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Slopes of F -isocrystals over abelian varieties

Marco D’Addezio

Abstract. We prove that an F -isocrystal over an abelian variety defined over a perfect field of pos-
itive characteristic has constant slopes. This recovers and extends a theorem of Tsuzuki for abelian
varieties over finite fields. Our proof exploits the theory of monodromy groups of convergent iso-
crystals.

1. Introduction

In this article, we chiefly study the behaviour of F -isocrystals over abelian varieties. Our
main result is the following theorem.

Theorem 1.1 (Theorem 4.2). Let A be an abelian variety over a perfect field k of pos-
itive characteristic p. Every F -isocrystal over A has constant slopes. (We say that an
F -isocrystal .M; ˆM/ over a variety X has constant slopes if for every closed point
i W x ,! X , the multiset of slopes of .i�M; i�ˆM/ does not depend on x.)

Theorem 1.1 extends [21, Thm. 3.7] and agrees with the general expectation that fam-
ilies of smooth projective varieties parametrised by abelian varieties have “small mono-
dromy”, as explained in [21]. To prove it we use the theory of monodromy groups of
convergent isocrystals. This was firstly introduced by Crew in [5] and further studied
in [1, 6, 7, 17, 20]. Using this theory, it is possible to prove that the category of convergent
isocrystals over A, denoted by Isoc.A/, has a rather simple structure. More precisely, we
prove the following result.

Proposition 1.2 (Proposition 4.1). Let Isoc.A/ be the Tannakian category of convergent
isocrystals over A. The Tannaka group of Isoc.A/ with respect to any fibre functor is
commutative.

Proposition 1.2 is proved using an Eckmann–Hilton argument, exploiting the Künneth
formula for these Tannaka groups (Proposition 2.2). When the ring of Witt vectors of k
embeds into the field complex numbers, Proposition 1.2 was also obtained independently
by Pál in some unpublished notes via a reduction to complex flat connections.
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Over finite fields, knowing Proposition 1.2, Theorem 1.1 follows from a combination
of the theory of weights for overconvergent F -isocrystals, as developed in [13], and the
p-adic global monodromy theorem, proved in [5, Thm. 4.9] and [6, Thm. 3.4.4]. In this
particular case we can actually prove a stronger result. Write K for the fraction field of
the ring of Witt vectors of k and choose an isomorphism � W xK

�
�! C.

Theorem 1.3 (Theorem 4.3). If k is a finite field, every �-pure F n-isocrystal over A
becomes constant after passing to a finite étale cover.

If k is not finite, we cannot rely on the p-adic global monodromy theorem, since it is
false already for ordinary elliptic curves over xFp . To prove Theorem 1.1 we reduce instead
to the case of generically isoclinic F -isocrystals, where the global constancy follows from
the semi-continuity of the slope polygon.

If X is a smooth proper variety over an algebraically closed field k, we also deduce
from Proposition 1.2 a comparison between isocrystals over X and the ones over the
Albanese variety AlbX . Let Isoc.X/F � Isoc.X/ be the subcategory spanned by those
convergent isocrystals which can be endowed with a Frobenius structure.

Theorem 1.4 (Theorem 4.4). For every closed point x 2 jX j, the associated Albanese
morphism f W X ! AlbX induces a faithfully flat morphism

�1
�

Isoc.X/F ; x
�ab f�
�! �1

�
Isoc.AlbX /F ; 0AlbX

�
of affine group schemes, where �1.Isoc.X/F ; x/ and �1.Isoc.AlbX /F ; 0AlbX / are the
Tannaka fundamental groups of Isoc.X/F and Isoc.AlbX /F with respect to x and the
identity element 0AlbX . The kernel of f� is a finite constant group scheme isomorphic to
.Pic�X=k=Pic0;red

X=k
/_.k/.

This theorem is an analogue of [15, Thm. 7.1] and [3, Thm. 4.1]. The main tool we use
here, besides Proposition 1.2, is the fact that unit-root F -isocrystals correspond to p-adic
representations of the étale fundamental group of X .

