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Tori over number fields and special values at s D 1

Adrien Morin

Abstract. We define a Weil-étale complex with compact support for duals (in the sense of the
Bloch dualizing cycles complex Zc) of a large class of Z-constructible sheaves on an integral
1-dimensional proper arithmetic scheme flat over Spec.Z/. This complex can be thought of as
computing Weil-étale homology. For those Z-constructible sheaves that are moreover tamely ram-
ified, we define an “additive” complex which we think of as the Lie algebra of the dual of the
Z-constructible sheaf. The product of the determinants of the additive and Weil-étale complex is
called the fundamental line. We prove a duality theorem which implies that the fundamental line has
a natural trivialization, giving a multiplicative Euler characteristic. We attach a natural L-function
to the dual of a Z-constructible sheaf; up to a finite number of factors, this L-function is an Artin L-
function at s C 1. Our main theorem contains a vanishing order formula at s D 0 for the L-function
and states that, in the tamely ramified case, the special value at s D 0 is given up to sign by the Euler
characteristic. This generalizes the analytic class number formula for the special value at s D 1 of
the Dedekind zeta function. In the function field case, this is a theorem of Geisser–Suzuki.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2. Cohomology with compact support of FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3. Weil-étale cohomology with compact support of FD . . . . . . . . . . . . . . . . . . . . . . . . . 203
4. The tangent space and the fundamental line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5. Deligne compactly supported cohomology and the duality theorem . . . . . . . . . . . . . . . 216
6. The L-function of FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7. The Weil-étale Euler characteristic and the special value theorem . . . . . . . . . . . . . . . . 233
A. Duality for the Tate cohomology of finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B. The maximal tamely ramified extension of a number field . . . . . . . . . . . . . . . . . . . . . 252
C. Miscellaneous results on proétale cohomology and condensed mathematics . . . . . . . . . 254
D. Strictly henselian local rings of singular schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
E. A lemma on determinants of total complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

2020 Mathematics Subject Classification. Primary 14G10; Secondary 11G40, 11R42, 14F20, 14F42.
Keywords. Weil-étale cohomology, special values, L-functions.

https://creativecommons.org/licenses/by/4.0/


A. Morin 174

1. Introduction

1.1. Results

1.1.1. A new L-function. Let O be an order in a number field K and X D Spec.O/.
Denote ZcX WD ZcX .0/ Bloch’s cycle complex (with cohomological indexing), defined on
the étale site of X ; in particular if X is regular we have Zc

X D GmŒ1�. A sheaf of abelian
groups F on the étale site of X is Z-constructible if on a dense open it is locally con-
stant associated to a finite type abelian group, and moreover the stalks at all geometric
points are finite type abelian groups. If F is a Z-constructible sheaf, denote FD WD
RHomX .F;ZcX /. The cohomology of FD is related to the compactly supported coho-
mology of F by Artin–Verdier duality; thus we think of it as computing homology with
coefficients in F . To FD , we associate an L-function:

Definition. For a complex of étale sheaves M , we put

M y̋ Ql WD
�
R lim

n
.M ˝L Z=lnZ/

�
˝Q

computed on the proétale site. For each closed point x of X , let l D lx be a prime num-
ber such that l ¤ char.�.x// and Lx the usual local factor defined using the geometric
Frobenius ': for a finite dimensional Ql -representation V ,

Lx.V; s/ WD det
�
1 � 'N.x/�sjV

��1
with N.x/ D card.�.x//. We define the L-function of FD as

LX .F
D; s/ WD

Y
x2X0

Lx
�
.i�xF

D/ y̋ Qlx ; s
�
:

We compute explicitly the local factors and show that they are well defined and that
the Euler product converges for s > 1. In fact, denote g W Spec.K/ ! X the inclusion
of the generic point and GK D Gal.Ksep=K/. If V is the rational representation of GK
corresponding to g�F ˝Q and V _ is its linear dual, then the L-function of FD equals
up to a finite number of factors the Artin L-function LK.V _; s C 1/. In particular, the
L-function extends to a meromorphic function on C. If F is a Z-constructible sheaf on
Spec.K/ associated to a finite type integral GK-representation M , we have moreover
LX ..g�F /

D; s/ D LK.HomAb.M;Q/; s C 1/. We have as a special case LX .ZD; s/ D
�X .s C 1/ if X is regular. On the other hand, let i W x ! X be the inclusion of a closed
point and F is a Z-constructible sheaf on x. In [31] we introduced L-functions for Z-
constructible sheaves on X ; then

LX
�
.i�F /

D; s
�
D det

�
I � 'N.x/�sjHomx.F;Z/˝Q

��1
is the L-function of the Z-constructible sheaf i�Homx.F;Z/. Finally, if j W U ,! X is
the inclusion of a dense open subscheme, we have

LX
�
.jŠZ/

D; s
�
D �U .s C 1/ �

Y
x2XnU

�x.s C 1/

�x.s/
:
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1.1.2. Weil-étale cohomology and special values. We apply the Weil-étale formalism
of Flach–B. Morin [15] to give a special value formula at s D 0 of this new L-function.
The idea of Weil-étale cohomology originates in [27], where Lichtenbaum constructs a
Weil-étale topos for varieties over a finite field and links it to the special value at s D 0
of zeta functions. Further work was done by Geisser over a finite field [17]. For schemes
over Spec.Z/, attempts at the definition of a Weil-étale topos were made by Lichten-
baum [28] and Flach–B. Morin [14] but its cohomology does not behave well in high
degree. Another approach was instigated by B. Morin in [33] and refined by Flach–B.
Morin in [15]: instead of constructing the Weil-étale topos, one only constructs Weil-étale
cohomology complexes in the derived category of abelian groups which fit into a certain
distinguished triangle. This distinguished triangle comes heuristically from the pushfor-
ward from the Weil-étale topos to the étale topos1.

Other relevant works on Weil-étale cohomology include Chiu’s thesis [10], Besh-
enov’s thesis [2, 3], Tran’s article [44] and the author’s article [31]. Work related to the
study of the Weil-étale cohomology of FD are Geisser–Suzuki’s article [20] and Tran’s
thesis [43]. As far as the author knows, Tran was the first to observe that for an integral
representation M of the Galois group of a number field K, the special value of the Artin
L-function of M ˝Q at s D 1 should be related to Weil-étale cohomology of the dual of
the pushforward of M to Spec.OK/.

Following the formalism of Flach–B. Morin, we should construct for each F a “multi-
plicative” complex2, the Weil-étale complex (with compact support) which we think of as
“Weil-étale homology” with coefficients in F , and an “additive” complex3, an analogue
of Milne’s correcting factor in special value formulas for zeta functions of varieties over
finite fields. The right object to consider is then the fundamental line �X .FD/, a free
abelian group of rank 1 which is defined as the product of the determinants of the additive
and multiplicative complexes. In the general situation of an arithmetic scheme, contrary
to the case over a finite field, the additive and multiplicative complexes are linked to each
other through phenomena happening on complex points and so cannot be studied inde-
pendently to get a special value formula; instead one of the fundamental insights of [15] is
that one has to study them together through the fundamental line4. The fundamental line
should have a canonical trivialization

�X .F
D/˝R

'
�! R

after base change to R, which enables one to construct a multiplicative Euler characteristic
as the covolume of �X .FD/ inside �X .FD/ ˝ R, and this Euler characteristic should
give the special value up to sign.

1The pushforward had been computed by Geisser [17] in the case over a finite field and by B. Morin in
the case of the spectrum of a ring of integers in a number field [32, §8, §9].

2Here “multiplicative” suggests that the complex is linked to motivic cohomology: the latter involves
the units, the Picard group, etc.

3Here “additive” suggests that the complex is linked to coherent phenomena/de Rham cohomology.
4This idea has its origin in the formulation of Fontaine–Perrin-Riou of the Bloch–Kato conjecture on

special values of L-functions.
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1.1.3. The Weil-étale complex. We introduce compactly supported cohomology and
Tate compactly supported cohomology complexes5

R�c;B.X; F
D/; Ry�c;B.X; F

D/:

The two bear to each other the same kind of relationship as ordinary and Tate cohomol-
ogy: the fiber of the canonical morphism R�c;B.X; F

D/ ! Ry�c;B.X; F
D/ computes

some homology at the archimedean places. Moreover, we prove an Artin–Verdier duality
statement for Ry�c;B.X; FD/, which suggests that compactly supported cohomology of
FD should be thought of as “étale homology” of F :

Theorem A (Artin–Verdier duality for FD , see Section 2.2). There is a natural pairing

R�.X;F /˝L Ry�c;B.X; F
D/! Q=ZŒ�2�:

It induces a map

Ry�c;B.X; F
D/! RHom

�
R�.X;F /;Q=ZŒ�2�

�
:

If F is Z-constructible, the above map is an isomorphism in degree ¤ �1; 0, and an
isomorphism after profinite completion of the left-hand side in degree �1; 0.

The proof proceeds by twisting the usual Artin–Verdier theorem [30, Thm. II.3.1] by a
duality at archimedean places. With the Artin–Verdier-like duality theorem in our hands,
we can construct a Weil-étale complex using the methodology of [33]: the cohomology
groups with compact support of FD have a finite type part and a torsion of cofinite type
part (i.e., the Q=Z-dual of a finite type abelian group) and Artin–Verdier duality says
that the torsion cofinite type part is the Q=Z-dual of some étale cohomology of F . Tak-
ing inspiration from Geisser’s and B. Morin’s computation of the derived pushforward
from the Weil-étale topos to the étale topos [17, 32], there should exist a fundamental
distinguished triangle saying that Weil-étale cohomology with compact support of FD is
obtained by replacing the torsion cofinite type part of cohomology with compact support
of FD by a finite type part, using the short exact sequence 0! Z! Q! Q=Z! 0.
This suggest the existence of a map Hom.H 2�i .X; F /;Q/! H i

c;B.X; F
D/ making the

diagram

Hom
�
H 2�i .X; F /;Q

�
H i
c;B.X; F

D/

Hom
�
H 2�i .X; F /;Q=Z

�
yH i
c;B.X; F

D/
Artin–Verdier

commute; taking kernels and cokernels will then give something of finite type. We are thus

led to consider the existence of a map RHom.R�.X;F /;QŒ�2�/
‹
�! R�c;B.X;F

D/, the

5The subscript B refers to the way we correct the cohomology at infinity, which involves the Tate twist
Z.1/ D 2i�Z.
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cone of which we want to name Weil-étale cohomology with compact support of FD . We
achieve the construction of such a map with good functoriality properties in D.Z/ for a
large class of Z-constructible sheaves, which we name red sheaves and blue sheaves.

Definition. Let F be a Z-constructible sheaf on X . We say that

• F is red if H 0
c;B.X; F

D/ is torsion, hence finite.

• F is blue if H 1.X; F / is torsion, hence finite.

• A red-to-blue morphism is a morphism of sheaves F ! G where either F and G are
both blue, or are both red, or F is red andG is blue ; a red-to-blue short exact sequence
is a short exact sequence with red-to-blue morphisms.

Examples of red sheaves are extensions by zero of locally constant Z-constructible
sheaves on a regular open subscheme. Examples of blue sheaves are Z-constructible
sheaves supported on a finite closed subscheme. The important point is that there are
“enough red and blue sheaves”, meaning that any Z-constructible sheaf can be put in a
short exact sequence where the first term is red and the last is blue6.

Theorem B (Existence of the Weil-étale complex, see Section 3). For every red or blue
sheaf F , there exists a Weil-étale complex with compact support R�W;c.X;FD/ 2D.Z/,
well defined up to unique isomorphism. It sits in a distinguished triangle

RHom
�
R�.X;F /;QŒ�2�

�
! R�c;B.X; F

D/! R�W;c.X; F
D/! :

It is a perfect complex, functorial in red-to-blue morphisms, and it yields a long exact
cohomology sequence for red-to-blue short exact sequences. If Y D Spec.O0/ is the spec-
trum of an order in a number field with a finite dominant morphism � W Y ! X , we have
a canonical isomorphism

R�W;c
�
X; .��F /

D
�
' R�W;c.Y; F

D/:

The Weil-étale cohomology with compact support of FD is constructed from the com-
plex R�c;B.X; FD/, so it can be thought of as some “Weil-étale homology” of F . The
idea of such a homology theory is not new: Geisser had defined “arithmetic homology” for
curves over finite fields [19], and there is a tentative construction of a Weil-étale complex
of FD over the spectrum of a ring of integers in a totally imaginary number field in Tran’s
thesis [43]. Finally, let K be a function field associated to a smooth proper curve C over
a finite field. Geisser–Suzuki showed in [21] that for a given torus over K, its connected
Néron model T ı over C is of the form FD for F a complex defined in terms of the char-
acter group of T , and they linked the special value of the L-function of the torus at s D 1
to Weil-étale cohomology of T ı; this suggested that our approach might be fruitful (see
Section 1.2.2 for a precise comparison).

6Namely, take the short exact localization sequence associated to a regular dense open subscheme on
which the sheaf is locally constant.
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Having an1-categorical construction of the map

RHom
�
R�.X;F /;QŒ�2�

�
! R�c;B.X; F

D/

would have been better, but this construction has eluded us. Instead, we use a kind of
miraculous vanishing of Ext1 groups, for red or blue sheaves, which enables to define the
map by only specifying the maps it induces in cohomology. This vanishing is not true for
arbitrary Z-constructible sheaves, which explains our restriction. It will turn out that to
define the Weil-étale Euler characteristic this is not a problem.

1.1.4. The additive complex. We now have the multiplicative part of the fundamental
line, so we turn to the additive part, which we dub the tangent space of FD:

Definition (The tangent space of FD). Let F be a Z-constructible sheaf onX and denote
g W Spec.K/ ! X the inclusion of the generic point. We identify g�F with a discrete
GK-module M . Denote also OK the ring of integers in K.

• We say that F is tamely ramified if for each x 2 X0, the wild ramification group at
x acts trivially on M . Let Kt be the maximal tamely ramified extension of K, and
GtK WD Gal.Kt=K/; if F is tamely ramified, M carries a natural action of GtK .

• Suppose that F is tamely ramified. The tangent space of FD is the complex

LieX .FD/ WD RHomGtK

�
M;OKt Œ1�

�
:

• Suppose that F is tamely ramified and red or blue. The fundamental line is

�X .F
D/ WD det

Z
R�W;c.X; F

D/˝ det
Z

LieX .FD/�1:

Our definition of the tangent space is made so that in particular, when X D Spec.OK/
is regular, the tangent space of ZD D Zc

X D GmŒ1� is R�.X;GaŒ1�/ D OK Œ1�, and the
tangent space of the dual of a sheaf supported on a finite closed subscheme is 0. This is
as expected from the L-function we introduce: indeed for ZD it gives the zeta function at
s C 1 so its special value at 0 is the special value of the Dedekind zeta function at 1 and
should involve the contribution from OK (the discriminant); this was shown already (in
the Weil-étale formalism) by Flach–B. Morin in the case of Z.1/D .ZD/Œ�2� forX regu-
lar [15]. On the other hand, for the dual of a sheaf supported on a finite closed subscheme
we find an L-function as in [31, §6.4], for which there is no “additive” contribution for
the special value at 0. The restriction to tamely ramified sheaves is justified by a theorem
of Noether [38], which implies that OKt is cohomologically trivial. We are still investigat-
ing how to remove the tamely unramified hypothesis. The definition was inspired by [21],
which uses the Lie algebra of the Néron model of a torus T over K to form the additive
part of the fundamental line giving the special value at s D 1 of the L-function of T (see
Section 1.2.2). Our definition is a generalization of this construction in the tamely ramified
case that includes finite groups of multiplicative type, as shows the following:
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Proposition (see Corollary 4.7). Suppose that F is tamely ramified and that g�F is
torsion-free. Denote T the torus overK with character group g�F and T its Néron model
over Spec.OK/. Then there is a canonical isomorphism

LieX .FD/ ' Lie.T /Œ1�:

1.1.5. Trivialization of the fundamental line. Now that we have our fundamental line,
we should seek a canonical trivialization to obtain the Euler characteristic. We propose a
contravariant generalization of the complex R�c.X;R.1// of [15]7:

Definition. The map log j � j W C� ! R induces a natural map

Log W R�.X;FD/R ! RHomGR;X.C/

�
˛�F;RŒ1�

�
:

For F a Z-constructible sheaf, we define the Deligne compactly supported complex with
coefficients in FD by

R�c;D.X; F
D
R / WD fib

�
R�.X;FD/R

Log
��! RHomGR;X.C/

�
˛�F;RŒ1�

��
:

Then, again following [15], we introduce Weil–Arakelov complexes:

Definition. Let F be a Z-constructible sheaf on X . We define Weil–Arakelov complex
of FD as the complex:

R�ar;c.X; F
D
R / WD R�c;D.X; F

D
R /Œ�1�˚R�c;D.X; F

D
R /:

The determinant of the Weil–Arakelov complex has a canonical trivialization; we will
obtain the trivialization of the fundamental line by relating the fundamental line with the
Weil–Arakelov complex through a duality theorem and the rational splitting of Weil-étale
cohomology:

Theorem C (Duality theorem for R-coefficients, see Section 5). There is a natural pair-
ing �

R�.X;F /˝R
�
˝
L
R R�c;D.X; F

D
R /! RŒ0�:

It induces a map
R�c;D.X; F

D
R /! RHom

�
R�.X;F /;R

�
which is an isomorphism for F 2 DC.Xet/. If moreover F is a bounded complex with
Z-constructible cohomology groups, both sides are perfect complexes of R-vector spaces.

Proposition (Rational splitting of Weil-étale cohomology, see Proposition 3.12). Let F
be a red or blue sheaf. The defining distinguished triangle of Weil-étale cohomology splits

7The complex of Flach–B. Morin is the mapping fiber of the Beilinson regulator between motivic
cohomology (tensored with R) and (real) Deligne cohomology on the complex points, in weight 1; see
[15, §2.1].
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rationally to give an isomorphism

R�W;c.X; F
D/˝Q

'
�! RHom

�
R�.X;F /;QŒ�1�

�
˚R�c;B.X; F

D/˝Q

natural in red-to-blue morphisms and red-to-blue short exact sequences, and compatible
with finite dominant morphisms between spectra of orders in number fields.

The duality theorem and the rational splitting imply that there is a distinguished trian-
gle

R�ar;c.X; F
D
R /! R�W;c.X; F

D/˝R! LieX .FD/˝R

which gives the natural trivialization

� W �X .F
D/R D det

R

�
R�W;c.X; F

D/˝R
�
˝ det

R

�
LieX .FD/˝R

��1
'
�! det

R

�
R�ar;c.X; F

D
R /
�

'
�! R:

1.1.6. The Euler characteristic and the special value theorem.

Definition. • Let F be a tamely ramified red or blue sheaf. The Weil-étale Euler char-
acteristic of FD is the positive real number �X .FD/ such that

�
�
�X .F

D/
�
D �X .F

D/�1 � Z ,! R:

• Let F be a tamely ramified Z-constructible sheaf. There exists a short exact sequence
0! F 0 ! F ! F 00 ! 0 with F 0 red and tamely ramified and F 00 blue and tamely
ramified; define

�X .F
D/ D �X

�
.F 0/D

�
�X
�
.F 00/D

�
:

It does not depend on the chosen sequence.

The constructed Euler characteristic is multiplicative thanks to the functoriality prop-
erties of our constructions. We have an explicit computation:

Proposition (see Proposition 7.9). Let F be a tamely ramified Z-constructible sheaf and
suppose that X is regular. We have

�X .F
D/ D

.2�/r2.F /2r1.F /
�
H 0.X; F /tor

��
Ext1X .F;Gm/tor

�
R.FD/�

H 1.X; F /tor
��

HomX .F;Gm/tor
��

Ext1
GtK
.F�;OKt /

�
ŒN2�Disc.F /

where r1.F / and r2.F / are some positive integers,N2 is a certain finite 2-torsion abelian
group, R.FD/ is a regulator-type real number and Disc.F / is a square-root-of-discrimi-
nant-type real number.

Now that we have an Euler characteristic at our disposition, the general method fol-
lowing work of Tran [44] (also used in [20, 31]) is to reduce the special value formula via
Artin induction to computations in specific cases. We obtain:
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Theorem D (Special value formula, see Section 7.2). Let F be a Z-constructible sheaf.
We have the vanishing order formula

ordsD0LX .FD; s/ D
X

.�1/i i � dimRH
i
ar;c.X; F

D
R /:

If F is tamely ramified and red or blue, we have the special value formula

��1
�
L�X .F

D; 0/�1 � Z
�
D �X .F

D/:

In general, if F is a tamely ramified Z-constructible sheaf, we have the special value
formula

L�X .F
D; 0/ D ˙�X .F

D/:

For F D Z we find the analytic class formula for the Dedekind zeta function, so this
can be seen as a wide generalization of the analytic class number formula. In the singular
case, it does not give a special value formula at s D 1 of the zeta function: indeed if Z is
the singular locus and � W Y ! X is the normalization,

LX .Z
D; s/ D �XnZ.s C 1/ �

Y
z2Z

Y
�.y/Dz

�y.s C 1/

�y.s/
:

Using a remark made by Chen in their thesis [9], we observe that the case of a constructible
sheaf (which states that �X .FD/ D 1) follows formally using [41, Cor. 1] from the case
of a sheaf supported on a closed subscheme and the multiplicativity properties of the
Euler characteristic (see Theorem 7.12). Applying this remark to the construction in [31],
this gives a quick proof of Tate’s formula for Euler characteristics in global fields (see
[30, Thm. I.5.1, Thm. II.2.13] and [31, Prop. 6.23] for the reduction to Tate’s formula).

1.2. Comparison with other works

1.2.1. [43]. Our work represents a significant improvement on Tran’s thesis. The con-
struction of Tran, which takes place over X D Spec.OK/ in the totally imaginary case,
involves a complex DFD for so-called “strongly Z-constructible sheaves” with a natu-
rally attached real number �Tran.F

D/. In the previous chapters of his thesis, Tran had
constructed a complex DF with a naturally attached real number8 �Tran.F / such that, for
M a finite type torsion-free discrete GK-module corresponding to an étale sheaf Y on
Spec.K/ and g W Spec.K/! X the canonical morphism, L�K.M; 0/ D ˙�Tran.g�Y /. Let
d D rankZ Y ; Tran computes

�Tran
�
.g�Y /

D
�
D
�Tran.F /.2�/

nd=2p
j�K j

d

8We do not say Euler characteristic because the multiplicativity is not proven.
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and essentially deduces from the functional equation the formula

L�K.M; 1/ D ˙
�Tran

�
.g�Y /

D
�

NK=Q
�
f.M/

�
with f.M/ the Artin conductor. The quantity NK=Q.f.M// is shown to be related to two
natural integral structures on the Lie algebra Lie.D.M// of the torusD.M/with character
group M .9

Tran’s thesis only works out the case of a totally imaginary number field, which avoids
the handling of factors of 2 linked to real places. Our construction takes places over an
order in an arbitrary number field; in particular we have to be careful with the 2-torsion,
which is achieved through our compactly supported cohomology, and with singularities,
which are handled by using the dualizing complex Zc instead of GmŒ1�. Though we restrict
ourselves to tamely ramified Z-constructible coefficients, we obtain a multiplicative Euler
characteristic, given on the nose by the fundamental line, which describes the special value
at s D 0 of the L-function LX .FD; s/ (which includes as a special case Artin L-functions
at s D 1 for tamely ramified finite type discreteGK-modules). We also have to place some
restrictions on the Z-constructible sheaves to obtain a construction of Weil-étale com-
plexes, but these restrictions are significantly weaker than the “strongly Z-constructible”
condition of Tran and give a well-behaved complex that has good functorial properties.

1.2.2. [21]. Our work can be seen as adapting and generalizing to the number field case
a part of Geisser–Suzuki’s work on special values of 1-motives over a function field K,
specifically the part about tori. The analogy between our work and theirs is as follows:
let K be a global field, let T be a torus over K with character group M , let X be either
Spec.OK/ or the smooth complete curve with function fieldK and let g W Spec.K/!X be
the canonical morphism. In the function field case, Geisser–Suzuki consider the connected
Néron model T ı of T over X . They prove that T ı ' RHomX .�

�1Rg�M;Gm/ as an
étale sheaf. The cup product with a generator e 2 H 1

W .X;Z/ ' Z induces a trivialization
on detR.R�W .X; T ı/ ˝ R/ while the complex R�Zar.X;Lie.T

ı// ˝ R is trivial; this
induces a trivialization

�e W
��

det
Z
R�W .X; T

ı/
��1
˝ det

Z
R�Zar

�
X;Lie.T ı/

��
˝R

'
�! R:

After some reformulation, the special value formula for the L-function of T is10

Theorem ([21, Thm. 4.6]).

