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Abstract. In this paper we show global well-posedness near vacuum for the binary–ternary Boltz-
mann equation. The binary–ternary Boltzmann equation provides a correction term to the classical
Boltzmann equation, taking into account both binary and ternary interactions of particles, and may
serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of
the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow
as special cases. To prove global well-posedness, we use a Kaniel–Shinbrot iteration and related
work to approximate the solution of the non-linear equation by monotone sequences of super-
solutions and subsolutions. This analysis required establishing new convolution-type estimates to
control the contribution of the ternary collisional operator to the model. We show that the ternary
operator allows consideration of softer potentials than the one binary operator, and consequently
our solution to the ternary correction of the Boltzmann equation preserves all the properties of the
binary interactions solution. These results are novel for collisional operators of monoatomic gases
with either hard or soft potentials that model both binary and ternary interactions.

1. Introduction

We study global-in-time well-posedness near vacuum of the Cauchy problem for an exten-
sion of the classical Boltzmann transport equation (BTE) for monoatomic binary inter-
actions gases that includes ternary interactions. This equation, which can be viewed as
a model of a denser gas dynamics, has been recently introduced by two of the authors
in [5], who rigorously derived, from finitely many particle dynamics, the purely ternary
model for the case of hard potential interactions zone for short times. Moreover, it is seen
in [3] that the ternary collisional operator derived in [5] has the same conservation laws
and entropy production properties as the classical binary operator, which justifies that the
introduced ternary term can serve as a higher-order correction to the Boltzmann equation.
Such rigorous derivation of the full binary–ternary model is a work in progress ([4]). Let
us also mention that Maxwell models with multiple particle interactions have been studied
in [7, 8] for the space homogeneous case via Fourier transform methods.
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In this paper we provide the first rigorous analytical result that shows global-in-time
existence and uniqueness of mild solutions near vacuum to the binary–ternary model
and the purely ternary model on its own. By mild solutions we mean that the x-space
dependence of the solution is evaluated along the characteristic curves given by the Hamil-
tonian evolution of the particle system in between collisions (denoted by f #, which is
introduced in Section 2.2). The analytical techniques we use are inspired by the works
[6, 13, 14, 16, 19, 20] and the more recent work of [1, 2]. These techniques rely on finding
convergent supersolutions and subsolutions to the strong form of (1.1) in the associated
strong topology of space–velocity Maxwellian weighted in L1-functions.

The binary–ternary Boltzmann transport equation we focus on is given by´
@tf C v � rxf D Q2.f; f /CQ3.f; f; f /; .t; x; v/ 2 .0;1/ �Rd �Rd ;

f .0/ D f0; .x; v/ 2 Rd �Rd ;
(1.1)

and describes the evolution of the probability density f of a dilute gas in non-equilibrium
in Rd , d � 2, given an initial condition f0WRd �Rd ! R, when both binary and ternary
interactions among particles can occur. The operator Q2.f; f / is the classical binary col-
lisional operator, which expresses binary elastic interactions between particles, and is of
quadratic order, while the operator Q3.f; f; f / is the ternary collisional operator which
expresses ternary interactions among particles, and is of cubic order. For the exact forms
of the operators Q2.f; f /, Q3.f; f; f / used in this paper, see (2.1), (2.14) respectively.
We should mention that the purely ternary model, rigorously derived for short times in
[5], is given by´

@tf C v � rxf D Q3.f; f; f /; .t; x; v/ 2 .0;1/ �Rd �Rd ;

f .0/ D f0; .x; v/ 2 Rd �Rd :
(1.2)

We refer to (1.2) as the ternary Boltzmann transport equation.
For the classical Boltzmann transport equation´

@tf C v � rxf D Q2.f; f /; .t; x; v/ 2 .0;1/ �Rd �Rd ;

f .0/ D f0; .x; v/ 2 Rd �Rd ;
(1.3)

one way to obtain global well-posedness near vacuum is by utilizing an iterative scheme
that constructs monotone sequences of supersolutions and subsolutions that converge to
the global solution of (1.3). This has been carried out for the first time by Illner and
Shinbrot ([13]), who were motivated by the work of Kaniel and Shinbrot ([14]), who
in turn showed local-in-time well-posedness for (1.3) following this program. Later, this
work was extended by Bellomo and Toscani ([6]) , Toscani ([19, 20]) and Palczewski and
Toscani ([16]) to include a wider range of potentials and to relax assumptions on initial
data. Alonso and Gamba ([2]) used Kaniel–Shinbrot iteration to derive distributional and
classical solutions to (1.3) for soft potentials for large initial data near two sufficiently
close Maxwellians in position and velocity space, while Alonso ([1]) used this technique
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to study the inelastic Boltzmann equation for hard spheres. Strain ([18]) remarks that
the estimates he derives can be combined with the Kaniel–Shinbrot iteration to obtain
existence of a unique mild solution for the relativistic Boltzmann equation.

Kaniel–Shinbrot iteration is also an important tool for proving non-negativity of solu-
tions; see for example [9, 10, 17]. Also, when initial data has decay in the direction of
x � v as opposed to x and v separately, Kaniel–Shinbrot iteration can be used to construct
solutions with infinite energy; see for example [15, 23, 24].

Certain problems have been solved by considering modifications of the Kaniel–
Shinbrot iteration. For example, Bellomo and Toscani ([21]) adapted the iteration to the
Boltzmann–Enskog equation. Ha, Noh and Yun ([12]) and Ha and Noh ([11]) also modi-
fied the iteration to prove global existence of mild solutions to the Boltzmann system for
gas mixtures in the elastic and the inelastic cases respectively. Also, Wei and Zhang ([22])
used another modified iteration to obtain eternal solutions for the Boltzmann equation.

The goal of this paper is to establish global existence and uniqueness of a mild solution
near vacuum to the binary–ternary Boltzmann equation (1.1) in spaces of non-negative
functions bounded by a Maxwellian. Moreover, solution of (1.2) follows as a special case.
Inspired by [2, 13, 14], we devise an iterative scheme that constructs monotone sequences
of supersolutions and subsolutions to (1.1). For small enough initial data, the beginning
condition of the iteration holds globally in time and the two sequences can be shown to
converge to the same limit, namely a function f that solves equation (1.1) in a mild sense.
This strategy requires new ideas given the fact that ternary interactions are also taken into
account in (1.1).

In particular, due to the presence of the ternary correction term, one needs to prop-
erly adapt the iteration, so that the corresponding supersolutions and subsolutions remain
monotone and convergent. One of the main tools is stated in Lemma 3.2, which provides
important exponentially weighted convolution estimates. This lemma not only recovers
the estimates developed in [2] for the binary interaction case, but also develops a new
approach in order to treat the ternary interaction case. Lemma 3.2 is crucially used to
obtain uniform-in-time, space–velocity L1-bounds that control the ternary gain and loss
terms (L1L1 estimates). In fact, using Lemma 3.2 one first obtains asymmetric estimates
(see Lemma 3.3) because of the asymmetry introduced by the ternary collisional operator,
which is not present in the binary case. However, to obtain convergence, it is essential to
have symmetry with respect to the inputs of the gain and loss operators. We were able to
achieve this symmetrization in Proposition 3.4. Finally, we also use Lemma 3.2 to prove a
global estimate for the time average of the gain and loss operators along the characteristics
of the Hamiltonian, see Proposition 3.7. With this, we were able to extend the argument
for controlling the binary time integrals of both gain and loss terms (see [2]) to the ternary
case by invoking properties of ternary interactions and a two-dimensional analog of the
time integration bound for a traveling Maxwellian.

With these tools in hand, for small initial data, the constructed iteration scheme is
proved to converge to the unique, global-in-time mild solution of (1.1). For more details
see Sections 4 and 5.
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Organization of the paper

In Section 2 we review the binary and ternary collisional operators and decompose them
into gain and loss forms. We then introduce some necessary notation and state our main
result (Theorem 2.10). In Section 3 we prove the convolution estimate and derive essential
bounds for the gain and loss operators. In Section 4 we inductively construct monotone
sequences of supersolutions and subsolutions which are shown to converge to a common
limit that solves the binary–ternary Boltzmann equation (1.1), as long as a beginning con-
dition is satisfied. Finally, in Section 5 we provide the proof of our main result (Theorem
2.10).

2. Towards the statement of the main result

The goal of this section is to present the precise statement of the main result of this paper.
In order to do so, we first review the collisional operators and decompose them to gain
and loss form in Section 2.1, introduce necessary notation and the notion of a solution in
Section 2.2, and then state the main result in Section 2.3 (Theorem 2.10).

2.1. Collisional operators

2.1.1. Binary collisional operator. The binary collisional operator is given by

Q2.f; f /.t; x; v/ (2.1)

D

Z
Sd�1�Rd

B2.u; !/
�
f .t; x; v0/f .t; x; v01/ � f .t; x; v/f .t; x; v1/

�
d! dv1;

where
u WD v1 � v (2.2)

is the relative velocity of a pair of interacting particles centered at x; x1 2 Rd , with veloc-
ities v; v1 2 Rd before the binary interaction with respect to the impact direction

! WD
x1 � x

jx � x1j
2 Sd�1; (2.3)

and
v0 WD v C .! � u/!; v01 WD v1 � .! � u/! (2.4)

are the outgoing velocities after the binary interaction.
One can easily verify the binary energy–momentum conservation system is satisfied:

v0 C v01 D v C v1; (2.5)

jv0j2 C jv01j
2
D jvj2 C jv1j

2: (2.6)

Either (2.4) or (2.5)–(2.6) imply

ju0j D juj; where u0 WD v01 � v
0: (2.7)
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In addition, equation (2.4) yields the specular reflection with respect to the impact direc-
tion !:

! � u0 D �! � u: (2.8)

In fact, it is not hard to show that, given v; v1 2 Rd , expression (2.4) gives the general
solution of system (2.5)–(2.6), parametrized by ! 2 Sd�1. The factor B2 in the integrand
of (2.1) is referred to as the binary interaction differential cross-section, which depends
on relative velocity u and the impact direction !. It expresses the transition probability of
binary interactions, and we assume it is of the form

B2.u; !/ D juj

2b2. Ou � !/; 
2 2 .�d C 1; 1�; (2.9)

where Ou D u
juj
2 Sd�1 is the relative velocity direction and b2W Œ�1; 1�! Œ0;1/ is the

binary angular transition probability density. It is worth mentioning that the case 
2 2 .0;1�
corresponds to hard potentials, the case 
2 2 .�d C 1; 0/ corresponds to soft potentials
and the case 
2 D 0 corresponds to Maxwell molecules.

We assume that the binary angular transition probability density b2 satisfies the fol-
lowing properties:

• b2W Œ�1; 1�! R is a measurable, non-negative probability density.

• b2 is even, i.e.
b2.�z/ D b2.z/ 8z 2 Œ�1; 1�; (2.10)

which, due to the property from (2.8), yields the binary micro-reversibility condition

b2. Ou
0
� !/ D b2. Ou � !/ 8! 2 Sd�1; 8v; v1 2 Rd ; (2.11)

where Ou0 D u0

juj
2 Sd�1 is the scattering direction. In addition, relations (2.7), (2.9) and

(2.11) yield

B2.u
0; !/ D B2.u; !/ 8! 2 Sd�1; 8v; v1 2 Rd : (2.12)

• The probability density is integrable on the sphere; i.e. for any fixed Ou we have
b2. Ou �!/ 2 L

1.Sd�1/ or, equivalently, b2.z/.1� z2/
d�3
2 2 L1.Œ�1; 1�/, for z D Ou �!,

and

kb2kL1.Sd�1/ D jS
d�2
j

Z 1

�1

jb2.z/j.1 � z
2/

d�3
2 dz <1; (2.13)

where jSd�2j is the volume of the .d � 2/-dimensional sphere.

Remark 2.1. The integrability condition on b2 is weaker than the classical Grad cut-off
assumption, which assumes b2 is a bounded function of z D Ou � !. So our result is valid
for a broader class of angular transition probability measures.

