
Doc. Math. 28 (2023), 105–131
DOI 10.4171/DM/905

© 2023 Deutsche Mathematiker-Vereinigung
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Derivatives of Beilinson–Flach classes, Gross–Stark
formulas and a p-adic Harris–Venkatesh conjecture

Óscar Rivero

Abstract. We propose an alternative approach to the study of exceptional zeros from the point of
view of Euler systems. As a first application, we give a new proof of a conjecture of Darmon, Lauder
and Rotger regarding the computation of the L-invariant of the adjoint of a weight one modular form
in terms of units and p-units. While in our previous work with Rotger the essential ingredient was
the use of Galois deformations techniques, we discuss a new method exclusively using the properties
of Beilinson–Flach classes. One of the key ingredients is the computation of a cyclotomic derivative
of a cohomology class in the framework of Perrin-Riou theory, which can be seen as a counterpart
to the earlier work of Loeffler, Venjakob, and Zerbes. In our second application, we illustrate how
these techniques could lead to a better understanding of this setting by introducing a new motivic
p-adic L-function whose special values encode information just about the unit of the adjoint (and
not also the p-unit), in the spirit of the conjectures of Harris and Venkatesh. We further discuss
conjectural connections with the arithmetic of triple products of Coleman families.

1. Introduction

In our series of works with Rotger [35,36], we proposed a systematic study of the conjec-
ture of Darmon, Lauder, and Rotger [12] on p-adic iterated integrals in terms of certain
cohomology classes constructed from the p-adic interpolation of Beilinson–Flach ele-
ments. This conjecture may be subsumed in a broader programme comprising both the
Gross–Stark conjectures and also the celebrated Elliptic Stark Conjectures, which shed
some light on the arithmetic of elliptic curves of rank 2. We devote part of this introduc-
tion to recall these conjectures in order to put our results in this broad scenario, where the
phenomenon of exceptional zeros plays a prominent role.

1.1. General set up and Beilinson–Flach classes

Let � be a Dirichlet character of level N � 1, and let S1.N; �/ stand for the space of
cuspidal modular forms of weight 1, level N and nebentypus �. Let g D

P
n�1 anq

n 2

S1.N; �/ be a normalized newform and let g� D g ˝ x� denote its twist by the inverse of
its nebentypus. Let

%g WGal.Hg=Q/ ,!GL.Vg/'GL2.L/; %ad0.g/ WGal.H=Q/ ,!GL
�

ad0.g/
�
'GL3.L/
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denote the Artin representations associated with g and its adjoint, respectively. HereHg �
H denote the finite Galois extensions of Q cut out by these representations, and L is a
finite extension of Q containing their traces and the roots of the p-th Hecke polynomial
of g.

Let p − N be a prime number. Fix once and for all an embedding �p W xQ ,! xQp ,
singling out a place of H (resp. L) above p, and a decomposition group GQp .

Label and order the roots of the p-th Hecke polynomial of g as X2 � ap.g/X C
�.p/ D .X � ˛/.X � ˇ/. We assume throughout that

(H1) The reduction of %g mod p is irreducible;

(H2) g is p-distinguished, i.e., ˛ ¤ ˇ (modp), and

(H3) %g is not induced from a character of a real quadratic field in which p splits.

The purpose of (H1) and (H2) is to avoid technical complications regarding the use
of Hida families (see e.g. Wiles’ result in the form of [27, Theorem 7.2.8]), although the
weaker condition ˛ ¤ ˇ is crucially used at several points and its failure is indeed quite
problematic (as discussed in [13, Part B]). The role of (H3) is of a different nature, and
it excludes a qualitatively different situation where the eigencure is not étale, as it was
established by Bellaïche and Dimitrov [1].

In [35], the authors used the theory of Beilinson–Flach elements developed by Kings,
Lei, Loeffler and Zerbes to construct four (a priori distinct) cohomology classes

�.g˛; g
�
1=˛/; �.gˇ ; g

�
1=ˇ /; �.g˛; g

�
1=ˇ /; �.gˇ ; g

�
1=˛/ 2 H

1
�
Q; ad0.g/.1/

�
; (1.1)

arising by considering the different Hida families passing through the pair .g; g�/. This
allowed us to reformulate the Gross–Stark conjecture of [12], expressing the previous
classes in terms of canonical units and p-units in .O�H Œ1=p�˝ ad0.g//GQ and supplying
an alternative framework for understanding the results of [12, 15, 27].

As we recall in Proposition 3.1, it happens that

�.g˛; g
�
1=ˇ / D �.gˇ ; g

�
1=˛/ D 0 (1.2)

due to an exceptional zero phenomenon which can be explained by the vanishing of an
Euler factor.

This is quite unfortunate for our purposes of understanding the Gross–Stark conjecture
of [12] by resorting to the theory of Euler systems, since there is not a canonical coho-
mology class to be used for such a purpose. To overcome this situation, in our previous
works we had constructed certain derivatives of those classes, but it turns out that the def-
inition we had used was not useful to prove the Gross–Stark conjecture or to obtain new
results in that direction. Roughly speaking, we had taken the derivative along one of the
weight directions associated with the Hida family interpolating one of the modular forms,
while towards obtaining a more flexible and arithmetically interesting setting we need to
consider also the cyclotomic derivative.

This is an analogous situation to the scenario of [10, 39], where the computation of
the derivative of the Mazur–Kitagawa p-adic L-function along a certain direction of the
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weight space was relatively easy using the classical theory of Heegner points (and had
already been carried out by Bertolini and Darmon [5]), but the computation of the cyclo-
tomic derivative required new ideas. Hence, this work may be thought as a counterpart to
the approach of Büyükboduk and Venerucci to the exceptional zero phenomenon, but in
the easier case where elliptic curves are replaced by unit groups (and hence one can cir-
cumvent the technical complications introduced by the use of Nekovar’s height theory).
Similar results had been obtained by Loeffler, Venjakob, and Zerbes [31], and one can see
our computations as the dual of Proposition 2.5.5 and Theorem 3.1.2 of loc. cit. We refer
also to the seminal works of Benois [2, 3] where similar questions are addressed.

1.2. A new proof of a Gross–Stark formula

Our main result in [36] was the computation of a special value formula for the Hida–
Rankin p-adic L-function at weight one (alternatively, the derivative of the adjoint of
the modular form). This is specially intriguing since that function, that we denote as
Lp.g; g

�; s/, cannot be directly defined in terms of an interpolation property, and requires
to consider the p-adic variation of the modular forms .g; g�/ along a Hida family. Indeed,
it depends on the choice of a p-stabilization for g. We sometimes write Lg˛p .g; g�; s/ to
emphasize this dependence. The computation of Lp.g; g�; 1/ may be better understood
in the general framework of the p-adic Gross–Stark conjectures initiated by Gross [22],
and which predicts that the special values of the p-adic L-function of an Artin repre-
sentation must encode information about the arithmetic of the number field cut out by it.
For our further use along the article, recall also that the functional equation presented in
[16, Section 9.2] implies that Lp.g; g�; 0/ D Lp.g; g�; 1/ modulo L�. As the numerical
computations of [12] suggest, this value is expected to be generically non-zero, and we
make the following assumption throughout the article.

(H4) Lg˛p .g; g�; 1/ ¤ 0.

Further, and as a rather straightforward application of Dirichlet’s unit theorem com-
bined with Frobenius reciprocity, in [12, Section 1] it is shown that

dimL
�
O�H ˝ ad0.g/

�GQ
D 1; dimL

�
OH Œ1=p�

�=pZ
˝ ad0.g/

�GQ
D 2:

Fix a generator u of .O�H ˝ ad0.g//GQ and also an element v of .O�H Œ1=p�
�˝ ad0.g//GQ

in such a way that ¹u; vº is a basis of .OH Œ1=p��=pZ ˝ ad0.g//GQ . The element v may
be chosen to have p-adic valuation ordp.v/ D 1, and we do so.