Notation

Let k be a perfect field of positive characteristic p and let K be the fraction field of the
ring of Witt vectors of k. For a smooth variety X over k we denote by Isoc.X/ the cat-
egory of K-linear convergent isocrystals over X , as defined in [18]. If X is geometrically
connected and � is a perfect point of X , we denote by �1.Isoc.X/; �/ the Tannaka group
of Isoc.X/ with respect to the fibre functor induced by � (see [5, §2.1]). In addition, if
M is a convergent isocrystal over X , we denote by G.M; �/ the Tannaka group of the
Tannakian subcategory hMi � Isoc.X/, spanned by M, with respect to the fibre func-
tor induced by �. We use a similar notation for the other variants of Isoc.X/ that will
appear in this article. Also, if G is an affine group scheme, we denote by Gab the maximal
commutative quotient, by Gdiag the maximal pro-diagonalisable quotient, and by Guni the
maximal pro-unipotent quotient.
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Let F W X ! X be the absolute Frobenius of X . For a positive integer n, we write
Fn-Isoc.X/ for the category of convergent F n-isocrystals1 and F1-Isoc.X/ for
2- lim
�!n

Fn-Isoc.X/. If .M; ˆM/ is a convergent F n-isocrystal, we write .M; ˆ1
M
/ for

its image in F1-Isoc.X/. Further, we write Isoc.X/F for the smallest strictly full abelian
˝-subcategory of Isoc.X/ closed under subquotients containing all the convergent iso-
crystals which can be endowed with a Frobenius structure.

Suppose k algebraically closed. As in [7, Def. 3.1.2], we denote by IsocQur
p
.X; �/ the

Tannaka category of convergent isocrystals with punctual Qur
p -structure at �. We recall

that this category is the category of convergent isocrystal endowed with the choice of
a Qur

p -linear vector subspace VM � M� such that VM ˝Qur
p
K.�/ D M� , where K.�/

is the fraction field of the ring of Witt vectors of �.�; O�/. Moreover, we denote by
IsocQur

p
.X; �/F the Tannakian subcategory of IsocQur

p
.X; �/ spanned by the essential

image of the functor ƒ� W F1-Isoc.X/! IsocQur
p
.X; �/ constructed in [7, Def. 3.1.6].

2. Künneth formula

In this section we want to prove the Künneth formula for the fundamental group of con-
vergent isocrystals. The main ingredient is the following existence theorem.

Theorem 2.1 ([17, §8]2). For a smooth morphism f W Y !X of smooth proper varieties,
the functor f � W Isoc.X/! Isoc.Y / admits a right adjoint f�. The formation of f� is
compatible with base change with respect to morphisms Z ! X where Z is smooth and
proper.

Proposition 2.2. Let X and Y be two smooth proper connected varieties endowed with
the choice of rational points x and y. The projections of the product X � Y to the two
factors induce an isomorphism

�1
�

Isoc.X � Y /; .x; y/
� �
�! �1

�
Isoc.X/; x

�
� �1

�
Isoc.Y /; y

�
:

Proof. We denote by q WX � Y !X the projection to the first factor and by i both x ,!X

and x � Y ,! X � Y . These morphisms induce the following cartesian diagram

x � Y X � Y

x X:

i

q q

i

Moreover, we get the following sequence of affine group schemes over K

1! �1
�

Isoc.Y /; y
� ˛
�! �1

�
Isoc.X � Y /; .x; y/

� ˇ
�! �1

�
Isoc.X/; x

�
! 1; (2.2.1)

1We recall that by [19, Thm. 0.7.2] and [2, Thm. 2.4.2], the category Fn-Isoc.X/ is equivalent to the
category of F n-isocrystals over the absolute crystalline site of X .

2Note that Theorem 2.1 can be also obtained as a consequence of [9] or [22].
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where ˛ is induced by i� and ˇ by q�. We want to use [8, Thm. A.13] to show that (2.2.1)
is an exact sequence.

First, note that the projectionX � Y � Y and the closed immersionX � y ,!X � Y

induce respectively a retraction for ˛ and a section for ˇ. This shows that ˛ is a closed
immersion, ˇ is faithfully flat, and i� W Isoc.X � Y /! Isoc.Y / is essentially surjective,
thus observable3. It is also clear by construction that ˇ ı ˛ is trivial.

