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Long-time asymptotics of solutions to the Keller–Rubinow
model for Liesegang rings in the fast reaction limit

Zymantas Darbenas, Rein van der Hout, and Marcel Oliver

Abstract. We consider the Keller–Rubinow model for Liesegang rings in one spatial dimension in
the fast reaction limit as introduced by Hilhorst, van der Hout, Mimura, and Ohnishi in 2007. Numer-
ical evidence suggests that solutions to this model converge, independent of the initial concentration,
to a universal profile for large times in parabolic similarity coordinates. For the concentration func-
tion, the notion of convergence appears to be similar to attraction to a stable equilibrium point in
phase space. The reaction term, however, is discontinuous so that it can only converge in a much
weaker, averaged sense. This also means that most of the traditional analytical tools for studying the
long-time behavior fail on this problem.

In this paper we identify the candidate limit profile as the solution of a certain one-dimensional
boundary value problem which can be solved explicitly. We distinguish two nontrivial regimes.
In the first, the transitional regime, precipitation is restricted to a bounded region in space. We
prove that the concentration converges to a single asymptotic profile. In the second, the supercritical
regime, we show that the concentration converges to one of a one-parameter family of asymptotic
profiles, selected by a solvability condition for the one-dimensional boundary value problem. Here,
our convergence result is only conditional: we prove that if convergence happens, either pointwise
for the concentration or in an averaged sense for the precipitation function, then the other field
converges likewise; convergence in concentration is uniform, and the asymptotic profile is indeed
the profile selected by the solvability condition. A careful numerical study suggests that the actual
behavior of the equation is indeed the one suggested by the theorem.

1. Introduction

Liesegang rings appear as regular patterns in many chemical precipitation reactions. Their
discovery is usually attributed to the German chemist Raphael Liesegang who, in 1896,
observed the emergence of concentric rings of silver dichromate precipitate in a gel of
potassium dichromate when seeded with a drop of silver nitrate solution. Related precipi-
tation patterns were in fact observed even earlier; see [15] for a historical perspective.

From the modeling perspective, there are two competing points of view. One is a “post-
nucleation” approach in which the patterns emerge via competitive growth of precipitation
germs ([25]), the other a “pre-nucleation” approach, a sophisticated modification of the
post-nucleation approach, suggested by Keller and Rubinow ([21]), which is the starting
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point of the present work. The recent survey [10] gives a comprehensive summary of the
most important published research on both approaches, including numerical and theo-
retical comparisons. A direct and detailed comparison between the two theories and the
history behind them can be found in [22].

The Keller–Rubinow model is based on the chain of chemical reactions

AC B ! C ! D

with associated reaction–diffusion equations

at D �a�a � kab; (1a)

bt D �b�b � kab; (1b)

ct D �c�c C kab � P.c; d/; (1c)

dt D P.c; d/; (1d)

where the rate of the precipitation reaction is described by the function

P.c; d/ D

´
0 if d D 0 and c < c>;

�.c � c?/C if d > 0 or c � c>:
(2)

Without loss of generality, we may assume that the precipitation rate constant � D 1; this
choice is assumed in the remainder of the paper. The precipitation function P expresses
that precipitation starts only once the concentration c exceeds a supersaturation threshold
c> and continues for as long as c exceeds the saturation threshold c?.

Using [18–20], Hilhorst et al. ([16,17]) studied the case where �b D 0, c? D 0, and the
“fast reaction limit” where k !1. To simplify matters, they took as the spatial domain
the positive half-axis. This is precisely the setting we will consider in our work and which
we refer to as the HHMO-model. Writing u in place of c and choosing dimensions in
which �c D 1, we can state the model as

ut D uxx C
˛ˇ

2
p
t
ı.x � ˛

p
t / � pŒx; t Iu�u; (3a)

ux.0; t/ D 0 for t � 0; (3b)

u.x; 0/ D 0 for x > 0; (3c)

where the precipitation function pŒx; t Iu� depends on x, t , and nonlocally on u via

pŒx; t Iu� D H

�Z t

0

.u.x; �/ � u�/C d�
�
: (4)

Here,H denotes the Heaviside function with the convention thatH.0/D 0 and u� denotes
the supersaturation concentration.

Hilhorst et al. ([16]) further introduce the notion of a weak solution to (3). Modulo
technical details, their approach is to seek pairs .u; p/ that satisfy (3a) integrated against
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a suitable test function such that

p.x; t/ 2 H

�Z t

0

.u.x; �/ � u�/C d�
�
; (5)

where H now denotes the Heaviside graph

H.y/ 2

8̂̂<̂
:̂
0 when y < 0;

Œ0; 1� when y D 0;

1 when y > 0:

(6)

Additionally, they require that p.x; t/ takes the value 0 whenever u.x; s/ is strictly less
than the threshold u� for all s 2 Œ0; t �. This can be stated as

p.x; t/ 2

8̂̂̂<̂
ˆ̂:
0 if sups2Œ0;t� u.x; s/ < u

�;

Œ0; 1� if sups2Œ0;t� u.x; s/ D u
�;

1 if sups2Œ0;t� u.x; s/ > u
�:

(7)

The question of uniqueness of weak solutions is open in general. However, in [7] we
prove short-time uniqueness and show that solutions remain unique so long as a certain
transversality condition is satisfied. Further, [17] pose the question whether the precipi-
tation function p is binary. Rigorous results on a simplified system as well as numerics
indicate that solutions with a binary precipitation function only exist over a finite interval
of time ([6, 8, 9]).

In this paper, we provide evidence that the long-time behavior of solutions to the
HHMO-model is determined by an asymptotic profile that depends only on the parameters
of the equation. Heuristically, the mechanism of convergence is the following: as soon as
the concentration exceeds the precipitation threshold u�, the reaction ignites and reduces
the reactant concentration. A continuing reaction burns up enough fuel in its neighbor-
hood to eventually pull the concentration below the threshold everywhere, so the reaction
region cannot grow further. Eventually, the source location will move sufficiently far from
the active reaction regions that the concentration grows again and the reaction threshold
may be surpassed again. As the source loses strength with time, the amplitudes of the
concentration around the source will decrease with time, getting ever closer to the critical
concentration. In fact, both numerical studies and analytical results on a simplified model
suggest that convergence of concentration to the critical value happens within a bounded
region of space-time ([9]), so that the process of equilibrization is much more rapid than
the typical approach to a stable equilibrium point in a smooth dynamical system.

In x–t coordinates, the source point is moving. To analyze the time-asymptotic behav-
ior, we must therefore change into parabolic similarity coordinates, here defined as � D
x=
p
t and s D

p
t . We further write u.x; t/ D v.x=

p
t ;
p
t / and pŒx; t Iu� D qŒ�; sI v� to

make transparent which coordinate system is used at any point in the paper. In similarity
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coordinates, the ı-source in (3) is stationary at � D ˛ but decreases in strength as time
progresses. In what follows, we look for asymptotic profiles where

lim
s!1

v.˛; s/ D u�: (8)

In the classical setting of smooth dynamical systems, the limit function would correspond
to a stable equilibrium of the system in �–s coordinates. Here, stationarity is incompat-
ible with the ignition condition (7). We thus impose that p takes a form such that the
precipitation term loses its s-dependence. This requirement can only be satisfied when
p.x; t/ D x�2H.˛2t � x2/ for some nonnegative constant  , so the self-similar precip-
itation function takes values outside Œ0; 1�; in fact, it is not even bounded. Nonetheless,
for each  � 0, we can solve the stationary problem to obtain a profile ˆ , which, sub-
ject to suitable conditions, is uniquely determined by the condition that ˆ .˛/ D u�,
so the profile is consistent with the conjectured limit (8). Now the following picture
emerges.

With varying source strength (in the following, we will actually think of varying u� for
given values of ˛ and ˇ), there are three distinct open regimes. When the source is insuffi-
cient to ignite the reaction at all (“subcritical regime”), the dynamics remains trivial. When
the source strength is larger but not very large (“transitional regime”), some reaction will
be triggered initially, but eventually diffusion overwhelms the source so that no further
ignition occurs. The scenario of asymptotic equilibrization cannot be maintained, so that
(8) does not hold true. We find that solutions anywhere in the transitional regime will
converge to a universal profile ˆ0. When the source strength is large enough so that con-
tinuing reignition is always possible (“supercritical regime”), we identify a one-parameter
family of profiles ˆ which determine the long-time asymptotics of the concentration; in
particular, (8) holds true.

Throughout the paper, we use the following notion of convergence. For the concentra-
tion, we look at uniform convergence in �–s coordinates, i.e.,

lim
s!1

sup
��0

jv.�; s/ �ˆ .�/j D lim
t!1

sup
��0

ju.�
p
t ; t / �ˆ .�/j D 0: (9)

For brevity, we will say that u converges uniformly to ˆ ; the sense of convergence is
always understood as defined here.

For the precipitation function, the notion of convergence is more subtle. For our main
results, we work with precipitation functions that satisfy the following condition:

(P) There exists a measurable function p� such that for a.e. x 2 RC,

p.x; t/ D p�.x/ for t > x2=˛2: (10)

Condition (P) expresses that there is no ignition of precipitation in the region � < ˛.
When the concentration passes the threshold transversally, this condition is always sat-
isfied. When the concentration reaches, but does not exceed the threshold on sets of
positive measure, weak solutions in the sense of [17] may violate (P). Thus, condition (P)
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provides a selection criterion to distinguish physical from unphysical weak solutions. In
[7], we show that a minor modification of the construction in [17] proves existence of
weak solutions that satisfy condition (P). Thus, in hindsight, it would be most natural
to incorporate (P) into the definition of weak solutions from the start. However, to remain
closer to the prior literature and also to make more transparent which parts of the argument
depend on (P), we carry (P) as a separate condition throughout.

Referring to (P), we can define a notion of convergence for the precipitation function;
it is

lim
x!1

x

Z 1
x

p�.�/ d� D : (11)

This means that, in an integral sense, the precipitation function along the line � D ˛ has
the same long-time asymptotics as the precipitation function of the self-similar profile,
where p�.x/ D =x2.

The results in this paper are the following. First, we derive an explicit expression for
ˆ and prove necessary and sufficient conditions under which it is a solution to the sta-
tionary problem with self-similar precipitation function. Second, we present numerical
evidence that the solution indeed converges to the stationary profile as described. Third,
we prove that ˆ0 is the stationary profile in the transitional regime. Fourth, in the super-
critical regime, we can only give a partial result, which states the following: If there is an
asymptotic profile for the HHMO-solution, it must beˆ and the precipitation function p
is asymptotic to the self-similar profile in the sense of (11). Vice versa, if the precipitation
function is asymptotic to the self-similar profile, then it also satisfies

lim
x!1

1

x

Z x

0

�2p�.�/ d� D  (12)

and the concentration u converges uniformly to the profile ˆ .
The main remaining open problem is the proof of unconditional convergence to the

self-similar profile. Part of the difficulty is that the asymptotic behavior of the precip-
itation function described above is nonlocal in time. Thus, it is not clear how to pass
from convergence on a subsequence (for example, convergence of the time average of the
concentration is easily obtained via a standard compactness argument) to convergence in
general. There is a second, more general open question. The derivation of the only com-
patible asymptotic profile might generalize to a procedure for coarse-graining dynamical
systems whose microscopic dynamics consists of strongly equilibrizing switches as we
find in the HHMO-model for Liesegang rings. A precise understanding of the necessary
conditions, however, remains wide open.

Let us explain how our work relates to the extensive literature on relay hysteresis. The
precipitation condition can be seen as a nonideal relay with switching levels 0 and u�. Its
generalization to nonbinary values for p in (6) or (7) can be seen as a completed relay in
the sense of Visintin ([27, 28]); see also Remark 2. Local well-posedness of a reaction–
diffusion equation with a nonideal relay reaction term was proved by Gurevich et al. ([12])
subject to a transversality condition on the initial data. If this condition is violated, the
solution may be continued only in the sense of a completed relay, where existence of
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solutions is shown in [2, 27], but uniqueness is generally open. Gurevich and Tikhomirov
([13, 14]) show that a spatially discrete reaction–diffusion system with relay hysteresis
exhibits “rattling”, grid-scale patterns of the relay state which are only stable in the sense
of a density function. The question of optimal regularity of solutions to reaction–diffusion
models with relay hysteresis is discussed in [3]. For an overview of recent developments
in the field, see [5, 29].