Viewed as a GQp -module, ad0.g/ decomposes as ad0.g/ D L ˚ L˛˝
x̌
˚ Lˇ˝x̨,

where each line is characterized by the property that the arithmetic Frobenius Frp acts
on it with eigenvalue 1, ˛=ˇ and ˇ=˛, respectively. Let Hp denote the completion of H
in xQp , yH�p the completion of H�p , and let

u1; u˛˝ x̌; uˇ˝x̨; v1; v˛˝ x̌; vˇ˝x̨ 2 yH
�
p ˝Q L .mod L�/

denote the projection of the elements u and v in . yH�p ˝ ad0.g//GQp to the above lines.
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Then, we have the following Gross–Stark formula:

Theorem 1.1. Assume that hypotheses (H1)–(H4) hold.Then, the following equality holds
up to multiplication by a scalar in L�

Lg˛p .g; g
�; 1/ D

logp.u˛˝ x̌/ logp.v1/ � logp.v˛˝ x̌/ logp.u1/

logp.u˛˝ x̌/
:

The non-vanishing assumption (H4) is somewhat irritating, but it was also present in
our previous works when dealing with Beilinson–Flach classes.

The proof we had given in [36, Section 4] was lengthy and made use of the results
of Bellaïche–Dimitrov [1] computing the tangent space of a deformation problem and
following the further development of [8], together with some elements taken from the
earlier work [13]. In a certain way, that proof mimicked the approach of Greenberg–
Stevens [21] to the exceptional zero phenomenon for elliptic curves with split multi-
plicative reduction. However, the authors had observed a tantalizing connection with the
theory of Beilinson–Flach elements, that were affected by a similar exceptional zero phe-
nomenon. This allowed us to interpret derived classes of Beilinson–Flach elements in
terms of the units ¹u; vº, but does not give any new insight into the proof of Theorem 1.1.
This work may be seen as a culmination of the purpose that the authors had when they
began to write both [35, 36], that was proving the Gross–Stark conjecture of Darmon,
Lauder and Rotger using just the properties of Beilinson–Flach elements and the flexi-
bility provided by the notion of derivatives. This is just another instance of the power of
Euler systems when dealing with arithmetic questions.

We can give, with these ideas at hand, a different proof of the main theorem of [36].
This can be seen as the counterpart to the approach of Kobayashi [29] to the Mazur–Tate–
Teitelbaum conjecture in rank 0, since he reproves the result of Greenberg and Stevens
using the properties of Kato’s cohomology classes.

Our proof is a combination of four main ideas (together with the same starting point
coming from Hida’s theory of improved p-adic L-functions):

(0) The results of Hida [25, 26], which reduce the conjecture to the computation of
the derivative of the Frobenius eigenvalue along the weight direction. This part is
common to our earlier work [36].

(1) The local properties at p of Beilinson–Flach elements, which give an expression,
up to multiplication by a p-adic scalar, for the derived class �0.g˛; g�1=ˇ / in terms
of the units u and v, where here the derivative is taken along any arbitrary direction
of the weight space.

(2) A comparison between the different reciprocity laws and the observation that
knowing two weight derivatives, together with the vanishing of the class �.g; g�/
along the line .`; `; `� 1/, allows us to determine the cyclotomic derivative of the
class.
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(3) An explicit reciprocity law for the ƒ-adic class �.g; g�/, obtained when g and g�

vary over Hida families g and g�, respectively. This was first proved by Kings–
Loeffler–Zerbes [27]. In our situation, there is an exceptional vanishing, and hence
we may consider a derived reciprocity law, in the sense of [36]. This gives an
expression for the weight derivative of the Beilinson–Flach class in terms of an
unknown p-adic period and involving also the L-invariant of the adjoint of g˛ .

(4) The results of Büyükboduk [9, 10] and Venerucci [39] around Coleman maps,
which allow us to relate the cyclotomic derivative of the Beilinson–Flach class to
the Hida–Rankin p-adic L-function. This part can be also understood, by duality,
in terms of the computations developed in [31]. Comparing this result with (3), we
get a formula for the L-invariant, and consequently for the special p-adicL-value.

Observe that the study of universal norms has also allowed Roset, Rotger, and Vatsal
[37] to reinterpret the L-invariant of Theorem 1.1 in terms of an algebraic avatar initially
defined by Greenberg [20].

1.3. A p-adic version of the Harris–Venkatesh conjecture

Theorem 1.1 is not completely satisfactory towards the understanding of the arithmetic of
the adjoint of a weight one modular form, since it involves both the unit and the p-unit
attached to the Galois representation. It is then natural to expect a putative refinement of
the previous result in the spirit of the conjectures of Harris–Venkatesh [24], with a p-
adic L-function whose special values encode information just about the unit u. Unless
otherwise specified, we keep assumptions (H1)–(H3).

To make the analogy more precise, and following the notations of [12], let E2 2
M2.N / be the weight two Eisenstein series, and let F WD d�1E2 D E

Œp�
0 be the over-

convergent Eisenstein series of weight zero whose Fourier expansion is given by

F.q/ D
X
p−n

�X
d jn

d�1
�
qn:

Similarly, let
„.g˛; g

�/ D eg�˛ eord.Fg
�/;

where
eord WM

oc
1 .N; x�/!M oc

1 .N; x�/

is Hida’s ordinary projection, and

eg�˛ WM
oc
1 .N; x�/!M oc

1 .N; x�/Jg
�
˛K

is the Hecke equivariant projection to the generalized eigenspace attached to g�˛ . Assum-
ing (H3), it consists entirely of classical forms. In particular, as it is discussed in the
introduction of [12], there is an isomorphism of Cp-vector spaces M1.Np; x�/Œg

�
˛ � '

S
oc;ord
1 .N; x�/Jg�˛K.
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Let  be an element in the L-linear dual space M1.N; x�/LŒg
�
˛ �
_. Then, the value we

have computed is an L-multiple of .„.g˛; g�//, i.e.,


�
„.g˛; g

�/
�
D

logp.u˛˝ x̌/ logp.v1/ � logp.v˛˝ x̌/ logp.u1/

logp.u˛˝ x̌/
.mod L�/: (1.3)

Roughly speaking, the quantity .„.g˛; g�// may be seen as a pairing in weight one
between g and Fg�. In the study of the arithmetic of triple products, when instead of
taking the weight two Eisenstein series E2 we begin with a cusp form f , there is an
alternative pairing in weight two between f and gg�. This is essentially the value of
the triple product p-adic L-function Lp

f .f; g; g�/, where f is the unique ordinary Hida
family going through f . When f is Eisenstein, however, this value may be recast as the
projection of a cuspidal form onto an Eisenstein eigenspace, which is zero. Then, the only
natural invariant to consider seemed to be the one described in (1.3), where this trivial
vanishing does not arise.

Harris and Venkatesh, however, proposed a related conjecture modulo p, working in a
much broader setting. They construct an element in the dual of S2.N;Z=pZ/, the Shimura
class, arising from the étale covering of modular curvesX1.N /!X0.N /. Then, they pair
it with a suitable modification of gg� and conjecture a precise modulo p relation with the
logarithm of the unit u. This conjecture has been established under some mild assumption
when g is dihedral in a recent work of Darmon, Harris, Rotger, and Venkatesh [11].

There seems to be no natural p-adic analogue, although motivated by the recent work
of Benois and Büyükboduk [4], we can try to look at the following invariant. Let fcrit be the
Coleman family passing through the critical p-stabilization of the weight two Eisenstein
series, that we write Ecrit

2 , and indexed by a weight variable x. Let x0 be the weight two
point such that fcrit;x0 DE

crit
2 . Then, as pointed out above, the valueLp.fcrit;g˛;g

�
1=˛
/jfDE2

is zero. In this case, however, we may consider its weight derivative evaluated at x0:

ı1 D
@Lp

f .f; g˛; g�1=˛/
@x

ˇ̌̌
xDx0

:

Question. Triple product L-function with dominant Eisenstein series.

