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On the minus component of the equivariant Tamagawa
number conjecture for Gm

Mahiro Atsuta and Takenori Kataoka

Abstract. The equivariant Tamagawa number conjecture (hereinafter called the eTNC) predicts
close relationships between algebraic and analytic aspects of motives. In this paper, we prove a lot
of new cases of the minus component of the eTNC for Gm and for CM abelian extensions. One
of the main results states that the p-component of the eTNC is true when there exists at least one
p-adic prime that is tamely ramified. The fundamental strategy is inspired by the work of Dasgupta
and Kakde on the Brumer–Stark conjecture.
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1. Introduction

The relationship between the special values of L-functions and algebraic objects is a cent-
ral theme in number theory. The equivariant Tamagawa number conjecture, which was
formulated by Burns and Flach [5], is a very general and strong conjecture on such a rela-
tionship. In this paper, we focus on the equivariant Tamagawa number conjecture for Gm

(referred to below as the eTNC for short).
So far, a promising way to prove the eTNC has been to apply a suitable (equivariant)

Iwasawa main conjecture, together with a suitable descent theory. For example, using this
strategy, Burns and Greither [6] and Flach [16] proved the eTNC for an abelian extension
of Q. Also, Bley [2] proved the eTNC for a finite abelian extension of an imaginary quad-

2020 Mathematics Subject Classification. Primary 11R42; Secondary 11R29.
Keywords. Class groups, L-functions, equivariant Tamagawa number conjecture.

https://creativecommons.org/licenses/by/4.0/


M. Atsuta and T. Kataoka 420

ratic field, under certain hypotheses. In both cases, the relevant Iwasawa main conjecture
could be proved by the theory of Euler systems: the system of cyclotomic units over Q and
the system of elliptic units over an imaginary quadratic field, respectively. More recently,
in [8], Burns, Kurihara, and Sano established a general descent theory for an arbitrary
number field to deduce the eTNC from the Iwasawa main conjecture and additional con-
jectures. The result [8, Theorem 1.1] is strong enough to recover the above-mentioned
results of [2,6,16]. Note also that Burns [4] proved a global function field analogue of the
eTNC within a similar framework.

In this paper, we focus on the minus component of the eTNC for a finite abelian CM-
extension, which we refer to as the eTNC�. We will review a formulation of the eTNC�

in Section 1.1. Note that we ignore the 2-components whenever we consider the minus
components in this paper. Then the eTNC� can be decomposed into the p-component
eTNC�p for each odd prime number p.

This eTNC�p has been investigated closely, still via the Iwasawa main conjecture. For
instance, Nickel [25, Theorem 4] proved the eTNC�p under the hypotheses that the relevant
�-invariant vanishes, that the field extension is almost tamely ramified above p (the defin-
ition will be recalled after Theorem 1.1 below), and that another mild condition holds.
Note that the vanishing of the �-invariant is imposed for the Iwasawa main conjecture to
hold. On the other hand, as a consequence of the above-mentioned result, Burns, Kurihara,
and Sano [8, Corollary 1.2] proved the eTNC�p under the hypotheses that the associated
p-adic L-function has at most one trivial zero, still assuming the vanishing of the �-
invariant. The condition on the number of the trivial zeros is imposed in order to use the
Gross–Stark conjecture proved by Darmon, Dasgupta, and Pollack [10] and Ventullo [31].
Subsequently, Dasgupta, Kakde, and Ventullo [14] proved a significant part of the Gross–
Stark conjecture without the condition on the trivial zeros, but this does not allow us to
remove the condition from the result of Burns, Kurihara, and Sano (see [8, Section 1.C]).

On the other hand, in a recent preprint [13], Dasgupta and Kakde unconditionally
proved the Brumer–Stark conjecture (we do not review the statement), except for the 2-
components. A promising strategy to prove the Brumer–Stark conjecture had been again to
descend from the (equivariant) Iwasawa main conjecture (e.g., Greither and Popescu [20]).
However, Dasgupta and Kakde do not follow this strategy, and instead they investigate
finite abelian CM-extensions directly. This is why they could avoid any hypotheses for the
Iwasawa main conjecture and for the descent procedure.

In more recent work, using the work [13], Nickel [27] proved the eTNC�p as long
as all the p-adic primes are almost tamely ramified, without assuming the vanishing of
the �-invariant. Also, using the work [13], Johnston and Nickel [22] proved the relevant
Iwasawa main conjecture without assuming the vanishing of the �-invariant.

In this paper, by adapting the method of Dasgupta and Kakde [13] on the Brumer–
Stark conjecture, we prove the eTNC�p in many more cases. The main theorem is the
following.
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Theorem 1.1. LetH=F be a finite abelian CM-extension. Let p be an odd prime number.
Then the eTNC�p for H=F holds if at least one of the following conditions holds.

(i) There exists at least one p-adic prime of F that is (at most) tamely ramified
in H=F .

(ii) The maximal extension of F in H that is totally split at all the p-adic primes is
totally real.

(iii) We have H cl;C.�p/ 6� H
cl. Here, H cl denotes the Galois closure of H over Q,

H cl;C its maximal real subfield, and �p the group of p-th roots of unity.

We emphasize that the assumption of this theorem is very mild. See Remark 1.6 below
for an equivalent condition of (iii). The above-mentioned result of Nickel [27] is also a
part of this theorem. Recall that a p-adic prime v of F is said to be almost tamely ramified
in H=F if either v is (at most) tamely ramified in H=F or the complex conjugation is in
the decomposition subgroup of v in Gal.H=F /. Therefore, the existence of a single p-
adic prime that is almost tamely ramified ensures the condition (i) or (ii). Note that [27]
also deals with non-commutative extensions, which we do not study in this paper.

Even without assuming (i), (ii), or (iii) of Theorem 1.1, in this paper we also show that
the eTNC�p holds after suitably enlarging the coefficient ring. See Theorem 1.8 for this
result.

Remark 1.2. After the authors had completed this project, very recently Bullach, Burns,
Daoud, and Seo [3] announced an unconditional proof of the eTNC�. This is achieved by
combining the result of [13] with a newly developed general theory of Euler system. On
the other hand, this present paper does not rely on the theory of Euler systems at all and
instead directly adapt the strategy of [13] (see Section 1.3).

In Section 1.1, we formulate the eTNC�p . In Section 1.2, we state a more refined res-
ult (Theorem 1.10) on character-components of the eTNC�p , from which we will deduce
Theorems 1.1 and 1.8. In Section 1.3, we give an outline the proof of Theorem 1.10.

1.1. The formulation of the eTNC

In this section, we give a formulation of the eTNC� that we adopt in this paper. The
equivalence with a more standard formulation will be shown in Section 4.4.

1.1.1. Notation. Let H=F be a finite abelian CM-extension, which means that H is a
CM-field and F is a totally real number field such that the Galois group G D Gal.H=F /
is finite and abelian.

Let c 2 G denote the complex conjugation. We define ZŒG�� D ZŒ1=2�ŒG�=.1C c/.
For a ZŒG�-module M , we also define M� D ZŒG�� ˝ZŒG� M , which is regarded as a
ZŒG��-module. When x is an element ofM , we write x� for the image of x by the natural
homomorphismM !M�. Note that we implicitly invert the prime 2 whenever we study
minus components.
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We write Sram.H=F / for the set of places of F that are ramified in H=F , including
the infinite places. We also write Swild.H=F / � Sram.H=F / for the set of finite primes
of F that are wildly ramified in H=F . We write S1.F / (resp. Sp.F / for an odd prime
number p) for the set of infinite places of F (resp. p-adic primes of F ). For a finite set †
of places of F such that † � S1.F /, we put †f D † n S1.F /.

For a finite set †0 of finite primes of F , we write Cl†
0

H for the ray class group of H
of modulus

Q
w2†0H

w, where †0H denotes the set of primes of H that lie above primes
in †0. We write �.H/ for the group of roots of unity in H and define

�.H/†
0

D
®
� 2 �.H/ j � � 1 .modw/;8w 2 †0H

¯
:

Note that the complex conjugation acts as the inversion on �.H/, so we have �.H/†
0;� D

ZŒ1=2�˝Z �.H/
†0 .

1.1.2. A Ritter–Weiss type module. We introduce an arithmetic module, denoted by
�†

0

† , that plays a central role in this paper. The construction and the proof of its basic
properties will occupy Section 2. The module is basically the same as what the authors
used in preceding work [1], though we have to slightly generalize the situation. In the
work [1], the module was used for computing the Fitting ideals of ray class groups of H .
The construction is based on Ritter and Weiss [29], Greither [18], and Kurihara [24].

For each finite prime v of F , we write Gv (resp. Iv) for the decomposition group
(resp. the inertia group) of v in G, and 'v 2 Gv=Iv for the arithmetic Frobenius. We
define a finite ZŒG�-module Av by

Av D ZŒG=Iv�=.1 � '
�1
v C #Iv/: (1.1)

Now we introduce the module �†
0

† , which will be constructed in Section 2.5.

Proposition 1.3. Let † and †0 be finite sets of places of F satisfying the following.

(H1) † \†0 D ;.

(H2) † � S1.F /.

Then there exists a finite ZŒG��-module �†
0

† such that we have an exact sequence

0! Cl†
0;�

H ! �†
0

† !

M
v2†f

A�v ! 0: (1.2)

Note that the sequence (1.2) does not characterize the module �†
0

† up to isomorph-
isms; we have to determine the extension class associated to (1.2). This will be done in
Section 2.7.

The following is an important property of the module �†
0

† .

Proposition 1.4. In addition to (H1) and (H2), let us suppose the following.

(H3) �.H/†
0;� vanishes.

(H4) † [†0 � Sram.H=F / and † � Swild.H=F /.
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Then we have pdZŒG��.�
†0

† / � 1, where in general pd denotes the projective dimension.
In other words, the G-module �†

0

† is cohomologically trivial.

This proposition will be refined in Proposition 1.9 below, which in turn will be proved
in Section 2.6.

1.1.3. A Stickelberger type element. We introduce an analytic element �†
0

† that should
correspond to �†

0

† under the eTNC�.
For a finite prime v of F , we define N.v/ as the cardinality of the residue field of F

at v. For a C-valued character  of G, we define the L-function L. ; s/ by

L. ; s/ D
Y
v−f 

�
1 �

 .v/

N.v/s

��1
;

where v runs over the finite primes of F that do not divide the conductor f of  . It is
well-known that this infinite product converges absolutely for s 2 C whose real part is
larger than 1, and has an analytic continuation to the whole complex plane s 2 C. We
define an element ! 2 CŒG�� by

! D
X
 

L. �1; 0/e ;

where  runs over the odd characters of G and e denotes the idempotent associated to
 defined by

e D
1

#G

X
�2G

 .�/��1:

We actually have ! 2 QŒG��, thanks to the Siegel–Klingen theorem. In other words, the
element ! is characterized by .!/DL. �1; 0/ for any odd character , where by abuse
of notation we write  for the induced Q-algebra homomorphism from QŒG�� to C.

For a finite set †0 of finite primes of F , we also define the “smoothed” L-value

L†
0

. ; 0/ D
Y

v2†0;v−f 

�
1 �N.v/ .v/

�
� L. ; 0/

and, accordingly, an element

!†
0

D

X
 

L†
0

. �1; 0/e 2 QŒG��:

For each finite prime v of F , we define a non-zero-divisor hv 2 QŒG� by

hv D 1 �
�Iv
#Iv

.'�1v � #Iv/: (1.3)

Here, in general, for a finite group N , we write �N D
P
�2N � for the norm element in a

group ring. Then, in our case, �Iv induces a well-defined map QŒG=Iv�! QŒG�, which
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is implicit in the definition of hv . This element hv dates back to Greither [18], and used
by Kurihara [24] and the authors [1] for computing the Fitting ideals of (duals of) class
groups.

Now, for finite sets † and †0 satisfying the conditions (H1) and (H2), we define the
Stickelberger element by

�†
0

† D

Y
v2†f

h�v � !
†0
2 QŒG��: (1.4)

Note that this definition of the Stickelberger element differs from the usual ones (e.g.,
‚†

0

† .H=F / in Section 4.4). We will remark on the integrality of this element just after
Conjecture 1.5 below.

1.1.4. The formulation of the eTNC. Now we can formulate the eTNC� as follows. In
general, for a commutative noetherian ring R, let FittR.�/ denote the initial Fitting ideals
for finitely generated R-modules.

Conjecture 1.5 (The eTNC�). Let H=F be a finite abelian CM-extension. Let † and †0

be finite sets of places of F satisfying (H1), (H2), (H3), and (H4). Then we have

FittZŒG��
�
�†

0

†

�
D
�
�†
0

†

�
as ideals of ZŒG��.

This conjecture implicitly assumes the integrality of �†
0

† . Thanks to the work of
Deligne and Ribet [15] or Cassou-Noguès [9], we have the integrality as long as we
slightly strengthen the condition (H3) (see Section 4.1). However, unfortunately it seems
hard to directly deduce the integrality under the current hypotheses (H1), (H2), (H3),
and (H4).

The statement of this conjecture is independent from the choice of the pair .†; †0/
(see Section 3.1.1). It is clear that Conjecture 1.5 can be divided into p-components for
odd prime numbers p:

FittZp ŒG��
�
Zp ˝Z �

†0

†

�
D
�
�†
0

†

�
as ideals of ZpŒG��. We refer to this equality as the eTNC�p .

This formulation of the eTNC� is essentially what the authors’ preceding work [1]
used. In fact, the main content of [1] is to compute the Fitting ideal of Cl†

0;�
H , using the

sequence (1.2) and assuming the eTNC�. Therefore, Theorem 1.1 directly yields a lot of
unconditional cases of the main result of [1]. The equivalence between Conjecture 1.5 and
a more standard formulation of the eTNC will be shown in Section 4.4.

Now we have explained the statement of Theorem 1.1. Here we give two remarks on
the theorem.

Remark 1.6. We have a simple equivalent condition for the condition (iii) in Theorem 1.1.
Let Mp be the maximal 2-extension of Q in Q.�p/. Then, for a CM-field K, we have
KC.�p/ � K if and only if K �Mp .
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This is shown as follows. Since ŒQ.�p/ W Mp� is odd and ŒK W KC� D 2, we have
KC.�p/ � K if and only if KCMp � K. Since Mp=Q is a cyclic extension, so is
KCMp=K

C, and thus the unique intermediate CM-field ofKCMp=KC isKCMp . There-
fore, KCMp � K is equivalent to KCMp D K, that is, Mp � K.

Note that this argument also shows the following: Given a totally real field k, there
exists at most one CM-field K such that KC D k and KC.�p/ � K; in fact, the unique
possible choice is K D kMp when k � MCp . For this reason, the condition (iii) is very
mild.

Remark 1.7. Let us illustrate the result of Theorem 1.1 when F D Q. As already re-
marked, Burns and Greither [6] have unconditionally proved the eTNC� for the case
F D Q. Though Theorem 1.1 shows the validity of the eTNC�p for quite a lot of cases as
in Remark 1.6, unfortunately, we cannot recover the full statement. For instance, consider
the case where H D Q.�mpn/ with n � 2 and p − m with m � 3 such that p splits com-
pletely in Q.�m/=Q. Then none of the conditions (i)–(iii) of Theorem 1.1 hold. Indeed,
(i) the prime p is wildly ramified inH=Q; (ii) the concerned intermediate field is Q.�m/,
which is a CM-field; (iii) H contains Mp introduced in Remark 1.6.

Even without assuming (i), (ii), or (iii) of Theorem 1.1, we also have the following
second main theorem. For each subgroup N of G, using the norm element �N of N , we
define a ZpŒG�-algebra ZpŒG�.N/ by

ZpŒG�.N/ D ZpŒG=N � � ZpŒG�=.�N /;

which can be naturally regarded as a subring of QpŒG� that contains ZpŒG�. We put Ip DP
p2Sp.F /

Ip � G.

Theorem 1.8. LetH=F be a finite abelian CM-extension. Let p be an odd prime number.
Let † and †0 be finite sets of places of F satisfying (H1), (H2), (H3), and (H4). Let N be
a subgroup of Ip that contains the p-Sylow subgroup of Ip for some p 2 Sp.F /. Then we
have �

FittZp ŒG��
�
Zp ˝Z �

†0

†

��
� ZpŒG�

�
.N/ D �

†0

† � ZpŒG�
�
.N/

as ideals of ZpŒG��.N/. In other words, the eTNC�p holds if we enlarge the coefficient ring
from ZpŒG�� to ZpŒG��.N/.

Both Theorems 1.1 and 1.8 will be deduced from Theorem 1.10 below in Section 4.3.

1.2. A finer theorem for character-components

We fix an odd prime number p. In this subsection, we state a finer main theorem (The-
orem 1.10) concerning the character-components of the eTNC�p .

We introduce some general notation. For a finite abelian group G, let G0 denote
the maximal subgroup of G of order prime to p. For a character � of G0, put O� D

ZpŒIm.�/� regarded as a ZpŒG�-algebra via �, and let ZpŒG�� D ZpŒG� ˝Zp ŒG� O� be
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the �-component of ZpŒG�. For a finitely generated ZpŒG�-module M , we put M� D

ZpŒG��˝ZŒG�M , which is regarded as a ZpŒG��-module. Even more generally, ifM is a
ZŒG�-module whose p-adic completion yM is finitely generated over ZpŒG�, we define
M� D . yM/�. For each x 2 M , we write x� for the image of x by the natural map
M !M�.

Now we return to a finite abelian CM-extension H=F and its Galois group G D
Gal.H=F /. LetG0 denote the maximal subgroup ofG DGal.H=F /whose order is prime
to p. We also put I 0v D Iv \G

0 for each finite prime v of F .
Let † and †0 be finite sets of places of F satisfying the conditions (H1) and (H2).

When we focus on the �-components for a given odd character � of G0, the conditions
(H3) and (H4) are relaxed to the following.

(H3)�p �p1.H/
†0;� vanishes, where �p1.H/†

0

denotes the p-primary component of
�.H/†

0

.

(H4)�p †f [ †
0 � S

�
bad and †f � S

�
bad \ Sp.F /. Here, we write S�bad for the set of

finite primes v of F such that p j #Iv and � is trivial on I 0v .

It is easy to see that (H3) (resp. (H4)) implies (H3)�p (resp. (H4)�p ).
Now, under the conditions (H1) and (H2), we have a ZpŒG��-module�†

0;�
† D .Zp ˝Z

�†
0

† /
�. The following is a refinement of Proposition 1.4. It will be proved in Section 2.6.

Proposition 1.9. Let � be an odd character of G0. Let † and †0 be finite sets of places of
F satisfying (H1), (H2), (H3)�p , and (H4)�p . Then we have pdZp ŒG��.�

†0;�
† / � 1.

By Proposition 1.9, as long as the conditions (H1), (H2), (H3)�p , and (H4)�p hold, we
naturally expect the �-component of the eTNC�p (see Conjecture 1.5):

FittZp ŒG��.�
†0;�
† / D .�

†0;�
† /

as ideals of ZpŒG��. (Recall that the integrality of the Stickelberger element is not avail-
able in general; see Section 4.1.)

Now we can state the refined version of the main theorem of this paper, from which
Theorems 1.1 and 1.8 will follow (see Section 4.3). As before, we put Ip D

P
p2Sp.F /

Ip�

G and define �Ip 2 ZpŒG� as the norm element.

Theorem 1.10. Let H=F be a finite abelian CM-extension. Let p be an odd prime num-
ber. Let G0 denote the maximal subgroup of G D Gal.H=F / of order prime to p. Let �
be an odd character of G0 and put H� D HKer.�/. Let † and †0 be finite sets of places of
F satisfying (H1), (H2), (H3)�p , and (H4)�p . Then the following are true.

(1) Unless the decomposition groups of all the p-adic primes in H�=F are p-groups
and all the p-adic primes are ramified in H�=F , we have

FittZp ŒG��.�
†0;�
† / � .�

†0;�
† /Zp ŒG��

as principal (fractional) ideals of ZpŒG��.
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(2) In any case, we have

FittZp ŒG��.�
†0;�
† / � .�

†0;�
† /Zp ŒG�� C .�

�
Ip
/Frac.Zp ŒG��/

in the total fraction ring Frac.ZpŒG��/ of ZpŒG��.

Although this theorem concerns only the single inclusion, it is a standard fact that the
analytic class number formula allows us to deduce the equality from it. See Section 4.2
for the details.

The existence of �Ip in claim (2) is exactly why the full statement of the eTNC�p cannot
be deduced. The reason why we need the element �Ip will be explained in Section 1.3.
Nevertheless, from claim (2) we can deduce Theorem 1.1 (iii). For that purpose, we will
adapt the “avoiding trivial zero” argument of Wiles [33].

1.3. An outline of the proof and the organization of this paper

As already mentioned, the proof of Theorem 1.10 is very much inspired by the work [13]
of Dasgupta and Kakde on the Brumer–Stark conjecture.

Before explaining the method, let us explain a crucial difference between the eTNC�p
and the work [13]. The main theorem [13, Theorem 3.3] of that paper states the equality

FittZp ŒG��
�
r
†0

† .H/
�
p

�
D .‚†

0

† / (1.5)

as ideals of ZpŒG��, where r†
0

† .H/ is the transpose Selmer module (studied in [7]) and
‚†

0

† is a Stickelberger element (we do not review the precise definitions here; cf. Sec-
tion 4.4). The formula (1.5) is indeed of the same form as the eTNC�p formulated as
Conjecture 1.5. However, on the algebraic side, the module r†

0

† .H/
�
p may be infinite in

general, while our module �†
0

† is always finite. Correspondingly, on the analytic side, the
element ‚†

0

† may be a zero-divisor, while our element �†
0

† is always a non-zero-divisor.
It is even possible that both sides of (1.5) are zero. Nevertheless, Dasgupta and Kakde
used (1.5) (for various intermediate extensions of H=F ) in an ingenious way to deduce
the Brumer–Stark conjecture. However, there seems to be little hope to deduce the eTNC�p
from (1.5).

Generally speaking, we have two different strategies to prove relationships (e.g., the
eTNC and the Iwasawa main conjecture) between algebraic objects and analytic objects.
One is the theory of Euler systems. For instance, the Iwasawa main conjecture over Q can
be proved using the Euler system of cyclotomic units, which led to the proof by Burns
and Greither [6] of the eTNC when the base field is Q. The theory of Euler systems
has been developed for decades by many contributors. The other general strategy has its
origin in the work of Ribet [28] on the converse of the Herbrand theorem. A key idea
is to construct a suitable cuspform and then study the associated Galois representation.
The strategy is sophisticated by a lot of subsequent work, and as a milestone Wiles [33]
proved the Iwasawa main conjecture over totally real fields. It is also well-known that
these two strategies give the opposite divisibilities between algebraic objects and analytic
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objects. When we are dealing with Gm, thanks to the analytic class number formula, a
single divisibility is enough for the equality.

This latter strategy is the basis of the work of Dasgupta and Kakde [13]. They construct
a suitable cuspform and study the associated Galois representation. A key point we need to
care about is that we have to work over a group ring like ZpŒG�, not over a domain like C.
Let us also mention that subsequently Dasgupta and Kakde [11] succeeded in applying
the strategy to establish explicit class field theory over totally real fields.

Now let us explain the organization of this paper and at the same time the outline the
proof of Theorem 1.10. It closely follows [13], but both the Ritter–Weiss type modules and
the Stickelberger elements are different, so we need appropriate modifications throughout.

Sections 2–4. These sections are essentially preliminaries concerning the formulation of
the eTNC� and the statements of the main theorems of this paper. Firstly, Section 2 is
devoted to the construction and the proof of basic properties of �†

0

† . Then in Section 3,
we show functorial properties of those modules. They enable us to show the independency
of the eTNC� from the choice of .†; †0/, and also allow us to reduce the proof of the
main theorems to the case of the faithful odd characters �. In Section 4.1, we study the
integrality of the Stickelberger element �†

0

† . In Sections 4.2–4.3, we deduce Theorems 1.1
and 1.8 from Theorem 1.10. In Section 4.4, we show that our eTNC� is equivalent to more
standard formulations.

Sections 5–6. The remaining sections are devoted to the proof of Theorem 1.10 (for a
particular choice of .†;†0/ and faithful characters �). In Section 5, after reviewing basic
notation on Hilbert modular forms, we introduce the Eisenstein series and modify them
so that the relevant L-values appear in the constant terms. Then in Section 6, using the
Eisenstein series and applying the work of Silliman [30], we construct an appropriate
cuspform Fk. /.

Sections 7.1–7.3. Using the Galois representation associated to the cuspform Fk. /, we
define ZpŒG��-modules Bp , B0, and B1 that fit into an exact sequence

0! B0 ! Bp ! B1 ! 0:

Compared to the work [13], the construction needs an additional idea because the Hecke
action on the cuspform is much more complicated.

Section 7.4. We construct a commutative diagram of ZpŒG��
�1

-modules

0 // Cl†
0;��1

H
//

����

�
†0;��1

†
//

����

L
v2†f

A
��1

v
//

����

0

0 // B0
]

// Bp
]

// B1
]

// 0;

which corresponds to [13, Equation (125)]. Here, the upper sequence is the ��1-compo-
nent of (1.2), and in the lower sequence the superscript ] denotes the twist by the involution
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of the group ring that inverts every group element. This diagram is constructed by compar-
ing the extension classes of the both sequences. As a consequence, we obtain an inclusion

FittZp ŒG���1
�
�
†0;��1

†

�
� FittZp ŒG���1

�
Bp

]�
:

Section 7.5. We show that FittZp ŒG��.Bp/ is contained in the right-hand side of the claims
of Theorem 1.10. This is accomplished by a hard computation based on the idea of [13].
This is where we need the norm element �Ip in general. The origin of �Ip is Theorem 6.3
on Fk. /; it is multiplied to a weight k modular form. In this step, we have to com-
pute Fourier coefficients of Fk. / (after a certain Hecke action), and the authors found it
difficult to manage the coefficients of the weight k modular form.

2. Construction of the Ritter–Weiss type module

In this section, we construct the module �†
0

† satisfying Propositions 1.3, 1.4, and 1.9.
The construction closely follows Kurihara [24] and the work [1] of the authors, which in
turn relies on work of Ritter and Weiss [29] and Greither [18]. The construction is more
or less standard and has nothing essentially new (we may also refer to the exposition of
Dasgupta and Kakde [13, Appendix A]). However, the actual construction is necessary to
obtain a concrete expression of the extension class associated to the sequence (1.2) as in
Section 2.7, and also to show functorial properties in Section 3. This is why we include a
complete construction of �†

0

† in this section.
In Section 2.1, we review Gruenberg’s translation functor [21, Section 10.5]. Then in

Sections 2.2 and 2.3, following the work [29] by Ritter and Weiss, we review the con-
struction of local and global arithmetic modules by applying the translation functor to
the fundamental classes in class field theory. Using certain local and global compatibility
that we review in Section 2.4, we construct the module �†

0

† satisfying Proposition 1.3 in
Section 2.5. We prove Proposition 1.9 (and thus Proposition 1.4) on the cohomological
triviality in Section 2.6. Finally in Section 2.7 we obtain a concrete expression of the
extension class associated to the sequence (1.2).

2.1. Gruenberg’s translation functor

In this subsection, we review Gruenberg’s translation functor. Let G be any finite group
(in the applications we only need the case where G is abelian).