It remains to show that for every convergent isocrystal M over X � Y , there exists
N � M, such that i�N is the maximal trivial subobject of i�M. We claim that we
can take as N the convergent isocrystal q�q�M equipped with the adjunction morphism
q�q�M ! M. Indeed, by the compatibility of the formation of direct image with base
change given by Theorem 2.1, we have a natural isomorphism i�q�q�M ' q�q�i

�M.
Combining this with the fact that q�i�M D H 0.Y; i�M/, we deduce that i�q�q�M is
the maximal trivial subobject of i�M. In addition, since i� is an exact˝-functor, this also
implies that q�q�M!M is an injective morphism. This concludes the proof of the exact-
ness of (2.2.1). For symmetry reasons, we deduce that the analogue sequence whereX and
Y are exchanged is also exact. Combining these two facts, we get the desired result.

Remark 2.3. IfX and Y are projective one can alternatively recover Proposition 2.2 from
[17, Thm. 7.1]. A variant of Proposition 2.2 is also proven in [9, Thm. III].

3. Isocrystals with commutative monodromy

This section is an interlude on convergent isocrystals with commutative monodromy. The
main result in this section is that every Frobenius structure on these isocrystals has con-
stant slopes (Proposition 3.2). As we will see in Section 4, over abelian varieties the
monodromy group of a convergent isocrystal is always commutative.

Lemma 3.1. Suppose k algebraically closed and let .M; ˆM/ be a convergent F n-
isocrystal over X . If .M; ˆm

M
/ is irreducible for every m > 0, then M is irreducible.

Proof. Let N �M be an irreducible subobject. By [16, Cor. 6.2], the functor .F n/� is
an autoequivalence of Isoc.X/, thus .F n/� permutes the isomorphism classes of the irre-
ducible subobjects of M. We deduce that after possibly replacing n with a multiple, we
have that .F n/�N 'N . In other words, N can be endowed with some F n-structureˆN .
Write .P ; ˆ1

P
/ for .N ; ˆ1

N
/_ ˝ .M; ˆ1

M
/. If T � P is the maximal trivial subobject

of P , it defines a subobject .T ; ˆ1
T
/ � .P ; ˆ1

P
/. Up to replacing ˆN with psˆr

N

for some .s; r/ 2 Z � Z>0, we may assume that one of the slopes of .T ; ˆ1
T
/ is 0.

Since .T ; ˆ1
T
/ comes from a convergent F1-isocrystal over Spec.k/, we deduce that

.T ; ˆ1
T
/ has a non-trivial global section in F1-Isoc.X/. This implies that there exists

a non-zero morphism .N ; ˆ1
N
/! .M; ˆ1

M
/. Since .M; ˆ1

M
/ is irreducible, we deduce

that .N ; ˆ1
N
/ D .M; ˆ1

M
/. In turn, this implies that M is irreducible, as we wanted.

3For the definition of an observable functor see [8, Def. A.2].
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Proposition 3.2. Let .M; ˆM/ be a convergent F n-isocrystal over a geometrically con-
nected variety X over a perfect field k. If the monodromy group G.M; �/ is commutative
for some perfect point �, then the slopes of .M; ˆM/ are constant.

Proof. Thanks to [5, (2.1.10)] we may assume k algebraically closed and we may replace
.M; ˆM/ with the induced convergent F1-isocrystal .M; ˆ1

M
/. By looking at the irre-

ducible subquotients, we may further assume that .M; ˆ1
M
/ is irreducible. The aim is to

show that generically .M; ˆ1
M
/ admits a unique slope. Indeed, thanks to [14, Thm. 3.12],

this would imply that .M; ˆ1
M
/ admits a unique slope globally.

To prove this we choose a closed point i W x ,! X where .M; ˆ1
M
/ has the same

slopes as the generic ones. Let i� W hM; ˆ1
M
i ! F1-Isoc.x/ be the induced restriction

functor. By the Dieudonné–Manin classification, the category F1-Isoc.x/ is equivalent
to the category of Q-graded Qur

p -vector spaces, where the Q-graduation is induced by the
slopes. Therefore, if d is the lcm of the denominators of the generic slopes of .M; ˆM/,
the functor i� induces a morphism � W G1=d

m ! G.M; ˆ1
M
; x/, where G1=d

m is the dimen-
sion 1 torus with characters 1

d
Z. Let VM be the Dieudonné–Manin structure of M at x

associated to ˆM (cf. [7, Def. 3.1.6]). By (the proof of) [7, Prop. 3.2.8], the associated
monodromy group G.M; VM; x/ is a normal subgroup of G.M; ˆ1

M
; x/. Therefore, the

morphism � induces an action of G1=d
m on G.M; VM; x/ by conjugation.