��1e
�
L�.T; 0/ � Z

�
D
�
det
Z
R�W .X; T

ı/
��1
˝ det

Z
R�Zar

�
X;Lie.T ı/

�
:

9It seems to us that there is a mistake there, as Tran claims that Lie.D.M//D HomZ.M;K/ while the
correct formula should be Lie.D.M// D HomGK .M;K

sep/. It is not clear to us what impact this potential
mistake has on his results.

10We use the L-function L.T; s/ of the 1-motive of Œ0! T �, which is related to the Hasse–Weil L-
function LHW.T; s/ by L.T; s/ D LHW.T; s C 1/. This is why our formula takes place at s D 0 while the
formula in [21] is for s D 1.
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In the number field case, denote F WD ��1Rg�M so that

FD D RHomX .�
�1Rg�M;Gm/Œ1� D T ıŒ1�:

The sheaf g�M is red and moreover R1g�M is constructible, so the conclusions of both
thm. A and thm. B hold without modification for F and we have a Weil-étale complex
with compact support R�W;c.X; T ı/ WD R�W;c.X; F

D/Œ�1�. We have LX .FD; s/ D
L.T; s/�1. Finally when M is tamely ramified, since R1g�M is supported on a finite
closed subscheme we have

LieX .FD/ D LieX
�
.g�M/D

�
D Lie.T /Œ1� D Lie.T ı/Œ1� D R�Zar

�
X;Lie.T ı/

�
Œ1�

so our formula is the direct analogue of the previous one:

Theorem.

��1
�
L�.T; 0/ � Z

�
D
�
det
Z
R�W;c.X; T

ı/
��1
˝ det

Z
R�Zar

�
X;Lie.T ı/

�
:

Since we consider all coefficients FD for F a Z-constructible sheaf, we gain some
flexibility which allows us to consider the case where X is singular. The main technical
difficulty in our situation seems to be the definition of Weil-étale cohomology, while in
the function field case Weil-étale cohomology is a well-established construction by work
of Lichtenbaum and Geisser [17, 27].

1.2.3. [23]. Jordan–Poonen proved an analytic class number formula for the zeta function
of a 1-dimensional affine reduced arithmetic scheme. Our work is related but different in
nature, as the functions we consider are not the same: for j W U ! X an open immer-
sion, we have LX ..jŠZ/D; s/ D �U .s C 1/ only when U D X and X is regular. Let
X D Spec.O/ be the spectrum of an order in a number field K, let j W U ! X be an
open subscheme and let Sf be the finite places missing in the normalization of U . Denote
A WD OU .U /. Their special value formula for U is

��U .1/ D
2r1.2�/r2h.A/R.A/

Q
x2Sf

��
1 �N.x/�1/= logN.x/

�
!.A/

p
j�Aj

with r1, r2 the number of real and complex places of K, h.A/ WD ŒPic.U /�, R.A/ is the
covolume of A� � O�K;S under the usual logarithmic embedding, !.A/ D Œ.A�/tor� and
�A is the discriminant of A, that is det.Tr.eiej // for a Z-basis ei of A.

Meanwhile our formula is computed explicitly as

L�X
�
.jŠZ/

D; 0
�
D
2r1.2�/r2hURU

!
p
j�K j

with hU D ŒCH0.U /�, RU the regulator from [31] and ! the number of roots of unity
in K.
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1.3. Notations

1.3.1. Schemes. The étale site of a scheme Y will be denoted Yet and the pro-étale site
Yproet [4]. There is a morphism of topoi � W Sh.Yproet/ ! Sh.Yet/ such that �� is fully
faithful. A sheaf of abelian groups on Yet will be called an étale sheaf for short.

An arithmetic scheme is a scheme separated of finite type over Spec.Z/; an arithmetic
curve is a dimension 1 arithmetic scheme. In this paper, we will consider proper integral
arithmetic curves that are flat over Spec.Z/. Such a scheme is the spectrum of an order
O in a number field K. For the rest of the paper, we fix X D Spec.O/. The generic point
will be denoted g W � D Spec.K/ ! X . We write GK WD Gal.Ksep=K/ for the Galois
group ofK. If v is a finite place (resp. an archimedean place) ofK, we will denoteKv the
henselian local field (resp. complete local field) at v and gv W �v D Spec.Kv/! X the
canonical morphism. If x is a closed point of X , we will denote ix W x ! X the inclusion
(or i when the context is clear), Gx D Gal.�.x/sep=�.x// the Galois group of the residue
field at x and N.x/ D Œ�.x/� the cardinality of the residue field at x. When the context
allows, we will abuse notation and write v for a regular closed point of X corresponding
to a finite place v of K. If U is an open subscheme of X , we will denote j W U ! X the
corresponding morphism. We denote by X0 the set of closed points of X .

For F an étale sheaf on X , we denote F� WD g�F and Fx D i�xF for x a closed point,
and we identify those with a discreteGK-module resp. discreteGx-module. We will make
no distinction between an étale sheaf on the spectrum of a field and the associated Galois
module.

1.3.2. Dualizing complex. Denote z0.X; i/ the free abelian group generated by closed
integral subschemes ofX ��i , of relative dimension i , which intersect all faces properly.
The dualizing complex Zc

X WD Zc
X .0/ is the complex of étale sheaves with z0.�;�i/ in

degree i and differentials the sum of face maps [18]. Denote

GX WD
h
g�Gm !

M
x2X0

ix;�Z
i
:

Deninger’s dualizing complex [12]. In our case we have Zc
X ' GX Œ1� [34].

For F an étale sheaf on X , we denote FD WD RHomX .F;Zc
X / the derived internal

hom in the derived category of étale shaves on X .

1.3.3. Group cohomology. If G is a finite group, we denote R�.G;�/ the derived func-
tor of G-invariants. Let P � be the standard complete resolution of Z. We denote further-
more Ry�.G;�/´ RHomG.P

�;�/. This latter functor computes Tate cohomology.
Let G be a profinite group and H � G is an open subgroup. If M is a discrete H -

module, then the induction of M to G is the G-module indGH M WD ContH .G; M/ of
H -equivariant continuous maps G ! M . Let L=K be a finite extension of fields and F
an étale sheaf on Spec.L/ corresponding to a discrete GL-module M . If � denotes the
map Spec.L/! Spec.K/ then ��F corresponds to the discrete GK-module indGKGL M .
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If M is an abelian group, we will denote M_ WD RHomZ.M;Z/ its (derived) linear
dual, M � WD HomZ.M;Q=Z/ its Pontryagin dual, and M � WD HomZ.M;Q/11. If V is a
vector space over a field E, we will denote V _ its linear dual.

1.3.4. Complex points. We endow the complex points X.C/ with the analytic topology;
in our case the complex points are the embeddingsK!C and the topology is discrete. We
denote Sh.GR;X.C// the topos ofGR-equivariant sheaves onX.C/. There is a morphism
of topoi ˛ W Sh.GR;X.C//! Sh.Xet/. We denote Z.1/ WD 2i�Z2 Sh.GR;X.C//, and for
M aGR-equivariant sheaf of abelian groups on X.C/,M.1/ WDM ˝Z.1/ with diagonal
action and

M_ WD RHomGR;X.C/.M;Z/

M_.1/ WD RHomGR;X.C/

�
M;Z.1/

�
:

The GR-equivariant cohomology of a complex C 2 D.Sh.GR; X.C/// is defined as

R�GR

�
X.C/; C

�
WD R�

�
GR; R�

�
X.C/; C

��
:

We also denote
Ry�GR

�
X.C/; C

�
WD Ry�

�
GR; R�

�
X.C/; C

��
the Tate GR-equivariant cohomology. The norm map N induces a fiber sequence

Z˝LZŒG� R�
�
X.C/; C

� N
�! R�GR

�
X.C/; C

�
! Ry�GR

�
X.C/; C

�
:

Remark. Since X.C/ is discrete, a GR-equivariant sheaf on X.C/ is the data of

• For each embedding � W K ! C, an abelian group F�
• An isomorphism F� ! Fx� for � complex and an action of GR on F� for � real.

Choose an embedding �v for each archimedean place and put Fv D F�v . We then have

R�
�
X.C/; F

�
D

Y
v real

Fv �
Y

v complex

indGR Fv

as a GR-module, and thus

R�GR

�
X.C/; F

�
D

Y
v archimedean

R�
�
GKv ; Fv

�
:

This breaks down if X.C/ is not discrete.

If F is an étale sheaf on X , we will denote Fv its pullback to Spec.Kv/; thus

.˛�F /v D Fv:

11“The dagger kills torsion.”
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1.3.5. Determinants. Let A D Z or R. A complex C in the derived category D.A/ is
perfect if it is bounded with finite type cohomology groups. We will use the determinant
construction of Knudsen–Mumford [25], and the subsequent work of Breuning, Burns,
and Knudsen, in particular [5,6]. Denote ProjA the exact category of projective finite type
A-modules, Grb.Modft

A/ the bounded graded abelian category of finite type A-modules,
Dperf.A/ the derived category of perfect complexes and PA the Picard groupoid of graded
A-lines. The usual determinant functor

det
A
2 det.ProjA;PA/; M 7! .ƒrankAMM; rankAM/

extends to a determinant functor gA 2 det.Grb.ModftA/;PA/. Moreover, the graded coho-
mology functor H W Dperf.A/! Grb.ModftA/ induces a functor

H� W det
�

Grb.ModftA/;PA
�
! det

�
Dperf.A/;PA

�
;

and we put detA WD H�gA12. There is a canonical isomorphism

.det
Z
C/˝R ' det

R
.C ˝R/:

1.3.6. Derived 1-categories. We will use the theory of stable 1-categories, see [29].
If X is a topos, we will denote D.X/ the derived 1-category associated to abelian
objects in X. It is a stable 1-category whose homotopy category is the usual derived
(1-)category D.X/. In particular we will denote D.X/ the derived 1-category of étale
sheaves on X , D.Z/ the derived 1-category of abelian groups and D.GR; X.C// the
derived1-category of GR-equivariant sheaves on X.C/.

A stable 1-category has all finite limits and colimits. Moreover, pushouts are pull-
backs and reciprocally. The homotopy category of a stable 1-category has a canonical
structure of triangulated category. If C is a stable1-category and A 2 C , we denote AŒ1�
the shift of A, which is given by the following pushout:

A 0

0 AŒ1�

If f WA!B is a morphism in C , we define fib.f / and cofib.f / by the following pullback
and pushout diagrams:

fib.f / A

0 B

f

A B

0 cofib.f /

f

A sequence A! B ! C is called a fiber sequence if A D fib.B ! C/ (or equivalently
C D cofib.A! B/). A fiber sequence induces a distinguished triangle in the homotopy
category.

12This convention is chosen to simplify proofs later on, but of course all determinant functors extending
detA 2 det.ProjA/ are isomorphic.
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2. Cohomology with compact support of F D

2.1. Definitions

The GR-equivariant sheaf ˛�Zc
X D ˛

�GX Œ1� is xQ�Œ1�, with action of GR via decompo-
sition groups at archimedean places. We have a canonical morphism ˛�Zc

X ! C�Œ1� and
the short exact sequence 0! 2i�Z! C ! C� ! 0 gives a map C�Œ1�! 2i�ZŒ2�,
whence a composite arrow ˛�Zc

X ! Z.1/Œ2�. Let F; G be abelian sheaves on Xet. The
functor ˛� is strict monoidal, hence from the arrow

˛�
�
RHomX .F;G/˝

L F
�
! ˛�G

obtained by applying ˛� to the natural map, we obtain by adjunction a canonical map

˛�RHomX .F;G/! RHomGR;X.C/.˛
�F; ˛�G/:

In particular, there is a natural transformation

˛�.FD/! RHomGR;X.C/

�
˛�F;C�Œ1�

�
! .˛�F /_.1/Œ2�

hence maps

R�.X;FD/! R�GR

�
X.C/; .˛�F /_.1/Œ2�

�
! Ry�GR

�
X.C/; .˛�F /_.1/Œ2�

�
:

Definition 2.1. The corrected cohomology with compact support of FD is the fiber of the
first morphism:

R�c;B.X; F
D/ WD fib

�
R�.X;FD/! R�GR

�
X.C/; .˛�F /_.1/Œ2�

��
:

The Tate corrected cohomology with compact support of FD is the fiber of the composite
morphism:

Ry�c;B.X; F
D/ WD fib

�
R�.X;FD/! Ry�GR

�
X.C/; .˛�F /_.1/Œ2�

��
:

We also recall the definition of Tate cohomology with compact support of F from [31,
§2]13 as the fiber:

Ry�c.X; F / WD fib
�
R�.X;F /! Ry�GR

�
X.C/; ˛�F

��
:

Remark. The above is only defined for sheaves of the specific form FD . It is not a functor
on the whole category of sheaves. We think of it as a contravariant functor in F . As we will
see later, Tate corrected cohomology with compact support of FD is in an “Artin–Verdier-
like” duality with étale cohomology of F , so we can think of it as a étale homology of F .

Proposition 2.2. Let F be an étale sheaf on X . The canonical map ˛�Zc
X ! Z.1/Œ2�

induces an isomorphism

Ry�c.X; F
D/

'
�! Ry�c;B.X; F

D/:

13The definition is not original but the terminology is, see [30, §II.2, Cohomology with compact sup-
port].
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Proof. We have to show that

Ry�
�
GR; ˛

�.FD/
� '
�! Ry�

�
GR; .˛

�F /_.1/Œ2�
�
:

It is enough to show it at real places. For v a real place, denote gv W Spec.Kv/! X the
canonical map. As gv is proétale, we have g�v .F

D/ D RHomGR.g
�
vF;
xQ�Œ1�/, and we

thus want to show

Ry�
�
GR; RHomGR

�
g�vF;

xQ�Œ1�
�� '
�! Ry�

�
GR; RHomGR

�
g�vF; 2i�ZŒ2�

��
:

All terms now depend only on M WD g�vF so we can reason by Artin induction on any
finite type GR-module M .

We first treat the case M D Z: from the exact sequence 0! 2i�Z! C! C�! 0

we find an isomorphism

Ry�
�
GR;C

�Œ1�
� '
�! Ry�

�
GR;Z.1/Œ2�

�
:

Moreover, xQ� and C� have the same Tate cohomology: both are zero in odd degree and
in even degree, both equal Z=2Z via the sign map because a real algebraic number which
is a norm is the square of a real algebraic number, hence the norm of an algebraic number.

If M D indGR
¹0º

Z is induced, we have that RHomGR.M;N / ' indGR
¹0º

N is induced
for any GR-module N , so it has trivial Tate cohomology.

Finally, if M is finite RHomGR.M;
xQ�/ and RHomGR.M;C

�/ are canonically
isomorphic because xQ� and C� have the same torsion. Since C is uniquely divisible and
has no torsion, we have moreover RHomGR.M;C

�/
'
�! RHomGR.M; 2i�ZŒ1�/. We

thus obtain the required isomorphism on Tate cohomology.
By Artin induction we obtain the required isomorphism for any finite typeGR-module

M ; by taking filtered colimits, we obtain the statement for any GR-module M since Tate
cohomology, being a derived Hom, commutes with derived limits.

2.2. Artin–Verdier duality for F D

For a complex of abelian groups, we will denote R Hom.�;Q=Z/ D Hom�.�;Q=Z/
by .�/�. Artin–Verdier duality gives a map

R�.X;FD/ D RHomX
�
F;GX Œ1�

� AV
��! Ry�c.X; F /

�Œ�2�

which is “almost” an isomorphism. We want to modify this duality at the complex points
to obtain an Artin–Verdier duality relating Ry�c;B.X; FD/ and R�.X; F /. We have fiber
sequences

Ry�GR

�
X.C/; .˛�F /_.1/Œ1�

�
! Ry�c;B.X; F

D/! R�.X;FD/;

Ry�c.X; F /! R�.X;F /! Ry�GR

�
X.C/; ˛�F

�
:
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To obtain an Artin–Verdier duality statement, we will construct in the next three para-
graphs pairings

Ry�GR

�
X.C/; .˛�F /_.1/

�
˝
L Ry�GR

�
X.C/; ˛�F

�
! Q=ZŒ�3�;

R�.X; F /˝L Ry�c;B.X; F
D/! Q=ZŒ�2�

such that we have a morphism of fiber sequences given by the adjoint maps:

Ry�GR

�
X.C/; .˛�F /_.1/Œ1�

�
Ry�c;B.X; F

D/ R�.X; FD/

Ry�GR

�
X.C/; ˛�F

��
Œ�2� R�.X; F /�Œ�2� Ry�c.X; F /

�Œ�2�

AV (2.1)

2.2.1. Construction of the pairing for Tate cohomology on X.C/. Let us construct
the first pairing: Tate cohomology Ry�GR.X.C/;�/ D Ry�GR.�/ ı R�.X.C/;�/ is lax-
monoidal [37, Thm. I.3.1], hence the natural evaluation map .˛�F /_.1/Œ1�˝L ˛�F !
2i�ZŒ1� gives a map

Ry�GR

�
X.C/; .˛�F /_.1/

�
˝
L Ry�GR

�
X.C/; ˛�F

�
! Ry�GR

�
X.C/; 2i�Z

�
:

Since yH i
GR
.X.C/; 2i�Z/ D 0 for i even, there is a canonical isomorphism14

Ry�GR

�
X.C/; 2i�Z

�
'

M
i

yH i
GR

�
X.C/; 2i�Z

�
Œ�i �:

Let r1 be the number of real places of the function field of K. There is an identification
yH 3.GR; X.C/; 2i�Z/ D .R�=R�>0/

r1 comes from the natural map C� ! 2i�ZŒ1�. We
compose the previous pairing with a projection and a sum map to get the pairing

Ry�GR

�
X.C/; .˛�F /_.1/

�
˝
LRy�GR

�
X.C/; ˛�F

�
! Ry�GR

�
X.C/; 2i�Z

�
H3

��! yH 3
GR

�
X.C/; 2i�Z

�
Œ�3�

D .R�=R�>0/
r1 Œ�3�

†
�! Q=ZŒ�3�: (2.2)

2.2.2. Construction of the pairing for Ry�c;B.X; F D/. In the following diagrams,
we will denote R� , R�GR , Ry�GR , Ry�c , and Ry�c;B for R�.X;�/, R�GR.X.C/;�/,
Ry�GR.X.C/;�/, Ry�c.X;�/, and Ry�c;B.X;�/, respectively, and we will also write ˝
for the derived tensor product. The natural lax monoidality pairings of R�GR.X.C/;�/
and Ry�GR.X.C/;�/ are compatible with each other [37, Thm. I.3.1] and also with the
natural pairing for R�.X;�/ via the map R�.X;�/! R�GR.X.C/; ˛

�.�//,15 so the

14Indeed, there is always such an isomorphism (non-canonical) in the homotopy category D.Z/, and
there is a canonical one here because there are no Ext1 between two consecutive cohomology groups.
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following diagram commutes:

R�.F /˝R�.FD/ R�.Zc
X /

R�.F /˝R�GR

�
F _C .1/Œ2�

�
R�GR.˛

�F /˝R�GR

�
F _C .1/Œ2�

�
R�GR

�
2i�ZŒ2�

�
R�.F /˝Ry�GR

�
F _C .1/Œ2�

�
Ry�GR.˛

�F /˝Ry�GR

�
F _C .1/Œ2�

�
Ry�GR

�
2i�ZŒ2�

�
We thus obtain the left dotted map in the following commutative diagram where the top
row is a fiber sequence:

R�.X;F /˝L Ry�c;B.X; F
D/ R�.X; F /˝L R�.X;FD/ R�.X; F /˝L Ry�GR.X.C/; F

_
C .1/Œ2�/

Ry�c;B.X;ZD/ R�.X;Zc
X / Ry�GR.X.C/; 2i�ZŒ2�/

We have
��2Ry�c;B.X;Z

D/ D ��2Ry�c.X;Z
c
X / D Q=ZŒ�2�

by Proposition 2.2 and [30, Prop. II.2.6, Lem. II.6.1], hence we get a pairing

R�.X;F /˝L Ry�c;B.X; F
D/! Ry�c;B.X;Z

D/
��2

��! Q=ZŒ�2�: (2.3)

2.2.3. The morphism of fiber sequences. The following cube is commutative by com-
patibility of the involved pairings:

R�.F /˝R�.FD/ R�.F /˝Ry�GR

�
.˛�F /_.1/Œ2�

�
R�.Zc

X / Ry�GR

�
2i�ZŒ2�

�
Ry�GR.˛

�F /˝R�.FD/ Ry�GR.˛
�F /˝Ry�GR

�
.˛�F /_.1/Œ2�

�
Ry�GR.˛

�Zc
X / Ry�GR

�
2i�ZŒ2�

�
15Since the lax monoidal structure for R�.X;�/ and R�GR .X.C/;�/ come from the strict monoidal

structure on their left adjoint, this is a formal consequence of the commutative triangle of right adjoints
with strict monoidal left adjoints

D
�
GR; X.C/

�
D.Xet/

D.Z/
R�GR

�
X.C/;�

�
R�.X;�/

˛�
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hence by adding the fibers of horizontal and vertical maps we deduce a morphism of
3 � 3 diagrams depicted in Diagram 1. Doing so, we recover in the middle layer the
pairing (2.3).

Let A, A0, B , B 0, C , C 0 be objects of D.Ab/, with maps A! A0, B 0 ! B , C ! C 0.
Given two pairings A ˝L B ! C and A0 ˝L B 0 ! C 0, the commutativity of the two
following induced diagrams is equivalent:

A A0

RHom.B; C / RHom.B 0; C 0/

A˝L B 0 A˝L B C

A0 ˝L B 0 C 0

We now prove that the natural diagram (2.1) commutes. By the above, this reformu-
lates to the commutativity of a subdiagram of (1), together with the following commutative
diagram:

Ry�
�
2i�ZŒ1�

�
D Ry�.C�/ Ry�c;B.ZD/ Ry�c.Zc

X /

Q=ZŒ�2�

'

��2

��2†ıH2

which follows from the proof of [30, Prop. II.2.6].

Theorem 2.3 (Artin–Verdier duality for FD). The pairing

R�.X;F /˝L Ry�c;B.X; F
D/! Q=ZŒ�2�

induces a map
Ry�c;B.X; F

D/! R�.X;F /�Œ�2�

which is an isomorphism in degree¤�1;0, and an isomorphism after profinite completion
of the left-hand side in degree �1, 0. In particular if F is constructible then the map is an
isomorphism.

Remark. The statement also holds more generally for a bounded complex F 2 Db.X/

such that H 0.F / is Z-constructible and H i .F / is constructible for i ¤ 0 (by filtering
with the truncations). If we reformulate the theorem as the map Ry�c;B.X; FD/˝ yZ!
R�.X; F /�Œ�2� being an isomorphism, this generalizes to bounded complexes with Z-
constructible cohomology groups.

Proof. By the diagram (2.1) and Artin–Verdier duality for singular schemes [30, Thm.
II.6.2], it suffices to show that the pairing

Ry�GR

�
X.C/; .˛�F /_.1/Œ1�

�
˝
L Ry�GR

�
X.C/; ˛�F

�
! Q=ZŒ�2�

is a perfect pairing between complexes of abelian groups with finite cohomology groups.
To prove that the pairing is perfect, it suffices to do it at every real place, that is for the
Galois cohomology of GR; thus it suffices to prove the next proposition.
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R
y �
c
.F
/
˝
R
y �
c
;B
.F

D
/

R
y �
c
.F
/
˝
R
�
.F

D
/

R
y �
c
.F
/
˝
R
y �
G

R

� .˛� F
/_
.1
/Œ
2
��

R
y �
c
.Z

c X
/

R
y �
c
.Z

c X
/

0

R
�
.F
/
˝
R
y �
c
;B
.F

D
/

R
�
.F
/
˝
R
�
.F

D
/

R
�
.F
/
˝
R
y �
G

R

� .˛� F
/_
.1
/Œ
2
��

R
y �
c
;B
.Z
D
/

R
�
.Z

c X
/

R
y �
G

R

� 2i�
Z
Œ2
��

R
y �
G

R
.˛
�
F
/
˝
R
y �
c
;B
.F

D
/

R
y �
G

R
.˛
�
F
/
˝
R
�
.F

D
/

R
y �
G

R
.˛
�
F
/
˝
R
y �
G

R

� .˛� F
/_
.1
/Œ
2
��

0
R
y �
G

R
.˛
�
Z

c X
/

R
y �
G

R

� 2i�
Z
Œ2
��

'

'

'

Diagram 1.
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Proposition 2.4. The pairing

Ry�
�
GR;M

_.1/
�
˝
L Ry�.GR;M/! Q=ZŒ�3�

is perfect for M any discrete GR-module of finite type.

