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Equivariant Chow–Witt groups and moduli stacks of
elliptic curves

Andrea Di Lorenzo and Lorenzo Mantovani

Abstract. We introduce equivariant Chow–Witt groups in order to define Chow–Witt groups of
quotient stacks. We compute the Chow–Witt ring of the moduli stack of stable (resp. smooth) elliptic
curves, providing a geometric interpretation of the new generators. Along the way, we also determine
the Chow–Witt ring of the classifying stack of �2n.

1. Introduction

Intersection theory on moduli of curves is a central area of study in algebraic geometry:
in the last forty years, there has been a huge amount of works in this field. Among the
different research directions, an interesting one consists in determining the structure of
the integral Chow ring of moduli stacks of curves, a task which has been accomplished
only in few cases (e.g. [9, 10, 19, 31]).

In [2,11] the authors introduced more refined cycle groups, called Chow–Witt groups,
initiating the so-called quadratic intersection theory. Roughly speaking, if the basic objects
of study in intersection theory are cycles on a variety, i.e., formal sums of subvarieties with
integral or rational coefficients, in Chow–Witt theory we consider cycles with coefficients
in certain Grothendieck–Witt rings of quadratic forms.

The motivation for studying these new invariants is that they are more sensitive to the
arithmetic of the ground field. For instance, quadratic intersection theory can be used to
extend some classical results of enumerative geometry to general base fields, albeit at the
price of “counting with quadratic forms” rather than with integers. For instance in [18]
the authors generalize results of Severi asserting that the difference between the number
of hyperbolic lines and elliptic lines on a real cubic surface is always equal to three. In a
slightly different direction, Chow–Witt groups have turned out to be useful in the study of
characteristic classes of bundles on varieties. Work in this direction has been carried out
extensively in [17, 32], where characteristic classes of SLn-, SPn-, and GLn-bundles have
been studied via an explicit description of the Chow–Witt ring of the classifying stack of
the groups. Similar questions for orthogonal groups are under investigation in [21].

In this framework we direct our attention to moduli stacks of curves, looking for
invariants of quadratic nature. The goal of this paper is to make some small steps in
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this direction, focusing on the moduli stack xM1;1 (resp. M1;1) of stable (resp. smooth)
marked curves of genus one. Our main results consist in defining Chow–Witt ring of quo-
tient stacks and in determining a presentation of the Chow–Witt rings of xM1;1 and M1;1

in terms of generators and relations.

Theorem 1. Let k be a perfect field of characteristic different from 2 and 3, and let GW.k/

denote the Grothendieck–Witt ring of k, with fundamental ideal I . We have isomorphisms
of GW.k/-algebras:

fCH
�
. xM1;1; �/

' GW.k/ŒT;V;H�=.I � T; I � H;H2 � 2h; hV;HV;V2; 24T2; 12HT2 � VT/;fCH
�
.M1;1; �/

' GW.k/ŒT;D;H�=.I � T; I � H;H2 � 2h; hD;HD;D2 C 2D; 6TH; 12T � DT/:

For these computations Chow–Witt classes are indexed by codimension � 2 N and
by twisting � 2 Pic=2. Since the grading is a delicate matter, we direct the reader to
Section 2.1.1 and to the beginning of Section 5 for more details on our conventions for
definitions and for computations respectively. A treatment with more details is given in
[13, Section 1.3] and in [14, Appendix A].

Here is a brief explanation of the significance of the multiplicative generators that
appear above, but we encourage the reader to refer to Theorems 6.4.3 and 6.4.4 for a pre-
cise description, and Section 6.5 for a geometric description. The element T is an element
in degree .1;E/ corresponding to the Euler class of the dual of the Hodge line bundle E

on xM1;1.
The element H lives in degree .0;E/ and is a sort of “twisted” version of hyperbolic

plane, and its presence is somehow not a surprise. More interestingly, the generator V is
an element in degree .1; E˝�12/, it is supported on the divisor of nodal curves �0, and
it is related to the discriminant of the universal family of nodal curves. The elements T,
H restrict to M1;1 maintaining the same meaning, whereas D corresponds to a class of
degree .0;O/ associated to the quadratic form on E˝6 induced by the discriminant of the
universal elliptic curve.

To define Chow–Witt groups of quotient stacks, we follow closely the ideas of [10,29].
These ideas have already been adapted to work with Chow–Witt theory in [17,32], but we
need some further adjustment in order to work with singular stacks and to keep track of
twists. Since our argument is rather abstract, we take the chance for introducing a good
definition of G-equivariant Chow groups for G-varieties with coefficients in a Milnor–
Witt cycle module in the sense of Feld (cf. [14, Section 4]).

At the moment we restrict ourselves with G-varieties X satisfying some technical
assumption (cf. Section 2.2.2) implying that the resulting quotients ŒX=G�may be approx-
imated by open schemes in suitable vector bundles over ŒX=G�. Most likely, one can make
this theory work in higher generality, but to maintain the present paper as self-contained
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as possible we preferred to work under these hypotheses, that hold for all the G-varieties
appearing in this paper.

Our Definition 2.2.6 of equivariant Chow groups with coefficients for a G-variety X
only depends on the associated quotient ŒX=G� (see Proposition 2.2.10), giving thus a
reasonable cycle theory with coefficients for (possibly singular) quotient stacks that can
be nicely approximated by schemes.

To understand the multiplicative structure of xM1;1 and M1;1 we also need some infor-
mation on the Chow–Witt ring of the classifying stacks B�2n. The same approach used
in [21] for nD 1 can be extended for other values of n. In addition we provide a description
of the multiplicative structure.

Theorem 2. Let k be a perfect field of characteristic different from 2n. We have an iso-
morphism of GW.k/-algebras

fCH
�
.B�2n; �/ ' GW.k/ŒT;H;U�=R

where the ideal of relations R is given by

R D .I � T; I � H; hU;HU; nTH;H2 � 2h;U2 C 2U;TU � 2nT/:

The classes T;H are found in degrees .1;U/ and .0;U/ respectively, where U denotes
the universal line bundle on B�2n, and they represent the Euler class e.U_/ and a varia-
tion of the hyperbolic plane respectively. The class U lives in degree .0;O/ and is induced
by the tautological quadratic form on U˝n. In future works, we aim further developing
the machinery of equivariant quadratic intersection theory (e.g. by developing localization
formulas) with the goal in mind to tackle more advanced questions about the structure of
Chow–Witt rings of moduli stacks of curves, and related enumerative problems.

Outline of the paper

In Section 2 we recall some foundational aspects of Chow–Witt theory and, more gen-
erally, of homology groups with coefficients in a Milnor–Witt cycle modules. We then
extend these notions to the equivariant setting, and thus to quotient stacks.

In Section 3 we recall some properties of Chow–Witt groups that will be used in the
subsequent computations.

In Section 4 we collect some geometric facts on the classifying stacks BGm and B�2n
and on the moduli stacks xM1;1 and M1;1. The geometry of these stacks of curves is tightly
related to that of some vector bundles on BGm and to B�2n. It is this tight relation that
allows us to cleanly carry out our approach.

In Section 5, after recapping what is known on the Chow–Witt ring of BGm, we
compute the Chow–Witt ring of B�2n: we first describe its additive structure (Proposi-
tion 5.2.3) and subsequently its multiplicative structure (Theorem 5.3.4).

In Section 6 we compute the Chow–Witt rings of xM1;1 and M1;1. We warm up by
computing the I�-cohomology of xM1;1 (Proposition 6.1.1), which we need as input of
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the main computation. Then we determine the additive structure of Chow–Witt groups
(Propositions 6.2.1 and 6.3.5) and after that we conclude with the multiplicative part
(Theorems 6.4.3 and 6.4.4). Finally we give a geometric description of the new multi-
plicative generators appearing in the descriptions above (cf. Section 6.5).

In Appendix A we give a gentle introduction to Chow–Witt groups and some of their
main properties. This Section is aimed for those readers who have little or no back-
ground in algebraicK-theory and motivic cohomology theories, but perhaps they are more
acquainted with the usual theory of Chow groups.

Conventions and notation

All schemes are assumed to be of finite type over a perfect field k of characteristic ¤ 2.
All stacks are stacks on the site of schemes over k, endowed with the fppf topology. We
recall the following standard notation:

GW.�/ the Grothendieck–Witt ring
W.�/ the Witt ring
I.�/ the fundamental ideal both in GW.�/ and W.�/

KM
� .�/ the Milnor K-theory ring

KMW
� .�/ the Milnor–Witt K-theory ring

kM
� .�/ the mod 2 Milnor K-theory ring.

When no field is specified in the symbols above, we are implicitly thinking of correspond-
ing object for the ground field. If K� is a Milnor–Witt cycle module and X is a variety (or
a quotient stack), the notation

Hi;j .X;K�;L/

always refers to the homology groups of a suitable cycle complex with coefficients in K�.
Upper indices are used only for smooth varieties (resp. stacks) when one can actually
harmlessly confuse the homology groups of such cycle complexes with the Nisnevich
cohomology groups of unramified sheaves associated with K�.

We will use the following standard notation for Cartier divisors: if ¹Uiºi2I is an affine
covering of a scheme X , the notation ¹.Ui ; fi /ºi2I stands for the Cartier divisor D � X
whose equation in each affine open subset Ui is fi D 0.

For a locally free sheaf F on a variety X , we will denote V .F / the associated vector
bundle on X . We adopt here the convention V .F / WD Spec Sym.F _/, where F _ is the
dual of F .

2. Equivariant Chow–Witt groups

The ultimate goal of this section is to introduce a sensible notion of Chow–Witt groups
with coefficients for quotient stacks. In Section 2.1, we briefly recall some notation on
cycle complexes with coefficients in a Milnor–Witt cycle modules twisted by virtual vector
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bundles. We compare the homology groups of such complexes with motivic Borel–Moore
homology of the spectrum associated with the cycle module. For smooth equidimensional
varieties we introduce a cohomological notation too, indexing cycles by codimension. In
Section 2.2 we extend the notion of homology and cohomology of cycle complexes to the
equivariant setting via the now standard technique introduced by Totaro in [29] and further
developed in [10] and in [17]. We conclude with an observation on how the equivariant
Borel–Moore homology theory introduced here is actually an invariant of the associated
quotient stack.

In the second part of the section we will fix a smooth affine algebraic group G over k.

2.1. Classical theory

2.1.1. Chow–Witt groups are naturally indexed on graded line bundles and more gener-
ally on virtual vector bundles; we recall these notions first.

Let X be a variety of finite type over k. The graded Picard groupoid G .X/ is the
category of pairs .L; a/ where L is a line bundle on X and a 2 H0.X;Z/; the set of
morphisms of G .X/ from .L; a/ to .M; b/ is that of OX -linear isomorphisms ' W L!
M if a D b and ; otherwise. The groupoid G .X/ is made into a symmetric monoidal
category via .L;a/˝ .M;b/ WD .L˝M;aC b/ and the symmetry isomorphism .L;a/˝

.M; b/! .M; b/˝ .L; a/ is defined to be l ˝m 7! .�1/abm˝ l .
Let us consider now the Quillen K-theory space K.X/ D �BQVect.X/ of X , and

let us denote by K.X/ its fundamental groupoid. In [8, Section 4.2], Deligne calls K.X/
the category of virtual objects of the exact category Vect.X/. We will denote by C the
monoidal structure induced on K.X/ from the direct sum of vector bundles, and by 0 the
neutral element. Similarly for r 2 Z, the symbol r will denote the virtual vector bundle
of rank r . The category K.X/ is used to index the twists of Chow–Witt groups with
coefficients in the work of Feld. The grading by K.X/ is related to the grading by G .X/

via the graded determinant

D W K.X/! G .X/; v 7!
�

det.v/; rk.v/
�
;

which turns out to be a symmetric monoidal functor (cf. [8, Section 4.13]).
If X D ŒX=G� is a quotient stack one gives a similar definition of K.X/ starting from

the exact category of vector bundles Vect.X/ on X, or equivalently from the exact category
of G-vector bundles VectG.X/ on X .

Let E be an exact category (in the sense of Section 2 of [24]) which is a full sub-
category of an abelian category A so that the inclusion functor be exact. By combining
Theorem 1.11.2 and Theorem 1.11.7 of [28] we have a canonical homotopy equiva-
lence of spaces between the Quillen K-theory space K.E/ and the Waldhausen K-theory
space of E�, where E� is the category of bounded chain complexes in E with a suitably
defined Waldhausen structure (cf. 1.11.6 where the players of Theorem 1.11.7 are prop-
erly introduced). In our context, this implies that a bounded complex of vector bundles on
a scheme (or algebraic stack) X gives a well-defined object of K.X/. To be even more
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general, one can replace E� with its associated1-category, and obtaining an equivalent
K-theory space (cf. [4, Section 7]). In particular the cotangent complexLf of a morphism
f W X ! Y between smooth schemes over a field k, has always a canonically defined
object Lf 2 K.X/.

2.1.2. LetX be a k-variety, let .L; a/ be a graded line bundle onX and j an integer. For
every point x 2 X denote by k.x/ the residue field at x, and by �k.x/=x the k.x/-vector
space of relative differential 1-forms. The Rost–Schmid complex C�.X;KMW

� ; j;L; a/

with coefficients in Milnor–Witt K-theory is the chain complex with i -th term

Ci .X;KMW
� ; j;L; a/ D

M
x2X.i/

KMW
iCj

�
k.x/;D.�k.x/=k/˝ .Lx ; a/

�
: (2.1)

Here KMW
p .k.x/; D.�k.x/=k/ ˝ .Lx ; a// denotes the degree p Milnor–Witt K-theory

of the residue field at x, twisted by the one dimensional graded k.x/-vector space
D.�k.x/=k/˝ .Lx ; a/. We redirect the reader to [13, Section 1.1] for a detailed definition
of twisted Milnor–Witt K-theory, or to Appendix A for a brief account.

The differential di W Ci .X;KMW
� ; j;L; a/ ! Ci�1.X;KMW

� ; j;L; a/ is constructed
using a combination of the residue maps for discrete valuation rings and the geometric
transfer maps in Milnor–WittK-theory: the construction can be found in [13, Section 2.1].
With our definitions C�.X; KMW

� ; j;L; a/ is a well-defined chain complex, which we
regard as concentrated in range Œd; 0�.

Definition 2.1.3. The Chow–Witt group of i -dimensional cycles onX twisted by .L;a/ 2
G .X/ is fCHi .X;L; a/ D Hi

�
C�.X;KMW

� ;�i;L; a/
�
:

Similarly we define

Hi;j .X;KMW
� ;L; a/ D Hi

�
C�.X;KMW

� ;�j;L; a/
�
:

The definition of Chow–Witt groups above, for a D 1, coincides with the one given in
Section A.3.2.

2.1.4. In fact for having a natural comparison with other motivic theories one should
really consider twists by v 2 K.X/, defining

C�
�
X;KMW

� ; j; hvi
�
WD C�

�
X;KMW

� ; j;D.v/
�
:

Definition 2.1.5. The Chow–Witt group of i -dimensional cycles on X twisted by v 2
K.X/ isfCHi

�
X; hvi

�
WD Hi

�
C�
�
X;KMW

� ;�i; hvi
��
D Hi

�
C�
�
X;KMW

� ;�i;D.v/
��
:

Similarly

Hi;j
�
X;KMW

� ; hvi
�
D Hi

�
C�
�
X;KMW

� ;�j; hvi
��
D Hi

�
C�
�
X;KMW

� ;�j;D.v/
��
:
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2.1.6. Let n denote a virtual vector bundle of rank n. We have isomorphismsfCHi
�
X; hvi

�
' fCHi

�
X; hv C ni

�
;

Hi;j
�
X;KMW

� ; hvi
�
' Hi;j

�
X;KMW

� ; hv C ni
�
;

since modifying the rank of v does not influence the chain complex C�.X;KMW
� ; j; hvi/.

However the isomorphism nC v ' v C n induces an isomorphism on the homology of
the Rost–Schmid complexes, whose sign depends on n.