The study of the HHMO-model as introduced above shares many features with the
results in the references cited above; it is also marred by the same difficulties. How-
ever, there is also a key difference to the systems studied elsewhere: the source term in
the HHMO-model is local and, reflecting its origin through a fast-reaction limit, follows
parabolically self-similar scaling. Thus, the nontrivial dynamics comes from the inter-
play of the parabolic scaling in the forcing and the memory of the reaction term which is
attached to locations x in physical space. The parabolic scaling also necessitates study-
ing the system on an unbounded domain, even though, in practice, the concentration is
rapidly decaying and can be well approximated on bounded domains; see Section 5 and
Appendix A below. The HHMO-model has enough symmetries that a study of the long-
time behavior of the solution is possible; we are not aware of corresponding results for
other reaction–diffusion equations with relay hysteresis.

The paper is structured as follows. In the preliminary Section 2, we rewrite the equa-
tions in standard parabolic similarity variables and derive the similarity solution without
precipitation, which is a prerequisite for defining the notion of weak solution and is also
used as a supersolution in several proofs. In Section 3 we recall the concept of weak
solution from [17] and prove several elementary properties which follow directly from
the definition. In Section 4 we introduce the self-similar precipitation function, derive the
stationary solution in similarity variables, and prove necessary and sufficient conditions
for their existence under the required boundary conditions. Section 5 describes the phe-
nomenology of solutions to the HHMO-model by numerical simulations which confirm
the picture outlined above; details of the numerical code are given in the appendix. The
final two sections are devoted to proving rigorous results on the long-time asymptotics. In
Section 6 we study the long-time dynamics of a linear auxiliary problem, and in Section 7
we use the results on the auxiliary problem to state and prove our main theorems on the
long-time behavior of the HHMO-model.

2. Self-similar solution without precipitation

For the reader’s convenience, we recall the derivation of the self-similar solution to the
model without precipitation which was introduced in [16,17] and is required to define the
notion of weak solution for the full model in the next section.

Writing (3) in terms of the parabolic similarity coordinates �D x=
p
t and sD

p
t , and

setting u.x; t/ D v.x=
p
t ;
p
t /, pŒx; t I u� D qŒ�; sI v� � q, and ı.� � ˛/ D ı˛.�/ � ı˛ ,
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we obtain

svs � �v� D 2v�� C ˛ˇı˛ � 2s
2qŒ�; sI v�v; (13a)

v�.0; s/ D 0 for s > 0: (13b)

Since the change of variables is singular at s D 0, we cannot translate the initial condition
(3c) into �–s coordinates. We will augment system (13) with suitable conditions when
necessary.

Self-similar solutions are steady states in �–s coordinates. We first consider the case
where pD 0 or qD 0, respectively. Then (13) reduces to the ordinary differential equation

‰00 C
�

2
‰0 C

˛ˇ

2
ı.� � ˛/ D 0; (14a)

‰0.0/ D 0; (14b)

‰.�/! 0 as �!1: (14c)

Condition (14c) encodes that we seek solutions where the total amount of reactant is finite.
Note that in the full time-dependent problem, decay of the solution at spatial infinity is
encoded into the initial data and must be shown to propagate in time within an applicable
function space setting.

The integrating factor for (14a) is exp.1
4
�2/, so that by integrating with respect to �

and using (14b) as the initial condition, we find

‰0.�/ D �
˛ˇ

2
e
˛2��2

4 H.� � ˛/: (15)

Another integration, this time on the interval Œ�;1/ using condition (14c), yields

‰.�/ D
˛ˇ

2
e
˛2

4

Z 1
�

e�
�2

4 H.� � ˛/ d�

D
˛ˇ
p
�

2
e
˛2

4 �

´
erfc.˛=2/ if � � ˛;

erfc.�=2/ if � > ˛:
(16)

Translating this result back into x–t coordinates and setting  .x; t/ D ‰.x=
p
t /, we

obtain the self-similar, zero-precipitation solution,

 .x; t/ D

8̂̂<̂
:̂
˛ˇ

2
e
˛2

4

Z 1
˛

e�
�2

4 d� if x � ˛
p
t ;

˛ˇ

2
e
˛2

4

Z 1
x=
p
t

e�
�2

4 d� if x > ˛
p
t :

(17)

3. Weak solutions for the HHMO-model

We start with a rigorous definition of a (weak) solution for the HHMO-model (3). In this
formulation we allow for fractional values of the precipitation function p as a priori we
do not know whether p is binary, or will remain binary for all times.
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For nonnegative integers n and k, and D � R � RC open, we write C.D/ to denote
the set of continuous real-valued functions on D, and

C n;k.D/ D
®
f 2 C.D/ W @

nf
@xn
2 C.D/; @

kf

@tk
2 C.D/

¯
: (18a)

Similarly, we write C.R � Œ0; T �/ to denote continuous real-valued functions on R �
Œ0; T �, and

C n;k.R � Œ0; T �/ D
®
f 2 C.R � Œ0; T �/ W @

nf
@xn
2 C.R � Œ0; T �/;

@kf

@tk
2 C.R � Œ0; T �/

¯
: (18b)

It will be convenient to extend the spatial domain of the HHMO-model to the entire
real line by even reflection. We write out the notation of weak solutions in this sense,
knowing that we can always go back to the positive half-line by restriction.

Definition 1. A weak solution to problem (3) is a pair .u; p/ satisfying

(i) u and p are symmetric in space, i.e., u.x; t/D u.�x; t/ and p.x; t/D p.�x; t/
for all x 2 R and t � 0;

(ii) u �  2 C 1;0.R � Œ0; T �/ \ L1.R � Œ0; T �/ for every T > 0;

(iii) p is measurable and satisfies (7);

(iv) p.x; t/ is nondecreasing in time t for every x 2 R;

(v) the relationZ T

0

Z
R
't .u �  / dy ds D

Z T

0

Z
R
.'x.u �  /x C pu'/ dy ds (19)

holds for every ' 2 C 1;1.R � Œ0; T �/ that vanishes for large values of jxj and
for time t D T .

Remark 1. The regularity class for weak solutions we require here is less strict than the
regularity class assumed by Hilhorst et al. ([17, Equation 12]), who consider solutions of
class

u �  2 C 1C`;
1C`
2 .R � Œ0; T �/ \H 1

loc.R � Œ0; T �/ (20)

for every ` 2 .0; 1/, where C ˛;ˇ denote the usual Hölder spaces; see, e.g., [23]. They
prove existence of a weak solution in this stronger sense. Clearly, every weak solution
in their setting is a solution to our problem. The question of uniqueness is open for both
formulations, but partial results are available ([6, 7]).

Remark 2. The monotonicity condition (iv) is not included in the definition of weak solu-
tions by Hilhorst et al. ([17]). Their construction, however, always preserves monotonicity
so that existence of solutions satisfying this condition is guaranteed. In the following, it is
convenient to assume monotonicity. We note that, due to condition (7), monotonicity only
ever becomes an issue when u grazes, but does not exceed, the precipitation threshold on
sets of positive measure in space-time. We do not know whether such highly degenerate
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solutions exist, but the results in [9] suggest that this might be the case. We also remark
that the definition of a completed relay by Visintin ([27, 28]) includes the requirement of
monotonicity.

To proceed, we introduce some more notation. When u� < ‰.˛/, we write ˛� to
denote the unique solution to

‰.˛�/ D u�; (21)

where ‰ is the precipitation-less solution given by equation (16), and we set

D� D
®
.x; t/ W 0 < ˛�

p
t < x

¯
: (22)

Further, we abbreviate Œf � g�.y; s/D f .y; s/� g.y; s/ and Œfg�.y; s/D f .y; s/g.y; s/.
In the following, we prove a number of properties which are implied by the notion of

weak solution. In these proofs, as well as further on in this paper, we rely on the fact that
we can read (19) as the weak formulation of a linear heat equation of the form

wt � wxx D g.x; t/ (23)

for a given bounded integrable right-hand-side function g. We will write the equations
in their classical form (23) where convenient, with the understanding that they are satis-
fied in the sense of (19). Further, in the functional setting of Definition 1, the solution is
regular enough such that it is unique for fixed g, the Duhamel formula holds true, and,
consequently, the subsolution resp. supersolution principle is applicable. For a detailed
verification of these statement from first principles, see, e.g., [6, Appendix B].

Lemma 2. Any weak solution .u; p/ of (3) satisfies Œu �  �.x; 0/ D 0, 0 < u �  for
t > 0, and p D 0 on D�.

Proof. The inequality u �  is a direct consequence of the subsolution principle. Hence,
u �  < u� on D�, so p D 0 on D�. Now consider the weak solution to

u`t D u
`
xx C

˛ˇ

2
p
t
ı.x � ˛

p
t / � u`; (24a)

u`x.0; t/ D 0 for t > 0; (24b)

u`.x; 0/ D 0 for x > 0; (24c)

which transforms into

.etu`/t D .etu`/xx C et
˛ˇ

2
p
t
ı.x � ˛

p
t /: (25)

As the distribution on the right-hand side is positive, the Duhamel principle implies
that etu` is positive for t > 0, and so is u`. Due to the subsolution principle, we find
u � u` > 0 for t > 0. Finally, since limt!1  .x; t/ D 0 for x > 0 fixed, this implies
Œu �  �.x; 0/ D 0.
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Lemma 3. The precipitation function p is essentially determined by the concentration
field u, i.e., if .u; p1/ and .u; p2/ are weak solutions to (3) on R � Œ0; T �, then p1 D p2
almost everywhere on R � Œ0; T �.

Proof. Taking the difference of (19) with p D p1 and p D p2, we findZ t

0

Z
R
.p1 � p2/u' dx dt D 0 (26)

for every ' 2 C 1;1.R � Œ0; T �/ that vanishes for large values of jxj and time t D T . As
such functions are dense inL2.R� Œ0;T �/, we conclude .p1 �p2/uD 0 a.e. in R� Œ0;T �.
Moreover, u > 0 for t > 0, so that p1 D p2 a.e. in R � Œ0; T �.

Theorem 4 (Weak solutions with subcritical precipitation threshold). When u� > ‰.˛/,
then . ; 0/ is the unique weak solution of (3).

Proof. We know that u �  from Lemma 2. Therefore, the threshold u� will never be
reached. So p D 0 and, due to the uniqueness of weak solutions for linear parabolic equa-
tions, u D  .

The following result shows that, in general, we cannot expect uniqueness of weak
solutions: when the precipitation threshold is marginal, the concentration can remain at
the threshold for large regions of space-time. Within such regions, spontaneous onset of
precipitation is possible on arbitrary subsets, thus a large number of nontrivial weak solu-
tions exist. The precise result is the following.

Theorem 5 (Weak solutions with marginal precipitation threshold). When u� D ‰.˛/,
the set of weak solutions to (3) is equal to the set of pairs .u; p/ such that

(i) p is an even measurable function taking values in Œ0; 1�;

(ii) p.x; t/ is nondecreasing in time t for every x 2 R;

(iii) there exists b > 0 such that p.x; t/ D 0 if .x; t/ … U D Œ�b; b� � Œb2=˛2;1/;

(iv) .u; p/ satisfies the weak form of the equation of motion, i.e., Definition 1 (v)
holds true.

Proof. Assume that .u; p/ is any pair satisfying (i)–(iv). To show that .u; p/ is a weak
solution, we need to verify that it is compatible with condition (7); all other properties
are trivially satisfied by construction. Since u �  � ‰.˛/ D u�, it suffices to prove that
p.x; t/ > 0 implies max�2Œ0;t� u.x; �/D u�. We begin by observing that u.x; t/D .x; t/
for all x 2 R if t 2 Œ0; b2=˛2�. Since, by construction, p.x; t/ > 0 only for .x; t/ 2 U , this
implies

max
t2Œ0;b2=˛2�

u.x; t/ � u.x; x2=˛2/ D  .x; x2=˛2/ D u�: (27)

In other words, .u; p/ is compatible with (7) on U . For .x; t/ … U , p.x; t/ D 0 and (7)
is trivially satisfied. Altogether, this proves that .u; p/ is a weak solution on the whole
domain R �RC.
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Vice versa, assume that .u;p/ is a weak solution. If pD 0 a.e., then uD and (i)–(iv)
are satisfied for any b > 0. Otherwise, define

A.t/ D
®
.x; �/ W � � t and p.x; �/ > 0

¯
; (28)

T D inf
®
t > 0 W m.A.t// > 0

¯
; (29)

where m denotes the two-dimensional Lebesgue measure. By definition, p D 0 a.e. on
R � Œ0; T � so that u D  on R � Œ0; T �. We also note that

m
�®
.x; t/ W t 2 ŒT; T C "� and p.x; t/ > 0

¯�
> 0 (30)

for every " > 0 and that u.x; t/ > 0 for all t > 0. Then for every t > T , by the Duhamel
principle,

u.x; t/ D  .x; t/ �

Z t

0

Z
R
K.y; �/Œpu�.x � y; t � �/ dy d� <  .x; t/ � ‰.˛/; (31)

where K is the standard heat kernel

K.x; t/ D

8̂<̂
:

1
p
4�t

e�
x2

4t if t > 0;

0 if t � 0:
(32)

We first note that T > 0. Indeed, if T were zero, (31) would imply that u.x; t/ < u� for
all x ¤ 0, so that p D 0 a.e., a contradiction. Moreover, taking jxj > ˛

p
T ,

max
t2Œ0;T �

u.x; t/ � max
t2Œ0;T �

 .x; t/ D  .x; T / < ‰.˛/: (33)

Inequalities (31) and (33) imply that p.x; t/ D 0 so that (i)–(iv) are satisfied with b D
˛
p
T > 0.