Proof. We will reduce to Theorem A.1 for the finite group GR D Z=2Z. Denote " the
augmentation ZŒGR�! Z and IGR D .s � 1/Z the augmentation ideal. We have

H 1.GR; 2i�Z/ D Ext1GR
.Z; 2i�Z/ D Z=2Z;

and the non-zero class t corresponds to a morphism Z! 2i�ZŒ1� in the derived category
coming from the equivalence class of the non-split exact sequence

0! 2i�Z D IGR ! ZŒGR�
"
�! Z! 0:

Since IGR D 2i�Z as a GR-module, we obtain an isomorphism

Ry�.GR;M/
'

������!
.idM˝t/�

Ry�
�
GR;M.1/

�
Œ1�:

Note that M_.1/ D .M_/.1/. From the above isomorphism we deduce an isomorphism
of pairings

Ry�.GR;M
_/˝L Ry�.GR;M/ Ry�.GR;Z/ yH 2.GR;Z/Œ�2� Q=ZŒ�2�

Ry�.GR;M
_.1//Œ1�˝L Ry�.GR;M/ Ry�.GR; 2i�Z/Œ1� yH 3.GR; 2i�Z/Œ�2� Q=ZŒ�2�

' ''

which shows that it suffices to check that the natural pairing

Ry�.GR;M
_/˝L Ry�.GR;M/! Ry�.GR;Z/! yH 2.GR;Z/Œ�2�! Q=ZŒ�2�

is perfect. In a similar way, the non-zero class u 2 H 2.GR;Z/ corresponds to a map
Z! ZŒ2� whose fiber comes from induced modules16, and we also get an isomorphism
of pairings

Ry�.GR;M
_/˝L Ry�.GR;M/ Ry�.GR;Z/ yH 0.GR;Z/Œ0� Q=ZŒ0�

Ry�.GR;M
_/˝L Ry�.GR;M/Œ2� Ry�.GR;Z/Œ2� yH 2.GR;Z/Œ0� Q=ZŒ0�

' ' '

so equivalently it suffices to check that the natural pairing

Ry�.GR;M
_/˝L Ry�.GR;M/! Ry�.GR;Z/! yH 0.GR;Z/Œ0�! Q=ZŒ0�

is perfect; this is Theorem A.1.

16This is just a reformulation of the 2-periodicity of the Tate cohomology of cyclic groups.
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We finish with a study of the behaviour of our corrected compactly supported coho-
mology with respect to finite dominant morphisms:

Proposition 2.5. Let Y D Spec.O0/ be the spectrum of an order in a number field with
a finite dominant morphism � W Y ! X and let F be a Z-constructible sheaf on Y . We
have canonical isomorphisms

R�c;B
�
X; .��F /

D
� '
�! R�c;B.Y; F

D/;

Ry�c;B
�
X; .��F /

D
� '
�! Ry�c;B.Y; F

D/

compatible with the mapsR�c;B.X;�/!Ry�c;B.X;�/ resp.R�c;B.Y;�/!Ry�c;B.Y;�/.

Proof. We prove it for R�c;B.X; .�/D/. The functor �� is exact and we have

R� ŠZc
X D R�

ŠGX Œ1� D GY Œ1� D Zc
Y

by the finite base change theorem, hence .��F /D D ��.FD/. Denote by

� 0 W Sh
�
GR; Y.C/

�
! Sh

�
GR; X.C/

�
the morphism of topoi induced by � , and ˛0 the morphism Sh.GR; Y.C// ! Sh.Yet/.
Consider the commutative square

Sh
�
GR; Y.C/

�
Sh.Yet/

Sh
�
GR; X.C/

�
Sh.Xet/

�

˛

� 0

˛0

It induces a canonical map ˛���F ! � 0�˛
0�F . We claim that it is an isomorphism; indeed

it suffices to check it on points of X.C/, and then it follows from the computation of the
stalks of a finite morphism in the étale case and in the topological case17.

SinceX.C/ and Y.C/ are finite discrete, we have � 0ŠD� 0�, soR� 0ŠD� 0�,R� 0�2i�Z
D 2i�Z, and R� 0�C� D C�. The counit � 0��

0�! id is given on stalks by the sum map.
Denote �x the base change of � to a point x 2X and g W �!X , g0 W �0! Y , ix W x!X ,
iy W y ! Y the inclusion of the generic points, resp. of closed points, of X and Y . The
counit ��Zc

Y ! Zc
X is given by the morphism of complexes (with left term in degree �1)

��g
0
�Gm D g���;�Gm

L
y2Y0

��iy;�Z D
L
x2X0

ix;�.�x;�Z/

g�Gm

L
x2X0

ix;�Z

P
ordy

P
ordx

17In the topological case, by finite morphism we mean a universally closed separated continuous map
with finite discrete fibers; we then use [42, Tag 09V4].

https://stacks.math.columbia.edu/tag/09V4
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where the left arrow is obtained by applying g� to the counit of the adjunction ��;� a
��� , which is simply the sum map. Thus we have an identification ˛�.��Zc

Y ! Zc
X / D

� 0�
xQ�Œ1�! xQ�Œ1�18. Combining this with the equality ˛���F D � 0�˛

0�F and the iden-
tification R� 0Š.xQ�! 2i�ZŒ2�/D xQ�! 2i�ZŒ1�, we obtain a commutative diagram19:

RHomY .F;Zc
Y / RHomGR;Y.C/

�
˛�F; xQ�Œ1�

�
RHomGR;Y.C/

�
˛�F; 2i�ZŒ2�

�
RHomX .��F;Zc

X / RHomGR;X.C/

�
� 0�˛

�F; xQ�Œ1�
�

RHomGR;X.C/

�
� 0�˛

�F; 2i�ZŒ2�
�

˛0�

˛�

' ''

hence we obtain in the following diagram of fiber sequences the induced arrow, which is
an isomorphism:

R�c;B
�
Y; .�/D

�
R�

�
Y; .�/D

�
R�GR

�
Y.C/; .�/_C.1/Œ2�

�
R�c;B

�
X; .���/

D
�

R�
�
X; .���/

D
�

R�GR

�
X.C/; .���/_C.1/Œ2�

�' ' '

Proposition 2.6. In the same setting, there is a commutative diagram of pairings:

R�.Y; F /˝L Ry�c;B.Y; F
D/ Ry�c;B.Y;ZD/

R�.X; ��F /˝
L Ry�c;B

�
X; .��F /

D
�

Ry�c;B.X;ZD/

'

where the arrow Ry�c;B.Y;ZD/! Ry�c;B.X;ZD/ is induced from the map

R�.Y; FD/! R�.X;FD/

(coming from the counit " W ��R� ŠZc
X D ��Z

D ! ZD) and from the map

R�GR

�
Y.C/; 2i�ZŒ2�

�
! R�GR

�
X.C/; 2i�ZŒ2�

�
:

Proof. By compatibility of the pairings for R�GR.X.C/;�/ and Ry�GR.X.C/;�/, we
can reduce to checking the statement with R�c;B instead of Ry�c;B . This will follow for-
mally (by taking the fiber) if we prove that the cube of Diagram 2 is commutative.

The lax monoidality of ��, � 0�, ˛
�, ˛0� induce maps

c˛ W ˛
�RHomX .�;�/! RHomGR;X.C/.˛

�
�; ˛��/

c˛0 W ˛
0�RHomY .�;�/! RHomGR;Y.C/.˛

0�
�; ˛0��/

c� W ��RHomY .�;�/! RHomX .���; ���/

c� 0 W �
0
�RHomGR;Y.C/.�;�/! RHomGR;X.C/.�

0
��; �

0
��/:

18That is, the pullback of the counit is the counit between the pullbacks.
19The commutation can be seen from the observations made by writing the adjonction arrows as the

composition of applying the adjoint functor and postcomposing with the counit.
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R
�
.Y
;F
/
˝
R

H
om

Y
.F
;Z

c Y
/

R
�
.Y
;F
/
˝
R

H
om

G
R
;Y
.C
/

� ˛� F
;2
i�

Z
Œ2
��

R
�
.Y
;Z

c Y
/

R
�
G

R

� Y.C
/;
2
i�

Z
Œ2
��

R
�
.X
;�
�
F
/
˝
R

H
om

X
.�
�
F
;Z

c X
/

R
�
.X
;�
�
F
/
˝
R

H
om

G
R
;Y
.C
/

� �0 �˛
�
F
;2
i�

Z
Œ2
��

R
�
.X
;Z

c X
/

R
�
G

R

� X.C
/;
2
i�

Z
Œ2
��

'
'

'
'

Diagram 2.
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The following diagram commutes by naturality; the composite rectangle is given by the
adjunction isomorphism ��F

D ' .��F /
D:

��F
D R˛�˛

���F
D D R˛��

0
�˛
0�FD

RHomX .��F; ��Zc
Y / R˛�˛

�RHomX .��F; ��Zc
Y /

.��F /
D R˛�˛

�.��F /
D

�˛

c� R˛�˛
�.c� /

�˛

"� R˛�˛
�."�/

�˛

(2.4)

We have ��˛� D ˛0�� 0� so the following diagram commutes formally for any sheaf F
and G:

� 0�˛
0�RHomY .F;G/

˛���RHomY .F;G/ � 0�RHomGR;Y.C/.˛
0�F; ˛0�G/

˛�RHomX .��F; ��G/ RHomX .�
0
�˛
0�F; � 0�˛

0�G/

RHomX .˛
���F; ˛

���G/

� 0�.c˛0 /

˛�.c� /

c˛

c�0

Thus the top square in the following diagram commutes:

˛���F
D D R˛��

0
�˛
0�FD � 0�RHomGR;Y.C/

�
˛�F; xQ�Œ1�

�
˛�RHomX .��F; ��Zc

Y / RHomGR;X.C/

�
� 0�˛

�F; � 0�
xQ�Œ1�

�
˛�RHomX .��F;Zc

X / RHomGR;X.C/

�
� 0�˛

�F; xQ�Œ1�
�

˛�.c� /

� 0�.c˛0 /

c˛

˛�."�/

c�0

"�

c˛

(2.5)

The bottom square also commutes, because

˛�.��Z
c
Y ! Zc

X / D �
0
�
xQ�Œ1�! xQ�Œ1�:

The commutative square

� 0�
xQ�Œ1� � 0�2i�ZŒ2�

xQ�Œ1� 2i�ZŒ2�
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implies that the following diagram is commutative:

� 0�RHomGR;Y.C/

�
˛�F; xQ�Œ1�

�
� 0�RHomGR;Y.C/

�
˛�F; 2i�ZŒ2�

�
RHomGR;X.C/

�
� 0�˛

�F; � 0�
xQ�Œ1�

�
RHomGR;X.C/

�
� 0�˛

�F; � 0�2i�ZŒ2�
�

RHomGR;X.C/

�
� 0�˛

�F; xQ�Œ1�
�

RHomGR;X.C/

�
� 0�˛

�F; 2i�ZŒ2�
�

c�0

"� "�

c�0

(2.6)

Apply R˛� to diagrams (2.5) and (2.6) and paste them next to diagram (2.4) to obtain the
following diagram:

��F
D R˛��

0
�.˛
�F /_.1/Œ2�

RHomX .��F; ��Zc
Y / RHomX

�
��F;R˛��

0
�2i�ZŒ2�

�
RHomX .��F;Zc

X / RHomX

�
��F;R˛�2i�ZŒ2�

�
' '

where we have rewritten the terms on the right using

R˛�RHomGR;X.C/.˛
�
�;�/ D RHom.�; R˛��/:

The back and side faces are obtained by composing the top and front faces; by properties
of adjunctions, the dotted maps are the adjunction isomorphisms for �� a R� Š resp. � 0� a
R� 0Š. By the˝ a Hom-adjunction, the above diagram is equivalent to the following cube:

��F ˝ ��F
D ��F ˝R˛

0
�.˛
�F /_.1/Œ2�

��Zc
Y R˛��

0
�2i�ZŒ2�

��F ˝ .��F /
D ��F ˝R˛�.�

0
�˛
�F /_.1/Œ2�

Zc
X R˛�2i�ZŒ2�

'

'

Finally, applying the lax monoidal functor R�.X;�/ recovers the sought-after cube.

2.3. Computations

Proposition 2.7. Let F be a Z-constructible sheaf. We have that

H i
c;B.X; F

D/ ' yH i
c;B.X; F

D/ for i � 1I

H 0
c;B.X; F

D/! yH 0
c;B.X; F

D/ is surjective.
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If ˛�F is torsion-free, we have that

H i
c;B.X; F

D/ ' yH i
c;B.X; F

D/ for i � 0I

H�1c;B.X; F
D/! yH�1c;B.X; F

D/ is surjective.

Proof. Let T .FD/ be the cofiber ofR�c;B.X;FD/!Ry�c;B.X;F
D/. Let s be the gener-

ator ofGR and denoteN D 1C s the norm map. By the stable 3� 3 lemma [31, Lem. 2.2],
we find that

T .FD/ D fib
�
R�GR

�
X.C/; .˛�F /_.1/Œ2�

� N
�! Ry�GR

�
X.C/; .˛�F /_.1/Œ2�

��
D Z˝LZŒGR�

R�
�
X.C/; .˛�F

�_
.1/Œ2�/

D

Y
v archimedean

Z˝LZŒGKv � F
_
v .1/Œ2�

computes homology at the archimedean places. Let M be a GR-module of finite type.
Then M_.1/Œ2� D RHomZ.M; 2i�Z/Œ2� is concentrated in degree �2 if M is torsion-
free and in degree Œ�2;�1� in general. It follows that Z˝LZŒGR�

M_.1/Œ2� is concentrated
in degree � �2 if M is torsion-free and in degree � �1 in general.

Proposition 2.8. Let F be a Z-constructible sheaf. Then Ry�c;B.X; FD/ is concentrated
in degree� 2. If F is constructible, the complex has finite cohomology groups. In general,
we have

yH i
c;B.X; F

D/ D

8̂̂<̂
:̂

finite i � �2

finite type i D �1; 0

torsion of cofinite type i D 1; 2:

Proof. The vanishing in degree > 2 comes from Theorem 2.3. The remaining claims fol-
low from the defining long exact cohomology sequence and [30, Lem. II.3.6], because the
complex Ry�GR.X.C/; .˛

�F /_.1/Œ2�/ has finite 2-torsion cohomology groups.

Proposition 2.9. Let F be a Z-constructible sheaf. Then R�c;B.X; FD/ is concentrated
in degree Œ�1; 2�. If F is constructible, the complex is perfect. In general, we have

H i
c;B.X; F

D/ D

´
finite type i D �1; 0

torsion of cofinite type i D 1; 2:

Proof. By Proposition 2.7 and the previous proposition, we have

H i
c;B.X; F

D/ D yH i
c;B.X; F

D/ D 0

for i > 2 andH i
c;B.X;F

D/D yH i
c;B.X;F

D/ is torsion of cofinite type for i D 1; 2; finally
for i D �1; 0 the difference betweenH i

c;B.X;F
D/ and yH i

c;B.X;F
D/ is given by a group

of finite type so H i
c;B.X; F

D/ is finite type by the previous proposition. The vanishing in
degree < �1 is clear.
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We now compute some special cases.

Proposition 2.10. Suppose that X D Spec.OK/ is regular. We have

H i .X;Z/ D

8̂̂<̂
:̂

Z i D 0

0 i D 1

torsion i > 1:

Let j W U ! X be an open subscheme of X with U ¤ X . We have

H i .X; jŠZ/ D

8̂̂<̂
:̂
0 i D 0�Q

v2XnU Z
�
=Z i D 1

torsion i > 1:

Proof. The result for i >1 follows from [30, Lem. II.2.10]. SinceX is normal, �proet
1 .X/D

�et
1 .X/ is profinite so H 1.X;Z/ D Homcont .�

et
1 .X/;Z/ D 0.

Proposition 2.11. Suppose that X D Spec.OK/ is regular. We have

H i
c;B.X;Z

D/ D

8̂̂̂̂
<̂
ˆ̂̂:

finite type of rank ŒK W Q� � 1 i D �1

finite i D 0

0 i D 1

Q=Z i D 2:

Moreover we have an exact sequence

0! Zr2 ! H�1c;B.X;Z
D/! O�K ! .Z=2Z/r1 ! H 0

c;B.X;Z
D/! Pic.X/! 0

and H 0
c;B.X;Z

D/ is the narrow ideal class group PicC.X/.

Proof. The exact sequence comes from the long exact cohomology sequence of the defin-
ing fiber sequence. By Proposition 2.7, we have

��0R�c;B.X;Z
D/

'
�! ��0Ry�c;B.X;Z

D/ ' ��0Ry�c
�
X;GmŒ1�

�
hence the result for i � 0 follows from [30, Prop. II.2.6, Rem. II.2.8 (a)].

Remark. � We have H 1
GR
.X.C/; 2i�Z/ ' yH 0

GR
.X.C/;C�/ D .R�=R�C/

r1 . Since the
canonical map H 0.X;Gm/! H 1

GR
.X.C/; 2i�Z/ factors through H 0

GR
.X.C/;C�/ by

definition, it is given by

O�K
.signv/v
�����!

M
v real

Z=2Z:

Its kernel is O�K;C, the group of totally positive units; it has same rank as O�K . Thus we
have a short exact sequence

0! Zr2 ! H�1c;B.X;Z
D/! O�K;C ! 0:
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�We can also recover the result for i � 1 by Artin–Verdier duality (Theorem 2.3) and
Proposition 2.7 sinceH i .X;Z/D 0;Z; 0 for i < 0, i D 0, i D 1. On the other hand, from
the result for i D 0 we recover H 2.X;Z/ ' PicC.X/�.
� If X is singular, the exact sequence becomes

0! Zr2 !H�1c;B.X;Z
D/! CH0.X; 1/! .Z=2Z/r1 !H 0

c;B.X;Z
D/! CH0.X/! 0

andH 1
c;B.X;Z

D/ D H 1.X;Z/� can be non-zero and non-finite, depending on the singu-
larities of X . Moreover, H 0

c;B.X;Z
D/ can be seen as a “narrow Chow group”.

Proposition 2.12. Suppose that X D Spec.OK/ is regular and let j W U ! X be an open
subscheme with U ¤ X , say U D Spec.OK;S / with S a set of places containing the
archimedean places and at least one finite place. Denote Sf the set of finite places in S
and sf its cardinality. We have

H i
c;B

�
X; .jŠZ/

D
�
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

finite type of rank ŒK W Q� � 1 i D �1

finite i D 0

Ker
�L

v2Sf
Br.Kv/

†
�! Q=Z

�
' .Q=Z/sf �1 i D 1

0 i D 2:

Moreover, we have an exact sequence

0!Zr2!H�1c;B
�
X;.jŠZ/

D
�
!O�K;S! .Z=2Z/r1!H 0

c;B

�
X;.jŠZ/

D
�
! Pic.U /! 0

and H 0
c;B.X; .jŠZ/

D/ is the narrow S -class group PicC.U /.

Proof. By Proposition 2.7 and Artin–Verdier duality we obtain the result for i D 1; 2 from
the computation ofH i .X; jŠZ/. We have .jŠZ/D D Rj�Zc

U D j�GmŒ1� [30, Lem. II.1.4]
and .jŠZ/_C.1/ D 2i�Z so the exact sequence comes from the long exact cohomology
sequence associated to the defining fiber sequence.

We have Ry�c;B.X; .jŠZ/D/
'
 � Ry�c.X; j�GmŒ1�/ by Proposition 2.2. The divisor

short exact sequence

0! j�Gm ! g�Gm !

M
v2U0

iv;�Z! 0

and Proposition 2.7 gives, as in [30, Rem. II.2.8 (a)], the identification of

H 0
c;B

�
X; .jŠZ/

D
�
' yH 0

c;B

�
X; .jŠZ/

D
�
' yH 0

c

�
X; j�GmŒ1�

�
with the narrow S -class group.

Remark. � The map H 0.U;Gm/! H 1
GR
.X.C/; 2i�Z/ is given by

O�K;S
.signv/v real
�������!

M
v real

Z=2Z:
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Its kernel is O�K;S;C, the group of totally positive S -units; it has same rank as O�K;S . Thus
there is a short exact sequence

0! Zr2 ! H�1c
�
X; .jŠZ/

D
�
! O

�;C
K;S ! 0:

� For i D 1; 2, we can also prove the result directly by considering the following snake
diagram:

0 H 1
c;B

�
X; .jŠZ/

�D
0 0 H 2.U;Gm/ H 2.U;Gm/ 0

0
Q
v2Sf

Br.Kv/
Q
v2S Br.Kv/

Q
v archimedean Br.Kv/ 0

Q
v2Sf

Br.Kv/ Q=Z H 2
c;B

�
X; .jŠZ/D

�
0

†

†

�We recover from Artin–Vertier duality an identification H 2.X; jŠZ/ ' PicC.U /�.

Let i W x!X be a closed point ofX andM a discreteGx-module of finite type. Since
Ri ŠZc

X D ZŒ0�, we have .i�M/D D i�M
_, while .i�M/C D 0. Thus

R�c;B
�
X; .i�M/D

�
D R�.Gx ;M

_/

and we obtain the following:

Proposition 2.13. We have

H i
c;B

�
X; .i�M/D

�
D

8̂̂̂̂
<̂
ˆ̂̂:
0 i D �1

finite type i D 0

finite i D 1

torsion of cofinite type i D 2:

IfM is finite,R�c;B.X;.i�M/D/ has finite cohomology groups andH 0
c;B.X;.i�M/D/D0.

Proof. IfM is finite, we haveM_ DM �Œ�1�. On the other hand, ifM is torsion-free we
haveM_DHomAb.M;Z/. Thus in both cases we reduce to cohomology of discreteGx '
yZ-modules of finite type, for which the result is known. For arbitraryM , we conclude with
the short exact sequence 0!Mtor !M !M=tor! 0.

Let DF D RHom.R�.X; F /;QŒ�2�/, and denote .�/� D Hom.�;Q/.
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Proposition 2.14. Let F be a Z-constructible sheaf. Then DF is concentrated in degree
Œ1; 2�.

Proof. We haveH i .DF /DH
2�i .X;F /�. We thus have to show thatH i .X;F / is torsion

for i ¤ 0; 1. ButH i .X;F / differs from yH i
c .X;F / by a finite group sinceX is proper, and

the latter is torsion for i ¤ 0; 1 [30, Thm. II.6.2].

3. Weil-étale cohomology with compact support of F D

3.1. Construction of the Weil-étale complex

Following [15], the Weil-étale complex with compact support should be the cone of a map
˛F making the following diagram commute

RHom
�
R�.X;F /;QŒ�2�

�
R�c;B.X; F

D/

Ry�c;B.X; F
D/

RHom
�
R�.X;F /;Q=ZŒ�2�

�

˛F

Let F , G be two Z-constructible sheaves on X and let us compute the morphism group
HomD.Z/.DG;R�c;B.X;FD//. Recall the Verdier spectral sequence [45, Chap. III, §4.6.10]:

E
p;q
2 D

Y
i2Z

ExtpZ
�
H i .K/;H iCq.L/

�
) ExtnD.Z/.K;L/: (3.1)

Using the vanishing results of the previous section, the above degenerates to a short exact
sequence

0
Q
iD1;2 Ext1

�
H 2�i .X;G/�;H i�1

c;B .X; F
D/
�

HomD.Z/
�
DG ; R�c;B.X; F

D/
�

Q
iD1;2 Hom

�
H 2�i .X;G/�;H i

c;B.X; F
D/
�

0
(3.2)

Since H 1
c;B.X; F

D/ is torsion and H 0.X;G/� is a Q-vector space, we obtain

Ext1
�
H 0.X;G/�;H 1

c;B.X; F
D/
�
D 0:

Therefore the left term is Ext1.H 1.X; G/�; H 0
c;B.X; F

D//. Similarly to the approach of
[31], this motivates the following definition:

Definition 3.1. Let F be a Z-constructible sheaf on X . We say that

• F is red if H 0
c;B.X; F

D/ is torsion, hence finite.
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• F is blue if H 1.X; F / is torsion, hence finite; this happens if and only if

yH 1
c;B.X; F

D/ D H 1
c;B.X; F

D/

is finite (Theorem 2.3).

• A red-to-blue morphism is a morphism of sheaves F ! G where either F and G are
both blue, or are both red, or F is red andG is blue ; a red-to-blue short exact sequence
is a short exact sequence with red-to-blue morphisms.