2.1.7. Milnor–WittK-theory is a particular example of Milnor–Witt cycle module in the
sense of [14] (cf. [14, Theorem 3.20] for a proof). Given any Milnor–Witt cycle mod-
ule K�, Feld assigns to every k-variety X and every v 2 K.X/ a Milnor–Witt cycle
complex [14, Definition 5.4] �

CF� .X;K�; v/; d
F
�

concentrated in homological degrees Œd; 0�, and corresponding Chow–Witt groups with
coefficients [14, Definition 7.2]

Ai .X;KMW
� ; v/ WD Hi

�
CF� .X;K�; v/

�
:

Let us denote by n the trivial virtual vector bundle of rank n. The complex we have intro-
duced in Section 2.1.4 compares with Feld’s definition as follows:

CF� .X;K
MW
� ; v/ D C�

�
X;KMW

� ; rk.v/;D.v/
�
dFi D di ;

and in particular the two cycle theories compare via canonical isomorphism

Ai .X;KMW
� ; v/ ' Hi;� rk.v/

�
X;KMW

� ; hvi
�
:

Recall that in [15], the author constructs an equivalence between the category of the so
called Milnor–Witt cycle modules and the heart of the motivic stable category SH.k/~.
In [15, Section 3.2] the author indeed defines a functor E 7! yE that associates with every
E 2 SH.k/ the functor

yE W .L; v/ 7!
�
1SpecL; †

� rk.v/ Th.v/
�
L
;

where k � L is any finitely generated field extension, v 2K.L/, Th.�/ denotes the Thom
space construction, and Œ�;��L denotes the Hom groups of the homotopy category of
SH.L/. The author then proves (cf. [15, Theorem 3.3.3]) that yE has canonically the struc-
ture of a Milnor–Witt cycle module, and that E 7! yE is an equivalence when restricted to
SH.k/~ (cf. [15, Section 4]).

Recall that every Milnor–Witt cycle module K� yields a Borel–Moore homology
theory on k-varieties of finite type by simply taking homology groups of the complex
CF� .X;K�; v/. On the other hand, with every objectE 2 SH.k/we can associate a Borel–
Moore homology theory for k-varieties of finite type by setting:

EBMi;j
�
X=k; hvi

�
WD
�
†i;j Th.v/; pŠXE

�
X
;
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where i and j are integers, v 2 K.X/, Th.v/ is the Thom spectrum of v and pX W X !
Spec k denotes the the structure morphism. More generally we will denote by pT the
structure morphism of any k-scheme T .

Proposition 2.1.8. Let X be any separated k-variety of finite type, v 2 K.X/ a virtual
bundle. Moreover let E 2 SH.k/~ and K� D yE be the corresponding Milnor–Witt homo-
topy module. Then we have a natural identifications

AiCrk.v/.X;K�;�v � n/ ' EBMiCn;n
�
X=k; hvi

�
:

Proof. We use the niveau spectral sequence on X converging to the cohomology of the
Thom space Th.v/ represented by the motivic spectrum pŠE 2 SH.X/, (cf. [5, Definition
3.1.5]). In terms of Borel–Moore homology the spectral sequence reads:

E1p;q D
M
x2X.p/

colimU�¹xº EBM
pCqCn;n

�
U; hvjU i

�
) EBM

pCqCn;n

�
X; hvi

�
;

with differential dkp;q W E
k
p;q ! Ek

p�k;qCk�1
, and where colimits range over the collection

of open subsets of the closure of ¹xº. We want to show that the complexes E1
�;q

can be
canonically identified with CF� .X; yE

0;�v � n/, where E 0 WD †� rk.v/�qE.
Unrolling definitions the spectral sequence reads:

E1p;q D
M
x2X.p/

colimU�¹xº

�
†pCqCn;n Th.vjU /; pŠUE

�
U
)
�
†pCqCn;n Th.v/; pŠXE

�
X
:

For every x 2 X the colimits appearing on the page can be restricted to smooth open
subschemes U of the closure of x. Combining this with the continuity property of coho-
mology, we canonically identify

colimU�¹xº

�
†pCqCn;n Th.vjU /; pŠUE

�
U
'
�
†pCqCn;n Th.vx/; p�xE ˝ Th.�1k.x/=k/

�
x
;

where vx denotes the pull-back of v to k.x/. If we set r WD rk.v/ then E 0 D†�r�qE, and
we obtain the following chain of canonical isomorphism�

†pCqCn;n Th.vjx/; p�xE ˝ Th.�1k.x/=k/
�
x

'
�
1k.x/; p�xE ˝†

�p�qCn Th.�1k.x/=k � vx � n/
�
x

'
�
1k.x/; p�xE ˝†

�q�r†�pCrCn Th.�1k.x/=k � vx � n/
�
x

'
�
1k.x/; p�xE

0
˝†�pCrCn Th.�1k.x/=k � vx � n/

�
x

D bE 0�k.x/;�1k.x/=k � vx � n�
D bE 0.x;�vx � n/:

The last two equalities holds literally by definition (cf. the beginning of Section 3.2 of [15]
and the beginning of Section 4 of [14] for the second last and last equalities respectively).
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Thus
E1p;q '

M
x2X.p/

bE 0.x;�1k.x/=k � vx � n/ D CFp .X; bE 0;�v � n/;
where the last equality is the definition of the cycle complex of a Milnor–Witt cycle mod-
ule (cf. [14, Definition 5.4]).

The next step consists in identifying the differentials, i.e., proving that the diagram

E1p;q E1p�1;q

CFp .X;
bE 0;�v � n/ CFp�1.X;

bE 0;�v � n/
d1p;q

' '

dF

commutes. The proof of this fact is very similar to the proof of [15, Theorem 3.3.2], so we
do not repeat it here, but we rather suggest the required modifications to Feld’s argument.
In the proof of Theorem 3.3.2 the author is working with the niveau spectral sequence
constructed out of E-cohomology with support, whereas here we have used E-Borel–
Moore homology. Replacing every occurrence of E-cohomology with E-Borel–Moore
homology relative to the base field k, and every occurrence ofE-cohomology with support
with E-Borel–Moore homology of the support does the trick. The ingredients statements
2.3.7–10 of [15], work for E-Borel–Moore homology directly. Finally the smoothness
assumption of the Theorem 3.3.2 can be completely dropped, since this assumption is only
used to replace cohomology of the ambient variety X with support in a closed subscheme
T with the actual cohomology of the subscheme. This identification comes for free with
Borel–Moore homology, for any finite type variety X .

We are now ready to finish the argument. We have�
†pCqCn;n Th.vjx/;Th.�1k.x/=k/˝ p

�
xE
�
x
' Œ†pCqCnC2r;nCr ; †2p;pp�xE�

' �qCr .E/p�r�n
�

Spec k.x/
�
;

where �k.E/j denotes the k-th homotopy module of the spectrum E in weight j . Since
E 2 SH.k/~, we have that �k.E/j D 0 if k 6D 0 independently of j . The niveau spectral
sequence thus collapses at page E2, yielding a canonical isomorphism

EBMiCn;n
�
X=k; hvi

�
D HiCr

�
CF .X;K�;�v � n/

�
:

2.1.9. When p W X ! Spec k is a smooth k-variety, Ayoub’s purity equivalence

pŠ.�/ ' Th.�1X=k/˝ p
�.�/

in SH.X/ induces an isomorphism in any motivic cohomology theory E

EBMiCj;j
�
X=K; h�1X=k � vi

�
' E�i�j;�j .X; v/:

This motivates the following definition.
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Definition 2.1.10 (cf. [13, Section 2.1]). Let X be a smooth equidimensional k-variety of
dimension d , and K� a Milnor–Witt cycle module. For a graded line bundle .L; a/ and a
virtual vector bundle v 2 K.X/ we define

C �.X;KMW
� ; j;L; a/ WD Cd��

�
X;KMW

� ; j � d;D.�1X /
�1
˝ .L; a/

�
regarded as a cochain complexes concentrated in cohomological degrees Œ0; d �. Moreover
we set

H i;j .X;KMW
� ;L; a/ WD H i

�
C �.X;KMW

� ; j;L; a/
�

D Hd�i;d�j
�
X;KMW

� ;D.�1X /
�1
˝ .L; a/

�
;

and the twisted cohomological Chow–Witt groupsfCH
i
.X;L; a/ WD H i;i

�
X;KMW

� ;L; a
�
D fCHd�i

�
X;D.�1X /

�1
˝ .L; a/

�
:

Following Feld’s Definition 7.2 of [14], for v 2 K.X/ we set

Ai .X;K�; v/ WD Ad�i .X;K�; v/:

2.1.11. After Corollary 8.5 of [14], for every Milnor–Witt homotopy module K� and
every smooth variety X we have a canonical isomorphism

Ai .X;K�; v/ ' HiZar

�
X;Ai

X .K�; v/
�
;

where Ai
X .K�; v/ denotes the Zariski sheafification of the presheaf U 7! A0.U;K�; v/. In

particular, for K� D KMW
� we have

H i;j .X;KMW
� ;L; a/ D HiZar

�
X;KMW

j;X .L; a/
�
;

where KMW
j;X .L; a/ denotes the Zariski sheafification of U 7! H 0;j .U;KMW

� ;L; a/.

2.2. Equivariant theory

2.2.1. Let G be a smooth affine algebraic group (of finite type) over k. Recall [29,
Remark 1.4] that given an integer c we can always find a pair .V; U / where V is a repre-
sentation of G, U is an open subset of the vector bundle V .V /! Speck associated to V ,
and such that .V; U / satisfies the following properties:

(1) the complement S D V .V / X U has codimension > c;

(2) U is G-stable and the induced action of G on U is free;

(3) the quotient U=G is a variety over k.

In this setting U=G is called an equivariant scheme approximation of BG in codimen-
sion � c. With a little but common abuse of notation, we will denote with the same name
the pair .V; U /.

This condition essentially means that if X is a k-variety, then every cycle Z on X
with codimX .Z/ � c pulls back to a cycle on X � V .V / not entirely contained in X � S .
(The same observation holds for cycles on X of dimension � dim.X/ � c > dim.S/C
dim.X/ � rk.V /.)
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2.2.2. Let X be a finite type variety over k endowed with an action of G, and assume G
satisfies the above assumptions in Section 2.2.1. Suppose that one of the following holds:

(1) The reduced scheme Xred is quasi-projective and the action of G is linearized
with respect to some quasi-projective embedding.

(2) The group G is connected and Xred embeds equivariantly as a closed subscheme
in a normal variety.

(3) The group G is special.

Then for every equivariant scheme approximation .V; U / of BG in codimension � c, the
quotient of X � U modulo the diagonal action is a scheme [10, Proposition 23]. This
quotient is denoted by X �G U .

Recall that given X and G as above, we can define the stack ŒX=G� whose S -points,
for S a scheme, are G-torsors P ! S together with a G-equivariant map P ! X . The
stack ŒX=G� is in general an Artin stack (see [27, 04TK]) and is usually referred to as
quotient stack. The scheme X �G U is called an equivariant scheme approximation of
ŒX=G� in codimension � c.

2.2.3. LetX be anyG-variety and let .V;U / be an equivariant scheme approximation of
BG. Since the action ofG on U (resp. onX �U ) is free, the quotient map � W U ! U=G

(resp. � W X �U ! X �G U ) is aG-torsor. In particular, aG-line bundle L (resp. a point
e of the G-equivariantK-theory space) of X determines via pull-back a line bundle (resp.
a point of the K-theory space) on X �G U , which we will keep denoting by L (resp. e).
The following commutative diagram should help to give a clear picture of the geometric
setup.

V .V / Spec k

X � U X � V .V / X�
V .V /=G

�
BG

X �G U
�
X � V .V /=G

�
ŒX=G�

i 0

� 0

p0

� 0

�

i p

(2.2)

Note that all squares are cartesian, the higher lever of the diagram is G-equivariant, and
that one can pass from the higher to the lower level by taking the stack-theoretic quotient
modulo G.

There is a locally free sheaf on X �G U , defined by taking the 0-th Zariski coho-
mology sheaf of the relative cotangent complex Lpıi . The reader can refer to [20, Chap-
ter 17] for more details on the relative cotangent complex of a 1-morphism of stacks.
Since p ı i is smooth and representable by schemes, Lpıi is concentrated in degree zero
(cf. Lemma 17.5.8 of loc. cit.). Since forming the cotangent complex commutes with flat
base chance (Theorem 17.3 (4) of loc. cit.) and LX�U=X is quasi-isomorphic to �1

X�U=X
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we deduce that � 0�Lpıi is quasi-isomorphic to the pull-back of V _ to X �U . This shows
that Lpıi is canonically represented by the locally free sheaf concentrated in degree 0
induced by the G-locally free sheaf V _ on X � U .

We refrain from using the heavy notation LX�GU=ŒX=G� in what follows, and abu-
sively stick instead with the symbol V _, thinking of it as “the bundle induced by V _”.
We associate to V _ its graded determinant D.V _/ 2 G .X �G U/ and its class V _ 2
K.X �G U/.

Lemma 2.2.4. Let X be variety over k, let e 2 K.X/, and let Z � X be a closed sub-
scheme of dimension < i � 1. Then for every Milnor–Witt cycle module K� the restriction
map Ap.X;K�; e/! Ap.X nZ;K�; e/ is an isomorphism in all degrees p � i and in all
twists e 2 K.X/.

Proof. It follows directly from the localization sequence (cf. [14, Section 7.4]), combined
with the fact that the complex CF� .Z;K�; hei/ is concentrated in degrees Œdim.Z/; 0� and
dim.Z/ < p � 1.

Lemma 2.2.5. LetX be a variety over k and let � W V .E/!X be a rank r vector bundle
on X . Then � induces an isomorphism

Ap.X;K�; e/! ApCr
�
V .E/;K�;��1V .E/=X C e

�
for all choices of p and e. Furthermore we have a canonical isomorphism �1V .E/=X '

��E_.

Proof. This is Theorem 9.4 of [14]. Alternatively, we can deduce it from the general prop-
erties of Borel–Moore homology (cf. [7, Section 2.1.3]). The second part of the statement
is well known.

Definition 2.2.6. Let G be a smooth affine algebraic group over k of dimension g and
let X be a G-variety over k satisfying any of the assumptions of Section 2.2.2. For every
graded line bundle .L; a/ on ŒX=G� and every pair of integers i and j we setfCH

G

i .X;L; a/ WD
fCHiCl�g

�
X �G U;D.V

_/�1 ˝ .L; a/
�

and similarly

HG
i;j .X;K

MW
� ;L; a/ WD HiCl�g;jCl�g

�
X �G U;KMW

� ;D.V _/�1 ˝ .L; a/
�
;

where .V; U / is any scheme approximation of BG in codimension � dim.X/ � i C 1
with dimk.V / D l ; the objects L and D.V _/ are those induced on X �G U as described
in Section 2.2.3.

Analogously for every Milnor–Witt cycle module K�, every e 2 K.ŒX=G�/ and i 2 Z
we set

AGi .X;K�; e/ WD AiCl�g.X �G U;K�;�V
_
C g C e/:

where .V; U / is any equivariant scheme approximation of BG in codimension less or
equal to dim.X/ � i C 1.
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For X smooth, we can also define equivariant cohomology groups, for which a duality
akin to that of Definition 2.1.10 holds (cf. Remark 2.2.8 below). Recall that since G is
smooth, the stack ŒX=G� is smooth if and only if X is. Thus when X is smooth and
.V; U / is any scheme approximation, X �G U is automatically a smooth scheme, since
it is open in a vector bundle ŒV .V / � X=G� over ŒX=G�. In particular for X D Spec k
the approximation U=G is always smooth. For this reason, when we deal with smooth
stacks we do not have to worry about providing an explicit smooth equivariant scheme
approximation, because the smoothness of the approximation will be automatic.

Definition 2.2.7. Let G be a smooth affine algebraic group over k of dimension g and let
X be a smooth and equidimensional G-variety over k satisfying any of the assumptions
of Section 2.2.2. For every .L; a/ 2 G .ŒX=G�/ and every pair of integers i and j we set

fCH
i

G.X;L; a/ WD
fCH

i
.X �G U;L; a/

and similarly
H
i;j
G .X;KMW

� ;L; a/ WD H i;j .X �G U;KMW
� ;L; a/;

where .V;U / is any scheme approximation of BG in codimension � dim.X/� i C 1 and
.L; a/ is induced on X �G U as described in Section 2.2.3.

Analogously, for every Milnor–Witt cycle module K�, every e 2K.ŒX=G�/ and every
integer i we set

AiG.X;K�; e/ WD A
i .X �G U;K�;�V _ C e/;

where .V; U / is any equivariant scheme approximation of the classifying stack BG in
codimension � dim.X/ � i C 1, while e is induced as described in Section 2.2.3.