Remark 2.2. One can see that the usual hard sphere model is a special case of the form
(2.9) for


2 D 1; b2.z/ D
jzj

2
:
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2.1.2. Ternary collisional operator. The ternary collisional operator is given by (see [5]
for details)

Q3.f; f; f /.t; x; v/

D

Z
S2d�1�R2d

B3.u;!/
�
f .t; x; v; v�/f .t; x; v; v�1 /f .t; x; v; v

�
2 /

� f .t; x; v/f .t; x; v1/f .t; x; v2/
�
d!1 d!2 dv1 dv2; (2.14)

where

u WD

�
v1 � v

v2 � v

�
2 R2d (2.15)

is the relative velocity of some colliding particles centered at x; x1; x2 2 Rd , with veloc-
ities v; v1; v2 2 Rd before the ternary interaction with respect to the impact directions
vector

! D

�
!1
!2

�
WD

1p
jx � x1j2 C jx � x2j2

�
x1 � x

x2 � x

�
2 S2d�1; (2.16)

and

v� D v C
!1 � .v1 � v/C !2 � .v2 � v/

1C !1 � !2
.!1 C !2/;

v�1 D v1 �
!1 � .v1 � v/C !2 � .v2 � v/

1C !1 � !2
!1;

v�2 D v2 �
!1 � .v1 � v/C !2 � .v2 � v/

1C !1 � !2
!2

(2.17)

are the outgoing velocities of the particles after the ternary interaction. It can be easily
seen that if v�, v�1 , v�2 are given by (2.17), the ternary energy–momentum conservation
system

v� C v�1 C v
�
2 D v C v1 C v2; (2.18)

jv�j2 C jv�1 j
2
C jv�2 j

2
D jvj2 C jv1j

2
C jv2j

2 (2.19)

is satisfied. Expressions (2.18)–(2.19) also imply the ternary velocities conservation law

jv� � v�1 j
2
C jv� � v�2 j

2
C jv�1 � v

�
2 j
2
D jv � v1j

2
C jv � v2j

2
C jv1 � v2j

2: (2.20)

For the postcollisional relative velocity, we will write

u� WD

�
v�1 � v

�

v�2 � v
�

�
; (2.21)

and let us also define the quantities

j Quj WD
p
jv � v1j2 C jv � v2j2 C jv1 � v2j2; (2.22)

j Qu�j WD

q
jv� � v�1 j

2 C jv� � v�2 j
2 C jv�1 � v

�
2 j
2: (2.23)
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Then (2.20) can be written as
j Quj D j Qu�j; (2.24)

which is the ternary analog of the binary expression (2.7). Defining

Nu WD
u

j Quj
; Nu� WD

u�

j Quj
; (2.25)

equality (2.20) implies Nu; Nu� 2 E2d�1, where

E2d�1 WD
®
.�1; �2/ 2 R2d W j�1j

2
C j�2j

2
C j�1 � �2j

2
D 1

¯
(2.26)

is a .2d � 1/-dimensional ellipsoid. The vectors Nu, Nu� are the ternary analogs of the rela-
tive velocity direction and the scattering direction of the binary interaction. Because of the
asymmetry of the ternary interaction they are not unit vectors, but they lie on the ellipsoid
E2d�1 instead. However, for convenience we will refer to Nu, Nu� as the relative velocity
direction and scattering direction respectively.

The collisional formulas (2.17) also imply

! � Nu� D �! � Nu; (2.27)

which is the ternary analog to specular reflection with respect to the impact directions
vector ! D .!1; !2/ 2 S2d�1. Indeed, one has

! � u� D !1 � .v
�
1 � v

�/C !2 � .v
�
2 � v

�/

D u �! �
2u �!

1C !1 � !2
.j!1j

2
C !1 � !2 C j!2j

2/ D �! � u;

which is equivalent to (2.27) due to (2.25).
The termB3 in the integrand of (2.14), depending on the relative velocity u 2R2d and

the impact directions vector ! D .!1; !2/ 2 S2d�1, is the ternary interaction differential
cross-section, which describes the transition probability of ternary interactions. Recalling
j Quj from (2.22) and Nu 2 E2d�1 from (2.25), we assume B3 takes the form

B3.u;!/ D j Quj

3b3. Nu �!; !1 � !2/; 
3 2 .�2d C 1; 1�; (2.28)

and b3W Œ�1; 1� � Œ�12 ;
1
2
�! Œ0;1/ is the ternary angular transition probability density.

Since ! D .!1; !2/ 2 S2d�1, the Cauchy–Schwarz inequality and (2.22) yield

j Nu �!j � j Nuj � j!j D
juj

j Quj
� 1: (2.29)

Moreover, for any ! D .!1; !2/ 2 S2d�1, the Cauchy–Schwarz inequality followed
by Young’s inequality yields

j!1 � !2j � j!1j � j!2j �
j!1j

2 C j!2j
2

2
D
1

2
:

Therefore, for any ! D .!1; !2/ 2 S2d�11 , the expression b3. Nu � !; !1 � !2/ is well
defined.
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In addition, we assume that b3 satisfies the following properties:

• b3W Œ�1; 1� � Œ�
1
2
; 1
2
�! R is a measurable, non-negative probability density.

• b3 is even with respect to the first argument, i.e.

b3.�z; w/ D b3.z; w/ 8.z; w/ 2 Œ�1; 1� � Œ�
1
2
; 1
2
�: (2.30)

In addition, due to (2.27), the ternary micro-reversibility condition holds:

b3. Nu
�
�!; !1 � !2/ D b3. Nu �!; !1 � !2/ 8! 2 S2d�1; 8v; v1; v2 2 Rd ; (2.31)

and relations (2.28), (2.25) and (2.31) imply the total ternary collision kernel satisfies

B3.u
�;!/ D B3.u;!/ 8! 2 S2d�1; 8v; v1; v2 2 Rd : (2.32)

• The probability density b3 is integrable on S2d�1, i.e.

kb3kL1.S2d�1/ WD sup
�2E2d�11

Z
S2d�1

b3.� �!; !1 � !2/ d! <1: (2.33)

Remark 2.3. One can see that the ternary operator introduced in [5] is a special case of
(2.28) for


3 D 1; b3.z; w/ D
1

2

jzj
p
1C w

:

Remark 2.4. Throughout the paper we assume that at least one of b2, b3 is not trivially
zero; one of the two, however, could be zero. If b3 D 0we recover the classical Boltzmann
equation (1.3), while if b2 D 0 we recover the ternary Boltzmann equation (1.2). As will
become clear, see for instance (2.77), the dependence on the sizes of b2 and b3 is additive,
implying that the two collisional operators can be studied separately.

2.1.3. Gain and loss operators. It turns out to be more convenient to study the more
general collisional operators

Q2.f; g/.t; x; v/ (2.34)

D

Z
Sd�1�Rd

B2.u; !/
�
f .t; x; v0/g.t; x; v01/ � f .t; x; v/g.t; x; v1/

�
d! dv1;

Q3.f; g; h/.t; x; v/ (2.35)

D

Z
S2d�1�R2d

B3.u;!/
�
f .t; x; v�/g.t; x; v�1 /h.t; x; v

�
2 /

� f .t; x; v/g.t; x; v1/h.t; x; v2/
�
d!1 d!2 dv1 dv2:

Due to assumptions (2.13), (2.33), the binary–ternary operator Q2.f; g/ CQ3.f; g; h/
can be decomposed into a gain and a loss term as

Q2.f; g/CQ3.f; g; h/ D G.f; g; h/ � L.f; g; h/; (2.36)
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where

L.f; g; h/ D L2.f; g/C L3.f; g; h/; (2.37)

G.f; g; h/ D G2.f; g/CG3.f; g; h/: (2.38)

The binary gain and loss operators G2, L2 are given by

G2.f; g/.t; x; v/ D

Z
Sd�1�Rd

B2.u; !/f .t; x; v
0/g.t; x; v01/ d! dv1; (2.39)

L2.f; g/.t; x; v/ D

Z
Sd�1�Rd

B2.u; !/f .t; x; v/g.t; x; v1/ d! dv1; (2.40)

and are clearly bilinear. The ternary gain and loss operators L3, G3 are given by

G3.f; g; h/.t; x; v/ D

Z
S2d�1�R2d

B3.u;!/f .t; x; v
�/g.t; x; v�1 /

� h.t; x; v�2 / d!1 d!2 dv1 dv2; (2.41)

L3.f; g; h/.t; x; v/ D

Z
S2d�1�R2d

B3.u;!/f .t; x; v/g.t; x; v1/

� h.t; x; v2/ d!1 d!2 dv1 dv2; (2.42)

and are clearly trilinear. Notice the loss term can be factorized as

L.f; g; h/ D fR.g; h/; (2.43)

where R is given by
R.g; h/ WD R2.g/CR3.g; h/; (2.44)

R2 is the linear operator

R2.g/.t; x; v/ WD

Z
Sd�1�Rd

B2.u; !/g.t; x; v1/ d! dv1 (2.45)

and R3 is the bilinear operator

R3.g; h/.t; x; v/ WD

Z
S2d�1�R2d

B3.u;!/g.t; x; v1/h.t; x; v2/ d!1 d!2 dv1 dv2: (2.46)

2.2. Some notation and the notion of a solution

Throughout the paper, the dimension d � 2, the binary and ternary integrability assump-
tions (2.13), (2.33) respectively, and the cross-section exponents


2 2 .�d C 1; 1�; 
3 2 .�2d C 1; 1�; (2.47)

appearing respectively in (2.9), (2.28), will be fixed. Moreover, Cd denotes a general
constant depending on the dimension d and can change value.
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2.2.1. Functional spaces. Let us introduce the functional spaces used in this paper. First,
in order to point out the dependence on positions and velocities, we will use the notation

L1x;v WD L
1.Rd �Rd /; (2.48)

L1x;v WD L
1.Rd �Rd /: (2.49)

We also define the sets of space–velocity functions

Fx;v WD
®
f W Rd �Rd ! xR; such that f is measurable

¯
; (2.50)

FCx;v WD
®
f 2 Fx;v W f .x; v/ � 0; for a.e. .x; v/ 2 Rd �Rd

¯
; (2.51)

L1;Cx;v WD L
1
x;v \ F

C
x;v: (2.52)

In general, for f;g 2 Fx;v , we write f � g iff f .x;v/� g.x;v/ for a.e. .x;v/ 2Rd �Rd .
The same notation will hold for equality as well.

Given ˛; ˇ > 0, we define the corresponding (non-normalized) Maxwellian M˛;ˇ W

Rd �Rd ! .0;1/ by
M˛;ˇ .x; v/ WD e

�˛jxj2�ˇ jvj2 : (2.53)

We also define the corresponding Banach space of functions essentially bounded byM˛;ˇ

as
M˛;ˇ WD

®
f 2 Fx;v W kf kM˛;ˇ

<1
¯
; (2.54)

where
kf kM˛;ˇ

WD kfM�1˛;ˇkL1x;v :

We will write fn
M˛;ˇ
���! f if

fn
a.e.
��! f and sup

n2N
kfnkM˛;ˇ

<1: (2.55)

It is clear that if fn
M˛;ˇ
���! f then fn 2M˛;ˇ for all n 2 N and f 2M˛;ˇ . If k 2 N and

f1;n
M˛;ˇ
���! f1, f2;n

M˛;ˇ
���! f2; : : : ; fk;n

M˛;ˇ
���! fk , we will write

.f1;n; : : : ; fk;n/
M˛;ˇ

���! .f1; : : : ; fk/:

We also define the set of a.e. non-negative functions essentially bounded by M˛;ˇ as

MC
˛;ˇ
WDM˛;ˇ \ F

C
x;v: (2.56)

Given 0 < T � 1, we define the sets of time-dependent functions

FT WD ¹f W Œ0; T /! Fx;vº; (2.57)

F CT WD ¹f W Œ0; T /! FCx;vº; (2.58)

and given f; g 2 FT , we will write f � g iff f .t/ � g.t/ for all t 2 Œ0; T /. The same
notation will hold for equalities as well.
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Finally, we define the following subsets of functional spaces:

C 0.Œ0; T /; L1;Cx;v / WD C
0.Œ0; T /; L1x;v/ \ F CT ; (2.59)

L1loc.Œ0; T /; L
1;C
x;v / WD L

1
loc.Œ0; T /; L

1
x;v/ \ F CT ; (2.60)

L1.Œ0; T /; L1;Cx;v / WD L
1.Œ0; T /; L1x;v/ \ F CT ; (2.61)

and given ˛; ˇ > 0, we define the Banach space of time-dependent functions uniformly
essentially bounded by M˛;ˇ ,

L1.Œ0; T /;M˛;ˇ / WD ¹f 2 FT W jjjf jjj1 <1º; (2.62)

with norm
jjjf jjj1 D sup

t2Œ0;T /

kf .t/kM˛;ˇ
: (2.63)

Notice that in definition (2.62), the supremum is taken with respect to all t 2 Œ0; T /. We
also write

L1.Œ0; T /;MC
˛;ˇ
/ WD L1.Œ0; T /;M˛;ˇ / \ F CT : (2.64)

2.2.2. Transport operator. We now introduce the transport operator, which will be cru-
cial to define mild solutions to (1.1). Let us recall from (2.50)–(2.51) the sets of functions

Fx;v WD
®
f WRd �Rd ! xR; such that f is measurable

¯
;

FCx;v WD
®
f 2 Fx;v W f .x; v/ � 0; for a.e. .x; v/ 2 Rd �Rd

¯
:

Consider a positive time 0 < T � 1 (we can have T D 1) and recall from (2.57)–
(2.58) the sets of time-dependent functions

FT WD
®
f W Œ0; T /! Fx;v

¯
;

F CT WD
®
f W Œ0; T /! FCx;v

¯
:

Given f 2 FT , we define f # 2 FT by

f #.t; x; v/ WD f .t; x C tv; v/; (2.65)

and f �# 2 FT by
f �#.t; x; v/ WD f .t; x � tv; v/:

Clearly, the operators #WFT ! FT and �#WFT ! FT are linear and invertible and, in
particular,

.#/�1 D �#:

Remark 2.5. Let f;g 2FT . Since the maps .x;v/! .xC tv;v/ and .x;v/! .x � tv;v/

are measure preserving, for all t 2 Œ0; T /, we have

f � g, f #
� g#

, f �#
� g�#:

In particular,
f 2 F CT , f #

2 F CT , f �#
2 F CT : (2.66)
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Remark 2.6. Let f;g 2FT . Since the maps .x;v/! .xC tv;v/ and .x;v/! .x � tv;v/

are measure preserving, for all t 2 Œ0; T /, we have

kf #.t/kL1x;v D kf .t/kL1x;v D kf
�#.t/kL1x;v 8t 2 Œ0; T /: (2.67)

Relations (2.66)–(2.67) and linearity of the transport operator imply

f 2 C 0.Œ0; T /; L1;Cx;v /, f #
2 C 0.Œ0; T /; L1;Cx;v /, f �#

2 C 0.Œ0; T /; L1;Cx;v /: (2.68)

Throughout the manuscript, we will often define f # 2 FT directly, implying that f is
defined by f WD .f #/�#.

