sections.

Remark 46. Having shown that H1.SGr.3; 2n/;
V2 TSGr.3;2n// ¤ 0 we can wonder what

happens for higher exterior powers. Applying this method for higher exterior powers
and n D 4 reveals that for

Vp TSGr.3;8/, with p D 3; 4; 5; 6 there are summands in the
associated graded which by Borel–Weil–Bott have an H1. But every representation that
arises in this H1 also appears as the H0 of a different summand. Hence in the spectral
sequence it is possible that these get cancelled, and we cannot conclude whether they are
preserved in the abutment.

In Table 8 we have collected the summands and their cohomology as obtained from the
Borel–Weil–Bott theorem. The Euler characteristic of the isotypical component associated
to the highest weight 2!1 C !4 is zero, hence it is not clear whether it is being cancelled
or not in the spectral sequence. The same is true for

Vp TSGr.3;8/ with p D 4; 5; 6: it is
not possible from the components in the spectral sequence to deduce (non-)vanishing.

5.2. Potential vanishing for OGr.n � 1; 2nC 1/

In this section we discuss the caveat expressed in Remark 1 by explaining the indeterm-
inacy in our methods for the orthogonal Grassmannian OGr.n � 1; 2nC 1/, in particular
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weight rank degree representation dimension sum of roots
.0; 1; 0; 0/ 3 0 .0; 1; 0; 0/ 36 .1; 2; 2; 2/

.2; 0;�1; 2/ 18 .2; 2; 2; 3/

.0; 1;�2; 4/ 15 1 .0; 0; 0; 2/ 126 .1; 2; 2; 4/

.0; 0; 0; 2/ 3 0 .0; 0; 0; 2/ 126 .1; 2; 3; 4/

.1; 1;�1; 2/ 24 .2; 3; 3; 4/

.1; 0; 1; 0/ 3 0 .1; 0; 1; 0/ 594 .2; 3; 4; 4/

Table 9. Associated graded for
V2 TOGr.3;9/.

when n D 4. Using the method outlined below we can compute the sheaf cohomology
of the associated graded of the equivariant vector bundle

Vp TOGr.3;9/ associated to the
marked Dynkin diagram

:

What happens in this case, and likewise for n D 5; 6; 7; 8, is similar to the phenomenon
described in Remark 46 for

V3 TSGr.3;8/. We expect it is to continue for all OGr.n � 1;
2nC 1/ with n � 4, associated to the marked Dynkin diagram

:

This makes it impossible to conclude anything from the spectral sequence (3.3) without a
better understanding of the differentials.

Potential vanishing. We can now elaborate on the “potential vanishing phenomenon”
in the smallest case, where all the possibly non-zero differentials are in fact surjections,
which means that any contributions to higher cohomology get cancelled. In this case the
phenomenon is restricted to degrees 0 and 1. For other generalised Grassmannians (where
Conjecture F predicts non-vanishing) there exist examples where the associated graded
has cohomology in higher degrees, making the analysis of the spectral sequence harder.
The result in Section 5.1 is an instance where the differential is actually zero.

Example 47. Consider
V2 TOGr.3;9/. One can compute that its associated graded has

6 summands. These are collected in Table 9, and one can read off from the table that
Konno’s filtration is a 2-step filtration in this case. The relevant part of the E1-page of the
spectral sequence has the form

H0
�

OGr.3; 9/;E2!4
�
˚ H0

�
OGr.3; 9/;E!1C!3

� d1
�!H1

�
OGr.3; 9/;E!2�2!3C!4

�
H0
�

OGr.3; 9/;E!2
�

which after applying Borel–Weil–Bott becomes in terms of so9-representations

V2!4so9
˚ V!1C!3so9

d1
�! V2!4so9

V!2so9
:
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This method does not tell whether the map d1 is zero or not. If it is zero, i.e., the spectral
sequence degenerates on the E1-page, then

H0
�

OGr.3; 9/;
^2

TOGr.3;9/

�
Š V2!4so9

˚ V!1C!3so9
˚ V!2so9

H1
�

OGr.3; 9/;
^2

TOGr.3;9/

�
Š V2!4so9

whereas if it is nonzero the spectral sequence degenerates on the E2-page after cancelling
two representations, and

H0
�

OGr.3; 9/;
^2

TOGr.3;9/

�
Š V!1C!3so9

˚ V!2so9

H1
�

OGr.3; 9/;
^2

TOGr.3;9/

�
Š 0:

(5.5)

Remark 48. We have been informed by Nicolas Hemelsoet that he has used the method
from [22] to check that V2!4so9 does not appear in H0.OGr.3; 9/;

V2 TOGr.3;9//, hence the
differential d1 is in fact nonzero, and we are in situation (5.5).

Therefore, as expressed in Remark 1, it is not clear in the statement of Conjecture F
whether to include or exclude the family OGr.n � 1; 2nC 1/ for n � 4.

5.3. Remarks on Bott vanishing

Finally we wish to give a brief overview of the relationship of the (non-)vanishing results
in this paper and the notion of Bott vanishing. This is the following vanishing property,
which is rather strong as the discussion following the definition shows.

Definition 49. A smooth projective variety X satisfies Bott vanishing if

Hj .X;�iX ˝L/ D 0

for all ample line bundles L, all i � 0 and all j � 1.

In particular, a smooth projective Fano variety (such as G=P ) satisfying Bott vanish-
ing immediately satisfies the vanishing property for the Hochschild–Kostant–Rosenberg
decomposition we set out to study for generalised Grassmannians.

It is known (due to Bott) that Pn satisfies Bott vanishing. More generally toric variet-
ies satisfy Bott vanishing, in which case it is called Danilov–Steenbrink–Bott vanishing.
Hence Fano toric varieties are automatically Hochschild global in the sense of (1.2), and
a combinatorial description of the Hochschild cohomology can be obtained from [37,
Theorems 2.14 (2) and 3.6 (2)]. Recently the first non-toric Fano variety, namely Bl4 P2,
satisfying Bott vanishing was found by Totaro [47, Theorem 2.1], and this was generalised
by Torres in [46].

On the other hand it is expected (see [11, Remark 2]) that Bott vanishing does not hold
for any partial flag variety which is not Pn, hence the vanishing result in the cominuscule
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and (co)adjoint case in Theorem A cannot be the consequence of Bott vanishing for the
ample line bundle !_

G=P
.

In the case of full flag varieties, the failure of Bott vanishing is shown in [40, Corol-
lary 13]. The situation for generalised Grassmannians is far less well-understood:

• In the cominuscule case explicit examples of the failure of Bott vanishing are given in
[11, Section 4.3].

• In the (co)adjoint case the methods used in this paper might be useful in exhibiting
examples of the failure of Bott vanishing for generalised Grassmannians, but we leave
this for future work. The adjoint case in type A is covered by [11, Section 4.2].

• Outside these cases, a positive answer to Conjecture F would give explicit examples
of the failure of Bott vanishing for L Š !_

G=P
.

Hence Proposition D provides the first example of the failure of Bott vanishing for a
generalised Grassmannian which is not cominuscule, which corresponds to Corollary E.

Proof of Corollary E. Consider the (very) ample line bundle L WD !_SGr.3;2n/. Then

H1
�

SGr.3; 2n/;�dim SGr.3;2n/�2
SGr.3;2n/ ˝ !_SGr.3;2n/

�
Š H1

�
SGr.3; 2n/;

^2
TSGr.3;2n/

�
¤ 0

by Proposition D.
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