Thanks to [7, Prop. 3.3.2], the algebraic groupG.M;VM;x/ is a Qur
p -form ofG.M;x/,

thus it is commutative by our assumption. In addition, thanks to Lemma 3.1, we know that
.M; VM/ is irreducible, which implies thatG.M; VM; x/ is reductive. SinceG.M; VM; x/

is a commutative reductive group, its group scheme of automorphisms is a discrete group.
This implies that the action of G1=d

m on G.M; VM; x/ must be trivial. If .M; ˆM/ had
at least two generic slopes, then VM would decompose as V Œa�

M
˚W , where V Œa�

M
is the

subspace of VM of slope a 2 Q and W is its Frobenius-stable direct summand. Since
�.G1=d

m / commutes with G.M; VM; x/, this decomposition would be stable under the
action of G.M; VM; x/, and thus it would induce a decomposition of M in two pieces.
This would contradict the fact that M is irreducible.

We end this section with a consequence of Proposition 3.2 that we will need later on.

Corollary 3.3. If k is algebraically closed, there is a natural isomorphism

�1
�

IsocQur
p
.X; �/F ; �

�diag �
�! �1

�
LS.X;Qur

p /; �
�diag

;

where LS.X;Qur
p / is the category of lisse Qur

p -sheaves over X .

Proof. In [7, Prop. 3.3.4] we constructed a natural fully faithful functor

‰ W LS.X;Qur
p / ,! IsocQur

p
.X; �/F :

By [loc. cit.], the essential image is spanned by those isocrystals with Qur
p -structure that

can be endowed with an isoclinic Frobenius structure. Therefore, to prove the corollary
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it is enough to show that every object .M; VM/ in IsocQur
p
.X; �/F with diagonalisable

monodromy group is in the essential image of ‰.
Without loss of generality, we may assume that .M;VM/ comes from an F n-isocrystal

.M;ˆM/. In addition, since .M; VM/ is semi-simple, it is enough to prove that the irredu-
cible subobjects of .M; ˆM/ are isoclinic. This simply follows from Proposition 3.2.

4. Isocrystals over abelian varieties

Let A be an abelian variety over k with identity point 0A. We want to prove that the F n-
isocrystals over A have constant slopes. For this scope, we first prove that the Tannaka
group of the category of convergent isocrystals over A is commutative.

Proposition 4.1. The affine group scheme �1.Isoc.A/; 0A/ is commutative.

Proof. We want to prove that �1.Isoc.A/; 0A/ is commutative using an Eckmann–Hilton
argument (see [10, Thm. 5.4.2]). By Proposition 2.2, the two projections of A � A to its
factors induce an isomorphism

�1
�

Isoc.A � A/; 0A � 0A
� �
�! �1

�
Isoc.A/; 0A

�
� �1

�
Isoc.A/; 0A

�
:

If m W A � A! A is the multiplication map of A, the induced morphism

�1
�

Isoc.A/; 0A
�
� �1

�
Isoc.A/; 0A

� m�
��! �1

�
Isoc.A/; 0A

�
endows �1.Isoc.A/;0A/with the structure of a group object in the category of affine group
schemes. This implies that �1.Isoc.A/; 0A/ is commutative, as we wanted.

Theorem 4.2. If A is an abelian variety over a perfect field k of positive characteristic,
every F n-isocrystal over A has constant slopes.

Proof. Let .M; ˆM/ be an F n-isocrystal over A. By Proposition 4.1, the monodromy
group G.M; 0A/, being a quotient of �1.Isoc.A/; 0A/, is commutative. Thanks to Propos-
ition 3.2, we deduce that the slopes of .M; ˆM/ are constant. This ends the proof.

Theorem 4.3. If k is a finite field, every �-pure F n-isocrystal over A becomes constant
after passing to a finite étale cover.