2.2.3. Transported gain and loss operators. In order to define mild solutions to (1.1),
it is important to understand the action of the transport operator on the gain and loss
operators. More specifically, given f; g; h 2 FT , for the gain operators we write

G#
2.f; g/.t; x; v/ WD .G2.f; g//

#.t; x; v/

D

Z
Sd�1�Rd

B2.u; !/f .t; x C tv; v
0/g.t; x C tv; v01/ d! dv1;

G#
3.f; g; h/.t; x; v/ WD .G3.f; g; h//

#.t; x; v/

D

Z
S2d�1�R2d

B3.u;!/f .t; x C tv; v
�/g.t; x C tv; v�1 /

� h.t; x C tv; v�2 / d!1 d!2 dv1 dv2;

G#.f; g; h/.t; x; v/ WD G#
2.f; g/.t; x; v/CG

#
3.f; g; h/.t; x; v/; (2.69)

and for the loss operators we write

L#
2.f; g/.t; x; v/ WD .L2.f; g//

#.t; x; v/

D

Z
Sd�1�Rd

B2.u; !/f .t; x C tv; v/g.t; x C tv; v1/ d! dv1;

L#
3.f; g; h/.t; x; v/ WD .L3.f; g; h//

#.t; x; v/

D

Z
S2d�1�R2d

B3.u;!/f .t; x C tv; v/g.t; x C tv; v1/

� h.t; x C tv; v2/ d!1 d!2 dv1 dv2;

L#.f; g; h/.t; x; v/ WD L#
2.f; g/.t; x; v/C L

#
3.f; g; h/.t; x; v/: (2.70)

Under this notation, it is straightforward to verify that

L#
2.f; g; h/.t/ D f

#.t/R#
2.g/.t/;

L#
3.f; g; h/.t/ D f

#.t/R#
3.g; h/.t/;

L#.f; g; h/.t/ D f #.t/R#.g; h/.t/;

(2.71)
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where

R#
2.g/.t; x; v/ WD .R2.g//

#.t; x; v/ D

Z
Sd�1�Rd

B2.u; !/g.t; x C tv; v1/ d! dv1;

R#
3.g; h/.t; x; v/ WD .R3.g; h//

#.t; x; v/

D

Z
S2d�1�R2d

B3.u;!/g.t; x C tv; v1/h.t; x C tv; v2/ d!1 d!2 dv1 dv2;

R#.g; h/.t; x; v/ WD R#
2.g/.t; x; v/CR

#
3.g; h/.t; x; v/: (2.72)

2.2.4. Notion of a mild solution. Using (2.36), the binary–ternary Boltzmann equation
(1.1) is written as´

@tf C v � rxf D G.f; f; f / � L.f; f; f /; .t; x; v/ 2 .0;1/ �Rd �Rd ;

f .0/ D f0; .x; v/ 2 Rd �Rd ;
(2.73)

where the gain term G.f; f; f / and the loss term L.f; f; f / are given by (2.38)–(2.37)
respectively.

Here is where the importance of the transport operator will become clear. Indeed, using
the chain rule, the initial value problem (2.73) can be formally written as´

@tf
# C L#.f; f; f / D G#.f; f; f /; .t; x; v/ 2 .0;1/ �Rd �Rd ;

f #.0/ D f0; .x; v/ 2 Rd �Rd :
(2.74)

Motivated by (2.74), we aim to define solutions of (1.1) up to time 0 < T � 1, with
respect to a given Maxwellian M˛;ˇ , where ˛; ˇ > 0.

Definition 2.7. Let 0 < T � 1, ˛; ˇ > 0 and f0 2 MC
˛;ˇ

. A mild solution to (1.1) in
Œ0; T /, with initial data f0 2MC

˛;ˇ
, is a function f 2 F CT such that

(i) f # 2 C 0.Œ0; T /; L
1;C
x;v / \ L

1.Œ0; T /;MC
˛;ˇ
/,

(ii) L#.f; f; f /; G#.f; f; f / 2 L1.Œ0; T /; L
1;C
x;v /,

(iii) f # is weakly differentiable and satisfies8<:
df #

dt
C L#.f; f; f / D G#.f; f; f /;

f #.0/ D f0:

(2.75)

Remark 2.8. The differential equation of (2.75) is interpreted as an equality of distribu-
tions since all terms involved belong to L1loc.Œ0; T /; L

1;C
x;v /.

Remark 2.9. Remarks 2.5–2.6 imply that a mild solution f to (1.1) belongs to C 0.Œ0;T /;
L
1;C
x;v /.

2.3. Statement of the main result

Now we are ready to state the main result of the paper.
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Theorem 2.10. Let 0 < T � 1, ˛; ˇ > 0. Then for any initial data f0 2MC
˛;ˇ

with

kf0kM˛;ˇ
<

˛1=2

48Kˇ
�
1C ˛1=4

2
p
6Kˇ

� ; (2.76)

where

Kˇ D Cd

h
kb2kL1.Sd�1/

�
ˇ�d=2 C

1

d C 
2 � 1

�
C kb3kL1.S2d�1/

�
ˇ�d C

1

2d C 
3 � 1

�i
> 0 (2.77)

and Cd is an appropriate constant depending on the dimension d , the binary–ternary
Boltzmann equation (1.1) has a unique mild solution f satisfying the bound

jjjf #
jjj1 �

1 �

r
1 � 48Kˇ˛�1=2

�
1C ˛1=4

2
p
6Kˇ

�
kf0kM˛;ˇ

24Kˇ˛�1=2
�
1C ˛1=4

2
p
6Kˇ

� : (2.78)

Remark 2.11. As we will see, the uniqueness claimed above holds in the class of solu-
tions of (1.1) satisfying (2.78).

Remark 2.12. According to the assumptions on b2, b3 made in Remark 2.4, Theorem
2.10 applies as well to the endpoint cases where either b2 D 0 or b3 D 0 (but not both).
In the case b3 D 0, one recovers the solution of the classical Boltzmann equation (1.3)
constructed in [13], while in the case b2 D 0, one obtains well-posedness of the ternary
Boltzmann equation (1.2) introduced in [5].

3. Properties of the transported gain and loss operators

In this section we investigate properties of the transported gain and loss operators, which
will be important for proving global well-posedness of (1.1).

3.1. Monotonicity and L1-norms

As we will see, the transported gain and loss operators are monotone increasing when
acting on non-negative functions. These monotonicity properties will allow us to construct
monotone sequences of supersolutions and subsolutions to (1.1). Moreover, we show that
the L1-norm of the gain is equal to the L1-norm of the loss. This equality will allow us
to reduce estimates on the norm of the gain term to estimating the norm of the loss term.
In the following, saying that an operator is bilinear/trilinear, we mean it is linear in each
argument, and saying it is monotone increasing, we mean it is increasing in each argument.
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Proposition 3.1. Let 0 < T � 1. Then the following hold:

(i) R#
2WF

C

T ! F CT is linear and monotone increasing.

(ii) L#
2; G

#
2; R

#
3WF

C

T � F CT ! F CT are bilinear and monotone increasing.

(iii) L#
3; G

#
3WF

C

T � F CT � F CT ! F CT are trilinear and monotone increasing.

(iv) L#; G#W F CT � F CT � F CT ! F CT and R#W F CT � F CT ! F CT are monotone
increasing.

(v) For any f; g; h 2 F CT , the following identities hold:

kG#
2.f; g/.t/kL1x;v D kL

#
2.f; g/.t/kL1x;v 8t 2 Œ0; T /;

kG#
3.f; g; h/.t/kL1x;v D kL

#
3.f; g; h/.t/kL1x;v 8t 2 Œ0; T /;

kG#.f; g; h/.t/kL1x;v D kL
#.f; g; h/.t/kL1x;v 8t 2 Œ0; T /:

(3.1)

Proof. Parts (i)–(iv) are immediate by linearity of the integral, positivity of the functions
considered and relation (2.66).

Let us now prove (v). We first prove (3.1) for the binary case. By (2.67) we have

kG#
2.f; g/.t/kL1x;v D kG2.f; g/.t/kL1x;v 8t 2 Œ0; T /;

kL#
2.f; g/.t/kL1x;v D kL2.f; g/.t/kL1x;v 8t 2 Œ0; T /:

Therefore, for any t 2 Œ0; T /, using (2.12) and the involutionary substitution .v0; v01/!
.v; v1/, we obtain

kG#
2.f; g/.t/kL1x;v D kG2.f; g/.t/kL1x;v

D

Z
R3d�Sd�1

B2.u; !/f .t; x; v
0/g.t; x; v01/ d! dv1 dv dx

D

Z
R3d�Sd�1

B2.u
0; !/f .t; x; v0/g.t; x; v01/ d! dv1 dv dx

D

Z
R3d�Sd�1

B2.u; !/f .t; x; v/g.t; x; v1/ d! dv1 dv dx

D kL2.f; g/.t/kL1x;v D kL
#
2.f; g/.t/kL1x;v :

We now prove (3.1) for the ternary case. By (2.67) we have

kG#
3.f; g; h/.t/kL1x;v D kG3.f; g; h/.t/kL1x;v 8t 2 Œ0; T /;

kL#
3.f; g; h/.t/kL1x;v D kL3.f; g; h/.t/kL1x;v 8t 2 Œ0; T /:

Therefore, for any t 2 Œ0;T /, using (2.32) and the involutionary substitution .v�;v�1 ;v
�
2 /!

.v; v1; v2/, we obtain

kG#
3.f; g; h/.t/kL1x;v D kG3.f; g; h/.t/kL1x;v

D

Z
R4d�S2d�1

B3.u;!/f .t; x; v
�/g.t; x; v�1 /h.t; x; v

�
2 / d!1 d!2 dv1 dv2 dv dx
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D

Z
R4d�S2d�1

B3.u
�;!/f .t; x; v�/g.t; x; v�1 /h.t; x; v

�
2 / d!1 d!2 dv1 dv2 dv dx

D

Z
R4d�S2d�1

B3.u;!/f .t; x; v/g.t; x; v1/h.t; x; v2/ d!1 d!2 dv1 dv2 dv dx

D kL3.f; g; h/.t/kL1x;v D kL
#
3.f; g; h/.t/kL1x;v :

We finally prove (3.1) for the mixed case. By positivity, for any t 2 Œ0; T /, we have

kG#.f; g; h/.t/kL1x;v D kG
#
2.f; g/.t/CG

#
3.f; g; h/.t/kL1x;v

D kG#
2.f; g/.t/kL1x;v C kG

#
3.f; g; h/.t/kL1x;v ;

kL#.f; g; h/.t/kL1x;v D kL
#
2.f; g/.t/C L

#
3.f; g; h/.t/kL1x;v

D kL#
2.f; g/.t/kL1x;v C kL

#
3.f; g; h/.t/kL1x;v :

Equality (3.1) for the mixed case immediately follows from the corresponding binary and
ternary equalities.

3.2. Convolution estimates

We now present a general convolution-type result, which will be essential for control of
the binary and the ternary collisional operators. These estimates will be of fundamental
importance in the proof of the L1L1 estimates (see Section 3.3) and the global estimate
on the time average of the transported gain and loss operators appearing in Proposition 3.7,
which in turn will be crucial for the proof of global well-posedness of (1.1). For the binary
case one can find similar convolution estimates in [2,13,14]. Here, our contribution is the
derivation of these estimates for the ternary case, since this is the first time global well-
posedness has been studied for such a ternary correction of the Boltzmann equation. The
estimates of the ternary term illustrate that consideration of softer potentials is allowed for
the ternary collisional operator.

Lemma 3.2. Let ˇ > 0, q2 2 .�d; 1� and q3 2 .�2d; 1�. Then the following hold:

(i) For any v 2 Rd , we haveZ
Rd

jujq2e�ˇ jv1j
2

dv1 � zK
2
ˇ;q2

.1C jvjq
C
2 /; (3.2)

where u D v1 � v, qC2 WD max¹0; q2º, zK2ˇ;q2 is given by

zK2ˇ;q2 D Cd

h
.1C ˇ�d=2 C ˇ�

dC1
2 /1q2>0.q2/C

�
ˇ�d=2 C

1

d C q2

�
1q2�0.q2/

i
(3.3)

and Cd is an appropriate constant depending on the dimension d .

(ii) For any v 2 Rd , we haveZ
R2d

j Qujq3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 � zK
3
ˇ;q3

.1C jvjq
C
3 /; (3.4)
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where j Quj is given by (2.22), qC3 WD max¹0; q3º, zK3ˇ;q3 is given by

zK3ˇ;q3 D Cd

h
.1C ˇ�d C ˇ�

2dC1
2 /1q3>0.q3/C

�
ˇ�d C

1

2d C q3

�
1q3�0.q3/

i
(3.5)

and Cd is an appropriate constant depending on the dimension d .

Proof. We will rely on the elementary estimateZ
Rd

e�ˇ jv1j
2

dv1 � Cdˇ
�d=2 (3.6)

and, given q 2 .0; 1�, on the estimateZ
Rd

jv1j
qe�ˇ jv1j

2

dv1 � jB
d
1 j C

Z
jv1j>1

jv1j
qe�ˇ jv1j

2

dv1

� jBd1 j C

Z
jv1j>1

jv1je
�ˇ jv1j

2

dv1

� Cd .1C ˇ
�
dC1
2 /; (3.7)

where jBd1 j denotes the volume of the d -dimensional unit ball.