Remark. � If F is constructible, F is blue and red.
� The constant sheaf Z is red; this follows from the finiteness of CH0.X/20. If X is

regular or more generally unibranch (so that each point has a singleton preimage in the
normalization of X ), the sheaf Z is also blue.
� If j W U ! X is an open inclusion with U ¤ X , the sheaf jŠZ is red, and it is blue

if X is unibranch and jXnU j D 1.
� If F is Z-constructible and supported on a closed subscheme, then F is blue.

This reduces to the case of a single discrete finite type yZ-module, where it follows from
H 1.yZ;Z/ D 0 and the Hochschild–Serre spectral sequence for a normal open subgroup
acting trivially.

Proposition 3.2. Let j W U ! X be an open immersion such that U is regular and G a
locally constant Z-constructible sheaf on U . Then jŠG is red.

Proof. Indeed, the result is true if G is torsion so we can suppose that G is torsion-free.
Let g W �D Spec.K/! U be the generic point. SinceG is locally constant, we haveG D
g�g

�G.21 By Artin induction for the GK-module g�G, we find normal open subgroups
Hk , Hl of GK , an integer n 2 N� and a finite GK-module N such that we have a short
exact sequence

0! .g�G/n ˚
M

indHkGK Z!
M

indHlGK Z! N ! 0:

Denote � 0
k
W Vk ! U; � 0

l
W Vl ! U the normalizations of U in .Ksep/Hk ; .Ksep/Hl . By

applying g�, we find a short exact sequence

0! Gn ˚
M

� 0k;�Z!
M

� 0l;�Z! Q! 0

where Q is a subsheaf of the constructible sheaf g�N and hence is constructible. Denote
by �k W Yk ! X (resp. �l W Yl ! X ) the normalization of X in .Ksep/Hk (resp. .Ksep/Hl )
and jk W Vk ! Yk the open inclusion (resp. jl W Vl ! Yl ). The points in Yk (resp. Yl )
above U are exactly the points of Vk (resp. Vl ) so

jŠ�
0
k;�Z D �k;�jk;ŠZ; jŠ�

0
l;�Z D �l;�jl;ŠZ:

By Proposition 2.5 we conclude with the preceding remark.

20See the remark after Proposition 2.11 and the remark after [31, Cor. 7.5].
21The regularity hypothesis appears here: in general g�Z ¤ Z.
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Remark. It follows that there are “enough red-and-blues”; by this, we mean that any
Z-constructible sheaf F sits in a short exact sequence

0! R! F ! B ! 0

withR red andB blue. Indeed, it suffices to takeRD jŠFjU andB D i�i�F for j WU !X

a regular open subscheme such that FjU is locally constant and i W Z ! X its closed
complement. As in [31], this remark will allow us to bootstrap the construction of the Weil-
étale Euler characteristic from red or blue sheaves to arbitrary Z-constructible sheaves by
enforcing multiplicativity.

If F is red orG is blue, the left term of the short exact sequence (3.2) vanishes and we
obtain:

Proposition 3.3. Suppose that F is red or that G is blue. We have

Hom
�
DG ; R�c;B.X; F

D/
�
D

Y
iD1;2

Hom
�
H 2�i .X;G/�;H i

c;B.X; F
D/
�
:

In particular, suppose that F is red or blue. For i D 1; 2, we have by Theorem 2.3
isomorphisms

H i
c;B.X; F

D/
'
�! yH i

c;B.X; F
D/

'
�! H 2�i .X; F /�:

Hence we obtain a canonical element ˛F 2 Hom.DF ; R�c;B.X; FD//, given in coho-
mology in degree i D 1; 2 by

H i .˛F / W H
2�i .X; F /� ! H 2�i .X; F /�

'
 � H i

c;B.X; F
D/:

Definition 3.4. Let F be red or blue. We define

R�W;c.X; F
D/ WD Cone.˛F /

the Weil-étale complex with compact support with coefficients in FD .

Remark. We want to emphasize that our construction is only done in the homotopy cat-
egory, as a mapping cone. Nevertheless for red or blue sheaves we will obtain sufficient
functoriality properties; this is unusual.

3.2. Computation of Weil-étale cohomology

Proposition 3.5. Let F be a red or blue sheaf. Then R�W;c.X; FD/ is a perfect complex
of abelian groups concentrated in degree Œ�1; 2�. Moreover, we have

H i
W;c.X; F

D/ D

´
H�1c .X; FD/ i D �1�
H 0.X; F /tor

��
i D 2
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and short exact sequences

0! H 0
c;B.X; F

D/! H 0
W;c.X; F

D/! Hom
�
H 1.X; F /;Z

�
! 0;

0!
�
H 1.X; F /tor

��
! H 1

W;c.X; F
D/! Hom

�
H 0.X; F /;Z

�
! 0:

Proof. The groupsH i .X;F / are of finite type for i D 0; 1: they differ from yH i
c .X;F / by

a finite group sinceX is proper, and the latter are of finite type for i D 0;1 [30, Thm. II.3.1,
Thm. II.6.2]. The claim then follows from the distinguished triangle

RHom
�
R�.X;F /;QŒ�2�

�
! R�c;B.X; F

D/! R�W;c.X; F
D/!

and Propositions 2.9 and 2.14.

We compute some special cases, using Propositions 2.11 and 2.12.

Proposition 3.6. Suppose that X D Spec.OK/ is regular. We have

H i
W;c.X;Z

D/ D

´
Z i D 1

0 i D 2

and an exact sequence

0! Zr2 ! H�1W;c.X;Z
D/! O�K ! .Z=2Z/r1 ! H 0

W;c.X;Z
D/! Pic.X/! 0:

Moreover H 0
W;c.X;Z

D/ D PicC.X/.

Remark. � IfX is singular, we still haveH 2
W;c.X;Z

D/D0; the abelian groupH 1
W;c.X;Z

D/

is of rank 1 but it can have torsion coming from H 1.X;Z/ if X is not unibranch.
� The complexes R�W;c.X;ZD/ is equal to the complex R�W;c.X;Z.1//Œ2� of [15]

and the above computation reproduces the one in [15].

Proposition 3.7. Suppose that X D Spec.OK/ is regular and let j W U ! X be an open
immersion with U ¤ X ; we keep the notations from Proposition 2.12. Then

H 1
W;c

�
X; .jŠZ/

D
�
D H 2

W;c

�
X; .jŠZ/

D
�
D 0

and we have short exact sequences

0! Zr2 ! H�1W;c
�
X; .jŠZ/

D
�
! O�K;S;C ! 0

and
0! PicC.U /! H 0

W;c

�
X; .jŠZ/

D
�
! ker

�
Zsf

†
�! Z

�
! 0:

Proposition 3.8. Let i W x!X be a closed point andM a finite type discreteGx-module.
Then

H i
W;c

�
X; .i�M/D

�
D

8̂̂<̂
:̂
0 i D �1

H 0.Gx ;M
_/ D HomGx .M;Z/ i D 0�

H 0.Gx ;M/tor
��

i D 2
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and we have a short exact sequence

0! H 1.Gx ;M/� ! H 1
W;c

�
X; .i�M/D

�
! Hom

�
H 0.Gx ;M/;Z

�
! 0:

Proposition 3.9. If F is constructible then

R�c;B.X; F
D/

'
�! R�W;c.X; F

D/:

3.3. Functoriality properties

Theorem 3.10. Let F be red or blue. The complex R�W;c.X; FD/ is well defined up to
unique isomorphism, is functorial in red-to-blue morphisms, and gives long exact coho-
mology sequences for red-to-blue short exact sequences.

Proof. For each red or blue sheaf F we fixe a choice R�W;c.X; FD/ of cone of ˛F .
Let f W F ! G be a red-to-blue morphism. Let us consider the following diagram with
distinguished rows:

DF R�c;B.X; F
D/ R�W;c.X; F

D/

DG R�c;B.X;G
D/ R�W;c.X;G

D/

f � f �

˛F

˛G

We claim that the left square commutes. Indeed, by Proposition 3.3 it suffices to check it
in cohomology in degree 1 and 2, in which case it follows from the functoriality of the
maps

D.�/ ! RHomZ

�
R�.X;�/;Q=ZŒ�2�

�
Ry�c;B

�
X; .�/D

�
! RHomZ

�
R�.X;�/;Q=ZŒ�2�

�
R�c;B

�
X; .�/D

�
! Ry�c;B

�
X; .�/D

�
:

We obtain an induced morphism f �: R�W;c.X; GD/! R�W;c.X; F
D/ in D.Z/ com-

pleting the diagram to a morphism of distinguished triangles. Let us show that this induced
morphism is uniquely determined by the left square. It suffices to show that the natural
map

Hom
�
R�W;c.X;G

D/; R�W;c.X; F
D/
�
! Hom

�
R�c;B.X;G

D/; R�W;c.X; F
D/
�

is injective. We have an exact sequence

Hom
�
DG Œ1�; R�W;c.X; F

D/
�
! Hom

�
R�W;c.X;G

D/; R�W;c.X; F
D/
�

! Hom
�
R�c;B.X;G

D/; R�W;c.X; F
D/
�
:

SinceDG is a complex of Q-vector spaces, the multiplication-by-nmap onDG is a quasi-
isomorphism for every integer n. The same must hold for Hom.DG Œ1�; R�W;c.X; FD//
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by functoriality, so the latter is a Q-vector space. Moreover, by Proposition 3.5 and (3.1),
the abelian group Hom.R�W;c.X;GD/; R�W;c.X; FD// is of finite type so the image of

Hom
�
DG Œ1�; R�W;c.X; F

D/
�

inside Hom
�
R�W;c.X;G

D/; R�W;c.X; F
D/
�

must be 0 and the claim follows. This proves the functoriality in red-to-blue morphisms;
by running the same argument with the morphism id W F ! F for a choice of two different
cones of ˛F , we obtain the uniqueness up to unique isomorphism.

Let 0! F ! G ! H ! 0 be a red-to-blue short exact sequence. Denote u W H !
F Œ1� the induced map. By the previous argument, we obtain a diagram

DF R�c;B.X; F
D/ R�W;c.X; F

D/

DG R�c;B.X;G
D/ R�W;c.X;G

D/

DH R�c;B.X;H
D/ R�W;c.X;H

D/

DF Œ�1� R�c;B.X; F
D/Œ�1� R�W;c.X; F

D/Œ�1�

f � f �

˛F

˛G

u�

g�

˛H

˛F Œ�1�

g�

u�

f �

g�

u�

To construct the unique dotted arrow u� making the diagram commute, repeat the previous
argument using Proposition 2.14 and (3.1).

The right column provides a triangle that is not necessarily distinguished. We will
show that it induces a long exact cohomology sequence. Fix a prime p and an integer
n 2 N�. Observe that DF is a complex of Q-vector spaces, so that DF ˝L Z=pnZ D 0.
It follows that

R�c;B.X; F
D/˝L Z=pnZ

'
�! R�W;c.X; F

D/˝L Z=pnZ:

Denote by .�/^p D R lim.� ˝L Z=pnZ/ the derived p-completion. By passing to the
derived limit, we find

R�c;B.X; F
D/^p

'
�! R�W;c.X; F

D/^p D R�W;c.X; F
D/˝L Zp

naturally in F where the right equality holds because R�W;c.X; FD/ is a perfect com-
plex22. Since derived p-completion is an exact functor, it follows that

R�W;c
�
X; .�/D

�
˝
L Zp

is an exact functor too. Now Zp is flat and the family .Zp/p prime is faithfully flat so it
suffices to show that the long cohomology sequence is exact after tensoring with Zp , for
each prime p; this follows from the exactness of R�W;c.X; .�/D/˝L Zp .

22This follows from [42, Tag 0EEU] and [42, Tag 00MA] by filtering with the truncations.

https://stacks.math.columbia.edu/tag/0EEU
https://stacks.math.columbia.edu/tag/00MA
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Proposition 3.11. Let Y D Spec.O0/ be the spectrum of an order in a number field with
a finite dominant morphism � W Y ! X and let F be a red or blue Z-constructible sheaf
on Y . Then ��F is red or blue and we have a unique isomorphism

R�W;c.Y; F
D/

'
�! R�W;c

�
X; .��F /

D
�
:

Proof. We can run an argument similar to the previous proof: it suffices to check that the
square

R�.Y; F /�Œ�2� R�c;B.Y; F
D/

R�.X; ��F /
�Œ�2� R�c;B

�
X; .��F /

D
�

˛F

' '

˛��F

is commutative. This can be checked in cohomology in degree 2 and 3, whence from the
definition of ˛F we reduce to checking that

yH i
c;B.Y; F

D/ H 2�i .Y; F /�

yH i
c;B

�
X; .��F /

D
�

H 2�i .X; ��F /
�

' '

is commutative for i D 2; 3. This would be implied by the commutativity of the following
diagram:

R�.Y; F /˝L Ry�c;B.Y; F
D/ Ry�c;B.Y;ZD/ Q=ZŒ�2�

R�.X; ��F /˝
L Ry�c;B

�
X; .��F /

D
�

Ry�c;B.X;ZD/ Q=ZŒ�2�

'

��2

��2

By Proposition 2.6, the left square is commutative. Moreover, we can identify the canoni-
cal map Ry�c;B.Y;ZD/! Ry�c;B.X;ZD/ as the composition

Ry�c;B.Y;Z
D/' Ry�c.Y;Z

c
Y /' R

y�c.X;��R�
ŠZc
X /! Ry�c.X;Z

c
X /' R

y�c;B.X;Z
D/

coming from the counit " W ��R� Š! id. It induces in cohomology in degree 2 the identity
Q=Z! Q=Z [30, Lem. II.3.10], [22, Thm. 8.9], so the right square is commutative.

The Weil-étale complex splits rationally:

Proposition 3.12. Let F be a red or blue sheaf. There is an isomorphism

R�W;c.X; F
D/Q

'
�! RHom

�
R�.X;F /;QŒ�1�

�
˚R�c;B.X; F

D/Q

natural in red-to-blue morphisms and red-to-blue short exact sequences.
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Proof. Consider the distinguished triangle

R�c;B
�
X; .�/D

�
Q
! R�W;c

�
X; .�/D

�
Q

p
�! D.�/Œ1�:

It suffices to show that p has a section; but if F is a red sheaf or G is a blue sheaf,
considerations on the Verdier spectral sequence (3.1) show that

HomD.Z/
�
DF Œ1�; R�c;B.X;G

D/Q
�
D 0;

HomD.Z/
�
DF Œ1�; R�c;B.X;G

D/QŒ1�
�
D 0

so that composition with pG induces an isomorphism

HomD.Z/
�
DF Œ1�; R�W;c.X;G

D/Q
� '
���!
pG;�

HomD.Z/
�
DF Œ1�;DG Œ1�

�
:

We then put sF D p�1F;�.id/; the functoriality is easily checked from the above isomor-
phism.

Proposition 3.13. Let Y D Spec.O0/ be the spectrum of an order in a number field with
a finite dominant morphism � W Y ! X and let F be a red or blue sheaf on Y . Then
the rational splitting of Weil-étale cohomology is compatible with ��, i.e., the following
square commutes

R�W;c.Y; F
D/Q DF Œ1�˚R�c.Y; F

D/Q

R�W;c
�
X; .��F /

D
�

Q
D��F Œ1�˚R�c

�
X; .��F /

D
�

Q

'

'

'

'

Proof. It suffices to prove that in the following square, the square with the sections com-
mutes:

R�W;c.Y; F
D/Q DF Œ1�

R�W;c
�
X; .��F /

D
�

Q
D��F Œ1�



pF

p��F

ı

sF

s��F

As in the previous proof, there is an isomorphism

HomD.Z/
�
DF Œ1�; R�W;c

�
X; .��F /

D
�

Q

� '
����!
p��F;�

HomD.Z/
�
DF Œ1�;D��F Œ1�

�
:

We compute
p��F sF D ıpF sF D ı D p��F s��F ı:
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4. The tangent space and the fundamental line

Denote g W � D Spec.K/! X the inclusion of the generic point, GK the absolute Galois
group ofK,Kt the maximal tamely ramified extension ofK,GtK D Gal.Kt=K/ and OKt

the ring of integers of Kt . For each finite place v of K, denote Pv � Iv � Dv � GK the
wild ramification, inertia, decomposition subgroups of GK at v23. Denote N the smallest
closed normal subgroup of GK containing Pv for each finite place v. We have GtK D
GK=N by Proposition B.4. For a sheaf F on X , denote F� WD g�F , seen as a discrete
GK-module.

Definition 4.1. Let F be a Z-constructible sheaf on X .

• We say that F is tamely ramified if for each finite place v of K, Pv acts trivially on
F�; then F� carries a natural action of GtK .

• Suppose that F is tamely ramified. The tangent space of FD is the complex

LieX .FD/ WD RHomGtK

�
F�;OKt Œ1�

�
:

Remark. � Let us motivate the above definition. Following the work of Flach–B. Morin
[15], the complex LieX .FD/ should be the “additive complex” giving the additive part of
the fundamental line. It should behave like Milne’s correcting factor in the special value
formula for LX .FD; s/ at s D 0. Since LX .ZD; s/ D �X .s C 1/ when X D Spec.OK/ is
regular, we must have LieX .Gm/ D OK : this is the additive complex for Z.1/Œ1� on X .
We want LieX to be an exact functor24. Recall the L-function of a Z-constructible sheaf
LX .�; s/ introduced in [31, §6.4]. If i W x ! X is the inclusion of a closed point and M
is a finite type Gx-module, we have

LX
�
.i�M/D; s

�
D LX .i�M

_; s/:

Since the special value at s D 0 of LX .i�M_; s/ does not involve an additive complex,
it is expected that LieX ..i�M/D/ D 0. Therefore, LieX .FD/ should only depend on F� .
In [21], Geisser–Suzuki consider a torus T over a function field K associated to a proper
smooth curve over a finite field C . They write down a special value formula for the L-
function of T (defined in terms of the rational l-adic Tate module) at s D 1 in terms
of Weil-étale cohomology and of the Lie algebra of the connected Néron model T 0 on
C of T . Moreover, they show that on the étale site, T 0 D RHom. zY;Gm/ where zY is a
bounded complex with Z-constructible cohomology sheaves related to the character group
of T . This inspired our construction.
� If F is Z-constructible and X D Spec.OK/ is regular, F is tamely ramified if and

only if for each U � X such that FjU is locally constant, there exist a finite extension
L=K such that the normalization � W Y !X ofX inL is étale over U with .��F /j��1.U /
constant, and � is tamely ramified above points x 2 XnU .

23coming from a choice of embedding Kv ,! Ksep.
24A way to avoid the tame ramification hypothesis may be to relax this condition and only ask that

detZ.LieX ..�/D// is multiplicative with respect to fiber sequences.
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� If X is not regular we nonetheless have LieX .ZD/ D OK Œ1�. This seems strange to
us, but as we explained LieX .FD/ depends only on F� which does not see singular points
so it is also more or less expected.
�We have LieX .FD/Q D HomGK .F�; K

sep/Œ1�.

The restriction to tamely ramified sheaves is justified by the following theorem, essen-
tially due to Noether [38]25:

Theorem 4.2 ([36, Thm. 6.1.10]). LetK be a number field or a p-adic field. The discrete
GtK-module OKt is cohomologically trivial. In particular

R�.GtK ;OKt / D OK Œ0�:

Corollary 4.3. Let L=K be a finite tamely ramified Galois extension of number fields or
p-adic fields with Galois groupG. For i � 1 denote OLJtKi WD 1C t iOLJtK. Then OLJtKi
is a cohomologically trivial G-module.

Proof. We have an isomorphism OLJtKi=OLJtKiC1 ' OL and

OLJtKi D lim
k>i

OLJtKi=OLJtKk :

The transition maps are surjective, and the terms are cohomologically trivial by induc-
tion using Theorem 4.2. Moreover, the kernel of OLJtKi=OLJtKkC1! OLJtKi=OLJtKk is
OLJtKk==OLJtKkC1 ' OL which is cohomologically trivial, so for every subgroup H of
G the maps .OLJtKi=OLJtKkC1/H ! .OLJtKi=OLJtKk/H are surjective.

Put Ak D OLJtKi=OLJtKk and let H be a subgroup of G. We compute:

R�
�
H;OLJtKi

�
D R�.H; limAk/ D R�.H;R limAk/

D R limR�.H;Ak/ D R lim
�
AHk Œ0�

�
D .limAHk /Œ0�

where each limit is a derived limit because the transition maps are surjective.

The following lemma together with the above theorem will enable us to compute the
tangent space of FD more explicitely:

Lemma 4.4. LetG be a profinite group and let O be a torsion-free cohomologically trivial
discreteG-module. LetM be a finite type discreteG-module. The complexRHomG.M;O/

is cohomologically concentrated in degree Œ0; 1�. Moreover, ifM is finite it is concentrated
in degree 1 and if M is torsion-free it is concentrated in degree 0.

Proof. To show the vanishing result, we can use the short exact sequence

0!Mtor !M !M=tor! 0

to reduce to the finite and torsion-free cases; thus it suffices to study those cases:

25See also [26, Thm. 1.1].
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• Suppose first that M is finite. We then have HomG.M;O/ D 0 because O is torsion-
free. As ExtpZ.M;O/ D 0 for p ¤ 1, we obtain for i � 1:

ExtiG.M;O/ D H
i�1
�
G;Ext1Z.M;O/

�
:

Let us now show the vanishing for i>1. We can suppose thatM is p-primary, and even
p-torsion. LetH be any p-Sylow ofG. As anH -module,M has a composition series
with quotients isomorphic to Z=pZ with its trivial action [40, Chap. IX, §1, Thm. 2].
We have

H i
�
H;Ext1Z.Z=pZ;O/

�
D H i .H;O=pO/ D 0

for i � 1 because O is cohomologically trivial. It follows that for any i � 1 we also
have H i .H;Ext1Z.M;O// D 0. Finally, the following triangle commutes:

H i
�
G;Ext1Z.M;O/

�
H i
�
G;Ext1Z.M;O/

�
H i
�
H;Ext1Z.M;O/

�
D 0

Res Cores

ŒGWH�

'

whence it follows that H i .G;Ext1Z.M;O// D 0 for i � 1.

• Suppose now thatM is torsion-free, and let us show that ExtiG.M;O/D 0 for i > 0. By
Artin induction and the previous case it suffices to consider the case of M D indGH Z
for H an open subgroup. Since O is cohomologically trivial we have

RHomG.indGH Z;O/ D R�.H;O/ D OH Œ0�

which is concentrated in degree 0.

Corollary 4.5. Let M be a finite type discrete GtK-module. Then RHomGtK
.M;OKt Œ1�/

is a perfect complex cohomologically concentrated in degree Œ�1; 0�. More precisely,
Ext�1

GtK
.M;OKt Œ1�/ is free of finite rank and Ext0

GtK
.M;OKt Œ1�/ is finite.

Proof. We apply first Lemma 4.4 to obtain the vanishing outside Œ�1; 0�. Now let H
be an open normal subgroup of GtK acting trivially on M and corresponding to a finite
tamely ramified Galois extension L=K, and put G WD GtK=H D Gal.L=K/. There is a
natural G-action on M . The functor R�.H;�/ is right adjoint to the forgetful functor
G-Mod! GtK-Mod, so we obtain

RHomG

�
M;OKt Œ1�

�
D RHomG

�
M;R�

�
H;OKt Œ1�

��
D RHomG

�
M;OLŒ1�

�
by Theorem 4.2.

Since OL is torsion-free, HomG.M;OL/ is free of finite rank. On the other hand, we
can use the short-exact sequence

0!Mtor !M !M=tor! 0;
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the vanishing ExtpZ.Mtor;OL/ D 0 for p ¤ 1 and Lemma 4.4 (applied to G and OL) to
compute

Ext1G.M;OL/
'
�! Ext1G.Mtor;OL/ D H

0
�
G;Ext1Z.Mtor;OL/

�
which is finite.

Corollary 4.6. Let F be a tamely ramified Z-constructible sheaf. Then LieX .FD/ is a
perfect complex concentrated in degree Œ�1; 0�. Moreover H�1 LieX .FD/ is free of finite
rank and H 0 LieX .FD/ is finite.

Corollary 4.7. Suppose that M is a torsion-free discrete GtK-module and let T be the
torus over K with character group M . Denote T the lft (locally of finite type) Néron
model of T over Spec.OK/. We have a canonical, functorial isomorphism

Lie.T /
'
�! HomGtK

.M;OKt /

where the left term is the Lie algebra of T .