Proof. Without loss of generality we may assume that n D Œk W Fp�. By [6, Cor. 3.5.2], if
.M; ˆM/ is a �-pure F n-isocrystal over A, then M is semi-simple4. As a consequence,
thanks to [6, Cor. 3.4.5], the neutral component G.M; �/ı is a semi-simple algebraic
group. Combining this with Proposition 4.1, we deduce that G.M; �/ı is trivial. There-
fore, by [6, Prop. 3.3.4], after passing to a finite étale cover ofA, the isocrystal M becomes
trivial. This yields the desired result.

4In the notation of [6], the F n-isocrystal .M; ˆM/ is a K-coefficient object and M is the geometric
K-coefficient object associated to M.
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To end the article, we want to prove an additional consequence of Proposition 4.1,
which is an analogue of [3, 15].

Theorem 4.4. Let X be a smooth connected proper variety over an algebraically closed
field k of positive characteristic and let x be a k-point of X . If f W X ! AlbX is the
Albanese morphism mapping x to 0AlbX , the induced morphism

�1
�

Isoc.X/F ; x
�ab f�
�! �1

�
Isoc.AlbX /F ; 0AlbX

�
is faithfully flat. Moreover, the kernel of f� is a finite constant group scheme over K
isomorphic to C WD .Pic�X=k=Pic0;red

X=k
/_.k/.

Proof. Write G for �1.Isoc.X/F ; x/ and H for �1.Isoc.AlbX /F ; 0AlbX /. By Proposi-
tion 4.1, the affine group schemeH is commutative, therefore bothGab andH decompose
as a product of a pro-diagonalisable affine group and a commutative pro-unipotent affine
group. By [12, Lem. 5], the morphism �ét

1 .X; x/
ab ! �ét

1 .AlbX ; 0AlbX / is surjective and
the kernel is isomorphic to C . This implies that

�1
�

LS.X;Qur
p /; x

�ab
! �1

�
LS.AlbX ;Qur

p /; 0AlbX

�
is faithfully flat with kernel C . By Corollary 3.3 we deduce then that

�1
�

IsocQur
p
.X; x/F ; x

�diag
! �1

�
IsocQur

p
.AlbX ; 0AlbX /F ; 0AlbX

�diag

is faithfully flat with kernel C . Finally, by virtue of [7, Prop. 3.3.2], we get that Gdiag !

H diag is faithfully flat with kernel C .
It remains to prove that the morphism Gab;uni ! H uni is an isomorphism. By [8,

Thm. 5.4] and its proof, the category Isoc.X/F (resp. Isoc.AlbX /F ) is a Serre subcat-
egory of Isoc.X/ (resp. Isoc.AlbX /). This implies that every convergent isocrystal over
X with unipotent monodromy is contained in Isoc.X/F . Therefore, the affine group Guni

(resp. H uni) is the Tannaka group of the category of unipotent convergent isocrystals over
X (resp. AlbX ). In other words, the affine group scheme Guni (resp. H uni) coincides with
the fundamental group of X (resp. AlbX ) considered in [4, §2.2.1]. As explained in the
proof of [4, Prop. 3.2.1], the Lie algebra of Gab;uni (resp. H uni) is dual to H 1

rig.X/ (resp.
H 1

rig.AlbX /). Thanks to [11, Rmq. II.3.11.2], we deduce that Gab;uni ! H uni is an iso-
morphism, as we wanted.

Acknowledgements. I am grateful to Tomoyuki Abe, Gregorio Baldi, Hélène Esnault,
Chris Lazda, Ambrus Pál, and Fabio Tonini for many enlightening discussions. I would
also like to thank Adrian Langer for his suggestion to apply Proposition 1.2 to Albanese
varieties, which led to Theorem 1.4. I thank the organisers and the participants of the
workshop “F -isocrystals and families of algebraic varieties” at the IMPAN, in Warsaw,
for the interest shown in the results of this article. Finally, I thank the anonymous referee
for all the comments and corrections which improved the article.



M. D’Addezio 8

Funding. The author was funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathem-
atics Research Center MATH+ (EXC-2046/1, project ID: 390685689) and by the Max-
Planck Institute for Mathematics.