(i) We take separate cases for q2 2 .�d; 1�.

• q2 2 .0; 1�: Since q2 2 .0; 1� we have

jujq2 D jv � v1j
q2 � .jvj C jv1j/

q2 � jvjq2 C jv1j
q2 :

Therefore Z
Rd

jujq2e�ˇ jv1j
2

dv1 �

Z
Rd

.jvjq2 C jv1j
q2/e�ˇ jv1j

2

dv1

� Cd .1C ˇ
�d=2

C ˇ�
dC1
2 /.1C jvjq2/; (3.8)

where to obtain (3.8), we use estimates (3.6)–(3.7) for q D q2.

• q2 2 .�d; 0�: Since q2 � 0, estimate (3.6) impliesZ
Rd

jv � v1j
q2e�ˇ jv1j

2

dv1 �

Z
jv�v1j>1

e�ˇ jv1j
2

dv1 C

Z
jv�v1j<1

jv � v1j
q2 dv1

D Cdˇ
�d=2

C

Z
jyj<1

jyjq2 dy

D Cdˇ
�d=2

C Cd

Z 1

0

rd�1Cq2 dr

D Cd

�
ˇ�d=2 C

1

d C q2

�
; (3.9)

since we have assumed q2 > �d .
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(ii) We take separate cases for q3 2 .�2d; 1�

• q3 2 .0; 1�: Since q3 2 .0; 1�, we have

j Qujq3 D .jv � v1j
2
C jv � v2j

2
C jv1 � v2j

2/q3=2

� 2q3.jvj2 C jv1j
2
C jv2j

2/q3=2

� 2.jvjq3 C jv1j
q3 C jv2j

q3/:

Therefore, Fubini’s theorem and estimates (3.6)–(3.7) applied for q D q3 implyZ
R2d

j Qujq3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

� 2

Z
R2d

.jvjq3 C jv1j
q3 C jv2j

q3/e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

� Cd .1C ˇ
�d
C ˇ�

2dC1
2 /.1C jvjq3/: (3.10)

• q3 2 .�2d; 0�: Recalling (2.22) and using the fact that q3 � 0, Fubini’s theorem and
estimates (3.6)–(3.7) implyZ

R2d

j Qujq3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 �

Z
R2d

jujq3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

�

Z
juj>1

e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 C

Z
juj<1

jujq3 dv1 dv2

� Cdˇ
�d
C

Z
juj<1

jujq3 dv1 dv2

D Cdˇ
�d
C

Z
jyj<1

jyjq3 dy

� Cdˇ
�d
C Cd

Z 1

0

r2d�1Cq3 dr

D Cd

�
ˇ�d C

1

2d C q3

�
; (3.11)

since we have assumed q3 > �2d:

Combining (3.8)–(3.10) and (3.11), we obtain (3.2)–(3.4).

3.3. L1L1 estimates

Here we prove uniform-in-time, space–velocity L1 estimates on the transported gain and
loss operators. These estimates will be of fundamental importance for the convergence of
the iteration to the global solution. As we will see, the ternary collisional operator intro-
duces some asymmetry which is not present in the binary case. For this reason, when we
use Lemma 3.2 we first obtain estimates in asymmetric form (see Lemma 3.3). However,
we will need a symmetric version of this estimate, which we derive in Proposition 3.4. To
achieve that, we crucially rely on properties of the ternary interactions.



Global well-posedness of a binary–ternary Boltzmann equation 345

Recall from (2.47) the fixed cross-section exponents 
2 2 .�d C 1; 1� and 
3 2

.�2d C 1; 1�. For convenience, we define the function

p
2;
3.v/ D 1C jvj

C2 C jvj


C
3 : (3.12)

Notice that, given ˛ > 0, ˇ > 0, we have

p
2;
3M˛;ˇ 2 L
1
x;v: (3.13)

Using Lemma 3.2 for q2 D 
2 and q3 D 
3, we obtain some of the asymmetric estimates
mentioned above.

Lemma 3.3. Let 0 < T �1 and ˛;ˇ > 0. Then there is a constant Cˇ > 0 such that the
following hold:

(i) For any g; h 2 F CT , with g#; h# 2 L1.Œ0; T /;MC
˛;ˇ
/, and any t 2 Œ0; T /, we have

0 � R#
2.g/.t/ � Cˇ jjjg

#
jjj1p
2;
3 ; (3.14)

0 � R#
3.g; h/.t/ � Cˇ jjjg

#
jjj1jjjh

#
jjj1p
2;
3 ; (3.15)

0 � R#.g; h/.t/ � Cˇ jjjg
#
jjj1.1C jjjh

#
jjj1/p
2;
3 : (3.16)

(ii) For any f; g; h 2 F CT , with f #; g#; h# 2 L1.Œ0; T /;MC
˛;ˇ
/, and t 2 Œ0; T /, we have

kL#
2.f; g/.t/kL1x;v ; kG

#
2.f; g/.t/kL1x;v � Cˇ jjjg

#
jjj1kf

#.t/p
2;
3kL1x;v ; (3.17)

kL#
3.f; g; h/.t/kL1x;v ; kG

#
3.f; g; h/.t/kL1x;v � Cˇ jjjg

#
jjj1jjjh

#
jjj1

� kf #.t/p
2;
3kL1x;v ; (3.18)

kL#.f; g; h/.t/kL1x;v ; kG
#.f; g; h/.t/kL1x;v � Cˇ jjjg

#
jjj1.1C jjjh

#
jjj1/

� kf #.t/p
2;
3kL1x;v : (3.19)

Moreover,
L#.f; g; h/; G#.f; g; h/ 2 L1.Œ0; T /; L1;Cx;v /: (3.20)

Proof. We prove each claim separately.

• Proof of (i): Positivity follows immediately by the monotonicity of R#
2, R#

3, R# on F CT
(see Proposition 3.1). Since g#; h# 2 L1.Œ0; T /;MC

˛;ˇ
/, for any t 2 Œ0; T /, we have

0 � g.t; x; v/ � jjjg#
jjj1e

�˛jx�tvj2�ˇ jvj2 for a.e. .x; v/ 2 Rd �Rd ;

0 � h.t; x; v/ � jjjh#
jjj1e

�˛jx�tvj2�ˇ jvj2 for a.e. .x; v/ 2 Rd �Rd :
(3.21)

Recalling the fact thatR#.g;h/DR#
2.g/CR

#
3.g;h/, it suffices to prove estimates (3.14)–

(3.15).
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Let us first prove (3.14). For a.e. .x; v/ 2 R2d , estimate (3.21) and Lemma 3.2 (i),
applied for q2 D 
2 and q3 D 
3, imply

R2.g/.t; x; v/ � kb2kL1.Sd�1/

Z
Rd

juj
2g.t; x; v1/ dv1

� kb2kL1.Sd�1/jjjg
#
jjj1

Z
Rd

juj
2e�ˇ jv1j
2

dv1

� Cˇ jjjg
#
jjj1.1C jvj


C2 /

� Cˇ jjjg
#
jjj1p
2;
3.v/: (3.22)

Since the right-hand side of (3.22) does not depend on x, we obtain (3.14).
Let us now prove (3.15). For a.e. .x; v/ 2 R2d , estimate (3.21) and Lemma 3.2 (ii),

applied for q2 D 
2 and q3 D 
3, imply

R3.g; h/.t; x; v/ � kb3kL1.S2d�1/

Z
R2d

j Quj
3g.t; x; v1/h.t; x; v2/ dv1 dv2

� kb3kL1.S2d�1/jjjg
#
jjj1jjjh

#
jjj1

Z
R2d

j Quj
3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

� Cˇ jjjg
#
jjj1jjjh

#
jjj1.1C jvj


C3 /

� Cˇ jjjg
#
jjj1jjjh

#
jjj1p
2;
3.v/: (3.23)

Since the right-hand side of (3.23) does not depend on x, we obtain (3.15).
Estimate (3.16) follows by the fact that R#.g; h/ D R#

2.g/CR
#
3.g; h/.

• Proof of (ii): We first prove the claim for the loss operators. Positivity follows immedi-
ately from the monotonicity ofL#

2,L#
3,L# on F CT . Estimates (3.17)–(3.19) follow directly

from (2.71) and part (i). Moreover, estimate (3.19) implies (3.20) since f #; g#; h# 2

L1.Œ0; T /;MC
˛;ˇ
/ and p
2;
3M˛;ˇ 2 L

1
x;v by (3.13).

For the gain operators, positivity follows immediately from the monotonicity of G#
2,

G#
3, G# on F CT . Estimates (3.17)–(3.19) and (3.20) come from (3.1) and the estimates for

the loss operators.

Notice that bounds (3.17)–(3.19) are only with respect to the first argument f .
Although this is not an issue in the binary case, where the gain and loss collisional oper-
ators are symmetric with respect to the inputs in the L1-norm, this is not the case for the
ternary operators. In order to treat this asymmetry, we need to derive estimates with respect
to all three inputs of the ternary gain and loss collisional operators. This is achieved in the
following result

Proposition 3.4. Let 0 < T � 1 and ˛; ˇ > 0. Consider f1; f2; f3 2 F CT with f #
1 ,f #

2 ,
f #
3 2 L

1.Œ0; T /;MC
˛;ˇ
/. Then there is a constant Cˇ > 0 such that, for any permutation

� W ¹1; 2; 3º ! ¹1; 2; 3º, the following estimates hold for any t 2 Œ0; T /:

kL#
2.f1; f2/.t/kL1x;v ; kG

#
2.f1; f2/.t/kL1x;v � Cˇ jjjf

#
�1
jjj
1
kf #
�2
.t/p
2;
3kL1x;v ; (3.24)
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kL#
3.f1; f2; f3/.t/kL1x;v ; kG

#
3.f1; f2; f3/.t/kL1x;v � Cˇ jjjf

#
�1
jjj
1
jjjf #

�2
jjj
1

� kf #
�3
.t/p
2;
3kL1x;v ; (3.25)

kL#.f1; f2; f3/.t/kL1x;v ; kG
#.f1; f2; f3/.t/kL1x;v � Cˇ jjjf

#
�1
jjj
1
.1C jjjf #

�2
jjj
1
/

� kf #
�3
.t/p
2;
3kL1x;v : (3.26)

Proof. By (3.1), the triangle inequality and Lemma 3.3 (ii), the proof of (3.24)–(3.26) for
the loss term reduces to showing the following estimates:

kL#
2.f1; f2/.t/kL1x;v � Cˇ jjjf

#
1 jjj1kf

#
2 p
2;
3kL1x;v ; (3.27)

kL#
3.f1; f2; f3/.t/kL1x;v � Cˇ jjjf

#
1 jjj1jjjf

#
3 jjj1kf

#
2 p
2;
3kL1x;v ; (3.28)

kL#
3.f1; f2; f3/.t/kL1x;v � Cˇ jjjf

#
1 jjj1jjjf

#
2 jjj1kf

#
3 p
2;
3kL1x;v : (3.29)

• Proof of (3.27): Performing the involutionary change of variables .v; v1/! .v1; v/ and
using (2.10), for any t 2 Œ0; T /, we have

kL2.f1;f2/.t/kL1x;vDkL2.f2;f1/.t/kL1x;v)kL
#
2.f1;f2/.t/kL1x;vDkL

#
2.f2;f1/.t/kL1x;v :

The claim comes from Lemma 3.3 (ii).

• Proof of (3.28): Here the proof is subtler because the inner product Nu � ! is not sym-
metric upon renaming the velocities. However, we will strongly rely on the fact that the
expression

j Quj2 D jv � v1j
2
C jv � v2j

2
C jv1 � v2j

2;

given in (2.22), is symmetric with respect to the inputs v, v1, v2.
Since f #

1 ; f
#
3 2 L

1.Œ0; T /;MC
˛;ˇ
/, for any t 2 Œ0; T / and a.e. .x; v/ 2 Rd �Rd , we

have

0 � fi .t; x; v/ � jjjf
#
i jjj1e

�˛jx�tvj2�ˇ jvj2
� jjjf #

i jjj1e
�ˇ jvj2

8i 2 ¹1; 3º: (3.30)

Using (2.67), the change of variables .v; v1/! .v1; v/, bound (3.30), Lemma 3.2 (ii) and
the fact that p
2;
3 is invariant in space, we obtain

kL#
3.f1; f2; f3/.t/kL1x;v D kL3.f1; f2; f3/kL1x;v

� kb3kL1.S2d�1/

Z
R4d

j Quj
3 jf1.t; x; v/j jf2.t; x; v1/j jf3.t; x; v2/j dv1 dv2 dv dx

D kb3kL1.S2d�1/

Z
R4d

.jv � v1j
2
C jv � v2j

2
C jv1 � v2j

2/
3=2jf1.t; x; v/j

� jf2.t; x; v1/j jf3.t; x; v2/j dv1 dv2 dv dx

D kb3kL1.S2d�1/

Z
R4d

.jv � v1j
2
C jv � v2j

2
C jv1 � v2j

2/
3=2jf2.t; x; v/j

� jf1.t; x; v1/j jf3.t; x; v2/j dv1 dv2 dv dx

� kb3kL1.S2d�1/

Z
R4d

j Quj
3 jf2.t; x; v/j jf1.t; x; v1/j jf3.t; x; v2/j dv1 dv2 dv dx
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D kb3kL1.S2d�1/

Z
Rd�Rd

jf2.t; x; v/j

Z
R2d

j Quj
3 jf1.t; x; v1/j

� jf3.t; x; v2/j dv1 dv2 dv dx

� kb3kL1.S2d�1/jjjf
#
1 jjj1jjjf

#
3 jjj1

Z
Rd�Rd

jf2.t; x; v/j

�

Z
R2d

j Quj
3e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 dv dx

� Cˇ jjjf
#
1 jjj1jjjf

#
3 jjj1kf2.t/p
2;
3kL1x;v

D Cˇ jjjf
#
1 jjj1jjjf

#
3 jjj1k.f2.t/p
2;
3/

#
kL1x;v

D Cˇ jjjf
#
1 jjj1jjjf

#
3 jjj1kf

#
2 .t/p
2;
3kL1x;v :

• Proof of (3.29): This follows in a similar way to the proof of (3.28).