Proof. Both terms are lattices inside Lie.T / D HomGK .M;K
sep/. It suffices to show that

they are canonically isomorphic after tensoring with OKv for all non-archimedean places
v. On the one hand we have

Lie.T /˝OK OKv D Lie.TOKv
/ D Lie

�
N .TKv /

�
where N denotes the lft Néron model. On the other hand letG D Gal.L=K/ be a quotient
of GtK through which the action of GtK on M factors. We have

OL ˝OK OKv '
Y
wjv

OLw

and thus

HomGtK
.M;OKt /˝OK OKv D HomG.M;OL/˝OK OKv D HomG.M;OL ˝OK OKv /

D HomG

�
M;

Y
wjv

OLw

�
D HomDw0=v .M;OLw0 /

where w0 is a fixed place of L above v, so we can reduce to the case where K is a p-adic
field. By [8, §A1, Prop. A1.7] we have a canonical functorial isomorphism

Lie.T /
'
�!

®
v 2 HomG.M;OL/ j v lifts to HomG

�
M;OLJtK1

�¯
:

It thus suffices to show that HomG.M;OLJtK1/! HomG.M;OL/ is surjective. We have
an exact sequence

HomG

�
M;OLJtK1

�
! HomG.M;OL/! Ext1G

�
M;OLJtK2

�
:
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Now OLJtK2 is torsion-free and cohomologically trivial by Corollary 4.3 and M is a
torsion-free finite type G-module, so we can apply Lemma 4.4 to obtain

ExtiG
�
M;OLJtK2

�
D 0 for i � 1:

Remark. As a corollary, a short exact sequence of tori that are split by a tamely ramified
extension gives rise to a short exact sequence of the Lie algebras of the respective lft Néron
models.

In the following, denote .�/R WD � ˝L R.

Proposition 4.8. Let F be a tamely ramified Z-constructible sheaf. We have

LieX .FD/R D RHomGR;X.C/

�
˛�F;CŒ1�

�
:

Proof. Let L=K be a finite tamely ramified Galois extension such that GL acts trivially
on F� , and denote G WD GtK=G

t
L D Gal.L=K/. We have:

LieX .FD/R D RHomG

�
F�;OLŒ1�

�
R
D
.�/
RHomG

�
F�;OL ˝Z RŒ1�

�
D RHomG

�
F�;

Y
v archimedean

Y
wjv

Lw Œ1�
�

D

Y
v archimedean

RHomG

�
F�;

Y
wjv

Lw Œ1�
�
:

where .�/ holds because F� is a finite type abelian group, hence a finite presentation
ZŒG�-module. For each archimedean place v, choose a place w0 in L above v. The group
G acts transitively on the places above v, the fields Lw are pairwise isomorphic, and the
stabilizerDw0 of w0 identifies with Gal.Lw0=Kv/. Thus

Q
wjv Lw D indGDw0 Lw0 and we

find
LieX .FD/R D

Y
v archimedean

RHomDw0
�
F�; Lw0 Œ1�

�
:

On the other hand, for v an archimedean place we have Fv D F� with the restricted action
to GKv WD Gal.C=Kv/. Therefore the action of GKv factors through Gal.Lw0=Kv/; as
the functor R�.Gal.C=Lw0/;�/ is right adjoint to the forgetful functor Dw0 -Mod !
GKv -Mod, we find

RHomGR;X.C/

�
˛�F;CŒ1�

�
D R�GR

�
X.C/; RHomX.C/

�
˛�F;CŒ1�

��
D

Y
v archimedean

R�
�
GKv ; RHomZ

�
Fv;CŒ1�

��
D

Y
v archimedean

RHomGKv

�
Fv;CŒ1�

�
D

Y
v archimedean

RHomDw0
�
Fv; Lw0 Œ1�

�
D LieX .FD/R:
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Proposition 4.9. Let Y D Spec.O0/ be the spectrum of an order in a number field with a
finite dominant morphism � W Y ! X . If K.Y /=K is tamely ramified and F is a tamely
ramified Z-constructible sheaf on Y , we have

LieX
�
.��F /

D
�
D LieY .FD/:

Proof. Denote g0 W Spec.L/! Y the inclusion of the generic point and � 0 W L! K the
map induced by base change of � by g W Spec.K/! X . By finite base change, we have
g���F D �

0
�g
0�F . If K � H � G are normal subgroups of a profinite group G and M

is a discrete H=K-module, we have

indG=K
H=K

M D ContH=K.G=K;M/ ' Cont.G=H;M/ ' ContH .G;M/ D indGH M

where the left term is seen as a G-module, and on the right M has the natural H -module
structure. Denote U W GtK-Mod! GK-Mod resp. U 0 W GtL-Mod! GL-Mod the forgetful
functors. The functor � 0� identifies with induction indGKGL . We haveKt D Lt because L=K
is tamely ramified so we can apply the above to GalKsep=Kt � GL � GK . We obtain the

formula U ı ind
GtK
GtL
D indGKGL ıU

0, so that

LieY
�
.��F /

D
�
WD RHomGtK

�
ind

GtK
GtL
g0�F;OKt Œ1�

�
D RHomGtL

�
g0�F;OKt Œ1�

�
D LieX .FD/

since induction is right and left adjoint to the forgetful functor by the finiteness ofL=K.

Definition 4.10. Let F be a tamely ramified red or blue sheaf. The fundamental line is
the determinant

�X .F
D/ D det

Z

�
R�W;c.X; F

D/
�
˝ det

Z

�
LieX .FD/

��1
:

5. Deligne compactly supported cohomology and the duality theorem

There is a natural GR-equivariant map of sheaves on X.C/ given by the logarithm of the
absolute value log j � j W C� ! R. Let F be a sheaf on X . We denote by Log the natural
map

Log W RHom.F;Zc
X /

˛�

�! RHomGR;X.C/

�
˛�F; xQ�Œ1�

�
! RHomGR;X.C/

�
˛�F;C�Œ1�

�
.log j�j/�Œ1�
�������! RHomGR;X.C/

�
˛�F;RŒ1�

�
:

Since the target is a sheaf of R-vector spaces, the map factors as Log W R�.X; FD/R D
RHom.F;Zc

X /R ! RHomGRR;X.C/.˛
�F;RŒ1�/.
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Definition 5.1. Let F be a Z-constructible sheaf. We define the Deligne compactly sup-
ported cohomology with coefficients in FD by

R�c;D.X; F
D
R / WD fib

�
R�.X;FD/R

Log
��! RHomGR;X.C/

�
˛�F;RŒ1�

��
:

Remark. We have chosen to name the different cohomologies with compact support by
what happens at the archimedean places; here the cohomology at the archimedean places
is replaced by a contravariant version of Deligne cohomology with real coefficients

R.1/D D Œ2i�R! C�
'
�! RŒ�1�:

The commutative diagram with exact rows of GR-equivariant sheaves

0 2i�Z C C� 0

0 2i�R C R 0

log j�j

gives a commutative square

C� 2i�ZŒ1�

R 2i�RŒ1�

log j�j (5.1)

Consider the following diagram

R�c;B.X; F
D/R R�.X;FD/R RHomGR;X.C/.˛

�F; 2i�R/Œ2�

RHomGR;X.C/

�
˛�F;CŒ1�

�
RHomGR;X.C/

�
˛�F;RŒ1�

�
RHomGR;X.C/.˛

�F; 2i�R/Œ2�

Log Log

where the top fiber sequence is the defining fiber sequence of R�c;B.X; FD/ tensored
with R and the bottom fiber sequence is induced from the short exact sequence 0 !
2i�R! C ! R! 0. We claim that the right square is commutative, hence induces the
left map making the whole diagram commute. This follows from the following commuta-
tive diagram, induced by the commutative square (5.1), by using the universal property of
base change to R-coefficients:

R�.X;FD/ RHomGR;X.C/

�
˛�F; xQ�Œ1�

�
RHomGR;X.C/

�
˛�F;C�Œ1�

�
RHomGR;X.C/

�
˛�F; 2i�ZŒ2�

�
RHomGR;X.C/

�
˛�F;RŒ1�

�
RHomGR;X.C/

�
˛�F; 2i�RŒ2�

�.log j�j/�Œ1�

˛�

Log
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By the1-categorical nine lemma26 we obtain

R�c;D.X; F
D
R / D fib

�
R�c;B.X; F

D/R
Log
��! RHomGR;X.C/

�
˛�F;CŒ1�

��
:

We now want to prove a duality theorem relating R�.X; F /R and R�c;D.X; FDR /.
Let us construct a natural pairing

R�.X;F /R ˝
L R�c;D.X; F

D
R /! RŒ0�:

Consider Diagram 3. Its right rectangle commutes. The top and bottom rows are fiber
sequences, so we obtain an induced dotted map making the diagram commute. To obtain
the desired pairing, it remains to compute R�c;D.X;ZDR /. The complex R�.X;Zc

X / D

R�.X;GX / is torsion in degree i�1 [30, Thm. II.6.2], and we haveR�GR.X.C/;RŒ1�/D
.
Q
� WK!C R/GR Œ1�. The cohomology in degree �1 and 0 is given by the exact sequence

0!H�1c;D.X;Z
D
R /!CH0.X;1/R

Log
��!

� Y
� WK!C

R
�GR
!H 0

c;D.X;Z
D
R /!CH0.X/RD 0:

Denote f W X ! Spec.Z/ the structure map of X , Z its singular locus and U its regular
locus. By [31, Thm. 4.4]27, we have28

CH0.X/R D HomX .Z;Zc
X /R

'
�! Hom

�
H 0
c .X;Z/R;R

�
D 0:

Moreover, [31, Thm. 4.4] and the computation of H 1.X;Z/ gives a short exact sequence

0! CH0.X; 1/R
Log
��!

� Y
� WK!C

R
�GR
�

Y
v2Z

Y
�.w/Dv

R
†�

Q
v2Z †

�������! R �
Y
v2Z

R! 0

where † denote sum maps. Consider the following snake diagram:

0 H�1
c;D

.X;ZDR /

0 0 CH0.X; 1/R CH0.X; 1/R 0

0
Q
v2Z

Q
�.w/Dv R .

Q
� WK!C R/GR �

Q
v2Z

Q
�.w/Dv R .

Q
� WK!C R/GR 0

Q
v2Z

Q
�.w/Dv R R �

Q
v2Z R H 0

c;D
.X;ZDR / 0

†�
Q
v2Z †

.0;
Q
v2Z †/

26See [31, Lem. 2.2].
27Which also holds for singular schemes; this can be seen either by applying it on Spec.Z/ to the direct

image with compact support along the structural morphism, or by modifying slightly the proof to reduce to
the regular case by removing the singular points.

28This is essentially the finiteness of the class number of a number field.
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R
�
.X
;F
/ R
˝
L
R
�
c
;D
.X
;F

D R
/

R
�
.X
;F
/ R
˝
L
R
�
.X
;F

D
/ R

R
�
.X
;F
/ R
˝
L
R

H
om

G
R
;X
.C
/

� ˛� F
;R
Œ1
��

R
�
.X
;F
/ R
˝
L
R

H
om
.F
;Z

c X
/ R

R
�
G

R

� X.C
/;
˛
�
F
� R
˝
L
R

H
om

G
R
;X
.C
/

� ˛� F
;R
Œ1
��

R
�
c
;D
.X
;Z

D R
/

R
�
.X
;Z

c X
/ R

R
�
G

R

� X.C
/;

R
Œ1
��

Diagram 3.
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If we denote by .
Q
I R/† the kernel of the sum map

Q
I R! R, we obtain identifications

H�1c;D.X;Z
D
R / D

Y
v2Z

� Y
�.w/Dv

R
�†
; H 0

c;D.X;Z
D
R / D R

and under the latter identification the map� Y
� WK!C

R
�GR
! H 0

c;D.X;Z
D
R /

is simply the restriction of †. If X is unibranch, and in particular if it is regular, we have
H�1
c;D

.X;ZDR / D 0.
The desired pairing is now

R�.X;F /R ˝
L R�c;D.X; F

D
R /! R�c;D.X;Z

D
R /

��0
��! RŒ0�:

Theorem 5.2. Let F 2Db.Xet/ be a bounded complex with Z-constructible cohomology
groups. The pairing

R�.X;F /R ˝
L R�c;D.X; F

D
R /! RŒ0�

is a perfect pairing of perfect complexes of R-vector spaces. If F 2 DC.Xet/, the map

R�c;D.X; F
D
R /! RHom

�
R�.X;F /R;R

�
is an isomorphism.

Proof. The map R�c;D.X; .�/DR / ! R Hom.R�.X;�/R;R/ is a natural transforma-
tion between exact functors which commute with filtered colimits. Any complex F 2
DC.Xet/ is a filtered colimit of bounded complexes; a bounded complex has a filtration
by truncations with graded pieces shifts of sheaves; and any sheaf is a filtered colimit
of Z-constructible sheaves. We thus reduce to the case of a single Z-constructible sheaf.
The groups H i .X; F / differ from yH i

c .X; F / by a finite group since X is proper, hence
are finite type for i D 0; 1 and torsion otherwise, so R�.X; F /R is a perfect complex of
R-vector spaces.

We now prove the perfectness of the complex R�c;D.X; FDR / and of the pairing by
Artin induction.

• This is trivial if F is constructible.

• If X is regular and F D Z, we have R�.X;Z/R D RŒ0� and R�c;D.X;ZDR / D RŒ0�
so the pairing is of the form R˝R! R, concentrated in degree 0. By construction,
we have a commutative square

R�.X;Z/R ˝L R�GR

�
X.C/;R

�
R�.X;Z/R ˝L R�c;D.X;ZDR /

R�GR

�
X.C/;R

�
R�c;D.X;ZDR /
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so we get a commutative diagram

R˝ .
Q
� WK!C R/GR R˝R

.
Q
� WK!C R/GR R

id˝†

†

Since the pairing on the left is multiplication, the pairing on the right is also multipli-
cation, so it is perfect.

• If F is supported on a closed subscheme, without loss of generality we can suppose
that there is a closed point i W x ! X and a finite type Gx-module M such that F D
i�M . We have

R�.X; i�M/ ' R�.Gx ;M/;

R�c;D
�
X; .i�M/DR

� '
�! R�

�
X; .i�M/D

�
R
D R�.X; i�M

_/R ' R�.Gx ;M
_/R:

The counit i�Ri ŠZc
X D i�Z! Zc

X induces a map

R�.Gx ;Z/ D R�
�
X; .i�Z/

D
�
! R�.X;Zc

X /:

Since ˛�i� D 0, this induces a map

R�.Gx ;Z/R ! R�c;D.X;Z
D
R /:

Upon identifying Z with Z_, this map is the map

R�c;D
�
X; .i�Z/

D
R

�
! R�c;D.X;Z

D
R /

induced by Z! i�Z. Denote j W U WDXnx!X the open immersion; the short exact
sequence

0! jŠZ! Z! i�Z! 0

gives a 3 � 3 diagram:

R�c;D
�
X; .jŠZ/DR Œ�1�

�
R�c;D

�
X; .i�Z/DR

�
R�c;D.X;ZDR /

R�
�
U;Zc

U Œ�1�
�

R
R�.X; i�Z/R R�.X;Zc

X /R

R�GR

�
X.C/;R

�
0 R�GR

�
X.C/;RŒ1�

�
The map

R�c;D
�
X; .i�Z/

D
R

�
! R�c;D.X;Z

D
R /
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is given in degree 0 by a map R! R which is computed as the boundary map ı in the
following snake diagram

0 H�1
c;D

.X;ZDR / H�1
c;D

�
X; .jŠZ/DR

�
R

0 CH0.X; 1/R CH0.U; 1/R R 0

0 .
Q
� WK!C R/GR .

Q
� WK!C R/GR 0 0

H 0
c;D

.X;ZDR / D R H 0
c;D

�
X; .jŠZ/DR

�
0 0

ordv

†

ı

ı

Let f 2 CH0.U; 1/R such that ordv.f / D 1; we also have ordw.f / D 0 for w 2 U
by definition. Then

ı.1/ D † ı Log.f / D � logN.v/

by the product formula. From Diagram 3, we obtain the commutativity of the upper
left rectangle in the following commutative diagram.

R�.X; i�M/R ˝
L R�c;D

�
X; .i�M/DR

�
R�c;D.X;ZDR / RŒ0�

R�.X; i�M/R ˝
L R�

�
X; .i�M/D

�
R

R�.X;Zc
X /R

R�.Gx ;M/R ˝
L R�.Gx ;M

_/R R�.Gx ;Z/R RŒ0�

'

'

��0

��0

� logN.v/

The perfectness of the pairing reduces to that of the natural pairing

R�.Gx ;M/R ˝
L R�.Gx ;M

_/R ! R

coming from M ˝L M_ ! Z. It was shown in [31, Paragraph 4.2.4] that this latter
pairing is perfect29.

• Let Y D Spec.O0/ be the spectrum of an order in a number field with a finite dominant
morphism � W Y ! X , and suppose F D ��G for a Z-constructible sheaf G on Y .
Denote � 0 W Y.C/! X.C/ the induced morphism. The counit ��Zc

Y ! Zc
X is sent

29This also reduces by Artin induction, after showing compatibility with induction, to the perfectness
for M D Z.
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under ˛� to the counit � 0� xQ
�Œ1�! xQ�Œ1�, and we have the canonical maps xQ�Œ1�!

C�Œ1�
log
�!RŒ1�. We obtain formally a morphism R�c;D.Y; ZDR / ! R�c;D.X; ZDR /

and isomorphisms R�c;D.Y; GDR /
'
�!R�c;D.X; F

D
R / making the following diagram

of pairing commute

R�.Y;G/R ˝
L R�c;D.Y;G

D
R / R�c;D.Y;ZDR / RŒ0�

R�.X; F /R ˝
L R�c;D.X; F

D
R / R�c;D.X;ZDR / RŒ0�

'

��0

��0

The rightmost map is determined by the following commutative diagram (coming from
the defining long exact cohomology sequences)

.
Q
� WK.Y /!C R/GR H 0

c;D
.Y;ZDR / D R

.
Q
� WK!C R/GR H 0

c;D
.X;ZDR / D R†

†

where the left map sums components corresponding to embeddings of K.Y / restrict-
ing to the same embedding ofK. Thus the rightmost map is the identity and the pairing
for F is perfect if and only if the pairing for G is perfect.

Remark. Using duality for Deligne cohomology, it should be possible to reduce the the-
orem to the duality theorem [31, Thm. 4.4] similarly to how we reduced Artin–Verdier
duality for FD to Artin–Verdier duality for F .

6. The L-function of F D

For any scheme S , we will denote � W Sh.Sproet/! Sh.Set/ the natural morphism of topoi;
the left adjoint �� is fully faithful [4, Lem. 5.1.2].

Definition 6.1. For each closed point x of X , let lx be a prime number coprime to the
residual characteristic at x and ' be the geometric Frobenius in Gx . Denote � y̋Ql D

.R lim.�˝L Z=lnZ//˝Q the completed tensor product with Ql , with the derived limit
computed on the proétale site.

Let F be a Z-constructible sheaf on X . We define the L-function of FD by the Euler
product

LX .F
D; s/ D

Y
x2X0

det
�
I �N.x/�s'

�
��.i�xF

D/
�
y̋Qlx

��1
:

We will show that the L-function does not depend on the choice of the prime numbers
.lx/x2X0 .
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6.1. Explicit computation

In this section, we compute more explicitely theL-function of FD . Denote � W Y !X the
normalization ofX and let i W x! X be a closed point. Denote Nx D Spec.�.x/sep/,Gx D
Gal.�.x/sep=�.x//, Oh

x (resp. Osh
x ) the henselian (resp. strict henselian) local ring at x. For

each closed point y 2 Y above x, we will consider similarly Gy D Gal.�.y/sep=�.y//,
Oh
y , Osh

y , and moreoverKhy D Frac.Oh
y / (resp.Ksh

y ) the henselian local field at y (resp. its
maximal unramified extension). Fix an embeddingKhy ,!Ksep. This determines an inertia
group Iy inside GK which is the absolute Galois group ofKsh

y . If G is a topological group
we will denote G the associated condensed group.

Let us fix some conventions. IfL.M;s/ is anL-function attached to some objectM 30,
defined by an Euler product over closed points of X , we will denote Lx.M; s/ for the
local factor at a closed point x 2 X . If N is a discrete Gx-module with free of finite type
underlying abelian group, or a rational or l-adic Gx-representation of finite dimension,
denote

Qx.N; s/ WD det.I �N.x/�s'jN/�1

with ' the geometric Frobenius at x.

Theorem 6.2. Let F be a Z-constructible sheaf on X . The local factor at x of the L-
function of FD is

Lx.F
D; s/ D

Q
�.y/DxQy..F

_
� /

Iy ; s C 1/Qx.F
_
x ; s/Q

�.y/DxQy..F
_
� /

Iy ; s/
:

The proof is divided into the following several lemmas below. We mention first some
important consequences:

Corollary 6.3. • If F is locally constant around the regular closed point v, then Iv acts
trivially on F� , F� D Fv and we find that the local factor at v of FD equals the local
factor at v of the Artin L-function of F� ˝Q at s C 1:31

Lv.F
D; s/ D Lv.F� ˝Q; s C 1/:

• Each local factor is well defined, independently of the choice of a prime number l
coprime to the residual characteristic.

• The L-function of FD differs from the Artin L-function LK.F� ˝Q; sC 1/ by a finite
number of factors and is thus well defined.

• LX .F
D; s/ is meromorphic.

Denote T the torus overK with character group Y WD F�=tor. For any prime l , define
the rational l-adic Tate module of T as

Vl .T / WD
�

limT Œln�
�
˝Q:

30Which kind of L-function we will try to make clear each time from the context.
31Notice that a rational representation of a finite group is self-dual because its character takes real values

hence is its own conjugate.
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It is a finite dimensional l-adic representation of GK . We know that

Vl .T / ' Y
_
˝Ql .1/ D F

_
� ˝Ql .1/

as l-adic representations.

Definition 6.4 ([16, §8]). TheL-functionLK.T; s/ of T is theL-function of the 1-motive
Œ0! T � over K, defined by the Euler product:

LK.T; s/ D
Y
x2X0

det.I �N.x/�s'jVlx .T /
Ix /�1

where lx is a prime number coprime to the residual characteristic at x.

By the above, the L-function of T is also the Artin L-function at s C 1 of Y ˝Q D
F� ˝Q, and it does not depend on the choice of the family .lx/.

Remark. Our definition differs slightly from the definition in [21]: we use the L-function
of the 1-motive Œ0! T �, involving Vl .T /, while Geisser–Suzuki use the Hasse–Weil L-
function of T involving Vl .T /.�1/.

Proposition 6.5. Suppose that v is a regular closed point. LetM be a discreteDv-module
of finite type. There is a canonical Gv-equivariant isomorphism

M Iv ˝Q
'
�!MIv ˝Q:

Proof. The action of Dv on M factors through a finite quotient G; denote H the image
of Iv in G. Then the canonical composite map

f WMH
!M !MH

is G-equivariant hence also G=H -equivariant, and if N denotes the norm
P
h2H h we

have fN D ŒH �Id and Nf D ŒH �Id. The result follows.

Corollary 6.6. • Suppose that the canonical map Fv ! F
Iv
� is an isomorphism for a

regular closed point v. Then the local factor at v of FD is Lv.F� ˝ Q; s C 1/ D
Lv.T; s/.

• Suppose thatX is regular. We haveLX ..g�Y /D; s/DLK.T; s/DLK.Y ˝Q; sC 1/.

• Suppose that X is regular and denote T 0 the connected (lft) Néron model of T on X ,
seen as an étale sheaf onX . We can define an L-function LX .T 0; s/ for T 0 with local
factor at i W x ! X given by Qx..��i�T 0/ y̋Ql ; s/. Then

LX .T
0; s/ D LK.T; s/

�1:

Proof. We have a canonical Gv-equivariant isomorphism:

.F _� /
Iv ˝Q D HomIv .F� ˝Q;Q/ D HomAb

�
.F�/Iv ˝Q;Q

�
' HomAb.F

Iv
� ˝Q;Q/ ' F _v ˝Q

hence the local factor at v of the L-function of FD simplifies to Lv.F� ˝Q; s C 1/.
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The second point is an immediate consequence of the first. Let us prove the last point.
We have [21, Prop. 2.2]

T 0
D RHomX .�

�1Rg�Y;Gm/

as étale sheaves. We claim thatR1g�Y is skyscraper constructible: indeed .R1g�Y /x� van-
ishes, while .R1g�Y / Nv D H 1.Ksh

v ; Y / which is finite, and zero if the inertia subgroup Iv
acts trivially on Y since Y is free as an abelian group32. As there are only a finite number
of points where the inertia acts non-trivially, we obtain the claim. Therefore R1g�Y is
killed by an integer N and thus

.��i�T 0/ y̋Ql D
�
��i�.g�Y /

D
�
y̋Ql Œ�1�:

The result follows.

We now prove Theorem 6.2.