References

[1] E. Ambrosi and M. D’Addezio, Maximal tori of monodromy groups of F -isocrystals and an
application to abelian varieties. Algebr. Geom. 9 (2022), no. 5, 633–650 Zbl 1507.14028
MR 4490709

[2] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, premiére partie.
Preprint, https://perso.univ-rennes1.fr/pierre.berthelot

[3] I. Biswas and J. P. P. dos Santos, Abelianization of the F -divided fundamental group scheme.
Proc. Indian Acad. Sci. Math. Sci. 127 (2017), no. 2, 281–287 Zbl 1387.14071
MR 3647152

[4] B. Chiarellotto and B. Le Stum, Pentes en cohomologie rigide et F -isocristaux unipotents.
Manuscripta Math. 100 (1999), no. 4, 455–468 Zbl 0980.14016 MR 1734795

[5] R. Crew,F -isocrystals and their monodromy groups. Ann. Sci. École Norm. Sup. (4) 25 (1992),
no. 4, 429–464 Zbl 0783.14008 MR 1186910

[6] M. D’Addezio, The monodromy groups of lisse sheaves and overconvergent F -isocrystals.
Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 45 Zbl 1454.14058 MR 4117996

[7] M. D’Addezio, Parabolicity conjecture of F -isocrystals. 2020, arXiv:2012.12879, to appear
in Ann. of Math. (2)

[8] M. D’Addezio and H. Esnault, On the universal extensions in Tannakian categories. Int. Math.
Res. Not. IMRN 2022 (2022), no. 18, 14008–14033 Zbl 07594734 MR 4485950

[9] V. Di Proietto, F. Tonini, and L. Zhang, A crystalline incarnation of Berthelot’s conjecture and
Künneth formula for isocrystals. J. Algebraic Geom. 32 (2023), no. 1, 93–141 Zbl 07653699
MR 4548673

[10] B. Eckmann and P. J. Hilton, Group-like structures in general categories. I. Multiplications and
comultiplications. Math. Ann. 145 (1961/62), 227–255 Zbl 0099.02101 MR 136642

[11] L. Illusie, Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup.
(4) 12 (1979), no. 4, 501–661 Zbl 0436.14007 MR 565469

[12] N. M. Katz and S. Lang, Finiteness theorems in geometric classfield theory. Enseign. Math.
(2) 27 (1981), no. 3-4, 285–319 (1982) Zbl 0495.14011 MR 659153

[13] K. S. Kedlaya, Fourier transforms and p-adic ‘Weil II’. Compos. Math. 142 (2006), no. 6,
1426–1450 Zbl 1119.14014 MR 2278753

[14] K. S. Kedlaya, Notes on isocrystals. J. Number Theory 237 (2022), 353–394 Zbl 1502.14051
MR 4410030

[15] A. Langer, On the S-fundamental group scheme. II. J. Inst. Math. Jussieu 11 (2012), no. 4,
835–854 Zbl 1252.14028 MR 2979824

[16] C. Lazda, A note on effective descent for overconvergent isocrystals. J. Number Theory 237
(2022), 395–410 Zbl 1484.14041 MR 4410031

[17] C. Lazda and A. Pál, A homotopy exact sequence for overconvergent isocrystals. Forum Math.
Sigma 9 (2021), 1–33 Zbl 1483.14038 MR 4330995