Let A be a (left) ZŒG�-module. It is well-known that the cohomology groupH 2.G;A/

can be identified with the set of equivalence classes of group extensions

1! A! X ! G ! 1 (2.1)

which are compatible with the G-module structure on A. Here, the last restraint means
that the G-module structure on A coincides with the structure defined by g � a D Qga Qg�1

for g 2 G and a 2 A, where Qg 2 X is a lift of g.
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In general we define the augmentation ideal by �G D Ker.ZŒG�! Z/, so we have
an exact sequence

0! �G ! ZŒG�! Z! 0: (2.2)

It is also well-known that Ext1ZŒG�.�G;A/ can be identified with the set of the equivalence
classes of ZŒG�-module extensions

0! A! Y ! �G ! 0: (2.3)

Then Gruenberg’s translation functor [21, Section 10.5] (see also [29, Section 2]) can
be formally defined as follows.

Definition 2.1. For a finite groupG and a ZŒG�-moduleA, we have natural isomorphisms

t W H 2.G;A/ ' Ext2ZŒG�.Z; A/ ' Ext1ZŒG�.�G;A/;

where the second isomorphism is induced by the exact sequence (2.2). We regard t as
a functor which sends group extensions (2.1) to module extensions (2.3), and call t the
translation functor.

We will need the following concrete expression of the translation functor. See [29,
Section 2, Lemma 3] for a proof; actually the following description is usually used as
the definition of the translation functor, and the equivalence with the above definition is
proved in the article.

Proposition 2.2. Let A be a ZŒG�-module. Let

1! A
˛
�! X

ˇ
�! G ! 1 (2.4)

be a group extension which is compatible with the G-module structure on A. We define a
ZŒG�-module Y by

Y D ZŒG�˝ZŒX� �X:

Here, the right ZŒX�-module structure on ZŒG� is defined by ˇ. Then we have an exact
sequence

0! A
˛0

�! Y
ˇ 0

�! �G ! 0; (2.5)

where we define ˛0 by ˛0.a/ D 1˝ .˛.a/� 1/ for a 2 A, and ˇ0 as the induced map from
�X ! �G induced by ˇ. Moreover, the translation functor t sends the extension (2.4) to
the extension (2.5).

2.2. Local consideration

Let Hw=Fv be a finite Galois extension of non-archimedean local fields of mixed char-
acteristic. Let Gw D Gal.Hw=Fv/ be the Galois group and Iw � Gw the inertia group.
Of course we have an extension H=F of number fields in mind, but in this subsection we
deal with only local fields.
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By local class field theory, we have the local fundamental class denoted by

uHw=Fv 2 H
2.Gw ;H

�
w /:

Let
NuHw=Fv 2 H

2.Gw ;Z/:

be the image of uHw=Fv by the homomorphism induced by the normalized valuation map
ordw W H�w ! Z.

Definition 2.3. By applying Gruenberg’s translation functor t to the local fundamental
class uHw=Fv , we define a ZŒGw �-module Vw which fits in a ZŒGw �-module extension

0! H�w ! Vw ! �Gw ! 0 (2.6)

that represents t.uHw=Fv / 2 Ext1ZŒGw �.�Gw ; H
�
w /. Similarly, we define a ZŒGw �-module

Ww with an exact sequence

0! Z! Ww ! �Gw ! 0 (2.7)

that represents t. NuHw=Fv / 2 Ext1ZŒGw �.�Gw ;Z/.

By the definition, the exact sequences (2.6) and (2.7) fit in a commutative diagram
with exact rows and columns

UHw� _

��

UHw� _

��

0 // H�w
//

����

Vw //

����

�Gw // 0

0 // Z // Ww // �Gw // 0:

(2.8)

Here, UHw denotes the unit group of the local field Hw .
For a more concrete description of Ww , we introduce the Weil groups. Let H ur

w be
the maximal unramified extension of Hw . Let W.H ur

w =Hw/ � Gal.H ur
w =Hw/ be the Weil

group, that is, the subgroup generated by the arithmetic Frobenius 'w . We similarly define
the Weil group W.F ur

v =Fv/ � Gal.F ur
v =Fv/ generated by 'v .

We then define the Weil group of the extension H ur
w =Fv by

W.H ur
w =Fv/ D

®
� 2 Gal.H ur

w =Fv/ j x� 2 W.F
ur
v =Fv/

¯
;

where x� denotes the natural image of � in Gal.F ur
v =Fv/. Then the natural restriction

homomorphism Gal.H ur
w =Fv/! Gal.F ur

v =Fv/ �Gw induces the first isomorphism of

W.H ur
w =Fv/ '

®
.h; g/ 2 W.F ur

v =Fv/ �Gw j
Nh D Ng in Gw=Iw

¯
'
®
.n; g/ 2 Z �Gw j '

n
v D Ng in Gw=Iw

¯
; (2.9)
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where the overlines denote the images toGw=Iw , but we simply write 'v for 'v 2Gw=Iw
by abuse of notation.

We now have the following fact.

Proposition 2.4. The group extension

1! W.H ur
w =Hw/! W.H ur

w =Fv/! Gw ! 1;

which is obtained as the restriction of the natural exact sequence

1! Gal.H ur
w =Hw/! Gal.H ur

w =Fv/! Gw ! 1;

represents the class NuHw=Fv 2 H
2.Gw ;Z/ (we identify W.H ur

w =Hw/ with Z by sending
'w to 1).

By Propositions 2.2 and 2.4, we obtain an isomorphism

Ww ' ZŒGw �˝ZŒW.H ur
w =Fv/� �W.H

ur
w =Fv/: (2.10)

This description of Ww gives the following more concrete one.

Proposition 2.5. We have an isomorphism of ZŒGw �-modules

Ww '
®
.x; y/ 2 �Gw ˚ ZŒGw=Iw � j Nx D .1 � '

�1
v /y in ZŒGw=Iw �

¯
;

where Nx denotes the image of x in ZŒGw=Iw �. Moreover, under this isomorphism, the
exact sequence (2.7) is described as follows: the map Z! Ww sends 1 to .0; �Gw=Iw /,
and the mapWw ! �Gw sends .x; y/ to x. Here, �Gw=Iw D

P#.Gw=Iw /
iD1 'iv 2 ZŒGw=Iw �

is the norm element.

Proof. Let us write W 0w for the right-hand side of the displayed isomorphism. We will
construct a commutative diagram with exact rows of the form

0 // Z // Ww //

��

�Gw // 0

0 // Z // W 0w
// �Gw // 0:

Here, the upper sequence is (2.7), and the lower sequence is the one described in the
statement. It is easy to see that the lower sequence is also exact. Then it is enough to
construct the dotted arrow which makes the diagram commutative.

Using the identification (2.9), we define a Z-homomorphism

�W.H ur
w =Fv/! �Gw ˚ ZŒGw=Iw �

by sending .n; g/ � 1 to .g � 1;
Pn
iD1 '

i
v/ if n > 0, to .g � 1; 0/ if n D 0, and to .g � 1;

�
P�n�1
iD0 '�iv / if n<0 (in any case the second component is defined as a formal expansion
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of .'nv � 1/=.1 � '
�1
v /). It can directly checked that this is actually a ZŒW.H ur

w =Fv/�-
homomorphism and the image is contained inW 0w . Thus, by (2.10), a ZŒGw �-homomorph-
ism Ww ! W 0w is induced.

Let us check that the diagram is commutative. By the description in Proposition 2.2,
the map Z!Ww sends 1 to 'w � 1D .#.Gw=Iw/; idGw /� 1 since 'w D '

#.Gw=Iw /
v . Then

this is sent to .0;
P#.Gw=Iw /
iD1 'iv/ D .0; �Gw=Iw / in W 0w , so the left square is commutative.

Each element .n;g/� 1 2�W.H ur
w =Fv/ is sent by the mapWw !W 0w !�Gw to g � 1,

so the right square is also commutative.

The following proposition is elementary but of critical importance.

Proposition 2.6. We make use of the isomorphism in Proposition 2.5. The following are
true.

(1) If Hw=Fv is unramified, then we have an isomorphism

�w W Ww ' ZŒGw �;

which sends .x; y/ to y.

(2) In any case we have an exact sequence

0! Ww
fw
��! ZŒGw �! ZŒGw=Iw �=.1 � '

�1
v C #Iw/! 0;

where fw sends .x; y/ to x C �Iwy.

Proof. Claim (1) is easy. See the paper [1, Lemma 3.4] of the authors for the proof of
claim (2).

Remark 2.7. As a variant of Proposition 2.6 (2), given a nonzero integer cw 2Z, we have
an exact sequence

0! Ww
fw
��! ZŒGw �! ZŒGw=Iw �=.1 � '

�1
v C cw#Iw/! 0; (2.11)

where fw sends .x; y/ to x C cw�Iwy. Moreover, when we work over Zp instead of Z,
an analogous construction is available for a nonzero p-adic integer cw 2 Zp . This remark
will be used in later in Section 3.

2.3. Global consideration

LetH=F be a finite Galois extension of number fields. Let G D Gal.H=F / be the Galois
group. The argument in this subsection is in parallel with Section 2.2.

Let CH be the idele class group of H . By global class field theory, we have the global
fundamental class

uH=F 2 H
2.G; CH /:
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Let†0 be a finite set of finite primes of F . Let Cl†
0

H be the ray class group ofH of modulusQ
w2†0H

w, where †0H denotes the set of primes of H that lie above primes in †0. We
define

NuH=F 2 H
2.G;Cl†

0

H /

as the image of uH=F by the homomorphismH 2.G;CH /!H 2.G;Cl†
0

H / induced by the
natural map CH ! Cl†

0

H .
Similarly as in the local case, we introduce the following.

Definition 2.8. By applying the translation functor t, we define a ZŒG�-module O which
fits in a ZŒG�-module extension

0! CH ! O! �G ! 0 (2.12)

that represents t.uH=F / 2 Ext1ZŒG�.�G;CH /. Similarly, for a finite set †0 of finite primes
of F , we define a ZŒG�-module H†

0

which fits in an exact sequence

0! Cl†
0

H ! H†
0

! �G ! 0 (2.13)

that represents t. NuH=F / 2 Ext1ZŒG�.�G;Cl†
0

H /.

By the definition, the sequences (2.12) and (2.13) fit in a commutative diagram with
exact rows

0 // CH //

����

O //

����

�G // 0

0 // Cl†
0

H
// H†

0
// �G // 0:

We need more concrete description of H†
0

. Let H†0;ab be the ray class field of H
of modulus

Q
w2†0H

w, so we have an isomorphism Cl†
0

H ' Gal.H†0;ab=H/ by the Artin
reciprocity map.

We now have the following fact.

Proposition 2.9. The group extension 1! Gal.H†0;ab=H/! Gal.H†0;ab=F /!G! 1

represents the class NuH=F 2 H 2.G;Cl†
0

H /.

By Propositions 2.2 and 2.9, we have

H†
0

' ZŒG�˝ZŒGal.H†0;ab=F /� �Gal.H†0;ab=F /: (2.14)

2.4. Compatibility between the local and global diagrams

Let H=F be as in Section 2.3. For each finite prime w of H , let Iw � Gw � G be
the inertia group and the decomposition group, respectively. We can apply the results
in Section 2.2 to the extension Hw=Fv , where v denotes the prime of F lying below w.
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Since we have appropriate compatibility between the local and the global fundamental
classes, we obtain a commutative diagram concerning the sequences (2.6) and (2.12):

0 // H�w
//

��

Vw //

��

�Gw //
� _

��

0

0 // CH // O // �G // 0:

(2.15)

Similarly, for a finite set †0 of finite primes of F with v 62 †0, we have a commutative
diagram concerning the sequences (2.7) and (2.13):

0 // Z //

��

Ww //

zw
��

�Gw //
� _

��

0

0 // Cl†
0

H
// H†

0
// �G // 0:

(2.16)

See [29, p. 169] for a three-dimensional diagram which incorporates (2.15) and (2.16).
The following computation will be used later. Let

 W GF � G ,! ZŒG��

be the tautological character. Here, GF D Gal. xF=F / denotes the absolute Galois group
of F . We also write GFv for the absolute Galois group of Fv , and IFv for its inertia
subgroup. These are regarded as subgroups of GF by fixing a place of xF above w.

Proposition 2.10. We suppose v 62 †0. Let us recall the descriptions of Ww in Proposi-
tion 2.5 and of H†

0

in (2.14). For each � 2GF , we write x� 2Gal.H†0;ab=F / for the image
of � by the restriction map. Then the middle vertical arrow, denoted by zw , of (2.16) is
described as follows.

(1) For each � 2 IFv , we have

zw
��
 .�/ � 1; 0

��
D 1˝ .x� � 1/:

(2) Let e'v 2 GFv be a lift of the arithmetic Frobenius. Then we have

zw
��
 .e'v/ � 1; 'v�� D 1˝ .e'v � 1/:

Proof. We first move from the description of Proposition 2.5 to one using (2.10). Note
that, for each � 2 GFv , we have  .�/ 2 Gw . Then, thanks to the description (2.9), for
� 2 IFv as in claim (1) (resp. e'v 2GFv as in claim (2)), we have an element s WD .0; .�//
(resp. s WD .1; .e'v//) of W.H ur

w =Fv/. Then, by the proof of Proposition 2.5, we can
directly check that the element 1˝ .s � 1/ ofWw using (2.10) corresponds to the element
. .�/ � 1; 0/ (resp. . .e'v/ � 1; 'v/).

The map W.H ur
w =Fv/! Gal.H†0;ab=F / sends s to x� (resp. e'v). Therefore, the map

zw , which is induced by the natural map between the right components of (2.10) and
(2.14), sends 1˝ .s � 1/ to 1˝ .x� � 1/ (resp. 1˝ .e'v � 1/). This completes the proof.
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2.5. Construction of the Ritter–Weiss type module

In this subsection, we construct the module �†
0

† satisfying the exact sequence (1.2) in
Proposition 1.3. Let H=F be a finite abelian CM-extension and put G D Gal.H=F /. Let
† and †0 be finite sets of places of F satisfying (H1) and (H2).

Let us take an auxiliary finite set S 0 of places of F such that

• S 0 \†0 D ;,

• S 0 � †,

• each element of S 0 n† is unramified in H=F ,

• Cl†
0

H;S 0 D 0, where Cl†
0

H;S 0 denotes the quotient of Cl†
0

H by the prime ideals in .S 0
f
/H ,

and

•
S
v2S 0n†Gv D G.

Moreover, we assume that there exists an element v0 2 S 0 n† such that

Gv0 D Gal.H=HC/:

The role that v0 plays will become clear later. The existence of such an S 0 can be checked
in a straightforward way using Chebotarev’s density theorem.

We write S 0
f
D S 0 n S1.F /. We introduce the following ZŒG�-modules:

J†
0

D

Y
v2S1.F /

H�v �
Y
v2S 0

f

UHv �
Y
v2†0

U 1Hv �
Y

v 62S 0[†0

UHv ;

V †
0

S 0 D

Y
v2S1.F /

H�v �
Y
v2S 0

f

Vv �
Y
v2†0

U 1Hv �
Y

v 62S 0[†0

UHv ;

WS 0 D V
†0

S 0 =J
†0
D

Y
v2S 0

f

Wv:

Here, we define Vv D
L
wjv Vw andWv D

L
wjvWw by using the modules introduced in

Section 2.2. We also write Hv D H ˝F Fv '
Q
wjv Hw , and UHv and U 1Hv denote the

unit group and the principal unit group of Hv , respectively.
Then, by combining (2.15) for w 2 .S 0

f
/H with the tautological maps, we obtain a

commutative diagram

0 // J†
0

//

�J

��

V †
0

S 0
//

�V

��

WS 0 //

�W

��

0

0 // CH // O // �G // 0:

(2.17)

Lemma 2.11 ([13, Lemma A.1]). The homomorphism �V in (2.17) is surjective.
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Proof. We put

J†
0

S 0 D

Y
v2S1.F /

H�v �
Y
v2S 0

f

H�v �
Y
v2†0

U 1Hv �
Y

v 62S 0[†0

UHv ;

xWS 0 D V
†0

S 0 =J
†0

S 0 D

Y
v2S 0

f

IndGGv �Gv;

where IndGGv denotes the induction from ZŒGv�-modules to ZŒG�-modules. Then, similarly
as (2.17), we obtain a commutative diagram

0 // J†
0

S 0
//

� 0J

��

V †
0

S 0
//

�V

��

xWS 0 //

� 0W

��

0

0 // CH // O // �G // 0:

By the choice of S 0, the cokernels of � 0J and of � 0W vanish (the former follows from
Cl†

0

H;S 0 D 0 and the latter from
S
v2S 0n† Gv D G). Hence �V is surjective by the snake

lemma.

Let O�H be the unit group of H . We put

O
�;†0

H D
®
x 2 O�H j x � 1 .mod w/;8w 2 †0H

¯
:

By applying the snake lemma to (2.17), thanks to Lemma 2.11, we obtain an exact se-
quence

0! O
�;†0

H ! Ker.�V /! Ker.�W /
ı�
�! Cl†

0

H ! 0: (2.18)

Since we have .O�;†
0

H /� D �.H/†
0;� by the Dirichlet unit theorem, the minus component

of (2.18) yields

0! �.H/†
0;�
! Ker.�V /� ! Ker.�W /�

ı�
�
�! Cl†

0;�
H ! 0: (2.19)

We next investigate Ker.�W /�. For that purpose, we use the element v0 2 S 0 n† such
that Gv0 D Gal.H=HC/. We write c 2 Gal.H=HC/ for the complex conjugation.

Lemma 2.12. The natural projection map WS 0 !
L
v2S 0

f
n¹v0º

Wv induces an isomorph-
ism

Ker.�W /� '
M

v2S 0
f
n¹v0º

W �v :

Proof. For each prime w0 j v0 of H , by the sequence (2.7), we have isomorphisms

W �w0 ' .�Gw0/
�
' ZŒGw0 �

�:

Note that, under the description in Proposition 2.5, this isomorphism sends 1
2
.1 � c; 1/ 2

Ww0 to the identity element 1
2
.1 � c/ 2 ZŒGw0 �

�. Thus we have an isomorphism W �v0 '

ZŒG��. This isomorphism is the component of ��W at v0, so the lemma follows.
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Definition 2.13. We define an injective homomorphism

f W Ker.�W /� ,!
M

v2S 0
f
n¹v0º

ZŒG��

as the composite map of the isomorphism in Lemma 2.12 and the mapM
v2S 0

f
n¹v0º

W �v !
M

v2S 0
f
n¹v0º

ZŒG��

which is defined, by using Proposition 2.6, as f �v at the components for v 2 †f and as ��v
at the components for v 2 S 0

f
n .†f [ ¹v0º/.

Definition 2.14. We define a ZŒG��-module �†
0

† as the cokernel of the composite map

Ker.�V /� ! Ker.�W /�
f
,!

M
v2S 0

f
n¹v0º

ZŒG��; (2.20)

where the first map is the middle map of the sequence (2.19).

By Proposition 2.6, we have Cok.f / '
L
v2†f

A�v , where Av is defined in (1.1).
Then the exact sequence (1.2) follows easily from (2.19). This finishes the proof of Pro-
position 1.3 (the construction of �†

0

† ).
Though we omit the detail, the construction of �†

0

† does not depend, up to isomorph-
isms, on the choice of S 0 and v0. This may be deduced from the determination of the
extension class as we will discuss in Section 2.7.

The following proposition will be useful for investigation of the homomorphism ı� in
the exact sequence (2.18) (defined by the snake lemma).

Proposition 2.15 ([29, Theorem 5]). Let us consider the commutative diagram

0 //
L
v2S 0

f
IndGGv Z //

��

L
v2S 0

f
Wv //

��

L
v2S 0

f
IndGGv �Gv

//

� _

��

0

0 // Cl†
0

H
// H†

0
// �G // 0

induced by (2.16) for w 2 .S 0
f
/H . Then the image of Ker.�W / under the middle vertical

arrow is contained in the image of Cl†
0

H , and the induced homomorphism Ker.�W /! Cl†
0

H

coincides with the homomorphism ı� in (2.18).

2.6. Cohomological triviality

In this subsection, we prove Proposition 1.9, from which Proposition 1.4 follows. A key
observation is the following facts from local and global class field theory ((1) is [29,
Proposition 2, p. 159] and (2) is explained in [29, p. 162, 6 lines after diagram 3]).
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Proposition 2.16. The following are true.

(1) In the situation of Section 2.2, the module Vw is cohomologically trivial over Gw .

(2) In the situation of Section 2.3, the module O is cohomologically trivial over G.

From now on, let us fix an odd prime number p. Recall the convention introduced in
Section 1.2 on the character components. For a Z-module M , we write yM for its p-adic
completion. For example, let us consider a non-archimedean local field Hw with mixed
characteristic. When the residue characteristic of Hw is p, we have bUHw ' U 1Hw . On the
other hand, when the residue characteristic of Hw is not p, we have

bUHw ' 4UHw=U 1Hw ' Zp ˝Z UHw=U
1
Hw
:

In both cases, the Zp-module bUHw is finitely generated.

Lemma 2.17. We consider the situation in Section 2.2 (we do not restrict the residue
characteristic). Let us suppose that Gw D Gal.Hw=Fv/ is abelian. Let G0w � Gw denote
the maximal subgroup of order prime to p. Let � be a character of G0w . Suppose either
p − #Iw or � is non-trivial on G0w . Then U �Hw is cohomologically trivial over Gw .

Proof. We make use of the results in Section 2.2. By the middle vertical exact sequence
in (2.8) and Proposition 2.16 (1), the cohomological triviality of U �Hw is equivalent to that
of W �

w , which in turn is equivalent to that of�
ZpŒGw=Iw �=.1 � '

�1
v C #Iw/

��
by Proposition 2.6 (2). When p − #Iw , then the ZpŒGw �-module ZpŒGw=Iw � is projective,
from which we can easily deduce the claim. Suppose p j #Iw and � is non-trivial on G0w .
Then we have

Fp ˝Zp

�
ZpŒGw=Iw �=.1 � '

�1
v C #Iw/

��
'
�
FpŒGw=Iw �=.1 � '

�1
v /

��
' .Fp/

�
D 0:

By Nakayama’s lemma, .ZpŒGw=Iw �=.1 � '�1v C #Iw//� vanishes.

Now we are ready to prove Proposition 1.9.

Proof of Proposition 1.9. By the sequence (2.19), the homomorphism

Ker.�V /� ! Ker.�W /�

is injective under (H3)�p . Therefore, by Definition 2.14, the module �†
0;�

† is the cokernel
of the injective homomorphism from Ker.�V /� to a free ZpŒG��-module. It is well-known
that a finitely generated module over ZpŒG�� is cohomologically trivial overG if and only
if its projective dimension over ZpŒG�� is finite, in which case the projective dimension
is actually at most one. It is also clear that the cokernel of an injective homomorph-
ism between cohomologically trivial modules is again cohomologically trivial. Thus, it
is enough to show that Ker.�V /� is cohomologically trivial over G.
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Since �V is surjective by Lemma 2.11, thanks to Proposition 2.16, it remains only
to show that .U 1Hv /

� is cohomologically trivial for v 2 †0 and U �Hv is cohomologically
trivial for v 62 S 0 [†0. As .U 1Hv /

� D 0 for v 62 Sp.F / and .U 1Hv /
� D U

�
Hv

for v 2 Sp.F /,
these are combined to that U �Hv is cohomologically trivial for v 62 S 0 [ .†0 n Sp.F //.
By Lemma 2.17, for a finite prime v of F , U �Hv is cohomologically trivial if v 62 S�bad.
By (H4)�p , we have S�bad � †f [ .†

0 n Sp.F // � S
0
f
[ .†0 n Sp.F //. This completes

the proof.

This proof shows that the conclusion of Proposition 1.9 holds even if we weaken the
condition (H4)�p by replacing S�bad by the smaller set of finite primes v of F such that
p j #Iv and � is trivial on G0v , not only on I 0v . However, for the purpose of this paper it is
more convenient to use the current condition (H4)�p .

2.7. The extension class

We keep the notation in Section 2.5. The goal of this subsection is to obtain a description
of the element �v introduced below. This corresponds to [13, Appendix A.5].

Definition 2.18. We define

� 2 Ext1ZŒG��
� M
v2†f

A�v ;Cl†
0;�

H

�
as the element which corresponds to the extension (1.2). For each v 2 †f , we define
�v 2 Ext1ZŒG��.A

�
v ;Cl†

0;�
H / as the component of � at v.

Definition 2.19. Recall that, by [13, Lemma 6.3], the restriction map induces an iso-
morphism

H 1.GF ;Cl†
0;�

H / ' H 1.GH ;Cl†
0;�

H /G D HomG.GH ;Cl†
0;�

H /:

We regard the natural homomorphism

�H W GH � Gal.H†0;ab=H/ ' Cl†
0

H � Cl†
0;�

H ;

where the middle isomorphism is given by the Artin reciprocity map, as an element of
HomG.GH ; Cl†

0;�
H /. We then define a cocycle class Œ�� 2 H 1.GF ; Cl†

0;�
H / so that the

restriction of Œ�� equals to �H . Note that we defined only the class Œ��, not �.

Lemma 2.20 ([13, Appendix A.5, (159)]). Let Qc 2GF be a lift of the complex conjugation
c 2 G. We define a map � W GF ! Cl†

0;�
H by

�.g/ D �H .g Qcg
�1
Qc�1/1=2:

Then � is a cocycle and represents the cocycle class Œ�� 2 H 1.GF ;Cl†
0;�

H /.

Proof. Since H=F is abelian, the element g Qcg�1 Qc�1 is contained in GH , so the map � is
well-defined. It is easy to see that � is a cocycle. Finally, when g 2 GH , by the definition
of the action of the complex conjugation, we have �.g/ D �H .g/.



The minus component of the eTNC 441

For each finite prime v of F , we define an ideal Jv of ZŒG� as the annihilator ideal of
the module Av defined in (1.1). Since Av is a cyclic module, we have an exact sequence

0! Jv ! ZŒG�! Av ! 0; (2.21)

which induces an exact sequence

HomZŒG��
�
ZŒG��;Cl†

0;�
H

�
! HomZŒG��.J

�
v ;Cl†

0;�
H /

ıv
�! Ext1ZŒG��.A

�
v ;Cl†

0;�
H /! 0: (2.22)

Let
 W GF � G ,! ZŒG��

be the tautological character. Then Jv is generated by

 .�/ � 1

for � 2 IFv and
 .e'v/ � 1C �Iv .e'v/

for a lift e'v 2 GFv of 'v 2 Gal.F ur
v =Fv/. Therefore, a ZŒG�-homomorphism from Jv is

determined by the values of these elements.

Proposition 2.21. Let v 2 †f . Let us choose a lift Qc 2 GF of the complex conjugation
c 2 G and define a cocycle � W GF ! Cl†

0;�
H as in Lemma 2.20. Then there exists an

element e�v 2 HomZŒG��.J
�
v ;Cl†

0;�
H /

which satisfies the following.

(a) We have ıv.e�v/ D �v , where ıv is the homomorphism in (2.22).