Lemma 6.7. Let F be an étale sheaf on X , and let i W x ! X be a closed point. There is
a fiber sequence

RHomx.Fx ;Z/! i�FD !
Y

�.y/Dx

indGxGy RHomSpec.Ksh
y /

�
F�;GmŒ1�

�
:

Remark. We abused notation by identifying what should be the right term with its under-
lying complex of abelian groups.

Proof. Denote X.x/ WD Spec.Oh
x/, �.x/ WD Spec.Oh

x/ �X Spec.K/ and f W X.x/! X ,
g W �! X the canonical morphisms. We consider the cartesian diagram

�.x/ X.x/

� X
g

ff 0

g 0

Denote again i W x ! X.x/ the closed immersion. Since f is (ind-)étale, we have

i�FD D i�f �RHomX

�
F;GX Œ1�

�
D i�RHomX.x/

�
F;GX.x/Œ1�

�
:

By Proposition D.5, we have

�.x/ D
a

�.y/Dx

a
Gal.�.y/=�.x//

Spec.Ksh
y /

and thus

.Rg0�Gm/ Nx D R�
�
�.x/;Gm

�
D

Y
�.y/Dx

indGxGy R�.K
sh
y ;Gm/ D

Y
�.y/Dx

indGxGy .K
sh
y /
�

32This is the crucial point: if Y is finite thenR1g�Y is skyscraper with finite stalks but has non-zero stalk
almost everywhere; for instance by Hensel’s lemma the stalk of R1g�Z=nZ at a point with characteristic
coprime to n is Z=nZ.
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hence g0�Gm D Rg
0
�Gm. Moreover there is by definition a fiber sequence

GX.x/ ! g0�Gm ! i�Z

so we obtain a fiber sequence

RHomx.Fx ;Z/! i�FD ! i�Rg0�RHom�.x/

�
g0�F;GmŒ1�

�
:

Using again Proposition D.5, we see that the right term is the following complex of abelian
groups with its natural Gx-module structure:�

Rg0�RHom�.x/

�
g0�F;GmŒ1�

��
Nx
D

Y
�.y/Dx

indGxGy RHomSpec.Ksh
y /

�
F�;GmŒ1�

�
:

From now on, we suppose that F is a Z-constructible sheaf on X .

Lemma 6.8. We have�
��RHomx.Fx ;Z/

�
y̋Ql D

�
��Homx.Fx ;Z/

�
˝Ql :

Proof. We have
��RHomx.Fx ;Z/ D RHomxproet.�

�Fx ;Z/:

The functor �˝L Z=lnZ is the cofiber of the map .�/
ln

�! .�/ so it commutes with exact
functors, and we find

RHomxproet.�
�Fx ;Z/ y̋Zl D RHomxproet.�

�Fx ; R lim Z=lnZ/:

The constant sheaf functor is exact so the transition maps Z=lnC1Z! Z=lnZ are sur-
jective, hence we have R lim Z=lnZ D lim Z=lnZ DW Zl [4, Prop. 3.1.10].

Under the identification xproet ' Gx-Cond.Set/, the sheaf Ext ixproet
.��Fx ;Zl / is the

condensed abelian group Ext iCond.Ab/.�
�Fx ;Zl / with its natural Gx-action; since both

��Fx and Zl are locally compact abelian groups33, we find Ext ixproet
.��Fx ;Zl / D 0 for

i � 2 [11, Remark after 4.9]. Let us show that Ext1xproet
.��Fx ;Zl / is killed by some integer

N . We have

RHomxproet.�
�Fx ;Zl / D R limRHomxproet.�

�Fx ; �
�Z=lnZ/

D R lim ��RHomx.Fx ;Z=l
nZ/

so there is a short exact sequence

0! R1 lim ��Homx.Fx ;Z=l
nZ/! Ext1xproet

.��Fx ;Zl /

! lim ��Ext1x .Fx ;Z=l
nZ/! 0:

33The former is even discrete.
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The underlying abelian group of the discrete Gx-module Homx.Fx ;Z=lnZ/ is given by
HomAb.Fx ;Z=lnZ/, so the transition maps Homx.Fx ;Z=lnC1Z/!Homx.Fx ;Z=lnZ/
are eventually surjective: if Fx is torsion-free this is clear, and if Fx is torsion then the
groups are constant for n greater than the l-adic valuation of the order of Fx . Thus the left
term is zero by Lemma C.2. Let k be the l-adic valuation of .Fx/tor; then

Ext1x .Fx ;Z=l
nZ/ D Ext1x

�
.Fx/tor;Z=l

nZ
�

is killed by N D lk , and therefore so is Ext1xproet
.��Fx ;Zl /.

From the previous point, it follows by tensoring with Q that

RHomxproet.�
�Fx ;Z/ y̋Ql D Homxproet.�

�Fx ;Zl /˝Q:

There are canonical maps

Homxproet.�
�Fx ;Zl /˝Q! Homxproet.�

�Fx ;Ql / Homxproet.�
�Fx ;Z/˝Ql :

We have Ab.Sh.xproet// D Ab.Sh..BGx/proet// D Gx � Cond.Ab/ D ZŒGx � �Mod, the
category of modules under the condensed ring ZŒGx � (Proposition C.7). To conclude it
suffices to show that both maps are isomorphisms. Let G be a finite quotient of Gx . We
check it first for Fx D ZŒG�. This is easily done using next lemma.

By a standard argument it thus suffices to show that ��Fx is (globally) of finite pre-
sentation as a ZŒG�-module for some finite quotientG ofGx ; this is clear as Fx is discrete
and of finite type as an abelian group.

Lemma 6.9. Let G be a finite quotient of Gx . Then ZŒG� is a left Gx-module such that

Homxproet

�
ZŒG�;�

�
D ZŒG�˝�:

Proof. We have ZŒG� D ZŒG� D ˚GZ, thus

Homxproet

�
ZŒG�;�

�
D ˚GHomxproet.Z;�/ D ˚GId D ZŒG�˝�:

Denote RHomYproet the enriched RHom on the proétale site of a scheme, a complex of
condensed abelian groups with underlying complex of abelian groups RHomY .

Lemma 6.10. We have�
��RHomSpec.Ksh

y /

�
F�;GmŒ1�

��
y̋Zl D RHomSpec.Ksh

y /proet

�
��F�;Zl .1/Œ2�

�
:

Proof. We have

��RHomSpec.Ksh
y /

�
F�;GmŒ1�

�
D RHomSpec.Ksh

y /proet

�
��F�; �

�GmŒ1�
�
:

Thus we find

��RHomSpec.Ksh
y /

�
F�;GmŒ1�

�
y̋Zl D RHomSpec.Ksh

y /proet

�
��F�;

�
��GmŒ1�

�
y̋Zl

�
:

Since l is invertible on Spec.Ksh
y /, we have Gm ˝

L Z=lnZ D �ln Œ1� and thus�
��GmŒ1�

�
y̋Zl D R lim ���ln Œ2� D Zl .1/Œ2�:
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Lemma 6.11. Let H be an open normal subgroup of Iy acting trivially on F� , and let
G WD Iy=H . Denote RHomG the enriched RHom between condensed G-modules. There
is a fiber sequence

RHomG

�
��F�;Zl .1/

�
! RHomSpec.Ksh

y /proet

�
��F�;Zl .1/

�
! RHomG.�

�F�;Zl /Œ�1�:

Proof. We have Spec.Ksh
y /proet D .BIy/proet D Iy-Cond.Set/ by Proposition C.7. The

functor R�.H;�/ WD RHomH .Z;�/ is right adjoint to the forgetful functor

D
�
Iy-Cond.Ab/

�
! D

�
G-Cond.Ab/

�
;

so we have

RHomSpec.Ksh
y /proet

�
��F�;Zl .1/

�
D RHomG

�
��F�; R�

�
H;Zl .1/

��
:

We compute

R�
�
H;Zl .1/

�
D R limR�.H; ���ln/ D R lim ��R�.H;�ln/:

Denote F the finite extension of Ksh
y corresponding to H . Since l is prime to the residual

characteristic of Ksh
y , all ln-th roots of unity are contained in Ksh

y and thus also in H .
Hensel’s lemma together with the short exact sequence 0! O�F ! F � ! Z! 0 then
gives H i .H; �ln/ D �ln ;Z=l

nZ for i D 0; 1, while H i .H; �ln/ D 0 for i � 2 because
Iy is of cohomological dimension 1 and therefore also H [22, Thm. 8.11 (b), Prop. 5.10].
Thus we have a fiber sequence of discrete G-modules

�ln ! R�.H;�ln/! Z=lnZŒ�1�:

The transition maps on both sides are surjective. Applying the fully faithful exact functor
��, we can compute the R lim using that the transition maps are again surjective and we
obtain a fiber sequence in D.G-Cond.Ab//:

Zl .1/! R�
�
H;Zl .1/

�
! Zl Œ�1�:

Since Ksh
y has all ln-th roots of unity, as G-modules we have Zl ' Zl .1/.

Lemma 6.12. We have

RHomG.�
�F�;Zl /˝Q D ��HomG.F�;Q/˝Q Ql D �

�.F _� /
Iy ˝Ql ;

RHomG

�
��F�;Zl .1/

�
˝Q D ��.F _� /

Iy ˝Ql .1/:

Proof. The proof of both statements is similar, so we treat only the first one.
We first show that ExtiG.�

�F�;Zl / is killed by some integer N for all i � 1. There is
a spectral sequence giving short exact sequences

0!R1 lim�� Exti�1G .F�;Z=l
nZ/! ExtiG.�

�F�;Zl /! lim�� ExtiG.F�;Z=l
nZ/! 0:
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Denote HomG is the internal Hom for discrete G-modules. There is moreover a spectral
sequence giving a long exact sequence

� � � H i .G;HomG.F�;Z=lnZ// ExtiG.F�;Z=l
nZ/ H i�1.G;Ext1G.F�;Z=l

nZ//

H iC1.G;HomG.F�;Z=lnZ// � � �

For i � 2, since
HomG.F�;Z=l

nZ/ D HomAb.F�;Z=l
nZ/

and
Ext1G.F�;Z=l

nZ/ D Ext1Ab.F�;Z=l
nZ/

are of finite type, bothH i .G;HomG.F�;Z=lnZ// andH i�1.G;Ext1G.F�;Z=l
nZ// are

finite and killed by ŒG�, thus ExtiG.F�;Z=l
nZ/ is killed by ŒG�2. For i D 1, the group

H 1.G;HomG.F�; Z=lnZ// is finite killed by ŒG� and H 0.G; Ext1G.F�; Z=l
nZ// is

finite killed by Œ.F�/tor�, so Ext1G.F�;Z=l
nZ/ is finite killed by ŒG�Œ.F�/tor�. Finally, for

i D 0 we have that HomG.F�;Z=lnZ/ is a finite group.
Suppose first that i � 2. Then Exti�1G .F�;Z=lnZ/ is a system of finite groups so it

satisfies the Mittag-Leffler condition, thus R1 lim �� Exti�1G .F�;Z=lnZ/ D 0 by Lem-
mas C.2 and C.3. On the other hand, ExtiG.F�;Z=l

nZ/ is a system of finite group killed
by ŒG�2, thus ExtiG.�

�F�;Zl /D lim�� ExtiG.F�;Z=l
nZ/ is killed by ŒG�2. We now treat

the case i D 1. Let us show thatR1 lim��HomG.F�;Z=lnZ/D 0. Again this is a system
of finite groups, which thus satisfies the Mittag-Leffler condition, and we can apply Lem-
mas C.2 and C.3. It follows that Ext1G.�

�F�;Zl / D lim �� Ext1G.F�;Z=l
nZ/ is killed by

ŒG�Œ.F�/tor�.
We deduce that

RHomG.�
�F�;Zl /˝Q D HomG.�

�F�;Zl /˝Q:

There are canonical maps

HomG.�
�F�;Zl /˝Q! HomG.�

�F�;Ql / HomG.�
�F�;Q/˝Q Ql

D �� HomG.�
�F�;Q/˝Q Ql :

Since F� is a finite type, hence finite presentation abelian group and G is finite, F� is a
finite presentationG-module so ��F� is (globally) of finite presentation as aG-module34.
By a standard argument, to show that the canonical maps are isomorphisms we reduce
to the case of ZŒG�. But HomG.ZŒG�;�/ is the forgetful functor U W G � Cond.Ab/!
Cond.Ab/, thus everything follows from the identifications

.UZl /˝Q D Zl ˝Q D Ql D UQl D Q˝Q Ql D UQ˝Q Ql :

The second equality in each case follows from the identity

HomG.F�;Q/ D .F
_
� /

G
˝Q D .F _� /

Iy ˝Q:

34Note that as G is finite, ZŒG� D ZŒG�.
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6.2. Functoriality

Proposition 6.13. Let 0!F!G!H!0 be a short exact sequence of Z-constructible
sheaves on X . Then

LX .G
D; s/ D LX .F

D; s/LX .H
D; s/:

Proof. If i W v ! X is a closed point, the short exact sequence gives a fiber triangle

.��i�HD/ y̋Ql ! .��i�GD/ y̋Ql ! .��i�FD/ y̋Ql :

Local factors are multiplicative with respect to short exact sequences, hence

Lv.G
D; s/ D Lv.F

D; s/Lv.H
D; s/:

Proposition 6.14. Let � W Y ! X be a finite morphism between spectra of orders in
number fields and let F be a Z-constructible sheaf on Y . We have

LX
�
.��F /

D; s
�
D LY .F

D; s/:

Proof. This follows readily from Theorem 6.2 using the compatibility of local factors with
induction [35, §VII.10, Prop. 10.4 (iv) and its proof].

We mention the following consequence of [31]:

Proposition 6.15. Let X D Spec.O/ be the spectrum of an order in a number field K,
with open subscheme j W U ! X . Let ! be the number of roots of units in K, �K its
discriminant, r1 and r2 respectively the number of real and complex places of K, and
RU the regulator introduced in [31] for irreducible 1-dimensional arithmetic schemes. We
have

L�X
�
.jŠZ/

D; 0
�
D
2r1.2�/r2 ŒCH0.U /�RU

!
p
j�K j

:

Proof. Denote f W V ! X the regular locus of U seen as an open subscheme of X andZ
its closed complement in U . Denote also � W Y ! X the normalization ofX , f 0 W V ! Y

the inclusion and K the function field of X and Y . We have f D �f 0 and � induces
an isomorphism between ��1.V / and V . Finally, denote T the closed complement of V
in Y . We have for the L-functions of Z-constructible sheaves:

LX .jŠZ/ D �U D �Y

Q
v2Z �vQ
w2T �w

:

Hence by [31, Thm. C], we get the relation

ŒCH0.U /�RU
!

D
hKRK

Q
w2T logN.w/

!
Q
v2Z logN.v/

which simplifies to �
CH0.U /

�
RU D

hKRK
Q
w2T logN.w/Q

v2Z logN.v/
:
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On the other hand, we have similarly

LX
�
.jŠZ/

D
�
D LY .Z

D/

Q
v2Z �vQ
w2T �w

hence

L�X
�
.jŠZ/

D; 0
�
D ��Y .1/

Q
v2Z �

�
v .0/Q

w2T �
�
w.0/

D
2r1.2�/r2hKRK

Q
w2T logN.w/

!
p
j�K j

Q
v2Z logN.v/

D
2r1.2�/r2 ŒCH0.U /�RU

!
p
j�K j

:

Remark. When X is singular we do not necessarily have LX .GX Œ1�; s/ D �X .s C 1/,
as can be seen from Theorem 6.2. This formula is to be compared with the formula for
��U .1/:

��U .1/ D
2r1.2�/r2hKRK

!
p
j�K j

Q
v2Z 1=.1 �N.v/

�1/Q
w2T 1=.1 �N.w/

�1/

D
2r1.2�/r2 ŒCH0.U /�RU

!
p
j�K j

Q
v2Z logN.v/=.1 �N.v/�1/Q
w2T logN.w/=.1 �N.w/�1/

and also with the formula from [23].

Remark. We could have also obtained this using Theorem 7.13. Suppose that U is a
proper subscheme of X . Denote Sf the finite places in the normalization � W Y ! X

that are not above U , and Z the closed complement of U . We can compute explicitly
R..jŠZ/D/, by considering the following snake diagram:

0 .H 1.X; .jŠZ//R/_

0 0 CH0.X; 1/R CH0.X; 1/R 0

0
Q
v2Sf

R �
Q

v2Z
�.w/Dv

R
Q
v2Sf

R �
Q

v2Z
�.w/Dv

R � .
Q
� R/GR .

Q
� R/GR 0

Q
v2Sf

R �
Q

v2Z
�.w/Dv

R R �
Q
v2Z R 0

Log Log

†�
Q
v †�†

†�
Q
v †

If U D X , we get a similar diagram with H 0.X;Z/_R instead of 0 at the bottom, enabling
us to compute R.ZD/. We then obtain the formula using Proposition 7.9.
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7. The Weil-étale Euler characteristic and the special value theorem

7.1. Definitions

Definition 7.1. Let F be a Z-constructible sheaf on X . We define Weil–Arakelov coho-
mology with coefficients in FD as the complex:

R�ar;c.X; F
D
R / WD R�c;D.X; F

D
R /Œ�1�˚R�c;D.X; F

D
R /:

The determinant of Weil–Arakelov cohomology has a canonical trivialization

det
R
R�ar;c.X; F

D
R /

'
�! det

R

�
R�c;D.X; F

D
R /
��1
˝ det

R

�
R�c;D.X; F

D
R /
� '
�! R:

We now put an integral structure on the determinant of Weil–Arakelov cohomology. Let
F be a tamely ramified red or blue sheaf. Recall that

LieX .FD/R D RHomGR;X.C/

�
˛�F;CŒ1�

�
:

Consider the map

R�W;c.X; F
D/R D RHom

�
R�.X;F /;RŒ�1�

�
˚R�c;B.X; F

D/R
p
�! R�c;B.X; F

D/R

Log
��! RHomGR;X.C/

�
˛�F;CŒ1�

�
:

By the duality Theorem 5.2 and the remark after Definition 5.1, its mapping fiber is

RHom
�
R�.X;F /;RŒ�1�

�
˚R�c;D.X; F

D
R / ' R�ar;c.X; F

D
R /:

We thus have a distinguished triangle

R�ar;c.X; F
D
R /! R�W;c.X; F

D/R ! LieX .FD/R

and we find by taking determinants a natural trivialization

� W �X .F
D/R

D det
R

�
R�W;c.X; F

D/R
�
˝ det

R

�
LieX .FD/R

��1 '
�! det

R

�
R�ar;c.X; F

D
R /
� '
�! R:

Definition 7.2. Let F be a tamely ramified red or blue sheaf. The Weil-étale Euler char-
acteristic of FD is the positive real number �X .FD/ such that

�
�
�X .F

D/
�
D
�
�X .F

D/
��1

Z ,! R:

Remark. If we let [� be the map given by the composition of projections and inclusions

[� W R�ar;c.X; F
D
R /! R�c;D.X; F

D
R /! R�ar;c.X; F

D
R /Œ1�
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then [� induces a long exact sequence

� � � ! H i�1
ar;c .X; F

D
R /

[�
��! H i

ar;c.X; F
D
R /

[�
��! H iC1

ar;c .X; F
D
R /! � � �

which gives a trivialization

�0 W
O
i2Z

�
det
R
H i

ar;c.X; F
D
R /
�.�1/i '

�! R

which coincides with � under the isomorphism

det
R
R�ar;c.X; F

D
R / '

O
i2Z

�
det
R
H i

ar;c.X; F
D
R /
�.�1/i

:

We can thus define alternatively �X .FD/ such that

�
�O
i2Z

�
det
Z
H i
W;c.X; F

D/
�.�1/i

˝

O
i2Z

�
det
Z
H i LieX .FD/

�.�1/iC1�
D
�
�X .F

D/
��1

Z ,! R:

Theorem 7.3. The Weil-étale Euler characteristic is multiplicative with respect to red-to-
blue short exact sequences of tamely ramified sheaves.

Proof. Let 0! F ! G ! H ! 0 be a red-to-blue short exact sequence of tamely ram-
ified sheaves. We let

T1 W R�W;c.X;H
D/! R�W;c.X;G

D/! R�W;c.X; F
D/!

T2 W LieX .HD/! LieX .GD/! LieX .FD/!

be the two natural triangles; the first one is not distinguished. For R D Z;R, let gR be
a determinant functor on Grb.Modft

R/ with values in graded R-lines extending the usual
determinant functor on projectiveR-modules of finite type. The graded cohomology func-
tor

H W Dperf.R/! Grb.Modft
R/

together with the assignment that sends a distinguished triangle T W X
u
�! Y ! Z ! to

the exact sequence

0! ker
�
H.u/

�
! H.X/! H.Y /! H.Z/

@
�! ker

�
H.u/

�
Œ1�! 0

induced by the long exact sequence, induces a pullback functor H� on Picard groupoids
of determinants. We put fR DH�gR. Notice thatH.T /makes sense for any triangle (not
necessarily distinguished) that induces a long exact cohomology sequence. There is a base
change isomorphism  W .gZ.�//R

'
�! gR..�/R/, which induces a base change isomor-

phism H�./ W .fZ.�//R
'
�! fR..�/R/. By Theorem 3.10, H.T1/ is an exact sequence
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in Grb.Modft
Z/, while H.T2/ is because T2 is distinguished. On the other hand, T1;R and

T2;R are both distinguished triangles and the structure of exact sequence on H.T1;R/ and
H.T2;R/ coming from the distinguished triangles coincides with the structure coming by
base change from H.T1/ and H.T2/. We get a commutative diagram (see [31, Thm. 6.3
and its proof]):

fZ

�
R�W;c.X;H

D/
�
˝ fZ

�
R�W;c.X; F

D/
�
˝

fZ

�
LieX .HD/

��1
˝ fZ

�
LieX .FD/

��1 fZ

�
R�W;c.X;G

D/
�
˝

fZ

�
LieX .GD/

��1
�
fZ

�
R�W;c.X;H

D/
��

R
˝
�
fZ

�
R�W;c.X; F

D/
��

R
˝�

fZ

�
LieX .HD/

��1�
R
˝
�
fZ

�
LieX .FD/

��1�
R

�
fZ

�
R�W;c.X;G/

��
R
˝�

fZ

�
LieX .G/

��
R

fR

�
�X .H

D/R
�
˝ fR

�
�X .F

D/R
�

fR

�
�X .F

D/R
�

R˝R R

gZ.HT1/˝gZ.HT2/
�1

.gZ.HT1//R˝.gZ.HT2/
�1/R

H�./˝H�./˝H�./�1˝H�./�1 H�./˝H�./�1

gR.H.T1;R//˝gR.H.T2;R/
�1/DfR.T1;R/˝fR.T2;R/

�1

mult

Under the multiplication map, the image of xZ˝ yZ � R˝R is xyZ.

Proposition 7.4. Let Y D Spec.O0/ be the spectrum of an order in a number field with a
finite dominant morphism � W Y ! X . Suppose that K.Y /=K is tamely ramified, and let
F be a tamely ramified red or blue sheaf on Y . Then

�X
�
.��F /

D
�
D �Y .F

D/:

Proof. This follows from the isomorphism

R�W;c.Y; F
D/

'
�! R�W;c

�
X; .��F /

D
�

LieY .FD/
'
�! LieX

�
.��F /

D
�

R�c;D.Y; F
D
R /

'
�! R�c;D

�
X; .��F /

D
R

�
and the isomorphism of distinguished triangles

R�ar;c.Y; F
D
R / R�W;c.Y; F

D/R LieY .FD/R

R�ar;c
�
X; .��F /

D
R

�
R�W;c

�
X; .��F /

D
�

R
LieX

�
.��F /

D
�

R

' ' '

We now use the multiplicativity of the Weil-étale Euler characteristic to extend it to
arbitrary tamely ramified Z-constructible sheaves:
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Definition 7.5. Let F be a tamely ramified Z-constructible sheaf, let j W U ! X be
an open subscheme such that FjU is locally constant and let i W Z ! X be the closed
complement. The sheaves jŠFjU and i�i�F are tamely ramified and respectively red and
blue, and we define the Weil-étale Euler characteristic of FD as

�X .F
D/ D �X

�
.jŠFjU /

D
�
�X
�
.i�i
�F /D

�
:

The definition does not depend on the choice of U . The Weil-étale Euler characteristic is
multiplicative with respect to short exact sequences of tamely ramified sheaves. Let Y D
Spec.O0/ be the spectrum of an order in a number field with a finite dominant morphism
� W Y ! X such that K.Y /=K is tamely ramified, and let F be a tamely ramified Z-
constructible sheaf on Y . Then

�X
�
.��F /

D
�
D �Y .F

D/:

Proof. This follows formally from the previous results by using the open-closed decom-
position lemma, see [31, §6.5].