Remark 2.2.8. Let X be a smooth G-scheme of dimension d . In particular ŒX=G� is
a smooth k-stack and its cotangent complex LŒX=G�=k is a perfect complex. Actually
LŒX=G�=k is quasi-isomorphic to a two-term complex of G-vector bundles on X

�1X=k ! g_ ˝k OX ;

where g is the Lie algebra of G with the adjoint action (cf. [3, p. 586]). In light of
Section 2.1.1 LŒX=G�=k gives a well-defined object of K.ŒX=G�/.

Let .V; U / be an equivariant scheme approximation of BG in codimension � i C 1.
In view of diagram (2.2), on X �G U we have an exact triangle of perfect complexes

.p ı i/�LŒX=G�=k ! LX�GU=k ! LX�GU=ŒX=G�;

so that .p ı i/�LŒX=G�=k is naturally the virtual vector bundle �1
X�GU=k

��1
X�GU=ŒX=G�

on X �G U . It follows that for every virtual vector bundle e on ŒX=G� we have the chain
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of canonical isomorphism:

fCH
i

G.X;L; a/

' fCH
i
.X �G U;L; a/

' fCHd�iCl�g
�
X �G U;D.��

1
X�U=k/˝ .L; a/

�
' fCHd�iCl�g

�
X �G U;D

�
��1X�GU=ŒX=G� � .p ı i/

�LŒX=G�=k
�
˝ .L; a/

�
' fCH

G

d�i

�
X;D.�LŒX=G�=k/˝ .L; a/

�
:

This shows that the usual duality between Borel–Moore homology and cohomology
is extended to the equivariant setting. The same argument shows that we also have

H
i;j
G .X;KMW

� ;L; a/ ' HG
d�i;d�j

�
X;KMW

� ;D.�LŒX=G�=k/˝ .L; a/
�
:

A similar statement holds for the homology of any Milnor–Witt cycle module.

2.2.9. As for Chow groups, all the definitions above do not depend on any choice. The
proof, which we sketch below, is basically the same of [10, Proposition 1].

Proposition 2.2.10. Let K� be a Milnor–Witt cycle module over k. Then we have that the
definition of AGi .X;K�; e/ does not depend on .V;U /, as long as .V;U / is an equivariant
scheme approximation of BG in codimension � dim.X/� i C 1. In particular, under the
same assumptions, the same holds for the groups HG

i;j .X;K
MW
� ;L; a/. For X smooth, the

same statement holds for the respective cohomology groups.

Proof. The statement for HG
i;j .X;K

MW
� ;L; a/ follows from the main statement by choos-

ing a rank zero e with determinant isomorphic to L.
The first point consists in proving that, given a representation V , our definition does

not depend on the choice of U . Assume that .V; U / and .V; U 0/ are both approxima-
tions in codimension � dim.X/ � i C 1. Up to further restricting to .V; U \ U 0/ we can
immediately reduce to the case where U 0 � U .

Let us also denote by Z and Z0 the complements in V of U and U 0 respectively. We
can apply Lemma 2.2.4 to the decomposition X �G U 0 � X �G U � X �G .U \ Z0/.
By assumption we have

rk.V / � dim.Z0/ > dim.X/ � i C 1

which implies that

dim
�
X � .U \Z0/

�
� dim.X/C dim.Z0/ < i � rk.�V _ C e/ � 1;

which in turn gives

dim
�
X �G .U \Z

0/
�
< i � g C rk.V _/ � 1:



Equivariant Chow–Witt groups and moduli stacks of elliptic curves 329

Therefore, using Lemma 2.2.4, we can conclude that up to a canonical isomorphism the
definition of AGi .X;K�; e/ does not depend od the choice of U .

Now we check that Definition 2.2.6 does not depend on the choice of V . If .V; UV /
and .W;UW / are two approximations in codimension� dim.X/� i C 1, we can consider
the approximation given by the open subscheme UV˚W WD V .V / � UW \ UV � V .W /
of V .V ˚ W /, so that .V ˚ W; UV˚W / in an approximation of BG in codimension
� dim.X/ � i C 1.

We then consider the quotient of the G-equivariant diagram

X � UV˚W_�

jV

��

� � jW // X � V .V / � UW
p0
// X � UW

X � UV � V .W /

q0

��

X � UV

by the (free) diagonal action ofG on each term. Here the external maps p0 and q0 are vector
bundles induced by p W V .V /!� and q W V .W /!� under pull-back, while the internal
maps are the tautological open embeddings associated with the definition of UV˚W .

On V .V ˚W / we have natural G-isomorphisms of locally free sheaves,

�q0 ˚ q
0��p

'
 � �V .W˚V /

�
�! �V .V˚W /

'
�! �p0 ˚ p

0��q

inducing isomorphisms

�W _ � V _ C e ' �.W C V /_ C e ' �.V CW /_ C e

' �V _ �W _ C e (2.3)

in K.X �G UV˚W /.
Let now l D rk.V / and m D rk.W /. By Lemmas 2.2.5 and 2.2.4 pulling back along

q0 ı jV induces an isomorphism

AiCl�g.X �G UV ;K�;�V _ C g C e/

! AiClCm�g.X �G UV˚W ;K�;�W _ � V _ C g C e/:

Combining with the isomorphism induced by (2.3) and the inverse of the pull-back
map along p0 ı jW concludes the argument.

2.2.11. The preceding proof, although formal, is very relevant for our paper. A similar
technique can indeed be used to extend most properties of ordinary Chow–Witt groups
of varieties, to the equivariant setting, provided that the property we are interested in be
“compatible” with pulling back along a smooth map. This is completely analogous to
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what happens for Chow groups, both in terms of properties that can be extended to the
equivariant setting, and both in the proof technique (see [10, Section 2.3]). Here is how
things work. Definitions, constructions and properties are first given in terms of a cho-
sen scheme approximation .V; U / where the classical theory with classical constructions
can be used. One then has to check the independence of the choice of approximation. If
.V 0;U 0/ is another scheme approximation, the two can be compared by passing to an open
of V ˚ V 0 via the zig-zag

V  V ˚ V 0 ! V 0:

For doing so the only operations that are required are pulling-back along vector bundle
projections, and restricting along open subschemes (with complements of high enough
codimension).

Following this strategy one can extend the cycle theory H�1;�2.�; KMW
� ; �/ to the

equivariant setting of group actions (satisfying the assumptions of Sections 2.2.1 and
2.2.2) and equivariant maps, or equivalently to the setting of quotient stack of finite type
with representable morphisms. We gather here those properties of the resulting equivariant
cycle theory that will be used in the rest of the paper.

Theorem 2.2.12. Let k be a perfect field of characteristic not 2, and let G be a smooth
affine algebraic group of finite type over k. For every G-scheme X of finite type over k
satisfying one of the assumptions of Section 2.2.2, and every pair of integers i; j 2 Z we
have a well-defined group

HG
i;j .X;K

MW
� ;L; a/;

which is functorial in .L; a/ and with the following extra structure.
(1) The functor M

i;j

HG
i;j .X;K

MW
� ;�/ W G .X/! AB

is a left module over the monoidal functor KMW
� .k;�/ W G .k/! AB, where G has the

monoidal structure introduced in Section 2.1.1, and AB has the usual monoidal structure.
(2) For every properG-equivariant map f WX ! Y there is an induced push-forward

homomorphism

f� W H
G
i;j .X;K

MW
� ; f �L; a/! HG

i;j .Y;K
MW
� ;L; a/

which is functorial in f and in L, and is compatible with the module structure of (1).
(3) For every G-equivariant map f W X ! Y that is smooth of relative dimension d ,

or a regular embedding of dimension d , there is an induced pull-back homomorphism

f � W HG
i;j .Y;K

MW
� ;L; a/! HG

iCd;jCd

�
X;KMW

� ;D.Lf /
�1
˝ f �.L; a/

�
which is functorial in f , in L, and is compatible with the module structure. In particular
we have pullbacks along any map when X and Y are smooth, by factoring f though its
graph.
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(4) Let s W Y ,! X be an equivariant closed embedding and let r W X X Y ,! X be
the open embedding of the complement of Y in X . There is a long exact sequence

! HG
i;j .Y;K

MW
� ; s�L; a/ HG

i;j .X;K
MW
� ;L; a/ HG

i;j .X X Y;K
MW
� ; r�L; a/

HG
i�1;j .Y;K

MW
� ; s�L; a/ HG

i�1;j .X;K
MW
� ;L; a/ HG

i�1;j .X X Y;K
MW
� ; r�L; a/!

s�

s�

where the boundary morphisms are compatible with the module structure. The sequence
is functorial in X with respect to pulling back along G-equivariant maps f W X 0 ! X

when f is smooth of constant relative dimension, or when f is a regular embedding of
constant codimension and is Tor-independent with r .

(5) For every locally free sheaf E of rank r onX , the projection p WV .E/!X induces
an isomorphism

p� W HG
i;j .X;K

MW
� ;L; a/

'
�! HG

iCr;jCr

�
V .E/;KMW

� ;D.E_/�1 ˝ .L; a/
�
:

(6) For every locally free sheaf E of rank r on X there is a Euler class morphism

e.E/ W HG
i;j .X;K

MW
� ;L; a/! HG

i�r;j�r

�
X;KMW

� ;D.E_/˝ .L; a/
�
;

functorial in .L; a/, compatible with pullbacks, satisfying a Whitney sum formula, and
compatible with the module structure.

(7) For every cartesian square of G-schemes

X 0 Y 0

X Y

f 0

g 0 g

f

we have g� ı f� D f 0� ı g
0� when f is proper and g is smooth, or when f is proper, g is

a local complete intersection and f and g are Tor-independent.
(8) When X is smooth the intersection product makes the functorM

i;j

H
i;j
G .Y;KMW

� ;�/ W G .X/! AB

into an algebra over the monoidal functor

KMW
� .k;�/ W G .k/! AB:

When f W X ! Y is a an equivariant map between smooth schemes the map (3) respects
the intersection product.

(9) For every proper G-equivariant map f W X ! Y between smooth G-schemes we
have equalities

f�
�
f �.x/y

�
D xf�.y/ f�

�
xf �.y/

�
D f�.x/y:
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Proof. The non-equivariant properties can all be found in [13, Sections 2 and 3]. Let us
show how to prove (2), all the other statements of the theorem can be proved using exactly
the same argument, which is taken from [10, Section 2.3].

Pick an equivariant scheme approximation .V;U / of BG in codimension less or equal
than max¹dim.X/; dim.Y /º � i , for some fixed integer i . Observe then that X �G U and
Y �G U are both schemes; moreover, the proper morphism f � idU descends to a proper
morphism fG WX �G U ! Y �G U (see [10, Proposition 2]). Also theG-equivariant line
bundle on Y descends to a line bundle LG on Y �G U , and it is straightforward to check
that .f �L/G D f �G .LG/. We have then a well-defined homomorphism

.fG/� W HiCl�g;jCl�g
�
X;KMW

� ; f �G
�
D.V _/�1 ˝ .LG ; a/

��
! HiCl�g;jCl�g

�
Y;KMW

� ;D.V _/�1 ˝ .LG ; a/
�

and by definition the target (resp. the domain) is the equivariant homology group of Y
(resp. of X ) of bidegree .i; j / and twist .L; a/ (resp. twist f �.L; a/).

Remark 2.2.13. A version of Theorem 2.2.12 holds, for the same reasons mentioned in
Section 2.2.11, for the homology of any Milnor–Witt cycle module with the appropriate
shifts and twists. We do not state the theorem here in detail since there would be no gain
for the reader.

2.3. Chow–Witt groups of quotient stacks

The next proposition shows that equivariant Chow–Witt groups (and the other equivari-
ant homology/cohomology groups) can be used to define Chow–Witt groups of quotient
stacks X. If X happens to be representable by a scheme, the definitions in Section 2.3.2
below, coincide with the classical definitions.

Proposition 2.3.1. Let G, H be smooth affine algebraic groups over k, and let X and Y
be respectively a G-variety and an H -variety satisfying any of the assumptions of Sec-
tion 2.2.2. Assume that there is an equivalence of stacks � W ŒX=G�! ŒY=H�. Then the
induced map �� on homology is an isomorphism.

If the stack ŒX=G� is smooth or, equivalently, the scheme X is smooth, then the same
statement holds for the induced map �� on cohomology.

Proof. Similar to its analogue in Chow theory: cf. for instance [10, Proposition 16].

2.3.2. Let X ' ŒX=G� with G satisfying the assumptions of Section 2.2.1, and with X
satisfying one of the assumptions of Section 2.2.2. For any e 2 K.X/, any .L; a/ 2 G .X/,
and integers i , j , we define

Hi;j .X;KMW
� ;L; a/ WD HG

iCg;jCg.X;K
MW
� ;L; a/:

By Proposition 2.3.1 this definition does not depend on the presentation of X as a
quotient. Further specializing to the case i D j , we come to a definition of Chow–Witt
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groups for quotient stacks:

fCHi .X;L; a/ WD fCH
G

iCg.X;L; a/:

For X smooth and equidimensional of dimension d , we also obtain a definition of
KMW
� -cohomology

H i;j .X;KMW
� ;L; a/ WD H

i;j
G .X;KMW

� ;L; a/

and of cohomological Chow–Witt groups

fCH
i
.X;L; a/ WD fCH

i

G.X;L; a/:

Similarly for a Milnor–Witt cycle module K� one defines

Ai .X;K�; e/ WD AGiCg.X;K�;�g C e/;

and for a smooth and equidimensional X

Ai .X;K�; e/ WD AiG.X;K�;Ce/:

For v 2K.X/we can compare the homological and the cohomological Chow–Witt groups
as follows: fCH

i
.X;L; a/ ' fCHd�i

�
X;D.�LX=k/˝ .L; a/

�
:

Theorem 2.3.3. All the statements of Theorem 2.2.12 hold unchanged if we replace G-
varieties of finite type over k by the associated quotient stacks of finite type over k,
equivariant graded line bundles by graded line bundles on quotient stacks, and equiv-
ariant maps by representable morphisms.

Proof. If f W X ! Y ' ŒY=G� is representable, we have that the pull-back of the G-
torsor Y ! ŒY=G� along f is a scheme X together with a map X ! X that makes it
into a G-torsor over X. In other terms, we have that X ' ŒX=G� and f is induced by
a G-equivariant morphism X ! Y . Using this trick one reduces to the equivariant set-
ting Theorem 2.2.12 both the construction of the functorialities and the checking of their
properties.

3. Some useful facts on Chow–Witt groups

We collect some basic results on Chow–Witt groups and related theories that we will use
in the next sections. In this Section and in the remainder of the paper, every time we make
a statement concerning Chow–Witt groups of quotient stacks, we always assume that the
quotient stack has a presentation of the form ŒX=G� where the pair .X;G/ satisfies at least
one of the assumptions in Section 2.2.2.



A. Di Lorenzo and L. Mantovani 334

3.1. Some Milnor–Witt cycle modules

In addition to the Milnor–Witt cycle module KMW
� we have the so called “powers of the

fundamental ideal” I�. Here Ir .E/ � W.E/ denotes the r-th power of the fundamental
ideal of the Witt ring of the field E, with the convention that negative powers be defined
as W.E/. The elements u 2 E� act on W.E/ via multiplication by the rank-one form hui,
and they act on any E-vector space via multiplication by u. For every finitely generated
field extension E=k, the Milnor–Witt cycle module I� W K.E/! AB assigns

v 7! Irk.v/.E/˝ZŒEn¹0º� Z
�

det.v/ n ¹0º
�
:

One can turn the above assignment into a Milnor–Witt cycle module by following the
steps of [14, Theorem 4.13], or alternatively identifying the above assignment with the
image of KMW

� in the cycle module KMW
� Œ��1� (cf. [23, Remark 3.12] and [22]).

Further examples of Milnor–Witt cycle modules are those of MilnorK-theory KM
� , and

of MilnorK-theory modulo 2, denoted by kM
� . These are actually cycle modules according

to Rost’s definition [26, Section 2], and in particular they are Milnor–Witt cycle modules
(cf. [14, Section 12]).