https://doi.org/10.14231/ag-2022-019
https://doi.org/10.14231/ag-2022-019
https://zbmath.org/?q=an:1507.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=4490709
https://perso.univ-rennes1.fr/pierre.berthelot
https://doi.org/10.1007/s12044-016-0322-3
https://zbmath.org/?q=an:1387.14071
https://mathscinet.ams.org/mathscinet-getitem?mr=3647152
https://doi.org/10.1007/s002290050212
https://zbmath.org/?q=an:0980.14016
https://mathscinet.ams.org/mathscinet-getitem?mr=1734795
https://doi.org/10.24033/asens.1655
https://zbmath.org/?q=an:0783.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=1186910
https://doi.org/10.1007/s00029-020-00569-3
https://zbmath.org/?q=an:1454.14058
https://mathscinet.ams.org/mathscinet-getitem?mr=4117996
https://arxiv.org/abs/2012.12879
https://doi.org/10.1093/imrn/rnab107
https://zbmath.org/?q=an:07594734
https://mathscinet.ams.org/mathscinet-getitem?mr=4485950
https://doi.org/10.1090/jag/789
https://doi.org/10.1090/jag/789
https://zbmath.org/?q=an:07653699
https://mathscinet.ams.org/mathscinet-getitem?mr=4548673
https://doi.org/10.1007/BF01451367
https://doi.org/10.1007/BF01451367
https://zbmath.org/?q=an:0099.02101
https://mathscinet.ams.org/mathscinet-getitem?mr=136642
https://doi.org/10.24033/asens.1374
https://zbmath.org/?q=an:0436.14007
https://mathscinet.ams.org/mathscinet-getitem?mr=565469
https://zbmath.org/?q=an:0495.14011
https://mathscinet.ams.org/mathscinet-getitem?mr=659153
https://doi.org/10.1112/S0010437X06002338
https://zbmath.org/?q=an:1119.14014
https://mathscinet.ams.org/mathscinet-getitem?mr=2278753
https://doi.org/10.1016/j.jnt.2021.12.004
https://zbmath.org/?q=an:1502.14051
https://mathscinet.ams.org/mathscinet-getitem?mr=4410030
https://doi.org/10.1017/S1474748012000011
https://zbmath.org/?q=an:1252.14028
https://mathscinet.ams.org/mathscinet-getitem?mr=2979824
https://doi.org/10.1016/j.jnt.2019.09.014
https://zbmath.org/?q=an:1484.14041
https://mathscinet.ams.org/mathscinet-getitem?mr=4410031
https://doi.org/10.1017/fms.2021.63
https://zbmath.org/?q=an:1483.14038
https://mathscinet.ams.org/mathscinet-getitem?mr=4330995


Slopes of F -isocrystals over abelian varieties 9

[18] A. Ogus, F -isocrystals and de Rham cohomology. II. Convergent isocrystals. Duke Math. J.
51 (1984), no. 4, 765–850 Zbl 0584.14008 MR 771383

[19] A. Ogus, The convergent topos in characteristic p. In The Grothendieck Festschrift, Vol. III,
pp. 133–162, Progr. Math. 88, Birkhäuser, Boston, MA, 1990 Zbl 0728.14020 MR 1106913

[20] A. Pál, The p-adic monodromy group of abelian varieties over global function fields of char-
acteristic p. Doc. Math. 27 (2022), 1509–1579 Zbl 1495.14065 MR 4493489

[21] N. Tsuzuki, Constancy of Newton polygons of F -isocrystals on Abelian varieties and isotrivi-
ality of families of curves. J. Inst. Math. Jussieu 20 (2021), no. 2, 587–625 Zbl 1467.14060
MR 4223434

[22] D. Xu, On higher direct images of convergent isocrystals. Compos. Math. 155 (2019), no. 11,
2180–2213 Zbl 1430.14050 MR 4016055

Communicated by Takeshi Saito

Received 11 February 2021; revised 5 March 2022.

Marco D’Addezio
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Université, 4 place Jussieu,
Case 247, 75005 Paris, France; daddezio@imj-prg.fr

https://doi.org/10.1215/S0012-7094-84-05136-6
https://zbmath.org/?q=an:0584.14008
https://mathscinet.ams.org/mathscinet-getitem?mr=771383
https://doi.org/10.1007/978-0-8176-4576-2_5
https://zbmath.org/?q=an:0728.14020
https://mathscinet.ams.org/mathscinet-getitem?mr=1106913
https://doi.org/10.3934/dcdsb.2022017
https://doi.org/10.3934/dcdsb.2022017
https://zbmath.org/?q=an:1495.14065
https://mathscinet.ams.org/mathscinet-getitem?mr=4493489
https://doi.org/10.1017/S1474748019000276
https://doi.org/10.1017/S1474748019000276
https://zbmath.org/?q=an:1467.14060
https://mathscinet.ams.org/mathscinet-getitem?mr=4223434
https://doi.org/10.1112/s0010437x19007590
https://zbmath.org/?q=an:1430.14050
https://mathscinet.ams.org/mathscinet-getitem?mr=4016055
mailto:daddezio@imj-prg.fr

	1. Introduction
	Notation

	2. Künneth formula
	3. Isocrystals with commutative monodromy
	4. Isocrystals over abelian varieties
	References