Remark 3. Theorem 5 illustrates how nonuniqueness of weak solutions arises in the case
of a marginal precipitation threshold. One obvious solution is uD  and p D 0. Solutions
with nonvanishing precipitation can be constructed as follows. Fix any b > 0 and take any
even measurable function p� taking values in Œ0; 1� with suppp� � Œ�b; b�. Set p.x; t/D
p�.x/H.t � b2=˛2/. Then p satisfies (i)–(iii). On the time interval Œ0; b2=˛2�, u D  

satisfies the weak form. For t > b2=˛2, determine u as the weak solution to the linear
parabolic equation (3a) with the given function p. Then, by construction, .u; p/ is a weak
solution in the sense of Definition 1.

Remark 4. Theorem 5 admits more weak solutions than those described in Remark 3.
We note that, in particular, the precipitation condition (7) allows “spontaneous precipita-
tion” even when the maximum concentration has fallen below the precipitation threshold
everywhere, provided the concentration has been at the threshold at earlier times. This
behavior should be considered unphysical and is discarded, for the purposes of this paper,
by imposing condition (P).
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The following result shows that the concentration u is uniformly Lipschitz in x–t
coordinates. It does not imply a uniform Lipschitz estimate with respect to the spatial
similarity coordinate �; due to the change of coordinates, the constant will grow linearly
in t . However, the conjectured asymptotics of the precipitation function implies uniformity
in similarity variables. We will not use this result in the remainder of the paper, but state it
here as the best estimate which we were able to obtain by direct estimation in the Duhamel
formula or using energy methods.

Lemma 6. Let .u; p/ be a weak solution to (3). Then, for any T > 0, u is uniformly
Lipschitz continuous on R � ŒT;1/.

Proof. Let w D  � u. A weak solution must satisfy the Duhamel formula (see, e.g.,
[6, Appendix B]), so

w.x2; t / � w.x1; t / D

Z t

0

Z
R
.K.x2 � y; t � �/ �K.x1 � y; t � �//Œpu�.y; �/ dy d�

� WŒ0;t�ı� CWŒt�ı;t�; (34)

where we split the domain of time integration into two subintervals and writeWI to denote
the contribution from subinterval I . In the following, we suppose that x1 < x2 and choose
ı D min¹t; 1

4
º.

On the subinterval Œ0; t � ı�, if not empty, we apply the fundamental theorem of cal-
culus, so that

jWŒ0;t�ı�j D

Z t�ı

0

Z
R

Z x2

x1

Kx.� � y; t � �/ d�Œpu�.y; �/ dy d�: (35)

Now note that

jKx.� � y; t � �/j D
1

4
p
�

j� � yj

.t � �/3=2
e�

.��y/2

4.t��/

D
j� � yj

p
t � � C ı

2.t � �/3=2
e�

.��y/2ı
4.t��/.t��Cı/

1p
4�.t � � C ı/

e�
.��y/2

4.t��Cı/

D
1
p
ı

�
1C

ı

t � �

�
�e��

2

K.� � y; t � � C ı/

� c.ı/K.� � y; t � � C ı/; (36)

where we have defined

� D j� � yj

p
ı

2
p
t � �

p
t � � C ı

(37)

and, to obtain the final inequality in (36), note that �e��
2

is bounded and t � � � ı.
Changing the order of integration in (35), taking absolute values, and inserting estimate
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(36), we obtain

jWŒ0;t�ı�j � c.ı/

Z x2

x1

Z t�ı

0

Z
R
K.� � y; t � � C ı/Œpu�.y; �/ dy d� d�

� c.ı/

Z x2

x1

Z tCı

0

Z
R
K.� � y; t C ı � �/Œpu�.y; �/ dy d� d�

� c.ı/jx2 � x1j sup
�2R
jw.�; t C ı/j: (38)

Since w is bounded, we have obtained a uniform-in-time Lipschitz estimate for w on the
first subinterval.

On the subinterval Œt � ı; t �, we use the boundedness of pu, so that we can take out
this contribution in the space-time L1 norm,

jWŒt�ı;t�j �

Z t

t�ı

Z
R
jK.x2 � y; t � �/ �K.x1 � y; t � �/j dy d�kpukL1 : (39)

Setting r D .x2 � x1/=2 and changing variables t � � 7! � , we obtainZ t

t�ı

Z
R
jK.x2 � y; t � �/ �K.x1 � y; t � �/j dy d�

D

Z ı

0

�
erfc

�
�

r

2
p
�

�
� erfc

� r

2
p
�

��
d�

�

Z 1=4

0

�
erfc

�
�

r

2
p
�

�
� erfc

� r

2
p
�

��
d�

D
r
p
�

e�r
2

C
1

2
erf.r/ � r2.1 � erf.r//

� cjx2 � x1j; (40)

where the last inequality is based on the observation that erf.r/ is a smooth odd concave
function and that r.1 � erf.r// is bounded. This proves a uniform-in-time Lipschitz esti-
mate for w on the second subinterval as well. Since  is uniformly Lipschitz on R �
ŒT;1/ by direct inspection, u D  � w is uniformly Lipschitz on the same domain.

Remark 5. We note that the heat equation with arbitrary L1 right-hand side is not
necessarily uniformly Lipschitz. This can be seen by observing that if we carry out the
integration in (40) with arbitrary ı, the constant c will be proportional to

p
ı. Thus, choos-

ing ı D t , thereby eschewing the separate estimate for the first subinterval, we obtain a
Lipschitz constant which grows like

p
t . Without recourse to the particular features of the

HHMO-model, this result is sharp, as can be seen by taking the standard step function as
right-hand-side function for the heat equation.



Z. Darbenas, R. v. d. Hout, and M. Oliver 14

4. Self-similar solution for self-similar precipitation

The computation of Section 2 can be extended to the case when the precipitation term in
�–s coordinates does not have any explicit dependence on s. To do so, it is necessary that
precipitation is a function of the similarity variable � only, which requires that q.�; s/ D
p.s�/ D =.s�/2 for some constant  > 0, which we treat as an unknown. This means
that we disregard (7) which defines the precipitation function in the original HHMO-
model. We also disregard the requirement that p 2 Œ0;1� in the definition of the generalized
precipitation function (5). With these provisions, the coefficients of the right-hand side
of (13) do not depend on s. Therefore, as we will show in the following, steady states
which we call self-similar solutions indeed exist, and we establish sufficient and necessary
conditions for their existence.

As before, we seek a stationary solution for (13), which now reduces to

ˆ00 C
�

2
ˆ0 C

˛ˇ

2
ı.� � ˛/ �



�2
H.˛ � �/ˆ D 0; (41a)

ˆ.�/! 0 as �!1; (41b)

ˆ.˛/ D u�; (41c)

ˆ0.0/ D 0: (41d)

The additional internal boundary condition (41c) models the observation that the HHMO-
model drives the solution to the critical value u� along the line � D ˛. As we will show
below, subject to a certain solvability condition, there will be a unique pair .ˆ; / solving
this system.

We interpret the derivatives in (41a) in the sense of distributions, so that

ˆ0.�/ D
dˆ
d�
C Œˆ.˛/�ı˛ (42)

and

ˆ00.�/ D
d2ˆ
d�2
C Œˆ0.˛/�ı˛ C Œˆ.˛/�ı

0
˛; (43)

where Œˆ.˛/� D ˆ.˛C/ � ˆ.˛�/ and d=d� denotes the classical derivative where the
function is smooth, i.e., on .0; ˛/ and .˛;1/, and takes any finite value at � D ˛ where
the classical derivative may not exist. Inserting (42) and (43) into (41a), we obtain

d2ˆ
d�2
C
�

2

dˆ
d�
�


�2
H.˛ � �/ˆC

�˛ˇ
2
C
�

2
Œˆ.˛/�C Œˆ0.˛/�

�
ı˛ C Œˆ.˛/�ı

0
˛ D 0: (44)

Going from the most singular to the least singular term, we conclude first that Œˆ.˛/�D 0,
i.e., that ˆ is continuous across the nonsmooth point at � D ˛. Second, we obtain a jump
condition for the first derivative, namely

Œˆ0.˛/� D �
˛ˇ

2
: (45)
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On the interval .˛;1/, we need to solve

ˆ00r C
�

2
ˆ0r D 0; (46a)

ˆr.�/! 0 as �!1: (46b)

As in Section 2, the solution to (46) is of the form

ˆr.�/ D C2 erfc.�=2/ (47a)

where, due to the internal boundary condition ˆ.˛/ D u�,

C2 D
u�

erfc.˛
2
/
: (47b)

Its derivative is given by

ˆ0r.�/ D �C2
exp.��2=4/
p
�

: (48)

Similarly, on the interval .0; ˛/, we need to solve

ˆ00l C
�

2
ˆ0l �



�2
ˆl D 0; (49a)

ˆ0l.0/ D 0: (49b)

Equation (49a) is a particular instance of the general confluent equation ([1, Equation
13.1.35]), whose solution is readily expressed in terms of Kummer’s confluent hypergeo-
metric function M , also referred to as the confluent hypergeometric function of the first
kind 1F1. The two linearly independent solutions are of the form

ˆl.�/ D C1�
�M

��
2
; � C

1

2
;�
�2

4

�
; (50a)

where �.� � 1/ D  and, due to the internal boundary condition ˆ.˛/ D u�,

C1 D
u�

˛�M. �
2
; � C 1

2
;�˛

2

4
/
: (50b)

Solving for �, we find that of the two roots

�1;2 D
1˙
p
4 C 1

2
; (51)

only the larger one is positive, corresponding to regular behavior of the solution (50a) at
the origin. When �2C 1

2
is not a negative integer, (50) provides a second linearly indepen-

dent solution with � D �2 which we discard as it has a pole at � D 0. When �2 C 1
2

is a
negative integer, Kummer’s function is not defined, so that we use the method of reduction
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of order (see [26, Section 3.4]) to obtain a second linearly independent solution. To do so,
we assume that ˆ.�/ D e.�/ˆl.�/ and obtain an equation for e,

e00 C
�
2
ˆ0l
ˆl
C
�

2

�
e0 D 0 (52)

on .0; ˛�. Integrating, we obtain

e0.�/ D Ceˆ
�2
l .�/e�

�2

4 ; (53a)

e.�/ D �Ce

Z ˛

�

ˆ�2l .�/e�
�2

4 d� C C �e ; (53b)

again on .0; ˛�. Hence, the general solution to (41a) on .0; ˛� is

ˆ.�/ D �Ce ˆl.�/

Z ˛

�

ˆ�2l .�/e�
�2

4 d� C C �e ˆl.�/: (54)

To obtain a second linearly independent solution, it suffices to takeCeD 1 andC �e D 0. We
proceed to show that the first term on the right again has a pole at �. Identity [1, Equation
13.1.27] reads

M
��1
2
; �1 C

1

2
;�
�2

4

�
D e�

�2

4 M
��1
2
C
1

2
; �1 C

1

2
;
�2

4

�
> 0: (55)

Due to (50a), we can find a positive constant C such that

e.�/ � �C

Z ˛

�

��2�1 d� D �
C

2�1 � 1
.��2�1C1 � ˛�2�1C1/: (56)

Therefore,

ˆ.�/ � �
CC1

2�1 � 1
.���1C1 � ˛�2�1C1��1/M

��1
2
; �1 C

1

2
;�
�2

4

�
: (57)

Thus, the second linearly independent solution again has a pole at � D 0. Therefore, we
consider � D �1 only from here onward.