We have canonical maps
I�

q
�! kM

�

p
 � KM

�

where q is induced by mapping the Pfister form hhuii to the symbol ¹uº, and p is simply
the reduction modulo two. We also have canonical maps

I�
p0

 � KMW
�

q0

�! KM
�

where p0 is induced by mapping Œu� 7! �hhuii, and q0 by � 7! 0.
To the square of Milnor–Witt cycle modules

KMW
� KM

�

I� kM
�

p0

q0

p

q

(3.1)

we associate the corresponding square of their cycle complexes associated to a variety X
of finite type. For convenience of notation we set

C�.X;K�; j;L; a/

to be the complex defined analogously to (2.1) for K� 2 ¹I�;KM
� ;k

M
� º. We are going to use

bigraded and twisted homology of these complexes, as we did for KMW
� , and exactly with

the same notation as have introduced in Definition 2.1.5 and in Definition 2.1.10. We do
not repeat all these definitions here. It is obvious but important to remark that all the results
of Section 2, and in particular Theorems 2.2.12 and 2.3.3, hold for K� 2 ¹I�;KM

� ;k
M
� º even
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with this new notation. By design, the twistings do not matter on Rost cycle modules, so
we directly omit them from notation regarding KM

� and kM
� .

In a sense this definition is redundant, since we could use the notation Ai .�/ and
Ai .�/ for our purposes. However with the aim of performing some concrete computa-
tions, we find it easier to stick to the twisting by graded line bundles rather then by virtual
vector bundles.

3.1.1. In [22, Theorem 5.3] Morel proves that the square (3.1) is cartesian. Observe that
all the arrows in this square are surjective. In particular there is an induced homotopy carte-
sian square of the associated Rost–Schmid complexes. Indeed for the projective model
structure on bounded above chain complexes (introduced in [25, Chapter 2, pp. 4.11–12]),
degree-wise surjections are fibrations. If X is a k-variety of finite type we have thus an
exact triangle of Rost–Schmid complexes

C�.X;KMW
� ; j;L; a/! C�.X; I�; j;L; a/˚ C�.X;KM

� ; j /! C�.X; kM
� ; j /:

A bit of diagram chasing, together with the functoriality of cycle complexes, easily
gives the following result.

Proposition 3.1.2. Let X be either a scheme or a quotient stack of finite type over k. The
square (3.1) induces a canonical exact sequence

0! Ki .X;L; a/! fCHi .X;L; a/
.p0;q0/
����! Pi .X;L; a/! 0 (3.2)

where Pi .X;L/ is the pull-back of

Hi;i .X; I�;L; a/
q
�! CHi .X/˝ Z=2

p
 � CHi .X/;

and

Ki .X;L; a/ ' coker
�
HiC1;i .X; I�;L; a/˚HiC1;i .X;KM

� /
pCq
���! HiC1;i .X; kM

� /
�
:

Alternatively we can also describe the term on the left Ki .X;L; a/ as a quotient of
CHi .X/Œ2�.

The sequence (3.2) is functorial for pull-backs along regular embeddings and along
smooth maps, and for push-forwards along proper maps. When X is smooth the map
.p0; q0/ at the right-hand side of (3.2) respects the intersection product.

Proof. When X is a variety the proof proceeds as in [17, Proposition 2.11], using the
above exact triangle. The functoriality of (3.2) is a direct consequence of the functoriality
of Rost–Schmid complexes and the compatibility of the maps in (3.1) with pull-backs and
push-forwards. The compatibility with intersection products in the smooth case follows
from the fact that the maps in (3.1) are ring homomorphisms. We only need to prove
the statement for quotient stacks X D ŒX=G�. For this, choose an equivariant scheme
approximation X �G U of ŒX=G�: then the square (3.1) induces a short exact sequence
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for X �G U , and the following statements hold as well. As all the groups involved are
defined via cohomology of Milnor and Milnor–Witt cycle modules, they are also well
defined for ŒX=G� via equivariant scheme approximation, thanks to Proposition 2.3.1 and
thanks to the pull-back functoriality of (3.2) for smooth maps on varieties. We can then
just define the maps at the level of equivariant scheme approximations, and the statement
for quotient stacks follows.

In particular, when the groupKi .X;L; a/ is zero, the Chow–Witt group fCHi .X;L; a/
can be regarded as the subgroup of the product

CHi .X/ �Hi;i .X; I�;L; a/;

formed by those pairs whose entries have the same image in CHi .X/˝Z=2. This descrip-
tion can be quite useful: for instance, most of the computations in [17] are based on this
fact.

3.2. On Chow–Witt groups of complements of zero sections

3.2.1. Recall from [13, Section 2.5] that when X is an algebraic variety and E is a rank
r vector bundle on X , one can define the so called Euler homomorphism, denoted by

e.E/ \ � W Hi;j .X;KMW
� ;L; a/! Hi�r;j�r

�
X;KMW

� ;D.E_/˝L; a
�
:

When the pull-back along � W V .E/! X is an isomorphism, the Euler homomorphism
coincides with the composition of the push-forward along the zero section s0 WX ! V .E/
with the inverse of ��. When X is smooth, e.E/ \ 1 2 fCH

r
.X;D.E_// is called Euler

class of E . By combining the projection formula, homotopy invariance, and the fact that
pulling-back is a ring homomorphism, one sees that e.E/ \ � actually amounts to taking
the intersection product with the Euler class e.E/.

If K� is any generalized cycle module, there is a similarly defined operation eK�.E/\

� in K�-homology. If X is smooth and K� is a commutative monoid in Milnor–Witt
cycle modules (with respect to the monoidal structure induced on Milnor–Witt cycle mod-
ules through the equivalence of Section 4 of [15]), as it happens for all the examples of
Section 3.1.1, the image of the KMW

� -theoretic Euler class coincides with the K�-theoretic
Euler class. For instance, in the case K� 2 ¹KM

� ; k
M
� º, the K�-theoretic Euler class is the

usual top Chern class. The same observations hold for quotient stacks.

3.2.2. Assume now that E is a vector bundle of rank r on a smooth variety or a smooth
quotient stack X , and that K� 2 ¹KMW

� ; I�;KM
� ; kM

� º. By combining the projection for-
mula with homotopy invariance, the localization sequence associated to the decomposition

X
s0
,! V .E/

j
 - V .E/ X s0.X/ is identified with

� � � ! H i�r;j�r
�
X;K�;D.E/˝ .L; a/

� e.E/�
���! H i;j .X;K�;L; a/

.jıp/�

����! H i;j
�
V .E/ X s0.X/;K�;L; a

� @
�!
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The map .j ı p/�, considered on the whole bi-graded and twisted cohomology ring, is
a ring map with respect to the intersection product, and from the exactness of the above
sequence we conclude that ker..j ı p/�/ is the principal graded ideal generated by e.E/.
In particular we have a canonical extension

0! H�1;�2.X;KMW
� ; �/=

�
e.E/

� .jıp/�

����! H�1;�2
�
V .E/ X s0.X/;KMW

� ; �
�

@
�! ker

�
e.E/ �

�
! 0:

If we take K� D KMW
� and i D j , the sequence above reads as

fCH
i�r �

X;D.E/˝ .L; a/
� e�
�! fCH

i
.X;L; a/! fCH

i �
V .E/ X s0.X/;L; a

�
@
�! H i;i�1

�
X;KMW

� ;D.E/˝ .L; a/
�
! � � � :

3.3. A useful lemma

3.3.1. The following result can be used to produce a natural class in the Chow–Witt
group of codimension 0 cycles.

Lemma 3.3.2. Let X be either a smooth scheme or a smooth quotient stack, endowed
with a line bundle L, satisfying the assumptions of Section 2.2.2. Let s be a global section
of L˝2 whose vanishing locus D � X is smooth and non-empty. Set U WD X XD. Then:

(1) the non-degenerate quadratic form on LU defined by

q W LjU ˝LjU ! OU ; a˝ b 7! .a˝ b/=s

determines an element qgen in fCH
0
.X XD/.

(2) We have h.qgen � 1/ D 0 and @.qgen � 1/ D �˝ Nf
_, where

@ W fCH
0
.X XD/! H 0

�
D;KMW

�1 ;OD.D/
�

is the boundary map induced by the closed embedding D ,! X , and f is a local
equation of D.

Proof. The version of the lemma for smooth quotient stacks follows from the one for
schemes, by reducing the statement to a statement on the equivariant scheme approxima-
tion of the stack.

Let us sketch the argument a bit more in detail: suppose that the lemma is true in the
case of schemes and let X D ŒX=G� be a quotient stack satisfying the hypotheses of the
lemma. In particular, if D is a divisor which is the vanishing locus of a section of L, we
have D D ŒD=G� for some G-invariant divisor D � X , obtained as the vanishing locus
of a section of an equivariant line bundle L.
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We can pick an equivariant scheme approximation .V;W / of BG such that the codi-
mension of the complement of W in V is greater than 2. Therefore, we have by definition
that fCH

0
.X XD/ D fCH

0

G.X XD/ D
fCH

0 �
.X XD/ �G W

�
:

The smooth scheme .X XD/ �G W together with the line bundle L �G W (whose van-
ishing locus is precisely D �G W ) satisfy the hypotheses of the lemma, so we have a
well-defined class in fCH

0
..X XD/ �G W / with all the desired properties, hence a class

in fCH
0
.X XD/.

Let us then assume that X is a scheme, and pick an affine open subscheme V � X
whose intersection with D is non-empty and such that there exists a trivialization

OV ' LV ; 1 7! t:

Then by construction we have s D f t˝2, where f is an equation for D \ V . Moreover,
after trivializing LV in this way, the quadratic form q that we defined is given by

OU\V ˝OU\V ! OU\V ; g ˝ g0 7!
gg0

f
:

The quadratic form hf �1i, when regarded as an element of GW.k.X// ' KMW
0 .k.X//,

has residue equal to 0 along all the codimension 1 points of X XD. In other terms, hf �1i
determines an element of fCH

0
.X XD/.

Observe that this element does not depend on the choice of an affine open subscheme
V and of a trivialization OV ' LV : indeed, if we picked a different subscheme and a
different trivialization, the resulting quadratic form would differ from the previous one by
a square and hence it would determine the same element in GW.k.X//.

We have h.qgen � 1/ D h � �Œf �1� D 0. The image of qgen � 1 D �Œf �1� along the
boundary morphism fCH

0
.X XD/! H 0

�
D;KMW

�1 ;OD.D/
�

is equal by construction to the residue of this element at the point Spec k.D/ of codimen-
sion 1 [13, Section 2.2]. Observe that f is a local parameter for the valuation � W k.X/!
Z [ ¹1º induced by the Cartier divisor D � X . Applying the formula for residues [13,
Section 2.1] we obtain

@�
�
�Œf �1�

�
D @f�

�
�Œf �1�

�
˝ Nf _ D � � @� Œf

�1�˝ Nf _ D �˝ Nf _:

Remark 3.3.3. Under the isomorphisms

H 0
�
D;KMW

�1 ;OD.D/
�
! H 0

�
D;W;OD.D/

� �l
�! H 0.D;W;O/

the element �˝ Nf _ is mapped first to 1˝ Nf _ and then to h�li ˝ 1. Here l is a generic
section of LjD , and �l is the isomorphism induced by l and the identification OD.D/ '

LjD .
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4. Geometric preliminaries

In this Section we first recall some basic facts on the geometry of BGm and B�n, and in
particular how to present B�n as a Gm-quotient stack. Next we recall some basic facts
on the stack M1;1 of elliptic curves and on its compactification xM1;1 by means of stable
curves. For sake of simplicity we assume to work over a base field k where n is invertible;
all schemes are understood as schemes over k.

4.1. Classifying stacks of Gm and �2n

We recall here some basic facts on the classifying stacks of Gm and �2n; these already
appeared in the literature, see for instance the beginning of [6, Section 7] or [30, Sec-
tion 2.4].

4.1.1. Let Gm be the multiplicative group and let �n be the subgroup of n-th roots of
unity. Along this paper we will deal only with actions of these two groups. We denote by
Vn the rank one representation of Gm of weight n, i.e., the representation on which Gm

acts by � � v WD �nv. We will then denote by Vn the associated Gm-equivariant vector bun-
dle over Spec.k/. Similarly we set Vm;n WD Vm ˚ Vn, and Vm;n will denote the associated
Gm-vector bundle.

The diagonal action of Gm on V n
1 has the origin as the only fixed point. Set Un WD

V n
1 X ¹0º � V n

1 : then the quotient Un=Gm ' Pn�1 is an equivariant scheme approxima-
tion of BGm in codimension � n � 1. It can thus be used to approximate Chow–Witt
classes of codimension � n � 2 on BGm, and actually on any quotient ŒX=Gm� of a Gm-
variety X satisfying Section 2.2.2. More precisely, given a Gm-equivariant diagram X� of
k-varieties satisfying Section 2.2.2, the diagram Un �Gm X� is an approximation of the
corresponding diagram of stacks ŒX�=Gm�: it can be thus used to perform any sensible
operations on cycle groups that only involves cycles of codimension smaller than or equal
to n � 2.

4.1.2. We denote by U the universal line bundle on BGm: its total space is ŒV�1=Gm�

and VPN .O.�1// is an equivariant scheme approximations in codimension � N . In fact,
the total space of the tautological line bundle on Pn is by definition the subscheme in
Pn �ANC1 formed by the pairs .ŒX0 W � � � W XN �; .Y0; : : : ; YN // such that .Y0; : : : ; YN /D
�.X0; : : : ; XN / for some scalar �. If we look at the pull-back of this line bundle along
the Gm-torsor ANC1 X ¹0º ! PN , we obtain a subscheme L�ANC1 X ¹0º�ANC1.
There is an isomorphism L'ANC1 X ¹0º�A1 given by sending a point ..X0 W � � � W XN /;
.Y0; : : : ; YN // in L to the point ..X0 W � � � W XN /; �/, where � is the unique scalar such that
.Y0; : : : ; YN /D �.X0; : : : ;XN /. Observe that if we act on ANC1 X ¹0º �ANC1 with Gm

by multiplication .X0; : : : ; XN / 7! t .X0; : : : ; XN / on the first factor and trivially on the
second factor, the subschemeL�ANC1 X ¹0º �ANC1 is Gm-invariant, and if we use the
isomorphismL'ANC1 X ¹0º �A1 defined above, the action onL is .X0; : : : ;XN ;�/ 7!
.tX0; : : : ; tXn; t

�1�/. In other terms, the pull-back of V .OPN .�1// along ANC1 X ¹0º!
PN is isomorphic to ANC1 X ¹0º � V�1, as claimed.



A. Di Lorenzo and L. Mantovani 340

4.1.3. The following observations on �n-covers are explained in higher generality and
more detail in [1, Section 2], but we recall here the main points for the convenience of
the reader.

The objects of the classifying stack B�n are by definition �n-torsors X ! S . Let Fn
denote the stack over the étale site of schemes whose objects are triples .S;L; ' WL˝n

'
�!

OS /, where S is a scheme, L is a line bundle over S , and ' a OS -linear isomorphism; the
morphisms between triples .S 0;L0; '0/! .S;L; '/ are maps S 0

f
�! S together with an

isomorphism  W f �L ' L0 such that f �' D '0 ı  .
There is a canonical isomorphism B�n ' Fn, that is the stack of �n-torsors is equiv-

alent to the stack of line bundles together with a trivialization of their nth-tensor power.
To see this, let us first define a morphism Fn ! B�n by sending an object .S;L; '/ to
the �n-torsor over S defined as follows: set

A WD OS ˚L˚L˝2 ˚ � � � ˚L˝.n�1/:

We can use the homomorphism ' W L˝n ! OS to give a multiplicative structure to A.
Indeed, given i; j < n, write i C j D mnC r , with r < n, and consider the map

'˝m ˝ idL˝r W L
˝.iCj /

' L˝mn ˝L˝r ! O˝mS ˝L˝r ' L˝r :

Then for si a section of L˝i and sj a section of L˝j , we set

si � sj WD .'
˝mn
˝ idL˝r /.si ˝ sj /:

Together with the usual sum, this gives A the structure of a sheaf of OS -algebras, so we
can define

X.S;L;'/ WD SpecOS
.A/:

There is an action of �n on X.S;L;'/ induced by the coaction A! AŒx�=.xn � 1/ that
sends a section si of the factor L˝i to sixi . The fact that this action is freely transitive
is equivalent to X.S;L;'/ ! S being étale: this can be checked fiber by fiber, and the
fiber over a point s of S is equal to k.s/Œt �=.tn � f /, here f being the restriction of the
image of 1 along '_ W OS ! L˝.�n/. As by construction f never vanishes, we deduce
the étaleness of the morphism.

The morphism Fn ! B�n given by .S;L; '/ 7! .X.S;L;'/ ! S/ is an isomorphism
of stacks: this follows essentially from [1, Proposition 2.2].