(b) For any � 2 IFv , we have e�v. .�/ � 1/ D �.�/.
(c) For any lift e'v 2 GFv of the arithmetic Frobenius, we have

e�v� .e'v/ � 1C �Iv .e'v/� D �.e'v/:
Proof. In order to distinguish with unspecified v’s, we write v1 for the fixed v. We define
Qx 2

L
v2S 0

f
n¹v0º

ZŒG�� as the element whose component at v1 is 1 and whose other com-
ponents are 0. We then define x 2 �†

0

† as the image of Qx (recall Definition 2.14). By the
definitions, the map in (1.2) sends x to the element of

L
v2†f

A�v whose component at
v1 is the class of 1 and whose other components are zero. Then we have a commutative
diagram with exact rows

0 // J�v1
//

f�v1
��

ZŒG�� //

��

A�v1
//

� _

��

0

0 // Cl†
0;�

H
// �†

0

†
//
L
v2†f

A�v
// 0;
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where the upper sequence is the minus component of (2.21), the lower sequence is (1.2),
the right vertical arrow is the injection into the v1-component, the middle vertical arrow
is the ZŒG��-homomorphism that sends 1 to x, and the left vertical arrow (named f�v1 ) is
the induced one.

We first check that f�v1 satisfies the condition (a). From the above diagram we obtain
a commutative diagram

HomZŒG��.J
�
v1
;Cl†

0;�
H /

ıv1 // Ext1ZŒG��.A
�
v1
;Cl†

0;�
H /

HomZŒG��.Cl†
0;�

H ;Cl†
0;�

H / //

OO

Ext1ZŒG��.
L
v2†f

A�v ;Cl†
0;�

H /;

OOOO

where ıv1 is the same map as in (2.22). By the construction, the identity map on Cl†
0;�

H

as an element of the left bottom module goes to f�v1 of the left upper module, and to �
of the right bottom module. The right vertical arrow is nothing but the projection to the
v1-component. Therefore, the condition (a) follows from the commutativity of the square
diagram.

It remains to show the conditions (b) and (c). We recall the homomorphism f in
Definition 2.13:

f W Ker.�W /� '
M

v2S 0
f
n¹v0º

W �v ,!
M

v2S 0
f
n¹v0º

ZŒG��;

where the final arrow is f �v at v 2†f and ��v at the others. For each � in (b) (resp. z' WD f'v1
in (c)), let y� (resp. yz') be the element of Ker.�W /� which is sent by f to . .�/ � 1/ Qx
(resp. . .z'/ � 1C �Iv1 .z'// Qx). Let

ı�� W Ker.�W /� ! Cl†
0;�

H

be the snake map in (2.19). By the definition of f�v1 , we then have f�v1. .�/� 1/D ı�� .y� /
(resp. f�v1. .z'/ � 1C �Iv1 .z'// D ı�� .yz'/).

Note that, by the definition of fv1 , we have

fv1
�
 .�/ � 1; 0

�
D  .�/ � 1

(resp. fv1. .z'/� 1; '/D  .z'/� 1C �Iv1 .z'/ with ' WD 'v1 ). Also recall that we have
an isomorphism

W �v0 ' ZŒG��

which sends 1
2
.1 � c; 1/ to the identity element 1

2
.1 � c/ (see Lemma 2.12). There-

fore, the element y� (resp. yz') is the element whose component is . .�/ � 1; 0/ (resp.
. .z'/ � 1; '/) at v1, �. .�/ � 1/1

2
.1 � c; 1/ (resp. �. .z'/ � 1/1

2
.1 � c; 1/) at v0, and

zero at the others.
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Now we apply Propositions 2.10 and 2.15 and, as a consequence, we obtain

ı�� .y� / D 1˝

�
1

2
.1 � NQc/.x� � 1/C .x� � 1/

1

2
. NQc � 1/

�
;

respectively,

ı�� .yz'/ D 1˝

�
1

2
.1 � NQc/.xz' � 1/C .xz' � 1/

1

2
. NQc � 1/

�
as elements of H†

0

via (2.14). Here, the overlines mean the restrictions to Gal.H†0;ab=F /

and the coefficients 1
2
.1� NQc/ comes from projection to the minus component. This element

can be computed as

ı�� .y� / D 1˝
1

2
.x� NQc � NQcx�/ D 1˝

1

2
.x� NQcx��1 NQc�1 � 1/ NQcx� D 1˝

1

2
.x� NQcx��1 NQc�1 � 1/;

respectively,

ı�� .yz'/ D 1˝
1

2
.xz' NQc � NQcxz'/ D 1˝

1

2
.xz' NQcxz'�1 NQc�1 � 1/ NQcxz' D 1˝

1

2
.xz' NQcxz'�1 NQc�1 � 1/:

Therefore, via the inclusion Cl†
0;�

H ,! H†
0

, the element ı�
�
.y� / (resp. ı�

�
.yz'/) of H†

0

coincides with �H .� Qc��1 Qc�1/1=2 D �.�/ 2 Cl†
0;�

H (resp. �H .z' Qc z'�1 Qc�1/1=2 D �.z'/ 2
Cl†

0;�
H ). This completes the proof.

3. Compatibility of the eTNC
In this section, we prove two functorial properties of our module �†

0

† . These properties
are necessary for proving the compatibility of the eTNC and also for reducing the proof
of the main theorems of this paper to special cases.

In Section 3.1, we state the propositions that are to be proved in this section. The proof
is given in Section 3.4 after preliminary discussion in Sections 3.2–3.3.

3.1. Statements

Let H=F be a finite abelian CM-extension and put G D Gal.H=F /. We fix an odd prime
number p and write G0 for the maximal subgroup of G of order prime to p.

3.1.1. Varying .†;†0/. For each finite prime v of F , let us put

h0v D 1 �N.v/
�Iv
#Iv

'�1v 2 QŒG�:

Note that, for a pair .†;†0/ of finite sets of places of F satisfying (H1) and (H2), we have

�†
0

† D

Y
v2†f

h�v �
Y
v2†0

h0;�v � ! (3.1)

(see (1.4)). This immediately gives us formulas for the variance of �†
0

† as .†;†0/ varies
(we do not write them concretely). The following proposition is their algebraic counter-
parts.
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Proposition 3.1. Let � be an odd character of G0. Let .†; †0/ be a pair of finite sets of
places of F satisfying (H1), (H2), (H3)�p , and (H4)�p . Then the following hold.

(1) For a finite prime v 62 † [†0, we have

FittZp ŒG��
�
�
†0;�

†[¹vº

�
D h�v FittZp ŒG��

�
�
†0;�
†

�
:

(2) For a finite prime v 62 † [†0, we have

FittZp ŒG��
�
�
†0[¹vº;�
†

�
D h0;�v FittZp ŒG��

�
�
†0;�
†

�
:

(3) For a finite prime v 2 †f n .S
�
bad \ Sp.F // (note that .† n ¹vº; †0 [ ¹vº/ again

satisfies the conditions (H1), (H2), (H3)�p , and (H4)�p ), we have

FittZp ŒG��
�
�
†0[¹vº;�

†n¹vº

�
D
h
0;�
v

h
�
v

FittZp ŒG��
�
�
†0;�
†

�
:

The proof will be given in Section 3.4. The proof of the claims (1) and (2) is not hard
as we have simple relations between the modules concerned. On the other hand, the proof
of claim (3) is much harder. This is because we cannot bypass claim (1) or (2) since the
condition (H4)�p fails for the pair .† n ¹vº; †0/ if v 2 S�bad n .Sp.F / \ S

�
bad/.

Proposition 3.1 implies that the �-component of the eTNC�p is independent from the
choice of .†; †0/. Moreover, the statement of Theorem 1.10 is also independent from
.†;†0/.

3.1.2. VaryingH . Let K be an intermediate CM-field of the original finite abelian CM-
extension H=F . In order to clarify the field concerned, we write hv;H , �†

0

†;H , and �†
0

†;H

for the objects hv , �†
0

† , and �†
0

† defined for the extension H=F . Then we also have hv;K ,
�†
0

†;K , and �†
0

†;K defined for K=F instead of H=F .
We study the behavior of the analytic and algebraic objects with respect to the natural

map
�H=K W ZŒG�! Z

�
Gal.K=F /

�
:

By abuse of notation, we also write �H=K for the induced map QŒG�! QŒGal.K=F /�.
First we observe the behavior on the analytic side. Let .†;†0/ be a pair of finite sets

of places of F satisfying (H1) and (H2). By (3.1), we immediately obtain

�H=K.�
†0

†;H / D

� Y
v2†f

�H=K.hv;H /

hv;K

�
�†
0

†;K (3.2)

as elements of QŒGal.K=F /�.
Note that we have �H=K.hv;H / D hv;K if and only if v is unramified in H=K. This is

the subtle point of our formulation of the eTNC using �†
0

† and �†
0

† . Since the definitions
of Av in (1.1) and of hv in (1.3) depend on (the order of) the inertia subgroup, they do not
enjoy the most desirable compatibility with respect to field extensions. This seems to be
inevitable in order to make Av a finite module and hv a non-zero-divisor.
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Now the following proposition is the algebraic counterpart of (3.2). As usual, let G0

and Gal.K=F /0 be the maximal subgroup of G and Gal.K=F / of order prime to p,
respectively.

Proposition 3.2. Let � be an odd character of Gal.K=F /0, which is also regarded as an
odd character of G0 via the natural map G0� Gal.K=F /0. Let .†;†0/ be a pair of finite
sets of places of F satisfying (H1), (H2), (H3)�p , and (H4)�p for H=F . Note that those
conditions also hold for K=F . Then we have

FittZp ŒGal.K=F /��
�
.�

†0;�
†;H /Gal.H=K/

�
D

� Y
v2†f

�H=K.h
�
v;H /

h
�
v;K

�
FittZp ŒGal.K=F /��.�

†0;�
†;K/

as ideals of ZpŒGal.K=F /��.

The proof will be given in Section 3.4.
By Propositions 3.1 and 3.2, in order to prove the full statement of Theorem 1.10, we

may suppose that � is faithful and may choose any pair .†;†0/ (satisfying the conditions
(H1), (H2), (H3)�p , and (H4)�p ). In practice, the choice will be as in Setting 6.1.

3.2. Preliminaries on Fitting ideals

This subsection is an algebraic preliminary to proving Propositions 3.1 and 3.2. Most of
the contents are just reformulations of materials that are known to experts of this field.
Although the following argument is quite elementary, algebraic K-theory is in the back-
ground (see Nickel [26, Sections 1.1–1.2], for instance).

Let G be a profinite group which is isomorphic to the product of a finite abelian group
and Zdp for some d � 0. We consider the completed group ring R D ZpJG K.

First we show a lemma that will be necessary in Definition 3.4.

Lemma 3.3. LetM be a finitely generated R-module with pdR.M/ � 1. Then there exist
a projective R-module F and an injective R-homomorphism  W F !M whose cokernel
Cok. / is a (finitely generated) torsion R-module.

Proof. For simplicity, let us assume that G is a pro-p-group, so R D ZpJG K is a local
ring. (In general, R is known to be a finite product of local rings, and similar reasoning is
valid.) Then by pdR.M/ � 1, there exist integers a � b � 0 and an exact sequence

0! Rb ! Ra
"
�!M ! 0:

Let us consider the induced exact sequence

0! Frac.R/b ! Frac.R/a
z"
�! Frac.R/˝R M ! 0;

where Frac.R/ denotes the ring of fractions of R. Observe that Frac.R/ is a finite product
of fields since ZpJZdp K is a domain. Therefore, the last displayed sequence implies that
Frac.R/ ˝R M is a free Frac.R/-module of rank a � b. Moreover, the sequence splits
over Frac.R/, i.e., there exists a homomorphism Qs W Frac.R/ ˝R M ! Frac.R/a such



M. Atsuta and T. Kataoka 446

that z" ı Qs is the identity map. Now let us take any free R-submodule F � Frac.R/˝RM
whose rank is a� b such that Qs.F /�Ra. Then  WD " ı Qs W F !M satisfies the required
condition.

Here we recall the following well-known properties of Fitting ideals (e.g., [23, Pro-
position 2.7]).

• Let M be a finitely generated torsion R-module such that pdR.M/ � 1. Then the
Fitting ideal FittR.M/ is invertible as a fractional ideal of R.

• Let M1, M2, M3 be finitely generated torsion R-modules such that pdR.M3/ � 1.
If there exists a short exact sequence 0 ! M1 ! M2 ! M3 ! 0, then we have
FittR.M2/ D FittR.M1/FittR.M3/.

Definition 3.4. Let M and M 0 be finitely generated R-modules such that pdR.M/ � 1

and pdR.M
0/ � 1. Let � WM !M 0 be an R-homomorphism whose kernel and cokernel

are both torsion over R. We shall introduce an invertible fractional ideal FittR.�/ of R,
which we call the Fitting ideal of �.

By Lemma 3.3, we can take a projectiveR-module F and an injective homomorphism
 W F ! M whose cokernel is torsion. Note that then � ı  W F ! M 0 is also injective
with torsion cokernel. Then we define

FittR.�/ D FittR
�
Cok. /

��1 FittR
�
Cok.� ı  /

�
:

Since Cok. / and Cok.� ı  / are both torsion and of pdR � 1, the Fitting ideals in the
right-hand side are invertible, so FittR.�/ is an invertible fractional ideal.

Roughly speaking, FittR.�/ represents the ratio between M and M 0; precisely, by
regarding F as submodules of M and M 0 using the injective homomorphisms  and
� ı  respectively, we may write

FittR.�/ D FittR.M=F /�1 FittR.M 0=F /:

This interpretation enables us to show the independency of FittR.�/ from the choice
of  W F !M , as follows. Let  0 W F 0 !M be another choice. We may regard both F
and F 0 as submodules of M by  and  0 respectively. Let F 00 be a free submodule of
F \ F 0 in M whose rank is the same as F (and as F 0). Then we obtain exact sequences

0! F=F 00 !M=F 00 !M=F ! 0

and
0! F=F 00 !M 0=F 00 !M 0=F ! 0:

By using the multiplicativity of FittR, since the terms involving F=F 00 cancel, these imply

FittR.M=F /�1 FittR.M 0=F / D FittR.M=F 00/�1 FittR.M 0=F 00/:

In the same way, we obtain the corresponding formula for F 0 instead of F . This proves
the independency, as claimed.

Let us observe elementary properties of FittR.�/.
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Lemma 3.5. Let M , M 0, and M 00 be finitely generated R-modules with pdR � 1. Let
� WM !M 0 and �0 WM 0!M 00 be R-homomorphisms whose kernels and cokernels are
all torsion overR. Then the kernel and the cokernel of �0 ı � are also torsion and we have

FittR.�0 ı �/ D FittR.�/FittR.�0/:

Proof. Take a projective R-module F and an injective homomorphism  W F !M . We
may regard F as submodules of M , M 0, and M 00 via  , � ı  , and �0 ı � ı  , respect-
ively. Then we have

FittR.�/FittR.�0/ D
�

FittR.M=F /�1 FittR.M 0=F /
��

FittR.M 0=F /�1 FittR.M 00=F /
�

D FittR.M=F /�1 FittR.M 00=F /

D FittR.�0 ı �/;

as desired.

Lemma 3.6. Let us consider a commutative diagram with exact rows

0 // M1
//

�1

��

M2
//

�2

��

M3
//

�3

��

0

0 // M 01
// M 02

// M 03
// 0;

where all modules are finitely generated R-modules with pdR � 1. We assume that the
kernels and cokernels of �1; �2; �3 are all torsion over R. Then we have

FittR.�2/ D FittR.�1/FittR.�3/:

Proof. Take projective R-modules F1, F3 and injective homomorphisms  1 W F1 !M1,
 3 W F3 ! M3 whose cokernels are torsion. Put F2 D F1 ˚ F3. Then, by the horseshoe
lemma, we can construct a commutative diagram with exact rows

0 // F1 //
� _

 1

��

F2 //
� _

 2

��

F3 //
� _

 3

��

0

0 // M1
// M2

// M3
// 0:

This induces an exact sequence

0! Cok. 1/! Cok. 2/! Cok. 3/! 0;

so we obtain

FittR
�
Cok. 2/

�
D FittR

�
Cok. 1/

�
FittR

�
Cok. 3/

�
:

In a similar way, we also obtain

FittR
�
Cok.�2 ı  2/

�
D FittR

�
Cok.�1 ı  1/

�
FittR

�
Cok.�3 ı  3/

�
:

These formulas show the lemma.
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Lemma 3.7. For � WM !M 0 as in Definition 3.4, we have

FittR
�
Cok.�/

�
D FittR.�/FittR

�
E1R

�
Ker.�/

��
as (not necessarily invertible) ideals of R. Here, we put E1R.M/ D Ext1R.M; R/ for an
R-module M .

Proof. For  as in Definition 3.4, we have an exact sequence

0! Ker.�/! Cok. /! Cok.� ı  /! Cok.�/! 0:

Then the lemma is a reformulation of a formula that is often used in this field (see [23,
Remark 4.8] and the references mentioned there).

Remark 3.8. If we assume pdR.Cok.�// � 1, then we also have pdR.Ker.�// � 1 and
Lemma 3.7 implies

FittR.�/ D FittR
�

Ker.�/
��1 FittR

�
Cok.�/

�
;

which we may regard as a definition of FittR.�/ in this case. However, we will have to
deal with the case where the assumption does not hold.

We will also need the following descent property. Let � be a closed subgroup of G

which is isomorphic to Zp , and we put H D G=� . Note that, for each ZpJG K-module
M with pdZpJGK.M/ � 1 and M� D 0, we have pdZpJHK.M�/ � 1. Here, we write M�

(resp. M� ) for the �-invariant (resp. �-coinvariant) of M . Let �� W ZpJG K! ZpJHK be
the natural map. Let us define a multiplicative subset � of ZpJG K as the set of elements
which are sent by �� to non-zero-divisors of ZpJHK. Then, by localization, �� induces
an algebra homomorphism

��1ZpJG K! Frac
�
ZpJHK

�
;

where Frac.ZpJHK/ denotes the ring of fractions of ZpJHK. We write �� for this induced
homomorphism again.

Proposition 3.9. Let � WM !M 0 be as in Definition 3.4. We assume that M� D 0 and
.M 0/� D 0. We moreover suppose that the kernel and the cokernel of the induced ZpJHK-
homomorphism �� W M� ! M 0� are both torsion over ZpJHK, so Definition 3.4 applies
to �� . Then we have

FittZpJHK.��/ D ��
�

FittZpJGK.�/
�
:

Proof. Let us take a projective module xF over ZpJHK and an injective homomorphism
x W xF !M� whose cokernel is torsion over ZpJHK. Let F be a projective module over
ZpJG K such that we have an identification xF D F� . By the projectivity of F , we can
construct a homomorphism WF !M over ZpJG K whose base change coincides with x .
Since we have Cok. /� ' Cok. x /, which is assumed to be torsion over ZpJHK, the
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module Cok. / is also torsion over ZpJG K. By observing the ranks, we also see that  is
injective. Therefore, we can use  to compute FittR.�/. Then the basic property of Fitting
ideals shows

FittZpJHK
�
Cok. x /

�
D FittZpJHK

�
Cok. /�

�
D ��

�
FittZpJGK

�
Cok. /

��
:

We also have a similar formula for � ı instead of , and those imply the proposition.

3.3. A minor variant of the Ritter–Weiss type module

As usual, let H=F be a finite abelian CM-extension and p an odd prime number. Let †
and †0 be finite sets of places of F satisfying (H1) and (H2).

In this subsection, given a family of scalars .cv/v2†f , using Remark 2.7, we construct
a variant �†0† of Zp ˝�†

0

† . Note that the case where cv D 1 for all v would recover the
original. The variant will be useful for the proof of Propositions 3.1 and 3.2.

Let us suppose that we are given a family .cv/v2†f � Zp n ¹0º. See (3.6) and (3.9)
below for practical choices. The choice of .cv/v2†f will be implicit in the notation; the
objects with overlines do depend on the choice of .cv/v .

For each v 2 †f , as a variant of (1.1), we define a ZpŒG�-module Av by

Av D ZpŒG=Iv�=.1 � '
�1
v C cv#Iv/:

Then, as a variant of Proposition 2.6 (2) (see Remark 2.7), we have an exact sequence of
ZpŒG�-modules

0! Zp ˝Wv
fv
�! ZpŒG�! Av ! 0; (3.3)

where fv sends .x; y/ to x C cv�Ivy.
We choose S 0 (and v0) as in Section 2.5 and use the same notation. Then, as a variant

of Definition 2.13, we can define a ZpŒG��-homomorphism

Nf W Zp ˝ Ker.�W /� ,!
M

v2S 0
f
n¹v0º

ZpŒG�
�

as the composite map of the isomorphism in Lemma 2.12 and the map

Zp ˝
M

v2S 0
f
n¹v0º

W �v !
M

v2S 0
f
n¹v0º

ZpŒG�
�

which is defined as fv
�

at the components for v 2 †f and as ��v at the components for
v 2 S 0 n .† [ ¹v0º/.

Now, as a variant of Definition 2.14, we define a ZpŒG��-module �†0† as the cokernel
of the composite map

Zp ˝ Ker.�V /� ! Zp ˝ Ker.�W /�
Nf
,!

M
v2S 0

f
n¹v0º

ZpŒG�
�; (3.4)
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where the first map is the middle map of the sequence (2.19). Then, as a variant of (1.2),
we have an exact sequence

0! Zp ˝ Cl†
0;�

H ! �†
0

† !

M
v2†f

Av
�
! 0: (3.5)

We write �†
0;�

† for the �-component of �†0† for each odd character � of G0.
As a variant of Proposition 1.9, if the conditions (H3)�p and (H4)�p hold, then we have

pdZp ŒG��.�
†0;�
† / � 1.

We investigate the difference between the Fitting ideals of �†
0;�

† and of �†
0;�

† . For a
finite prime v not lying above p, as a variant of hv defined in (1.3), we put

hv D 1 �
�Iv
#Iv

.'�1v � cv#Iv/ 2 QpŒG�:

Proposition 3.10. Let � be an odd character ofG0 and suppose that the conditions (H3)�p
and (H4)�p hold for .†;†0/. Then we have

FittZp ŒG��
�
�
†0;�
†

�
D

� Y
v2†f

h
�
v

hv
�

�
FittZp ŒG��

�
�
†0;�
†

�
:

Proof. First, for each v 2 †f , let us observe that the following diagram commutes:

ZpŒG�

�hv

$$

Zp ˝Wv

fv

::

fv $$

1
#Iv

ZpŒG�

ZpŒG�

�hv

::

Here and henceforth, for any element a 2 QpŒG�, we write �a for the homomorphism
which is induced by the multiplication by a. The commutativity says

hv.x C �Ivy/ D hv.x C cv�Ivy/

for .x; y/ 2 Wv . We can directly compute

hv � hv D
�Iv
#Iv
� #Iv.1 � cv/ D �Iv .1 � cv/

and
�Iv .cvhv � hv/ D �Iv .cv � 1/

�
1 �

�Iv
#Iv

'�1v

�
D .cv � 1/�Iv .1 � '

�1
v /:
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Then the desired formula follows from the relation �Ivx D �Iv .1� '
�1
v /y by the descrip-

tion of Wv .
By definition, FittZp ŒG��.�

†0;�
† / (resp. FittZp ŒG��.�

†0;�
† /) equals to the Fitting ideal of

the �-component of the homomorphism (2.20) (resp. (3.4)), in the sense of Definition 3.4.
We consider a commutative diagramL

v2S 0
f
n¹v0º

ZpŒG��

Nh

))

Ker.�W /�
f

77

Nf
''

L
v2S 0

f
n¹v0º

1
#Iv

ZpŒG��

L
v2S 0

f
n¹v0º

ZpŒG��;

h

55

Here, h and Nh are defined as �h�v and �hv
�

for v 2 †f respectively, and as the identity
(the inclusion) for the other v’s. Then this diagram also commutes thanks to the above
observation. It then follows from Lemma 3.5 that

FittZp ŒG��. Nh
�/FittZp ŒG��

�
�
†0;�
†

�
D FittZp ŒG��.h

�/FittZp ŒG��
�
�
†0;�
†

�
;

which is equivalent to� Y
v2†f

hv
�
�

FittZp ŒG��
�
�
†0;�
†

�
D

� Y
v2†f

h�v

�
FittZp ŒG��

�
�
†0;�
†

�
:

This shows the proposition.

3.4. The proof of Propositions 3.1 and 3.2

First we prove Proposition 3.2.

Proof of Proposition 3.2. We define .cv/v2†f � Zp n ¹0º by

cv D #Iv;H=K (3.6)

for each v, where we write Iv;H=K for the inertia group of H=K. We define hv;K and
�†

0

†;K using this choice of .cv/v2†f as in Section 3.3. By the choice (3.6), concerning the
natural map �H=K W ZŒG�! ZŒGal.K=F /�, we have

�H=K.hv;H / D hv;K : (3.7)

This formula is the motivation for the choice (3.6); see the discussion after (3.2). Then by
Proposition 3.10, in order to prove Proposition 3.2, it is enough to show an isomorphism

�
†0;�
†;K '

�
�
†0;�
†;H

�
Gal.H=K/: (3.8)
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Let us write �V;H and �V;K for the homomorphisms �V in (2.17) for the extension H=F
andK=F , respectively. We write �W;H and �W;K similarly and put G WDGal.H=K/. Then
we have the following commutative diagram:

�
Zp ˝ Ker.�V;H /

��
G

//

'

��

�
Zp ˝ Ker.�W;H /

��
G

fH //

��

L
v2S 0

f
n¹v0º

Zp
�
Gal.H=F /

��
G

'

��

Zp ˝ Ker.�V;K/� // Zp ˝ Ker.�W;K/�
fK

//
L
v2S 0

f
n¹v0º

Zp
�
Gal.K=F /

��
:

Here, the left vertical isomorphism follows from [13, Lemma B.1] and the right square
is commutative because of the choice (3.6) of .cv/v2†f . Then we obtain an isomorph-
ism (3.8). This completes the proof of Proposition 3.2.

In the rest of this subsection, we aim at proving Proposition 3.1. The proof makes use
of the local considerations as in Lemmas 3.11 and 3.12.

Lemma 3.11. Let � be an odd character of G0. Let v be a finite prime of F . We suppose
either p − #Iv or � is non-trivial on I 0v . Then the following are true.

(1) We have FittZp ŒG��.A
�
v / D .h

�
v /.

(2) We have FittZp ŒG��.UHv=U
1
Hv
/� D .h

0;�
v /.

Proof. (1) If � is non-trivial on I 0v , the both sides are the unit ideal by the definitions of
Av and of hv . Let us assume that p − #Iv and show

FittZp ŒG�.Av/ D .hv/

as ideals of ZpŒG�. Since p − #Iv , we may decompose this equality with respect to the
characters of Iv . For the nontrivial characters of Iv , the components of the both sides are
the unit ideal. For the trivial character of Iv , the components of the both sides are the same
as .1 � '�1v C #Iv/, so the equality holds.