Using the properties of Kummer’s function ([1, Section 13.4]), the derivative of (50a)
is readily computed as

ˆ0l.�/ D C1��
��1M

��
2
C 1; � C

1

2
;�
�2

4

�
: (58)

Finally, we use the jump condition (45) to determine the constant  . Plugging the
left-hand and right-hand solutions into (45), we find

u�
�M. �

2
C 1; � C 1

2
;�˛

2

4
/

˛M. �
2
; � C 1

2
;�˛

2

4
/
C u�

exp.�˛
2

4
/

p
� erfc.˛

2
/
D
˛ˇ

2
: (59)
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To proceed, we set

u� D

�
�M. �

2
C 1; � C 1

2
;�˛

2

4
/

˛M. �
2
; � C 1

2
;�˛

2

4
/
C

exp.�˛
2

4
/

p
� erfc.˛

2
/

��1
˛ˇ

2
(60)

and join the right-hand solution (47) and left-hand solution (50) to define a family of
functions, parameterized by  , by

ˆ .�/ D

8̂̂̂̂
<̂
ˆ̂̂:
u��

�M. �
2
; � C 1

2
;��

2

4
/

˛�M. �
2
; � C 1

2
;�˛

2

4
/

if � < ˛;

u�

erfc.˛
2
/

erfc
��
2

�
if � � ˛:

(61)

For future reference, we note that in x–t coordinates, this function takes the form

� .x; t/ D ˆ .x=
p
t /: (62)

At this point, we know that each ˆ .�/ satisfies the differential equation (41a) and the
decay condition (41b). However, ˆ does not necessarily satisfy the internal boundary
condition (41c), equivalent to the matching condition (59), which can now be expressed
as u� D u

�, nor does it necessarily satisfy the Neumann boundary condition (41d), which
requires  > 0 or, equivalently, � > 1. The following theorem states a necessary and suf-
ficient condition such that (59) can be solved for � > 1 or, equivalently, u� D u

� can be
solved for  > 0. When this is the case, the resulting matched solution solves the entire
system (41).

Theorem 7. Let ˛, ˇ, and u� be positive. Then the matching condition u� D u
� has a

unique solution satisfying  > 0 if and only if u� < u�0 . If this is the case, the unique
solution to (41) is given by (61) with this particular value of  .

Remark 6. We recall that for a subcritical precipitation threshold where u� > ‰.˛/,
no precipitation can occur and ‰, defined in (16), provides a self-similar solution without
precipitation. The marginal case u� D‰.˛/ is discussed in Theorem 5. In the transitional
regime u�0 � u

� <‰.˛/, there is some  � 0 so that (61) still solves (41a)–(41c); however,
 < 0 is nonphysical and the Neumann condition (41d) cannot be satisfied in this regime.
For future reference, we call the limiting case u� D u�0 the critical precipitation threshold.
In this case, (61) takes the form

ˆ0.�/ D

8̂̂̂<̂
ˆ̂:

u�0
erf.˛

2
/

erf
��
2

�
if � < ˛;

u�0
erfc.˛

2
/

erfc
��
2

�
if � � ˛:

(63)

As discussed, this is not a solution, but will emerge as the universal asymptotic profile for
solutions in the transitional regime. Finally, the supercritical regime u� < u�0 is the regime
where Theorem 7 provides a self-similar solution to the HHMO-model with self-similar
precipitation function. The profiles for the different cases are summarized in Figure 1.



Z. Darbenas, R. v. d. Hout, and M. Oliver 18

0 1 2 3 4 5

η

0.0

0.1

0.2

0.3

0.4

0.5
Ψ

Φγ for u∗ = 0.48

Φγ for u∗ = 0.4

Φγ = Φ0 at u∗ ≈ 0.28

Φγ for u∗ = 0.2

Φγ for u∗ = 0.1

Figure 1. Plot of ‰ and of the family of profiles ˆ for different precipitation thresholds u�. The
profiles in between ‰ and ˆ0 correspond to the transitional regime where  is negative, hence they
fall outside the class of self-similar solutions described by Theorem 7. Solutions to the HHMO-
model in the transitional regime always converge to ˆ0, not to ˆ with  < 0.

Proof of Theorem 7. The form of the solution is determined by the preceding construc-
tion. It remains to show that when u� < u�0 , the derivative matching condition (59) has a
unique solution � > 1. Let us consider the left-hand solution (50) as a function of � and
�, which we denote by v.�; �/, so that the leftmost term in (59) is v�.˛; �/.

We begin by noting that

v�.˛; 1/ D u
�
M.3

2
; 3
2
;�˛

2

4
/

˛M.1
2
; 3
2
;�˛

2

4
/
: (64)

Moreover,

lim
�!1

M. �
2
C 1; � C 1

2
;�˛

2

4
/ D lim

�!1
M. �

2
; � C 1

2
;�˛

2

4
/ D exp.�˛

2

8
/; (65)

as is easily proved by using the dominated convergence theorem on the power series repre-
sentation of Kummer’s function. Consequently, v�.˛; �/ grows without bound as �!1.
Solvability under the condition that u� < u�0 is then a simple consequence of the interme-
diate value theorem.

To prove uniqueness, we show that v�.˛; �/ is strictly monotonic in �. For fixed �2 >
�1, we define

V.�/ D v.�; �2/ � v.�; �1/: (66)

First, v.�; �1/ and v.�; �2/ satisfy the differential equation (49a) with respective con-
stants 1 < 2. Thus,

V 00.�/C
�

2
V 0.�/ D

2

�2
V.�/C

2 � 1

�2
v.�; �1/: (67)
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We note that V.0/ D V.˛/ D 0. Assume that V attains a local nonnegative maximum
at �0 2 .0; ˛/. Then V.�0/ � 0, V 0.�0/ D 0, and V 00.�0/ � 0. This contradicts (67) as
the left-hand side is nonpositive and the right-hand side is positive. We conclude that V is
negative in the interior of Œ0; ˛�.

In particular, this means that V 0.˛/ � 0. The proof is complete if we show that this
inequality is strict. To proceed, assume the contrary, i.e., that V 0.˛/D 0. However, insert-
ing V 0.˛/D V.˛/D 0 into (67), we see that there must exist a small left neighborhood of
˛, .˛0; ˛/ say, on which V 00 is positive. This implies that V 0 is negative and V is positive
on .˛0; ˛/, which is a contradiction.

5. Numerical results

In the following we present numerical evidence which suggests that the profiles ˆ
derived in the previous section determine the long-time behavior of the solution to the
HHMO-model. As the concentration is expected to converge uniformly in parabolic sim-
ilarity coordinates, it is convenient to formulate the numerical scheme directly in �–s
coordinates. We use simple implicit first-order timestepping for the concentration field
and direct propagation of the precipitation function along its characteristic lines x D const
which transform to hyperbolic curves in the �–s plane. Details of the scheme are provided
in Appendix A.

The observed behavior is different in the transitional and in the supercritical regimes.
In the transitional regime, the source term is too weak to maintain precipitation out-
side a bounded region on the x-axis, which transforms into a precipitation region which
gets squeezed onto the s-axis as time progresses in �–s coordinates. In this regime, the
asymptotic profile is always ˆ0; a particular example is shown in Figure 2. Note that the
concentration peak drops well below the precipitation threshold as time progresses.

Figure 3 shows the long-time behavior of the concentration in the supercritical case.
In this case, the limit profile is ˆ , where  is determined as a function of ˛, ˇ, and u�

by the solvability condition of Theorem 7. The convergence is very robust with respect
to compactly supported changes in the initial condition (not shown). We note that the
evolution equation in �–s coordinates is singular at s D 0, so the initial value problem is
only well defined when the initial condition is imposed at some s0 > 0. For the numerical
scheme, however, there is no problem initializing at s D 0.

Along the line �D ˛, equivalent to the parabola t D x2=˛2, on which the source point
moves, the concentration is converging toward the critical concentration u�. At the same
time, the weighted average of the concentration,

h.x/ D
1

x

Z x

0

�2p�.�/ d�; (68)

is converging to  as t !1 or, equivalently, x !1. This behavior is clearly visible
in Figure 4, where convergence in h is much slower than convergence in u. Figure 4
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Figure 2. Plot of the function u for ˛ D 1:0, ˇ D 1:0 in the transitional regime with u� D 0:49 for
different times s, together with the conjectured limit profile ˆ0.

also shows that grid effects become increasingly dominant as time progresses. This is
due to the fact that precipitation occupies at least one full grid cell on the line � D ˛.
However, to be consistent with the conjectured asymptotics, the temporal width of the
precipitation region needs to shrink to zero. In the discrete approximation, it cannot do
this, resulting in oscillations of the diagnostics with increasing amplitude. For even larger
times, the simulation eventually breaks down completely. This behavior can be seen as a
manifestation of “rattling”, described by Gurevich and Tikhomirov ([13, 14]) in a related
setting. Here, the scaling of the problem and of the computational domain leads to an
increase of the rattling amplitude with time.

On any fixed finite interval of time, the amplitude of the grid oscillations vanishes as
the spatial and temporal step sizes go to zero. However, it is impossible to design a code
in which this behavior is uniform in time so long as the precipitation function takes only
binary values, i.e., strictly follows condition (7).

6. Long-time behavior of a linear auxiliary problem

In this section we study the nonautonomous linear system

ut D uxx C
˛ˇ

2
p
t
ı.x � ˛

p
t / � pu; (69a)

ux.0; t/ D 0 for t > 0; (69b)

u.x; 0/ D 0 for x > 0 (69c)
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Figure 3. Plot of the function u for ˛ D 1:0, ˇ D 1:0 in the supercritical regime with u� D 0:15 for
different times s, together with the conjectured limit profile ˆ .

on the space-time domain RC � RC. The equations coincide with the HHMO-model
(3a)–(3c). Here, however, we consider the precipitation function p.x; t/ as given, not
necessarily related to u in any way. The goal of this section is to give conditions on p
such that the solution u converges uniformly in parabolic similarity coordinates to one of
the profiles ˆ defined in Section 4.

Throughout, we assume that p 2 A, where

A D
®
p 2 L1loc..0;1/ � Œ0;1// W suppp \ .RC � Œ0; T �/

is compact for every T > 0
¯
: (70)

In addition, we will assume that p is nonzero, nonnegative, nondecreasing in time, and
satisfies condition (P) stated in the introduction. In all of the following, we manipulate the
equation formally as if the solution was strong. A detailed verification that all steps are
indeed rigorous can be found in [6, Appendix B]; these results can be transformed into
similarity variables as in Appendix B below. In this context, the condition on the support
of p in (70) eases the justification of the exchange of integration and time differentiation.
More generality is clearly possible, but this simple assumption covers all cases we need
for the purpose of this paper.

For technical reasons, we distinguish two cases which require different treatment. In
the first case, p is assumed bounded. It is then easy to show that there exists a weak
solution

u �  2 C 1;0.RC �RC/ \ L
1.RC �RC/; (71)

satisfying (19), where  is the solution of the precipitation-less equation given by (16);
see, e.g., [6, Appendix B].
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x
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0.95
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u(x, x2/α2)/u∗

h(x)/γ

Figure 4. Longer-time diagnostics in the supercritical regime. Shown are two quantities on the
line � D ˛ relative to their conjectured limits for the simulation shown in Figure 3. The growing
oscillations are an effect of the finite constant grid size; see text.

In the second case, p may be unbounded. In general, the existence of solutions is then
not obvious, so that we assume a solution with

u �  2 C 1;0.RC �RC/ \W
1;1
2;loc.RC �RC/ (72)

exists, and that this solution satisfies the bound

0 � u � �0 provided
Z 1
0

p�.x/ dx D1 (73)

with �0 given by (62), or

0 � u �  provided
Z 1
0

p�.x/ dx <1: (74)

We remark that when p is bounded, it is easy to prove that solutions u which decay as
x !1 satisfy the weaker bound (74).

Remark 7. Here we will explain why we impose (73). Proceeding formally, we fix 0 <
t0 < t1 and 0 < x1 < ˛

p
t0, multiply (69a) by u, integrate over Œ0; x1� � Œt0; t1�, and note

that the domain of integration is away from the location of the source, so thatZ x1

0

u2 dx
ˇ̌̌̌tDt1
tDt0

D 2

Z t2

t1

uxu dt
ˇ̌̌̌xDx1
xD0

� 2

Z t1

t0

Z x1

0

u2x dx dt � 2
Z x1

0

p�.x/

Z t1

t0

u2 dt dx: (75)
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As u and ux are continuous on the domain of integration, the first three integrals are finite.
Thus, the last integral must be finite, too. When p� is not integrable near zero, this can
only be true when u.0; t/ D 0 for all t > 0. Now note that �0 satisfies (69a) for p � 0
with Dirichlet boundary conditions

�0.0; t/ D 0 for t > 0;

�0.x; 0/ D lim
y!x
t&0

�0.y; t/ D 0 for x > 0:

Thus, �0 is the natural supersolution for u when p� is not integrable.