4.1.4. Let us denote the quotients ŒVn=Gm� (resp. ŒVm;n=Gm�) by Vn (resp. Vm;n): these
are rank-one (resp. rank-two) vector bundles on BGm. The substack ŒVn X 0=Gm� �

ŒVn=Gm� is naturally identified with the complement of the zero-section s0 of Vn. A map
S ! Vn can be regarded as a map f W S ! BGm together with a section of f �U˝.�n/,
because the universal line bundle U coincides by definition with V�1. In other terms, we
can regard the objects of the stack Vn as triples .S;L;� WOS!L˝.�n//, where L is a line
bundle on S . Consequently, the objects of Vn X s0 are triples .S;L; � W OS

'
�! L˝.�n//,
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where the morphism of line bundles is an isomorphism because the section � cannot
vanish. We immediately deduce that there is an isomorphism Vn X s0 ! Fn given by
.S;L; �/ 7! .S;L; �_/, and therefore an isomorphism

�n W ŒVn X 0=Gm� ' Vn X s0
'
�! B�n

for every n � 1.
The line bundle obtained by pulling back U along the canonical projection pn W Vn X

s0 ! BGm comes with a canonical trivialization of its n-th tensor power. We denote this
pair of line bundle and trivialization with .p�nU; �_ W p�nU˝n

'
�! OVnXs0/. It is clear that

this pair is identified via �n with the universal n-torsion line bundle over B�n.
In terms of equivariant scheme approximations, the quotients Vn and Vn X s0 can be

respectively approximated by the total space of the line bundle VPN .O.n// over PN and
by its open subscheme VPN .O.n//X s0. This last fact follows from Section 4.1.2, because
taking scheme approximations of vector bundles commutes with taking tensor powers.

4.2. Moduli of elliptic curves

4.2.1. We denote by M1;1 be the stack of elliptic curves, parametrizing 1-marked smooth
relative curves with geometrically integral fibers of genus one. Let xM1:1 be the stack of
stable 1-marked curves of genus one, which is a modular compactification of M1:1. Recall
that a stable relative 1-marked curve .p W C ! S; �/ is the datum of a flat and proper
morphism p with a section � landing in the smooth locus of p; moreover the geometric
fibers of p are required to be geometrically integral, to have at worst nodal singularities,
and a finite group of automorphism respecting the marking.

4.2.2. In [10, Proposition 20] the authors give presentations M1;1 ' ŒU=G� and xM1;1 '

ŒW=G� for a certain group G and certain G-schemes U and W , assuming that the base
field has characteristic ¤ 2; 3. In the remark following [10, Proposition 21], the authors
state an observation of Vistoli that the unipotent radical H of G acts on U and W freely,
hence the quotient ŒU=H� (respectively ŒW=H�) is a scheme, and there is a well-defined
action of G=H ' Gm on the both quotient schemes; from this we deduce

ŒU=G� '
�
.U=H/=.G=H/

�
'
�
.U=H/=Gm

�
;

ŒW=G� '
�
.W=H/=.G=H/

�
'
�
.W=H/=Gm

�
:

In the same remark it is also observed that U=H (respectively W=H ) is isomorphic as a
Gm-scheme to V�4;�6 X� (respectively V�4;�6 X ¹0º), where� is the closed subscheme
of equation 4a3 C 27b2 D 0. Here a and b are coordinates on V�4;�6 of weight respec-
tively �4 and �6. All together, these observations imply the following.

Proposition 4.2.3. Suppose that the base field k has characteristic¤ 2; 3. Then we have:

(1) xM1;1 ' ŒV�4;�6 X ¹0º=Gm�.

(2) M1;1 ' ŒV�4;�6 X�=Gm�.
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In other words xM1;1 is an open substack of V�4;�6, whose complement is the image of the
zero section s0 W BGm ! V�4;�6.

4.2.4. The universal curve on xM1;1 has a relative dualizing line bundle, and its pull-back
along the universal section gives a line bundle on M1;1 called the Hodge line bundle,
which in this paper we denote E . The Hodge line bundle determines a map xM1;1! BGm

which coincides with the morphism ŒV�4;�6 X ¹0º=Gm� ! BGm induced by the Gm-
equivariant projection on the point. In particular, the pull-back of the universal line bundle
U from BGm to xM1;1 coincides with the Hodge line bundle.

4.2.5. Similarly, the stack M1;1 can be seen as an open substack of xM1;1, whose com-
plement is the quotient stack Œ� X ¹0º=Gm�. There is a canonical isomorphism�

� X ¹0º=Gm

�
' B�2;

the existence of which follows from the fact that the action of Gm on� X ¹0º is transitive
with stabilizer �2.

Another way to prove that Œ� X ¹0º=Gm� ' B�2 is the following: the complement of
M1;1 in xM1;1 is the divisor of non-smooth stable curves. This stack has only one geometric
point, corresponding to the unique stable nodal elliptic curve .C; p/ over an algebraically
closed field, hence Œ� X ¹0º=Gm� ' BAut.C; p/. The nodal elliptic curve .C; p/ can be
obtained from a marked P1 by gluing two points p0 and p1 together: the automorphism
group of .C; p/ can then be identified with the group of automorphisms of P1 that fix
the marking p1 and the degree 2 divisor p0 C p1: the only non-trivial automorphism
having this property is the involution that switches p0 and p1 and fixes p1. We deduce
that Aut.C; P / ' �2 and Œ� X ¹0º=Gm� ' B�2.

Finally, observe that M1;1 can also be seen as an open substack of ŒV�4;�6=Gm� '

V�4;�6, whose complement is the (singular) quotient stack C WD Œ�=Gm�.
The Chow rings of xM1;1 and M1;1 have been computed in [10, Proposition 21].

Proposition 4.2.6. Let k be a field of characteristic¤ 2; 3. Then

(1) CH�. xM1;1/ ' ZŒT�=.24T2/,

(2) CH�.M1;1/ ' ZŒT�=.12T/,

where T corresponds to the Euler class of the dual of the Hodge line bundle.

The strategy we will be using in Section 6 for computing Chow–Witt rings of these
stacks can be used to give a proof of Proposition 4.2.6.

4.2.7. We have shown that the stacks BGm and B�n have a presentation as Gm-quotients
of smooth Gm-schemes. The same is true for M1;1 and xM1;1 when the characteristic of
the base field is¤ 2; 3.

In particular, the assumptions of Section 2.2.2 applies to these stacks, for instance
because the group Gm is special (that is, every Gm-torsor can be trivialized Zariski-



Equivariant Chow–Witt groups and moduli stacks of elliptic curves 343

locally). This means that there is a well-defined theory of Chow–Witt rings of these stacks,
as defined in Section 2.3.2.

5. The Chow–Witt rings of the classifying stacks of Gm and �2n

In this Section, we first recall a presentation of the Chow–Witt ring of BGm (Proposi-
tion 5.1.5). We leverage this result to compute the Chow–Witt ring of B�2n: we begin
by determining the additive structure (Proposition 5.2.3) and afterward we focus on the
multiplicative structure (Theorem 5.3.4). The knowledge of the multiplicative structure of
B�2n will be the key for determining the multiplicative structure of xM1;1 and M1;1 in the
next Section.

Conventions

For sake of readability we have decided to hide from our notation most of the references to
the “grading” of the twisting graded line bundles. So Chow–Witt groups appear as twisted
simply by a line bundle, rather than a graded line bundle. We have however maintained
the “grading” explicit in the definition of the generators of the various Chow–Witt groups
appearing throughout. In general situations these “gradings” would be relevant when com-
paring products xy with yx. In our specific situation the grading turns out to be irrelevant,
making our notational choice harmless. We invite in any case the reader to check this
harmlessness autonomously.

Regarding the twisting line bundles we have decided to make a choice of a line bundle
for every class in the Picard group modulo 2 of schemes and stacks appearing in the next
sections. This can be done thanks to the fact that homology with coefficients in KMW

� and
I� is insensitive to the replacement of the twist .L; a/ with a twist .L; a/˝ .M; b/˝2. We
have thus expressed all computations in terms of these choices.

Although it would have been more appropriate, we have refrained in the next two sec-
tions from using the notation introduced by Feld, following Rost, for Chow–Witt groups
with coefficients. On one hand we believe that the notation introduced by Fasel in [13] is a
bit more intuitive; on the other hand keeping track of virtual vector bundles in the twisting
coordinate would have added a whole layer of notational complications.

5.1. The Chow–Witt ring of BGm

5.1.1. In what follows, we set

T WD e.U_/ 2 fCH
1
.BGm;U; 1/

the Euler class of the dual of the universal line bundle U_ over BGm.
To start, we recall the structure of the I�-cohomology of BGm. The description of the

groups H i;j .BGm; I�; �/ follows directly from the computation of H i;j .Pn; I�; �/ con-
tained in [12, Section 11], because Pn is an equivariant scheme approximation of BGm.
The description of the W.k/-algebraH�.BGm; I�;�/ can be found in [32, Proposition 4.3].
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Proposition 5.1.2. Let U be the universal line bundle over BGm. We have:

H i;j .BGm; I�;O/ '

8̂̂<̂
:̂

Ij .k/ if i D 0

kM
j�i .k/ if i � 2 even

0 if i odd;

H i;j .BGm; I�;U/ '

´
0 if i even

kM
j�i .k/ if i odd:

Moreover we have an isomorphism of W.k/-algebras

H�;�.BGm; I�; �/ 'W.k/ŒT�= I �T

induced by mapping T 7! e.U_/ 2 H 1;1.BGm; I�;U; 1/, the I�-theoretic Euler class
of U_.

Actually, all the cohomology groups of BGm with coefficients in KMW
� have been fully

described in [12, Theorem 11.7].

Proposition 5.1.3. We have

H i;j .BGm;KMW
� ;O/ '

8̂̂<̂
:̂

KMW
j .k/ if i D 0

KM
j�i .k/ if i � 2 is even

2KM
j�i .k/ if i is odd;

H i;j .BGm;KMW
� ;U/ '

´
2KM

j�i .k/ for i even

KM
j�i .k/ for i odd:

5.1.4. We denote by

H 2 fCH
0
.BGm;U; 0/ ' P

0.BGm;U; 0/ � H
0;0.BGm; I�;U; 0/ � CH0.BGm/

that corresponds to the pair .0; 2/. In other terms H is a sort of hyperbolic form but with
twisted coefficients in U. This can be represented by the symbol h˝ s inside the group
KMW
0 .k.x1; : : : ; xn/;U/, where s is any generic generator of U, and h represents the

Grothendieck–Witt class of the hyperbolic plane.
The classes T and H are particularly important for our purposes. Our work is fully

formulated in terms of Gm-equivariant geometry, and thus the Chow–Witt rings we are
interested in are best understood as fCH

�
.BGm; �/-algebras. In particular they all contain

the naturally defined pull-backs of the classes T and H.

Proposition 5.1.5. We have an isomorphism of GW.k/-algebrasfCH
�
.BGm; �/ ' GW.k/ŒT;H�=.I � T; I � H;H2 � 2h/

given by mapping T to e.U_/ and H to the class introduced in Section 5.1.4.

Proof. This is an easy consequence of [32, Theorem 1.1] in the case n D 1.
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5.1.6. In Chow–Witt theory, as much as in I�- and W-theory, Euler classes of the tensor
product of line bundles L˝M in general is not equal the sum of the Euler classes of L

and M.
For instance, the usual formula e.U˝�2/ D 2T cannot hold in this setting, because

the element on the left belongs to fCH
1
.BGm;U

˝2/ whereas the element on the right is
in fCH

1
.BGm;U/. However on BGm it is easy to write an explicit formula in terms of the

multiplicative structure described in Proposition 5.1.5:

e.U˝.�2n// D nTH; e.U˝.�2n�1// D .2nC 1/T:

Observe also that from the relations in Proposition 5.1.5 we have TiH2j D 2jhjTi .
Actually, for i > 0 the right-hand side of this equality can be further simplified into 4jTi :
indeed, the element 2jhj � 4j belongs to the fundamental ideal I , hence

.2jhj � 4j / � T D 0;

that is 2jhj � T D 4jT, from which our claim follows. We will frequently take advantage
of these formulas in our computations.

5.2. The Chow–Witt groups of B�2n

For the remainder of the section, we assume that the base field k has characteristic coprime
with 2n.

As we have seen in Section 4.1.4 the stack B�2n is naturally identified with the com-
plement of the zero section of the line bundle p W V�2n ! BGm. Observe that the line
bundle V�2n is the total space of the invertible sheaf U˝2n, hence the pull-back of U˝2n

to V�2n comes equipped with a canonical section � . The open substack V�2n X s0 can
be regarded both as the complement of the zero section s0 W BGm ! V�2n and as the
non-vanishing locus of � . In other terms, the section � trivializes the pull-back of U˝2n

over V�2n X ¹0º ' B�2n
The localization sequence associated with the decomposition

s0.BGm/ � V�2n � V�2n X s0.BGm/ (5.1)

gives a boundary morphism

@ W fCH
0
.B�2n;O/! H 0.BGm;KMW

�1 ;U
˝2n/ ' H 0.BGm;W;U˝2n/:

Cohomology groups are well defined because all the stacks involved are smooth. We can
apply the construction of Lemma 3.3.2, which produces an element qgen in fCH

0
.B�2n/.

The latter corresponds to the restriction over the generic point of the quadratic form

q W U˝n ˝U˝n ! O

induced by the trivialization of U˝2n defined by � .
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Definition 5.2.1. We define U as the element qgen � 1 in fCH
0
.B�2n;O; 0/ provided by

Lemma 3.3.2.

Remark 5.2.2. The element U is only visible at the level of Chow–Witt groups and is not
captured by the usual Chow theory: by this we mean that the image of U along the map

fCH
0
.B�2n;O/! CH0.B�2n/

is zero.

The Picard group of B�2n is isomorphic to Z=2nZ, and a generator for this group
is given by the pull-back of U, which we will keep indicating with the same symbol.
Henceforth, up to isomorphism and up to squares, the Chow–Witt groups of B�2n are
twisted either by O or by U. The same argument used in [21] for B�2 can be extended to
the following proposition.

Proposition 5.2.3. Suppose that the base field k has characteristic co-prime with 2n.
Let T be the Euler class of U_, let H be the class .0; 2/ 2 fCH

0
.B�2n;U/ introduced

in Section 5.1.4, and let U be the class defined in Definition 5.2.1. Then the following
description of fCH

�
.B�2n; �/ holds:

Twist 0 1 2 3 2k 2k C 1

O GW.k/ � 1˚W.k/ � U Z=n � HT Z=4n � T2 Z=n � HT3 Z=4n � T2k Z=n � HT2kC1

U Z � H Z=4n � T Z=n � HT2 Z=4n � T3 Z=n � HT2k Z=4n � T2kC1.

Proof. It is clear that the classes T and H are the pull-backs to B�2n of the classes T
and H on BGm. As fCH

�
.B�2n; �/ has a natural fCH

�
.BGm; �/-algebra structure, we will

adopt the same notation for T and H on both B�2n and BGm.
The localization sequence induced by the decomposition (5.1) of V�2n, in light of

Section 3.2.2, gives a long exact sequence

fCH
i�1
.BGm; � ˝U˝2n/

e�
�! fCH

i
.BGm; �/

.jıp/�

����! fCH
i
.B�2n; �/

@
�! H i .BGm;KMW

i�1; � ˝U˝2n/;

where e denotes the Euler class e.U˝2n/ D �nTH (see Section 5.1.6). By Proposi-
tions 5.1.5 and 5.1.3, for i � 1 and � ' U˝iC1 (modulo squares) we get8<:Z � Ti�1

nTH
��! Z � TiH! fCH

i
.B�2n;U

˝iC1/! 0; if i � 2

GW �Ti�1
nTH
��! Z � TiH! fCH

i
.B�2n;U

˝iC1/! 0; if i D 1:

where the zeroes on the right come from the fact that for i � 1 we have

H i .BGm;KMW
i�1; � ˝U˝2n/
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is a subgroup of KM
�1, and this last group is zero (see Proposition 5.1.3). This allows us to

conclude that fCH
i
.B�2n;U

˝iC1/ ' Z=nZ � TiH. Depending on the parity of i , we get
the claimed results for either fCH

i
.B�2n/ or fCH

i
.B�2n;U/.