(a) Does there exist an analytic p-adic L-function LEis
p .g; g�; s/ such that

LEis
p .g; g�; 0/ D logp.u1/ .mod L�/‹

(b) Can we interpret LEis
p .g; g�; s/ in terms of the arithmetic of triple products of

the form .fcrit; g; g
�/, where fcrit is a Coleman family passing through a critical

Eisenstein series? Is it true that

ı1 D logp.u1/ .mod L�/‹

The last section of this note is devoted to discuss the following conjecture in the frame-
work provided by Perrin-Riou maps, emphasizing the connection with critical Eisenstein
series, further explored in forthcoming work with Loeffler. As a last piece of notation, let
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Lg˛ denote the p-adic invariant introduced in [15, Section 2]. In loc. cit. this invariant is
conjectured to be equal to logp.u˛˝ x̌/.

Theorem 1.2. There exists a motivic p-adic L-function Lmot
p .g; g�; s/, obtained after

applying a suitable Perrin-Riou map to the cyclotomic class whose bottom layer is
�.g˛; g

�
1=˛
/, and such that

Lmot
p .g; g�; 0/ D

Lg˛

logp.u˛˝ x̌/
� logp.u1/ .mod L�/:

We finish this preliminary discussion by pointing out that the formalism we discuss
regarding exceptional zeros and derivatives at the level of Euler systems suggests the
possibility of developing an axiomatic treatment mimicking the general conjectures of
Greenberg and Benois. More precisely, there are two scenarios where our methods can
potentially yield to interesting results.

(I) The work of Betina and Dimitrov [7, Section 4], following ideas around the
geometry of the eigencurve already introduced in their joint work with Pozzi
[8], suggests various formulas for the derivative of the Katz’s two variable p-
adic L-function along different directions of the weight space. It was already
implicit in previous work of Büyukboduk [9] and the author [34] that deriva-
tives of the cohomology classes coming from elliptic units, taken along differ-
ent directions, capture either the p-adic logarithm or the p-adic valuation of
the class. The application of this formalism (and its eventual generalizations
to CM fields) seems to have interesting applications we hope to explore in the
future.

(II) The study of these methods seems specially intriguing in the scenario of “diag-
onal cycles” or in the novel setting of GSp4�GL2�GL2 explored by Loeffler
and Zerbes [33], where a cohomology class may simultaneously encode infor-
mation about the behavior of different, and a priori unrelated, p-adic L-func-
tions. The use of our techniques seem to be able to partially recover Rosso’s
results [38], and to be further extended to other settings.

1.4. Organization of the note

The organization of this note is as follows. Section 2 discusses the motivational case of
circular units, where these same phenomena arise and that can serve as a motivation for
our later work. Section 3 recalls the notations and results of [36] around Beilinson–Flach
elements which are needed in the proof. Section 4 contains the first main result of the arti-
cle and discuss the new proof of Theorem 1.1 using the notion of derived Belinson–Flach
elements. Next, Section 5 proposes an alternative interpretation of the previous results in
terms of deformation theory, which can help to give the reader a broader picture of this
scenario. Finally, Section 6 discusses the p-adic Harris–Venkatesh conjecture we have
suggested, introducing the relevant motivic p-adic L-function and analyzing its relation-
ship with the arithmetic of triple products.
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2. Analogy with the case of circular units

The situation we want to deal with has a clear parallelism with the case of circular units,
that we now recall. Fix a primitive Dirichlet character � of conductor N , and write
H D Q.�N /, where �N is a (fixed) primitive N -th root of unity. Let L� be its coefficient
field. As a piece of notation, x� D ��1 denotes the character obtained after composing
� with complex conjugation. As in the introduction, let p − N be a prime number. Our
choice of an embedding �p W xQ ,! xQp singles out a place of H (resp. L�) above p, and a
decomposition group GQp . We write L�;p for the completion of L� at the prime p.

The case where � is odd gives rise to an exceptional vanishing of the Kubota–Leopoldt
p-adic L-function Lp.�!; s/ at s D 0 when �.p/ D 1, where ! is the Teichmüller char-
acter. Under the assumption that � is odd, .O�H ˝ L�/

� is a zero-dimensional L�-vector
space, while .OH Œ1=p�� ˝ L�/� has dimension 1 if �.p/ D 1. In this case, choosing a
non-zero element v� of the latter space, we may define an L-invariant

L.�/ D �
logp.v�/
ordp.v�/

; (2.1)

which depends on our choice of p-adic embedding �p . Then,

L0p.�!; s/ D L.�/ � L.�; 0/: (2.2)

This formula was firstly established by Gross [22], using the Gross–Koblitz formula [23]
and the earlier theorem of Ferrero–Greenberg [19], which relates the derivative of the
Kubota–Leopoldt p-adicL-function to special values of the p-adic Gamma function. This
was extended later on in different works by Darmon, Dasgupta, Kakde, Pollack, and Ven-
tullo [17,18] to the setting of totally real number fields, using related ideas in the realm of
exceptional zeros.

In the case where � is even, the situation is ostensibly different. Here, .O�H ˝ L�/
�

is one-dimensional and we may fix a generator c� of it, that we call the circular unit
associated with �. We take it, as usual, as a weighted combination of cyclotomic units

c� D

N�1Y
aD1

.1 � �aN /
��1.a/;

where the notation .1 � �aN /
��1.a/ means .1 � �aN / ˝ �

�1.a/. Moreover, if we further
assume that �.p/D 1, .OH Œ1=p��˝L�/� has dimension 2, and we may consider a basis
of the form ¹c�; v�º, with the convention that ordp.v�/ D 1.

Given any even, non-trivial and primitive Dirichlet character, Leopoldt’s formula al-
ways holds and asserts that

Lp.�; 1/ D �

�
1 � �.p/p�1

�
g.x�/

� logp.c�/: (2.3)
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We may understand the previous result in the more general setting of reciprocity
laws. For that purpose, let ƒ D ZpJZ�p K. A remarkable feature of the unit c� is that
it can be understood as a universal norm over the cyclotomic tower; in particular, fix-
ing a sequence of primitive Npn-th roots of unity compatible under the p-power map,
.�N ; �Np; : : : ; �Npn ; : : :/, we may define

c�;n D

N�1Y
aD1

.1 � �aNpn/
��1.a/:

Taking the inverse limits of their images under the Kummer map, one may construct a
ƒ-adic class

�.�; s/ 2 H 1
�
Q; L�;p.x�/˝ƒ."cyc"cyc/

�
;

where "cyc is the usual cyclotomic character and "cyc stands for the ƒ-adic cyclotomic
character. Given s 2 Z, let �s W ƒ."cyc/ ! Zp be the ring homomorphism sending the
group-like element a 2 Z�p to as . This induces a GQ-equivariant specialization map

�s W ƒ."cyc/! Zp.s/

and gives rise to a collection of global cohomology classes

�.�; s/ 2 H 1
�
Q; L�;p.x�/.s/

�
:

The Perrin-Riou formalism allows us to understand the Kubota–Leopoldt p-adic L-
function Lp.�; s/ as the image under a Coleman map (also named as Perrin-Riou map, or
Perrin-Riou regulator) of the local class �p.�; s/

L� W H
1
�
Qp; L�;p.x�/˝ƒ."cyc"cyc/

�
! I�1ƒ; L�

�
�p.�; s/

�
D Lp.�; s/;

where I is the ideal ofƒ corresponding to the specialization at sD1 (see [27, Section 8.2]
for the precise definition). This map interpolates either the dual exponential map (for
s � 0) or the Bloch–Kato logarithm (for s � 1).

A standard computation using the explicit definition of the system of units .c�;n/
shows that the bottom layer �.�; 1/ vanishes when �.p/ D 1. We keep this assumption
throughout the rest of this section, pointing out that this kind of exceptional zeros at the
level of cohomology classes will be our main object of study along this note. Following
the construction of [9, Section 3], there is a derived class �0.�; s/, defined as the unique
class satisfying that

�.�; s/ D
 � 1

logp./
� �0.�; s/; (2.4)

where  is a fixed topological generator of ZpJ1 C pZpK. It is also proved in [9] that
�0.�; 1/ belongs to an extended Selmer group, which in this case may be identified with
the group of p-units where the Galois group acts via � (we insist that when � is even this
space is two-dimensional). Hence, the exceptional zero phenomenon does not appear at
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the level of p-adic L-functions, since at least generically Lp.�; 1/ ¤ 0, but at the level of
cohomology classes.