Lemma 8. Let p 2 A be nonnegative and nondecreasing in time t . Let u be a weak
solution to (69). Then u �  is nonincreasing in time t .

Proof. The proof of [17, Lemma 3.3] applies literally. We remark that the result in [17]
is stated for solutions to the HHMO-model, but its proof depends only on the assumption
that p is nondecreasing in t and applies here as well.

Lemma 9. Suppose p 2 A is nonzero, nonnegative, and satisfies condition (P). Let u be
a weak solution to (69). Then u.0; t/! 0 as t !1.

Remark 8. This lemma can be applied to weak solutions of the HHMO-model (3) pro-
vided u� < ‰.˛/ under the additional assumption that (10) is satisfied. Then, by [17,
Lemma 3.5], there is at least one nondegenerate precipitation region and the assumptions
of the lemma apply.

Proof of Lemma 9. We construct a supersolution to u as follows. Fix any y� > 0 such
that the support of p� intersects Œ0; y�� on a set of positive measure. Define t� D .y�=˛/2

and

pr .x; t/ D

8̂̂<̂
:̂

min
®
p�.jxj/; 1

¯
if x 2 Œ�y�; y��

and t � x2=˛2;

0 otherwise:

(77)

Let ur denote the unique bounded weak solution to (69) with p D pr and extend ur to the
left half-plane by even reflection. Due to the subsolution principle, 0 � u � ur . Our goal
is to show that ur .0; t/! 0 as t !1. We reflect ur evenly with respect to the x D 0
axis. Note that pr fulfills the conditions of Lemma 8. Therefore, ur is nonincreasing in t
on Œ�y�; y�� � Œt�;1/ so that

lim
t!1

inf
x2Œ�y�;y��

ur .x; t/ � c (78)

exists. We now express ur .0; t/ for t > t� via the Duhamel formula, bound ur from below
by c, note that K.�y; t � s/ is a decreasing function in y, and recall that pr is supported
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on ¹� � t�º to estimate

ur .0; t/ D  .0; t/ �

Z t

0

Z y�

�y�
K.�y; t � �/pr .y/ur .y; �/ dy d�

� ‰.0/ � c

Z y�

�y�
pr .y/ dy

Z t

t�
K.y�; t � �/ d�: (79)

Changing variables � ! t� 0 in the second integral on the right, we find thatZ t

t�
K.y�; t � �/ d� D

p
t

Z 1

t�=t

1p
4�.1 � � 0/

e�
y�
2

4t.1�� 0/ d� 0

�
p
t

Z 1

0

1p
4�.1 � � 0/

d� 0 D

r
t

�
(80)

as t !1. This implies c D 0 as otherwise ur .0; t/!�1 as t !1. Then the Harnack
inequality for the function ur on some spatial domain containing the interval Œ�y�; y��
implies that for any fixed ı > 0 there exists a constant Cı > 0 such that

ur .0; t/ � sup
y2Œ�y�;y��

ur .y; t/ � Cı inf
y2Œ�y�;y��

ur .y; t C ı/! 0 as t !1I (81)

see, e.g., [11, Section 7.1.4.b] and [24]. Hence, u.0; t/! 0 as well.

Lemma 10. Let p 2 A be nonnegative and nondecreasing in time t . Let u be a bounded
weak solution to (69) where, as before, we write u.x; t/ D v.x=

p
t ;
p
t /. Then for every

d > 0 and  � 0, the following is true:

(a) There exists ! 2 .0; 1/ such that for every .�; s/ with v.�; s/ �ˆ .�/ � d ,

min
s02Œ!s;s�

max
�2RC

®
v.�; s0/ �ˆ .�/

¯
� d=2: (82)

(b) There exists ! 2 .1;1/ such that for every .�; s/ with v.�; s/ �ˆ .�/ � �d ,

max
s02Œs;!s�

min
�2RC

®
v.�; s0/ �ˆ .�/

¯
� �d=2: (83)

Proof. Set V.�/ D ‰.�/ �ˆ .�/. By direct inspection, we see that V is strictly decreas-
ing on RC. In case (a),

d � v.�; s/ �ˆ .�/ � V.�/: (84)

Therefore, the possible values of � for which the assumption of case (a) can be satisfied are
bounded from above by some �� D ��.d; /. By the mean value theorem, for ! 2 .0; 1/,

V.�/ � V.�=!/ � max
�2Œ�;�=!�

jV 0.�/j
� �
!
� �

�
� �� max

�2Œ0;��=!�
jV 0.�/j

1 � !

!
�
d

2
(85)
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where, in the last inequality, ! has been fixed sufficiently close to 1. This choice is inde-
pendent of �. Now recall that t D s2 and x D �s. Choose any s0 2 Œ!s; s�, and set t 0 D s02

and �0 D x=s0 so that �0 � �=!. Then

d � .u.x; t 0/ � � .x; t
0// � .u.x; t/ � � .x; t// � .u.x; t

0/ � � .x; t
0//

D .u.x; t/ �  .x; t// � .u.x; t 0/ �  .x; t 0//C V.�/ � V.�0/

� V.�/ � V.�=!/ � d=2; (86)

where the first inequality is due to the assumption of case (a), and the second inequality is
due to Lemma 8 which states that u� is nonincreasing in t for x fixed. We further used
monotonicity of V in the second inequality. The last inequality is due to (85). Altogether,
we see that

v.�0; s0/ �ˆ .�
0/ D u.x; t 0/ � � .x; t

0/ � d=2: (87)

This proves (82). The proof in case (b) is similar. Notice that

v.�; s/ � ˆ .�/ � d < ˆ .�/: (88)

Therefore, the possible values of � for which the assumption of case (b) can be satisfied
are bounded from below by some �� D ��.d; / > 0. The rest of the proof is obvious.

In the following, for positive real numbers �, y, and T , we define

D�;y D
®
.x; t/ W x � y; 0 � t � ��2x2

¯
: (89)

See Figure 5 for an illustration.

y

Dη,y

t = x2/α2

t = x2/η2

x

t

Figure 5. Sketch of the region D�;y when � > ˛.
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Theorem 11. Let p 2 A be nonzero, nonnegative, nondecreasing in time, and satisfy
condition (P). Assume further that for each � > ˛ there exists y D y.�/ such that p � 0
on D�;y , and that there exists  � 0 such that

lim
x!1

x

Z 1
x

p�.�/ d� D ; (90)

where p� denotes the values of p along the line � D ˛ as defined in condition (P).
Let u be a weak solution of class (71) to the linear nonautonomous equation (69) with

p fixed as stated. If p is unbounded, assume further that u is of class (72) and satisfies the
bounds (73) or (74). Then u converges uniformly to ˆ .

Proof. Set w D v � ˆ . Subtracting (41a) from (13a) and noting that, by assumption,
q.�; s/ D p�.s�/ for � < ˛, we obtain

1

2
sws �

1

2
�w� D w�� � s

2q.�; s/w

C

� 
�2
� s2p�.s�/

�
ˆH.˛ � �/ � s

2q.�; s/ˆH.� � ˛/ (91a)

with assumed bounds on w, namely

�ˆ � w � ˆ0 �ˆ provided
Z 1
0

p�.x/ dx D1 (91b)

or

�ˆ � w � ‰ �ˆ provided
Z 1
0

p�.x/ dx <1: (91c)

To avoid boundary terms when integrating by parts, we introduce a fourth-power func-
tion with cutoff near zero which is defined, for every " > 0, by

J".z/ D

´
0 if jzj < ";

.jzj � "/4 if jzj � ";
(92)

and is at least twice continuously differentiable, even, positive, and strictly convex on
.";1/. We now separately consider the cases of p� integrable and of p� not integrable.

Case 1 (p� is not integrable on RC). In this case, we have the bound (91b), so that
jwj �ˆ0Cˆ . Hence, for " > 0, arbitrary but fixed in the following, there are �0D �0."/
and �1 D �1."/with 0 < �0 < �1 <1 such that jwj � ", hence J".w/D 0 for � … .�0; �1/
and all s > 0.

We multiply (91a) by J 0".w/, integrate on RC, and examine the resulting expression
term by term. The contribution from the first term reads

1

2

Z 1
0

swsJ
0
".w/ d� D

s

2

d
ds

Z 1
�0

J".w/ d� (93)
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and the second term contributes

1

2

Z 1
0

�w�J
0
".w/ d� D

1

2

Z �1

�0

�w�J
0
".w/ d�

D �
1

2

Z �1

�0

J".w/ d� D �
1

2

Z 1
�0

J".w/ d�: (94)

Combining both expressions, we obtain

s

2

d
ds

Z 1
�0

J".w/ d�C
1

2

Z 1
�0

J".w/ d� D
d
ds

�
s

2

Z 1
�0

J".w/ d�
�
: (95)

The contribution from the first term on the right of (91a) readsZ 1
0

w��J
0
".w/ d� D

Z �1

�0

w��J
0
".w/ d�

D �

Z �1

�0

w2�J
00
" .w/ d� D �

Z 1
�0

w2�J
00
" .w/ d�: (96)

The contribution from the second term on the right of (91a) satisfies

�

Z 1
0

s2q.�; s/wJ 0".w/ d� � 0; (97)

because the productwJ 0".w/ is clearly nonnegative. To investigate the contribution coming
from the third term on the right of (91a), we integrate by parts, so thatZ 1

0

� 
�2
� s2p�.s�/

�
ˆH.˛ � �/J

0
".w/ d�

D

Z ˛

�0

� 
�2
� s2p�.s�/

�
ˆJ

0
".w/ d�

D g.˛; s/ˆ .˛/J
0
".w.˛; s// (98)

�

Z ˛

�0

gˆ0J
0
".w/ d� �

Z ˛

�0

gˆw�J
00
" .w/ d�; (99)

where g is an antiderivative of the term in parentheses, namely

g.�; s/ D s2
Z 1
�

p�.s�/ d� �


�

D s

Z 1
s�

p�.�/ d� �


�
: (100)

We note that for fixed � > 0, due to (90), g.�; s/! 0 as s !1.
When " < u�, the equation ˆ0.�/ D " has one root � � ˛. Since u � ˆ0, we can set

�0 D � so that �0 � ˛, which we assume henceforth. Combining (96) with the last term
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in (98), we obtain

�

Z 1
�0

w2�J
00
" .w/ d� �

Z ˛

�0

gˆw�J
00
" .w/ d�

D �

Z 1
˛

w2�J
00
" .w/ d� �

Z ˛

�0

.w� C
1
2
gˆ /

2J 00" .w/ d�

C
1

4

Z ˛

�0

g2ˆ2J
00
" .w/ d�

D
1

2

Z ˛

�0

g2ˆ2J
00
" .w/ d� �G�.s/ (101)

where

G�.s/ D

Z 1
˛

w2�J
00
" .w/ d�C

Z ˛

�0

.w� C
1
2
gˆ /

2J 00" .w/ d�C
1

4

Z ˛

�0

g2ˆ2J
00
" .w/ d�

�

Z 1
˛

w2�J
00
" .w/ d�C

1

2

Z ˛

�0

w2�J
00
" .w/ d�

�
1

2

Z 1
0

w2�J
00
" .w/ d�: (102)

We note that we have used the Jensen inequality in the first inequality of this lower bound
estimate.

Finally, the last term on the right of (91a) is treated as follows. We define

F.s/ D s2
Z 1
0

q.�; s/ˆJ
0
".w/H.� � ˛/ d� (103)

and

�.x/ D x

Z 1
x

p�.�/ d�: (104)

For fixed �� > ˛ we can find y D y.��/ such that p � 0 on D��;y , i.e., q.�; s/ D 0 for
all � > �� and s � y=��.