For i � 1 and � ' U˝i we have instead exact sequences

Z � Ti�1H
nTH
��! Z � Ti ! fCH

i
.B�2n;U

˝i /! 0;

and thus fCH
i
.B�2n;U

˝i / ' Z=4nZ � Ti , since H2T D 2hT D 4T.
We are left with the case where i D 0. When � ' U we have

0! Z � H! fCH
0
.B�2n;U/! 0:

When instead � ' O it is easily deduced from the W-cohomology of BGm (see Proposi-
tion 5.1.3) that we have an extension

0! GW.k/ � 1! fCH
0
.B�2n;O/

@
�!W.k/! 0

By Lemma 3.3.2 we know that @.U/ is a unit in W.k/, hence the morphism

W.k/! fCH
0
.B�2n;O/

given by multiplication by @.U /�1 and followed by multiplication by U splits @ in the
extension above. In particular,

fCH
0
.B�2n/ ' GW.k/˚W.k/;

and this concludes.

5.3. Multiplicative structure

5.3.1. The line bundle V .O.�2n//! P1 is an equivariant approximation of V�2n !
BGm, and the complement of the zero section s0 is an equivariant approximation of B�2n.
We set Q WD V .O.�2n// X s0.

Let X0 and X1 be homogeneous coordinates on P1, then we set x D X0=X1 and
y D X1=X0. The rational function x is a local coordinate for the open subscheme U1 WD
¹X1 ¤ 0º and y is a local coordinate for U0 WD ¹X0 ¤ 0º.

We chose a trivialization V .O.�2n//jU1 ' U1 �A1: we call t the coordinate for the
factor A1 appearing in the trivialization. Similarly, we chose V .O.�2n//jU0 ' U0 �A1,
and we call s the coordinate for A1. Observe that in .U0 \U1/�A1 we have x D 1=y and
t D y2ns. The open subschemes U0 � .A1 X ¹0º/ and U1 � .A1 X ¹0º/ are affine charts
for Q.

5.3.2. The map V .O.�1// ! V .O.�2n// given by the 2nth-power defines an étale
cover of Q D V .O.�2n// X s0 of degree 2n; this in turn induces a map ' W Q! B�2n.
We need the following result.
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Lemma 5.3.3. The pull-back homomorphisms

'� W fCH
0
.B�2n/! fCH

0
.Q/; '� W fCH

1
.B�2n;U/! fCH

1 �
Q;O.�1/

�
are both isomorphisms, where O.�1/ is pulled back from P1.

Proof. Observe that Q is an equivariant scheme approximation of B�2n in codimen-
sion 0, hence their Chow–Witt groups in degree zero are isomorphic. We cannot apply
the same argument in degree 1 because Q is not an equivariant scheme approximation of
B�2n in codimension 1.

Nevertheless, the open embedding Q ,! V .O.�2n// induces a long exact sequence
that, after identifying the Chow–Witt groups of P1 and V .O.�2n//, looks like

fCH
0 �

P1;O.�1/˝U˝2n
� e�
�! fCH

1 �
P1;O.�1/

� .jıp/�

����! fCH
1 �
Q;O.�1/

�
@
�! H 1

�
P1;KMW

0 ;O.�2n � 1/
�
:

We can use [12, Corollary 11.8] to write down explicitly the Chow–Witt groups above.
We obtain

2Z
�2n�T
����! Z � T! fCH

1 �
Q;O.�1/

�
! H 1

�
P1;KMW

0 ;O.�2n � 1/
�
:

From [12, Theorem 11.7] we get that the last term is zero, so fCH
1
.Q;O.�1//'Z=4n � T.

As the pull-back map '� W fCH
1
.B�2n;U/ ! fCH

1
.Q; O.�1// sends T to T, by

looking at the formula for fCH
1
.B�2n;U/ given in Proposition 5.2.3 we get the desired

conclusion.

We are ready to prove the main theorem of this section.

Theorem 5.3.4. Let k be a field whose characteristic is co-prime with 2n. Then we have
an isomorphism of GW.k/-algebras

fCH
�
.B�2n; �/

' GW.k/ŒT;H;U�=.I � T; I � H; hU;HU; nTH;H2 � 2h;U2 C 2U;TU � 2nT/

given by mapping T 7! e.U_/, H 7! .0; 2/, and U to the element introduced in Defini-
tion 5.2.1.

Proof. From Proposition 5.2.3 we know what are the generators of fCH
�
.B�2n; �/ as

GW.k/-algebra: the Euler class of the dual of the universal line bundle U_ on B�2n, the
hyperbolic form H and the element U introduced in Definition 5.2.1.

The first two generators are pulled back from the Chow–Witt ring of BGm, described
in Proposition 5.1.5, thus all the relations in this last ring hold also in the Chow–Witt ring
of B�2n. This shows that the only thing left to determine is the product of U with itself
and the other generators.
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First note that by construction hU is zero, while nTH is the Euler class of U˝�2n, and
thus nTH vanishes as well.

From the additive structure we know that HU D mH for somem 2 Z. We observed in
Remark 5.2.2 that U is sent to zero by the map fCH

0
.B�2n/! CH0.B�2n/, hence also

HU is sent to zero. We already mentioned that Q is an equivariant scheme approximation
of B�2n in codimension 0, hence CH0.B�2n/' CH0.Q/' Z, which is torsion free. As
the map fCH

0
.B�2n/! CH0.B�2n/ maps mH to 2m, we deduce that m D 0.

Thanks to Lemma 5.3.3, the relation U2 C 2U D 0 can be checked on the equivariant
approximationQ introduced in Section 5.3.1, from which we adopt the notation from now
on. The function field of Q is k.x; t/ and the pull-back of the element U, regarded as an
element in GW.k.x; t// is ht�1i � 1, hence we have�

ht�1i � 1
�2
D ht�2i � 2ht�1i C 1 D 2

�
1 � ht�1i

�
;

from which the sought relation follows.
We are left with the computation of TU. By Lemma 5.3.3 we can check the relation

on the approximation Q. Hereafter we denote by U, H, T and U the restriction to Q of
the corresponding elements on B�2n.

The element U in fCH
0
.Q/, regarded as an element of GW.k.Q//, is ht�1i � 1 D

�Œt�1�.
Let C be the Cartier divisor ¹.U0 � .A1 X ¹0º/; 1/; .U1 � .A1 X ¹0º/; x/º and let D

be the Cartier divisor ¹.U0 � .A1 X ¹0º/; y/; .U1 � .A1 X ¹0º/; 1/º. Observe that the class
of both these divisors in fCH

1
.Q;O.�1// is T. Therefore to compute UT we can leverage

the description contained in [13, Lemma 3.6] for the product of an element with a Cartier
divisor, using either C or D as model for T.

The divisor D is contained in U0 � .A1 X ¹0º/ and its associated ideal is generated
by y. From [13, Lemma 3.6] we obtain:

e
�
O.D/

�
\ �Œt�1� D d.y/0

�
Œy��Œt�1�˝ y

�
D
�
�@y� Œy; t

�1�
�
˝ y D �Œt�1�˝ Ny_ ˝ y:

In the second equality we used the commutativity of the product with � (which follows
from the definition of the boundary, see [13, Theorem 1.7]) and the definition of d.y/0 as
the part of the differential supported on ¹y D 0º (see [13, p. 109]). The third equality is
obtained by combining the fact that t�1 is a unity in U0 together with the very definition
of @y� .

The symbol produced in this way gives an element in fCH
1
.Q;O.�D//. This last

group is obviously isomorphic to fCH
1
.Q;O.�C//, and such isomorphism sends �Œt�1�˝

Ny_ ˝ y to �Œt�1�˝ Ny_ ˝ 1. We conclude that UT, as an element in fCH
1
.Q;O.�C//, is

equal to the equivalence class of .�Œt�1� ˝ Ny_ ˝ 1/ � ŒD�, where the writing .˛/ � ŒC �
stands for the element in˚x2Q.1/ GW.k.x// that is ˛ in GW.k.C // and zero otherwise.

Consider now the boundary morphism in the Gersten complex

KMW
1

�
k.Q/;O.�C/

�
!

M
x2Q.1/

KMW
0

�
k.x/; .mx=m

2
x/
_
˝O.�C/x

�
:
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We claim that the boundary of Œx2nt �˝ x is�
nhhti ˝ 1

�
� ŒC � � h�1i

�
�Œt�1�˝ Ny_ ˝ 1

�
� ŒD�:

Observe that in fCH
1
.Q;O.�C// we have that the first term is equal to 2nT, whereas the

second one coincides with UT. As the boundary of an element determines a relation in the
corresponding Chow–Witt group, this would imply that UT D 2nT, as expected.

To prove the claim we only have to apply the rules for the computation of residues [13,
Theorem 1.7]. First observe that the residue of Œx2nt �˝ x along the points of codimension
1 contained in Q X .C [D/ is always zero. Therefore we have

@
�
Œx2nt �˝ x

�
D @C

�
Œx2nt �˝ x

�
� ŒC �C @D

�
Œx2nt �˝ x

�
� ŒD�:

For the first term we have:

@C
�
Œx2nt �˝ x

�
D @xC

�
Œx2nt �

�
˝ Nx_ ˝ x D nhhti ˝ 1;

because C is contained in the affine open subset U1 � .A1 X ¹0º/ where t is invert-
ible and x is a local generator for O.�C/. The last equality comes from combining the
formula [13, Lemma 1.3 (3)] with the usual rules for the computation of residues [13, The-
orem 1.7]. For computing the second term, first observe thatD � U0 � .A1 X ¹0º/, and in
this affine open subset O.�C/ is generated by 1. In particular, an element ˛ ˝ ` is equal
to h`i˛ ˝ 1. Therefore

@D
�
Œx2nt �˝ x

�
D @D

�
hxiŒx2nt �˝ 1

�
D @

y
D

�
Œx2nt �C �Œx; x2nt �

�
˝ 1

D @
y
D

�
Œs�
�
˝ 1C �@

y
D

�
Œy�1; s�

�
˝ 1 D �h�1i�Œs�˝ Ny_ ˝ 1:

We have �Œs� D hsi � 1 D hx2nti � 1 D �Œt � because x2n is obviously a square. For the
same reason, we have �Œt �D �Œt�1�, hence the last term above is equal in fCH

1
.Q;O.�D//

to �h�1iUT, as expected. This concludes the proof.

6. The Chow–Witt rings of xM1;1 and M1;1

In this section we compute the Chow–Witt rings of xM1;1 (Theorem 6.4.3) and M1;1

(Theorem 6.4.4). As in the previous section, we first determine the additive structure
(Propositions 6.2.1 and 6.3.5) and afterwards the multiplicative structure. The latter turns
out to be basically determined by that of B�2 and B�12.

6.1. The Ij -cohomology of xM1;1

We determine here the Ij -cohomology of xM1;1. The result itself (Proposition 6.1.1) has
some independent interest, which we highlight after the main proof. Moreover, this com-
putation is useful for determining Chow–Witt groups.

Recall that E denotes the Hodge bundle on xM1;1.
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Proposition 6.1.1. Suppose char.k/ ¤ 2; 3. Then we have:

H i;j . xM1;1; I�;O/ '

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Ij .k/ if i D 0;

Ij�2.k/ if i D 1;

kM
j�i .k/ if i � 2 even;

kM
j�i�1.k/ if i � 3 odd;

H i;j . xM1;1; I�;E/ '

´
kM
j�i�1.k/

if i even;

kM
j�i .k/ if i odd:

Moreover we have an isomorphism of W.k/-algebras

H�;�. xM1;1; I�; �/ 'W.k/ŒT;V�=.I �T;V2;VT/

induced by mapping T to the Euler class of the dual of the Hodge line bundle inside the
groupH 1;1. xM1;1; I�;U;1/, and V to a generator of the W.k/-moduleH 1. xM1;1; I1;O;0/.

Proof. Recall from (Proposition 4.2.3) that xM1;1 is the complement of the zero section
of the vector bundle p W V�4;�6 ! BGm; in addition the restriction of the line bundle
p�U! V�4;�6 to xM1;1 is isomorphic to the Hodge line bundle E .

As we have recalled in Section 3.2.2 the localization sequence associated to the decom-
position

s0.BGm/ ,! V�4;�6  - V�4;�6 X s0.BGm/

reads as

! H i�2;j�2.BGm; I�;U˝10 ˝ �/ H i;j .BGm; I�; �/ H i;j . xM1;1; I�; j �p��/

H i�1;j�2.BGm; I�;U˝10 ˝ �/ H iC1;j .BGm; I�; �/ H iC1;j . xM1;1; I�; j �p��/!

e�

e�

where e� is the multiplication by the I�-theoretic Euler class of V�4;�6. Observe that by
definition V�4;�6 ' U˝4 ˚U˝6 and that Euler class of a direct sum is the product of
Euler classes [12, p. 14]. Using the formulas for the Euler class given in Section 5.1.6, we
deduce

e.V�4;�6/ D e.U
˝4/ � e.U˝6/ D �2TH � .�3TH/ D 24T2;

which is zero in H 2.BGm; I2/ ' Z=2 � T2 (see Proposition 5.1.2).
Our computation of the Euler class implies that for each i , j we have a short exact

sequence

0!H i;j .BGm; I�;�/!H i;j . xM1;1; I�;j �p��/!H i�1;j�2.BGm; I�;U˝10˝�/! 0:

From Proposition 5.1.2 we see that for every choice of i; j and for every choice of the
twist, one of the two external terms in the sequence above is zero. The additive part of the
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statement can then be easily deduced from the I�-cohomology of BGm. The description
of the multiplicative part is the only thing left.

Let V be a generator ofH 1. xM1;1; I1/. Then V � TD 0 becauseH 2. xM1;1; I2;U/ D 0.
This also implies that V2 D 0: if this was not the case, we would have V2 D T2, hence

T3 D V2T D 0:

This gives a complete description of the multiplicative structure of H�. xM1;1; I�; �/ and
concludes the proof of the proposition.

6.2. The Chow–Witt groups of xM1;1

Here we deal with the additive structure of fCH
�
. xM1;1; �/, using the usual description of

this stack as a Gm-quotient.

Proposition 6.2.1. Let T be the Euler class of the line bundle E_, and let H be the pull-
back to xM1;1 of the element .0;2/ in fCH

0
.BGm;U/ introduced in Section 5.1.4. Moreover,

let V0 be any element whose image in CH1. xM1;1/ is zero and that is sent to a generator
by the boundary morphism

@ W fCH
1
. xM1;1;O/! H 0;�1.BGm;KMW

� ;O/ 'W.k/:

Then the following description of fCH
�
. xM1;1; �/ holds:

Twist 0 1 2 3 2k 2k C 1

O GW.k/ � 1 Z � HT˚W.k/ � V0 Z=24 � T2 Z=24 � HT3 Z=24 � T2k Z=24 � HT2kC1

E Z � H Z � T Z=24 � HT2 Z=24 � T3 Z=24 � HT2k Z=24 � T2kC1.

Proof. As in the proof of Proposition 6.1.1 we have an open-closed decomposition

s0.BGm/ ,! V�4;�6  - V�4;�6 X s0.BGm/ ' xM1;1:

The induced localization sequence, combined with what we observed in Section 3.2.2,
determines almost completely the additive structure. More in detail: since by definition
V�4;�6 ' U˝4 ˚U˝6, and because Euler class of a direct sum of vector bundles is the
product of Euler classes (see [11, Proposition 13.3.2]), we deduce

e.V�4;�6/ D e.U
˝4/e.U˝6/ D �2TH � .�3TH/ D 24T2;

where in the second equality we used the formulas for the Euler class given in Section
5.1.6.