Moreover, in the cases where �.p/ D 1 one can also define an improved map

fL� D
 � 1

1
p

logp./
�L� W H

1
�
Qp; L�;p.x�/."cyc"cyc/

�
! I�1ƒ:

Therefore, fL�

�
�0p.�; s/

�
D p � Lp.�; s/:

The computations done in [9, Section 6.2], in particular Remark 6.5, show that the
map fL�, when specialized at s D 1, is given by the order map (applied in this case to the
derived class). The key point is a computation of the universal norms over the cyclotomic
tower, as well as the use of Lemma 6.4 of loc. cit (see also [39, Section 3]). Hence, we
have the following (identifying as usual the cohomology classes with the corresponding
units via the standard Kummer map).

Proposition 2.1. The element �0.�; 1/ 2 .OH Œ1=p�� ˝ L�/� satisfies that

Lp.�; 1/ D �
1 � p�1

g.x�/
� ordp

�
�0.�; 1/

�
:

Proof. This follows after combining the results of [9, Section 6.2] on the properties of the
map zL� with Solomon’s computations, showing that the p-adic valuation of the derived
class (sometimes referred as the wild cyclotomic unit) agrees with the logarithm of the
circular unit (see also Proposition 4.1 of loc. cit.).

3. Beilinson–Flach elements

3.1. The three variable cohomology classes

Let g 2 ƒgJqK and g� 2 ƒgJqK be two Hida families of tame conductor N and tame
nebentypus � and x�, where ƒg is a finite flat extension of the Iwasawa algebra ƒ D
ZpJZ�p K. Letƒgg� Dƒg y̋ ƒg y̋ ƒ, Wgg� D Spf.ƒgg�/ and consider also theƒg-modules
attached to the Hida families g and g�, that we denote by Vg and Vg� , respectively. Finally,
consider the ƒgg� -module

Vgg� WD Vg y̋Zp Vg� y̋Zp ƒ."cyc"
�1
cyc/; (3.1)

where ƒ."�1cyc/ stands for the twist of ƒ by the inverse of the ƒ-adic cyclotomic character.
The formal spectrum of ƒgg� is endowed with certain distinguished points, the so-called
crystalline points, denoted as Wıgg� � Wgg� and indexed by triples .y; z; �/; we refer the
reader to Section 2 of loc. cit. for the definitions.

Theƒ-adic Galois representation Vgg� is characterized by the property that for .y;z;�/
2 Wıgg� , with � of weight s 2 Z, (3.1) specializes to

Vgg�.y; z; �/ D Vgy ˝ Vg�z .1 � s/;
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the .1 � s/-th Tate twist of the tensor product of the Galois representations attached to gy
and g�z .

Fix c 2 Z>1 such that .c; 6pN/ D 1. Then, [27, Theorem A] yields a three-variable
ƒ-adic global Galois cohomology class

�c.g; g�/ 2 H 1.Q;Vgg�/

that is referred to as the Euler system of Beilinson–Flach elements associated with g
and g�. We denote by �cp.g; g�/ 2 H 1.Qp;Vgg�/ the image of �c.g; g�/ under the restric-
tion map. Since c is fixed throughout, we may sometimes drop it from the notation. This
constant does make an appearance in fudge factors accounting for the interpolation prop-
erties satisfied by the Euler system, but in all cases we are interested in these fudge factors
do not vanish and hence do not pose any problem for our purposes.

Given a crystalline arithmetic point .y; z; s/ 2Wıgg� of weights .`;m; s/, set for nota-
tional simplicity throughout this section g D gıy , g� D .g�z /

ı. With these notations, gy
(resp. g�z ) is the p-stabilization of g (resp. g�) with Up-eigenvalue ˛g (resp. ˛g� ).

Define

�.gy ; g
�
z ; s/ WD �.g; g

�/.y; z; s/ 2 H 1
�
Q; Vgy ˝ Vg�z .1 � s/

�
(3.2)

as the specialization of �.g; g�/ at .y; z; s/.
As explained in [15, Section 2], the spaces Vg and Vg� , as GQp -modules, are endowed

with a stable filtration
0! VCg ! Vg ! V�g ! 0;

where VCg and V�g are flat ƒg-modules with a GQp -action, locally free of rank one over
ƒg, and such that the quotient V�g is unramified. Define the GQp -subquotient V�Cgg� WD

V�g y̋ VCg� of Vgg� , which is of rank one over the two-variable Iwasawa algebraƒg y̋ ƒg�

(this quotient makes sense because of [27, Proposition 8.1.7]).
Let Lp.g; g�/ be the three-variable p-adic L-function characterized by the interpola-

tion property of [16, Theorem 3.7]. Although we will not need here an exact description
of the different factors involved in its definition, let us note that the interpolation region
is not symmetric on the weight ` and m, and in particular it satisfies ` > m. The family
of higher weight along the interpolation region is called dominant. Further, Theorem 2 of
loc. cit. asserts that this function agrees with the two-variable p-adic L-function of the
symmetric square, up to multiplication by a shifted p-adic zeta function.

The p-adic L-function Lp.g; g�/ is intimately related with the class �.g; g�/. Indeed,
one may consider the Perrin-Riou map

hL�Cgg� ; �g ˝ !g�i W H
1
�
Qp;V

�C
gg� y̋ ƒ."cyc"

�1
cyc/

�
! ƒgg� ˝Qp.�N /: (3.3)

This application satisfies an explicit reciprocity law, which is the content of [27, Theorem
B], and which asserts that˝

L�Cgg�
�
��Cp .g; g�/

�
; �g ˝ !g�

˛
D A.g; g�/ � Lp.g; g�/; (3.4)
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where A.g; g�/ is the Iwasawa function of [27, Theorem 10.2.2] and ��Cp .g; g�/ stands
for the composition of the localization-at-p map with the projection Vgg� ! V�Cgg� in local
cohomology.

The different specializations of the map hL�Cgg� ; �g ˝ !g�i can be expressed in terms
of the Bloch–Kato logarithm or the dual exponential map. In particular, we are interested
in the specializations of the class �.g;g�/ at weights .1; 1; 0/, and more generally, weights
.`; `; ` � 1/, where the Perrin-Riou map interpolates, up to some explicit Euler factors,
the Bloch–Kato logarithm. Unfortunately, these factors may vanish in the self-dual case,
and one must resort to the concept of derivatives of Euler systems. In these cases, and to
simplify the exposition, we shrink the weight space fixing a congruence class for `modulo
p � 1 (that is, we restrict to ` � 1 .mod p � 1/).

The following result is our starting point.

Proposition 3.1. Let C denote the codimension two subvariety corresponding to the
Zariski closure of the points .`; `; ` � 1/, that is,

C WD
®
.y; z; �/ 2 Wgg� W y D z; w.z/ D � � "cyc

¯
:

Then, �.g;h/jC D 0.

Proof. For points of the form .`; `; `� 1/, with ` � 2, this is a consequence of the vanish-
ing of the Euler factor in [27, Theorem 8.1.3]. Then, the result follows by a limit argument
using that the corresponding global cohomology module is free, as discussed e.g. in [6,
Section 9.3].

Remark 3.2. Towards our further applications to the specializations at weight one, ob-
serve that with the notations presented in the Introduction H 0.Q; Vgg�.1// D 0. This
follows, for instance, noting that the module Vgg�.1/ does not have any GQp -invariant
(and therefore does not have GQ-invariants neither) by an analysis of the correspond-
ing Hodge–Tate weights. More precisely, the weights of the representation along the line
.`; `; `� 1/ are ¹1; `; `; 2`� 1º, which are never zero given our choice of the congruence
class modulo p � 1. In particular, this explains why the ƒ-adic modules we will consider
are torsion.

Remark 3.3. Proceeding exactly as in [6, Section 9.3], we may construct a (global)
improved class �.g; g�/� along the surface corresponding to the closure of the points of
weight .`;m; s/, withmD s � 1. Then, �.g;g�/D Eg.g;g�/ � �.g;g�/�, where Eg.g;g�/
is an Euler factor which vanishes all along the line C .