Estimates (3.24)–(3.26) for the loss operators follow. Estimates for the gain operators
follow from (3.1) and the estimates for the loss operators. The proof is complete.

Proposition 3.4 also implies an L1-continuity result for the transported gain and loss
operators.

Corollary 3.5. Let 0 < T � 1 and ˛; ˇ > 0. For i 2 ¹1; 2; 3º, consider some sequences
.fi;n/n � F CT and fi 2 F CT such that f #

i;n.t/
M˛;ˇ
���! f #

i .t/ for all t 2 Œ0; T /. Then, for all
t 2 Œ0; T /, the following convergence holds:�

L#.f1;n; f2;n; f3;n/.t/; G
#.f1;n; f2;n; f3;n/.t/

�
L1x;v
���!

�
L#.f1; f2; f3/.t/; G

#.f1; f2; f3/.t/
�

as n!1: (3.31)

Proof. Fix t 2 Œ0; T /. Since f #
i;n.t/

M˛;ˇ
���! f #

i .t/, for any i 2 ¹1; 2; 3º, we have

f #
i;n.t/

a.e.
��! f #

i .t/; sup
n2N

®
jf #
i;n.t/j; jf

#
i .t/j

¯
� CM˛;ˇ ; (3.32)

for some constant C > 0. Thus

fi;n.t/
a.e.
��! fi .t/; sup

n2N

®
jfi;n.t/j; jfi .t/j

¯
� CM�#

˛;ˇ .t/: (3.33)

Let us first prove (3.31) for the loss case. By (2.37) and the triangle inequality, it suffices
to prove

kL#
2.f1;n; f2;n/.t/ � L

#
2.f1; f2/.t/kL1x;v

n!1
����! 0; (3.34)

kL#
3.f1;n; f2;n; f3;n/.t/ � L

#
3.f1; f2; f3/.t/kL1x;v

n!1
����! 0: (3.35)

• Proof of (3.34): Using bilinearity of L#
2, bound (3.33) and monotonicity of L#

2, we have

kL#
2.f1;n; f2;n/.t/ � L

#
2.f1; f2/.t/kL1x;v

� kL#
2.f1;n � f1; f2;n/.t/kL1x;v C kL

#
2.f1; f2;n � f2/.t/kL1x;v
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� CkL#
2.f1;n � f1;M

�#
˛;ˇ /.t/kL1x;v C CkL

#
2.M

�#
˛;ˇ ; f2;n � f2/.t/kL1x;v

� Cˇ .k.f
#
1;n.t/ � f

#
1 .t//p
2;
3kL1x;v C Cˇk.f

#
2;n.t/ � f

#
2 .t//p
2;
3kL1x;v /; (3.36)

where to obtain the last inequality we use (3.24) from Proposition 3.4 and kM˛;ˇkM˛;ˇ
D1:

By (3.32) and the dominated convergence theorem, each of the terms in (3.36) goes to
zero as n!1 and (3.34) is proved.

• Proof of (3.35): Using trilinearity of L#
3, bound (3.33) and monotonicity of L#

3, we have

kL#
3.f1;n; f2;n; f3;n/.t/ � L

#
3.f1; f2; f3/.t/kL1x;v

� kL#
3.f1;n � f1; f2;n; f3;n/.t/kL1x;v C kL

#
3.f1; f2;n � f2; f3;n/.t/kL1x;v

C kL#
3.f1; f2; f3;n � f3/kL1x;v

� CkL#
3.f1;n � f1;M

�#
˛;ˇ ;M

�#
˛;ˇ /.t/kL1x;v C CkL

#
3.M

�#
˛;ˇ ; f2;n�f2;M

�#
˛;ˇ /.t/kL1x;v

C CkL#
3.M

�#
˛;ˇ ;M

�#
˛;ˇ ; f3;n � f3/kL1x;v

� Cˇ .k.f
#
1;n.t/ � f

#
1 .t//p
2;
3kL1x;v C Cˇk.f

#
2;n.t/ � f

#
2 .t//p
2;
3kL1x;v

C Cˇk.f
#
3;n.t/ � f

#
3 .t//p
2;
3kL1x;v /; (3.37)

where to obtain the last inequality we use (3.25) from Proposition 3.4 and kM˛;ˇkM˛;ˇ
D1:

By (3.32) and the dominated convergence theorem, each of the terms in (3.37) goes to zero
as n!1 and (3.35) is proved. Combining (3.34)–(3.35), we obtain (3.31).

The gain operator convergence follows by a similar argument.

3.4. A global estimate on the time average of the transported gain and loss
operators

Here, we prove Proposition 3.7, which provides upper global bounds for the time average
of the transported operators. These estimates will be essential to prove that the necessary
beginning condition (4.49) for the convergence of the iteration holds globally in time for
small enough initial data (see Section 5). For the binary case and soft potentials, these
bounds were established in [2]. However, the presence of the ternary collisional operator
requires new treatment which strongly relies on the properties of ternary interactions.

Before stating Proposition 3.7, we provide the following auxiliary estimate for the
time integral of a traveling Maxwellian which will be used in the proof of the result for
n D d in the binary case and n D 2d in the ternary case.

Lemma 3.6. Let n 2N, x0; u0 2Rn, with u0 ¤ 0 and ˛ > 0. Then the following estimate
holds: Z 1

0

e�˛jx0��u0j
2

d� �

p
�

2
˛�1=2ju0j

�1:

Proof. By the triangle inequality we haveˇ̌
� ju0j � jx0j

ˇ̌
� jx0 � �u0j ) e�˛jx0��u0j

2

� e�˛.� ju0j�jx0j/
2

8� � 0:
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Therefore, integrating in � , we obtainZ 1
0

e�˛jx0��u0j
2

d� �

Z 1
0

e�˛.� ju0j�jx0j/
2

d� � ˛�1=2ju0j
�1

Z 1
0

e�y
2

dy

�

p
�

2
˛�1=2ju0j

�1;

and the estimate is proved.

We now state and prove Proposition 3.7. Given f 2 L1.Œ0; T /;M˛;ˇ /, recall from
(2.63) the norm

jjjf jjj1 D sup
t2Œ0;T /

kf .t/kM˛;ˇ
:

Proposition 3.7. Let 0 < T �1 and ˛;ˇ > 0. Then, for all f;g;h 2FT with f #;g#; h# 2

L1.Œ0; T /;M˛;ˇ /, the following bounds hold for any t 2 Œ0; T /:

• For the binary operators,Z t

0

jL#
2.f; g/.�/j d�;

Z t

0

jG#
2.f; g/.�/j d� � Kˇ˛

�1=2M˛;ˇ jjjf
#
jjj1jjjg

#
jjj1I (3.38)

• for the ternary operators,Z t

0

jL#
3.f; g; h/.�/j d�;

Z t

0

jG#
3.f; g; h/.�/j d� � Kˇ˛

�1=2M˛;ˇ

� jjjf #
jjj1jjjg

#
jjj1jjjh

#
jjj1I (3.39)

• for the mixed operators,Z t

0

jL#.f; g; h/j.�/ d�;

Z t

0

jG#.f; g; h/.�/j d� � Kˇ˛
�1=2M˛;ˇ (3.40)

� jjjf #
jjj1jjjg

#
jjj1.1C jjjh

#
jjj1/I

where

Kˇ D Cd

h
kb2kL1.Sd�1/

�
ˇ�d=2 C

1

d C 
2 � 1

�
C kb3kL1.S2d�1/

�
ˇ�d C

1

2d C 
3 � 1

�i
: (3.41)

Proof. We prove each of the estimates separately.

• Proof of (3.38): As mentioned above, these bounds were established for the soft poten-
tial case in [2]. Here we also treat the hard potential case. Since L#

2, G#
2 are bilinear, we

may assume without loss of generality that

jjjf #
jjj1 D jjjg

#
jjj1 D 1: (3.42)
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Let us first prove it for the loss term. For any t 2 Œ0; T / and a.e. .x; v/ 2 R2d , relation
(3.42), followed by an application of Lemma 3.6 for n D d , x0 D x, u0 D u, the fact that
�d C 1 < 
2 � 1 and an application of Lemma 3.2 (i) for q2 D 
2 � 1 implyZ t

0

jL#
2.f; g/.�; x; v/j d�

� kb2kL1.Sd�1/

Z t

0

Z
Rd

juj
2 jf .�; x C �v; v/j jg.�; x C �v; v1/j dv1 d�

D kb2kL1.Sd�1/

Z t

0

Z
Rd

juj
2 jf #.�; x; v/j jg#.�; x C �.v � v1/; v1/j d! dv1 d�

� kb2kL1.Sd�1/M˛;ˇ .x; v/

Z t

0

Z
Rd

juj
2e�˛jxC�.v�v1/j
2�ˇ jv1j

2

dv1 d�

� kb2kL1.Sd�1/M˛;ˇ .x; v/

Z
Rd

juj
2e�ˇ jv1j
2

Z 1
0

e�˛jx��uj
2

d� dv1

� kb2kL1.Sd�1/

p
�

2
˛�1=2M˛;ˇ .x; v/

Z
Rd

juj
2�1e�ˇ jv1j
2

dv1

� kb2kL1.Sd�1/

p
�

2
zK2ˇ;
2�1˛

�1=2M˛;ˇ .x; v/

� Cdkb2kL1.Sd�1/˛
�1=2

�
ˇ�d=2 C

1

d C 
2 � 1

�
M˛;ˇ .x; v/; (3.43)

where Cd is an appropriate constant depending on the dimension d . To obtain (3.43) we
used (3.3) and the fact that q2 D 
2 � 1 � 0. Estimate (3.38) for the loss term follows.

To prove (3.38) for the gain term we will use the identity

jx C �.v � v0/j2 C jx C �.v � v01/j
2
D jxj2 C jx C �.v � v1/j

2; (3.44)

which follows from the binary conservation of momentum and energy,

v0 C v01 D v C v1;

jv0j2 C jv01j
2
D jvj2 C jv1j

2:
(3.45)

For any t 2 Œ0; T / and a.e. .x; v/ 2 R2d , (3.42) and (3.44)–(3.45) implyZ t

0

jG#
2.f; g/.�; x; v/j d�

�

Z t

0

Z
Sd�1�Rd

juj
2b2. Ou � !/jf .�; x C �v; v
0/j jg.�; x C �v; v01/j d! dv1 d�

D

Z t

0

Z
Sd�1�Rd

juj
2b2. Ou � !/jf
#.�; x C �.v � v0/; v0/j

� jg#.�; x C �.v � v01/; v
0
1/j d! dv1 d�

�

Z t

0

Z
Sd�1�Rd

juj
2b2. Ou � !/e
�˛.jxC�.v�v0/j2CjxC�.v�v01/j

2/e�ˇ.jv
0j2Cjv01j

2/ d! dv1 d�

D kb2kL1.Sd�1/M˛;ˇ .x; v/

Z t

0

Z
Rd

juj
2e�˛jxC�.v�v1/j
2�ˇ jv1j

2

dv1 d�: (3.46)
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Combining (3.46) with an identical argument to the one used for the loss term, we
obtainZ t

0

jG#
2.f; g/.�; x; v/j d� � Cdkb2kL1.Sd�1/˛

�1=2
�
ˇ�d=2 C

1

d C 
2 � 1

�
M˛;ˇ .x; v/;

(3.47)
and estimate (3.38) for the gain term follows.