Then, for s � s0 � y=��,

F.s/ � ˆ .˛/J
0
".‰.˛//

Z ��

˛

s2q.�; s/ d�: (105)

Since p is nondecreasing in time t , we estimateZ ��

˛

s2q.�; s/ d� �
Z ��

˛

s2p�.�s/ d� D s
Z s��

s˛

p�.�/ d� D
�.s˛/

˛
�
�.s��/

��
: (106)

Inserting this bound into (105) and noting that, due to (90), limx!1 �.x/ D  , we find
that

lim sup
s!1

F.s/ � ˆ .˛/J
0
".‰.˛//

�
˛
�


��

�
: (107)
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Adding up the individual contributions and neglecting the clearly nonpositive terms
on the right-hand side as indicated, we obtain altogether

d
ds

�
s

2

Z 1
0

J".w/ d�
�
� G.s/ �G�.s/C F.s/ (108)

with

G.s/ D g.˛; s/ˆ .˛/J
0
".w.˛; s// �

Z ˛

�0

gˆ0J
0
".w/ d�C

1

2

Z ˛

�0

g2ˆ2J
00
" .w/ d�: (109)

We note that G.s/ ! 0 as s ! 0. Indeed, the first term converges to zero because g
converges to zero. The two integrals converge to zero because, in addition, on Œ�0; ˛� the
function g satisfies the uniform bound

g.�; s/ D
�.�s/ � 

�
�
1

�
sup

x��0s0

�.x/ (110)

which, together with the known bounds on ˆ, ˆ0, and w, implies that the dominated
convergence theorem is applicable. Hence, each of the integrals converges to zero.

Integrating (108) from s0 to s, we obtainZ 1
0

J".w.�;s//d��
s0

s

Z 1
0

J".w.�;s0//d��
2

s

Z s

s0

.G.�/�G�.�/CF.�//d�: (111)

We now take lim sups!1. The second term on the left vanishes trivially. Since G con-
verges to zero, so does its time average, so its contribution is negligible in the limit. Also,
G� is nonnegative, hence can be neglected. For the contribution from F , we refer to (107).
Hence,

lim sup
s!C1

Z 1
0

J".w/ d� � 2ˆ .˛/J 0".‰.˛//
�
˛
�


��

�
: (112)

Since �� > ˛ is arbitrary, we conclude that

lim
s!1

Z 1
0

J".w.�; s// d� D 0: (113)

This implies that for every fixed " > 0,

m
�®
� W jwj > 2"

¯�
J".2"/ �

Z
¹�Wjwj>2"º

J".w/ d� �
Z 1
0

J".w/ d�! 0 (114)

as s!1, wherem is the Lebesgue measure on the real line, i.e., jwj converges to zero in
measure. Due to the bound onw, the dominated convergence theorem with convergence in
measure, e.g., [4, Corollary 2.8.6], implies that v ! ˆ in Lr .RC/ for every r 2 Œ1;1/.

Case 2 (p� is integrable on RC). When p� is integrable, we only have the weaker bound
on w given by (91c). Thus, we must take �0 D 0. On the other hand, due to Lemma 9,
u.0; s/ is converging to 0 as s!1. Thus, we fix " > 0 and choose s0 D s0."/ satisfying
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u.0; s0/ < ". Then J".w.0; s//D J 0".w.0; s//D 0 for all s > s0 so that the boundary terms
when iterating by parts in (96), (94), and (98) vanish as before, so that all computations
from Case 1 up to equation (109) remain valid as before.

The bound on g now takes the form

g.�; s/ D
�.�s/ � 

�
�
1

�
sup
x�0

�.x/ (115)

where, as before, � is given by (104). This implies that the integrands in the second and
third terms in (109) satisfy bounds on the interval Œ0; ˛� which take the form

jgˆ0J
0
".w/j � C1�

��2; (116a)

jg2ˆ2J
00
" .w/j � C2�

2.��1/; (116b)

where C1 and C2 are positive constants. When  > 0 so that � > 1, both bounds are
integrable on Œ0; ˛� and the dominated convergence theorem applies as before, proving
that G.s/! 0 as s !1. When  D 0 so that � D 1, the second bound (116b) is still
integrable, but the first is not. Thus, for the second term on the right of (109), we change
the strategy as follows.

Observe that when  D 0, then

g.�; s/ D s

Z 1
s�

p�.�/ d� � 0: (117)

Thus, the second term in (109) is bounded above by

�

Z ˛

0

g.�; s/ˆ00.�/J
0
".w.�; s// d�

�

Z ˛

0

I¹w.�;s/<0º.�/g.�; s/ˆ
0
0.�/jJ

0
".w.�; s//j d�: (118)

Note that w.�; s/ < 0 if and only if u.�; s/ < ˆ0.�/. Moreover, ˆ0.�/ D O.�/ as �! 0

so that I¹w<0ºJ
0
".w/ D O.�

3/. Altogether, there exists C3 > 0 such that

I¹w.�;s/<0º.�/g.�; s/ˆ
0
0.�/jJ

0
".w.�; s//j � C3�

2; (119)

which provides an integrable upper bound for the integrand on the right of (118). The dom-
inated convergence theorem then proves that the integral on the right of (118) converges
to zero as s !1.

Thus, we find in all cases that lim sup�!1 G.�/ � 0, so that the argument from
(111) to (113) proceeds as before and (114) is valid for every " > 0. This shows that
lims!1w D 0 in Lr .

In the final step, we bootstrap from Lr -convergence to uniform convergence on RC.
We argue by contradiction and for both cases at once.
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Suppose convergence is not uniform. Then there exists d > 0 such that

lim sup
s!1

max
�2RC

w.�; s/ � 2d (120)

or

lim inf
s!1

min
�2RC

w.�; s/ � �2d: (121)

Suppose that the first alternative holds; the argument for the second alternative proceeds
analogously and will be omitted. By Lemma 10 (a), there exist ! 2 .0; 1/, a sequence
si !1, and a sequence �i such that for every i 2 N,

min
s2Œ!si ;si �

w.�i ; s/ � d=2: (122)

Due to the uniform bound on w which decays as �!1, the sequence �i must be con-
tained in a compact interval of length L (possibly dependent on d ). In the following, fix
" < d=4.

For fixed s 2 Œ!si ; si �, let

�0 D max
®
� < �i W J".w.�; s// D 0

¯
: (123)

(By continuity, the maximum exists and is less than �i ; in Case 2 we may need to take i
large enough so that !si > s0.) Due to the fundamental theorem of calculus,

J 1=2" .w.�i ; s// � J
1=2
" .w.�0; s// D

Z �i

�0

@�J
1=2
" .w.�; s// d� (124)

so that, noting that J 1=2" .w.�i ; s//D 0, J 1=2" .w.�0; s//� .d=2� "/
2, and d=2� "� d=4

on the left and using the Cauchy–Schwarz inequality on the right, we obtain�d
4

�2
� .�i � �0/

1
2

�Z �i

�0

4.jwj � "/2w2� d�
� 1
2

�
p
L

�
1

3

Z
RC

J 00" .w/w
2
� d�

� 1
2

: (125)

We conclude that the integral on the right is bounded below by some strictly positive
constant, say b, which only depends on d . Due to (102), b=2 is also a lower bound onG�.
Thus, returning to (111) with s D si and s0 D !si , we obtainZ 1

0

J".w.�; si // d� � !
Z 1
0

J".w.�; !si / d� �
2

si

Z si

!si

.G.�/ �G�.�/C F.�// d�

� �.1 � !/b C
2

si

Z si

!si

.G.�/C F.�// d�: (126)

We now let i !1 and observe that, due to (113), the two terms on the left converge to
zero. For the integral on the right, we apply the same asymptotic bounds as in the first part
of the argument, so that

0 � �.1 � !/b Cˆ .˛/J
0
".‰.˛//

�
˛
�


��

�
: (127)
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Since �� > ˛ is arbitrary, we reach a contradiction. Alternative (121) can be argued
similarly, with reference to Lemma 10 (b). This completes the proof of uniform conver-
gence.

Remark 9. The use of the cutoff function J" is a technical necessity to avoid boundary
terms when integrating by parts. Our particular choice of J" amounts essentially to an
L4 estimate; the exponent 4 was chosen purely for the convenience of an easy explicit
cutoff construction. The implication of Lr -convergence for any r 2 Œ1;1/ can then be
understood as a consequence of boundedness of w and Lp-interpolation.

7. Long-time behavior of the HHMO-model

In this section we turn to studying the long-time behavior of solutions to the actual
HHMO-model (3). We first prove a series of simple results, Theorems 12–14, which are all
based on constructing suitable sub- and supersolutions whose long-time behavior can be
described by Theorem 11. We then turn to maximum principle arguments which show that
the onset of precipitation in the HHMO-model is asymptotically close to the line �D ˛, so
that a statement like Theorem 11 also holds true for HHMO-solutions. Finally, we prove
the main result of this section, which can be seen as a converse statement, the identifica-
tion of the only possible limit profile for the HHMO-model. The two main statements are
summarized as Theorem 18 at the end of the section.

Theorem 12 (Long-time behavior in the transitional regime). Let .u; p/ be a weak solu-
tion to (3) in the transitional regime where u�0 < u

� <‰.˛/, u�0 being defined in (60) with
 D 0. Then p.x; t/ D 0 for all x large enough. Moreover, u converges uniformly to the
profile ˆ0.

Proof. Set Y D X1, the right endpoint of the first precipitation region (see [17, Lem-
ma 3.5]), provided that it is finite. If it were infinite, we would set Y D 1. (The theorem
shows that this case is impossible, but at this point we do not know.) We then define

p1.x; t/ D

´
H.t � x2=˛2/ for x � Y ;

0 otherwise;
(128)

and note that p1 � p. This function satisfies condition (P) with p�1 .x/ D H.Y � x/ for
x � 0 as well as the conditions of Theorem 11; we note, in particular, that

x

Z 1
x

p�1 .�/ d� D 0 (129)

for x � Y so that (90) holds with  D 0.
Let u1 denote the weak solution to the linear nonautonomous problem (69) with

p D p1. By construction, u1 is a supersolution to u and by Theorem 11, u1 converges
uniformly to ˆ0. This implies that there exists T > 0 such that for all t > T ,

u.x; t/ � u1.x; t/ �
1
2
.ˆ0.˛/C u

�/ D 1
2
.u�0 C u

�/ < u�: (130)
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Further, due to Lemma 2, u.x; t/ < u� for all .x; t/with x >˛�
p
T and t � T . Combining

these two bounds, we find that u.x; t/ < u� for all x > ˛�
p
T and therefore no ignition

of precipitation is possible in this region.
Let p2.x; t/ D I

Œ0;˛�
p
T �
.x/. By the same argument as before, p2 satisfies the con-

ditions of Theorem 11 with  D 0. Let u2 denote the solution to (69) corresponding to
p D p2. Since p2 � p, u2 is a subsolution of u. Theorem 11 implies that u2 converges
uniformly to ˆ0. Altogether, as u2 � u � u1, we conclude that u converges uniformly to
ˆ0 as well.

Remark 10. A similar argument can be made in the case of a marginal precipitation
threshold. In Theorem 5, we have already seen that marginal solutions are not unique. For
the long-time behavior, there are two possible cases: If p remains zero a.e., then u D  
everywhere, so the long-time profile in �–s coordinates is ‰. As soon as spontaneous
precipitation occurs on a set of positive measure, the long-time profile is ˆ0 instead. To
see this, let c 2 .0; 1� be such a value that p � c on some subset of R � RC of positive
measure. Select t� such that p.�; t�/ � c on some subset A � R of positive measure.
Set p1.x; t/ D cIA.x/H.t � t�/ and let u1 denote the associated bounded solution to
the auxiliary problem (69); u1 is a supersolution for u. Even though condition (P) does
not hold literally, the argument in the proof of Theorem 11 still works when restricted to
s �
p
t�. Hence, u1 converges uniformly to ˆ0. A subsolution, also converging to ˆ0,

can be constructed as in the proof of Lemma 9.

The next theorem states that it is impossible to have a precipitation ring of infinite
width in the strict sense that u permanently exceeds the precipitation threshold in some
neighborhood of the source point. A similar theorem is stated in [17, Theorem 3.10],
albeit under a certain technical assumption on the weak solution. The theorem here does
not depend on this assumption.

Theorem 13 (No ring of infinite width). Let .u; p/ be a weak solution to (3). Then

lim inf
x!1

u.x; x2=˛2/ � u� (131)

and there exist precipitation gaps for arbitrarily large x in the following sense: for every
Y > 0,

ess inf
x�Y

t�x2=˛2

p.x; t/ < 1: (132)

Proof. Suppose the converse, i.e., that there exists Y > 0 such that p.x; t/D 1 for almost
all pairs .x; t/ with x � Y and t � x2=˛2. Choose  > 0 such that ˆ .˛/ < u�. This is
always possible because the argument used in the proof of Theorem 7 shows thatˆ .˛/D
u� ! 0 as  !1. Now increase Y such that Y �

p
 , if necessary, and set

p3.x; t/ D

8<:


x2
for x � Y and t � x2=˛2;

0 otherwise:
(133)
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Then p3 � p and p3 clearly satisfies the assumptions of Theorem 11 with the chosen
value of  .