3.2. Derivatives of Beilinson–Flach elements

We keep the notations fixed in the introduction regarding weight one modular forms and
units for the adjoint representation. Further, we fix a point of weight one y0 2 Spf.ƒg/

such that gy0 D g˛ and g�y0 D g�
1=ˇ

. As an extra piece of notation, let ˛0g stand for the
derivative of the Up-eigenvalue along the weight direction, and we just write ˛0g for its
evaluation at a certain specialization g of the Hida family.
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In [36, Section 3] we constructed a derivative along the y-direction (alternatively,
keeping y fixed and varying at a time the other two variables). For defining it, we had
considered the curve

D WD
®
.y; z; �/ 2 Wgg� W y D y0; w.z/ D � � "cyc

¯
;

and showed that there exists a unique global class @�p.g;g
�/

@y
2 H 1.Q;Vgg�jD/ such that

�.g; g�/jD D
 � 1

logp./
�
@�p.g; g�/

@y
;

where  is a fixed topological generator. Further, we had established a reciprocity law
(Theorem 3.10 in loc. cit.) expressing a suitable logarithm of this class in terms of special
values of a three-variable p-adic L-function.

Note however that since the weight space is three-dimensional, it makes sense to ask
about the derivative along any other direction (which are defined in a completely analo-
gous way). Since along the line .`; `; ` � 1/ the class is identically zero, the derivative
also vanishes. Hence, by an elementary argument in linear algebra, it suffices to determine
the derivative along any other two independent directions to capture all the first-order
information about the behavior of the class.

For the following Proposition we keep the notations discussed in the Introduction
regarding the fields H and L, and also the unit u and the p-unit v.

To avoid annoying remarks after each of the results, we assume for the moment that

logp.u˛˝ x̌/ � logp.v1/ � logp.v˛˝ x̌/ � logp.u1/ ¤ 0;

and we will discuss at the end of the proof the degenerate case.

Lemma 3.4. The derivative of �p.g;g�/ at .y0; y0; 0/ along the y-direction (keeping fixed
both z and s) satisfies the following equality in H 1.Qp; ad0.Vg/.1//

@�p.g; g�/
@y

ˇ̌̌
.y0;y0;0/

D � �
�

logp.v˛˝ x̌/u � logp.u˛˝ x̌/v
�
; (3.5)

where� 2Hp and we have made use of the usual notations for writing directional deriva-
tives.

Proof. According to the properties of the cohomology classes discussed in [36, Section
3.4] (see also [35, Section 4]) the left-hand side may be written as a combination of the
units u and v, which are a basis of the space H 1

f;p.Q; ad0.g/.1//.
Then, the result follows by applying [27, Proposition 8.1.7] to �.g; g�/ in order to

conclude that its projection to V��gg� is identically zero, and therefore the same is true for
its derivative. Specializing at .y0; y0; 0/, the result automatically follows.

Remark 3.5. Observe that we will use the results of [32] which assert that the Beilinson–
Flach elements lie in the part corresponding to the adjoint in the decomposition Vgg� D
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ad0.Vg/˚ 1. Alternatively, and following the discussion of [35, Section 4], one has that
the projection of the subspace pZ to the adjoint component is trivial.

We can now obtain an expression for Lg˛p .g; g�; 0/ involving the p-adic period �.
In particular, considering the derivative along the analytic direction .1; 0; 0/ we have the
following.

Proposition 3.6. Up to multiplication by an element in L�, the following equality holds

Lg˛p .g; g
�; 0/ �

�
�˛0g

˛g

�
jy0

D � �
�

logp.u˛˝ x̌/ � logp.v1/ � logp.v˛˝ x̌/ � logp.u1/
�
:

Proof. This follows from making explicit the Euler factors in the explicit reciprocity law
of [27, §10] and taking derivatives along the y-direction.

We now obtain an analogous result for the derivative along the z-direction.

Lemma 3.7. The derivative of �p.g;g�/ at .y0; y0; 0/ along the z-direction (keeping fixed
both y and s) satisfies the following equality in H 1.Qp; ad0.Vg/.1// up to a factor in L�

@�p.g; g�/
@z

ˇ̌̌
.y0;y0;0/

D � �
�

logp.v˛˝ x̌/u � logp.u˛˝ x̌/v
�
: (3.6)

Proof. We begin by noting that Lg˛p .g˛; g�1=ˇ ; 0/D L
g�
1=ˇ
p .g�

1=ˇ
; g˛; 0/ .mod L�/, where

the latter corresponds to the function obtained by interpolating along the region where
the Hida family attached to g�

1=ˇ
is dominant. This is immediate by Dasgupta’s theorem

[16, Theorem 2], since the two factors arising in the decomposition does not depend on
choosing either g˛ or g�

1=ˇ
as the dominant factor (alternatively, it follows after a direct

computation with Hida’s factorization, see Proposition 4.3).
Moreover, for h1=˛ D g�1=ˇ we do have a relation between the derivatives of the Up-

eigenvalues, since
.1=˛g/

0

1=˛g
D �

˛0g

˛g
:

Proceeding as before, we may write now

@�p.g; g�/
@z

ˇ̌̌
.y0;y0;0/

D �0 �
�

logp.v˛˝ x̌/u � logp.u˛˝ x̌/v
�
:

Applying now the reciprocity law presented in [36, Theorem 3.7] and proceeding as
in Proposition 3.6, we may conclude that � D �0 .mod L�/. This follows since both the
p-adicL-values and the logarithmic derivatives in the left-hand side agree, as we have just
discussed. (Note that the product of the periods arising when pairing with the differentials
is a rational quantity, as discussed in [36, Section 5.2], so it does not affect the result.)

Therefore, we may determine the derivative along the direction cyclotomic direction
(keeping the weights fixed) by a linear algebra argument.
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Proposition 3.8. Assume that the derivative of �p.g; g�/ along the cyclotomic derivative
is non-vanishing. Then, up to multiplication by scalar, the cyclotomic derivative of the
Beilinson–Flach class �.g; g�/ at .y0; y0; 0/ is

@�p.g; g�/
@s

ˇ̌̌
.y0;y0;0/

D � �
�

logp.v˛˝ x̌/u � logp.u˛˝ x̌/v
�
.mod L�/;

where� 2Hp is the period of equation (3.5) and the equality holds inH 1.Qp; Vgg�.1//.

Proof. Recall that the class vanishes along the line .`; `; `� 1/. Hence, the result follows
from equations (3.5) and (3.6) combined with the fact that

.0; 0; 1/ D .1; 1; 1/ � .1; 0; 0/ � .0; 1; 0/:

Note that although the derivatives along the y and the z direction do not necessarily agree,
they do up to multiplication by L�, so the sum is also a multiple of that quantity by a
factor in L.

Observe that the previous results show that the different derived classes, which are
elements living in a two-dimensional space, span the same line. In the next section, our
aim is determining the value of the period � appearing in Proposition 3.8, which would
complete the proof of our main theorem.