(2) Similarly, if � is non-trivial on I 0v , the both sides are the unit ideal. Let us assume
that p − #Iv and show

FittZp ŒG�.Zp ˝ UHv=U
1
Hv
/ D

�
1 �N.v/

�Iv
#Iv

'�1v

�
as ideals of ZpŒG�. When v j p, we have Zp ˝ UHv=U

1
Hv
D 0 and 1 � N.v/ �Iv#Iv

'�1v is a
unit, so the both sides are again the unit ideal. When v − p, we have

Zp ˝ UHv=U
1
Hv
' �p1.Hv/ ' ZpŒG=Iv�=

�
1 �N.v/'�1v

�
;

from which we can deduce the claim by considering the decomposition with respect to
characters of Iv .
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Proof of Proposition 3.1 .1/.2/. As we need to use the construction in Section 2.5 for
various † and †0, we write �†

0

S 0 for �V in (2.17).
(1) We may choose S 0 so that v 62 S 0. Let us use S 0 for the construction of �†

0

† , and
S 0 [ ¹vº for �†

0

†[¹vº
. By definition, we have an exact sequence

0! V †
0

S 0 ! V †
0

S 0[¹vº ! Wv ! 0;

which induces the upper exact sequence in a commutative diagram

0 // Zp ˝ Ker.�†
0

S 0 /
� //

� _

��

Zp ˝ Ker.�†
0

S 0[¹vº
/� //

� _

��

Zp ˝W �v //
� _

��

0

0 //
L
v2S 0

f
n¹v0º

ZpŒG�� //
L
v2.S 0

f
[¹vº/n¹v0º

ZpŒG�� // ZpŒG�� // 0:

Here, the right vertical arrow is f �v and the left and the middle arrows are those defining
�†

0

† and�†
0

†[¹vº
, respectively. By applying the snake lemma, we obtain an exact sequence

0! �†
0

† ! �†
0

†[¹vº ! Av
�
! 0:

Since v 62 S�bad by (H4)�p , we can apply Lemma 3.11 (1) and we obtain the claim.
(2) We may choose S 0 so that v 62 S 0 and use S 0 for the constructions of both�†

0

† and
�
†0[¹vº
† . By definition, we have an exact sequence

0! V
†0[¹vº
S 0 ! V †

0

S 0 ! UHv=U
1
Hv
! 0;

which induces the upper exact sequence in a commutative diagram

0 // Zp ˝ Ker.�†
0[¹vº

S 0 /� //
� _

��

Zp ˝ Ker.�†
0

S 0 /
� //

� _

��

Zp ˝ .UHv=U
1
Hv
/� // 0

L
v2S 0

f
n¹v0º

ZpŒG��
L
v2S 0

f
n¹v0º

ZpŒG��:

By applying the snake lemma, we obtain an exact sequence

0! Zp ˝ .UHv=U
1
Hv
/� ! �

†0[¹vº
† ! �†

0

† ! 0:

Then we can apply Lemma 3.11 (2) and obtain the claim.

As already remarked, Proposition 3.1 (3) is the harder part and in order to prove it
we make use of the variants with overlines introduced in Section 3.3. Thanks to Propos-
ition 3.10, for any choice of .cv/v2†f � Zp n ¹0º, the proposition is equivalent to the
corresponding statement for objects with overlines; simply add the overlines on all �’s
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and all hv’s for v 2 †f (not on h0v’s). Indeed it is convenient to take

cv D

´ �
N.v/�1 � 1

�
=#Iv .v − p/

1 .v j p/:
(3.9)

By local class field theory, cv is actually p-adically integral. Accordingly we construct
objects with overlines as in Section 3.3.

Lemma 3.12. Let v be a finite prime of F such that v − p. Let us consider the composite
map

�v W bVv ! Zp ˝Wv ! ZpŒG�;

where the first map is the surjection in (2.8) and the second is the injection fv . Here, recall
that b.�/ denotes the p-adic completion, so we have cWv ' Zp ˝Wv . Then we have

FittZp ŒG�.�v/ D .1/:

Proof. Let us fix a prime w of H lying above v. It is enough to study the w-component
�w of �v . The kernel and the cokernel of �w can be determined by the middle vertical
sequence in (2.8) and the sequence (3.3), respectively. We then have an exact sequence

0! �p1.Hw/! cVw �w
��! ZpŒGw �! �p1.Hw/! 0:

Here, we used a non-canonical isomorphism between Aw D ZpŒGw �=.N.v/�1 � '�1v /

and �p1.Hw/. When Hw does not contain a non-trivial p-th power root of unity, �w is
an isomorphism, so the assertion is clear. In the rest of the proof, we assume that Hw
contains a non-trivial p-th power roots of unity. A hard point is that the module �p1.Hw/
is not cohomologically trivial in general, so the Fitting ideals do not behave well. To
overcome such a difficulty, we use an idea from Iwasawa theory; we go up the unramified
Zp-tower and then descend to the finite extension.

For each integer n � 0, we consider the unramified extensionHw;n=Hw of degree pn.
We can apply the constructions in Section 2.2 to the extension Hw;n=Fv , and then we
obtain ZpŒGal.Hw;n=Fv/�-modules Vw;n andWw;n. Then, as in (the proof of) [13, Lemma
B.1], we have natural isomorphisms

Vw;n ' .Vw;n0/Gal.Hw;n0=Hw;n/

for each n0 � n. We define Vw;1 D lim
 �n

bVw;n. Then, by Proposition 2.16 (1), we can see
that Vw;1 is cohomologically trivial overGw;1 DGal.Hw;1=Fv/ and moreover we have

.Vw;1/Gal.Hw;1=Hw / '
cVw :

We construct a homomorphism �w;n W bVw;n ! ZpŒGw;n� in an analogous way. It is
straightforward to show that the homomorphisms �w;n are compatible; for n0 � n � 0, we
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have a commutative diagram

1Vw;n0

����

// // Zp ˝Ww;n0

����

� � fv;n0 // ZpŒGw;n0 �

����bVw;n // // Zp ˝Ww;n
� �

fv;n

// ZpŒGw;n�:

Here, we use the same cv as in (3.9) for every n � 0. The commutativity of the right
square is verified as the extension Hn0=Hn is unramified. As a consequence, we obtain a
homomorphism �w;1 which fits in the following diagram with exact rows:

0 // Zp.1/ //

����

Vw;1
�w;1

//

����

ZpJGw;1K

����

// Zp.1/ //

����

0

0 // �p1.Hw/ // cVw
�w

// ZpŒGw � // �p1.Hw/ // 0:

Here, we again used a non-canonical isomorphism between the cokernel of �w;1 and
Zp.1/. It follows from the upper sequence and Lemma 3.7 that

FittZpJGw;1K
�
Zp.1/

�
D FittZpJGw;1K.�w;1/FittZpJGw;1K

�
Zp.1/

�
:

The ideal FittZpJGw;1K.Zp.1// is not principal in general. Nevertheless, since the �-
invariant of Zp.1/ is zero, this formula implies

FittZpJGw;1K.�w;1/ D .1/

(see, e.g., [19, Lemma 3.12]). Finally, by applying Proposition 3.9 to �w;1, we obtain the
proposition.

Now we are ready to prove Proposition 3.1 (3).

Proof of Proposition 3.1 .3/. First we assume that v j p. By the hypothesis

v 2 †f n
�
S
�
bad \ Sp.F /

�
;

we then have v 62 S�bad. Then the condition (H4)�p still holds for .† n ¹vº; †0/. Thus we
can apply the claims (1) and (2) to show

FittZp ŒG��
�
�
†0[¹vº;�

†n¹vº

�
D h0;�v FittZp ŒG��

�
�
†0;�

†n¹vº

�
D
h
0;�
v

h
�
v

FittZp ŒG��
�
�
†0;�
†

�
:
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Now we assume that v − p. As in the proof of (1) and (2), we have a commutative
diagram with exact rows

0 // Zp ˝ Ker
�
�
†0[¹vº

S 0n¹vº

�� //
� _

��

Zp ˝ Ker.�†
0

S 0 /
� //

� _

��

bVv� //

�v

��

0

0 //
L
v2.S 0

f
n¹vº/n¹v0º

ZpŒG�� //
L
v2S 0

f
n¹v0º

ZpŒG�� // ZpŒG�� // 0:

Here, the right vertical arrow �v is the same as in Lemma 3.12. The left and the middle

vertical arrows are those denoted by Nf , whose cokernels are �†
0[¹vº

†n¹vº
and �†0† , respect-

ively. Then by Lemmas 3.6 and 3.12, we obtain

FittZp ŒG��
�
�
†0[¹vº;�

†n¹vº

�
D FittZp ŒG��

�
�
†0;�
†

�
:

By Proposition 3.10, this can be rewritten as

FittZp ŒG��
�
�
†0[¹vº;�

†n¹vº

�
D
hv
�

h
�
v

FittZp ŒG��
�
�
†0;�
†

�
:

Since hv D h0v by (3.9), this completes the proof.

4. Reduction of the main theorems

In Section 4.1, we show the integrality of the Stickelberger element. In Section 4.2, we
show how to deduce the main theorems on the eTNC�p from single inclusions. Then in
Section 4.3, we deduce Theorems 1.1 and 1.8 from Theorem 1.10. We will begin the
actual proof of Theorem 1.10 from the next section. In Section 4.4, we show that our
eTNC� is equivalent to more standard formulations.

4.1. The integrality of the Stickelberger element

LetH=F be a finite abelian CM-extension with G D Gal.H=F /. Let .†;†0/ be a pair of
finite sets of places of F satisfying the conditions (H1) and (H2). In this subsection, we
show the integrality of the Stickelberger element �†

0

† under certain hypotheses.
Before the main discussion, let us introduce conditions (H3)p and (H4)p for each odd

prime number p:

(H3)p �p1.H/
†0 vanishes.

(H4)p †f [ †
0 � Sbad and †f � Sbad \ Sp.F /. Here, we write Sbad for the set of

finite primes v of F such that p j #Iv and H I 0v is a CM-field.

It is easy to see that (H3) (resp. (H4)) implies (H3)p (resp. (H4)p) (for all odd primes p).
Moreover, the condition (H3)p (resp. (H4)p) is equivalent to that (H3)�p (resp. (H4)�p ) holds
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for all odd characters � of G0 (the maximal subgroup of G of order prime to p). In order
to show the equivalence between (H4)p and (H4)�p , it is enough to show Sbad D

S
� S

�
bad,

where � runs over the odd characters of G0. This follows immediately from Lemma 4.6
below (applied to N D I 0v).

Then, by Proposition 1.9, we have pdZp ŒG��.Zp ˝Z �
†0

† / � 1 as long as the pair
.†;†0/ satisfies (H3)p and (H4)p . Therefore, the eTNC�p .H=F / is expected under these
conditions.

Now we begin the discussion on the integrality of �†
0

† . The essential ingredient is the
result of Deligne and Ribet [15] or Cassou-Noguès [9]. In order to apply it, we have to
strengthen the condition (H3), (H3)p , and (H3)�p (when p is an odd prime number and �
is an odd character of G0) to the following:

(H30) �.H/†
0
ur;� vanishes, where we put †0ur D †

0 n .Sram.H=F / \†
0/.

(H30)p �p1.H/
†0ur vanishes, where �p1.H/†

0
ur is the p-primary component of

�.H/†
0
ur .

(H30)�p �.H/†
0
ur;� D �p1.H/

†0ur;� vanishes.

Clearly these three conditions respectively imply (H3), (H3)p , and (H3)�p . Moreover, (H30)
is equivalent to that (H30)p holds for any p, and (H30)p is equivalent to that (H30)�p holds
for any odd character � of G0.

Now we have the following integrality property.

Proposition 4.1. Let † and †0 be finite sets of places of F satisfying the conditions (H1)
and (H2). Then the following are true.

(1) Let p be an odd prime number and let � be an odd character of G0. Suppose the
conditions (H30)�p and (H4)�p . Then we have �†

0;�
† 2 ZpŒG��.

(2) Let p be an odd prime number. Suppose the conditions (H30)p and (H4)p . Then
we have �†

0

† 2 ZpŒG��.

(3) Suppose the conditions (H30) and (H4). Then we have �†
0

† 2 ZŒG��.

Proof. It is clear that (1) implies (2) and (2) implies (3). Let us prove (1). Put

‚†
0

† .H=F / D
Y
v2†f

�
1 �

�Iv
#Iv

'�1v

�
� !†

0

2 QŒG��:

Then, as in [13, Formula (2) and Remark 3.6] (also see [27, Proposition 2.1]), the celeb-
rated theorem of Deligne and Ribet [15] or Cassou-Noguès [9] implies that

‚†
0

† .H=F /
�
2 ZpŒG�

�

as long as the conditions (H1), (H2), (H30)�p , and (H4)�p hold. We shall deduce the propos-
ition from this integrality of ‚†

0

† .H=F /
�.

By (1.3) and (1.4), we obtain

�†
0

† D

X
J�†f

�Y
v2J

�Iv

� Y
v2†f nJ

�
1 �

�Iv
#Iv

'�1v

�
!†

0

;
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where J runs over all (possibly empty) subsets of †f . Then it is enough to show the
integrality of the �-component of the term in the right-hand side for each J . For each J ,
let us define an intermediate fieldHJ ofH=F by Gal.H=HJ /D

P
v2J Iv �Gal.H=F /.

Then we have�Y
v2J

�Iv

� Y
v2†f nJ

�
1 �

�Iv
#Iv

'�1v

�
!†

0

D

Q
v2J #Iv

ŒH W HJ �
�H=HJ‚†

0

†nJ .H
J =F /;

where �H=HJ denotes the norm element of Gal.H=HJ/. If � is non-trivial on Gal.H=HJ/,
then we have ��

H=HJ D 0, so we can ignore this case. Let us suppose that � is trivial on

Gal.H=HJ /. Then � can be regarded as an odd character of HJ =F , and the conditions
(H30)�p and (H4)�p still holds for the extension HJ =F and the pair .† n J;†0/. Therefore,
we have the integrality of ‚†

0

†nJ
.HJ =F /�, from which the conclusion follows.

4.2. An application of the analytic class number formula

Let H=F be a finite abelian CM-extension and put G D Gal.H=F /. Let p be an odd
prime number. For a pair .†; †0/ of finite sets of places of F satisfying (H1) and (H2),
we simply write

p�
†0

† D Zp ˝Z �
†0

† :

The aim of this subsection is to prove the following proposition, which allows us to deduce
the conclusions of Theorems 1.1 and 1.8 from single inclusions.

Proposition 4.2. Let † and †0 be finite sets of places of F satisfying (H1), (H2), (H30)p ,
and (H4)p .

(1) If we have
FittZp ŒG��.p�

†0

† / � .�
†0

† /

as ideals of ZpŒG��, then the equality also holds.

(2) Let N be a subgroup of G and recall the algebra ZpŒG�.N/ introduced before
Theorem 1.8. If we have

FittZp ŒG��.p�
†0

† / � ZpŒG�
�
.N/ � �

†0

† � ZpŒG�
�
.N/

as ideals of ZpŒG��.N/, then the equality also holds.

For the proof of this proposition, we apply a standard method using the analytic class
number formula (e.g., Greither [17, Theorem 4.11]), following [13, Section 2]. Note that
the situation is actually easier than [13] because we have only to deal with finite modules
and non-zero-divisors.

In Lemmas 4.3 and 4.4 below, we consider a general finite abelian group G. Let G0

its maximal subgroup of order prime to p, and � a character of G0. We consider the
set of Qp-valued characters of G whose restrictions to G0 coincide with �. We have
an equivalence relation � on the set defined as  1 �  2 if and only if  2 D � 1 for
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some � 2 Gal.Qp=Qp/. We fix a complete system of representatives of the equivalence
classes modulo �, and write ‰� for the set of representatives. Then we have a natural
injective algebra homomorphism with finite cokernel

ZpŒG�
� ,!

Y
 2‰�

O ;

where we put O DZpŒIm. /�. Let‰ be any subset of‰�. We define an algebra ZpŒG�‰

as the image of the natural map

ZpŒG�
�
!

Y
 2‰

O :

Note that ZpŒG�‰ is a local ring unless ‰ is empty.

Lemma 4.3. Let N be a finite ZpŒG�‰-module with pdZp ŒG�‰ .N / � 1. Then we have

#N D
Y
 2‰

#
�
O =FittO .N ˝Zp ŒG�‰ O /

�
:

Proof. See [13, Lemmas 2.4 and 2.5].

Lemma 4.4. Let N1 and N2 be finite ZpŒG�‰-modules with pdZp ŒG�‰ .Ni / � 1 for
i D 1; 2. Then we have

FittZp ŒG�‰ .N1/ D FittZp ŒG�‰ .N2/

if and only if both FittZp ŒG�‰ .N1/ � FittZp ŒG�‰ .N2/ and #N1 D #N2 hold.

Proof. If ‰ is empty, then the claim is trivial, so let us assume that ‰ is non-empty. The
“only if” part immediately follows from Lemma 4.3. For the “if” part, let � 2 ZpŒG�‰

be an element such that FittZp ŒG�‰ .N1/ D � FittZp ŒG�‰ .N2/. Then by Lemma 4.3 and
#N1 D #N2, we must have  .�/ 2O� for any  2‰. This implies � 2 .ZpŒG�‰/� since,
for any  2 ‰, the algebra homomorphism ZpŒG�‰ ! O is a local homomorphism.

We now return to the arithmetic setting. Note that we have an isomorphism

p�
†0

† '

Y
�

�
†0;�
† ;

where � runs over all equivalence classes of odd characters of G0. By using the analytic
class number formula, we obtain the following.

Proposition 4.5. Let † and †0 be finite sets of places of F satisfying (H1), (H2), (H30)p ,
and (H4)p . Then we have

#p�†
0

† D #
�
ZpŒG�

�=.�†
0

† /
�
:
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Proof. We take a finite extension of Qp that contains the values of all the Qp-valued
characters of G, and let O be its ring of integers. Then we have a natural homomorphism

OŒG�� !
Y
 

O;

which is injective with finite cokernel. Here, and in the rest of the proof,  runs over the
odd characters of G.

We aim at showing #.O˝Z �
†0

† /D #.OŒG��=.�†
0

† //: By the sequence (1.2), we have

#.O ˝�†
0

† / D
Y
v2†f

#.O ˝ A�v / � #.O ˝ Cl†
0;�

H /:

On the other hand, we have

#
�
OŒG��=.�†

0

† /
�
D

Y
 

#
�
O=
�
 .�†

0

† /
��
:

By (1.4), this implies

#
�
OŒG��=.�†

0

† /
�
D

Y
v2†f

Y
 

#
�
O=
�
 .hv/

��
�

Y
 

#
�
O=
�
 .!†

0

/
��
:

We claim that
#.O ˝ A�v / D

Y
 

#
�
O=
�
 .hv/

��
holds for each v 2 †f . By the definition of Av , we have

#.O ˝ A�v / D
Y
 

#
�
O=
�
1 �  .'v/

�1
C #Iv

��
;

where  runs over the odd characters that are trivial on Iv . By the definition of hv , we
have  .hv/ D 1 �  .'v/�1 C #Iv if  is trivial on Iv , and  .hv/ D 1 otherwise. Then
we obtain the claim.

The analytic class number formula (cf. [13, Lemma 2.1]) implies

#.O ˝ Cl†
0;�

H / D
Y
 

#
�
O=
�
L†

0

. �1; 0/
��
:

By the definition of !†
0

, we have L†
0

. �1; 0/ D  .!†
0

/ for each odd character  of G.
Incorporating these formulas, we obtain the proposition.

Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. (1) Suppose that

FittZp ŒG��.p�
†0

† / � .�
†0

† /
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holds. Then by Lemma 4.3, for all odd characters � of G0, we have

#
�
ZpŒG�

�=.�
†0;�
† /

�
j #�†

0;�
† :

Then by Proposition 4.5, the divisibility of the orders must be an equality for all �. Now
we can apply Lemma 4.4 and obtain claim (1).

(2) It is easy to see (e.g., by Lemma 4.3)

#
�
ZpŒG�

�=.�†
0

† /
�
D #

�
ZpŒG�

�
.N/=.�

†0

† /
�

and
#p�†

0

† D #
�
ZpŒG�

�
.N/ ˝Zp ŒG�� p�

†0

†

�
:

By Proposition 4.5, these formulas imply

#
�
ZpŒG�

�
.N/=.�

†0

† /
�
D #.ZpŒG��.N/ ˝Zp ŒG�� p�

†0

† /: (4.1)

For each odd character � of G0, we introduce ‰� as before and let ‰�;1 (resp. ‰�;2)
be the subset of ‰� whose elements are trivial on N (resp. non-trivial on N ). Then we
have �

ZpŒG=N �
��
' ZpŒG�

‰�;1

and �
ZpŒG�=.�N /

��
' ZpŒG�

‰�;2 :

By the assumption and Lemma 4.3, we have

#
�
ZpŒG�

‰�;i =
�
�
†0;‰�;i
†

��
j #
�
ZpŒG�

‰�;i ˝Zp ŒG�� p�
†0

†

�
for i 2 ¹1; 2º. Here, �†

0;‰�;i
† denotes the image of �†

0

† to ZpŒG�‰�;i . Then by (4.1), the
divisibility of the orders must be an equality for all � and i . Now we can apply Lemma 4.4
and obtain claim (2).

4.3. Deducing Theorems 1.1 and 1.8 from Theorem 1.10

In this subsection, assuming the validity of Theorem 1.10, we prove Theorems 1.1 and 1.8.
Let H=F be a finite abelian CM-extension and p an odd prime number. Put

G D Gal.H=F /

and define G0 as usual. For each .†;†0/, we keep the notation p�†
0

† D Zp ˝Z �
†0

† .

4.3.1. The proof of Theorem 1.8. We first prove Theorem 1.8 from Theorem 1.10

Proof of Theorem 1.8. Thanks to Proposition 3.1, the statement of Theorem 1.8 is inde-
pendent from the choice of .†;†0/. Therefore, we may assume that the conditions (H1),
(H2), (H30)p , and (H4)p hold (we do not need to assume (H3) or (H4)).
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By Proposition 4.2 (2), we have only to show

FittZp ŒG��.p�
†0

† / � ZpŒG�
�
.N/ � �

†0

† � ZpŒG�
�
.N/:

By the definition of ZpŒG�.N/, this is equivalent to both

FittZp ŒG��.p�
†0

† / � ZpŒG=N �
�
� �†

0

† � ZpŒG=N �
� (4.2)

and
FittZp ŒG��.p�

†0

† / �
�
ZpŒG�

�=.��N /
�
� �†

0

† �
�
ZpŒG�

�=.��N /
�

(4.3)

hold.
Let us show (4.3). For any odd character � of G0, recall that we have the integrality of

�
†0;�
† by Proposition 4.1. Therefore, by

.�
�
Ip
/Frac.Zp ŒG��/ \ ZpŒG�

�
D .�

�
Ip
/Zp ŒG�� ;

Theorem 1.10 (2) implies

FittZp ŒG��.�
†0;�
† / � .�

†0;�
† ; �

�
Ip
/

as ideals of ZpŒG��. By the assumption N � Ip , we have .�Ip / � .�N /. Then we obtain
(4.3).

Let us check (4.2). IfHN is totally real (i.e., the complex conjugation lies in N ), then
ZpŒG=N �� D 0, so the claim is trivial. Otherwise, by (3.2) and Proposition 3.2, the claim
is equivalent to �

FittZp ŒG=N��.p�
†0

†;HN /
�
� .�†

0

†;HN /

as ideals of ZpŒG=N ��. By the choice of N , at least one p-adic prime is (at most) tamely
ramified in HN =F , so this is true by Theorem 1.10 (1).

4.3.2. The proof of Theorem 1.1 (i)(ii). We first observe elementary lemmas.

Lemma 4.6. LetN �G0 be a subgroup. ThenHN is a CM-field if and only if there exists
an odd character � of G0 which is trivial on N .

Proof. The fieldHN is a CM-field if and only if N does not contain the complex conjug-
ation c 2G. If there exists an odd character � ofG0 which is trivial onN , then �.c/D�1
implies that c 62 N . If c 62 N , we may find a character � of G0 which is trivial on N and
�.c/ D �1.

Lemma 4.7. The following are equivalent.

(a) For any odd character � of G0, the following is false: the decomposition group of
all p-adic primes in H�=F are p-groups and all p-adic primes are ramified in
H�=F (recall that H� D HKer.�/).

(b) Either (i) or (ii) of Theorem 1.1 holds.
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Proof. Let us show the equivalence of :(a) and :(b), where : denotes the negation. Put
Fp DH

G0 . Let � be an odd character ofG0 and p a p-adic prime of F . Then the condition
that “the decomposition group of p in H�=F is a p-group and p is ramified in H�=F ”
is equivalent to that “p is totally split in H�=Fp and p is ramified in Fp=F ”. Therefore,
:(a) is equivalent to that both (˛) and (ˇ) hold, where:

(˛) Any p-adic prime is ramified in Fp=F .

(ˇ) There exists an odd character � of G0 such that any p-adic prime is totally split in
H�=Fp .

Clearly (˛) is equivalent to :(i). It is then enough to show that (ˇ) is equivalent to :(ii).
Let

Gp D
X

p2Sp.F /

Gp � G

be the sum of the decomposition groups and putG0p D Gp \G
0. Then the condition (ˇ) is

equivalent to that there exists an odd character � ofG0 that is trivial onG0p . By Lemma 4.6,
we see that (ˇ) is equivalent to that HG0p is a CM-field. Since Gp=G0p is a p-group, HG0p

is a CM-field if and only if so is HGp . Thus (ˇ) is equivalent to :(ii). This completes the
proof.

Proof of Theorem 1.1 (i)(ii). Assume either (i) or (ii) in Theorem 1.1 is true. In that case,
by Lemma 4.7, we may apply Theorem 1.10 (1) for any odd character � ofG0, so we obtain
one inclusion of the eTNC�p . Then by Proposition 4.2 (1), we obtain the eTNC�p .

4.3.3. The proof of Theorem 1.1 (iii). The proof of Theorem 1.1 (iii) is not so direct
as the others. We assume the condition (iii), that is, H cl;C.�p/ 6� H

cl. The key idea is
the technique of Wiles [33] on avoiding the trivial zeros. The technique makes use of the
following lemma (in which the field F is not concerned).

Lemma 4.8 ([17, Proposition 4.1]). Assume thatH cl;C.�p/ 6�H
cl. Then, for any positive

integer n, there are infinitely many prime numbers l satisfying the following conditions.

(1) H=Q is unramified at any prime above l .

(2) l � 1 .mod pn/.

(3) No prime of HC above l splits in H .

(4) The prime p is inert in the extension El=Q, where El is the subfield of Q.�l /
such that ŒEl W Q� D pn.

Proof. For the readers’ convenience, let us explain the key ideas. We consider the exten-
sion H cl.�pn ; p

1=p/=H cl;C.�pn/, which is cyclic of order 2p, thanks to the assumption
H cl;C.�p/ 6�H

cl. By Chebotarev’s density theorem, we find infinitely many prime ideals
L ofH cl;C.�pn/ whose degrees are one and that are inert in the extension. Then the prime
number l lying below L satisfies the conditions. Shortly speaking, (1) is easy, being totally
split in H cl;C.�pn/=Q ensures (2), and being inert in H cl.�pn/=H

cl;C.�pn/ (resp. in
H cl;C.�pn ; p

1=p/=H cl;C.�pn/) ensures (3) (resp. (4)).
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In order to show Theorem 1.1 (iii), we may and do assume that (i) fails, that is, all
p-adic primes of F are wildly ramified in H . Let † and †0 be finite sets of places of F
satisfying (H1), (H2), (H30)p , and (H4)p . Also we may assume that † � Sp.F /.