• Proof of (3.39): Since L#
3, G#

3 are trilinear, we may assume without loss of generality
that

jjjf #
jjj1 D jjjg

#
jjj1 D jjjh

#
jjj1 D 1: (3.48)

Let us first prove (3.39) for the loss term. For any t 2 Œ0; T / and a.e. .x; v/ 2 R2d ,
(3.48) impliesZ t

0

jL#
3.f; g; h/.�; x; v/j d�

� kb3kL1.S2d�1/

Z t

0

Z
R2d

j Quj
3 jf .�; x C �v; v/j jg.�; x C �v; v1/j

� jh.�; x C �v; v2/j dv1 dv2 d�

D kb3kL1.S2d�1/

Z t

0

Z
R2d

j Quj
3 jf #.�; x; v/j jg#.�; x C �.v � v1/; v1/j

� jh#.�; x C �.v � v2/; v2/j dv1 dv2 d�

� kb3kL1.S2d�1/M˛;ˇ .x; v/

Z t

0

Z
R2d

j Quj
3e�˛.jxC�.v�v1/j
2CjxC�.v�v2/j

2/

� e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 d�

� kb3kL1.S2d�1/M˛;ˇ .x; v/

Z
R2d

j Quj
3e�ˇ.jv1j
2Cjv2j

2/

�

Z 1
0

e�˛jx��uj
2

d� dv1 dv2; (3.49)

where in (3.49) we use the notation

x WD

�
x

x

�
2 R2d ; u D

�
v1 � v

v2 � v

�
2 R2d :

Notice that by the triangle inequality and Young’s inequality we have

j Quj2 D jv � v1j
2
C jv � v2j

2
C jv1 � v2j

2

� jv � v1j
2
C jv � v2j

2
C .jv � v1j C jv � v2j/

2

� 3.jv � v1j
2
C jv � v2j

2/

D 3juj2: (3.50)

Therefore, an application of Lemma 3.6 for nD 2d , x0 D x, u0 D u, followed by (3.50),
the fact that �2d C 1 < 
3 � 1, and an application of Lemma 3.2 (ii) for q3 D 
3 � 1
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yieldZ t

0

jL#
3.f; g; h/.�; x; v/j d�

� kb3kL1.S2d�1/M˛;ˇ .x; v/

Z
R2d

j Quj
3e�ˇ.jv1j
2Cjv2j

2/

Z 1
0

e�˛jx��uj
2

d� dv1 dv2

� kb3kL1.S2d�1/

p
�

2
˛�1=2M˛;ˇ .x; v/

Z
R2d

j Quj
3 juj�1e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

� kb3kL1.S2d�1/

p
3�

6
˛�1=2M˛;ˇ .x; v/

Z
R2d

j Quj
3�1e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2

� kb3kL1.S2d�1/

p
3�

6
zK3ˇ;
3�1˛

�1=2M˛;ˇ .x; v/

� Cdkb3kL1.S2d�1/˛
�1=2

�
ˇ�d C

1

2d C 
3 � 1

�
M˛;ˇ .x; v/; (3.51)

where Cd is an appropriate constant depending on the dimension d . To obtain (3.51), we
used (3.5) and the fact that q3 D 
3 � 1 � 0. Estimate (3.39) for the loss term follows.

To prove (3.39) for the gain term we will use the identity

jx C �.v � v�/j2 C jx C �.v � v�1 /j
2
C jx C �.v � v�2 /j

2

D jxj2 C jx C �.v � v1/j
2
C jx C �.v � v2/j

2; (3.52)

following from the ternary conservation of momentum and energy,

v� C v�1 C v
�
2 D v C v1 C v2;

jv�j2 C jv�1 j
2
C jv�2 j

2
D jvj2 C jv1j

2
C jv2j

2:
(3.53)

For any t 2 Œ0; T / and a.e. .x; v/ 2 R2d , by (3.48) and (3.52)–(3.53) we obtainZ t

0

jG#
3.f; g; h/.�/j d�

�

Z t

0

Z
S2d�1�R2d

j Quj
3b3. Nu �!; !1 � !2/jf .�; x C �v; v
�/j jg.�; x C �v; v�1 /j

� jh.�; x C �v; v�2 /j d!1 d!2 dv1 dv2 d�

D

Z t

0

Z
S2d�1�R2d

j Quj
3b3. Nu �!; !1 � !2/jf
#.�; x C �.v � v�/; v�/j

� jg#.�; x C �.v � v�1 /; v
�
1 /j jh

#.�; x C �.v � v�2 /; v
�
2 /j d!1 d!2 dv1 dv2 d�

�

Z t

0

Z
S2d�1�R2d

j Quj
3b3. Nu �!; !1 � !2/e
�˛.jxC�.v�v�/j2CjxC�.v�v�1 /j

2CjxC�.v�v�2 /j
2/

� e�ˇ.jv
�j2Cjv�1 j

2Cjv�2 j
2/ d!1 d!2 dv1 dv2 d�

D kb3kL1.S2d�1/M˛;ˇ .x; v/

Z t

0

Z
R2d

j Quj
3e�˛.jxC�.v�v1/j
2CjxC�.v�v2/j

2/

� e�ˇ.jv1j
2Cjv2j

2/ dv1 dv2 d�
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� kb3kL1.S2d�1/M˛;ˇ .x; v/

Z
R2d

j Quj
3e�ˇ.jv1j
2Cjv2j

2/

�

Z 1
0

e�˛jx��uj
2

d� dv1 dv2: (3.54)

Combining (3.54) with an identical argument to the one used for the loss case, we
obtainZ t

0

jG#
3.f; g; h/.�/j d� � Cdkb3kL1.S2d�1/˛

�1=2
�
ˇ�d C

1

2d C 
3 � 1

�
M˛;ˇ .x; v/;

(3.55)
and estimate (3.39) for the gain term follows.

• Proof of (3.40): It follows directly from (3.38)–(3.39).

4. The Kaniel–Shinbrot iteration scheme and the associated linear
problem

In this section we present the Kaniel–Shinbrot iteration scheme, which will then be used
as the heart of the construction of a global solution in Section 5. This scheme is motivated
by [13, 14]. However, the presence of the ternary collisional operator, in addition to the
binary collisional operator, required a modification of the original construction.

In particular, we outline the construction of the Kaniel–Shinbrot iteration that we will
use in this paper. Formally speaking, given an initial data f0, we construct an increasing
sequence .ln/n2N and a decreasing sequence .un/n2N , with ln � un, through the iteration

dln

dt
C v � rxln D G.ln�1; ln�1; ln�1/ � L.ln; un�1; un�1/;

ln.0/ D f0;

(4.1)

dun

dt
C v � rxun D G.un�1; un�1; un�1/ � L.un; ln�1; ln�1/;

un.0/ D f0:

(4.2)

We will see that the sequences ln, un converge to the same limit, namely a function f ,
which will be the solution of the binary–ternary Boltzmann equation (1.1).

To make things rigorous, we first study an associated linear problem, and then induc-
tively apply these results, together with the estimates derived in Section 3, to establish that
the Kaniel–Shinbrot iteration converges to a solution of (1.1), provided that an appropri-
ate beginning condition is satisfied. This solution will be unique in the class of functions
uniformly bounded by a Maxwellian.

4.1. The associated linear problem

Here, we prove well-posedness for a linear problem associated to the iteration scheme
(4.1)–(4.2). More precisely, given some functions of time g, h, we show well-posedness
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up to time 0 < T � 1 of the linear problem´
@tf C v � rxf D h � L.f; g; g/; .t; x; v/ 2 .0; T / �Rd �Rd ;

f .0/ D f0; .x; v/ 2 Rd �Rd :
(4.3)

Definition 4.1. Let 0 < T � 1, ˛; ˇ > 0, f0 2 L
1;C
x;v , g# 2 L1.Œ0; T /;MC

˛;ˇ
/ and h# 2

L1loc.Œ0; T /; L
1;C
x;v /. We say that a function f 2 F CT with

(i) f # 2 C 0.Œ0; T /; L
1;C
x;v /,

(ii) L#.f; g; g/ 2 L1loc.Œ0; T /; L
1;C
x;v /,

(iii) f # is weakly differentiable and satisfies8<:
df #

dt
C L#.f; g; g/ D h#;

f #.0/ D f0;

(4.4)

is a mild solution of (4.3) in Œ0; T / with initial data f0 2 L
1;C
x;v .

Remark 4.2. The differential equation of (4.4) is interpreted as an equality of distribu-
tions since all terms involved belong to L1loc.Œ0; T /; L

1;C
x;v /.

Remark 4.3. Remarks 2.5 and 2.6 imply that a mild solution f to (4.3) belongs to
C 0.Œ0; T /; L

1;C
x;v /.

For technical reasons, we first prove well-posedness of (4.3) under the additional
assumptions

f0 2MC
˛;ˇ
; 0 � h#.t/ � Ce�t

2

M˛;ˇ ; 8t 2 Œ0; T /; (4.5)

for some constantC >0. Clearly, if (4.5) holds, then f02L
1;C
x;v and h#2L1loc.Œ0;T /;L

1;C
x;v /,

thus (4.5) is a stronger assumption than those appearing in Definition 4.1. This additional
assumption will be removed later using an approximation argument.

Lemma 4.4. Let 0 < T � 1 and ˛; ˇ > 0. Consider f0, h satisfying (4.5) and g# 2

L1.Œ0; T /;MC
˛;ˇ
/. Then there exists a mild solution f of (4.3) with f # 2 L1.Œ0; T /;

MC
˛;ˇ
/. Moreover, kf #.�/kL1x;v is absolutely continuous and satisfies

kf #.t/kL1x;v C

Z t

0

kL#.f; g; g/.�/kL1x;v d�

D kf0kL1x;v C

Z t

0

kh#.�/kL1x;v d� 8t 2 Œ0; T /: (4.6)

Proof. Since g# 2 L1.Œ0; T /;MC
˛;ˇ
/, Lemma 3.3 (i) implies

0 � R#.g; g/.t/ � Cˇ jjjg
#
jjj1.1C jjjg

#
jjj1/p
2;
3 8t 2 Œ0; T /; (4.7)
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for some constant Cˇ > 0 depending on ˇ. We define f by

f #.t/ WD f0 exp
�
�

Z t

0

R#.g; g/.�/ d�

�
C

Z t

0

h#.�/ exp
�
�

Z t

�

R#.g; g/.�/ d�

�
d�; t 2 Œ0; T /: (4.8)

By (4.5), (4.7) and the fact f0 2MC
˛;ˇ

, f # is well defined and satisfies the bound

0 � f #.t/ � f0 C

Z t

0

h#.�/ d� �
�
kf0kM˛;ˇ

C C

p
�

2

�
M˛;ˇ 8t 2 Œ0; T /; (4.9)

thus f � 0 and
f #
2 L1.Œ0; T /;MC

˛;ˇ
/: (4.10)

Let us now show that f # 2 C 0.Œ0; T /;L
1;C
x;v /. For any t; s 2 Œ0; T /, expression (4.8) yields

jf #.t/ � f #.s/j

D

ˇ̌̌̌�
f0 exp

�
�

Z s

0

R#.g; g/.�/ d�

�
C

Z s

0

h#.�/ exp
�
�

Z s

�

R#.g; g/.�/ d�

�
d�

�
�

�
exp

�
�

Z t

s

R#.g; g/.�/ d�

�
� 1

�
C

Z t

s

h#.�/ exp
�
�

Z t

�

R#.g; g/.�/ d�

�
d�

ˇ̌̌̌
;

and therefore by (4.5), (4.7), we may find a positive constants Cf0;g;h > 0 such that

jf #.t/ � f #.s/j � Cf0;g;hM˛;ˇ .1 � e
�Cf0;g;hjt�sjp
2;
3 /

C Cf0;g;hjt � sjM˛;ˇ 8t 2 Œ0; T /: (4.11)

Using the elementary inequality 1 � e�x � x; for all x � 0, we obtain

jf #.t/ � f #.s/j � 2Cf0;g;hjt � sjp
2;
3M˛;ˇ 8t 2 Œ0; T /: (4.12)

Integrating (4.12) we obtain

kf #.t/ � f #.s/kL1x;v � 2Cf0;g;hjt � sj 8t; s 2 Œ0; T /; (4.13)

since p
2;
3M˛;ˇ 2 L
1;C
x;v . We conclude that f # 2 C 0.Œ0; T /; L

1;C
x;v /, and therefore f 2

C 0.Œ0; T /;L
1;C
x;v /. In particular, bound (4.13) implies that f is actually Lipschitz continu-

ous.
Since f #; g# 2 L1.Œ0; T /;MC

˛;ˇ
/, Lemma 3.3 (ii) implies

L#.f; g; g/ 2 L1.Œ0; T /; L1;Cx;v / � L
1
loc.Œ0; T /; L

1;C
x;v /: (4.14)

Finally, by (4.5), (4.14), representation (4.8) and the dominated convergence theorem,
we conclude that f # is weakly differentiable and satisfies8<:

df #

dt
C L#.f; g; g/ D h#;

f #.0/ D f0;

(4.15)

and thus it is a mild solution of (4.3).
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Integrating (4.15), the fundamental theorem of calculus and the fact that f # 2

C 0.Œ0; T /; L
1;C
x;v /, L#.f; g; g/ and h# 2 L1loc.Œ0; T /; L

1;C
x;v /, imply

f #.t/C

Z t

0

L#.f; g; g/.�/ d� D f0 C

Z t

0

h#.�/ d� 8t 2 Œ0; T /: (4.16)

Using the non-negativity of all terms involved in (4.16), and Fubini’s theorem, we obtain
(4.6) and absolute continuity of kf .t/kL1x;v follows. The proof is complete.

Since the gain operator does not satisfy (4.5), it will be convenient to relax assumption
(4.5) to f0 2 L

1;C
x;v , h# 2 L1loc.Œ0; T /; L

1;C
x;v /. As in [14], the idea is to approximate f0,

h# in the L1x;v-norm with a monotone sequence of solutions occurring from a repeated
application of Lemma 4.4. We obtain the following well-posedness result.

Proposition 4.5. Let 0<T �1 and ˛;ˇ >0. Consider f02L
1;C
x;v , g#2L1.Œ0;T /;MC

˛;ˇ
/

and h# 2 L1loc.Œ0; T /; L
1;C
x;v /. Then there exists a unique mild solution f of (4.3). In par-

ticular, f # is given by

f #.t/ WD f0 exp
�
�

Z t

0

R#.g; g/.�/ d�

�
C

Z t

0

h#.�/ exp
�
�

Z t

�

R#.g; g/.�/ d�

�
d�; t 2 Œ0; T /: (4.17)

Proof.