Using Propositions 5.1.5 and 5.1.3, for i � 2 we get exact sequences:8<:Z � Ti�2
24T2
���! Z � Ti ! fCH

i
. xM1;1; �/! 0 for � ' E˝i (modulo squares)I

Z � Ti�2H
24T2
���! Z � TiH! fCH

i
. xM1;1; �/! 0 for � ' E˝iC1 (modulo squares):
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where the zeroes on the right come from the fact that for i � 1 we have that

H i .BGm;KMW
i�1; � ˝U˝2n/

is a subgroup of KM
�1: this last group is zero (see Proposition 5.1.3). Similarly we get

fCH
0
. xM1;1;O/ ' GW.k/ � 1; fCH

0
. xM1;1;E/ ' Z � H; fCH

1
. xM1;1;E/ ' Z � T:

We are left with identifying fCH
1
. xM1;1;O/. From the localization sequence we extract

a short exact sequence

0! Z � TH! fCH
1
. xM1;1;O/

@
�!W.k/! 0:

We claim that this sequence splits. To prove this, observe that the Picard group of xM1;1

has no torsion. Therefore Proposition 3.1.2 ensures that fCH
1
. xM1;1;O/ fits in the pull-back

square fCH
1
. xM1;1;O/ //

��

CH1. xM1;1/

����

H 1. xM1;1; I1;O/
z // Ch1. xM1;1/

(6.1)

where z is the map induced onH 1 by the Milnor map I1! kM
1 . We claim that z D 0. The

exact sequence
0! I2 ! I1 ! kM

1 ! 0

induces a commutative ladder in cohomology

H 1;1.V�4;�6; I�;O/ //

j�

��

H 1;1.V�4;�6; kM
� /

//

j�'

��

H 2;2.V�4;�6; I�;O/

j�'

��

H 1;1. xM1;1; I�;O/
z // H 1;1. xM1;1; kM

� /
// H 2;2. xM1;1; I�;O/:

(6.2)

Observe that the central and right vertical maps are isomorphisms. Indeed, injectivity
follows from the vanishing of e.V�4;�6/ in I�-cohomology (and thus also on mod two
Chow groups by Section 3.2.2), while surjectivity follows from Proposition 5.1.2. As
V�4;�6 is a vector bundle over the smooth stack BGm, the top-left term is isomorphic
to H 1;1.BGm; I�;O/ and by Proposition 5.1.2 we know that this is zero. A diagram
chase shows that this implies that both horizontal arrows on the right in (6.2) are injective,
hence z D 0.

From (6.1) we know that fCH
1
. xM1;1;O/ ' P 1. xM1;1;O/. As z D 0, the latter by

definition coincides with

H 1. xM1;1; I�;O/˚ Ker
�

CH1. xM1;1/! Ch1. xM1;1/
�
;

which is in turn isomorphic to W.k/˚ 2T � Z. This proves the splitting.
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Now let V00 be an element that is sent to a generator of W.k/ as W.k/-module. Observe
that by what we proved before the element V00 must be sent to an element of

Ker
�

CH1. xM1;1/! Ch1. xM1;1/
�

by the morphism induced by the rank. As CH1. xM1;1/'Z, this implies that the rank of V00

is even, say 2d . Therefore, if we define V0 WDW V00 � dH , we obtain an element having the
properties listed in the statement, which by construction generates the Witt factor. We are
left to show that any generator of the Witt summand will be mapped along the boundary
@ W fCH

1
. xM1;1;O/! H 0;�1.BGm;KMW

� ;O/ 'W.k/ to a generator. For this we use the
commutative square

fCH
1
. xM1;1;O/ H 0;�1.BGm;KMW

� ;O/

H 1;1. xM1;1; I�;O/ H 0;�1.BGm; I�;O/:

@

'

@

'

The right vertical map is an isomorphism since it fits in the long exact sequence associated
to

0! 2KM
� ! KMW

� ! I� ! 0:

6.3. The Chow–Witt groups of M1;1

6.3.1. Recall from Section 4.2.5 that the stack M1;1 can be regarded as an open substack
of V�4;�6, whose complement is the quotient stack C WD ŒC=Gm�, where C denotes the
closed subscheme in V�4;�6 of equation 4a3 C 27b2 D 0.

Observe that the normalization of C is isomorphic to V�2: indeed, the normalization
of C is isomorphic to V�2, and the proper morphism � W V�2 ! C is Gm-equivariant,
hence it descends to a well-defined morphism of quotient stacks.

Lemma 6.3.2. The normalization � W V�2 ! C induces an isomorphism of homology
groups

�� W Hi;j .V�2;K�; ��L/
'
�! Hi;j .C;K�;L/

where K� 2 ¹KMW
� ; I�;KM

� ; k
M
� º.

Proof. The restriction of � to the open substack B�2 D ŒV�2 X ¹0º=Gm� is an isomor-
phism; the same holds for the restriction to the closed complement BGm D Œ¹0º=Gm�.
The conclusion then follows from functoriality of localization sequences along proper
maps.

The Picard group of M1;1 is isomorphic to Z=12 and it is generated by the Hodge
line bundle E . In fact the discriminant is a never-vanishing section of E˝12, hence it
canonically induces a map

� WM1;1 ! B�12:
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The map � can also be constructed as the quotient of the Gm-equivariant morphism

� W V�4;�6 X C ! V�12 X ¹0º; .a; b/ 7! 4a3 C 27b2:

As the map� is flat between smooth quotient stacks, there is a well-defined pull-back��

at the level of Chow–Witt rings (see Theorem 2.3.3).

Definition 6.3.3. We define D in fCH
0
.M1;1;O; 0/ as ��U, where U is the element offCH

0
.B�12/ introduced in Definition 5.2.1.

6.3.4. If we denote by GW the unramified sheaf of Grothendieck–Witt rings on the
category of smooth k-schemes, we can regard the element D as a map M1;1 ! GW of
Zariski stacks over smooth k-schemes associating with every elliptic curve p W E! S the
Grothendieck–Witt class of the pair .Ep;�/: here we see the discriminant� as a quadratic
form E˝6p ˝ E˝6p ! O on the sixth power of the Hodge bundle Ep . From this point of
view we actually have that D is the following composition of maps of Zariski stacks

M1;1
�
�! B�12

.�/6

���! B�2
U
�! GW:

Proposition 6.3.5. Suppose that the characteristic of the base field is¤ 2; 3. Let T be the
Euler class of E_, let H be the (pull-back of the) class introduced in from Section 5.1.4
and let D be the class introduced in Definition 6.3.3. Then the following description offCH
�
.M1;1; �/ holds:

Twist 0 1 2 3 2k 2k C 1

O GW.k/ � 1˚W.k/ � D Z=6 � HT Z=24 � T2 Z=6 � HT3 Z=24 � T2k Z=6 � HT2kC1

E Z � H Z=24 � T Z=6 � HT2 Z=24 � T3 Z=6 � HT2k Z=24 � T2kC1.

Proof. We use the localization sequence associated to C
i
,! V�4;�6

j
 - M1;1 for the

homology with coefficients in Milnor–Witt K-theory:

fCHi .C; �/
i�
�! fCHi .V�4;�6; �/

j�

�! fCHi .M1;1; �/! Hi�1;i .C;KMW
� ; �/: (6.3)

From Lemma 6.3.2, combined with the usual homotopy invariance and with the computa-
tions contained in Proposition 5.1.3, we know that Hi�1;i .C;KMW

� ; �/ D 0 for i ¤ 1.
We are left with determining the image of i�: we claim that Im.i�/ is the graded ideal

generated by e.O.12//. By Lemma 6.3.2 we know that Im.i�/ coincides with the image
of the push-forward along the composition

V�2
�
�! C

i
,! V�4;�6:

Since .i ı �/� is a surjective map of fCH
�
.BGm; �/-modules, the projection formula

ensures that Im.i ı �/� D ..i ı �/�.1//. We can make such use of the projection for-
mula since there is a unique lift to V�4;�6, up to squares, of the graded line bundle
D.Liı�/, where Liı� denotes the cotangent complex of the map i ı �. Namely the lift
is .O.�8/;�1/. Moreover it holds that ��.1/D p�.1/, where p W C! BGm is the canon-
ical map, and C � V�4;�6 is the Cartier divisor Œ�=Gm�. This indeed follows from the
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fact that the classes ��.1/ and p�.1/ are both represented by the same element in the
Rost–Schmid complex of C. Finally by cohomological base change we have

.i ı �/ � .1/ D i�p
�.1/ D q�e.U˝12/ D �6T H;

where q W V�4;�6 ! BGm is the canonical map. This concludes the computation of the
Chow–Witt groups of M1;1 in cohomological degree i > 0. Actually, the same argument
also shows that fCH

0
.M1;1;E/ D Z � H.

In order to determine fCH
0
.M1;1/ we use again the localization sequence (6.3), from

which we deduce the following short exact sequence:

0! GW.k/ � 1! fCH
0
.M1;1;O/!W.k/! 0: (6.4)

By construction h � D D ��h � ��U D ��.h � U/ D 0, hence the multiplication by D
defines a map W.k/! fCH

0
.M1;1/. We claim that this map splits the sequence (6.4): for

this we need to show that the boundary of D in H0;1.C;KMW
� ;U˝12/ 'W.k/ is a unit.

Consider the equivariant approximation of V�4;�6!BGm given by the vector bundle

V WD V
�
O.�4/˚O.�6/

�
! P2:

An equivariant approximation of C is given by the divisor C � V defined as the vanishing
locus of the map

V
�
O.�4/˚O.�6/

�
! V

�
O.�12/

�
; .a; b/ 7! 4a˝3 C 27b˝2:

Therefore, the open subscheme V XC is an equivariant approximation of M1;1. The class
D can then be regarded as the element of fCH

0
.V X C;O/, or even more conveniently as

an element of GW.k.V //. Let L denote the pull-back of O.�6/ to V , then we have the
quadratic form

q W L˝L! OV ; t ˝ t 0 7!
t ˝ t 0

4a˝3 C 27b˝2
:

If we write k.V / D k.x; y; a; b/, then qgen 2 GW.k.V // corresponds to the symbol 1C
�Œ��, where � D 4a3 C 27b2. By construction D D .qgen � 1/, and its image along the
boundary morphism fCH1.V X C;O/! H0;1

�
C;KMW

� ;O.C /
�

is equal to the residue of this element at the codimension one point corresponding to the
generic point of C . The discriminant � D 4a3 C 27b2 is a local parameter for the valu-
ation � W k.V /! Z [ ¹1º induced by the Cartier divisor C � V . Applying the formula
for the residues [13, Theorem 1.7] we obtain

@�
�
�Œ��1�

�
D @��

�
�Œ��1�

�
˝ x�_ D � � @� Œ�

�1�˝ x�_ D �˝ x�_:

The computation above shows that, after identifying H0;1.C;KMW
� ;O.C // with W.k/,

the boundary of D is a unit and hence the multiplication by this class splits (6.4). This
concludes the proof.
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6.4. Multiplicative structures

6.4.1. Let us take a look at the localization sequence of KMW
� -cohomology groups

induced by the open immersion M1;1 ,! xM1;1. Recall that �0, the divisor of singular
curves, is isomorphic to B�2, so that we have

fCH
0
.B�2;O/! fCH

1
. xM1;1;E

�12/! fCH
1
.M1;1/! 0:

The surjectivity of the last map is due to the vanishing of H 1.B�2;KMW
0 /, which is in

turn an easy consequence of the vanishing of H 1;j .BGm;KMW
� / for j D 0;�1.

We can rewrite the exact sequence above using the information we gathered so far
on the Chow–Witt groups of these stacks (see Propositions 5.2.3, 6.2.1, and 6.3.5). We
obtain:

GW.k/ � 1˚W.k/ � U! Z � TH˚W.k/ � V0 ! Z=6 � TH! 0:

As O.�0/ ' E˝12 we get

i�1 D e
�
O.�0/

�
D e.E˝12/ D �6TH; (6.5)

which implies that i�U ¤ 0. Write i�U D aTHC bV0. The commutative square

fCH
0
.B�2/

i� //

ch

��

fCH
1
. xM1;1/

ch

��

CH0.B�2/
i� // CH1. xM1;1/ ' Z

tells us that ch.i�U/ D i�.ch.U//, which is zero because of how we defined U (see Def-
inition 5.2.1). Henceforth i�U must be of the form bV0. Consider now the commutative
square fCH

1
. xM1;1/

j�
//

ch

��

fCH
1
.M1;1/ ' Z=6 � TH

ch

��

CH1. xM1;1/
j�
// CH1.M1;1/ ' Z=12 � T:

Observe that the right vertical arrow sends TH to 2T, hence the map is injective. As V0 is
by definition sent to zero by the left vertical arrow, we deduce that V0 is sent to zero by the
top horizontal arrow, i.e., W.k/ � V0 is contained in the kernel of Z � TH˚W.k/ � V0 !
Z=6 � TH.

On the other hand, this kernel coincides with the image of GW.k/ � 1˚W.k/ � U!
Z � TH˚W.k/ �V0, which is generated by i�.1/D �6TH and i�.U /D bV0. This implies
that b must be invertible in W.k/, as the GW.k/-module generated by bV0 must be equal
to the whole W.k/ � V0.
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Definition 6.4.2. We denote by V the class i�U.

We are ready to state our first main result.

Theorem 6.4.3. Let k be a perfect field of characteristic different from 2 and 3. Then we
have an isomorphism of GW.k/-algebras

fCH
�
. xM1;1;�/'GW.k/ŒT;V;H�=.I �T;I �H;H2� 2h;hV;HV;V2;24T2;12HT2CVT/;

where T is mapped to the Euler class of E_, the element H is mapped to the (pull-back
of the) element introduced in Section 5.1.4, and V is mapped to the class introduced in
Definition 6.4.2.

Proof. The relations that only involve T and H comes from the Chow–Witt ring of BGm

(see Proposition 5.1.5). The relation 24T2 D 0 has already been discussed in the proof of
Proposition 6.2.1.

By definition V D i�U, and we know from Theorem 5.3.4 that U2 D 0, hU D 0

and UT D 2T. The push-forward morphism i� is a morphism of fCH
�
.BGm; �/-modules

and we have already verified in (6.5) that i�.1/ D �6TH, thus by the projection formula
(cf. [13, Theorem 3.19]) we obtain

VT D i�.U/ � T D i�.U � i�T/ D i�.UT/ D i�.2T/ D 2T � i�.1/ D �12T2H:

In a similar way we deduce that hV D 0 and HV D 0. In order to prove that V2 D 0 it
is enough to see that the image of V2 via the isomorphism fCH2.M1;1/ ! CH2.M1;1/

vanishes. This is clear since VD i�.U /, and as we have seen in Section 6.4.1 i�.U / maps
to zero in Chow theory.

The GW.k/-algebra generated by T,H and V modulo the relations that we have found
maps by construction onto the Chow–Witt ring of xM1;1. By looking at the additive struc-
ture of these two rings, we deduce that this map must be an isomorphism, thus concluding
the proof.

Theorem 6.4.4. Suppose that the characteristic of the base field is ¤ 2; 3. Then we have
an isomorphism of GW.k/-algebras

fCH
�
.M1;1; �/

' GW.k/ŒT;D;H�=.I � T; I � H;H2 � 2h; hD;HD;D2 C 2D; 6TH; 12T � DT/;

where T is the Euler class of E_, the element H is the pull-back of the class introduced in
Section 5.1.4, and D is the class introduced in Definition 6.3.3.

Proof. The discriminant morphism M1;1 ! B�12 induces a pull-back morphism at the
level of Chow–Witt rings. By looking at the additive structure of both rings, which we
know from Theorem 5.3.4 and Proposition 6.3.5, we can conclude that the pull-back mor-
phism is actually an isomorphism of rings. This concludes the proof.
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6.5. Geometric interpretation of the new classes

6.5.1. Recall that for a smooth k-variety X and a line bundle L on X , the Chow–Witt
group fCH

i
.X;L/ is a subquotient ofM

x2X .i/

GW
�
k.x/; det.mx=m

2
x/
_
˝k.x/ L

�
;

where mx=m
2
x denotes the cotangent space of X at x. Each element of fCH

i
.X;L/ thus

writes as a linear combination X
x2X .i/

qx ˝ lx Œx�;

where qx is a class in GW.k.x//, lx is a local generator of det.mx=m
2
x/
_˝k.x/ L. Some-

times, with abuse, we index the sum on integral subvarieties of X .

6.5.2. Observe that V 2 fCH
1
. xM1;1;O/ belongs to, and in fact generates multiplicatively,

the kernel of the natural morphism

fCH
�
. xM1;1; �/! CH�. xM1;1/

which, we remind, sends an element
P
i qi ˝ li ŒVi � to

P
i rk.qi /ŒVi �.

The construction of the element V is somehow indirect. We have first identified � W
�0

'
�! B�2 to get a class in fCH

0
.�0;O/ corresponding to U, and in a second step we

have used the composition of the push-forward map with a non-canonical identification g

fCH
0
.�0;O/ �!

��

fCH
1
. xM1;1;E

˝�12/
'
�!
g
fCH

1
. xM1;1;O/;

where � W �0 ,! xM1;1 is the obvious closed embedding, and where g corresponds to a
family of choices of local generators gx for E˝�6. The isomorphism � is actually the
composition

�0
'
�!
 