4. Cyclotomic derivatives and proof of the main theorem

4.1. Cyclotomic derivatives

Along this section, we assume that g and g� do not move along Hida families and we
just consider the cyclotomic variation. As an abuse of notation, write �.g; g�; s/ WD
�.g; g�/.y0; y0; s/ to emphasize the dependence on s. The image of this class under the
Perrin-Riou map recovers the p-adic L-function Lg˛p .g; g�; s/, that is, for s ¤ 0,˝

L�Cgg�
�
��Cp .g; g�; s/

�
; �g ˝ !g�

˛
D Lg˛p .g; g

�; s/ .mod L�/: (4.1)

(We have omitted the c-factor in the left since it is a non-vanishing rational factor when
s ¤ 0). Although we have shown that �p.g; g�; 0/ is zero, we do not expect that

Lg˛p .g; g
�; 0/ D 0

in general. This is the same situation we previously found in the setting of circular units:
the Kubota–Leopoldt p-adicL-function of a non-trivial, even Dirichlet characterLp.�; s/
is seen as the image of a ƒ-adic cohomology class �.�; s/ under a Perrin-Riou map;
unfortunately, it happens that �.�;1/D 0when �.p/D 1 and an Euler factor also vanishes,
so we cannot assert (and indeed it is false!) that Lp.�; 1/ D 0.
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Along this section, and since there is no possible confusion, we write �0.g; g�; s/ for
the cyclotomic derivative. Define the improved Perrin-Riou map as

h
AL�Cgg� ;�g ˝!g�iD

 � 1
1
p

logp./
� hL�Cgg� ;�g ˝!g�i WH

1
�
Qp;V

�C
gg� .1� s/

�
!ƒ: (4.2)

Therefore, we have˝AL�Cgg���0�Cp .g; g�; s/
�
; �g ˝ !g�

˛
D p � Lg˛p .g; g

�; s/: (4.3)

Hence, the value of hL�Cgg�.�
�C
p .g; g�; s//; �g ˝ !g�i agrees with˝AL�Cgg���0�Cp .g; g�; s/

�
; �g ˝ !g�

˛
: (4.4)

Let yH�p denote the p-adic completion of H�p . For the following result, consider as
usual the identification

H 1
�
Qp; ad0.Vg/.1/

�
' yH�p

�
ad0.g/

�
˝ Lp; (4.5)

and take the element �0p.g; g
�; 0/, which belongs to the latter space (and may be therefore

identified with a local unit in yH�p ). The same study of [9, Remark 6.5] works verbatim in
our setting, where he argues that the improved Perrin-Riou map is a multiple of the order
map applied to the derived class. However, we want to find out this explicit multiple (at
least, up to multiplication by a rational constant). Compare for example this setting with
the computations of [31, Proposition 2.5.5] and the discussions of Section 3 of loc. cit.,
showing that the improved exponential map they consider is indeed the order map (up to
sign).

Proposition 4.1. Identifying �0�Cp .g; g�; 0/ with an element in . yH�p ˝ L/
GQp , one has

Lg˛p .g; g
�; 0/ D ordp

�
�0�Cp .g; g�; 0/

�
.mod L�/:

Proof. We can rephrase the statement in terms of the well-known theory of Coleman’s
power series. Then, ��Cp .g; g�; s/ may be seen as a compatible system of units varying
over the cyclotomic p-tower, but whose bottom layer is trivial. Hence, we may use the
properties of universal norms and Coleman maps, and invoke the results developed in the
proof of [39, Proposition 3.6], and more precisely (via duality) equation (27).

Then, the p-adic L-value can be obtained applying to �0p.g; g
�; 0/ the map

ord�C W H 1
�
Q; Vgg� ˝ Lp.1/

� pr�C
���! H 1

�
Qp; Lp.1/

� AL�C
gg�;0

����! Qp;

where arguing as in [36, Section 5.2], the map BL�Cgg�;0 corresponds to the usual p-adic
order map multiplied by the p-adic period �g˛„g�1=ˇ , which belongs to L�.

According to (4.4), we conclude that

Lp.g; g
�; 0/ D ordp

�
�0�Cp .g; g�; 0/

�
.mod L�/;

as desired.
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Roughly speaking, the previous theorem says that the derivative of the logarithm is
the order (which can be seen as the dual of the result which interprets the derivative of the
dual exponential as a logarithm).

Corollary 4.2. With the notations introduced along the previous section, and up to multi-
plication by L�,

Lg˛p .g; g
�; 0/ D � � logp.u˛˝ x̌/:

Proof. This directly follows by combining Propositions 4.1 and 3.8.

This can be connected again with the case of circular units, that is, Lp.g; g�; s/ is also
the order of the derivative of �.g; g�; s/ along the s-direction.

4.2. Improved p-adic L-functions

Let

L
�

ad0.g˛/
�
WD
�˛0g.y0/

˛g.y0/
; (4.6)

where recall ˛g D ap.g/ 2 ƒg is the Iwasawa function given by the eigenvalue of the
Hecke operator Up acting on g, and ˛0g is its derivative.

We finish the proof with the same argument invoked in [36], involving Hida’s im-
proved p-adic L-function, which we discussed in detail as Proposition 2.5 of loc. cit.

Proposition 4.3. For a crystalline classical point y0 2 Wıg of weight ` � 1, we have

L
�

ad0.g˛/
�
D Lp.g; g�/.y0; y0; `/ D L0p

�
ad0.gy0/; `

�
;

up to a non-zero rational constant. Then, Theorem 1.1 in the introduction holds.

Proposition 4.4. Assume that the L-invariant L.ad0.g˛// is non-zero. Then, it may be
written as

L
�

ad0.g˛/
�
D

logp.u˛˝ x̌/ � logp.v1/ � logp.v˛˝ x̌/ � logp.u1/

logp.u˛˝ x̌/
.mod L�/:

Proof. Combining Proposition 3.6 with Proposition 4.1, we have that

�

L
�

ad0.g˛/
� � � logp.u˛˝ x̌/ � logp.v1/ � logp.v˛˝ x̌/ � logp.u1/

logp.u˛˝ x̌/

�
D � .mod L�/:

Dividing by � (provided that this value is non zero), the result follows.
Note that if � were zero, by 4.2, we know that Lp.g; g�; 0/ D 0, too. But this value

with the L-invariant, that we have assumed that it is non-zero.

Remark 4.5. If the L-invariant is zero, we have that

Lp.g; g
�; 0/ D L

�
ad0.g˛/

�
D � D 0;
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which is a situation we cannot rule out. In this case, indeed, any directional derivative
of the Beilinson–Flach class is zero and our study is meaningless since both the p-adic
L-function and the Euler system vanish.

5. A reinterpretation of the special value formula

The results discussed along this article were presented in the introduction as a special
value formula for the Hida–Rankin p-adic L-function. Alternatively, they can be regarded
as the computation of the L-invariant for the adjoint of a weight one modular form, and
following the original formulation given by Darmon, Lauder, and Rotger, it also admits a
reinterpretation in terms of a p-adic iterated integral. This point of view is specially useful
towards computational experiments following Lauder’s algorithms [30], as it is further
discussed in [12, Section 3] and [13, Section 1]. It may be instructive for the reader to
look at the discussions in loc. cit., since they offer a broad picture of the algorithmic side
of the story, which was crucial for the formulation of the conjectures and for having a
better understanding of the results.

In order to give a more conceptual view of our results, and how they fit in the theory of
exceptional zeros and Galois deformations of modular forms, we would like two discuss
two other interpretations which were already behind the scenes in our joint works with
Rotger. This section may be safely skipped, and we have included it here to illustrate an
alternative interpretation of our results in the setting of deformation theory.

5.1. Deformations of weight one modular forms

As usual, fix a p-stabilization g˛ of the weight one modular form g 2 S1.N; �/. We
discuss a reinterpretation of the main results in terms of deformations of modular forms, in
a striking analogy with the different works around the Gross–Stark conjecture, and which
may be useful towards generalizations of the main results to totally real fields, following
the recent approach of Dasgupta, Kakde, and Ventullo [18].

Let Ek denote the weight k Eisenstein series, whose Fourier expansion is given by

Ek D
�.1 � k/

2
C

1X
nD1

�k�1.n/q
n; where �k�1.n/ D

X
d jn

dk�1: (5.1)

There are two possible ways of considering its p-adic variation in families, either by taking
the ordinary p-stabilization, Eord

k
, or the critical one, Ecrit

k
. For the sake of simplicity, we

restrict to the ordinary p-stabilization, and after further normalizing by �.1 � k/=2, we
have the usual Eisenstein series G.p/

k
, given by

G
.p/

k
D 1C 2�p.1 � k/

�1

1X
nD1

�
.p/

k�1
.n/qn:
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Since �p.1 � k/ has a pole at k D 0, the previous expression is not defined at that point,
although we may formally interpret it asG.p/0 D 1. It makes sense to consider its derivative
(at least formally), and write

.G
.p/
0 /0 WD 2.1 � p�1/�1 �

1X
nD1

�
.p/
�1 q

n:

Further, we may take the infinitesimal deformationG.p/0 C ".G
.p/
0 /0, and then multiplying

by g˛ we obtain �
G
.p/
0 C ".G

.p/
0 /0

�
� g˛ D g˛ C ".G

.p/
0 /0g˛: (5.2)

We regard this expression as a modular form of weight 1C " corresponding to an infinites-
imal deformation of g˛ .