Let u3 denote the weak solution to the linear nonautonomous problem (69) with
p D p3. By construction, u3 is a supersolution to u and by Theorem 11, u3 converges
uniformly to ˆ . This implies that there exists T > 0 such that for all t > T ,

u.x; t/ � u3.x; t/ �
1
2
.ˆ .˛/C u

�/ < u�: (134)

Further, due to Lemma 2, u.x; t/ < u� for all .x; t/with x >˛�
p
T and t � T . Combining

these two bounds, we find that u.x; t/ < u� for all x > ˛�
p
T . Therefore, p � 0 in this

region, a contradiction. This proves that (132) holds true for every Y > 0.
To prove (131), assume the contrary, i.e., that lim infx!1 u.x; x2=˛2/ > u�. Then

there exists Y > 0 such that u.x; x2=˛2/ > u� for all x � Y , so that

ess inf
x�Y

t�x2=˛2

p.x; t/ D 1: (135)

As this contradicts (132), the proof is complete.

In the supercritical regime, we also have the converse: there is no precipitation gap of
infinite width, i.e., the reaction will always reignite at large enough times. The following
theorem mirrors [17, Theorem 3.13] but does not require the technical condition assumed
there.

Theorem 14 (No gap of infinite width in the supercritical regime). Let .u; p/ be a weak
solution to (3) in the supercritical regime where u� < u�0 < ‰.˛/. Then there is ignition
of precipitation for arbitrarily large x in the following sense: for every Y > 0,

ess sup
x�Y
t2RC

p.x; t/ > 0: (136)

Proof. Assume the contrary, i.e., there exists Y > 0 such that p D 0 a.e. on ŒY;1/ �
RC. We construct the supersolution u1 as in the proof of Theorem 12. In particular, u1
converges uniformly to ˆ0.

We set p2.x; t/ D IŒ�Y;Y �.x/ and let u2 be the associated weak solution to (11) with
given p2. Since p � p2, u2 is a subsolution of u. Further, p2 satisfies condition (P) with
p�2 .x/ D IŒ0;Y �.x/. Hence,

x

Z 1
x

p�2 .�/ d� D 0 for x � Y ; (137)

so that the pair .u2; p2/ satisfies the conditions of Theorem 11 for  D 0. Therefore, u2
converges uniformly to ˆ0.

Altogether, u converges uniformly toˆ0, in particular, limt!1 u.˛
p
t ; t /Dˆ0.˛/D

u�0 > u
�. This contradicts Theorem 13, so (136) holds for every Y > 0.
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Remark 11. Between Theorem 12 and Theorem 14, we cannot say anything about the
critical case when u�0 D u

�. This case is highly degenerate, so that both arguments above
fail. We believe that the problem is of a technical nature, i.e., treating the degeneracy in the
proof. We have no indication that the qualitative behavior is different from the neighboring
cases and conjecture that the asymptotic profile is ˆ0 as well.

Lemma 15. Let .u; p/ be a weak solution to (3). Suppose � � ˛ and t0 � 0 are such that
u.�
p
t ; t / � u� for all t � t0. Then

(i) there exists z � 0 such that u < u� and p � 0 in the interior of D�;z;

(ii) if �D ˛ and the bound u.�
p
t ; t / < u� for all t � t0 holds with strict inequality,

then u.x; t/ < u� and p.x; t/ D 0 for all x � z and t � 0.

Proof. Select z � �
p
t0 such that u.z; t/ � u� for all t 2 Œ0; z2=�2�. This is always pos-

sible for otherwise, due to (7), the solution .u; p/ would have a ring of infinite width. By
assumption, we also have u.x;x2=�2/ < u� for all x � z. Since u.x; 0/D 0, the parabolic
maximum principle then implies that u takes its maximum on the boundary ofD�;z where
it is bounded above by u�, and that u < u� anywhere in the interior. This implies p D 0
in the interior of D�;z , so that the proof of case (i) is complete.

(To see how this derives from the standard statement of the maximum principle, take,
for every x � z, the cylinder

Ux D Œx; X.x/� � Œ0; x
2=�2�; (138)

where, due to the upper bound u �  from Lemma 2, we can choose X.x/ large enough
so that the maximum of u on @Ux does not lie on the right boundary. Then u takes its
maximum on the parabolic boundary of Ux ; by construction, the maximum must lie on
the left-hand boundary ¹.x; t/ W 0 � t � x2=�2º. Moreover, as u cannot be a constant,
it is strictly smaller than its maximum everywhere in the interior of Ux . Since x � z is
arbitrary, the maximum must lie on any of the left-side boundaries which is not itself an
interior point for some other Ux . The set of all such points is contained in the boundary of
D�;z .)

When �D ˛, we recall that, by Lemma 8, u.x; t/ is nonincreasing in t for t � x2=˛2.
This implies (ii).

Theorem 16. Let .u;p/ be a weak solution to (3) with u� <‰.˛/. Assume that p satisfies
condition (P) and that there exists  � 0 such that

lim
x!1

x

Z 1
x

p�.�/ d� D : (139)

Then u converges uniformly to ˆ . Furthermore, ˆ .˛/ D u� if  > 0 and 0 < ˆ0.˛/ �
u� if  D 0.

Proof. We will show that for every � > ˛ there exists y such that p � 0 onD�;y . Uniform
convergence of u to ˆ is then a direct consequence of Theorem 11. To do so, assume the
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contrary, i.e., that there exists �� > ˛ such that for every y 2R we have p > 0 somewhere
in D��;y . Due to Lemma 15, this implies that there exists a sequence ti !1 such that
u.xi ; ti / � u

� with xi D ��
p
ti .

We now claim that p�.x/ D 1 for every x 2 .˛
p
ti ; xi /. To prove the claim, fix ti and

chooseX large enough such that maxt2Œ0;ti � u.X; t/� .X; ti / < u
�=2. Fix x 2 .˛

p
t ; xi /

and consider the cylinderU D .x;X/� .0; ti /with parabolic boundary � . By the parabolic
maximum principle,

max
�
u D max

xU

u � u.xi ; ti / (140)

with equality only if u is constant, which is incompatible with the initial condition. Hence,

max
t2Œ0;ti �

u.x; t/ > u.xi ; ti / � u
�: (141)

Since p satisfies (7), this implies p.x; ti / D p�.x/ D 1 as claimed. Next, for zi D ˛
p
ti ,

we estimate

zi

Z 1
zi

p�.�/ d� � zi

Z xi

zi

p�.�/ d� D zi .xi � zi / D ��.�� � ˛/ti !1 (142)

as i !1. This contradicts (139). We conclude that p � 0 on D��;y for some y > 0.
To prove the final claim of the theorem, we note that ˆ .˛/ > u� would imply the

existence of a ring with infinite width, which is impossible due to Theorem 13. Hence,
0 < ˆ .˛/ � u

�. When  D 0, this is all that is claimed. So suppose that  > 0 and
ˆ .˛/ < u

�. Then Lemma 15 (ii) implies that p.�; t/ D p�.�/ D 0 for all � big enough,
say, when � � R, and therefore

x

Z 1
x

p�.�/ d� D 0 (143)

for x � R, contradicting (139). Hence, ˆ .˛/ D u� when  > 0.

We now prove a result which provides a converse to Theorem 16. We assume that a
solution to (3) has limit profile in �–s coordinates and conclude that this limit can only be
the self-similar profile ˆ .�/ from (61).

Theorem 17. Let .u;p/ be a weak solution to (3) with u� <‰.˛/. Assume that p satisfies
condition (P) and that for a.e. � � 0 the limit

V.�/ D lim
t!1

u.�
p
t ; t / D lim

s!1
v.�; s/ (144)

exists. Then the limits

 D lim
x!1

1

x

Z x

0

�2p�.�/ d� (145)

and

 D lim
x!1

x

Z 1
x

p�.�/ d� (146)

exist and are equal, V.�/ D ˆ .�/, and u converges uniformly to ˆ . Further, ˆ .˛/ D
u� if  > 0 and 0 < ˆ � u� if  D 0.
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Proof. Write UV to denote the domain of definition of V , change the coordinate sys-
tem into � D x=

p
t and s D

p
t , and set w D v � ‰ and W D V � ‰. As detailed in

Appendix B, the weak formulation of the HHMO-model in these similarity variables can
be stated as

A.S IS0; f / D
S0

S

Z
R
w.�; S0/f .�/ d� �

Z
R
w.�; S/f .�/ d�

�
1

S

Z S

S0

Z
R
�wf� d� ds �

2

S

Z S

S0

Z
R
w�f� d� ds (147)

for all 0 < S0 < S and f 2 H 1.R/ with compact support, where

A.S IS0; f / D
2

S

Z S

S0

Z
R
s2q.�; s/v.�; s/f .�/ d� ds: (148)

Writing

A.S IS0; f / D
S0

S

Z
R
w.�; S0/f .�/ d� �

Z
R
w.�; S/f .�/ d�

�
1

S

Z S

S0

Z
R
�wf� d� ds C

2

S

Z S

S0

Z
R
wf�� d� ds; (149)

we observe that the limit S ! 1 exists for each term on the right of (149), so that
limS!1 A.S I S0; f / exists for S0 and f fixed. Moreover, for every b > 0 fixed, defi-
nition (148) implies that A.S I S0; f / is bounded uniformly for all S � S0 and f 2 L1

that satisfy 0 � f � IŒ�b;b�. Indeed, if g � IŒ�b;b� is smooth with compact support, then

A.S IS0; f / � A.S IS0; g/ � sup
S�S0

A.S IS0; g/ <1 (150)

since limS!1A.S IS0; g/ exists.
By Lemma 8, u �  is nonincreasing in time t for x fixed. This implies that, in �–s

coordinates, for �1; �2 2 UV with 0 < �1 < �2,

W.�1/ D lim
s!1

w.�1; s/ � lim
s!1

w.�2; s/ D W.�2/; (151)

and for any fixed � 2 .�1; �2/,

W.�1/ D lim
s!1

w.�1; s/ � lim inf
s!1

w.�; s/

� lim sup
s!1

w.�; s/ � lim
s!1

w.�2; s/ D W.�2/: (152)

By Lemma 9, V.0/ D 0, so that

W.0/ D V.0/ �‰.0/ D �‰.0/ � V.�/ �‰.�/ D W.�/ (153)

for all � 2 UV . Altogether, we find that W D V �‰ is nondecreasing on UV .
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Now we will show thatW is locally Lipschitz continuous on UV . Fix b > 0. For every
�0 2 Œ0; b�, take the family of compactly supported test functions f".�/ whose derivative
is given by

f 0" .�/ D

8̂<̂
:
"�1 for � 2 Œ�"; 0�;

�"�1 for � 2 Œ�0; �0 C "�;

0 otherwise:

(154)

We insert f" into (147) and let "& 0. Clearly,

lim
"&0

A.S IS0; f"/ D A.S IS0; IŒ0;�0�.�// (155)

and Z
R
w.�; s/f .�/ d�!

Z �0

0

w.�; s/ d�: (156)

Moreover, Z
R
�w.�; s/f 0" .�/ d�! ��0w.�0; s/ (157)

and Z
R
w�.�; s/f

0
" .�/ d�! w�.0; s/ � w�.�0; s/ D �w�.�0; s/: (158)

(Recall that w� is space-time continuous due to the definition of weak solution.) Alto-
gether, we find that (147) converges to

A.S IS0; IŒ0;�0�.�// D
S0

S

Z �0

0

w.�; S0/ d� �
Z �0

0

w.�; S/ d�

C
�0

S

Z S

S0

w.�0; s/ ds C
2

S

Z S

S0

w�.�0; s/ ds: (159)

Noting that 0 � IŒ0;�0� � f" � IŒ�1;bC1� for 0 < " � 1, we see that the left-hand side is
bounded uniformly for all �0 2 Œ0; b� and S � S0. By direct inspection, so are the first
three terms on the right-hand side. We conclude that

1

S

Z S

S0

w�.�0; s/ ds � Cb (160)

for some constant Cb independent of �0 2 Œ0; b� and S � S0. Then, for any pair �1; �2 2
UV \ Œ0; b� with �1 < �2,

0 � W.�2/ �W.�1/ D lim
S!1

1

S

Z S

S0

w.�2; s/ ds � lim
S!1

1

S

Z S

S0

w.�1; s/ ds

D lim
S!1

1

S

Z S

S0

Z �2

�1

w�.�; s/ d� ds

D lim
S!1

Z �2

�1

1

S

Z S

S0

w�.�; s/ ds d�

� Cbj�2 � �1j: (161)
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Due to (152), we conclude that W is locally Lipschitz continuous, defined on UV D
RC, and nondecreasing. In particular, V.˛/ is well defined and strictly positive. To see
the latter, suppose the contrary, i.e., that V.˛/ D 0. Then Lemma 15 (ii) implies that
p.x; t/ D 0 for all x large enough. It follows that we can take  D 0 in Theorem 11
to conclude that V D ˆ0, contradicting V.˛/ D 0.