V�2 n s0
'
�!
�2

B�2 W

here  is induced by the equivariant isomorphism

Spec kŒa; b�=.4a3 C 27b2/ n
®
.0; 0/

¯
! Spec kŒt � n

®
0
¯

defined by t 7! b=a

(where Gm acts on a, b, t with weights �4, �6, �2 respectively), while �2 is the tauto-
logical isomorphism introduced in Section 4.1.4. In this picture Ej�0 is easily seen to be
induced by the pull-back of the universal line bundle U on B�2 via �. In particular, since
the coordinate t is the canonical trivialization of the pull-back of ��2U˝2, the section b=a
trivializes ��U˝2, and thus induces a trivialization

b=a W O
'
�! E˝2

j�0
:
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This induces a quadratic form on Ej�0 , and thus an element q D ��.qgen/ 2 fCH
0
.�0;O/.

By construction, the element V coincides with .g ı ��/.q � 1/ D g.hb=ai � 1/Œ�0�.
More concretely we can think of the element V as a sort of characteristic class, func-

torially associated with families p W C ! S of genus 1 curves over smooth bases, marked
with a section � W S ! C (landing in the smooth locus of p), where the non-smoothness
locus of p is a smooth Cartier divisor S1 � S . For instance, assume S to be a smooth
curve and let f W S! xM1;1 be the classifying map of the family p. Then S1D s1C � � � C
sm is a reduced Cartier divisor arising as pull-back of�0, and the induced map f1 WS1!
�0 classifies the induced family of nodal curves p1 W C1 ! S1. In this setting

f �1U 2 fCH
0
.S1;O/ '

M
i

GW
�
k.si /

�
(6.6)

and the above arguments tautologically give

f �1U D
X
i

��
bi

ai

�
� 1

�
W

here ai , bi are coefficients of any Weierstrass equation y2 D x3 C aix C bi for the fiber
Csi . As a sanity check we note that another Weierstrass equation for Csi would change the
ratio bi=ai 2 k.si /� by a square, leaving the cycle f �1U unchanged. Observe that f �1U is
nothing else than the “new” characteristic class of the �2-torsor

AutS1
�
EpjS1 ; f

�
1.b=a/

�
(6.7)

of automorphisms of the Hodge bundle Ep1.' EpjS1/ of p1 respecting the induced
trivialization f �1b=a of its tensor square.

A side note: nodal curves are completely classified by their �2-torsor (6.7); �2-torsors
over a smooth base are, on their turn, completely classified by their discriminant U in the
O-twisted Chow–Witt ring of their base. Thus the invariant U is a full invariant of families
of nodal curves.

Going back to the main topic we see that, by base change (cf. [13, Theorem 3.18]),
formula (6.6) gives that f �V 2 fCH

1
.S;E˝�12p / can be expressed as

f �V D
X
i

��
bi

ai

�
� 1

�
Œsi �;

where Ep denotes the Hodge bundle of the family p.

6.5.3. We can relate the element f �V to the geometry of the tangent lines around the
nodes of the singular fibres as follows. Let �i W xCsi ! Csi be the normalization map, and
let Pi be the fiber of �i over the singular point of Ci . It is easy to check that Pi ! si is an
étale cover (of degree 2) isomorphic to k.si /.

p
bi=2ai /: this follows from writing down

explicitly the equation for the normalized curve. In other words, the tangent lines at the
node of Csi are rational if and only if bi=2ai is a square in k.si /.



Equivariant Chow–Witt groups and moduli stacks of elliptic curves 361

We can further reformulate of this phenomenon via a chain of natural isomorphisms
of �2-torsors over si hereby displayed:

Pi
'
 � Isomsi

�
¹0; 1º; Pi

� '
 � Isomsi

��
P1si ; ¹0; 1º;1

�
;
�
xCsi ; Pi ; �.si /

��
: (6.8)

The source of the left map is the �2-torsor of isomorphisms of �2-torsors over si , and
isomorphically maps to Pi by evaluating at 0. The source of the right map is the �2-
torsor of isomorphisms of curves marked with a Cartier divisor of degree two and with
a Cartier divisor of degree one; the right-hand side map is simply the restriction to the
divisor of degree two. The ratio bi=2ai being a square is thus equivalent to the triviality
of the �2-torsor

Isomsi

��
P1si ; ¹0; 1º;1

�
;
�
xCsi ; Pi ; �.si /

��
! si :

Since we further have

Isomsi

��
P1si ; ¹0; 1º;1

�
;
�
xCsi ; Pi ; �.si /

��
' Isomsi

��
P1si =0 � 1; 2¹0 � 1º;1

�
;
�
Csi ; Pi ; �.si /

��
;

the invariant hbi=2ai i checks whether the curve Csi is isomorphic (over Spec.k.si //) to
a projective line with 0 and 1 glued together or to a quadratic twist of it. Obviously when
2 is a square in k, the torsors (6.7) and (6.8) are isomorphic, thus they have the same
associated Chow–Witt class in fCH

1
.S;E˝�12/. In particular, we have

h2if �V D
X
i

��
bi

2ai

�
� h2i

�
Œsi �:

When the ground field has a root of 2, the expression above is equal to f �V.

A. A gentle introduction to Chow–Witt theory

The goal of this Section is to give an elementary motivation and guide to Chow–Witt
groups to a reader who is acquainted with classical intersection theory but not with the
machinery of motivic cohomologies. Therefore, in this Section we sketch an intuitive
construction of Chow–Witt groups that resembles the one of Chow groups. A rigorous
fully detailed treatment of foundations is given in [13] and in [11].

We have selected a few key facts without claiming or hoping to be exhaustive. The
interested reader should refer to [13] for further explanations and proofs.

A.1. Recap on Chow groups

A.1.1. The standard reference for the definition of Chow groups is [16, Chapter 1]. Given
a separated schemeX over a field k, the group of cycles onX of dimension i is defined as

Zi .X/ WD
˝
ŒV � j V � X is a closed subvariety of dimension i

˛
:
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Therefore, a cycle of dimension i on X is a finite formal sum
P
j nj ŒVj �, where each Vj

is a subvariety of dimension i , and nj is an integer.
Given a normal subvariety W � X and a rational function ' W W ! P1 on W , one

can define a cycle in X as follows:

div.'/ WD '�1.0/ � '�1.1/:

When W is not normal, more carefulness is needed and one should rather work with the
normalization of W . For more details, see [16, Chapter 1].

The definition of div.'/ above is necessary in order to introduce the notion of rational
equivalence of cycles. Indeed, two cycles ŒV � and ŒV 0� of dimension i are called rationally
equivalent if there exist a finite number of subvarieties W1; : : : ; Wm � X of dimension
i C 1 and rational functions '1; : : : ; 'm with 'i 2 k.Wi / such that

ŒV � � ŒV 0� D
X
j

div.'j /:

The intuition behind the notion of rational equivalence is that two cycles are rationally
equivalent if one can be deformed into the other along a chain of projective lines.

The Chow group CHi .X/ of cycles of dimension i is then defined as

CHi .X/ WD Zi .X/= �rat :

A.1.2. The Chow group CHi .X/ sits in the exact sequenceM
W 2X.iC1/

k.W /� !
M
V 2X.i/

Z � ŒV �! CHi .X/! 0; (A.1)

where the first arrow sends rational functions ' to div.'/. This is just a reformulation of
the construction presented in the previous paragraph.

Observe that we can further reformulate the exact sequence above in terms of Milnor
K-theory: recall that for a field F we have KM

0 .F / D Z and KM
1 .F / D F

�, and therefore
we can rewrite (A.1) asM

W 2X.iC1/

KM
1

�
k.W /

�
!

M
V 2X.i/

KM
0

�
k.V /

�
! CHi .X/! 0;

where the first arrow is the total residue homomorphism. This way of looking at Chow
groups is the starting point to get to the definition of Chow–Witt groups; more on that
later.

When X is smooth, Chow groups inherit a multiplicative structure given by the inter-
section product. In particular, such multiplicative structure is well behaved with respect to
the natural multiplicative structure of KM

0 .F / ' Z, i.e., we have

nŒV � �mŒV � D nm
�
ŒV � � ŒV 0�

�
:

An analogue statement will be true for Chow–Witt groups, as we will see in the next
section.
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A.2. Intuition for Chow–Witt groups

A.2.1. A nice reference for the contents of this subsection is [13, Section 1]. We have
just seen that the generators of classical Chow groups are cycles

P
j nj ŒVj �, where the nj

are integers and the Vj are subvarieties of X . The idea behind Chow–Witt groups is to
consider cycles

P
j qj ŒVj � where we would like the coefficients qj to be quadratic forms.

We should also be able to subtract and multiply two coefficients together, just as in the
classical case. It would also be useful to have an extension of the rank function q 7! rk.q/
to these groups of cycles, so to be able to get back to the classical cycles by consideringX

j

qj ŒVj � 7!
X
j

rk.qj /ŒVj �:

Given a cycle qŒV �, an obvious choice for field of definition of the quadratic form q is
given by the field k.V /. Quite unsurprisingly at this point, the ring of quadratic forms
we are looking for turns out to be the Grothendieck–Witt ring GW.k.V //. Recall indeed
that given a field F , we can construct a monoid of isometry classes of symmetric bilin-
ear spaces .V; q/, i.e., pairs where V is a finite dimensional F -vector space and q is a
symmetric bilinear form on V . Operations are defined to be orthogonal direct sum and
tensor product. The Grothendieck–Witt ring GW.F / is then the group completion of this
monoid.

One would be tempted to define the Chow–Witt group of i -dimensional cycles on a
variety X as a suitable quotient of M

V 2X.i/

GW
�
k.V /

�
:

However for several reasons this is a bit naive: for instance this definition does not allow
to canonically define an analogue of rational equivalence, as it will be clear soon. This
group has to be slightly modified in order to give a reasonable theory.

A.2.2. Another strong evidence that the Grothendieck–Witt ring is the right object to
consider is given by the fact that GW.F / is isomorphic to the degree 0 piece of the so
called Milnor–Witt K-theory of F . The Milnor–Witt K-theory graded ring KMW

� .F / is
generated as a graded ring by the degree 1 symbols Œa�, where a 2 F �, and the degree �1
symbol �. The relations are the following:

• Œa� � Œ1 � a� D 0 for a ¤ 1,

• Œab� D Œa�C Œb�C �Œa�Œb�,

• �Œa� D Œa�� for a 2 F �,

• �.�Œ�1�C 2/.

An element Œa1�Œa2� � � � Œan� is usually denoted Œa1; a2; : : : ; an�. There is a natural isomor-
phism

GW.F /! KMW
0 .F /
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defined by
hai 7! 1C �Œa�:

Another interesting fact about KMW
� .F / is that the pieces of negative degree are all

canonically isomorphic to W.F /, the Witt ring of F . Observe that in KMW
0 .F / the hyper-

bolic form h is written as 2C �Œ�1�, and the last relation assures us that �hD 0. Then the
aforementioned isomorphism is given by

W.F /! KMW
�i .F /; hai 7! �i

�
1C �Œa�

�
:

A.2.3. The next step is to introduce an equivalence relation on the cycles. Ideally, we
would like this relation to be well behaved with respect to the rank function, so that

qŒV � � q0ŒV 0�) rk.q/ŒV � �rat rk.q0/ŒV 0�:

Recall that in the classical case, the cycles that are rationally equivalent to zero belongs to
the image of the total residue homomorphismM

W 2X.iC1/

KM
1

�
k.W /

�
!

M
V 2X.i/

KM
0

�
k.V /

�
:

Let V � W be a codimension 1 subscheme (we are assuming W normal). Then the field
k.W / has a discrete valuation � with residue field k.V /. Pick a generator � for the kernel
of �, and let OW;V � k.W / be the local ring of W at V . Then the corresponding residue
homomorphism is determined by the properties

@�� Œ�� D 1; @�� Œu� D 0 for u 2 O�W;V :

To define an equivalence relation for cycles with coefficients in quadratic forms it is
quite natural to look at KMW

1 .�/ and try to replicate the construction above, i.e., to try to
define an homomorphismM

W 2X.iC1/

KMW
1

�
k.W /

�
!

M
V 2X.i/

KMW
0

�
k.V /

�
:

The group KMW
1 .F / is generated by the symbols �j�1Œa1; : : : ; aj �, where ai is in F �.

Given W � V of codimension 1, pick a parameter � for the kernel of the valuation
� W k.W /! Z [ ¹�1º. Then there is a unique homomorphism

@�� W K
MW
1

�
k.W /

�
! KMW

0

�
k.V /

�
which satisfies

@�� �
j�1Œ�; u2; : : : ; uj � D �

j�1Œ u2; : : : ; uj �:

A.2.4. There is a subtlety here that must not be overlooked: the homomorphism @�� is not
independent of the choice of the parameter � , i.e., a different choice of generator would
determine a different residue homomorphism. This is a completely new feature of Milnor–
Witt K-theory which is not present in Milnor K-theory. In order to make the residue
homomorphism canonical, one needs to keep track of the choices of uniformizers made
for each specialization. This leads to the introduction of twisted Milnor–Witt K-theory.
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A.3. Twisted Chow–Witt groups

A.3.1. If L is a line bundle on SpecF , we denote L� the set of non-zero elements of L.
Both KMW

� .F / and ZŒL�� are naturally ZŒF ��-modules. A unit u 2 F � acts on KMW
� .F /

by multiplication by hui and on L� by multiplication by u. We can thus define the L-
twisted Milnor–Witt K-theory of F as

KMW
� .F;L/ WD KMW

� .F /˝ZŒF �� ZŒL��:

Therefore, given a discrete valuation � W k.W /!Z[ ¹1ºwith uniformizer � , the twisted
residue defined as

KMW
1

�
k.W /

�
! KMW

0

�
k.W /; .mV =m

2
V /
_
�
; Œa� 7! @��

�
Œa�
�
˝ x�_

does not depend on the choice of uniformizer. We can also consider twists on the source
of the residue map by acting as follows. Consider a line bundle L defined over the local
scheme Spec OW;V . We then define a homomorphism

KMW
1

�
k.W /;Lk.W /

�
! KMW

0

�
k.V /; .mV =m

2
V /
_
˝Lk.V /

�
as follows. Consider an element Œa�˝ l , find u 2 k.W /� such that l D ul 0 where l 0 is a
generator of the OW;V -module L, so that we can rewrite Œa�˝ l D Œa�hui˝ l 0. Then we set

Œa�˝ l 7! @��
�
Œa�hui

�
˝ x�_ ˝ l 0;

where l 0 denotes the image of l 0 along L! L˝ k.V /.
In particular, for every line bundle L on X , we can define a residue homomorphism

KMW
1

�
k.W /; det.�k.W /=k/˝Lk.W /

�
! KMW

0

�
k.V /; det.�k.V /=k/˝Lk.V /

�
;

where on the right we are implicitly using the canonical isomorphism

det.�OW;V =k/˝OW;V k.V /˝ .mV =m
2
V /
_
' det.�k.V /=k/:

Henceforth, we can define a total residue homomorphismM
W 2X.iC1/

KMW
1

�
k.W /; det.�k.W /=k/˝Lk.W /

�
!

M
V 2X.i/

KMW
0

�
k.V /; det.�k.V /=k/˝Lk.V /

�
: (A.2)

The image of this total residue homomorphism is by definition the group of cycles with
coefficients in quadratic forms that are rationally equivalent to zero in twist L.

The total residue homomorphism is actually part of the so called Rost–Schmid com-
plex: the next map in the sequence isM

V 2X.i/

KMW
0

�
k.V /; det.�k.V /=k/˝Lk.V /

�
!

M
U2X.i�1/

KMW
�1

�
k.U /; det.�k.U /=k/˝Lk.U /

�
; (A.3)

whose definition is completely analogous to the one given before.
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A.3.2. The Chow–Witt group fCHi .X;L/ of dimension i in twist L is defined as the
kernel of (A.3) modulo the image of (A.2). For usual Chow groups we do not have to
consider the kernel of (A.3) because KM

�1 D 0. As a matter of facts, we can always (non-
canonically) identify M

V 2X.i/

KMW
0

�
k.V /;L

�
'

M
V 2X.i/

KMW
0

�
k.V /

�
by choosing a generator for each Lk.V /. Therefore, we could still think of Chow–Witt
groups as subquotients of cycles with coefficients in quadratic forms, but this should
be avoided: changing twists radically changes the rational equivalence we are using, by
affecting the definition of residue morphism.

If X is smooth of dimension n, then it is also possible to define the (cohomologi-
cal) Chow–Witt group fCH

i
.X;L/ of codimension (or degree) i in twist L. The relation

between the two groups is as follows:

fCH
i
.X;L/ ' fCHn�i

�
X; det.�X /_ ˝L

�
:
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