There is another natural deformation of g˛ we want to consider, which is precisely the
one behind the scenes in [36] and which also appeared in [13]. This is defined as

g0˛ WD

�
d

dy
g˛
�
jyDy0

;

which is a generalized eigenform in the same (generalized) eigenspace. Then, we may
take a second deformation of the modular form g˛ , given by

g˛ C "g
0
˛: (5.3)

Let eord stand for the ordinary projector, and eg˛ for the projector onto the g˛-isotypic
component.

Proposition 5.1. Under the running assumptions,

eg˛eord.g˛G
Œp�
0 / D .1 � ˛gU

�1
p /g0˛ .mod L�/:

Proof. Subtracting the deformations in (5.2) and (5.3), we obtain g˛.G
.p/
0 /0 � g0˛ . If we

furthermore take the ordinary projection and project to the g˛-component, we obtain a
multiple of g˛ , that is

eg˛eord
�
g˛.G

.p/
0 /0

�
D g0˛ CL � g˛: (5.4)

Next, if we apply the operator 1 � ˛gU�1p to both sides of the previous equation, the
left-hand side becomes just the p-depletion

eg˛eord
�
g˛.G

Œp�
0 /0

�
; (5.5)

while in the right-hand side the operator 1 � ˛gU�1p annihilates g˛ . We have thus proved
the result.

Note that the left-hand side is an explicit multiple of thep-adicL-functionLg˛p .g;g�;0/,
so the proposition asserts that the L-invariant which governs the arithmetic of the adjoint
may be read as a generalized eigenvalue attached to the deformation g0˛ , that is,

.1 � ˛gU
�1
p /g0˛ D L

�
ad0.g˛/

�
� g˛ .mod L�/: (5.6)
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5.2. Spaces of generalized eigenvectors

This section is merely speculative and tries to shed some light into very natural questions
around the previously discussed phenomena. When discussing circular units, we have seen
that the condition �.p/D 1 provides us with a p-unit in an extended Selmer group, and we
have discussed how to mimic this approach in the case of Beilinson–Flach elements. But
more generally, given two modular forms g and h of weights ` and m, respectively, and
an integer s, there is a geometric construction of the so-called Eisenstein classes EisŒg;h;s�

whenever the triple .`;m; s/ satisfies the weight condition of [27, Section 7], that is,

1 � s < min¹`;mº:

This includes all the points of weights .`; `; ` � 1/ when ` � 2, and in particular the
classical weight two situation. This suggests an interpretation of the derived class as a
limit of Eisenstein classes (which are generically non-vanishing) for weights ` � 2.

The proof of the explicit reciprocity law for Beilinson–Flach classes rests on an ex-
plicit connection between the p-depleted Eisenstein series (which encodes values of the
p-adic L-function) and the p-stabilized one (which encodes values of the regulator of a
geometric cycle). In this note we recovered the expressions for the logarithm of the derived
class in terms of p-adic L-values, but it is natural to look for a reciprocity law involving
EisŒg;h;s�, whenever h D g� and s D ` � 1. Note that this was the only case excluded by
[28, Theorem 6.5.9]. Let us discuss the limitations for a result like that and that one may
find natural in this framework.

According to [14, Lemma 4.10] and [28, Lemma 6.5.8], the quantity g � hŒp� can be
expressed in terms of g˛h.p/ using the operator 1�˛g �U�1p , where hŒp� (resp. h.p/) stands
for the p-depletion (resp. p-stabilization) of the modular form h. In the non self-dual case,
the corresponding operator acting on the space of generalized eigenforms S1.Np/Jg˛K is
invertible, and we obtain a straightforward linear relation which is crucially used in loc.
cit.

However, when h D g�, the connection is more involved. In this case, consider a
generalized eigenbasis ¹e1; : : : ; enº for the Up-operator acting on the space of generalized
(non-necessarily overconvergent) modular forms S1.Np/Jg˛K, that is,

Up � e1 D ˛g � e1; Up � e2 D e1 C ˛g � e2; : : : ; Up � en D en�1 C ˛g � en: (5.7)

Hence, the matrix corresponding to the operator 1 � ˛g � U�1p acting on this space has
the quantity �1=˛g all over the upper diagonal and zeros elsewhere. If we now apply
this operator to E.p/0 g˛ , written in this basis as

P
�iei , what we get in the first non-zero

component is �1=˛g � �2. That is, the second vector of the generalized eigenbasis is the
one which encodes the p-adicL-value. Therefore, one may consider two different classes.

(a) The class EisŒg;g
�;`�1�, where ` is the weight of g, is related with the first coef-

ficient in the expansion in the generalized eigenbasis (see [27, Corollary 6.5.7]).
This controls the p-stabilization of the Eisenstein series.
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(b) The derived class �0.g; g�/, constructed in [36], is related with the p-adic L-
value, and hence with second coefficient in the generalized eigenbasis. This mea-
sures the p-depletion of the Eisenstein series.

Hence, when g 2 S`.N; �g/ is an ordinary modular form of weight ` � 2, the two
classes ®

EisŒg;g
�;`�1�; �0.g; g�/

¯
are a priori unrelated.

Question 5.2. Can we interpret the class EisŒg;g
�;`�1� in terms of some p-adic L-value?

And can we make sense of the limit of these classes for weights .`; `; ` � 1/ when ` goes
to 1 p-adically?

Note that while the p-depleted class is connected with the usual p-adic L-value, a
priori there is no natural p-adic avatar encoding the value of the p-stabilized class.

Observe that in the setting of diagonal cycles of [6], the authors take a different
approach to the vanishing phenomenon, defining an improved class which is a putative
geometric refinement to the analogue of the Eisenstein class, and which agrees up to some
L-invariant with the derived class.

6. Towards a p-adic Harris–Venkatesh conjecture

It is a somewhat vexing fact that our computations regarding the L-invariant of the adjoint
of a weight one modular form captures a 2 � 2 regulator encoding information about both
a unit and a p-unit, while the most natural object to work would be the unit itself, as
it occurs with the celebrated Gross–Stark conjecture. Similarly, one would expect to be
able to construct an Eisenstein p-adic L-function, in such a way that appropriate special
values of it also capture information about the Beilinson–Flach classes, in a way that we
now make precise. This section is purely conjectural, and must be regarded as a failure in
our current work, where we have not succeeded in studying these aspects.

6.1. Motivic p-adic L-functions

Consider the most general setting in which g and h are two weight one modular forms. As
we have already recalled, there are four Beilinson–Flach classes attached to the choice of
p-stabilizations of g and h,

�.g˛; h˛/; �.g˛; hˇ /; �.gˇ ; h˛/; �.gˇ ; hˇ /: (6.1)

We know that different components of it are related to special values of p-adic L-func-
tions. Take for instance the case of �.g˛; h˛/. Considering its restriction to a decomposi-
tion group at p, and under the assumption that ˛ ¤ ˇ, we may take as in [15, Section 2] a
decomposition of �p.g˛; h˛/ of the form

���p .g˛; h˛/˝ e
_
ˇˇ ˚ �

�C
p .g˛; h˛/˝ e

_
ˇ˛ ˚ �

C�
p .g˛; h˛/˝ e

_
˛ˇ

˚ �CCp .g˛; h˛/˝ e
_
˛˛; (6.2)
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where ¹e_˛˛; e
_
˛ˇ
; e_
ˇ˛
; e_
ˇˇ
º is a basis for V _

gh
D Hom.Vgh; L/, where

Frp.e_˛˛/ D �
�1
gh.p/ˇgˇh � e

_
˛˛; : : : ;Frp.e_ˇˇ / D �

�1
gh.p/˛g˛h � e

_
ˇˇ :

According to [27, Proposition 8.2.6], the component ���p .g˛; h˛/D 0 vanishes. In the
same way, the components ��Cp .g˛; h˛/ and �C�p .g˛; h˛/ are related to the special values
of the Hida–Rankin p-adic L-functions Lpg˛ and Lp

h˛ , respectively. Hence, it is natural
to expect that the remaining component �CCp .g˛; h˛/ could arise as the special value of
some p-adic L-function.