We write Iv;H , hv;H , �†
0

†;H , and �†
0

†;H for Iv , hv , �†
0

† , and �†
0

† in order to clarify the
relevant field (the base field F is always unchanged). Take an integer r � 0 such that

pr

ŒHw W Qp�
2 Zp (4.4)

for any p-adic prime w of H . Since �†
0

†;H is a non-zero-divisor in ZpŒG��, we can take a
positive integer n > r such that

pn�r 2 .�†
0

†;H / (4.5)

holds in ZpŒG��. For this n, we take a prime number l such that (1)–(4) in Lemma 4.8
hold. We moreover require that Sl \ .†f [†0/ D ;, where Sl D Sl .F / denotes the set
of l-adic primes of F . We write Hl D HEl and Fl D FEl . Note that H \ Fl D F since
each prime above l is totally ramified in Fl=F and is unramified inH=F . This shows that
we have

Gal.Hl=Fl / � Gal.Hl=H/ D Gal.Hl=F /:

Lemma 4.9 ([33, Lemma 10.2]). Let  be a character of Gal.Hl=F / whose restriction
to Gal.Hl=H/ has order > pr . Then we have  .v/ ¤ 1 for any v 2 Sp.F /.

Proof. We may assume that  is unramified at v, since otherwise  .v/ D 0. We can de-
compose  D  1 2, where  1 (resp.  2) is a character of Gal.Fl=F / (resp. Gal.H=F /).
Note that, by (4) in Lemma 4.8, we have

ord
�
Frobv.Fl=F /

�
�

pn

ŒFv W Qp�p

for each v 2 Sp.F /, where ŒFv W Qp�p denotes the largest p-power dividing ŒFv W Qp�.
Then, by combining with the assumption,  1.v/ is a p-power root of unity with

ord
�
 1.v/

�
>

pr

ŒFv W Qp�p
:

On the other hand, we have

ord
�
 2.v/

�
j ŒHw W Fv�;

where w is a prime of H lying above v. If  .v/ D 1, we must have ord. 1.v// D
ord. 2.v//, so the above formulas imply

ŒHw W Fv�p >
pr

ŒFv W Qp�p
;

where the left-hand side is defined similarly. This contradicts the choice of r in (4.4), so
the lemma follows.
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We define � 2 ZpŒGal.Hl=F /� as the norm element of Gal.Hl=H/p
r
. Concretely, if

� is a generator of Gal.Hl=H/, we put

� D

pn�r�1X
jD0

�p
rj
2 Zp

�
Gal.Hl=F /

�
:

Note that the condition on  in Lemma 4.9 is equivalent to that  .�/ D 0.
As an intermediate to the final goal, we prove the following.

Claim 4.10. We have

FittZp ŒGal.Hl=F /��
�
p�

†0[Sl
†;Hl

�
�
�
�
†0[Sl
†;Hl

; �
��
:

Proof. For an integer m � 0, let Hl;m be the m-th layer of the cyclotomic Zp-extension
of Hl . We take an integer m � 0 such that

#Ip;Hl;m=Hl
# Gal.Hl=F /

2
�
�
†0[Sl
†;Hl

�
(4.6)

holds in ZpŒGal.Hl=F /��, where we write

Ip;Hl;m=Hl D
X

p2Sp.F /

Ip;Hl;m=Hl � Gal.Hl;m=Hl /

for the sum of the inertia subgroups. Then, by Theorem 1.10 (2), we have

FittZp ŒGal.Hl;m=F /��
�
p�

†0[Sl
†;Hl;m

�
�
�
�
†0[Sl
†;Hl;m

; �Ip;Hl;m=Hl

��
: (4.7)

Let
� W Qp

�
Gal.Hl;m=F /

�
! Qp

�
Gal.Hl=F /

�
be the natural map. Note that �.�Ip;Hl;m=Hl / D pa if we put pa D #Ip;Hl;m=Hl . Then
by (3.2) and Proposition 3.2, we can deduce from (4.7) that

FittZp ŒGal.Hl=F /��
�
p�

†0[Sl
†;Hl

�
�

�
�
†0[Sl
†;Hl

;
Y

v2Sp.F /

hv;Hl
�.hv;Hl;m/

� pa
��
: (4.8)

In the product, v only has to run over the p-adic primes, since hv;Hl D �.hv;Hl;m/ for
v 62 Sp.F /, for Hl;m=Hl is unramified at v.

For a character  of Gal.Hl=F / and v 2 Sp.F /, by the definition of hv in (1.3), we
have

 

�
hv;Hl

�.hv;Hl;m/

�
D

1 �  .v/�1 C #Iv;Hl
1 �  .v/�1 C #Iv;Hl;m

if  is unramified at v, and otherwise the left-hand side is 1. Recall that we assume :(i),
so the orders of the inertia groups on the right-hand side are divisible by p. Therefore, as
long as  .v/ ¤ 1, we have an integrality

 

�
hv;Hl

�.hv;Hl;m/

�
2 Zp

�
Im. /

�
:
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In particular, by Lemma 4.9, this integrality holds if  .�/ D 0. Therefore, we have

# Gal.Hl=F / �
Y

v2Sp.F /

hv;Hl
�.hv;Hl;m/

2 Zp
�
Gal.Hl=F /

�
CQp

�
Gal.Hl=F /

�
�:

This, together with (4.6), shows

pa �

� Y
v2Sp.F /

hv;Hl
�.hv;Hl;m/

��
2
�
�
†0[Sl
†;Hl

�
CQp

�
Gal.Hl=F /

��
�:

Then (4.8) implies

FittZp ŒGal.Hl=F /��
�
p�

†0[Sl
†;Hl

�
�
�
�
†0[Sl
†;Hl

�
CQp

�
Gal.Hl=F /

��
�:

Note that both the left-hand side and .�†
0[Sl

†;Hl
/ are contained in ZpŒGal.Hl=F /��, and that

we also have

Qp

�
Gal.Hl=F /

�
� \ Zp

�
Gal.Hl=F /

�
D Zp

�
Gal.Hl=F /

�
�:

Therefore, the claim follows.

Using Claim 4.10, we finish the proof of Theorem 1.1, assuming (iii) and :(i). From
now on, � denotes the natural map

� W Zp
�
Gal.Hl=F /

�
! ZpŒG�:

Note that �.�/D pn�r . Then, using (3.2) and Proposition 3.2, we deduce from Claim 4.10
that

FittZp ŒG��
�
p�

†0[Sl
†;H

�
�
�
�
†0[Sl
†;H ; pn�r

��
: (4.9)

Here, we used the fact that any finite prime v … Sl (in particular any v 2†f ) is unramified
in Hl=H . On the other hand, by (3.1) and Proposition 3.1 (2), we have

FittZp ŒG��
�
p�

†0[Sl
†;H

�
D

Y
v2Sl

�
1 �N.v/'�1v

��
� FittZp ŒG��

�
p�

†0

†;H

�
and the corresponding formula for the Stickelberger elements. By the conditions (2) and
(3) in Lemma 4.8, we know that

Q
v2Sl

.1 � N.v/'�1v /� is a unit in ZpŒG��. There-
fore, (4.9) implies that

FittZp ŒG��
�
p�

†0

†;H

�
�
�
�†
0

†;H ; p
n�r

��
:

By (4.5), the right-hand side equals to .�†
0

†;H /. Therefore, by applying Proposition 4.2 (1),
we obtain the eTNC�p , as desired. This completes the proof of Theorem 1.1 under (iii)
(and :(i)).
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4.4. Other formulations of the eTNC

In this subsection, we prove that our formulation of the eTNC� (Conjecture 1.5) is equi-
valent to a more standard one formulated by Burns, Kurihara, and Sano [7, Conjecture
3.1]. We first review the statement.

Let H=F be a finite abelian CM-extension and write G D Gal.H=F /. Let † and †0

be finite sets of places of F satisfying the conditions (H1), (H2), (H3), and (H4’), where

(H4’) † � Sram.H=F /.

Clearly (H4’) is stronger than (H4).
We introduce a variant of the homomorphism (2.20) whose cokernel is �†

0

† . Take an
auxiliary finite set S 0 and v0 2 S 0 as in Section 2.5. For each finite prime w of H , we
consider the map

gw W Ww ! ZŒGw � (4.10)

which sends .x; y/ to x (here we identifyWw with the right-hand side of the isomorphism
in Proposition 2.5). For each v 2 †f , we write gv D ˚wjvgw W Wv !

L
wjv ZŒGw � '

ZŒG�. Note that the last isomorphism depends the choice of a prime of H above v. Using
this, we consider a homomorphism

g W
M

v2S 0
f
n¹v0º

W �v !
M

v2S 0
f
n¹v0º

ZŒG��

which is defined as g�v at the components for †f and as ��v at the components v 2
S 0
f
n .†f [ ¹v0º/, where ��v D .˚wjv�w/

� is defined in Proposition 2.6. We define a homo-

morphism  †
0

† W Ker.�V /� !
L
v2S 0

f
n¹v0º

ZŒG�� as the composite map

Ker.�V /� !
M

v2S 0
f
n¹v0º

W �v
g
�!

M
v2S 0

f
n¹v0º

ZŒG�� (4.11)

where the first map is the middle arrow in the sequence (2.19) with the identification as in
Lemma 2.12.

Here, let us observe that Ker.�V /� is a projective ZŒG��-module of constant rank
#S 0
f
� 1. By Definition 2.14, we have a short exact sequence

0! Ker.�V /� !
M

v2S 0
f
n¹v0º

ZŒG�� ! �†
0

† ! 0:

Since we are assuming the hypotheses (H1), (H2), (H3) and (H4’), Proposition 1.4 implies
that the projective dimension of �†

0

† is at most one, so Ker.�V /�H is a projective module
over ZŒG��. Moreover, since �† is a finite module, the rank of Ker.�V /�H is #S 0

f
� 1, as

claimed.
We consider a complex of ZŒG��-modules

C†
0

† D

�
Ker.�V /�

 †
0

†
��!

M
v2S 0

f
n¹v0º

ZŒG��
�
;
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where the first term Ker.�V /� is placed in degree zero. Since Ker.�V /� is a projective
ZŒG��-module as observed above, C†

0

† is a perfect complex of ZŒG��-modules.
The cohomology groups of C†

0

† are described as follows. We put

O
�;†0

H;† D
®
x 2 H� j ordw.x/ D 0;8w … †H and x � 1 .mod w/;8w 2 †0H

¯
:

Put XH;† D Ker.
L
w2†H

Z ! Z/. Let r†
0

† .H/ be the transpose Selmer module (see
[13, Definition A.2]). Then by [13, Appendix A.1, (148)], we have an exact sequence

0! Cl†
0

H;† ! r
†0

† .H/! XH;† ! 0: (4.12)

Proposition 4.11 ([13, Appendix A.1]). We have an exact sequence

0!
�
O
�;†0

H;†

��
! Ker.�V /�

 †
0

†
��!

M
v2S 0

f
n¹v0º

ZŒG�� ! r†
0

† .H/
�
! 0:

In other words, we have isomorphismsH 0.C†
0

† /' .O
�;†0

H;† /
� andH 1.C†

0

† /'r
†0

† .H/
�.

Now we introduce relevant L-values and Stickelberger elements. For any C-valued
character  of G, the “†-depleted, †0-smoothed” L-function is defined by

L†
0

† . ; s/ D L. ; s/ �
Y

v2†f ;v−f 

�
1 �

 .v/

N.v/s

�
�

Y
v2†0

�
1 �  .v/N.v/1�s

�
:

We define the Stickelberger element ‚†
0

† .H=F / by

‚†
0

† .H=F / D
X
 

L†
0

† . 
�1; 0/e 2 QŒG��;

where  runs over the odd characters of G. Alternatively, we have

‚†
0

† .H=F / D
Y
v2†f

�
1 �

�Iv
#Iv

'�1v

��
� !†

0

:

Since we are assuming (H1), (H2), (H3), and (H4’), by the work of Deligne and Ribet [15]
or Cassou-Noguès [9], we know ‚†

0

† .H=F / 2 ZŒG��.
We put r ;† D ordsD0 L†

0

† . ; s/. Consider the leading term of L†
0

† . ; s/ at s D 0

defined by

L†
0

† . ; 0/
�
D lim
s!0

L†
0

† . ; s/

sr ;†
:

Then we consider the leading term of the equivariant L-function at s D 0 defined by

‚
†0;�
† .H=F / D

X
 

L†
0

† . 
�1; 0/�e 2 CŒG��;

where  runs over the odd characters of G. This element is a non-zero-divisor.
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Using these ingredients, we introduce the zeta element. Let detZŒG��.C†
0

† / denote the
determinant module of the complex C†

0

† . Then we have isomorphisms

#†
0

†;H W detZŒG��
�
C†

0

†

�
˝C ' detCŒG��

�
C†

0

† ˝C
�

' detCŒG��
��

O
�;†0

H;†

��
˝C

�
˝ det�1CŒG��

�
X�H;† ˝C

�
' CŒG��;

where the second isomorphism comes from Proposition 4.11 and (4.12), and the last iso-
morphism is induced by the minus component of Dirichlet’s regulator isomorphism�

O
�;†0

H;†

��
˝C ' X�H;† ˝C

which sends x� 2 .O�;†
0

H;† /
� to .�

P
w2†H

log jxjww/�. Here, j � jw denotes the normal-
ized w-adic absolute value.

Using this, we define the minus component of the zeta element z�
H=F;†;†0

by

z�H=F;†;†0 D #
†0;�1
†;H

�
‚
†0;�
† .H=F /

�
2 detZŒG��

�
C†

0

†

�
˝C:

Then the more standard statement of the minus component of the eTNC is the fol-
lowing.

Conjecture 4.12 (cf. [7, Conjecture 3.1]). We have

detZŒG��
�
C†

0

†

�
D z�H=F;†;†0ZŒG�

�:

In other words, the zeta element z�
H=F;†;†0

is a ZŒG��-basis of the determinant module

detZŒG��.C†
0

† /.

Remark 4.13. Let us explain advantages of Conjecture 1.5 among various formulations
of the eTNC�.

One advantage is that we only have to work rationally; the L-values involved in Con-
jecture 1.5 are known to be rational, thanks to the Siegel–Klingen theorem. This is in
contrast to Conjecture 4.12. Indeed, in general the derivatives of the L-functions involve
the (transcendental) Dirichlet regulators by the analytic class number formula. Note that
this advantage is naturally related to the fact that our �†

0

† is always a non-zero-divisor as
mentioned in Section 1.3.

Another advantage of Conjecture 1.5 is that it is suitable to apply the strategy of [13].
This is also explained in Section 1.3. For instance, we will recall another form of the
eTNC� as Conjecture 4.15 below, but that seems too complicated to apply the strategy
of [13].

Finally, let us mention again that in [1] the authors succeeded in computing the Fitting
ideal of the class groups Cl†

0;�
H by using the formulation of Conjecture 1.5. This also

shows the usefulness of Conjecture 1.5.
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In the rest of this section, we show the following.

Theorem 4.14. Conjecture 4.12 is equivalent to Conjecture 1.5.

For the proof, it is convenient to make use of another formulation proposed by Kuri-
hara [24], which we now review.

We write Ker.�V /H ;  †
0

†;H and Wv;H for Ker.�V /;  †
0

† and Wv in order to clarify
the field concerned. We also put p Ker.�V /�H D Zp ˝Z Ker.�V /�H . As observed before,
Ker.�V /�H is a projective module over ZŒG�� of constant rank #S 0

f
� 1. It follows that

p Ker.�V /�H is a free ZpŒG��-module of rank #S 0
f
� 1 as ZpŒG�� is a product of local

rings.
Then, for each intermediate CM-field K of H=F , we have

 †
0

†;K W p Ker.�V /�K !
M

v2S 0
f
n¹v0º

Zp
�
Gal.K=F /

��
:

By [13, Lemma B.1], we have a canonical homomorphism

res�V ;H=K W Ker.�V /H ! Ker.�V /K

which induces an isomorphism .Ker.�V /H /Gal.H=K/ ' Ker.�V /K .
Put r D #S 0

f
� 1. We fix a basis ¹bi;H º1�i�r of

L
v2S 0

f
n¹v0º

ZŒG��. For instance, we
may take the standard basis. For each intermediate CM-field K of H=F , we write

�H=K W ZŒG�! Z
�
Gal.K=F /

�
for the natural restriction map. By abuse of notation, we also write �H=K for the induced
homomorphism M

v2S 0
f
n¹v0º

ZŒG�� !
M

v2S 0
f
n¹v0º

Z
�
Gal.K=F /

��
:

Then we put bi;K D �H=K.bi;H / for any 1� i � r , so ¹bi;Kº1�i�r is a basis of the moduleL
v2S 0

f
n¹v0º

ZŒGal.K=F /��.

Conjecture 4.15 ([24, Conjecture 3.4]). For any odd prime p, there is a basis ¹ei;H º1�i�r
of p Ker.�V /�H as a ZpŒG��-module satisfying the following property. For an intermedi-
ate CM-field K of H=F , we put ei;K D res�V ;H=K.ei;H / for all 1 � i � r . Note that
¹ei;Kº1�i�r is a basis of p Ker.�V /�K as a ZpŒGal.K=F /��-module. Then, for any inter-
mediate CM-fieldK ofH=F and any subset x† of† satisfying x†� S1.F /[ Sram.K=F /,
we have

det
�
 †

0

x†;K

�
D ‚†

0

x†
.K=F /;

where det. †
0

x†;K
/ is the determinant of  †

0

x†;K
with respect to the bases ¹ei;Kº1�i�r of

p Ker.�V /�K and ¹bi;Kº1�i�r of
L
v2S 0

f
n¹v0º

ZpŒGal.K=F /��.

We have the following.
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Proposition 4.16 ([24, Proposition 3.5]). Conjecture 4.15 is equivalent to Conjecture
4.12.

Thanks to this proposition, in order to prove Theorem 4.14, it is enough to show the
equivalence between Conjectures 1.5 and 4.15.

Recall that in Definition 2.14, �†
0

† is defined as the cokernel of the injective homo-
morphism (2.20). We write

�†
0

† W Ker.�V /� !
M

v2S 0
f
n¹v0º

ZŒG��

for the homomorphism (2.20).
We show a lemma that is necessary for proving the equivalence.

Lemma 4.17. The following are true.
.1/ The following is commutative.

Ker.�V /� ˝Q
�†
0

† //

 †
0

† ((

L
v2S 0

f
n¹v0º

QŒG��

��L
v2S 0

f
n¹v0º

QŒG��:

Here, the vertical arrow is defined as the identity at the components for v … †f and as
�.1 �

�Iv
#Iv
'�1v /h�1v at the components v 2 †f (recall that hv is defined in (1.3)).

.2/ Let x† be a subset of † such that x† � S1.F / [ Sram.H=F /. Then the following
is commutative.

Ker.�V /� ˝Q
�†
0

† //

�†
0

x† ((

L
v2S 0

f
n¹v0º

QŒG��

��L
v2S 0

f
n¹v0º

QŒG��:

Here, the vertical arrow is defined as the identity at the components for v … † n x† and as
�h�1v at the components v 2 † n x†.

.3/ In order to clarify the field, we write �†
0

†;H and hv;H for �†
0

† and hv . Then, for an
intermediate CM-field K of H=F , the following is commutative.

Ker.�V /�H ˝Q
�†
0

†;H
//

res�V ;H=K

��

L
v2S 0

f
n¹v0º

QŒG��

��

Ker.�V /�K ˝Q
�†
0

†;K
//
L
v2S 0

f
n¹v0º

Q
�
Gal.K=F /

��
:
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Here, the right vertical arrow is defined as the natural restriction map �H=K at the com-
ponents for v … †f and as the minus component of the composite map

QŒG�
�H=K
���! Q

�
Gal.K=F /

� �hv;K ��H=K .hv;H /�1
��������������! Q

�
Gal.K=F /

�
at the components v 2 †f .

Proof. (1)(2) Let v be any finite prime of F . For any finite prime w of H above v, by
Proposition 2.5,Ww ˝Q is a free QŒGw �-module of rank 1 and .1� �Iv

#Iv
'�1v ; 1/ is a basis

of Ww ˝ Q. By the definitions of �w , fw , gw (see Proposition 2.6 (1), (2), and (4.10),
respectively), we have

�w

��
1 �

�Iv
#Iv

'�1v ; 1
��
D 1;

fw

��
1 �

�Iv
#Iv

'�1v ; 1
��
D hv;

gw

��
1 �

�Iv
#Iv

'�1v ; 1
��
D 1 �

�Iv
#Iv

'�1v :

Therefore, the following are commutative.

Ww ˝Q
fw //

gw
%%

QŒGw �

�

�
1�

�Iv
#Iv '

�1
v

�
h�1v

��

QŒGw �;

Ww ˝Q
fw //

�w
%%

QŒGw �

�h�1v
��

QŒGw �:

These diagrams imply the claims (1) and (2), respectively.
(3) By a similar proof as [13, Lemma B.2], we obtain a commutative diagram

Ker.�V /�H //

res�V ;H=K

��

L
v2S 0

f
n¹v0º

W �v;H

��

Ker.�V /�K //
L
v2S 0

f
n¹v0º

W �v;K :

Here, the two horizontal arrows are the first map in (4.11) and the right vertical arrow is
the natural restriction map. For any finite prime v of F , the natural map Wv;H ˝Q!

Wv;K ˝Q sends the basis .1�
�Iv;H
#Iv;H

'�1v ;1/ ofW �v;H ˝Q to the basis .1�
�Iv;K
#Iv;K

'�1v ;1/ of
W �v;K ˝Q. Therefore, the above formula on fw implies that the following is commutative.

Wv;H ˝Q
fv;H

//

��

QŒG�

.�hv;K ��H=K .hv;H /
�1/ı�H=K

��

Wv;K ˝Q
fv;K
// Q
�
Gal.K=F /

�
;

where fv;H and fv;K are defined as in Definition 2.13. From these diagrams, claim (3)
follows.
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Now we are ready to prove Theorem 4.14.

Proof of Theorem 4.14. By Proposition 4.16, it is enough to show the equivalence be-
tween Conjectures 1.5 and 4.15. Firstly, we prove that Conjecture 1.5 implies Conjec-
ture 4.15. Assume that Conjecture 1.5 holds. We fix an odd prime number p. Since�†

0

† is
the cokernel of �†

0

† D �
†0

†;H and p Ker.�V /�H is a free ZpŒG��-module of rank r , by the
validity of Conjecture 1.5, there exists a basis ¹ei;H º1�i�r of p Ker.�V /�H such that

det
�
�†
0

†;H

�
D �†

0

† D �
†0

†;H

with respect to the basis ¹ei;H º1�i�r and the fixed basis ¹bi;H º1�i�r ofM
v2S 0

f
n¹v0º

ZpŒG�
�:

For an intermediate CM-field K of H=F , we define ei;K D res�V ;H=K.ei;H / for all 1 �
i � r . For any subset x† of † such that x† � S1.F / [ Sram.K=F /, by Lemma 4.17 (1),
(2), and (3), respectively, we obtain the first, second, and third equalities of

det
�
 †

0

x†;K

�
D

Y
v2x†f

��
1 �

�Iv;K

#Iv;K
'�1v;K

��
� .h�v;K/

�1

�
� det

�
�†
0

x†;K

�
D

Y
v2x†f

��
1 �

�Iv;K

#Iv;K
'�1v;K

��
� .h�v;K/

�1

�
�

Y
v2†nx†

.h�v;K/
�1
� det

�
�†
0

†;K

�
D

Y
v2x†f

�
1 �

�Iv;K

#Iv;K
'�1v;K

��
�

Y
v2†f

.h�v;K/
�1
�

Y
v2†f

h�v;K

� �H=K

� Y
v2†f

.h�v;H /
�1
� det

�
�†
0

†;H

��
D

Y
v2x†f

�
1 �

�Iv;K

#Iv;K
'�1v;K

��
� �H=K

�
!†

0�
D ‚†

0

x†
.K=F /:

Therefore, Conjecture 4.15 holds under the validity of Conjecture 1.5.
Next, we show that Conjecture 4.15 implies Conjecture 1.5. Assume that Conjec-

ture 4.15 holds. We fix an odd prime number p and aim at showing the eTNC�p . We
take a basis ¹ei;H º1�i�r of p Ker.�V /�H as a ZpŒG��-module satisfying the condition in
Conjecture 4.15. Then it is enough to show that we have det.�†

0

†;H / D �†
0

† as elements
of QpŒG�

�, where the determinant is defined with respect to the bases ¹ei;H º1�i�r and
¹bi;H º1�i�r .

For any odd character  of G, we write H D HKer and † D Sram.H
 =F /.

Also for any x 2 QpŒG�
� or x 2 QpŒGal.H =F /�, we write x 2 Qp.Im / for the  -

component of x. Then, for any odd character  of G, Conjecture 4.15, Lemma 4.17 (1),



M. Atsuta and T. Kataoka 474

(2), and (3) respectively imply the fourth, third, second, and first equality of

det
�
�†
0

†;H

� 
D

Y
v2†f

h
 
v;H �

� Y
v2†f

.h
 

v;H /
�1
� det

�
�†
0

†;H 

� �
D

Y
v2†f

h
 
v;H �

� Y
v2† ;f

.h
 

v;H /
�1
� det

�
�†
0

† ;H 

� �
D

Y
v2†f

h
 
v;H � det

�
 †

0

† ;H 

� 
D

Y
v2†f

h
 
v;H �‚

†0

† 
.H =F / 

D

Y
v2†f

h
 
v;H � L

†0

† 
. �1; 0/

D �
†0; 
† ;

where det.�†
0

†;H / (resp. det.�†
0

†;H /; det.�†
0

† ;H / and det. †
0

† ;H /) is defined with re-
spect to the bases ¹ei;H º1�i�r and ¹bi;H º1�i�r (resp. ¹ei;H º1�i�r and ¹bi;H º1�i�r ).
Therefore, we have det.�†

0

†;H / D �†
0

† as desired. This completes the proof of Theorem
4.14.

5. Modifications of the Eisenstein series

The rest of this paper is devoted to the proof of Theorem 1.10. In this section, we introduce
group ring valued Eisenstein series that are suitable for our purpose.

In Section 5.1, we briefly introduce notation on Hilbert modular forms. In Section 5.2,
we introduce the most basic Eisenstein series, and then in Section 5.3 and Section 5.4,
we modify them appropriately for our purpose, partly following an idea of Dasgupta and
Kakde [13]. Finally in Section 5.5, we compute the Hecke actions on the modified Eisen-
stein series.

In this section, let F be a fixed totally real field. We put d D ŒF W Q�. In general,
for a property P (e.g. the property k D 1 for a given integer k), we define ıP D 1 if P
is true and ıP D 0 otherwise. This notation is introduced to avoid lengthy case-by-case
argument.

5.1. Notation on Hilbert modular forms

We briefly introduce Hilbert modular forms. In this section we completely follow the
notation of [13, Section 7.2], so the readers are advised to refer to it for more details.