7.2. Computations of the Euler characteristic, and the special value theorem

We first give an explicit expression of our Euler characteristic which does not involve
Weil-étale cohomology anymore. This will allow us to give an expression valid for any
tamely ramified Z-constructible sheaf.

Proposition 7.6. Let F be a tamely ramified red or blue sheaf. Let R1.FD/ be the abso-
lute value of the determinant of the pairing

H�1c;D.X; F
D
R / �H

1.X; F /R ! R

and R0.FD/ the absolute value of the determinant of the pairing

H 0
c;D.X; F

D
R / �H

0.X; F /R ! R

in the following bases : pick bases modulo torsion of H�1.LieX .FD//, of H i .X; F / for
i D 0; 1 and of H i

c;B.X; F
D/ for i D �1; 0. Then pick any R-bases of H i

c;D
.X; FDR /

compatible35 with the chosen bases in the following exact sequence

0! H�1c;D.X; F
D
R /! H�1c;B.X; F

D/R ! H�1
�

LieX .FD/
�

R

! H 0
c;D.X; F

D
R /! H 0

c;B.X; F
D/R ! 0:

We have

�X .F
D/ D

�
H 0.X; F /tor

��
H 0
c;B.X; F

D/tor
��

H 1.X; F /tor
��
H�1c;B.X; F

D/tor
��
H 0

�
LieX .FD/

�� R1.FD/
R0.FD/

:

35In the following sense: denote E� the exact sequence seen as an acyclic complex, then the choice of
bases gives an element of detR E� which is required to be sent to 1 under detR E�

det.0/
���!
'

R.
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Remark. We can reformulate the part about determinants of pairings. Consider an acyclic
chain complex of R-vector spacesA� with a Z-latticeM i �Ai given for each i . We define
detZ;R A� to be the absolute value of the image of the vector corresponding to bases of
the lattices under the canonical isomorphism detR A�

'
����!
detR.0/

R; put another way, it is the
positive real number such thatO

i2Z

.det
Z
M i /.�1/

i

�
�O
i2Z

.det
Z
M i /.�1/

i �
R
' det

R
A�

corresponds to .detZ;R A�/Z � R under the canonical isomorphism detR A�
'

����!
detR.0/

R.
Consider the following complex

A� W 0!
�
H 1.X; F /R

�_
! H�1c;B.X; F

D/R ! H�1
�

LieX .FD/
�

R

!
�
H 0.X; F /R

�_
! H 0

c;B.X; F
D/R ! 0

with first non-zero term in degree �1 and endowed with the natural lattices. Then we have

R1.F
D/

R0.FD/
D det

Z;R
A�:

Proof. Since determinants depend only on cohomology and are multiplicative in short
exact sequences, we can write �X .FD/ as an alternating tensor product of the determi-
nants of the torsion and torsion-free parts of the cohomology groups:

�X .F
D/ D �X .F

D/tor�X .F
D/=tor:

We have .�X .FD/tor/R D detR.0/ D R canonically hence by [31, Lem. A.1] the contri-
bution of �X .FD/tor inside �X .FD/R is sent under the trivialization to

1=�X .F
D/tor WD

Q�
H i LieX .FD/tor

�.�1/iQ�
H i
W;c.X; F

D/tor
�.�1/i :

We obtain the first part of the claimed expression by the computation of the involved
cohomology groups in Proposition 3.5 and Corollary 4.6.

It remains to show that�X .FD/=tor D R1.F
D/

R0.FD/
. We will use [31, Lem. A.2]. Fix basis

vectors of H i .X; F /=tor for i D 0; 1, of .H�1 LieX .FD//=tor and of H i
c;B.X; F

D/ for
i D �1; 0. The image of �X .FD/=tor inside

�X .F
D/R WD det

R
R�W;c.X; F

D/R ˝R

�
det
R

LieX .FD/R
��1

' det
R

�
DF;RŒ1�

�
˝R det

R
R�c;B.X; F

D/R ˝R

�
det
R

LieX .FD/R
��1

' det
R

�
DF;RŒ1�

�
˝R det

R
R�c;D.X; F

D
R /

'

O
i

�
det
R
H iC1.DF;R/

�.�1/i
˝R

O
i

�
det
R
H i
c;D.X; F

D
R /
�.�1/i
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is a certain product of basis vectors and dual basis vectors, obtained from the basis vectors
of H i

c;B.X; F
D/=tor, H i LieX .FD/=tor and H i .X; F /=tor through the identity

H i .DF;R/ D Hom
�
H 2�i .X; F /;R

�
and the long exact sequence associated to the fiber sequence

R�c;D.X; F
D
R /! R�c;B.X; F

D/R ! LieX .FD/R:

Finally, the trivialization is obtained by combining together, for each i 2 Z, the terms
related by the duality theorem Theorem 5.2:�

det
R
H i
c;D.X; F

D
R /
�.�1/i

˝
�
det
R
H iC2.DF;R/

�.�1/iC1
'
�!

�
det
R
H i
c;D.X; F

D
R /
�.�1/i O�

det
R
H i
c;D.X; F

D
R /
�.�1/iC1

'
�! R:

The isomorphism H i
c;D

.X; FDR /
'
�! H iC2.DF;R/ is non-trivial only for i D �1; 0 in

which case its determinant in the bases obtained is exactly (up to sign) R1, resp. R0. By
[31, Lem. A.2], the contribution of �X .FD/=tor is thus sent under the trivialization to

1

�X .FD/=tor
WD R0=R1:

Corollary 7.7. LetF be a tamely ramified Z-constructible sheaf. With the same notations,
we have

�X .F
D/ D

�
H 0.X; F /tor

��
H 0
c;B.X; F

D/tor
��

H 1.X; F /tor
��
H�1c;B.X; F

D/tor
��
H 0

�
LieX .FD/

�� R1.FD/
R0.FD/

:

Proof. Let j W U ! X be an open subscheme such that FjU is locally constant and let
i WZ! X be the closed complement. Put FU D jŠFjU and FZ D i�i�F . Then FU is red,
FZ is blue and there is a short exact sequence 0! FU ! F ! FZ ! 0. Consider the
two following acyclic complexes of abelian groups, with first non-zero term respectively
in degree �1 and 0:

A� W 0! H�1c;B
�
X; .FZ/

D
�
! H�1c;B.X; F

D/! H�1c;B
�
X; .FU /

D
�

! H 0
c;B

�
X; .FZ/

D
�
! H 0

c;B.X; F
D/! H 0

c;B

�
X; .FU /

D
�
! I ! 0;

B� W 0! H 0.X; FU /! H 0.X; F /! H 0.X; FZ/

! H 1.X; FU /! H 1.X; F /! H 1.X; FZ/! J ! 0

where I is the image ofH 0
c;B.X;F

D
U / inH 1

c;B.X;F
D
Z / and J is the image ofH 1.X;FZ/

in H 2.X; FU /. Since FZ is blue, H 1
c;B.X; F

D
Z / and H 1.X; FZ/ are finite so I and J are
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also finite. Moreover Artin–Verdier duality gives a commutative square

H 0
c;B

�
X; .FU /

D
�

H 1
c;B

�
X; .FZ/

D
�

H 2.X; FU /
� H 1.X; FZ/

�

' '

@

@

whence I ' J �.
Since FZ is supported on a finite closed subscheme, we have LieX ..FZ/D/D 0 hence

an isomorphism LieX .FD/
'
�! LieX ..FU /D/ which gives a canonical isomorphism

det
Z

LieX .FD/
�
det
Z

LieX
�
.FU /

D
���1 '

�!
�

Z:

On the other hand, since A� and B� are acyclic, we obtain canonical trivializations

det
Z
A�

'
��!
det0

Z; det
Z
B�

'
��!
det0

Z:

Consider now the line

� WD det
Z
A� det

Z
B� det

Z
LieX .FD/

�
det
Z

LieX
�
.FU /

D
���1

:

It obtains a canonical trivialization ˛ W �
det0˝det0˝�
��������! Z˝Z˝Z

'
�! Z through the pre-

vious remarks.
For a distinguished triangleX! Y !Z!XŒ1�, denote i W .detY /�1 detX detZ! 1

the structural isomorphism to the unit. From the octahedral diagram

R�c;D
�
X; .FZ/

D
R

�
R�c;D.X; F

D
R / R�c;D

�
X; .FU /

D
R

�
R�c;B

�
X; .FZ/

D
�

R
R�c;B.X; F

D/R R�c;B
�
X; .FU /

D
�

R

LieX
�
.FZ/

D
�

R
D 0 LieX .F /R LieX

�
.FU /

D
�

R

'

'

we find using the associativity axiom of determinant functors [6, §3.1] a commutative
diagram�

detRR�c;D.X; FDR /
��1 detRR�c;D

�
X; .FU /

D
R

�
detRR�c;D

�
X; .FZ/

D
R

�
R

�
detRR�c;B.X; FD/R

��1 detRR�c;B
�
X; .FU /

D
�

R
detRR�c;B

�
X; .FZ/

D
�

R
detR LieX .FD/R�

detR LieX
�
.FU /

D
�

R

��1 R˝R R

i

'

iR˝�R

(7.1)
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There are isomorphisms

det
R
A�R'

�
det
R
R�c;B.X;F

D/R
��1det

R
R�c;B

�
X;.FU/

D
�

R
det
R
R�c;B

�
X;.FZ/

D
�

R
; (7.2)

det
R
B�R'

�
det
R
R�.X;F /R

�.�1/det
R
R�.X;FU /R det

R
R�.X;FZ/R (7.3)

under which the trivialization det.0/R D detR.0/ on the left corresponds to iR on the right.
By combining (7.1) to (7.3), we find a commutative diagram of isomorphisms

�R

�
detRR�c;D.X; FDR /

�.�1/ detRR�c;D
�
X; .FU /

D
R

�
detRR�c;D

�
X; .FZ/

D
R

��
detRR�.X;F /R

�.�1/ detRR�.X;FU /R detRR�.X;FZ/R

R R

'

i �iR
˛

We now describe how to produce another trivialization of �R. By Theorem 5.2, there
is an isomorphism

 .�/ W R�c;D
�
X; .�/DR

� '
�! R�

�
X; .�/

�_
R
:

If L is a graded R-line, there is a canonical isomorphism L˝ L�1
ı
�! R and we take the

trivialization�
detRR�c;D.X; FDR /

�.�1/ detRR�c;D
�
X; .FU /

D
R

�
detRR�c;D

�
X; .FZ/

D
R

��
detRR�.X;F /R

�.�1/ detRR�.X;FU /R detRR�.X;FZ/R

detRR�.X;F /R
�
detRR�.X;FU /R

�.�1/�detRR�.X;FZ/R
�.�1/�

detRR�.X;F /R
�.�1/ detRR�.X;FU /R detRR�.X;FZ/R

R˝R R˝R R

R

ı˝ı˝ı

mult

Consider Diagram 4. From the isomorphism of fiber sequences

R�c;D
�
X; .FZ/

D
R

�
R�c;D.X; F

D
R / R�c;D

�
X; .FU /

D
R

�
R�.X;FZ/

_
R R�.X;F /_R R�.X;FU /

_
R

' ' '

we deduce that the upper triangle in Diagram 4 commutes, while the lower square com-
mutes formally. Thus the trivialization by duality equals the trivialization i � iR.
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� de
t R
R
�
c
;D
.X
;F

D R
/� .�1

/
de

t R
R
�
c
;D

� X;.F
U
/D R

� de
t R
R
�
c
;D

� X;.F
Z
/D R

�
� de

t R
R
�
.X
;F
/ R
� .�1/

de
t R
R
�
.X
;F
U
/ R

de
t R
R
�
.X
;F
Z
/ R

R
˝

R
R

de
t R
R
�
.X
;F
/� de

t R
R
�
.X
;F
U
/� .�1

/
� de

t R
R
�
.X
;F
Z
/� .�1

/

� de
t R
R
�
.X
;F
/ R
� .�1/

de
t R
R
�
.X
;F
U
/ R

de
t R
R
�
.X
;F
Z
/ R

R
R
˝

R
R
˝

R
R

m
ul

t

..
i R
/t
/�
1
˝
i R

..
de

t 
F
/t
/�
1

de
t 
F
U

de
t 
F
Z

i˝
i R

i�
i R

m
ul

t

Diagram 4.
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Under those equal trivializations, the image of � inside R is Z on the one hand and is
computed with [31, Prop. A.3] on the other hand. We get an identity�

H 0.X; F /tor
��
H 0
c;B.X; F

D/tor
��

H 1.X; F /tor
��
H�1c;B.X; F

D/tor
��
H 0

�
LieX .FD/

�� R1.FD/
R0.FD/

ŒJ �

ŒI �

1

�X
�
.FU /D

�
�X
�
.FZ/D

�
D 1

and thus, because ŒI � D ŒJ �:

�X .F
D/ WD �X

�
.FU /

D
�
�X
�
.FZ/

D
�

D

�
H 0.X; F /tor

��
H 0
c;B.X; F

D/tor
��

H 1.X; F /tor
��
H�1c;B.X; F

D/tor
��
H 0

�
LieX .FD/

�� R1.FD/
R0.FD/

:

Definition 7.8. Let F be a tamely ramified Z-constructible sheaf. We put

r1.F / D log2
��

Ext1GR;X.C/
.˛�F; 2i�Z/

��
;

r2.F / D rankZ HomGR;X.C/.˛
�F; 2i�Z/:

For each archimedean place v of K, fix a corresponding embedding �v . There is an iso-
morphism36

HomGR;X.C/.˛
�F;R/

'
�!

Y
v

HomGv .Fv;Z/R

given by .��/ 7! .��v/v real; .2��v/v complex. Using Proposition 4.8, the short exact sequence

0! 2i�R! C
<
�! R! 0 and the above isomorphism, we can consider the following

acyclic complex of R-vector spaces with lattices:

D� W 0! HomGR;X.C/.˛
�F;2i�Z/R!H�1 LieX .FD/R!

Y
v

HomGv .Fv;Z/R! 0

(with first non-zero term in degree �1). We denote

Disc.F / D .2�/r2.F / det
Z;R

D�:

Remark. • If zD� is the complex

0! HomGR;X.C/.˛
�F; iZ/R ! H�1 LieX .FD/R !

Y
v

HomGv .Fv;Z/R ! 0

with similar degree conventions, then Disc.F / D detZ;R zD�.

• The quantity Disc.F / only depends on F� .

36Non-canonical; the particular choice here is justified by the later computation of Disc.F / and R.FD/
for the case F D Z.
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We now reformulate the previous expression obtained to make it closer to a formula
looking like the analytic class number formula.

Proposition 7.9. Let F be a tamely ramified Z-constructible sheaf. Denote

N2 WD Ker
�

Ext2GR;X.C/
.˛�F; 2i�Z/! H 1

c;B.X; F
D/
�

and let GXDŒg�Gm!˚x2X0 ix;�Z� denote Deninger’s dualizing complex. LetR.FD/ WD
detZ;R B� with B� the exact sequence of R-vector spaces with lattices

B� W 0!
�
H 1.X; F /R

�_
! HomX .F;GX /R !

Y
v

HomGv .Fv;Z/R

!
�
H 0.X; F /R

�_
! Ext1X .F;GX /R ! 0

with first non-zero term in degree �1. We have

�X .F
D/ D

.2�/r2.F /2r1.F /
�
H 0.X; F /tor

��
Ext1X .F;GX /tor

��
H 1.X; F /tor

��
HomX .F;GX /tor

��
Ext1

GtK
.F�;OKt /

�
ŒN2�Disc.F /

R.FD/:

Proof. We have Zc
X ' GX Œ1� [34]. Consider the biacyclic double complex of Diagram 5

(numbers on the side indicate indexing, zeros are omitted). If C �;� is any biacyclic double
complex of R-vector spaces with lattices, we find by applying Lemma E.1 to both the
rows and the columns that the following diagram is commutative:N

i;j

.detR C i;j /.�1/
iCj

detR TotC
N
j

.detR C �;j /.�1/
j N

j

R.�1/
j

N
i

.detR C i;�/.�1/
i N

i

.R/.�1/
i

R

j̋ det0

˝i det0

det0

'

Fix bases .u.i;j /
k

/ of the lattices inside the C i;j , and denote .ui;j
k
/�1 the dual basis vectors.

By looking at the image under the composite morphism
N
i;j .detR C i;j /.�1/

iCj
! R ofN

i;j

V
k..u

.i;j /

k
/.�1/

iCj
/, we find the relationY
i

�
det
Z;R

C i;�
�.�1/i

D

Y
j

�
det
Z;R

C �;j
�.�1/j

:

Hence in our case we obtain

det
Z;R

A�
�

det
Z;R

B�
��1
D det

Z;R
C �
�

det
Z;R

D�
��1� det

Z;R
E�
��1

:
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C
�

D
�

E
�

H
om

G
R
;X
.C
/
.˛
�
F
;2
i�

Z
/ R

H
om

G
R
;X
.C
/
.˛
�
F
;2
i�

Z
/ R

�
1

A
�
W

� H1 .
X
;F
/ R
� _

H
�
1

c
;B
.X
;F

D
/ R

H
1

L
ie
X
.F

D
/ R

� H0 .
X
;F
/ R
� _

H
0 c
;B
.X
;F

D
/ R

0

B
�
W

� H1 .
X
;F
/ R
� _

H
�
1
.X
;F

D
/ R

Q v
H

om
G
v
.F
v
;Z
/ R

� H0 .
X
;F
/ R
� _

H
0
.X
;F

D
/ R

1

�
1

0
1

2
3

'

Diagram 5.
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Thus it remains to compute detZ;RC �.detZ;RE�/�1. Consider the following acyclic com-
plex of abelian groups:

G� W

0 HomGR;X.C/.˛
�F; 2i�Z/ H�1c;B.X; F

D/ H�1.X; FD/

Ext1
GR;X.C/

.˛�F; 2i�Z/ H 0
c;B.X; F

D/ H 0.X; FD/

N2 0

where we have placed the first non-zero term in degree �1. The last term is a subgroup of
Ext2

GR;X.C/
.˛�F; 2i�Z/ and hence is finite 2-torsion. Then detZ G�

'
���!
det.0/

Z and G�R D
C � ˚E�Œ�3�, thus we find

det
Z;R

C �
�

det
Z;R

E�
��1
D det

Z;R
GR D

Y
i

ŒGitor�:

Proposition 7.10. Suppose that X is regular. We haveX
.�1/i i � dimRH

i
ar;c.X;Z

D
R / D �1; �X .Z

D/ D
2r1.2�/r2hKRK

!
p
j�K j

and thus the special value formula

ordsD0LX .ZD/ D ordsD1 �X D
X

.�1/i i � dimRH
i
ar;c.X;Z

D
R /;

L�X .Z
D; 0/ D ��X .1/ D �X .Z

D/:

Proof. The first formula is immediate from the previous computations.
We use Proposition 7.9. We easily find r2.Z/Dr2, r1.Z/Dr1,N2D0, and LieX.ZD/D

OK Œ1� so in particularH 0 LieX .ZD/D 0. Thus using Propositions 2.10 and 3.6 we obtain

�X .Z
D/ D

2r1.2�/r2hKR.ZD/

! Disc.ZD/
:

By the choices made in Definition 7.8, Disc.ZD/ is computed as follows: fix a basis
.˛i / of OK . Choose an ordering of the archimedean places, real places first and complex
places second, and denote �i the choice of an embedding for each place vi and �r1Cr2Ci D
�r1Ci . Thus �1; : : : ;�r1 are the real embeddings and �r1C1; : : : ;�r1Cr2 the chosen complex
embeddings for each complex place. By unravelling the definitions, we see that we are
asked to compute the determinant of the matrix

� .<.�i . j̨ ///1�i�r1Cr2; 1�j�n
.=.�r1Ci 0

. j̨ ///1�i 0�r2; 1�j�n

�
. Observe that

it is obtained from the matrix .�j .˛i //i;jD1;:::;n by some elementary transformations on
the rows which will make a factor .1

i
/r2 appear. Since .det.�j .˛i //i;j /2 D �K and the

sign of �K is .�1/r2 (Brill’s theorem [46, Lem. 2.2]), we obtain

Disc.ZD/ D
ˇ̌̌̌�
1

i

�r2
det

�
�j .˛i /

�
i;j

ˇ̌̌̌
D
p
j�K j:
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It remains to determineR.ZD/. By definition, this is detZ;RB� whereB� is the acyclic
complex with first non-zero term in degree 0

0! .O�K/R !
�Y

v

Z
�

R
! .ZR/

_
! 0:

Let us make the maps explicit. Denote j � jv the normalized absolute value for the archime-
dean place v: j � jv D j � j if v is real and j � jv D j � j2 if v is complex. Denote also L WDQ
v log j�v.�/jv the logarithmic embedding. We have a commutative diagram

.
Q
� R/GR

.O�K/R
Q
v R R

'

Q
� log j�.�/j

†

†L

where the middle isomorphism comes from Definition 7.8 and† is the sum of components
map (see the discussion after Definition 5.1). Here R D H 0

c;D
.X;ZDR / D H 0.X;Z/_R

obtains the canonical basis because the perfect pairing H 0
c;D

.X;ZDR / � H
0.X;Z/R D

R � R ! R is given by the multiplication map. The ordering on the places gives an
ordered basis on .

Q
vZ/R. Let x be the vector .1;0; : : : ;0/2 .

Q
vZ/R. We have†.x/D 1.

Denote ."i / a system of fundamental units of O�K . Then detZ;R B� is the absolute value
of the determinant of the matrix P expressing .L."1/; L."2/; : : : ; L."r1Cr2�1/; x/ in the
basis of .

Q
v Z/R. Put Ni D 1 if �i is real and Ni D 2 if �i is complex. Then we have

P D

0BBB@
N1 log j�1."1/j � � � N1 log j�1."s�1/j 1

N2 log j�2."1/j � � � N2 log j�2."s�1/j 0
:::

: : :
:::

:::

Ns log j�s."1/j � � � Ns log j�s."s�1/j 0

1CCCA :
By definition, the regulator RK is the absolute value of the determinant of any .s � 1/ �
.s � 1/ minor of the matrix .Ni log j�i ."j /j/iD1;:::;sIjD1;:::;s�1; thus by developing the
determinant of P with respect to the last column we find

R.ZD/ D jdetP j D RK :

We obtain finally

�X .Z
D/ D

2r1.2�/r2hKRK

!
p
j�K j

:

Remark. For F D Z, the complexes

LieX .ZD/; R�W;c.X;Z
D/; R�c;D.X;Z

D
R /; and R�ar;c.X;Z

D
R /

are equal respectively (up to a shift) to the complexes

R�dR.X=Z/=F
1; R�W;c

�
X;Z.1/

�
; R�c

�
X;R.1/

�
; and R�ar;c

�
X; zR.1/

�
of [15], in which the above formula was already obtained.
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Proposition 7.11. Let i W x!X be the inclusion of a closed point,M a discreteGx-module
of finite type. Let �W;c denote the Weil-étale Euler characteristic of a Z-constructible
sheaf on X from [31] and let R.M/ be the absolute value of the determinant of the pair-
ing

H 0.Gx ;M/R �H
0.Gx ;M

_/R ! R

in bases modulo torsion. ThenX
.�1/i i � dimRH

i
ar;c

�
X; .i�M/DR

�
D � rankZH

0.Gx ;M
_/;

�X
�
.i�M/D

�
D

�
H 0.Gx ;M/

�
tor�

H 1.Gx ;M/
�
R.M/ log

�
N.v/

�rankH0.Gx ;M/

D �W;c.i�M/ D �W;c.i�M
_/:

We have the special value formula

ordsD0LX
�
.i�M/D

�
D

X
.�1/i i � dimRH

i
ar;c

�
X.; i�M/DR

�
;

L�X
�
.i�M/D; 0

�
D �X

�
.i�M/D

�
:

Proof. The computation of
P
.�1/i i � dimRH

i
ar;c.X.; i�M/DR / is straightforward. Let us

compute �X ..i�M/D/. Using Proposition 7.9 we find

�X
�
.i�M/D

�
D

�
H 0.Gx ;M/tor

�
R
�
.i�M/D

��
H 1.Gx ;M/

� :

Here, the complex B� is�
H 0.X; i�M/R

�_ '
�! H 0.X; i �M_/R

with first term in degree 2, soR..i�M/D/D detZ;RB� is the inverse of the absolute value
of the determinant of the pairing

H 0.X; i�M/R �H
0.X; i�M

_/! R:

Hence from the proof of Theorem 5.2 we see that

R
�
.i�M/D

�
D

1

R.M/ log
�
N.v/

�rankH0.Gx ;M/

which shows the first equality. The second equality is [31, Cor. 6.8]. Let us show the last
equality. If M is torsion, then M_ D M �Œ�1� so by [31, Prop. 6.23] both terms equal 1.
We can thus suppose that M is torsion-free. Let n D rankZ H

0.Gx ; M/. Then we have
rankZ HomGx .M;Z/ D n by the perfectness of the above pairing, M_ D HomZ.M;Z/,
and

�W;c.i�M/ D
1�

H 1.Gx ;M/
�
R.M/ log

�
N.v/

�n ;
�W;c.i�M

_/ D
1�

H 1.Gx ;M_/
�
R.M_/ log

�
N.v/

�n



A. Morin 248

whence the result from the duality isomorphism

H 1.Gx ;M/ ' Ext1Gx .M;Z/
�
D H 1.Gx ;M

_/�

and the identification R.M/ D R.M_/.
Finally, since LX ..i�M/D; s/ D LX .i�M

_; s/ is the L-function of a (complex of)
Z-constructible sheaves, from [31, Thm. 6.24] we find

ordsD0LX
�
.i�M/D; s

�
D � rankZH

0.Gx ;M
�/;

L�X
�
.i�M/D; 0

�
D �W;c.i�M

_/:

Theorem 7.12. Let F be a constructible sheaf. ThenX
.�1/i i � dimRH

i
ar;c.X; F

D
R / D 0 D ordsD0LX .FD; s/:

If F is moreover tamely ramified, then

�X .F
D/ D 1:

In particular, we have the special value formula L�X .F
D; 0/ D ˙�X .F

D/.