• Existence: Given n 2 N, let us define

f0;n WD

´
f0 if f0 � nM˛;ˇ ;

nM˛;ˇ if f0 > nM˛;ˇ ;
(4.18)

and

h#
n.t/ WD

´
h#.t/ if h#.t/ � ne�t

2
M˛;ˇ ;

ne�t
2
M˛;ˇ if h#.t/ > ne�t

2
M˛;ˇ :

(4.19)

It is clear that f0;n, hn satisfy condition (4.5) for all n 2 N and that

0 � f0;n % f0 as n!1; (4.20)

8t 2 Œ0; T / W 0 � h#
n.t/% h#.t/ as n!1: (4.21)

Then the monotone convergence theorem yields that

kf0;nkL1x;v % kf0kL1x;v as n!1; (4.22)

8t 2 Œ0; T / W kh#
n.t/kL1x;v % kh

#.t/kL1x;v as n!1: (4.23)

Moreover, since f0 2 L1x;v and h# 2 L1loc.Œ0; T /; L
1;C
x;v /, relations (4.20)–(4.21) and the

dominated convergence theorem yield

f0;n
L1x;v
���! f0 as n!1; (4.24)
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for a.e. t 2 Œ0; T / W h#
n.t/

L1x;v
���! h#.t/ as n!1; (4.25)

8t 2 Œ0; T / W

Z t

0

h#
n.�/ d�

L1x;v
���!

Z t

0

h#.�/ d� as n!1: (4.26)

Let fn 2 F CT be the mild solution to the problem8<:
dfn

dt
C v � rxfn D hn � L.fn; g; g/;

fn.0/ D f0;n;

(4.27)

constructed in Lemma 4.4. Let us note that Lemma 4.4 is applicable for all n 2 N since
f0;n, hn satisfy (4.5). Hence, f #

n satisfies8<:
df #
n

dt
C L#.fn; g; g/ D h

#
n;

f #
n .0/ D f0;n;

(4.28)

and is given by the formula

f #
n .t/ WD f0;n exp

�
�

Z t

0

R#.g; g/.�/ d�

�
C

Z t

0

h#
n.�/ exp

�
�

Z t

�

R#.g; g/.�/ d�

�
d�; t 2 Œ0; T /: (4.29)

Also by (4.6), given t 2 Œ0; T /, we have the bound

sup
n2N
kf #
n .t/kL1x;v � sup

n2N

�
kf0;nkL1x;v C

Z t

0

kh#
n.�/kL1x;v d�

�
� kf0kL1x;v C

Z t

0

kh#.�/kL1x;v d� <1; (4.30)

where to obtain the last bound we use (4.22)–(4.23), the fact that R#.g; g/ � 0 (by mono-
tonicity of R# and g � 0), f0 2 L1x;v and h# 2 L1loc.Œ0; T /; L

1;C
x;v /.

Since the sequences .f0;n/n, .h#
n.t//n are increasing and non-negative for all t 2

Œ0; T /, formula (4.29) implies that the sequence .f #
n .t//n is increasing for all t 2 Œ0; T /.

Let us define
f #.t/ WD lim

n!1
f #
n .t/:

Clearly f � 0. By the monotone convergence theorem and bound (4.30) we obtain that
f #.t/ 2 L

1;C
x;v for all t 2 Œ0; T /. Then the dominated convergence theorem implies

8t 2 Œ0; T / W f #
n .t/

L1x;v
���! f #.t/ as n!1: (4.31)

Moreover, we have

8t 2 Œ0; T / W L#.fn; g; g/.t/ D f
#
n .t/R

#.g; g/.t/

% f #.t/R#.g; g/.t/ D L#.f; g; g/.t/ as n!1; (4.32)
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since R#.g; g/.t/ � 0 by monotonicity of R# and the fact that g � 0. By the monotone
convergence theorem we obtain

8t 2 Œ0; T / W

Z t

0

kL#.fn; g; g/.�/kL1x;v d�

%

Z t

0

kL#.f; g; g/.�/kL1x;v d� as n!1: (4.33)

Therefore, for any t 2 Œ0; T /, equation (4.6) impliesZ t

0

kL#.f; g; g/.�/kL1x;v d� D sup
n2N

Z t

0

kL#.fn; g; g/.�/kL1x;v d� (4.34)

� sup
n2N

�
kf0;nkL1x;v C

Z t

0

kh#
n.�/kL1x;v d�

�
� kf0kL1x;v C

Z t

0

kh#.�/kL1x;v d� <1; (4.35)

since f0 2 L1x;v and h# 2 L1loc.Œ0; T /; L
1;C
x;v /, and thus

L#.f; g; g/.t/ 2 L1x;v for a.e. t 2 Œ0; T /; (4.36)

L#.f; g; g/ 2 L1loc.Œ0; T /; L
1;C
x;v /: (4.37)

By (4.32), (4.36) and the dominated convergence theorem, for a.e. t 2 Œ0; T / we have

L#.fn; g; g/.t/
L1x;v
���! L#.f; g; g/.t/ as n!1; (4.38)

and by (4.37) and another application of the dominated convergence theorem we obtainZ t

0

L#.fn; g; g/.�/ d�
L1x;v
���!

Z t

0

L#.f; g; g/.�/ d� 8t 2 Œ0; T /: (4.39)

Since f #
n satisfies (4.28), the fundamental theorem of calculus and the fact that f #

n 2

C 0.Œ0; T /; L
1;C
x;v /, L#.fn; g; g/ and h#

n 2 L
1
loc.Œ0; T /; L

1;C
x;v / imply

f #
n .t/C

Z t

0

L#.fn; g; g/.�/d� D f0;nC

Z t

0

h#
n.�/d� 8t 2 Œ0; T /; 8n 2N: (4.40)

Using (4.31), (4.39), (4.24) and (4.26), we let n!1 in (4.40) to obtain

f #.t/C

Z t

0

L#.f; g; g/.�/ d� D f0 C

Z t

0

h#.�/ d� 8t 2 Œ0; T /; 8n 2 N; (4.41)

and thus f # 2 C 0.Œ0; T /; L
1;C
x;v /, f # is weakly differentiable and satisfies (4.4). We con-

clude that f is a mild solution of (4.3). Moreover, since g � 0 we may take the limit as
n!1 on both sides of (4.29) to obtain (4.17).
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• Uniqueness: Since the problem is linear it suffices to show that if f is a solution of (4.3)
with f0 D 0 and h D 0, then f D 0.

Assume f is a mild solution of (4.3) with f0 D 0 and h D 0, i.e. f � 0, f # 2

C 0.Œ0; T /; L
1;C
x;v /, L#.f; g; g/ 2 L1loc.Œ0; T /; L

1;C
x;v / and f # is weakly differentiable and

satisfies 8<:
df #

dt
C L#.f; g; g/ D 0;

f #.0/ D 0:

(4.42)

Then (4.42), the fundamental theorem of calculus and the facts f # 2 C 0.Œ0; T /; L
1;C
x;v /,

L#.f; g; g/ 2 L1loc.Œ0; T /; L
1;C
x;v / imply

f #.t/ D �

Z t

0

L#.f; g; g/.�/ d� D �

Z t

0

f #.�/R#.g; g/.�/ d� 8t 2 Œ0; T /: (4.43)

We claim the following:

Claim. For any compact setK �Rd �Rd , we have kf #.t/kL1x;v.K/D 0 for all t 2 Œ0;T /.

Proof of the claim. Fix any compact set K � Rd � Rd . By (4.43), Fubini’s theorem,
Lemma 3.3 (i) and the fact that p
2;
3 is continuous, we obtain

kf #.t/kL1x;v.K/ �

Z t

0

kf #.�/R#.g; g/.�/kL1x;v.K/ d�

� Cˇ jjjg
#
jjj1.1C jjjg

#
jjj1/

Z t

0

kp
2;
3f
#.�/kL1x;v.K/ d�

� CK;ˇ jjjg
#
jjj1.1C jjjg

#
jjj1/

Z t

0

kf #.�/kL1x;v.K/ d�: (4.44)

Since f # 2C 0.Œ0;T /;L
1;C
x;v /, the map t 2 Œ0;T /!kf #.t/kL1x;v.K/ 2 Œ0;1/ is continuous,

and thus (4.44) and Gronwall’s inequality imply that

kf #.t/kL1x;v.K/ D 0 8t 2 Œ0; T /:

The claim is proved.

Consider now a sequence of compact sets .Km/m % Rd � Rd . By the claim above
and the monotone convergence theorem, we have

kf #.t/kL1x;v D lim
m!1

kf #.t/kL1x;v.Km/ D 0 8t 2 Œ0; T /:

Since f # � 0, we obtain f # D 0 and hence f D 0. Uniqueness is proved.

The following comparison corollary comes immediately by the monotonicity of R#

and representation (4.17).
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Corollary 4.6. Let 0 < T � 1 and ˛; ˇ > 0. Consider f0;1; f0;2 2 L
1;C
x;v , g1; g2 2

L1.Œ0; T /;MC
˛;ˇ
/ and h1; h2 2 L1loc.Œ0; T /; L

1;C
x;v /, with

f0;1 � f0;2; g#
1 � g

#
2; h#

1 � h
#
2:

Let fi , i 2 ¹1; 2º be the corresponding unique solution of (4.3) with f0 WD f0;i , g WD gi
and h WD hi . Then f1 � f2:

Proof. We have g#
1 � g

#
2 ) g1 � g2. By monotonicity of R# we obtain R#.g1; g1/ �

R#.g2; g2/. The claim then comes immediately by representation (4.17).

4.2. The Kaniel–Shinbrot iteration

Now we will use well-posedness of the associated linear problem and the estimates devel-
oped in Section 3 to prove convergence of the Kaniel–Shinbrot iteration to the unique
solution of (1.1) in the class of functions bounded by a Maxwellian, if an appropriate
beginning condition is satisfied.

Let 0 < T � 1 and ˛; ˇ > 0. Consider a function f0 2MC
˛;ˇ

and a pair of functions
.l#
0; u

#
0/ 2MC

˛;ˇ
�MC

˛;ˇ
. By Lemma 3.3 (ii) we have that G#.l0; l0; l0/;G

#.u0; u0; u0/ 2

L1.Œ0; T /; L
1;C
x;v /. Applying Proposition 4.5 with h either G.l0; l0; l0/ or G.u0; u0; u0/,

we find unique functions l1, u1 such that l1 is the mild solution of

dl1

dt
C v � rxl1 D G.l0; l0; l0/ � L.l1; u0; u0/;

l1.0/ D f0;

(4.45)

and u1 is the mild solution of

du1

dt
C v � rxu1 D G.u0; u0; u0/ � L.u1; l0; l0/;

u1.0/ D f0:

(4.46)

We obtain the following result:

Theorem 4.7. Let 0 < T � 1, ˛; ˇ > 0 and

Kˇ D Cd

h
kb2kL1.Sd�1/

�
ˇ�d=2 C

1

d C 
2 � 1

�
C kb3kL1.S2d�1/

�
ˇ�d C

1

2d C 
3 � 1

�i
;

be the constant given in (3.41). Consider f0 2MC
˛;ˇ

and .l#
0; u

#
0/ 2MC

˛;ˇ
�MC

˛;ˇ
with

ku#
0kM˛;ˇ

< �˛;ˇ ; (4.47)

where

�˛;ˇ D min
° ˛1=2
24Kˇ

;
˛1=4

2
p
6Kˇ

±
: (4.48)
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Let l1, u1 be the mild solutions to (4.45) and (4.46) respectively, and assume that the
following beginning condition holds:

0 � l#
0 � l

#
1.t/ � u

#
1.t/ � u

#
0 8t 2 Œ0; T /: (4.49)

Then we conclude the following:

(i) There are unique sequences .ln/n, .un/n such that, for any n 2 N, ln, un are the mild
solution to (4.1), (4.2) respectively. Moreover, for any n 2 N we have

0 � l#
0 � l

#
1.t/ � � � � � l

#
n.t/ � u

#
n.t/ � � � � � u

#
1.t/ � u

#
0 8t 2 Œ0; T /: (4.50)

(ii) For all t 2 Œ0; T /, the sequences .l#
n.t//n, .u#

n.t//n converge in M˛;ˇ . Let us define

l#.t/ WD lim
n!1

l#
n.t/; u#.t/ WD lim

n!1
u#
n.t/; t 2 Œ0; T /:

Then we conclude that

l#; u#
2 C 0.Œ0; T /; L1;Cx;v / \ L

1.Œ0; T /;MC
˛;ˇ
/;

L#.l; u; u/; L#.u; l; l/; G#.l; l; l/; G#.u; u; u/ 2 L1.Œ0; T /; L1;Cx;v /

and the following integral equations are satisfied:

l#.t/C

Z t

0

L#.l; u; u/.�/ d� D f0 C

Z t

0

G#.l; l; l/.�/ d� 8t 2 Œ0; T /; (4.51)

u#.t/C

Z t

0

L#.u; l; l/.�/ d� D f0 C

Z t

0

G#.u; u; u/.�/ d� 8t 2 Œ0; T /: (4.52)

(iii) The limits l , u coincide, i.e. u D l .