For each element � 2 ClC.F / of the narrow class group of F , we implicitly fix a
fractional ideal t� that represents �. Let n be an ideal of F (by this we implicitly mean
that n is a nonzero integral ideal) and k � 1 an integer.
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We writeMk.n/ for the space of C-valued Hilbert modular forms of (parallel) weight
k and of level n. For each f 2 Mk.n/, we have the normalized Fourier coefficients
c.a; f / 2 C for ideals a of F , and c�.0; f / 2 C for � 2 ClC.F /. These coefficients
characterize the form f , so we have an injective C-linear homomorphism

Mk.n/ ,!
Y
�

C �
Y

a

C

that sends f to ..c�.0; f //�; .c.a; f //a/. This map is called the Fourier expansion.
We have the set of cusps of level n, denoted by cusps.n/. An element of cusps.n/ is

written as the class ŒA� of a pair
A D .A; �/;

where � 2 ClC.F / and A 2 GLC2 .F / (the subgroup of GL2.F / whose elements have
totally positive determinants). For such a pair A and for f 2 Mk.n/, we write cA.0; f /

for the constant term of the normalized Fourier coefficients.
A cuspform (of the same weight and level) is defined as a form f 2Mk.n/ such that

cA.0; f / D 0 for any pair A. The subspace of cuspforms is denoted by Sk.n/ �Mk.n/.
Given a pair A D .A; �/, following [13, Section 7.2.5], we define a fractional ideal

bA of OF by
bA D .a/C .c/.t�dF /

�1:

Here, A D
�
a �
c �

�
and dF denotes the different of F . Then we define an integral ideal cA

of OF by
cA D .c/.t�dF bA/

�1:

This ideal cA depends only on the cusp ŒA�. For an ideal b j n, we define

C1.b;n/ D
®
ŒA� 2 cusps.n/ W b j cA

¯
and

C0.b;n/ D
®
ŒA� 2 cusps.n/ W gcd.b; cA/ D 1

¯
:

We also write C1.n/ D C1.n;n/.
We have the diamond operator S.a/ on Mk.n/ and Sk.n/ for each element a 2

ClCn .F / of the narrow ray class group of F of conductor n. We refer to [12, Section 2.5]
for the definition of diamond operators. For each C-valued character  of ClCn .F / which
is totally odd (resp. totally even) if k is odd (resp. k is even), we put

Mk.n;  / D
®
f 2Mk.n/ j S.a/f D  .a/f; 8a 2 ClCn .F /

¯
and Sk.n;  / DMk.n;  / \ Sk.n/. Then we have the direct sum decompositions

Mk.n/ D
M
 

Mk.n;  /; Sk.n/ D
M
 

Sk.n;  /:

We write Mk.n;Z/ �Mk.n/ for the Z-submodule of forms f such that c.a; f / 2 Z
and c�.0; f / 2 Z holds for all a and �. Then, for a ring R, we define the R-module of
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Hilbert modular forms with coefficients in R by Mk.n; R/ D Mk.n;Z/˝Z R. When a
character  W ClCn .F /! R� is given, we define

Mk.n; R;  / D
®
f 2Mk.n; R/ j S.a/f D  .a/f; 8a 2 ClCn .F /

¯
:

We define Sk.n; R/ and Sk.n; R;  / in a similar way.
In practice, we are interested in a finite abelian CM-extension H=F (with G D

Gal.H=F /) and an odd prime number p. Let us suppose that k is odd and the conductor
fH=F of H=F divides n. Let

 W ClCn .F /� G ,! ZpŒG�
��

�
ZpŒG�

�
��

be the tautological character. Then the above construction gives rise to spaces

Sk
�
n;ZpŒG�

�; 
�
�Mk

�
n;ZpŒG�

�; 
�
:

In this case, we have an interpretation of the elements of Mk.n;ZpŒG�
�; / as families

of forms, as follows (see [13, Lemma 7.2], which comes from a result of Silliman [30,
Corollary 7.28]). The Fourier expansion induces an injective ZpŒG��-homomorphism

Mk

�
n;ZpŒG�

�; 
�
,!

Y
�

ZpŒG�
�
�

Y
a

ZpŒG�
�:

Then an element ..c�.0//�; .c.a//a/ of the target module is in the image of this map if and
only if there exists a family .f / 2

Q
 Mk.n;O ;  / ( runs over the odd characters

of G) such that  .c�.0// D c�.0; f / and  .c.a// D c.a; f / hold for any �, a, and  .

5.2. The Eisenstein series

In this subsection, we introduce the classical Eisenstein series. See [13, Section 7.3], [12],
or [10, Section 2.2] for more details.

For each character  of F , we write f for its conductor. When n is an ideal divisible
by f , let  n denote the character  whose modulus is enlarged to n. This means that
 n.l/ D 0 as long as l j n. We define the associated L-function by

L. n; s/ D
Y
v−n

�
1 �

 .v/

N.v/s

��1
D

Y
vjn;v−f 

�
1 �

 .v/

N.v/s

�
L. ; s/:

Recall that we put d D ŒF W Q�.

Definition 5.1. Let k � 1 be an odd integer. Let  be a totally odd character of GF . Let
n be an ideal of F which is divisible by f . Let R be an ideal of F such that .n;R/ D 1.
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Let 1R denote the trivial character whose modulus is enlarged to R. Note that in prac-
tice R is a product of p-adic primes (for a fixed p), and moreover we take R D 1 in most
cases.

Then there exists a modular form Ek. n; 1R/ 2Mk.nR;Q. /; /, called the Eisen-
stein series, whose Fourier coefficients are given by

c
�
a; Ek. n; 1R/

�
D

X
rja;.r;R/D1

 n

�a

r

�
N.r/k�1;

where r runs over the divisors of a with .r;R/ D 1, for each a, and

c�
�
0;Ek. n; 1R/

�
D ınD12

�d �1.�/L. �1R ; 1 � k/C ıkD1ıRD12
�dL. n; 0/

for each �. (Recall that ınD1 is 1 if nD 1 and is 0 otherwise, and the other ıP ’s are defined
similarly. Therefore, we have to consider the first term of the right-hand side only when
n D 1 and in particular f D 1, so  �1.�/ and  R are well-defined. This kind of remark
will be implicit in the remaining manuscript.)

We next incorporate the Eisenstein series to a family. Let H=F be a finite abelian
CM-extension. For an odd integer k � 1 and an ideal n of F divisible by the conductor
fH=F of H=F , we define

‚n.1 � k/ D
X
 

L. �1n ; 1 � k/e 2 Q
�
Gal.H=F /

��
;

where  runs over the odd characters of Gal.H=F /.
Let

 D  H=F W Gal.H=F /!
�
Z
�
Gal.H=F /

����
denote the tautological character which sends � to 1�c

2
� (as usual c denotes the complex

conjugation). For a prime l which is unramified in H=F , we put  .l/ D  .'l/. For an
ideal n of F divisible by fH=F , we also define  n in a similar manner.

Definition 5.2. Let H=F be a finite abelian CM-extension. Let k � 1 be an odd integer.
Let n be an ideal of F divisible by fH=F . Let R be an ideal of F such that .n;R/ D 1.

Then we define the group ring valued Eisenstein series

E
H=F

k
. n; 1R/ 2Mk

�
nR;Q

�
Gal.H=F /

��
; 
�

by requiring that the specialization of EH=F
k

. n; 1R/ at each odd character  of the
Galois group Gal.H=F / equals to Ek. n; 1R/. Explicitly, the form is constructed as

c
�
a; E

H=F

k
. n; 1R/

�
D

X
rja;.r;R/D1

 n

�a

r

�
N.r/k�1

for each a and

c�
�
0;E

H=F

k
. n; 1R/

�
D ınD12

�d �1.�/‚R.1 � k/C ıkD1ıRD12
�d‚n.0/

]

for each �. Here, ] denotes the involution on group rings that inverts every group element.
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5.3. A modification

In this subsection, we make the first modification of the above group ring valued Eisenstein
series. We essentially follow [13], but we change the exposition to some extent so that we
will be able to make the second modification in the next subsection.

From now on let us fix an odd prime number p. We shall consider a pair .H=F;n/ as
follows.

Setting 5.3. Let .H=F;n/ be a pair satisfying:

• H=F is a finite abelian CM-extension such that Gal.H=F /0, the maximal subgroup of
Gal.H=F / whose order is prime to p, is cyclic.

• n is an ideal of F divisible by fH=F .

We suppose:

.?/ When we write nD fH=FQL with QD gcd.f�1
H=F

n;p1/, we have .L;fH=F /D 1
and L is square-free.

Given such a pair .H=F; n/ and a faithful odd character � of Gal.H=F /0, we will
work over the local ring ZpŒGal.H=F /��.

Definition 5.4. Let .H=F;n/ be as in Setting 5.3. For an ideal m j n, we writeHm for the
maximal intermediate field of H=F such that every prime v j m is unramified in Hm=F .
In other words, we have

Gal.H=Hm/ D
X
vjm

Iv;H

as subgroups of Gal.H=F /, where Iv;H denotes the inertia group of v in H=F . We also
put

�m D

Y
vjm

�Iv;H 2 Z
�
Gal.H=F /

�
:

Then �m is a multiple of the norm element of Gal.H=Hm/, so the multiplication by
�m induces a well-defined homomorphism

�m W Zp
�
Gal.Hm=F /

�
! Zp

�
Gal.H=F /

�
:

(By abuse of notation, this homomorphism is also denoted by �m, but there is no worry
of confusion.) We will modify the Eisenstein series by using lifts of Eisenstein series for
Hm=F for various m j n. If there exists a prime v j m such that Iv;H is not a p-group,
then we have ��m D 0 for each odd faithful character � of Gal.H=F /0.

In general, for an ideal a of F , a Hall divisor of a is defined as a divisor b of a

satisfying gcd.b; a=b/ D 1. In this case, we write bka.

Definition 5.5. Let .H=F;n/ be as in Setting 5.3. We write np for the Hall divisor of n

such that v j np if and only if Iv;H is a p-group.
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Let � be an odd faithful character of Gal.H=F /0. Then we have ��m D 0 unless
m j np . If m j np holds, the natural restriction map induces an isomorphism Gal.H=F /0'
Gal.Hm=F /0, so the character � can be regarded as a character of Gal.Hm=F /0, and we
have

�m W Zp
�
Gal.Hm=F /

��
! Zp

�
Gal.H=F /

��
: (5.1)

The following lemmas are essentially observed in [13, Lemma 8.13].

Lemma 5.6. Let .H=F;n/ be as in Setting 5.3. Then the ideal np=gcd.np;p1/ is square-
free.

Proof. Let us assume that there exists a prime l − p such that l2 j np . If l is unramified
in H=F , then .?/ implies l2 − n, so we get a contradiction. If l is ramified in H=F , then
.?/ implies

2 � ordl.n/ D ordl.fH=F /;

where ordl denotes the normalized additive l-order. On the other hand, l j np says that
Il;H is a p-group, so we have ordl.fH=F / � 1. This is a contradiction.

Lemma 5.7. Let .H=F;n/ be as in Setting 5.3. The following are true.

(1) Let H 0 be an intermediate field of H=F such that H=H 0 is a p-extension. Then
.H 0=F;n/ also satisfies the condition of Setting 5.3.

(2) For each m j np , the pair .Hm=F;n=m/ also satisfies the condition of Setting 5.3.

(3) Let  be an odd character of Gal.H=F / that is faithful on Gal.H=F /0. We write

n D f Q L 

with f the conductor of and Q Dgcd.f�1 n;p1/. Then we have .f ;L /D1
and L is square-free.

Proof. (1) We have only to check .?/ for .H 0=F;n/. Let us write

n D fH 0=FQ0L0 (5.2)

with Q0 D gcd.f�1
H 0=F

n; p1/. We have to show that L0 is square-free and .L0; fH 0=F /D 1.
Let us assume that there exists a prime l j L0 such that either l2 j L0 or l is ramified in
H 0=F . In the both cases, we have l2 j n. Then the condition .?/ for .H=F; n/ implies
l2 j fH=F and ordl.fH=F / D ordl.n/. Since H=H 0 is a p-extension, l2 j fH=F implies

ordl.fH=F / D ordl.fH 0=F /:

These formulas combined with l j L0 contradict the l-order of the equation (5.2).
(2) By claim (1), .Hm=F;n/ satisfies the condition of Setting 5.3, so .Hm=F;n=m/

also satisfies it.
(3) Let us consider the intermediate field H D HKer. / of H=F . Note that H=H 

is a p-extension since  is faithful on Gal.H=F /0. Since f D fH =F , the claim follows
from claim (1).
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We briefly introduce the level raising operator. Let n and m be ideals. Then, for a form
f of level n, there exists a form f jm of level nm whose Fourier coefficients are´

c.a; f jm/ D ımjac.a=m; f /

c�.0; f jm/ D c�m.0; f /:

Now we are ready to modify the Eisenstein series, following [13]. We use a formula
in [13, Proposition 8.14] as the definition, and will observe the equivalence with [13,
Definition 8.2] later.

Definition 5.8. Let .H=F; n/ be as in Setting 5.3. Let � be an odd faithful character of
Gal.H=F /0. Let k � 1 be an odd integer. Let R be an ideal of F such that .n;R/ D 1.

For each m j np with .m; p/ D 1, we have a modular form

E
Hm=F

k
. n=m; 1R/

�
2Mk

�
m�1nR;Qp

�
Gal.Hm=F /

��
; 
�

by Lemma 5.7 (2) and Definition 5.2. Using these forms, the level raising operators,
and (5.1), we define W H=F

k
. n; 1R/

� 2Mk.nR;QpŒGal.H=F /��; / by

W
H=F

k
. n; 1R/

�

D

X
mjnp ;.m;p/D1

�m

�
 
Hm=F

n=m
.m/

�Y
vjm

1 �N.v/k

#Iv;H

�
E
Hm=F

k
. n=m; 1R/

�
jm

�
:

For each odd character  of Gal.H=F / such that  jG0 D �, we write Wk. n; 1R/ 2

Mk.nR;Qp. /; / for the -component ofW H=F

k
. n;1R/

�. This is actually independ-
ent from the extension H=F .

Note that the non-constant terms of W H=F

k
. n; 1R/

� lie in the integral part

ZpŒGal.H=F /��:

This is because the non-constant terms of the non-modified Eisenstein series are integral
by the formula in Definition 5.2 and, for v − p, we have

N.v/ � 1 .mod #Iv;HZp/

by local class field theory.
The following proposition shows that our definition (when R D 1) coincides with

[13, Definition 8.2].

Proposition 5.9. Let .H=F;n/ be as in Setting 5.3. Let k � 1 be an odd integer. Let  be
an odd character of Gal.H=F / that is faithful on Gal.H=F /0. We write nD f Q L as
in Lemma 5.7 .3/. Then we have

Wk. n; 1/ D
X

mjL 

�.m/N.m/k .m/Ek. f Q 
; 1/jm:
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Proof. This is essentially a rephrasing of [13, Proposition 8.14]. For the sake of complete-
ness, we review the core computation.

First we observe that L j np . For, let l j n be a prime with l − np . Then the inertia
group Il;H=F is not a p-group, so l j f since  is faithful on Gal.H=F /0. By Lemma
5.7 (3), we then have l − L .

For each m j np with .m; p/D 1, we have  .�m/D 0 unless m j L , and in that case
we have  .�m/ D

Q
vjm #Iv;H . Therefore, we have

Wk. n; 1/ D
X

mjL 

�
 .m/

�Y
vjm

�
1 �N.v/k

��
Ek. n=m; 1/jm

�
:

We expand this to

Wk. n; 1/ D
X

mjL 

�
 .m/

X
m0jm

�.m0/N.m0/kEk. n=m; 1/jm

�
D

X
m0jL 

�
�.m0/N.m0/k .m0/

X
m00jL =m0

 .m00/Ek. n=m0m00 ; 1/jm0m00
�
;

where we write m D m0m00. Then it is enough to showX
m00jL =m0

 .m00/Ek. n=m0m00 ; 1/jm00 D Ek. f Q 
; 1/

for each m0 j L . When m0 D L , this is clear. In general, we can prove it by induction
(we omit the detail).

By [13, Propositions 8.6 and 8.7], we have the following formula for the constant
terms of Wk. n; 1/.

Proposition 5.10. Under the same notation as in Proposition 5.9, for a pair A D .A; �/

with A D
�
a �
c �

�
, we have

cA

�
0;Wk. n; 1/

�
D

�
ıŒA�2C0.f Q ;n/

�. /

N.f /k
sgn

�
N.�c/

�
 .cA/2

�dL. �1; 1 � k/

�

Y
pjQ 

�
1 �

 .p/

N.p/k

� Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/k

��
C

h
ıkD1ıŒA�2C1.f L ;n/ sgn

�
N.a/

�
 �1.ab�1A /2�dLL . ; 0/

�

Y
pjQ ;ŒA�2C0.p;n/

�
1 �N.p/�1

� Y
pjQ ;ŒA�2C1.p;n/

�
1 �  .p/

�i
:

Here, in the products, p and q always denote finite primes of F . We simply write N for the
norm from F to Q, and sgn for the sign of a rational number (see [13, Remark 8.5] for
the convention for sgn.N.x// in the case x D 0).



M. Atsuta and T. Kataoka 482

Proof. Note that c0, c, P, l, and T in [13] correspond respectively to f , f Q , Q , L ,
and the set of prime divisors of L in our notation. Then the case where k > 1 directly
follows from [13, Proposition 8.6]. Let us assume k D 1 and use [13, Proposition 8.7].
When f ¤ 1, we have

C0.f Q ;n/ \ C1.f L ;n/ D ;;

and the proposition directly follows. When f D 1, the right-hand side of the proposition
is �

ıŒA�2C0.Q ;n/�. / sgn
�
N.�c/

�
 .cA/2

�dL. �1; 0/

�

Y
pjQ 

�
1 �

 .p/

N.p/

� Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/

��
C

h
ıŒA�2C1.L ;n/ sgn.N.a// �1.ab�1A /2�dLL . ; 0/

�

Y
pjQ ;ŒA�2C0.p;n/

�
1 �N.p/�1

� Y
pjQ ;ŒA�2C1.p;n/

�
1 �  .p/

�i
:

By [13, Remark 8.5], we have

sgn
�
N.�c/

�
 .cA/ D  

�1.dF t�bA/

and
sgn

�
N.a/

�
 �1.ab�1A / D  .bA/

(note that the existence of a totally odd character  whose conductor is trivial forces
the degree of F=Q to be even, so we have N.�c/ D N.c/). Therefore, the proposition
coincides with the formulas in [13, Proposition 8.7].

5.4. A further modification

In this subsection, we make a further modification of W H=F
1 . n; 1/� (we have only to

deal with the case where R D 1 and the weight is 1).
Let .H=F;n/ be as in Setting 5.3 and � an odd faithful character of Gal.H=F /0.

Definition 5.11. We put P D gcd.n; p1/. We define Hall divisors Pbad and Pp of P as
follows. Similarly as in Definition 5.5, we define Pp as the Hall divisor of P such that
p j Pp if and only if Ip;H is a p-group. In other words, we have Pp D gcd.P; np/. We
define Pbad as the Hall divisor of P such that p j Pbad if and only ifGp is a p-group. Then
we have

PbadkPpkP:

Definition 5.12. For each Hall divisor QkPp , we have a modular form

W
HQ=F
1 . n=Q; 1/

�
2M1

�
n=Q;Qp

�
Gal.HQ=F /

��
; 
�
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by Lemma 5.7 (2) and Definition 5.8. Using these forms and (5.1), we define

xW
H=F
1 . n; 1/

�
2M1.n;QpŒGal.H=F /��; /

by
xW
H=F
1 . n; 1/

�
D

X
QkPbad

�QW
HQ=F
1 . n=Q; 1/

�:

Here, we do not use the level raising operators. This definition is motivated by the relation
between �†

0

† and ‚†
0

† obtained in the proof of Proposition 4.1.
For each character  of G with  jG0 D �, we write

xW
H=F
1 . n; 1/ 2M1

�
n;Qp. /;  

�
for the specialization of xW H=F

1 . n; 1/�. This does depend on the extension H=F , so we
should not omit the superscript H=F .

We note that the non-constant terms of xW H=F
1 . n; 1/� again lie in the integral part

ZpŒGal.H=F /��.
Using Proposition 5.10, we show the following formulas for the constant terms of

xW
H=F
1 . n; 1/ that involves our Stickelberger element �†

0

† introduced in (1.4). For any
integral ideal a of F , we write prime.a/ for the set of finite primes of F dividing a.

Proposition 5.13. Let  be character of Gal.H=F / with  jG0 D �. We write

n D f Q L 

as in Lemma 5.7 .3/. For a pair A D .A; �/ with A D
�
a �
c �

�
such that ŒA� 2 C1.P;n/,

we have

cA

�
0; xW

H=F
1 . n; 1/

�
D

�
ı.f ;p/D1ıPbadDP

�Y
pjP

#Ip;H

�
ıŒA�2C0.f ;n/

�. /

N.f /
sgn

�
N.�c/

�
 .cA/2

�dL. �1; 0/

�

Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/

��

C

�
ıŒA�2C1.n/ sgn

�
N.a/

�
 �1.ab�1A /2�d 

�
�
†0;]
†

� Y
pjP=Pbad

 

�1 � �Ip;H
#Ip;H

'p

h
]
p

��
:

Here, we put † D S1.F / [ prime.P/ and †0 D prime.n=P/.

Proof. We write Ip D Ip;H . For each QkPbad, we first note that

 .�Q/ D

´Q
pjQ #Ip

�
gcd.f ;Q/ D 1

�
0

�
gcd.f ;Q/ ¤ 1

�
:
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This implies

xW
H=F
1 . n; 1/ D

X
QkPbad;gcd.f ;Q/D1

�Y
pjQ

#Ip

�
W1. n=Q; 1/:

We shall consider QkPbad with gcd.f ;Q/ D 1. Then we have Q j Q and n=Q D

f 
Q 

Q
L is the corresponding decomposition. Then by Proposition 5.10, we have a for-

mula for cA.0;W1. n=Q; 1//; it simply replaces all n and Q in the right-hand side of
Proposition 5.10 by n=Q and Q =Q, respectively (and we take k D 1). By the assump-
tion ŒA� 2 C1.P;n/, we have

ŒA� 62 C0.f Q =Q;n=Q/

unless gcd.P; f Q =Q/ D 1, which is equivalent to .f ; p/ D 1 and Q D Q D P.
Moreover, for any p j P, we have ŒA� 2 C1.p;n=Q/. Therefore, we obtain

cA

�
0;W1. n=Q; 1/

�
D

�
ı.f ;p/D1ıQDPıŒA�2C0.f ;n/

�. /

N.f /
sgn

�
N.�c/

�
 .cA/2

�dL. �1; 0/

�

Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/

��
C

h
ıŒA�2C1.f L ;n/ sgn

�
N.a/

�
 �1.ab�1A /2�dLL . ; 0/ �

Y
pjQ =Q

�
1 �  .p/

�i
:

Note that Q D P is possible if and only if Pbad D P. Note also that we have

ıŒA�2C1.f L ;n/ D ıŒA�2C1.n/

by the assumption ŒA� 2 C1.P;n/. Taking the sum with respect to Q, we then obtain

cA

�
0; xW

H=F
1 . n; 1/

�
D

�
ı.f ;p/D1ıPbadDP

�Y
pjP

#Ip

�
ıŒA�2C0.f ;n/

�. /

N.f /
sgn

�
N.�c/

�
 .cA/2

�dL. �1; 0/

�

Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/

��
C

h
ıŒA�2C1.n/ sgn

�
N.a/

�
 �1.ab�1A /2�dLL . ; 0/

�

X
QkPbad;.f ;Q/D1

�Y
pjQ

#Ip

� Y
pjQ =Q

�
1 �  .p/

�i
:
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By the definition of Q , we have
Q

pjQ =Q
.1� .p//D

Q
pjP=Q.1� .p//. Therefore,

the final sum can be computed asX
QkPbad;.f ;Q/D1

�Y
pjQ

#Ip

� Y
pjQ =Q

�
1 �  .p/

�
D

Y
pjP=Pbad

�
1 �  .p/

�
�

X
QkPbad;.f ;Q/D1

�Y
pjQ

#Ip

� Y
pjPbad=Q;p−f 

�
1 �  .p/

�
D

Y
pjP=Pbad

�
1 �  .p/

�
�

Y
pjPbad;p−f 

�
1 �  .p/C #Ip

�
D

Y
pjP=Pbad

 
�
1 �

�Ip

#Ip
'p

�
�

Y
pjPbad

 .h]p/:

By the definitions of �†
0

† and †, we have

 
�
�
†0;]
†

�
D L†

0

. ; 0/ �
Y
pjP

 .h]p/:

By the choice of†0, we have L†
0

. ; 0/D LL . ; 0/. Thus we obtain the proposition.

5.5. Hecke actions

In this subsection, we gather formulas of the Hecke actions on various Eisenstein series
that we constructed.

We briefly review the general formulas of the Hecke operators Ul and Tl. Let f 2
Mk.n; R;  / be a modular form with coefficients in R, of level n, weight k � 1, and
nebentypus  as in Section 5.1. Then for a prime l − n, the form Tlf 2 Mk.n; R;  / is
characterized by´

c.a; Tlf / D c.la; f /C ılja .l/N.l/
k�1c.l�1a; f /

c�.0; Tlf / D cl�1�.0; f /C  .l/N.l/
k�1cl�.0; f /:

For any prime l, the form Ulf 2Mk.lcm.n; l/; R; / is characterized by´
c.a; Ulf / D c.la; f /

c�.0; Ulf / D cl�1�.0; f /:

Note that we have the following compatibility between the level raising operators and
Hecke operators: Ul.f jm/ D .Ulf /jm for l − m and Tl.f jm/ D .Tlf /jm for l − mn.
These can be checked directly by the formulas on Fourier coefficients.

Proposition 5.14. We keep the notation in Definition 5.2.

(1) For a prime l − nR, we have

TlE
H=F

k
. n; 1R/ D

�
 .l/CN.l/k�1

�
E
H=F

k
. n; 1R/:
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(2) For any prime l, we have

UlE
H=F

k
. n; 1R/

D ıl−RN.l/
k�1E

H=F

k
. n; 1R/C n.l/E

H=F

k
. n; 1lR/

D  n.l/E
H=F

k
. n; 1R/C ıl−RN.l/

k�1E
H=F

k
. ln; 1R/:

Proof. These formulas are standard. We only compute the non-constant Fourier coeffi-
cients.

(1) We have

c
�
a; TlE

H=F

k
. n; 1R/

�
D c

�
la; E

H=F

k
. n; 1R/

�
C ılja n.l/N.l/

k�1c
�
l�1a; E

H=F

k
. n; 1R/

�
D

X
rjla;.r;R/D1

 n

�
la

r

�
N.r/k�1Cılja n.l/N.l/

k�1
X

rjl�1a;.r;R/D1

 n

�
l�1a

r

�
N.r/k�1:

We decompose the first sum regarding r j a or r − a. In the latter case, we put rD lr0 with
r0 j a. Then

c
�
a; TlE

H=F

k
. n; 1R/

�
D  .l/

X
rja;.r;R/D1

 n

�a

r

�
N.r/k�1 CN.l/k�1

X
r0ja;lr0−a;.lr0;R/D1

 n

� a

r0

�
N.r0/k�1

C ıljaN.l/
k�1

X
rjl�1a;.r;R/D1

 n

�a

r

�
N.r/k�1:

The first term is nothing but  .l/c.a; EH=F
k

. n; 1R//. Moreover, the sum of the second
and the third terms is N.l/k�1c.a; EH=F

k
. n; 1R//.