Proof. The vanishing order formula is immediate; let us show the special value for-
mula. If F is supported on a finite closed subscheme, we reduce to the case F D i�M

where i W x ! X is a closed point and M is a finite discrete Gx-module. In that case,
Proposition 7.11 gives �X ..i�M/D/ D 1. The kernel and cokernel of the canonical map
F ! g�g

�F are constructible supported on a finite closed subscheme. Therefore we are
reduced to checking that �X ..g�M/D/ D 1 for M a tamely ramified finite discrete GK-
module. Let L be a tamely ramified extension of K such that GL acts trivially on M , and
let GL=K WD Gal.L=K/. For R a ring, denote K 00.R/ the Grothendieck group of finitely
generated left R-modules. The map � W M 7! �X ..g�M/D/ is multiplicative: indeed, if
0!M 0!M !M 00! 0 is an exact sequence of GL=K-modules then we have an exact
sequence 0! g�M

0! g�M ! g�M
00! N ! 0. Then N is Z-constructible as a quo-

tient of g�M 00. We have .R1g�M 0/� D 0 and the stalk .R1g�M 0/v D H 1.Iv; M
0/ is

Galois cohomology hence torsion. As N � R1g�M 0, N is torsion and skyscraper, which
shows that N is constructible supported on a finite closed subset. Then �X .N / D 1 so
�X .g�M/ D �X .g�M

0/�X .g�M
00/. We find that � factors through K 00.ZŒGL=K �/ and

takes values in R�>0 which is torsion-free. By [41, Cor. 1], the kernel of K 00.ZŒGL=K �/!
K 00.QŒGL=K �/ is finite; since M ˝Q D 0, this implies that the class of M is a torsion
element in K 00.ZŒGL=K �/ so �.M/ D �X .g�M/ D 1.

Remark. � In [31], a similar formula for the Weil-étale Euler characteristic �X .F / of a
constructible sheaf F is proven by reduction to Tate’s formula for the Euler characteristic
of a global field (see [30, Thm. I.5.1, Thm. II.2.13] and [31, Prop. 6.23] for the reduction).
The method of the above proof applies mutatis mutandis to �X .F / and thus gives an alter-
native proof of Tate’s formula (which still depends on Tate’s formula in the local case).
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� If F is a tamely ramified constructible sheaf, we have

R�ar;c.X; F
D
R / D 0;

R�W;c.X; F
D/ ' R�c;B.X; F

D/;

LieX .FD/ D Ext1
GtK
.F�;OKt /Œ0�

and the two latter complexes are bounded with finite cohomology groups. Thus their Euler
characteristics

�W;X .F
D/ WD

Y
i2Z

�
H i
W;c.X; F

D/
�.�1/i

and
�L;X .F

D/ WD
�

Ext1
GtK
.F�;OKt /

�
are well defined and we have �X .FD/D�W;X .FD/=�L;X .FD/. On the other hand, using
Artin–Verdier duality, the morphism of fiber sequences (2.1) and [31, Prop. 6.23], we find

�W;X .F
D/ D ŒF��

ŒKWQ�:

Thus the above proposition implies that�
Ext1

GtK
.F�;OKt /

�
D ŒF��

ŒKWQ�:

Theorem 7.13 (Special values theorem). Let F be a Z-constructible sheaf. We have the
vanishing order formula

ordsD0LX .FD; s/ D
X

.�1/i i � dimRH
i
ar;c.X; F

D
R /:

If F is tamely ramified, we have the special value formula

L�X .F
D; 0/ D ˙�X .F

D/:

Proof. This follows from Propositions 7.10 and 7.11 and Theorem 7.12 by Artin induc-
tion.

A. Duality for the Tate cohomology of finite groups

Let G be a finite group. The functor Ry�.G;�/ is lax monoidal, so for any complex of
G-modules M we can construct the pairing

Ry�.G;M_/˝L Ry�.G;M/! Ry�.G;Z/! yH 0.G;Z/Œ0� D Z=jGjZŒ0� ,! Q=ZŒ0�

where M_ D RHomG.M;Z/. In the following, we will also denote

M � D HomG.M;Q=Z/

the Pontryagin dual.
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Theorem A.1. Let G be a finite group. The natural pairing

Ry�.G;M_/˝L Ry�.G;M/! Q=ZŒ0�

is perfect for any bounded complex M of G-modules with finite type cohomology groups.

Proof. By definition, showing that the pairing is perfect is showing that the adjoint map
Ry�.G;M_/!Ry�.G;M/� is an isomorphism. Passing to cohomology, this is equivalent
(using [42, Tag 0FP2] and the injectivity of Q=Z) to showing that the cup product pairing

yH i .G;M/ � yH�i .G;M_/! yH 0.G;Z/! Q=Z

is perfect for each i 2 Z. Notice that ifM is induced, thenM_ is also induced; moreover,
if M0 is a finite type abelian group, indGM0 also is. Thus the usual dimension shifting
argument reduces to checking that the pairing is perfect in just one degree. We proceed by
Artin induction:

• In an exact sequence 0 ! M ! P ! Q ! 0 or more generally a fiber sequence
M ! P ! Q, if the theorem is true for two out of the three terms then it is true for
the third.

• We can filter a bounded complex with finite type cohomology groups by its trunca-
tions, which reduces to the case of a G-module M of finite type.

• Let H be a proper subgroup of G, let M be a torsion-free finite type discrete H -
module and let us consider the induced G-module indGH M . We want to show compat-
ibility of the pairing in degree 0 for indGH M and the pairing in degree 0 for M .
We have M_ D HomZ.M;Z/. Denote �� for the induction functor indGH and �� for
restriction to H . The functor �� is a right adjoint of �� and the finiteness of G also
makes �� into a left adjoint of ��. Let us denote � W ����! id the counit of the latter
adjunction; the counit �Z W ��Z'˚G=HZ! Z is the sum map. As a right adjoint to
a strict monoidal functor, �� has a lax monoidal structure

��.�/˝ ��.�/
lax
�! ��.�˝�/:

Consider the following commutative diagram:

��M ˝ .��M/_ Z

��M ˝ ��.M
_/ ��.M ˝M

_/ ��Z

'

ev

lax ��.ev/

�D
P

We can apply the lax-monoidal functor yH 0 to the above to obtain Diagram 6 (using
Shapiro’s lemma’s identifications). Square .1/ commutes by functoriality of the cup
product, square .2/ commutes by functoriality of yH 0.G;�/, square .3/ commutes
by inspection, square .4/ commutes by functoriality in Shapiro’s lemma and square

https://stacks.math.columbia.edu/tag/0FP2
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y H
0
.G
;�
�
M
/
˝
y H
0
� G;.�

�
M
/_
�

y H
0
� G;�

�
M
˝
.�
�
M
/_
�

y H
0
.G
;Z
/
D

Z
=
jG
jZ

Q
=
Z

y H
0
.G
;�
�
M
/
˝
y H
0
� G;�

�
.M
_
/�

y H
0
� G;�

�
M
˝
�
�
.M
_
/�

y H
0
� G;�

�
.M
˝
M
_
/�

y H
0
.G
;�
�
Z
/

y H
0
.H
;M

/
˝
y H
0
.H
;M
_
/

y H
0
.H
;M
˝
M
_
/

y H
0
.H
;Z
/
D

Z
=
jH
jZ

Q
=
Z

'

ev
�

la
x �

.�
�
.e

v/
/ �

ŒG
WH
�

[

'

[

'

[

'
'

ev
�

.2
/

.3
/

.1
/

.4
/

.5
/

Diagram 6.
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.5/ commutes because .e
2i�
jGj /ŒGWH� D e

2i�
jH j . As the bottom left square commutes, the

whole diagram commutes and the pairing for M is perfect if and only if the pairing
for indGH M is perfect.

• ForM D Z we haveM_ D Z. The map Ry�.G;M_/! Ry�.G;M/� corresponds in
degree 0 to the adjoint map to the cup product pairing

Z=jGjZ˝ Z=jGjZ! Z=jGjZ! Q=Z

induced by the multiplication Z˝ Z! Z. Thus it is perfect.

• For M finite as an abelian group, we have RHomG.M;Q/ D 0 so the fiber sequence
Z! Q! Q=Z gives M_ ' M �Œ�1�. For any bounded complex M , the complex
M ˝ Q is a complex of Q-vector spaces hence cohomologically trivial. The map
Q=ZŒ�1�! Z thus induces an isomorphism of pairings

Ry�.G;M �/Œ�1�˝L Ry�.G;M/ Ry�.G;Q=Z/Œ�1� yH�1.G;Q=Z/Œ0� Q=ZŒ0�

Ry�.G;M_/˝L Ry�.G;M/ Ry�.G;Z/ yH 0.G;Z/Œ0� Q=ZŒ0�

' ' '

It follows that it is enough to prove that the map Ry�.G;M �/Œ�1�! Ry�.G;M/� is
an isomorphism in degree 0, i.e., that the cup-product pairing

yH�1.G;M �/ � yH 0.G;M/! yH�1.G;Q=Z/! Q=Z

induced by the Pontryagin duality pairing M � ˝M ! Q=Z is perfect. For g 2 G,
g acts on M � as the transpose of g�1. Thus, on M �, N acts as N t and the family
.1 � g/g2G is a permutation of the family ..1 � g/t /g2G . In the perfect pairing

M � ˝M ! Q=Z;

we have ?.
T
g2G Ker.1 � g// D

P
g2G Im..1 � g/t / and Ker.N /? D Im.N t /, so

this pairing induces a perfect pairing between the subquotients:

Ker.N t /=
X
g2G

Im
�
.1 � g/t

�
�

\
g2G

Ker.1 � g/= Im.N /! Q=Z:

This is exactly what we had to prove.

B. The maximal tamely ramified extension of a number field

In this section, we discuss the tame Galois group of a number field. The results are cer-
tainly known but we did not find a convenient reference.

Let K be the field of fractions of a henselian DVR with finite residue field. A finite
extension L=K is called tamely ramified if the ramification index eL=K is prime to the
residual characteristic. We have the following properties:
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Proposition B.1 ([35, §II.7, Cor. 7.8, Cor. 7.9, Def. 7.10]). .1/ If M=L=K is a tower of
finite extensions, then M=K is tamely ramified if and only if M=L and L=K are.

.2/ The composite of two tamely ramified finite extensions of K is tamely ramified.

.3/ The maximal tamely ramified extension Kt is defined as the composite of all finite
tamely ramified extensions of K inside Ksep. Its finite subextensions are tamely ramified.

Let K be a number field. For each finite place v of K, which corresponds to a closed
point of X D Spec.OK/, denote Kv the henselian local field at v. Let Ksep be a separable
closure ofK and for each finite place v, choose an embeddingKv ,!Ksep; this determines
a place Nv of Ksep above v and gives Ksep the structure of a separable closure of Kv .
Denote GK , resp. GKv the absolute Galois group ofK resp.Kv . The previous proposition
is adapted to the global case by working simultaneously at all places, as following: a finite
extension L=K is called tamely ramified if for all finite places v of K and w of L above
v, the finite extension Lw=Kv is tamely ramified. We then have:

Corollary B.2. (1) IfM=L=K is a tower of finite extensions, thenM=K is tamely ramified
if and only if M=L and L=K are.

(2) The composite of two tamely ramified finite extensions of K is tamely ramified.
(3) The maximal tamely ramified extension Kt is defined as the composite of all finite

tamely ramified extensions of K inside Ksep. Its finite subextensions are tamely ramified.

Proof. This follows from the previous propositions by taking henselizations, using the
two following observations:

• For any choice of finite place in any of the three fields in a towerM=L=K, there exists
a compatible system of places above and below it.

• If L=K and M=K are two finite extensions inside Ksep and z is a finite place of
the composite extension LM mapping to places w, w0 of L and M then .LM/z D

LwMw 0 ; indeed, .LM/z is the smallest henselian field inside Ksep containing LM so
.LM/z � LwMw 0 , and the other inclusion is immediate.

Definition B.3. The tame Galois group of K, denoted GtK , is the Galois group of the
Galois extension Kt=K:

GtK WD Gal.Kt=K/:

For a finite place v of K, denote Pv � Dv the wild ramification and decomposition
subgroup of the place Nv of Ksep. There is an identification Dv D GKv under which we
have Pv D Gal.Ksep=Ktv/. We now characterise the tame Galois group in terms of the
wild inertia subgroups Pv .

Proposition B.4. LetN be the smallest closed normal subgroup ofGK containing Pv for
all finite places v. Then N D Gal.Ksep=Kt /, and consequently GtK D GK=N .

Proof. We first show N � Gal.Ksep=Kt /; since the latter is normal and closed it suffices
to show that the elements of Pv , for any finite place v, fix Kt . Let L=K be a finite tamely
ramified extension. The place Nv of Ksep determines a unique place w of L above v. The



A. Morin 254

following diagram commutes

Gal.Lw=Kv/ Gal.L=K/

Gal.Ktv=Kv/ Gal.Kt=K/

GKv GK

Pv

0

� 7!�jKt

� 7!�jLw

.1/

Indeed, the only nontrivial part is square .1/. If L=K is a finite tamely ramified extension
and w is the place of L induced by Nv then L � Lw � Ktv; therefore there is an inclusion
Kt �Ktv and the commutativity of .1/ follows. Since the diagram commutes, the elements
of Pv are sent to 0 in Gal.L=K/ so they fix any finite tamely ramified extension of K,
hence also Kt .

We now show Gal.Ksep=Kt / � N . Since N is normal, it suffices to show that for
N � U with U an open normal subgroup, we have Gal.Ksep=Kt / � U . This amounts
to showing that the finite extension L=K corresponding to an open normal subgroup U
containing N is tamely ramified. Let v be a finite place of K and denote w the place of
L induced by Nv. Then Lw D LKv is the fixed field of U \ GKv , which contains Pv , so
Lw � K

t
v is tamely ramified.

C. Miscellaneous results on proétale cohomology and condensed
mathematics

In this section, we collect some results on condensed mathematics; these are certainly
already known to experts.

Definition C.1 ([4, Def. 3.2.1]). An object F of a topos X is called weakly contractible
if every surjection G ! F has a section. We say that X is locally weakly contractible if
it has enough weakly contractible coherent objects, i.e., each X 2 X admits a surjection
[iYi ! X with Yi a coherent weakly contractible object.

The proétale topos of a scheme is locally weakly contractible [4, Prop. 4.2.8]; in par-
ticular the condensed topos (i.e., the proétale topos of a geometric point) is locally weakly
contractible, and (the sheaves represented by) extremally disconnected profinite sets are a
suitable family of weakly contractible objects.

Lemma C.2. Let X be a locally contractible topos. If .Ai / is a projective system of
abelian group objects satisfying the Mittag-Leffler condition, then R limAi D limAi .
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Proof. Let Y be a weakly contractible object. As �.Y;�/ is exact and preserves injectives,
we find �.Y;�/DR�.Y;�/ and thus .R limAi /.Y /DR lim.Ai .Y //. Moreover, .Ai .Y //
is a projective system of abelian groups satisfying the Mittag-Leffler condition, again by
exactness and commutation with arbitrary limits of �.Y;�/; so we are done.

Lemma C.3. Let .Ai / be a family of discrete abelian groups satisfying the Mittag-Leffler
condition, and let �� W Ab! Cond.Ab/ be the constant sheaf functor. Then .��Ai / satis-
fies the Mittag-Leffler condition.

Proof. The functor �� is exact and agrees with the functor .�/ WAb.Top/!Cond.Ab/ on
discrete abelian groups [4, Lem. 4.2.12]; the latter functor is limit-preserving. An inter-
section of a decreasing family of abelian groups is a limit of the associated (discrete)
topological abelian groups, so we are done.

Proposition C.4 ([4, Lem. 6.1.17]). Let � W Y ! X be a finite morphism of finite presen-
tation. Then �proet;� W D.Yproet/! D.Xproet/ has a right adjoint.

Proof. Since both source and target triangulated categories are compactly generated, it
suffices to show that �proet;� commutes with direct sums. This can be checked on w-
contractible affines. Since evaluation of sheaves of abelian groups on the proétale site
at w-contractible affines commutes with colimits, this is easily shown using [4, Lem.
2.4.10].

In the following we follow [1] and call a topology a family of sieves satisfying the
usual axioms, and a pretopology a family of covers satisfying the usual axioms.

Proposition C.5. The canonical topology on condensed sets induces the proétale topol-
ogy (i.e., generated by finite jointly surjective families) on profinite sets under the Yoneda
embedding.

Proof. Denote Jproet, resp. Jind the proétale topology resp. the topology induced from
the canonical topology on condensed sets. Since condensed sets are covered under the
canonical topology by profinite sets (under the fully faithful, limit-preserving Yoneda
embedding), we conclude by [1, Exp. IV, Cor. 1.2.1] that Sh.Toppf ;Jproet/DCond.Set/'
Sh.Toppf ; Jind/. Since the topology is characterized by its category of sheaves [1, Exp. II,
Cor. 4.4.4] we find Jproet D Jind.

Definition C.6 ([4, Def. 4.3.1]). Let G be a compactly generated topological group. The
pro-étale site BGproet ofG is defined as the site of profinite continuousG-sets with covers
given by finite jointly surjective families.

Proposition C.7 ([13, Cor. 2]). Let G be a compactly generated topological group. We
have

Sh.BGproet/ D G-Cond.Set/:

If moreover G D Gal.ksep=k/ for a field k, then

Sh
�

Spec.k/proet
�
D G- Cond.Set/:
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Proof. The Yoneda embedding from profinite sets to condensed sets if fully faithful, and
it can be extended to a right adjoint (hence limit-preserving) faithful functor .�/, which
is moreover fully faithful when restricted to compactly generated topological space [11,
Prop. 1.7]. The action of G on a profinite set X is encoded by a map G � X ! X ,
where the product is computed in topological spaces. The product of a profinite set and
a compactly generated space is compactly generated [39, Appendix A, Prop. A.2 (vi)]37,
so this is the same as a map G � X ! X . Thus we get a fully faithful embedding of
profinite continuous G-sets in G-Cond.Set/. The canonical topology on G-condensed
sets is obtained by forgetting the G-structure, and similarly for the proétale topology on
profinite continuous G-sets, so that the canonical topology on the former induces the
proétale topology on the latter by the previous proposition. By [1, Exp. IV, Cor. 1.2.1] it
remains only to show that a G-condensed set is covered by profinite G-sets; for any cover
of the underlying condensed set by profinite sets Si , G � Si (where G acts on the first
factor) is a cover by profinite G-sets by an adjunction argument.

D. Strictly henselian local rings of singular schemes

Let X be an integral arithmetic scheme with finite normalization � W Y ! X , and let
x 2 X be a closed point. We want to understand the fiber above the generic point of X of
the strictly henselian local ring at x in terms of the fibers of strictly henselian local rings
of points of Y above x. We can localize at x and we are thus in the following setting: let
.A;m/ be a Noetherian integral local ring with fraction fieldK, perfect residue field k and
integral closure B . Can we describe Ash ˝A K in terms of B and its strict henselizations
at various maximal ideals?

We first have

Lemma D.1 ([42, Tag 07QQ]).

Ash
˝A K D

nY
iD1

�.pi /

where pi are the prime ideals ofAsh˝AK above .0/; moreover each k.pi /=k is separable
algebraic.

Proof. Ash is Noetherian and flat over A so it has finitely many minimal primes, which
are exactly the primes lying above .0/. Moreover it is reduced as A is reduced. Therefore
Ash ˝A K is Noetherian and has finitely many prime ideals, all minimals, so Ash ˝A K is
an Artinina ring; since it is reduced, its local rings are fields.

The lemma says that Ash ˝A K is the total rings of fraction of Ash. The total ring of
fractions of the normalization of Ash is the same, so we want to determine the normaliza-
tion of Ash:

37In the above reference, compactly generated spaces are called k-spaces.

https://stacks.math.columbia.edu/tag/07QQ
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Lemma D.2 ([42, Tag 0CBM]). B 0 WD B ˝A Ash is the normalization of Ash

Proof. Normalization commutes with étale maps38 and filtered colimits, and Ash is a fil-
tered colimit of étale A-algebras.

By the previous lemma, the minimal primes of Ash and B 0 are in bijection. Moreover,
as B 0 is finite over Ash, B 0 is a finite product of strictly henselian local rings each finite
over Ash. Since B 0 is normal, each local ring is moreover normal, hence integral. We now
see that each minimal prime ideal is contained in a unique maximal ideal of B 0, and vice-
versa. Denote qi the minimal prime of B 0 corresponding to pi and Mi the maximal ideal
containing qi . We deduce

�.pi / D �.qi / D Frac
�
.B 0/Mi

�
:

Lemma D.3 ([42, Tag 08HV]). Denote n DMi \ B . We have

.B 0/Mi
D Bsh

n :

Proof. B 0 is a filtered colimit of étale B-algebras and so is Bsh
n . Since there is a natural

morphism of B-algebras B 0 ! Bsh
n , Bsh

n is also a filtered colimit of étale B 0-algebras.
Since Bsh

n is a strictly henselian local ring, it must be the strict henselian local ring of B 0

at any prime above n.

Thus �.qi /D Frac..B 0/Mi
/D Frac.Bsh

n /. BecauseB 0 is a colimit of étaleB-algebras,
the maximal ideal n of B is above m. Moreover we have:

Lemma D.4 ([42, Tag 0C25]). The fiber above n inB 0 is isomorphic to Homk.�.n/; k
sep/

Proof. We have

B 0 ˝B �.n/ D A
sh
˝A �.n/ D A

sh
˝A k ˝k �.n/ D k

sep
˝k �.n/

hence the result.

Combining everything, we obtain

Proposition D.5. Let .A;m/ be a Noetherian integral local ring with fraction field K,
perfect residue field k and integral closure B finite over A. The total ring of fractions of
Ash is:

Ash
˝A K D

Y
n

Y
Homk.�.n/;ksep/

Frac.Bsh
n /

where n goes through the finitely many maximal ideals of B .

38It is easy to see the commutation with localization, so this reduces to commutation with standard étale
maps.

https://stacks.math.columbia.edu/tag/0CBM
https://stacks.math.columbia.edu/tag/08HV
https://stacks.math.columbia.edu/tag/0C25
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E. A lemma on determinants of total complexes

Lemma E.1. Let A be an abelian category, let C be a double complex of objects of A

with uniformly bounded and acyclic rows and columns and let det be a determinant functor
Chb.A/qis ! P . We denote by 1 the unit of the Picard category P . Define the filtration
by rows on TotC by F nr TotC D Tot.��nr C/,39 where .��nr C/p;q D Cp;q if q � n and 0
otherwise. The filtration by rows induces a commutative diagram

det TotC 1

N
j .detC �;j /.�1/

j N
j .1/.�1/

j

det0

j̋ .det0/.�1/
j

Proof. The n-th graded piece of the filtration by rows of TotC is C �;nŒ�n�. Since the
rows are exact, the map 0 W Tot C ! 0 is a quasi-isomorphism; moreover it induces
quasi-isomorphisms between the graded pieces of the filtrations by rows on Tot C and
the trivial filtration on 0 because columns are exact. We conclude with [24, Prop. 1.7] and
[7, Lem. 2.3].
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