Following the analogy with the case of diagonal cycles and triple product p-adic L-
functions, it would be attached to the triple .E2.1; ��1gh/; g; h/, but varying over the region
where the Eisenstein family is dominant. Of course this is not possible (at least without
any further modification), but let us work formally in terms of the theory of Perrin-Riou
maps. In particular, we may consider the three-variable cohomology class �.g; h/, take
the restriction to the line where both g and h are fixed and take the image under the
Perrin-Riou map. That way we would get an element over the Iwasawa algebra that we
may denote LEis

p .g; h; s/. It may be instructive to compare this with the scenario of triple
products, where the existence of a third p-adic L-function Lp

f , which at points of weight
.2; 1; 1/ interpolates classical L-values, provides a richer framework and draws a more
complete picture.

To simplify things and discuss these phenomena in the framework of the note, let
us focus just on the case where both g and h are self dual, that is h D g�, and keep
the assumptions (H1)–(H3). Recall that this situation naturally splits in two scenarios,
namely h˛ D g�1=ˇ and h˛ D g�1=˛ . As we have mentioned before, we expect the previous
cyclotomic p-adicL-function to encode information about the logarithm of the unit u, and
not about the apparently complicated regulator of our main result.

More concretely, assume that ˛g˛h D 1, and take the class �.g˛; g�1=˛/, although the
same works verbatim for �.gˇ ; g�1=ˇ /. From the general theory of Perrin-Riou maps, we
may consider the map

hLCCgg� ; !g ˝ !g�i W H
1
�
Qp; V

CC
gg� ."cyc"

�1
cyc/

�
! I�1ƒg; (6.3)

with specializations

�s
�
hLCCgg� ; !g ˝ !g�i

�
W H 1

�
Qp; V

CC
gg� .1 � s/

�
! Cp;

where

�s
�
hLCCgg� ; !g ˝ !g�i

�
D
1 � ps�1

1 � p�s
�

´
.�1/s

.�s/Š
� hlogBK; !g ˝ !g�i if s < 0

.s � 1/Š � hexp�BK; !g ˝ !g�i if s > 1:

Observe that we have not said anything about the specializations at s D 0 and at s D 1.
When s D 0 (resp. s D 1), we are still in the region of the Bloch–Kato logarithm (resp.

dual exponential map), but the expression 1 � p�s (resp. 1 � ps�1) vanishes. Rescaling
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the classes appropriately as discussed later on, we may get the image of the previous map
contained in ƒg. Hence, and following [31, Proposition 2.5.5] (see also the computations
of [39, Section 3.1] and [9, Section 6.3]), we have the following.

Lemma 6.1. The map

�0
�
hLCCgg� ; !g ˝ !g�i

�
W H 1

�
Qp; V

CC
gg� .1/

�
! Cp (6.4)

is given by
�0
�
hLCCgg� ; !g ˝ !g�i

�
D .1 � p�1/ � hordp; !g ˝ !g�i: (6.5)

Remark 6.2. Compare this situation with the case of circular units: there, the fact of
taking the derived class was related to the fact that the Coleman map was connected to
an imprimitive p-adic L-function, vanishing at the point of interest and whose derivative
there corresponds to the special value of the Kubota–Leopoldt p-adic L-function.

Define

Lmot
p .g˛; g

�
1=˛; s/ D

˝
LCCgg�

�
�CCp .g˛; g

�
1=˛; s/

�
; !g ˝ !g�

˛
; (6.6)

where �.g˛;g�1=˛; s/ is the restriction of the 3-variable cohomology class to the cyclotomic
line, followed by multiplication by �1

1
p logp./

.
As a piece of notation for the following result, let Lg˛ stand for the period ratio intro-

duced in [15, Section 2].

Proposition 6.3. The special value of the derivative of Lmot
p .g˛; g

�
1=˛
; 0/ satisfies that

Lmot
p .g˛; g

�
1=˛; 0/ D

Lg˛

logp.u˛˝ x̌/
� logp.u1/ .mod L�/:

Proof. When s D 0, the denominator of the Perrin-Riou map LCCgg� vanishes and we are
in the setting discussed before. Then, the Perrin-Riou map is given by the order followed
by the pairing with the canonical differentials, as in (6.5). Since according to the results
of [35, Section 4]

�.g˛; g
�
1=˛/ D

1

„g˛�g�1=˛

logp.u1/ � v � logp.v1/ � u
logp.u˛˝ x̌/

.mod L�/;

the image of �p.g˛; g�1=˛/ under the map (6.5) agrees with

logp.u1/ �
Lg˛

logp.u˛˝ x̌/
.mod L�/:

Further, recall that according to [15, Conjecture 2.3], we expect that Lg˛ must agree
with logp.u˛˝ x̌/ up to multiplication by L�, and this would give just logp.u1/ in the
previous formula.



Ó. Rivero 128

As a final comment, observe that the class �.g˛; g�1=ˇ / vanishes, while neither the cor-
responding numerator nor the denominator of the Perrin-Riou map do. Hence, we expect
the special value to be zero. However, it would be licit to take the derivative of both the
class and the p-adic L-function.

6.2. Critical Eisenstein series

We close this article with a more speculative section, devoted to highlight the connection
with the arithmetic of triple products. Let E2k be the Eisenstein series of weight 2k and
trivial characters, and consider its critical p-stabilization Ecrit

2k
. Then, there is a Coleman

family f passing through Ecrit
2k

, and we may consider the triple product p-adic L-function
attached to .f; g˛; g�1=˛/, where we fix the second and third modular forms (and do not
move them along their families). Let x stand for the weight variable of f and x0 for the
point such that fx0 D Ecrit

2k
. Then, one can easily check that the value of Lpf .f; g˛; g�1=˛/

at the critical Eisenstein specialization vanishes, since it can be recast as the projection
of a cusp form to the Eisenstein component. Hence, it is natural to make the following
definition.

Definition 6.4. For any positive integer k � 2, let

ık D
@Lp

f .f; g˛; g�1=˛/
@x

ˇ̌̌
xDx0

:

Note that the different values of ık are a priori unrelated, and they need not to be the
values of any analytic function (the different Coleman critical Eisenstein series do not live
in the same family).

The general Perrin-Riou formalism establishes a connection between p-adic L-func-
tions and Euler systems, which in this case conjecturally links the value ık with a suitable
class inH 1.Qp;V

CC
gg� .k// (coming from the arithmetic of diagonal cycles). However, with

the current methods we are unable to prove a result of this kind, since it would require a
deeper understanding of the explicit reciprocity laws at critical Eisenstein points. The
following conjecture seems thus a natural degeneration of the results of [6] to the critical
Eisenstein scenario.

Conjecture 6.5. There exists a rigid analytic function f.k/ such that

ık D f.k/ � Lmot
p .g˛; g

�
1=˛; 1 � k/ .mod L�/: (6.7)

In particular, f.1/ measures the relation between the logarithm of the unit of the
adjoint, logp.u1/, and an analytic avatar attached to the triple .E2; g˛; g�1=˛/, on the realm
of the Harris–Venkatesh conjecture. This avatar may be roughly understood as the p-adic
limit when " goes to zero of the pairing between a cusp form of weight 2C " converging
to E2 and d "=2gg�.

A result of this kind is motivated by our forthcoming work with Loeffler on Eisenstein
critical Euler systems, and also by the recent article of Benois and Büyükboduk [4], which
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in a similar situation establish a similar connection between a weight derivative and a
motivic p-adic L-function. Unfortunately, their work excludes the Eisenstein case, but we
hope to explore this connection in further work.

Remark 6.6. In cases of exceptional extra vanishings, one would need to take higher
derivatives of the triple product L-function and consider instead

@rLp
f .f; g˛; g�1=˛/
@xr

;

where r is the order of vanishing at x0.
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