(2) We have

c
�
a; UlE

H=F

k
. n; 1R/

�
D c

�
la; E

H=F

k
. n; 1R/

�
D

X
rjla;.r;R/D1

 n

� la

r

�
N.r/k�1: (5.3)

We decompose (5.3) regarding l j r or l − r. In the former case, we write rD lr0. Then

c
�
a; UlE

H=F

k
. n; 1R/

�
D

X
r0ja;.lr0;R/D1

 n

� a

r0

�
N.l/k�1N.r0/k�1 C

X
rja;.r;R/D1;l−r

 n

�
la

r

�
N.r/k�1

D ıl−RN.l/
k�1c

�
a; E

H=F

k
. n; 1R/

�
C n.l/c

�
a; E

H=F

k
. n; 1lR/

�
:
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We next decompose (5.3) regarding r j a or r − a. In the latter case, we write r D lr0.
Then

c
�
a; UlE

H=F

k
. n; 1R/

�
D

X
rja;.r;R/D1

 n.l/ n

�a

r

�
N.r/k�1 C

X
r0ja;.lr0;R/D1;lr0−a

 n

� a

r0

�
N.l/k�1N.r0/k�1

D  n.l/c
�
a; E

H=F

k
. n; 1R/

�
C ıl−RN.l/

k�1
X

r0ja;.r0;R/D1;l−a=r0

 n

� a

r0

�
N.r0/k�1

D  n.l/c
�
a; E

H=F

k
. n; 1R/

�
C ıl−RN.l/

k�1c
�
a; E

H=F

k
. ln; 1R/

�
:

Therefore, we obtain the proposition.

Let p be a fixed odd prime number. When R is a finite Zp-algebra, for each p-adic
prime p j n, we define Hida’s ordinary operator eord

p on Mk.n; R;  / by

eord
p D lim

n!1
U nŠp :

Proposition 5.15. We keep the notation in Definition 5.8.
.1/ For a prime l − nR, we have

TlW
H=F

k
. n; 1R/

�
D
�
 .l/CN.l/k�1

�
W
H=F

k
. n; 1R/

�:

.2/ For a prime p j p, we have

UpW
H=F

k
. n; 1R/

�
D ıp−RN.p/

k�1W
H=F

k
. n; 1R/

�
C n.p/W

H=F

k
. n; 1pR/

�

D  n.p/W
H=F

k
. n; 1R/

�
C ıp−RN.p/

k�1W
H=F

k
. pn; 1R/

�:

.3/ For a prime p j p with p − R, we have

eord
p W

H=F

k
. n; 1R/

�
D

8̂̂<̂
:̂
W
H=F
1 . n; 1R/

� .k D 1/

0 .k > 1;p j n/
1

1�N.p/k�1 .p/�1
W
H=F

k
. n; 1pR/

� .k > 1;p − n/:

Proof. The claims (1) and (2) follow from Proposition 5.14 (1) and (2), together with the
observation that the Hecke operators commute with the level raising operators. For (2),
note also that the level raising operators are used for m with .m; p/ D 1, so we actually
have p − m.

(3) We use the first formula of claim (2). When p j n, then claim (3) immediately
follows. In the following, we suppose p − n. By applying the first formula of (2) induct-
ively, with the help of UpW

H=F

k
. n;1pR/

� D  .p/W
H=F

k
. n;1pR/

� (again by the first
formula of (2)), we have

U nŠp W
H=F

k
. n; 1R/

�

D N.p/.k�1/nŠW
H=F

k
. n; 1R/

�
C

 
nŠ�1X
iD0

N.p/.k�1/i .p/nŠ�i

!
W
H=F

k
. n; 1pR/

�:
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When k D 1, it is easy to see that
PnŠ�1
iD0  .p/

nŠ�i goes to 0 as n! 1, so the claim
follows. When k > 1,

nŠ�1X
iD0

N.p/.k�1/i .p/nŠ�i D  .p/nŠ
1 �

�
N.p/k�1 .p/�1

�nŠ
1 �N.p/k�1 .p/�1

;

so the claim follows.

Proposition 5.16. We keep the notation in Definition 5.12.

(1) For a prime l − n, we have

Tl
xW
H=F
1 . n; 1/

�
D
�
 .l/C 1

�
xW
H=F
1 . n; 1/

�:

(2) For a prime p j p with p − Pbad, we have

Up
xW
H=F
1 . n; 1/

�
D  n.p/ xW

H=F
1 . n; 1/

�
C xW

H=F
1 . pn; 1/

�:

(3) For any prime p j p, we have

eord
p
xW
H=F
1 . n; 1/

�
D xW

H=F
1 . n; 1/

�:

Proof. By Definition 5.12, the claims (1), (2) and (3) follow from Proposition 5.15 (1),
(2), and (3), respectively.

Note that the action of Up on xW H=F
1 . n; 1/� when p j Pbad is complicated. We will

encounter this problem in Section 7.5 (especially in Lemma 7.23).

6. Construction of the cuspform

In this section, using the modified Eisenstein series constructed in the previous section,
we construct a cuspform that plays a crucial role in the proof of Theorem 1.10.

By the propositions in Section 3.1, in order to prove Theorem 1.10, we may assume
that � is faithful on G0 and moreover choose an arbitrary pair .†; †0/. For clarity, we
describe the situation here.

Setting 6.1. Let H=F be a finite abelian CM-extension. Let p be an odd prime number.
Let G0 denote the maximal subgroup of G D Gal.H=F / of order prime to p. Let � be an
odd faithful character of G0.

Let T be a finite set of finite primes of F satisfying

• T \ .Sp.F / [ Sram.H=F // D ;.

• O
�;T
H is p-torsion-free.

We put
n D fH=F

Y
q2T

q:
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Then .H=F;n/ satisfies the condition of Setting 5.3. As in Definition 5.11, we put

P D gcd.n; p1/ D gcd.fH=F ; p1/

and introduce the Hall divisors PbadkPp of P. Then we put

† D S1.F / [ prime.P/; †0 D prime.n=P/;

which match the choices in Proposition 5.13. Note that the conditions (H1), (H2), (H30)�p ,
and (H4)�p hold. We simply write

� D �
†0;��1

† 2 ZpŒG�
��1 ;

which is integral by Proposition 4.1, so we have �] 2 ZpŒG��. Finally we put

P0 D
Y

p0jp;p0−P

p0; P0bad D
Y

p0jp;p0−Pbad

p0;

so nP0 is the minimal ideal divisible by both n and all p-adic primes.

Since .H=F; n/ satisfies the condition of Setting 5.3, we can use the notation in the
previous section.

Definition 6.2. When Pbad ¤ P, we simply put exk D 1 2 ZpŒG�� for any odd integer
k > 1. Suppose Pbad D P and recall the field HP defined in Definition 5.4. For each odd
integer k > 1, we define

xk D
‚.HP=F ; 1 � k/�

‚.HP=F ; 0/�
2 Qp

�
Gal.HP=F /

��
:

Here, for each odd integer k � 1, we define

‚.HP=F ; 1 � k/ D
X
 

L. �1; 1 � k/e 2 Q
�
Gal.HP=F /

��
;

where  runs over the odd characters of Gal.HP=F /. By [13, Lemma 8.16], by taking
k � 1 .mod .p � 1/pN / with N large enough, we have xk 2 ZpŒGal.HP=F /�� and
moreover xk is a non-zero-divisor. Let us fix a lift exk 2 ZpŒG�� of xk which is a non-
zero-divisor.

We introduce the space of ordinary cuspforms. Using Hida’s ordinary operators, we
put

eord
p D

Y
pjp

eord
p :

Then we define

Sk
�
nP0;ZpŒG�

�; 
�p-ord

D eord
p Sk

�
nP0;ZpŒG�

�; 
�
:

The following is the goal of this section.
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Theorem 6.3. For large enough N , for each odd integer k > 1 with

k � 1
�
mod .p � 1/pN

�
;

there exists a p-ordinary cuspform Fk. / 2 Sk.nP0;ZpŒG��; /p-ord such that

Fk. / � exk xW H=F
1 . n; 1/

�
� ıPbadDP�PW

HP=F

k
. n=P; 1p/

�
�
mod .exk�]/�: (6.1)

Here, the congruence between modular forms means the congruences between all the
Fourier coefficients c.a;�/ and c�.0;�/. The proof of this theorem occupies the rest of
this section.

We make essential use of the following theorems proved by Silliman [30].

Theorem 6.4 (Silliman [30, Theorem 3 = Theorem 10.7], cf. [13, Theorem 8.8]). Let
H=F be a finite abelian CM-extension. Let m > 0 be a positive integer. Then, for large
enough N , for each odd integer k > 1 with k � 1 .mod .p � 1/pN /, there exists a mod-
ular form Vk�1 2Mk�1..1/;Zp; 1/ (the last 1 denotes the trivial character) such that

Vk�1 � 1 .mod pm/;

which means that

c�.0; Vk�1/ � 1 .mod pm/; c.a; Vk�1/ � 0 .mod pm/

hold for any � and a.

Theorem 6.5 (Silliman [30, Theorem 10.9], cf. [13, Theorem 8.9]). Let H=F be a finite
abelian CM-extension. Let n be an ideal of F that is divisible by fH=F , and put P D

gcd.n; p1/. Then, for large enough odd integer k > 1, there exists a modular form

Gk. / 2Mk

�
n;Zp

�
Gal.H=F /

��
; 
�

such that
cA

�
0;Gk. /

�
D ıŒA�2C1.n/ sgn

�
N.a/

�
 �1.ab�1A /

for all A D .A; �/ with A D
�
a �
� �

�
such that ŒA� 2 C1.P;n/.

Now we return to Setting 6.1.
Firstly, we show the following lemma on the fraction that appears in the formula of

Proposition 5.13.

Lemma 6.6. For p j P=Pbad, we put

yp D

�
1 �

�Ip

#Ip
'p

����
1 �

�Ip

#Ip
'p C �Ip

����1
2 Frac

�
ZpŒG�

�
�
:

Then yp is a unit of ZpŒG��.
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Proof. Firstly, if Ip is not a p-group, then ��Ip
D 0 and so yp D 1 since � is faithful

on G0. Therefore, we may assume that Ip is a p-group. By the assumption p j P=Pbad,
this implies that p j #Ip and that Gp=Ip is not a p-group.

We can easily compute

yp � 1 D �
�
�
Ip�

1 �
�Ip
#Ip
'p C �Ip

��
Moreover, since the element

�Ip
#Ip

is an idempotent, we obtain

yp � 1 D �
�
�
Ip

.1 � 'p C �Ip/
�
:

By the observations that p j #Ip and thatGp=Ip is not a p-group, we know that the denom-
inator .1� 'pC �Ip/

� is a unit of ZpŒG�� and that ��Ip
is in the maximal ideal of ZpŒG��.

Therefore, yp � 1 is in the maximal ideal of ZpŒG��, so yp is a unit of ZpŒG��.

The following proposition corresponds to [13, Proposition 8.11]. We take an integer
m0 � 0 such that all the constant terms of xW H=F

1 . n;1/� become integral after multiply-
ing pm0 .

Proposition 6.7. Letm>0 be a positive integer. For large enoughN , for each odd integer
k > 1 with k � 1 .mod .p � 1/pN /, we take Vk�1 and Gk. / as in Theorems 6.4 and
6.5, respectively, but for Vk�1, the integer m in the condition is replaced by mCm0. Let
us define fk. / 2Mk.n;QpŒG�

�; / by

fk. / D xW
H=F
1 . n; 1/

�Vk�1 � ıPbadDP�P

�
x�1k W

HP=F

k
. n=P; 1/

�
�

� 2�d
Y

pjP=Pbad

yp � �
]Gk. /

�:

Then, for a character  of G with  jG0 D �, the specialization fk. / of fk. / satisfies

cA

�
0; fk. /

�
� 0 .mod pm/

for any A such that ŒA� 2 C1.P;n/.

Proof. Firstly, the properties of Vk�1 and Gk. / show

cA

�
0; fk. /

�
� cA

�
0; xW

H=F
1 . n; 1/

�
� ıPbadDPı.f ;p/D1

�Y
pjP

#Ip

� L. �1; 0/

L. �1; 1 � k/
cA

�
0;Wk. n=P; 1/

�
� 2�d

Y
pjP=Pbad

 .yp/ �  .�
]/ıŒA�2C1.n/ sgn

�
N.a/

�
 �1.ab�1A /
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modulo .pm/. Then we can apply Propositions 5.10 and 5.13. An important point is that
the two terms involving  .�]/ (the final term of the formula of Proposition 5.13 and the
final term of the above displayed formula) cancel each other. Then the remained terms give

cA

�
0; fk. /

�
� ı.f ;p/D1ıPbadDP

�Y
pjP

#Ip

�
ıŒA�2C0.f ;n/

�. /

N.f /
sgn

�
N.�c/

�
 .cA/2

�dL. �1; 0/

�

Y
qjL ;ŒA�2C0.q;n/

�
1 �  .q/

� Y
qjL ;ŒA�2C1.q;n/

�
1 �N.q/

�
�

�
1 �

1

N.f /k�1

Y
qjL ;ŒA�2C1.q;n/

1 �N.q/k

1 �N.q/

�
:

By k � 1 .mod .p � 1/pN /, the last term in the parentheses is p-adically close to 0. Then
the proposition follows.

Using this proposition, and applying another key theorem of Silliman [30], let us con-
struct a cuspform. Define eord

P D
Q

pjP e
ord
p and

Sk
�
n;ZpŒG�

�; 
�P-ord

D eord
P Sk

�
n;ZpŒG�

�; 
�
:

Theorem 6.8. For large enoughN , for each odd integer k>1with k�1 .mod .p�1/pN/,
there exists a cuspform fFk. / 2 Sk.n;ZpŒG��; /P-ord such thatfFk. / � exk xW H=F

1 . n; 1/
�
� ıPbadDP�PW

HP=F

k
. n=P; 1P/

�
�
mod .exk�]/�:

Proof. Let us take an integer m > 0 such that pm 2 .#G � �]/ZpŒG��. Such an m exists
since �] is a non-zero-divisor of ZpŒG��. We then construct fk. / as in Proposition 6.7
associated to this m. By applying Silliman’s work [30, Theorem 10.10] (cf. [13, Theorem
8.15]) to the family fk. /, we find a modular form hk. / 2Mk.n;ZpŒG�

�; / such that
the modular form eord

P .fk. / �
pm

#G h. // is cuspidal:

eord
P

�
fk. / �

pm

#G
h. /

�
2 Sk

�
n;QpŒG�

�; 
�P-ord

:

We have

fk. / �
pm

#G
h. /

D xW
H=F
1 . n; 1/

�Vk�1 � ıPbadDP�Px
�1
k W

HP=F

k
. n=P; 1/

�

� 2�d
Y

pjP=Pbad

yp � �
]Gk. /

�
�
pm

#G
h. /

� xW
H=F
1 . n; 1/

�
� ıPbadDP�Px

�1
k W

HP=F

k
. n=P; 1/

�

� �]
�
2�d

Y
pjP=Pbad

yp �Gk. /
�
C

pm

#G � �]
h. /

�
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modulo .pm/ (we again used the extra congruence of Vk�1 obtained from m0). By the
choice ofm and Lemma 6.6, the last term multiplied by �] is integral. Therefore, we have

exkeord
P

�
fk. / �

pm

#G
h. /

�
� exkeord

P

�
xW
H=F
1 . n; 1/

�
� ıPbadDP�Px

�1
k W

HP=F

k
. n=P; 1/

�
�

modulo .exk�]/. Using Propositions 5.15 (3) and 5.16 (3), we then obtain

exkeord
P

�
fk. / �

pm

#G
h. /

�
� exk xW H=F

1 . n; 1/
�
� ıPbadDP�P

�Y
pjP

1

1 �N.p/k�1 .p/�1

�
W
HP=F

k
. n=P; 1P/

�

modulo .exk�]/. When Pbad ¤ P (recall exk D 1), we simply put

fFk. / D exkeord
P

�
fk. / �

pm

#G
h. /

�
:

When Pbad D P, let us take a lift A .p/ 2 G of  .p/ 2 Gal.HP=F / for each p j P, and
put fFk. / D �Y

pjP

�
1 �N.p/k�1A .p/�1��exkeord

P

�
fk. / �

pm

#Gp
h. /

�
:

Since N.p/k�1 2 .�]/ as N is large enough, this form satisfies the condition.

Proof of Theorem 6.3. We have only to put

Fk. / D
� Y

pjP0

�
1 �N.p/k�1 .p/�1

��
eord

P0
fFk. /

and apply Propositions 5.15 (3) and 5.16 (3). We again use N.p/k�1 2 .�]/ as N is large
enough. This completes the proof of Theorem 6.3.

7. The Galois representation and the proof of the main theorem

In this section, using the Galois representation associated to the cuspform that we con-
structed in Section 6, we prove Theorem 1.10. In Section 7.1, we introduce Hecke algeb-
ras, homomorphisms associated to the cuspform, and an Eisenstein ideal. In Section 7.2,
we introduce the associated Galois representation and observe technical properties. In
Section 7.3, we explain the strategy to prove Theorem 1.10. The idea is realized in Sec-
tions 7.4–7.5.

We keep Setting 6.1. We fix k > 1 and Fk. / as in Theorem 6.3. We write Qx D exk .



M. Atsuta and T. Kataoka 494

7.1. Hecke algebras and a homomorphism

We introduce suitable Hecke algebras in a similar manner as in [13, Section 8.5].

Definition 7.1. We define Hecke algebras

T 0 � zT � EndZp ŒG��
�
Sk
�
nP0;ZpŒG�

�; 
�p-ord�

;

which are ZpŒG��-algebras, as follows. The smaller algebra T 0 is generated by the Hecke
operators Tl for the finite primes l − nP0. The larger algebra zT is generated by those
operators and in addition by the Hecke operator Up for all p j p. (We avoid using the
notation T , which in [13] denotes the intermediate ring generated by T 0 and by Up for
p j P. In this paper we do not need to make use of this intermediate algebra.)

Let us construct a ZpŒG��=. Qx�]/-algebra W and a homomorphism ' W zT ! W as
follows.

Definition 7.2. Let us consider the Fourier expansion

Sk
�
nP0;ZpŒG�

�; 
�p-ord

,!
Y

a

ZpŒG�
�

that sends f to .c.a; f //a. We denote by c the composite of this map and the projection
to
Q

a ZpŒG��=. Qx�]/. Then we have a natural homomorphism

zT ! EndZp ŒG��=. Qx�]/

�
c
��
Fk. /

�
zT

��
;

where .Fk. // zT denotes the zT -submodule that is generated by Fk. /. We define the
ZpŒG��=. Qx�]/-algebra W as the image of this homomorphism, and define

' W zT ! W

as the induced (surjective) homomorphism.

Note that we do not claim that the structure morphism ZpŒG��=. Qx�]/! W is inject-
ive. This is different from [13, Theorem 8.23]. The corresponding property will be impli-
citly observed in the proof of Theorem 7.14.

Lemma 7.3. For each l − nP0, we have '.Tl/ D  .l/CN.l/
k�1 as elements of W .

Proof. For each prime l − nP0, we have

TlFk. / �
�
 .l/CN.l/k�1

�
Fk. /

modulo . Qx�]/. This follows from (6.1) and Propositions 5.15 (1) and 5.16 (1). Since zT is
commutative, Tl acts as  .l/CN.l/k�1 on c..Fk. // zT /. Then the lemma follows.

Definition 7.4. We define the Eisenstein ideal I 0 � T 0 as the kernel of the composite map

T 0 ,! zT
'
� W:
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Note that Lemma 7.3 says Tl � . .l/ C N.l/
k�1/ 2 I 0 for l − nP0. Therefore, the

structure morphism ZpŒG�� ! T 0=I 0 is surjective, which implies that T 0=I 0 is a local
ring unless we have I 0 D T 0.

7.2. The Galois representation

We define K as the total ring of fractions of zT . As explained in the proof of the following
theorem, K is a finite product of p-adic fields.

Let "cyc W GF ! Z�p be the cyclotomic character. Thanks to the celebrated work of
Hida and Wiles [32, Theorems 1 and 2], we have a Galois representation as follows.

Theorem 7.5. There exists a finite extension E of Qp and a continuous two-dimensional
Galois representation � of GF over KE WD E ˝Qp K satisfying the following.

(a) For each prime l − nP0, � is unramified at l and we have

char
�
�.'l/

�
.X/ D X2 � TlX C .'l/N.l/

k�1;

where char.�.�//.X/ denotes the characteristic polynomial of �.�/ for � 2 GF .

(b) For each prime p j p, we have an equivalence of representations

�jGFp
�

�
 ��1p "k�1cyc �

0 �p

�
;

where �p denotes the unramified character GFp !
zT� that sends any lift of the

arithmetic Frobenius to Up.

Proof. We explain how to deduce this theorem from the work of Hida and Wiles, follow-
ing [13, Sections 8.5 and 9.1]. For a character  of G such that  jG0 D �, let M be
the (finite) set of p-ordinary cuspidal new eigenforms of weight k, level dividing nP0,
and nebentypus  . We also put M D

S
 M . For each f 2 M , let fp be its ordinary

stabilization with respect to all p-adic primes. Then fp is an eigenform with respect to
both Tl for l − nP0 and Up for p j p. The eigenvalue for Tl is c.l; fp/ D c.l; f /, and that
for Up is the unit root c.p; fp/ of X2 � c.p; f /X C  .p/N.p/k�1.

Let us take a finite extensionE of Qp that contains all the Fourier coefficients c.a; fp/
for all f 2 M . Let O be the integer ring of E. Then we have a well-defined Zp-algebra
homomorphism

zT !
Y
f 2M

O

that sends Tl to .c.l; fp//f 2M for l − nP0 and Up to .c.p; fp//f 2M for p j p. Then,
as in [13, Section 8.5], the induced O-algebra homomorphism O ˝Zp

zT !
Q
f 2M O is

injective with finite cokernel. Therefore, we have an isomorphism

KE '

Y
f 2M

E (7.1)

as E-algebras.
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For each f 2 M , by [32, Theorems 1 and 2], there exists a continuous two-dimen-
sional Galois representation �f of GF over E satisfying the following.

(a)f �f is unramified outside nP0 and, for each l − nP0, we have

char
�
�.'l/

�
.X/ D X2 � c.l; f /X C  .l/N.l/k�1:

(b)f For each prime p j p, we have an equivalence of representations

�jGFp
�

 
 ��1

p;f
"k�1cyc �

0 �p;f

!
;

where �p;f denotes the unramified character GFp ! E� that sends any lift of
the arithmetic Frobenius to c.p; fp/.

Then, by the isomorphism (7.1), the tuple .�f /f 2M can be regarded as a continuous
two-dimensional representation � of GF over KE satisfying the desired properties (a)
and (b).

Note that it is indeed possible to show that the representation � can be defined over K
instead of KE . However, we omit the proof and will work over KE .

We investigate this Galois representation �.

Lemma 7.6. For any � 2 GF , we have char.�.�//.X/ 2 T 0ŒX� and

char
�
�.�/

�
.X/ �

�
X � .�/

��
X � "k�1cyc .�/

�
.mod I 0/:

Proof. The claims holds for � D 'l for any l − nP0 by the condition (a) and Lemma 7.3.
Then the general case follows from Chebotarev’s density theorem.

From now on, let us fix an element � 2 GF which is a lift of the complex conjugation
c 2 Gal.H=F / such that, for any f 2M and any p j p, the one-dimensional subspace of
�f which is stable under GFp is not stable by � . We can check the existence of such � in
the same way as [13, Proposition 9.3]. Then, following [13, Sections 9.1–9.2], we take a
basis of the representation � as follows.

Lemma 7.7. There exists a basis of � over KE such that the presentation matrix of � is
of the form

�.�/ D

�
�1 0

0 �2

�
for some �1; �2 2 T 0 such that

�1 � "cyc.�/
k�1; �2 �  .�/ .mod I 0/:

Proof. Since .�/ 2 ZpŒG�� is the image of the complex conjugation c, we actually have
 .�/ D �1. This implies that  .�/ and "k�1cyc .�/ are not congruent to each other modulo
the Jacobson radical of T 0. By Lemma 7.6, applying Hensel’s lemma, we then have two
roots �1; �2 2 T 0 of char.�.�//.X/ with the described congruences. The existence of an
appropriate basis follows from basic linear algebra.
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Let us fix a basis of � over KE as in Lemma 7.7. For any � 2 GF , we write

�.�/ D

 
a.�/ b.�/

c.�/ d.�/

!
2 GL2.KE /:

By the property (b) in Theorem 7.5, for each p j p, there exists a matrix

Mp D

 
Ap Bp

Cp Dp

!
2 GL2.KE /

such that, for any � 2 GFp , we have

�.�/Mp DMp

 
 ��1p "k�1cyc �

0 �p

!
: (7.2)

There is a conflict between this elementAp and the module defined in (1.1), however there
is no fear of confusion. By the choice of � , we have Ap; Cp 2 K�E . We put

Qp D Ap=Cp 2 K�E :

For later use, let us observe some properties of a.�/, b.�/, and d.�/.

Lemma 7.8. The following hold.

(1) For any � 2 GF , we have

a.�/ � "k�1cyc .�/; d.�/ �  .�/ .mod I 0/:

(2) For each p j p and � 2 GFp , we have

b.�/ D
�
 ��1p "k�1cyc .�/ � a.�/

�
Qp:

(3) For each p j p and � 2 GFp , we have

 .�/�1"1�kcyc .�/b.�/ �
�
�p.�/

�1
� .�/�1

�
Qp .mod QpI

0/:

Proof. (1) By Lemma 7.6, we have

a.�/C d.�/ �  .�/C "k�1cyc .�/ .mod I 0/:

By replacing � by �� , we obtain

a.�/�1 C d.�/�2 �  .�/�2 C "
k�1
cyc .�/�1 .mod I 0/:

Since �1 � �2 is a unit of T 0, by solving these equations, we obtain the claim.
(2) This follows immediately from (7.2).
(3) This follows immediately from the claims (1) and (2).
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7.3. The strategy

In this subsection, we deduce Theorem 1.10 from two theorems that will be proved in the
subsequent subsections.

We first define submodules B0, B , B 0, and B 00 of KE . The definitions of the first three
are directly inspired by the corresponding objects in [13, Sections 9.3–9.4]. On the other
hand, introducing the module B 00 is a novel part of this paper.

Recall that Pbad, P0bad, and P0 are introduced in Setting 6.1.

Definition 7.9. We define T 0-submodules B 0 � B0 � B of KE by

B0 D
�
b.�/ W � 2 GF

�
T 0
;

B D B0 C .Qp W p j Pbad/T 0 ;

B 0 D
�
b.�/ W � 2

[
pjP0

IFp

�
T 0
:

Before introducing B 00, we need a lemma in advance.

Lemma 7.10. For each p j Pbad, we have

U�1p Qp 2 B:

Proof. Let � 2 GFp be a lift of the Frobenius. Then Lemma 7.8 (3) implies

 .�/�1"1�kcyc .�/b.�/ �
�
U�1p � .�/�1

�
Qp .mod QpI

0/:

Then the lemma follows since the left-hand side is inB0�B , we haveQpI
0�QpT 0�B ,

and  .�/�1Qp 2 B .