(iv) Let us define f WD l D u. Then f is the unique mild solution of the binary–ternary
Boltzmann equation (1.1) in Œ0; T /, with initial data f0 2MC

˛;ˇ
satisfying

jjjf #
jjj1 � ku

#
0kM˛;ˇ

: (4.53)

Remark 4.8. The uniqueness claimed above holds in the class of solutions satisfying
(4.53).

Proof of Theorem 4.7.

(i) We will construct sequences .ln/n, .un/n satisfying (4.1)–(4.50) inductively.

• nD 1: l1, u1 satisfy (4.1) for k D 1 by assumption. Moreover, for k D 1, (4.50) reduces
to assumption (4.49).

• Assume we have constructed l1; : : : ; ln�1; u1; : : : ; un�1 satisfying (4.1) and

l#
0 � l

#
1.t/ � � � � � l

#
n�1.t/ � u

#
n�1.t/ � � � � � u

#
1.t/ � u

#
0 8t 2 Œ0; T /: (4.54)
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Let ln, un be the mild solutions of (4.1), (4.2), respectively, for kD n, given by Proposition
4.5. Having in mind (4.54), in order to prove (4.50) it suffices to show

l#
n�1.t/ � l

#
n.t/ � u

#
n.t/ � u

#
n�1.t/ 8t 2 Œ0; T /: (4.55)

Fix any t 2 Œ0;T /. Then (4.54) and Proposition 3.1, which gives monotonicity ofG#, yield
that for any t 2 Œ0; T / we have

G#.ln�2; ln�2; ln�2/.t/ � G
#.ln�1; ln�1; ln�1/.t/

� G#.un�1; un�1; un�1/.t/

� G#.un�2; un�2; un�2/.t/: (4.56)

Using (4.54), (4.56) and Corollary 4.6 with

g#
1 D u

#
n�2; g#

2 D u
#
n�1; h#

1 D G
#.ln�2; ln�2; ln�2/; h#

2 D G
#.ln�1; ln�1; ln�1/;

we obtain l#
n�1 � l

#
n: Similarly, using Corollary 4.6 for g#

1 D u#
n�1, g#

2 D l#
n�1, h#

1 D

G#.ln�1; ln�1; ln�1/, h#
2 D G#.un�1; un�1; un�1/, we obtain l#

n � u
#
n, and using it for

g#
1D l

#
n�1, g#

2D l
#
n�2, h#

1DG
#.un�1;un�1;un�1/, h#

2DG
#.un�2;un�2;un�2/, we obtain

u#
n � u

#
n�1. Condition (4.55) is proved and the claim follows.

(ii) To prove convergence, notice that (4.50) implies that, for any t 2 Œ0; T /, the sequence
.l#
n.t//n is increasing and upper bounded and the sequence .u#

n.t//n is decreasing and
lower bounded, thus they are convergent. Let us define

l#.t/ WD lim
n!1

l#
n.t/; u#.t/ WD lim

n!1
u#
n.t/; t 2 Œ0; T /:

Since u#
0 2 MC

˛;ˇ
, estimate (4.50) actually implies that the convergence takes place in

M˛;ˇ and that l#; u# 2 L1.Œ0; T /;MC
˛;ˇ
/. Thus relations (3.20) from Lemma 3.3 imply

that

L#.l; u; u/; L#.u; l; l/; G#.l; l; l/; G#.u; u; u/ 2 L1.Œ0; T /; L1;Cx;v /: (4.57)

Moreover, since for any t 2 Œ0; T / we have

.l#
n; u

#
n�1; u

#
n�1/.t/

M˛;ˇ

���! .l#; u#; u#/.t/; .u#
n; l

#
n�1; l

#
n�1/.t/

M˛;ˇ

���! .u#; l#; l#/.t/;

as n!1, Corollary 3.5 implies that for any t 2 Œ0; T / we have

L#.ln; un�1; un�1/.t/
L1x;v
���! L#.l; u; u/;

L#.un; ln�1; ln�1/.t/
L1x;v
���! L#.u; l; l/:

(4.58)

Similarly, for any t 2 Œ0; T /, we obtain

G#.ln�1; ln�1; ln�1/.t/
L1x;v
���! G#.l; l; l/;

G#.un�1; un�1; un�1/.t/
L1x;v
���! G#.u; u; u/:

(4.59)
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Moreover, by relation (4.50), monotonicity ofL#,G# and the fact that u#
0 2MC

˛;ˇ
, Lemma

3.3 implies

L#.ln; un�1; un�1/; G
#.ln�1; ln�1; ln�1/ 2 L

1.Œ0; T /; L1x;v/ 8n 2 N;

L#.un; ln�1; ln�1/; G
#.un�1; un�1; un�1/ 2 L

1.Œ0; T /; L1x;v/ 8n 2 N:
(4.60)

Recalling Definition 2.7, the initial value problems (4.1), (4.2) and the fundamental theo-
rem of calculus imply that for all n 2 N we have

l#
n.t/C

Z t

0

L#.ln; un�1; un�1/.�/ d�

D f0 C

Z t

0

G#.ln�1; ln�1; ln�1/.�/ d� 8t 2 Œ0; T /; (4.61)

u#
n.t/C

Z t

0

L#.un; ln�1; ln�1/.�/ d�

D f0 C

Z t

0

G#.un�1; un�1; un�1/.�/ d� 8t 2 Œ0; T /: (4.62)

Letting n!1 and using the dominated convergence theorem, we obtain (4.51)–(4.52).
The fact that l#; u# 2 C 0.Œ0; T /; L1x;v/ easily follows from (4.51)–(4.52).

(iii) Since l#
n � u

#
n by (4.50), letting n!1 we obtain

0 � l#
0 � l

#.t/ � u#.t/ � u#
0 8t 2 Œ0; T /: (4.63)

Subtracting (4.51) from (4.52) and using (4.63) and the triangle inequality, we obtain

ju#.t/ � l#.t/j �

Z t

0

jG#.u; u; u/.�/ �G#.l; l; l/.�/j

C jL#.l; u; u/.�/ � L#.u; l; l/.�/j d�: (4.64)

Let us estimate the right-hand side of (4.64). Recalling (2.38), the triangle inequality yieldsZ t

0

jG#.u; u; u/.�/ �G#.l; l; l/.�/j d�

�

Z t

0

jG#
2.u; u/.�/ �G

#
2.l; l/.�/j C jG

#
3.u; u; u/.�/ �G

#
3.l; l; l/.�/j d�: (4.65)

Bilinearity of G#
2, the triangle inequality, bound (3.38) from Proposition 3.7 and the right-

hand side inequality of (4.63) yieldZ t

0

jG#
2.u; u/.�/ �G

#
2.l; l/.�/j d� �

Z t

0

jG#
2.u � l; u/.�/j C jG

#
2.l; u � l/.�/j d�

� Kˇ˛
�1=2M˛;ˇku

#
� l#
kL1.Œ0;T /�;M˛;ˇ /.jjju

#
jjj1 C jjjl

#
jjj1/

� 2Kˇ˛
�1=2M˛;ˇku

#
0kM˛;ˇ

jjju#
� l#
jjj1: (4.66)
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The trilinearity of G#
3, the triangle inequality, bound (3.39) from Proposition 3.7 and

the right-hand side of (4.63) yieldZ t

0

jG#
3.u; u; u/.�/ �G

#
3.l; l; l/.�/j d�

�

Z t

0

jG#
3.u � l; u; u/.�/j C jG

#
3.l; u � l; u/.�/j C jG

#
3.l; l; u � l/.�/j d�

� Kˇ˛
�1=2M˛;ˇ jjju

#
� l#
jjj1.jjju

#
jjj
2

1 C jjju
#
jjj1jjjl

#
jjj1 C jjjl

#
jjj
2

1/

� 3Kˇ˛
�1=2M˛;ˇku

#
0k
2
M˛;ˇ
jjju#
� l#
jjj1: (4.67)

Then estimates (4.66)–(4.67) yieldZ t

0

jG#.u; u; u/.�/ �G#.l; l; l/.�/j d�

� 6Kˇ˛
�1=2M˛;ˇ .ku

#
0kM˛;ˇ

C ku#
0k
2
M˛;ˇ

/jjju#
� l#
jjj1: (4.68)

By a similar argument, using (3.38), (3.39) instead, we also haveZ t

0

jL#.l; u; u/.�/ � L#.u; l; l/.�/j d�

� 6Kˇ˛
�1=2M˛;ˇ .ku

#
0kM˛;ˇ

C ku#
0k
2
M˛;ˇ

/jjju#
� l#
jjj1: (4.69)

Combining (4.64), (4.68)–(4.69), we obtain

ju#.t/ � l#.t/j � 12Kˇ˛
�1=2M˛;ˇ .ku

#
0kM˛;ˇ

C ku#
0k
2
M˛;ˇ

/jjju#
� l#
jjj1 8t 2 Œ0; T /;

which is equivalent to

jjju#
� l#
jjj1 � 12Kˇ˛

�1=2.ku#
0kM˛;ˇ

C ku#
0k
2
M˛;ˇ

/jjju#
� l#
jjj1: (4.70)

Notice though that (4.47)–(4.48) yield

12Kˇ˛
�1=2.ku#

0kM˛;ˇ
C ku#

0k
2
M˛;ˇ

/ < 1I

hence (4.70) yields u D l .

(iv) To prove existence, let us define f by

f #
WD l#

D u#
2 C 0.Œ0; T /; L1;Cx;v / \ L

1.Œ0; T /;MC
˛;ˇ
/:

Then either (4.51) or (4.52) implies

f #.t/C

Z t

0

L#.f; f; f /.�/ d� D f0 C

Z t

0

G#.f; f; f /.�/ d� 8t 2 Œ0; T /;

and therefore 8<:
df #

dt
C L#.f; f; f / D G#.f; f; f /;

f #.0/ D f0:
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Recalling Definition 2.7, we conclude that f is a mild solution to the binary–ternary
Boltzmann equation (1.1) with initial data f0. Bound (4.53) directly follows from (4.63).

Uniqueness of solutions satisfying (4.53) follows similarly to the proof of (iii) using a
bilinearity–trilinearity argument and Proposition 3.7. Clearly, condition (4.53) is needed
to have a contraction.

5. Global well-posedness near vacuum

In this final section we prove the main result of this paper, stated in Theorem 2.10, which
gives global well-posedness of (1.1) near vacuum, in the interval Œ0; T /, where 0 < T �
1. To prove this result we will rely on the time average bound of the gain term from
Proposition 3.7.

Proof of Theorem 2.10. Consider f0 2 MC
˛;ˇ

satisfying (2.76) and let us define l#
0 D 0,

u#
0 D CoutM˛;ˇ , where

Cout D

1 �

r
1 � 48Kˇ˛�1=2

�
1C ˛1=4

2
p
6Kˇ

�
kf0kM˛;ˇ

24Kˇ˛�1=2
�
1C ˛1=4

2
p
6Kˇ

� (5.1)

and Kˇ is given by (2.77). The reasoning behind defining Cout will become clear in (5.8).
Notice that due to (2.76), u#

0 is well defined. In order to conclude the proof, we will use
Theorem 4.7. Recalling from (4.48) that

�˛;ˇ D min
° ˛1=2
24Kˇ

;
˛1=4

2
p
6Kˇ

±
;

(5.1) and (2.76) yield
ku#
0kM˛;ˇ

D Cout < �˛;ˇ ; (5.2)

and thus the conditions of Theorem 4.7 are satisfied. By Theorem 4.7, it suffices to prove
that the beginning condition (4.49) for the approximating sequences generated by f0 2
MC
˛;ˇ

and the pair of functions .l#
0;u

#
0/2MC

˛;ˇ
�MC

˛;ˇ
is satisfied. Indeed, by the iteration

scheme (4.45), we have
dl#
1

dt
C l#

1R
#.u0; u0/ D 0;

du#
1

dt
D G#.u0; u0; u0/;

u#
1.0/ D l

#
1.0/ D f0;

and therefore, we obtain

l#
1.t/ D f0 exp

�
�

Z t

0

R#.u0; u0/.�/ d�

�
; t 2 Œ0; T /; (5.3)

u#
1.t/ D f0 C

Z t

0

G#.u0; u0; u0/.�/ d�; t 2 Œ0; T /: (5.4)
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Since u0 � 0, formulas (5.3)–(5.4) together with Proposition 3.1 imply

0 D l#
0 � l

#
1.t/ � u

#
1.t/ 8t 2 Œ0; T /: (5.5)

It remains to prove that
u#
1.t/ � u

#
0 8t 2 Œ0; T /: (5.6)

By representation (5.4) and (3.40) from Proposition 3.7, we obtain

u#
1.t/ � kf0kM˛;ˇ

M˛;ˇ CKˇ˛
�1=2M˛;ˇku

#
0k
2
M˛;ˇ

.1C ku#
0kM˛;ˇ

/

�M˛;ˇ

h
kf0kM˛;ˇ

CKˇ˛
�1=2

�
1C

˛1=4

2
p
6Kˇ

�
C 2out

i
; (5.7)

where to obtain (5.7) we use the fact that u#
0 D CoutM˛;ˇ and (5.2). Recalling (5.1), we

notice that Cout satisfies

kf0kM˛;ˇ
C 12Kˇ˛

�1=2
�
1C

˛1=4

2
p
6Kˇ

�
C 2out D Cout; (5.8)

and thus (5.7) implies

u#
1.t/ � CoutM˛;ˇ D u

#
0 8t 2 Œ0; T /:

Estimate (5.6) is proved and the claim of Theorem 2.10 follows.
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