Since V.˛/>0, there is a neighborhood I D .�0; �1/� .0;˛/ such that V > 1
2
V.˛/>0

on I . Further, set

vC.�IS0/ D sup
s�S0

v.�; s/; (162a)

v�.�IS0/ D inf
s�S0

v.�; s/; (162b)

and choose S�0 large enough such that v�.�0; S�0 / >
1
2
V.�0/ > 0. Since u �  is non-

increasing in time in x–t coordinates and ‰ is constant on I , we have vC.�I S0/ �
v�.�IS0/�

1
2
V.�0/ for all S0 � S�0 and � 2 I . Take g 2H 1.R/ with suppg � I . Noting

that, due to (10), q.�; s/ D p�.�s/, we estimate

A.S IS0; g/ D

Z �1

�0

2

S

Z S

S0

s2p�.�s/v.�; s/g.�/ ds d�

�

Z �1

�0

g.�/vC.�IS0/
2

S

Z S

S0

s2p�.�s/ ds d�

D

Z �1

�0

g.�/

�3
vC.�IS0/

2

S

Z S�

S0�

�2p�.�/ d� d�

�

Z �1

�0

2g.�/

�3
vC.�IS0/ d�

1

S

Z S�1

0

�2p�.�/ d� (163)

where, in the second equality, we have used the change of variables � D s�. Taking
lim infS!1, we infer that

lim
S!1

A.S IS0; g/ � 
��1

Z �1

�0

2g.�/

�3
vC.�IS0/ d�; (164)

where

� D lim inf
S!1

1

S

Z S

0

�2p�.�/ d�: (165)

Similarly,

A.S IS0; g/ �

Z �1

�0

g.�/v�.�IS0/
2

S

Z S

S0

s2p�.�s/ ds d�

D

Z �1

�0

g.�/

�3
v�.�IS0/

2

S

Z S�

S0�

�2p�.�/ d� d�

�

Z �1

�0

2g.�/

�3
v�.�IS0/ d�

1

S

Z S�0

S0�1

�2p�.�/ d�; (166)
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so that

lim
S!1

A.S IS0; g/ � 
C�0

Z �1

�0

2g.�/

�3
v�.�IS0/ d� (167)

with

C D lim sup
S!C1

1

S

Z S

0

�2p�.�/ d� � �: (168)

Equation (167) also implies that C <1. Since the bounds (164) and (167) are valid for
arbitrary S0 � S�0 , we can now let S0 !1, so that

C�0

Z �1

�0

2g.�/

�3
V.�/ d� � ��1

Z �1

�0

2g.�/

�3
V.�/ d�: (169)

Since V > 0 on I , we can divide out the integral to conclude that C�0 � ��1. Further,
we can take �0 and �1 arbitrarily close to each other by taking a test function g with
arbitrarily narrow support, so that C D � and both are equal to

 D lim
S!1

1

S

Z S

0

�2p�.�/ d� <1: (170)

To proceed, we define

�.x/ D x

Z 1
x

p�.�/ d� (171)

as in the proof of Theorem 11, introduce its average

x�.x/ D
1

x

Z x

0

�.�/ d�; (172)

and set

h.x/ D
1

x

Z x

0

�2p�.�/ d�: (173)

In (170), we have already shown that h.x/ !  as x ! 1. It remains to prove that
�.x/!  as well. We first note that p� is integrable so that � is well defined. To see this,
we writeZ x

1

p�.�/ d� D
Z x

1

1

�2
�2p�.�/ d� D

h.x/

x
� h.1/C 2

Z x

1

h.�/

�2
d�; (174)

where we have integrated by parts, noting that xh.x/ is an antiderivative of x2p�.x/. As
h.x/ converges and p� is nonnegative, p� is integrable on RC.

Next, by direct calculation,

�2p�.�/ D �.�/ � �� 0.�/: (175)

Inserting this expression into the definition of h and integrating by parts, we find that

h.x/ D 2x�.x/ � �.x/: (176)
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First, divide (176) by x and observe that h.x/=x and �.x/=x both converge to zero as
x !1. Consequently,

lim
x!1

x�.x/

x
D 0: (177)

Second, note that (176) can be written in the form

h.x/

x2
D �

d
dx

x�.x/

x
: (178)

Integrating from x to1 and using (177), we find that

x�.x/ D x

Z 1
x

h.�/

�2
d�: (179)

Since h.x/ !  , this expression converges to  by l’Hôpital’s rule. Thus, by (176),
�.x/ !  as well. We recall that, due to [17, Lemma 3.5], p has at least one nonde-
generate precipitation region, so p is nonzero. Hence, we can finally apply Theorem 16
which asserts uniform convergence of u to ˆ .

We summarize the results of this section in the following theorem.

Theorem 18. Let .u;p/ be a weak solution to (3) with u� <‰.˛/. Assume that p satisfies
condition (P). Then the following statements are equivalent:

(i) lim
x!1

1

x

Z x

0

�2p�.�/ d� D  ;

(ii) lim
x!1

x

Z 1
x

p�.�/ d� D  ;

(iii) u converges uniformly to ˆ with ˆ .˛/ D u� if  > 0 and 0 < ˆ .˛/ � u� if
 D 0;

(iv) u converges to some limit profile V pointwise a.e. in �–s coordinates.

Proof. Statement (ii) implies (iii) by Theorem 16, and (iii) trivially implies (iv). Con-
versely, (iv) implies (i) and (i) implies (ii) by Theorem 17 and its proof.

A. Numerical scheme for the HHMO-model

To solve the model (3) numerically, it is convenient to definew D v �‰, where v satisfies
the HHMO-model in �–s coordinates, equation (13), and ‰ is the self-similar solution
without precipitation from Section 2. Then w solves the equation

sws � �w� D 2w�� � 2s
2qŒ�; s�.‰ C w/; (180a)

w�.0; s/ D 0 for s > 0; (180b)

w.�; s/! 0 as �!1 for s > 0: (180c)
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We take N cells on the interval Œ0; ˛� of width �� D ˛=N and extend the domain of
computation to the right up to a total of Nfull D 6N grid cells. (The factor 6 is empirical,
but works robustly due to the rapid decay of the concentration field.) Thus, the spatial
nodes are given by �i D i�� for i D 0; : : : ; Nfull � 1.

In time, we run M steps up to a total time s D S , so that �s D S=M . Setting sj D
j�s, we write wji to denote the numerical approximation to w.�i ; sj /, q

j
i to denote the

numerical approximation to q.�i ; sj /, and set ‰i D ‰.�i /. We use implicit first-order
timestepping, a first-order upwind finite difference for the advection term, and the standard
second-order finite difference approximation for the Laplacian, i.e.,

w��.�i ; sj / �
w
j
iC1 � 2w

j
i C w

j
i�1

��2
; (181a)

w�.�i ; sj / �
w
j
iC1 � w

j
i

��
; (181b)

ws.�i ; sj / �
w
j
i � w

j�1
i

�s
: (181c)

The Neumann boundary condition at � D 0 is approximated by

w
j
�1 D w

j
0 (181d)

and the decay condition is approximated by the homogeneous Dirichlet condition

w
j
6NC1 D 0: (181e)

The precipitation term is treated explicitly. Altogether, this leads to the system of equations
Ajwj D bj�1, where Aj is a tridiagonal matrix with coefficients

a
j
i;i D j C i C 4=��

2 for i D 0; : : : ; Nfull � 1; (182a)

a
j
i;i�1 D �2=��

2 for i D 1; : : : ; Nfull � 1; (182b)

a
j
i;iC1 D �i � 2=��

2 for i D 1; : : : ; Nfull � 2; (182c)

a
j
0;1 D �4=��

2; (182d)

and bj�1 is a vector with coefficients

b
j�1
i D jw

j�1
i � 2j 2�s2q

j�1
i .‰i C w

j�1
i / for i D 0; : : : ; Nfull � 1: (182e)

It remains to determine an expression for the qji . Note that once q.�0; s0/ equals 1 at
some point .�0; s0/, it will remain 1 along the characteristic curve �s D �0s0 for all s � s0.
This gives rise to the following simple consistent transport scheme.

We first consider spatial indices i � N . In this region we observe that whenever
u
j
i > u

�, the maximum principle for the continuum problem implies that u exceeds the
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precipitation threshold on some curve contained in the region ¹s � sj º, which connects
the point .�i ; sj / with the line � D ˛. This implies that qj

k
D 1 for all N � k � i . Conse-

quently, we only need to track the largest index I j where precipitation takes place and set
q
j

k
D 1 for k D N; : : : ; I j . To do so, observe that precipitation takes place either when u

exceeds the threshold, or when a cell lies on a characteristic curve where precipitation has
taken place at the previous time step. This leads to the expression

I j D max
®
max¹k W uj

k
> u�º; bI j�1.j � 1/=j c

¯
: (183)

Second, for spatial indices i < N corresponding to � < ˛, we only need to transport
the values of the precipitation function along the characteristic curves. We note that the
characteristic curves define a map from the temporal interval Œ0; s� at � D ˛ to the spatial
interval Œ0; ˛� at time s D j�s. This map scales each grid cell by a factor N=j . We distin-
guish two subcases. For fixed time index j � N , a temporal cell is mapped onto at least
one full spatial cell. Thus, we can use a simple backward lookup as follows. Let

J.i I j / D bi j
N
c (184)

be the time index in the past that corresponds best to spatial index i . Then we set

q
j
i D q

J.i Ij /
N : (185)

For a fixed time index j > N , we do a forward mapping, i.e., we define the inverse
function to (184),

	.kI j / D dkN
j
e; (186)

which represents the spatial index that the cell with past time index k and spatial index N
has moved to, and set

q
j
i D

N

j

X
	.kIj /Di

qkN : (187)

Note that this expression can yield values for qji outside the unit interval, which is not a
problem as the integral over the entire interval is represented correctly. To implement this
efficiently in code, we keep a running sum

Qj D

jX
kD0

qkN ; (188)

which can be updated incrementally, and write

q
j
i D

N

j
.QJ.iC1Ij / �QJ.i Ij //: (189)

This expression is equivalent to (187).
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B. Weak formulation in similarity coordinates

In the following, we provide the details of changing to the weak formulation in similarity
coordinates. By formal computation, for an arbitrary function h,

ht D �
1

2
h�

x

t3=2
C
1

2
hs

1
p
t
D �

�

2s2
h� C

1

2s
hs; (190a)

hx D h�
1
p
t
D
1

s
h�; (190b)

and the Jacobian of the change of variables reads

@.x; t/

@.�; s/
D

ˇ̌̌̌
s �

0 2s

ˇ̌̌̌
D 2s2: (190c)

Now, take the weak formulation of the HHMO-model (19), and replace the partial deriva-
tives 't , 'x , and .u �  /x in terms of 's , '� , and .v � ‰/� according to (190). This
yieldsZ pT

0

Z
R
.s's � �'�/.v �‰/ d� ds D 2

Z pT
0

Z
R
..v �‰/�'� C s

2qv'/ d� ds: (191)

We can extend the class of admissible test functions to product test functions of the form

'.�; s/ D f .�/�.s/; (192)

where f 2H 1.R/ with compact support and � 2H 1.R/ with compact support in .0;1/
by density. Inserting ' into (191) and setting w D v �‰, we obtainZ pT

0

Z
R
.sf�s � �f� �/w d� ds D 2

Z pT
0

Z
R
.w�f��C s

2qvf�/ d� ds: (193)

Fix 0 < S0 < S <
p
T and let � 2 H 1.RC/ be the test function with derivative

�s.s/ D

8̂<̂
:
"�1 for s 2 Œ�"C S0; S0�;

�"�1 for s 2 ŒS; S C "�;

0 otherwise:

(194)

Finally, insert this expression into (193) and let " & 0. This implies that w is a weak
solution to the HHMO-model in similarity variables if

S0

Z
R
w.�; S0/f .�/ d� � S

Z
R
w.�; S/f .�/ d� �

Z S

S0

Z
R
�f�w d� ds

D 2

Z S

S0

Z
R
.w�f� C s

2qvf / d� ds (195)

for all 0 < S0 < S <
p
T and f 2 H 1.R/ with compact support.
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