Definition 7.11. We define a T 0-submodule B 00 of KE by

B 00 D
��
1 � �Ip .'p/

�1
� U�1p

�
Qp W p j Pbad

�
T 0
:

By Lemma 7.10, we have B 00 � B . The necessity of this module B 00 will become clear in
Lemma 7.18.

Definition 7.12. We define T 0-modules Bp and B1 by

Bp D B=.I
0B C �]B C B 0 C B 00/;

B1 D B=.I
0B C �]B C B0 C B

00/:

We also define a T 0-module B0 � Bp as the image of B0.

By the definitions, we have a natural exact sequence of T 0-modules

0! B0 ! Bp ! B1 ! 0: (7.3)
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Note that, since Bp is annihilated by I 0, this is a sequence of T 0=I 0-modules. Moreover,
T 0=I 0 is a ZpŒG��-algebra whose structure morphism ZpŒG��! T 0=I 0 is surjective (see
the text after Definition 7.4). For these reasons, we regard (7.3) as a sequence over ZpŒG��.

Recall that† and†0 are chosen as in Setting 6.1. Now our goal, Theorem 1.10, follows
from the following two theorems whose proof is given in the subsequent subsections.

Theorem 7.13. There exist surjective homomorphisms ˛, ˇ, and  which fit in a commut-
ative diagram

0 // Cl†
0;��1

H
//

˛
����

�
†0;��1

†
//

ˇ
����

L
v2†f

A
��1

v
//


����

0

0 // B0
]

// Bp
]

// B1
]

// 0

over ZpŒG��
�1

, where the upper sequence is the ��1-component of (1.2) and the lower is
the twist of (7.3).

Theorem 7.14. Recall that Ip D
P

p2Sp.F /
Ip � G. Then we have

FittZp ŒG��.Bp/ � .�
]; ıP0badD1

�
�
Ip
/

as ideals of ZpŒG��.

Let us deduce Theorem 1.10 (for ��1 instead of �) from these two theorems. By
Theorems 7.13 and 7.14, we have the first and the last inclusions of

FittZp ŒG���1
�
�
†0;��1

†

�
� FittZp ŒG���1 .Bp

]
/ D FittZp ŒG��.Bp/

]
�
�
�
†0;��1

† ; ıP0badD1
�
��1

Ip

�
in ZpŒG��

�1
. Recall that, by the definition, P0bad D 1 if and only if all the p-adic primes

are ramified in H=F and moreover the decomposition groups are p-groups. Thus the
��1-component of Theorem 1.10 follows.

7.4. The existence of the homomorphisms

In this subsection, we prove Theorem 7.13.

7.4.1. Construction of ˛. Recall that GF (resp. GH ) denotes the absolute Galois group
of F (resp. H ). We define a map � W GF ! B0

]
by

�.�/ D  .�/�1b.�/:

Lemma 7.15. The map � is a cocycle, so we have Œ�� 2 H 1.GF ; B0
]
/.

Proof. Let �; � 0 2 GF . By �.�� 0/ D �.�/�.� 0/, we have

b.�� 0/ D a.�/b.� 0/C b.�/d.� 0/:
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By Lemma 7.8 (1) and "k�1cyc .�/ � 1 .mod �]/, we obtain

b.�� 0/ D b.� 0/C .� 0/b.�/

as elements of B0. This shows �.�� 0/ D �.�/C �1.�/�.� 0/.

Then we obtain the restriction

Œ��jGH 2 H
1.GH ; B0

]
/G D HomG.GH ; B0

]
/:

This cocycle induces the desired homomorphism ˛ as follows.

Proposition 7.16. The restriction Œ��jGH 2 H
1.GH ; B0

]
/ is unramified at any places of

H not lying above a place in †0 D prime.n=P/. Therefore, by class field theory, the
cocycle Œ��jGH induces a homomorphism ˛ W Cl†

0;��1

H ! B0
]
.

Proof. First we show that Œ��jGH is unramified at places not lying above a place in the set
prime.n=Pbad/D †

0 [ prime.P=Pbad/. For any prime l − nP0, since � is unramified at l,
we have b.�/ D 0 for � 2 IFl

, so �.�/ D 0. For any p j P0 and � 2 IFp , since b.�/ 2 B 0

by the very definition of B 0, we have �.�/ D 0. For any p j Pbad, a place pH of H lying
above p, and � 2 IHpH

� IFp , we have by Lemma 7.8 (3)

 .�/�1b.�/ �
�
�p.�/

�1
� .�/�1

�
Qp .mod QpI

0/:

Since �p.�/D 1 (by the unramifiedness of �p) and .�/D 1, the right-hand side vanishes.
This shows �.�/ D 0. For any p j P=Pbad and a place pH of H lying above p, we write
U 1HpH

for the principal local unit group of HpH . Then we have� Y
pH jp

U 1HpH

��
'
�
U 1HpH

˝ ZpŒG=Gp�
��
D 0

since the decomposition group Gp � G is not a p-group and � is a faithful character.

This implies that H 1.IHpH
; B0

]
/G D HomG.IHpH

; B0
]
/ D 0 by local class field theory.

Therefore, Œ��jGH is unramified at each p j P=Pbad. Thus we obtain the proposition.

Lemma 7.17. The homomorphism ˛ is surjective.

Proof. This can be shown in a similar way as [13, Corollary 9.6].

7.4.2. Construction of  . We first note that A�
�1

p D 0 for any p 2 †f n prime.Pbad/ D

prime.P=Pbad/ (see the proof of Lemma 2.17). Therefore, we haveM
p2†f

A�
�1

p D

M
pjPbad

A�
�1

p :

We show a lemma which makes essential use of the definition of B 00 in Definition 7.11.
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Lemma 7.18. Let p j Pbad.

(a) For � 2 IFp , we have �
1 � .�/�1

�
Qp D �.�/

in Bp .

(b) For a lift e'p of the Frobenius, we have�
1 � �Ip .'p/

�1
� .e'p/

�1
�
Qp D �.e'p/

in Bp .

Proof. For any � 2 GFp , we have by Lemma 7.8 (3)�
�p.�/

�1
� .�/�1

�
Qp D  .�/

�1b.�/ D �.�/

in Bp . Then claim (a) immediately follows since �p.�/ D 1. Claim (b) also follows, since
�p.e'p/ D Up and .1 � �Ip .'p/

�1 � U�1p /Qp D 0 in Bp by the definition of B 00.

For each p j P, recall that the ideal Jp of ZŒG� defined in Section 2.7 is generated by
 .�/� 1 for � 2 IFp and  .e'p/� 1C �Ip .e'p/ for any lift e'p 2 GFp of the Frobenius.

For p j Pbad, by Lemma 7.18, the element �Qp is annihilated by Jp in B1
]
. Therefore,

we can define a homomorphism

 W
M

pjPbad

A�
�1

p ! B1
]

by sending 1 at p j Pbad to �Qp. Then  is clearly surjective.

7.4.3. Construction of ˇ. Recall that in Section 7.2, we fixed a lift � 2 GF of the
complex conjugation c 2 Gal.H=F / that satisfies a certain condition. We take Qc D � in
Lemma 2.20 and define a cocycle � accordingly. We first observe a lemma.

Lemma 7.19. We have
˛ ı � D �

as maps from GF to B0
]
.

Proof. Recall the class Œ�� 2 H 1.GF ;Cl†
0;�

H / in Definition 2.19. Then we have

˛�Œ�� D Œ�� 2 H
1.GF ; B0

]
/;

since both elements are sent by the restriction to the same class in H 1.GH ; B0
]
/G . This

means that there exists b0 2 B0 such that

˛
�
�.�/

�
� �.�/ D  .�/�1b0 � b0

for any � 2 GF . Let us put � D � in this formula. Since �.�/ D 0, �.�/ D 0, and
 .�/ D �1, we then obtain 0 D �2b0, so b0 D 0. This completes the proof of the
lemma.
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As in Definition 2.18, let

��
�1

2 Ext1
Zp ŒG��

�1

� M
pjPbad

A�
�1

p ;Cl†
0;��1

H

�
denote the extension class represented by the upper sequence in the diagram in The-
orem 7.13. Let us write �� D ��

�1
. Similarly, let

�B 2 Ext1
Zp ŒG��

�1

�
B1

]
; B0

]�
denote the extension class represented by the lower sequence.

Then, for the construction of ˇ, it is enough to show the following (cf. [13, The-
orem 9.8]).

Proposition 7.20. We have

˛��� D 
��B 2 Ext1

Zp ŒG��
�1

� M
pjPbad

A�
�1

p ; B0
]
�
:

Proof. We fix p j Pbad and study the p-components ��;p and .��B/p of �� and ��B .
We will always work over ZpŒG��

�1
. It is convenient to write a commutative diagram over

Hom.J �
�1

p ;Cl†
0;��1

H /
ıCl // //

˛�
��

Ext1.A�
�1

p ;Cl†
0;��1

H /

˛�
��

Hom.J �
�1

p ; B0
]
/

ıB

// // Ext1.A�
�1

p ; B0
]
/;

where the horizontal arrows are induced by (2.21), so ıCl is nothing but the��1-component
of ıp in (2.22). By Proposition 2.21, we have an element

e��;p 2 Hom
�
J �
�1

p ;Cl†
0;��1

H

�
such that ıCl.e��;p/ D ��;p and that the properties below labeled (b) and (c) hold. Let

˛�e��;p 2Hom.J �
�1

p ;B0
]
/ be the push of e��;p. Then, by the above commutative diagram,

the following hold.

(a) We have ıB.˛�e��;p/ D ˛���;p.

(b) For any � 2 IFp , we have .˛�e��;p/. .�/ � 1/ D ˛.�.�//.
(c) For any lift e'p 2 GFp of 'p, we have

.˛�e��;p/
�
 .e'p/ � 1C �Ip .e'p/

�
D ˛

�
�.e'p/

�
:

On the other hand, the element .��B/p 2Ext1.A�
�1

p ;B0
]
/ is described as follows. Let

us consider the homomorphism ZpŒG��
�1
! Bp

]
which sends 1 to �Qp, which induces

a homomorphism .A��B/p W J �
�1

p ! B0
]
. Then the following hold.
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(a’) We have ıB..A��B/p/ D .��B/p by tracing the maps involved in the snake
lemma.

(b’) For � 2 IFp , we have .A��B/p. .�/ � 1/ D �.�/ by Lemma 7.18 (a).

(c’) For any lift e'p 2GFp of 'p, we have .A��B/p. .e'p/� 1C �Ip .e'p//D �.e'p/

by Lemma 7.18 (b).

By Lemma 7.19 and comparing the properties (b)(c) with (b’)(c’), we have

˛�e��;p D .A��B/p:
Therefore, by the properties (a) and (a’), we obtain

˛���;p D .
��B/p;

as desired.

7.5. Computation of the Fitting ideal

In this subsection, we prove Theorem 7.14.
We put r D # prime.P0/ � 0 and label the elements as prime.P0/ D ¹p01; : : : ;p

0
rº. For

each 1 � j � r , let us fix �j 2 GFp0
j

which is a lift of the arithmetic Frobenius. Put

cj D  .�j /"
1�k
cyc .�

�1
j /b.��1j / 2 B0 � B:

By Lemma 7.8 (3), there exists an element xj 2 I 0 such that

cj D
�
Up0j
� .�j /C xj

�
Qp0j

: (7.4)

We also put s D # prime.Pbad/ and label prime.Pbad/ D ¹p1; : : : ;psº.
Let b1; : : : ; bn 2 B be a set of generator of B as a ZpŒG��-module such that b1; : : : ; bn

are non-zero-divisor in KE (we may assume this as in [13, Lemma 9.9]). We use the
classes of

c1; : : : ; cr ; b1; : : : ; bn;Qp1 ; : : : ;Qps

as a generator of Bp over ZpŒG��. Compared to the work [13, Section 9.5], the additional
elements Qpl for 1 � l � s are a novel ingredient. We introduce them in order to man-
age the contribution of the additional module B 00 in the definition of Bp . They make the
computation even harder.

Let M 2MrCnCs.ZpŒG��/ be any square matrix which is a relation of the generators
in Bp , that is, if we write

M D .W j Z j U/ D
�
.wij /i;1�j�r j .zik/i;1�k�n j .uil /i;1�l�s

�
;

we have
rX

jD1

wij cj C

nX
kD1

zikbk C

sX
lD1

uilQpl 2 I
0B C �]B C B 0 C B 00 (7.5)
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for each 1� i � r C nC s. Since the Fitting ideal FittZp ŒG��.Bp/ is generated by det.M/2

ZpŒG�� for M with this property, in order to prove Theorem 7.14, it is enough to show

det.M/ 2 .�]; ıP0badD1
�
�
Ip
/: (7.6)

Lemma 7.21. There exists a family of elements yik ; ˛il 2 ZpŒG�� such that, if we define
an element t 2 zT by

t D

rY
jD1

�
Up0j
� .p0j /

�
� det

�
.wij /i;j j .zik � �

]yik/i;k j
�
uil � ˛il

�
1 � �Ipl

 .pl /
�1
� U�1pl

��
i;l

�
;

then we have
tFk. / � 0

�
mod . Qx�]/

�
:

Proof. We have B 0 �
Pr
jD1Qp0j

I 0 since, for any p j P0 and � 2 IFp , Lemma 7.8 (3)
implies b.�/ 2 QpI

0. Therefore, by (7.5), for each i , we have

rX
jD1

wij cj C

nX
kD1

zikbk C

sX
lD1

uilQpl

D

rX
jD1

Qp0j
x00ij C

nX
kD1

.x0ik C �
]yik/bk C

sX
lD1

til
�
1 � �Ipl

 .pl /
�1
� U�1pl

�
Qpl

for some x00ij 2 I
0, x0

ik
2 I 0, yik 2 ZpŒG��, and til 2 T 0. Using (7.4), we rewrite this

formula as

rX
jD1

�
wij

�
Up0j
� .p0j /C xj

�
� x00ij

�
Qp0j
C

nX
kD1

.zik � x
0
ik � �

]yik/bk

C

sX
lD1

�
uil � til

�
1 � �Ipl

 .pl /
�1
� U�1pl

��
Qpl D 0: (7.7)

We define a matrix M 0 2MrCnCs.zT / by

M 0 D .W 0 j Z0 j U 0/

with

W 0 D
�
wij

�
Up0j
� .p0j /C xj

�
� x00ij

�
i;1�j�r

;

Z0 D .zik � x
0
ik � �

]yik/i;1�k�n;

U 0 D
�
uil � til

�
1 � �Ipl

 .pl /
�1
� U�1pl

��
i;1�l�s

:
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Then by the formula (7.7), since b1; : : : ; bn are non-zero-divisors, we have det.M 0/ D 0.
In particular, we have det.'.M 0// D '.det.M 0// D 0 in W . Since xj ; x0ik ; x

00
ij are sent to

zero by ', we see that '.M 0/ is equal to��
wij

�
'.Up0j

/ � .p0j /
��
i;j
j .zik � �

]yik/i;k j�
uil � '.til /

�
1 � �Ipl

 .pl /
�1
� '.Upl /

�1
��
i;l

�
:

Since the structure morphism ZpŒG�� ! T 0=I 0 is surjective, we can choose an ele-
ment ˛il 2 ZpŒG�� such that til � ˛il 2 I 0. We then define an element t 2 zT by the
formula in the statement. Then we have '.t/ D det.'.M 0// D 0. By the definition of ',
we have '.t/ D 0 in W if and only if tFk. / � 0 .mod . Qx�]//, so the lemma holds.

We keep the notation in Lemma 7.21. For simplicity, we write

Z D
�
.wij /i;j j .zik � �

]yik/i;k
�
; (7.8)

so

t D

rY
jD1

�
Up0j
� .p0j /

�
� det

�
Z j

�
uil � ˛il

�
1 � �Ipl

 .pl /
�1
� U�1pl

��
i;l

�
:

In order to utilize Lemma 7.21, we have to investigate tFk. /. By (6.1), we are led to
study t xW H=F

1 . n; 1/� and t�PW
HP=F

k
. n=P; 1p/� in case Pbad D P. The former will

be studied in Proposition 7.24, using Lemma 7.23. Actually, we need only the Fourier
coefficients at square-free ideals a with a j Pbad. On the other hand, as written in Sec-
tion 1.3, we cannot manage the contribution of the latter completely, so we will deal with
only when the latter vanishes in some sense. The precise statement is the following.

Lemma 7.22. Let us take t 2 zT as in Lemma 7.21. Then we have

c
�
a; t xW

H=F
1 . n; 1/

�
�
� 0

�
mod .�]; ıP0badD1

�
�
Ip
/
�

for any ideal a.

Proof. By tFk. / � 0 .mod . Qx�]// and (6.1), we have

Qxt xW
H=F
1 . n; 1/

�
� ıPbadDP�PtW

HP=F

k
. n=P; 1p/

�
� 0

�
mod . Qx�]/

�
:

By Proposition 5.15 (2), W HP=F

k
. n=P; 1p/� is annihilated by Up0j

�  .p0j / for 1 �
j � r (recall that these operators appear in the definition of t ). Therefore, the contribution
of W HP=F

k
. n=P; 1p/� vanishes unless Pbad D P and r D 0. The last two conditions

simultaneously hold if and only if P0bad D 1. Even if P0bad D 1, �P is divisible by �Ip , and

also recall that the non-constant terms of tW HP=F

k
. n=P;1p/� are all integral. Therefore,

in any case, we have

c
�
a; Qxt xW

H=F
1 . n; 1/

�
�
� 0

�
mod . Qx�]; ıP0badD1

�
�
Ip
/
�
:

The lemma follows from this.
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Lemma 7.23. For a square-free ideal a j Pbad, the following are true.

(a) We have

c
�
a; xW

H=F
1 . nP0 ; 1/

�
�
D

Y
pjPbad

�
1C �Ip

�
1C ıpja .p/

��
:

(b) For a divisor P0kPbad, we have

c
�
a;
Y
pjP0

�
1 � �Ip .p/

�1
� U�1p

�
xW
H=F
1 . nP0 ; 1/

�
�

D c
�
a; xW

H=F
1 . nP0 ; 1/

�
�
�

Y
pjP0

C a
p ;

where, for p j Pbad, we put

C a
p D �Ip

�
1 � #Ip .p/

�1
� .p/�1

� 1C ıpja .p/

1C #Ip

�
1C ıpja .p/

� :
Proof. Recall that

xW
H=F
1 . nP0 ; 1/

�
D

X
QkPbad

�QW
HQ=F
1 . nP0=Q; 1/

�:

(a) We decompose Pbad D P1P2 so that

prime.P1/ � prime.a/; prime.P2/ \ prime.a/ D ;:

For each QkPbad, we decompose QDQ1Q2 correspondingly. We first compute the term
c.a; W

HQ=F
1 . nP0=Q; 1/�/ by the formula in Definition 5.8. Since a j p, by the formula

of the level raising operators, only m D 1 contributes to the sum, so

c
�
a; W

HQ=F
1 . nP0=Q; 1/

�
�
D c

�
a; E

HQ=F
1 . nP0=Q; 1/

�
�
D

X
rja

 nP0=Q

�a

r

�
D

X
rj.a;Q/

 .r/ D
Y

pjQ1

�
1C .p/

�
:

By taking the sum with respect to QkPbad, we obtain

c
�
a; xW

H=F
1 . nP0 ; 1/

�
�
D

X
QkPbad

�Qc
�
a; W

HQ=F
1 . nP0=Q; 1/

�
�

D

X
Q1kP1

X
Q2kP2

�Q1
�Q2

Y
pjQ1

�
1C .p/

�
D

Y
pjP1

�
1C �Ip

�
1C .p/

�� Y
pjP2

.1C �Ip/:
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(b) By Proposition 5.15 (2), for each p j P0 and QkPbad, we have

UpW
HQ=F
1 . nP0=Q;1/

�
D nP0=Q.p/W

HQ=F
1 . nP0=Q;1/

�
CW

HQ=F
1 . pnP0=Q;1/

�

and
UpW

HQ=F
1 . pnP0=Q; 1/

�
D W

HQ=F
1 . pnP0=Q; 1/

�:

Note that  nP0=Q.p/ D ıpjQ .p/. Then these formulas imply

U�1p W
HQ=F
1 . nP0=Q; 1/

�

D

8<:W
HQ=F
1 . nP0=Q; 1/� .p −Q/

 .p/�1
�
W
HQ=F
1 . nP0=Q; 1/� �W

HQ=F
1 . pnP0=Q; 1/�

�
.p jQ/:

Then, for each p j P0, we have�
1 � �Ip .p/

�1
� U�1p

� X
QkPbad

�QW
HQ=F
1 . nP0=Q; 1/

�

D

X
QkPbad;pjQ

�Q

��
1 � �Ip .p/

�1
� .p/�1

�
W
HQ=F
1 . nP0=Q; 1/

�

C .p/�1W
HQ=F
1 . pnP0=Q; 1/

�
�

C

X
QkPbad;p−Q

�Q

�
� �Ip .p/

�1W
HQ=F
1 . nP0=Q; 1/

�
�
:

Several terms in this expression cancel each other, and we obtain

D

X
QkPbad;pjQ

�Q

�
1 � �Ip .p/

�1
� .p/�1

�
W
HQ=F
1 . nP0=Q; 1/

�

D �Ip

�
1 � #Ip .p/

�1
� .p/�1

� X
QkPbad;p−Q

�QW
Hpdp Q=F
1 . nP0=pdp Q; 1/

�:

Here, we write dp D ordp.P/, so pdpQkP for QkP with p −Q.
By similar computation, we can inductively show� Y

pjP0

�
1 � �Ip .p/

�1
� U�1p

��
xW
H=F
1 . nP0 ; 1/

�

D

�Y
pjP0

�Ip

�
1 � #Ip .p/

�1
� .p/�1

�� X
QkPbad;.Q;P0/D1

�QW
HP0Q=F
1 . nP0=P0Q; 1/

�:

Let us decompose Pbad D P0P1P2 so that

prime.P1/ � prime.a/; prime.P2/ \ prime.a/ D ;:
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For each QkPbad with .Q;P0/ D 1, we decompose Q D Q1Q2 correspondingly. Then
as in (a) we have

c
�
a; W

HP0Q=F
1 . nP0=P0Q; 1/

�
�
D

Y
pja;pjP0Q

�
1C .p/

�
D

Y
pjP0;pja

�
1C .p/

� Y
pjQ1

�
1C .p/

�
:

Therefore,

c
�
a;
� Y

pjP0

�Ip

� X
QkPbad;.Q;P0/D1

�QW
HP0Q=F
1 . nP0=P0Q; 1/

�
�

D

Y
pjP0

�Ip

X
QkPbad;.Q;P0/D1

�Q

Y
pjP0;pja

�
1C .p/

� Y
pjQ1

�
1C .p/

�
D

Y
pjP0;p−a

�Ip

Y
pjP0;pja

�Ip

�
1C .p/

� X
Q1kP1

X
Q2kP2

�Q1
�Q2

Y
pjQ1

�
1C .p/

�
D

Y
pjP0;p−a

�Ip

Y
pjP0;pja

�Ip

�
1C .p/

� Y
pjP1

�
1C �Ip

�
1C .p/

�� Y
pjP2

.1C �Ip/

D c
�
a; xW

H=F
1 . nP0 ; 1/

�
�
�

Y
pjP0;pja

�Ip

1C .p/

1C #Ip

�
1C .p/

� � Y
pjP0;p−a

�Ip

1

1C #Ip
:

The last equality follows from (a). Thus we have claim (b).

Proposition 7.24. For a square-free ideal a j Pbad, we have

c
�
a; t xW

H=F
1 . n; 1/

�
�
D det

�
Z j .va

il /i;l
�
;

where we put

va
il D

�
1C �Ipl

�
1C ıpl ja .pl /

��
uil

� ˛il � �Ipl

�
1 � #Ipl .pl /

�1
� .pl /

�1
�
�
�
1C ıpl ja .pl /

�
:

Proof. By Proposition 5.16 (2), we have� Y
p0jP0

�
Up0 � .p

0/
��
W1

H=F
. n; 1/

�
D W1

H=F
. nP0 ; 1/

�;

so

tW1
H=F

. n;1/
�
D det

�
Z j

�
uil � ˛il

�
1� �Ipl

 .pl /
�1
�U�1pl

��
i;l

�
�W1

H=F
. nP0 ;1/

�:

By Lemma 7.23 (b) and considering the expansion of the determinant, we have

c
�
a; t xW

H=F
1 . n; 1/

�
�
D c

�
a; xW

H=F
1 . nP0 ; 1/

�
� det

�
Z j .uil � ˛ilC

a
pl
/i;l
�
:
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By Lemma 7.23 (a), this is equal to

det
�
Z j

��
1C �Ipl

�
1C ıpl ja .pl /

��
.uil � ˛ilC

a
pl
/
�
i;l

�
:

Now it is easy to see�
1C �Ipl

�
1C ıpl ja .pl /

��
.uil � ˛ilC

a
pl
/ D va

il :

Thus we get the proposition.

Now we are ready to finish the proof of Theorem 7.14.

Proof of Theorem 7.14. Recall that our goal is to show (7.6), which is by (7.8) equivalent
to

det
�
Z j .uil /i;l

�
� 0

�
mod .�]; ıP0badD1

�
�
Ip
/
�
: (7.9)

For each square-free ideal a jPbad, let us consider va
il
2ZpŒG�� defined in Proposition

7.24. For any 0 � l 0 � l and any a j pl 0C1 � � � pl , we shall show

det
�
Z j .ui;1; : : : ; ui;l 0 ; v

a
i;l 0C1; : : : ; v

a
i;l /i

�
� 0

�
mod .�]; ıP0badD1

�
�
Ip
/
�

(7.10)

by induction on l 0. When l 0 D 0, claim (7.10) follows immediately from Lemma 7.22 and
Proposition 7.24. When l 0 D l , claim (7.10) is nothing but the goal (7.9).

Let 1� l 0 � l and let a j pl 0C1 � � �pl . We choose a lift A .pl 0/ 2Gal.H=F / of .pl 0/ 2
Gal.Hpl 0 =F /. Then by the induction hypothesis, we have�
1C A .pl 0/

�
det

�
Z j .ui;1; : : : ; ui;l 0�1; v

a
i;l 0 ; v

a
i;l 0C1; : : : ; v

a
i;l /i

�
� det

�
Z j .ui;1; : : : ; ui;l 0�1; v

pl 0a

i;l 0
; v

pl 0a

i;l 0C1
; : : : ; v

pl 0a

i;l
/i
�
� 0

�
mod .�]; ıP0badD1

�
�
Ip
/
�
:

By direct computation, we have�
1C A .pl 0/

�
va
i;l 0 � v

pl 0a

i;l 0
D A .pl 0/ui;l 0 :

Therefore, the left-hand side is

A .pl 0/ � det
�
Z j .ui;1; : : : ; ui;l 0�1; ui;l 0 ; v

a
i;l 0C1; : : : ; v

a
i;l /i

�
:

This proves (7.10) by induction.
Thus we have proved (7.10), so in particular (7.9). This completes the proof of The-

orem 7.14.

This completes the proof of Theorem 1.10. By the discussion in Section 4.3, this also
completes the proof of Theorems 1.1 and 1.8.
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