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This note deals with an application of Voronin’s universality the-
orem for the Riemann zeta-function ζ . In particular, we show that
every plane smooth curve appears, up to a small error, in the curve
generated by the values ζ(σ+ i t) for real t, where σ ∈ (1/2, 1)
is fixed. In this sense, the values of the zeta-function on any such
vertical line provide an atlas for plane curves.

1 Curves generated by the Riemann zeta-function

Curves appear naturally in life, perhaps not as ideal objects, as
Euclid defined a line as “a length without breadth” in his Elements,
but as orbits of planets, trajectories in physics and technology,
or drawings in art. Taking into account their variety, it might be
surprising that one can find them all realized in a single curve.
Following Tolkien, we may state this also as a “Lord of the Curves”
poem:

One Curve to rule them all,
One Curve to find them,

One Curve to bring them all,
And in the plane bind them.
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Figure 1. The values of ζ(3/4+ i t) for 0 ≤ t ≤ 35; one can already
imagine an approximation of a shifted unit circle (in yellow).

Of course, our statement above needs to be clarified. Here and
in the sequel we consider only finite and smooth curves on the
plane, meaning that for each of them there exists a parametrization
of the form

γ∶ [0, 1] → ℝ2, t ↦ γ(t) (1)

such that γ has a non-vanishing first derivative and a continuous
second derivative (see [5]); this includes line segments, ellipses, and
many more curves that easily come to mind. The single curve that
realizes all these smooth curves, however, is an artifact and has to
be infinite for obvious reasons. In this respect, our theorem below
has some implications to our understanding of infinity.

This infinite curve originates from the Riemann zeta-function,
defined by

ζ(s) = (21−s − 1)−1
∞

∑
n=1

(−1)n

ns
, (2)

where s = σ+ i t with the imaginary unit i = √−1 (in the upper
half-plane) is a complex variable with real part σ > 0. The complex-
valued function ζ(s) plays a central role in analytic number theory
and the distribution of prime numbers in particular (see [9]). For our
result, we need to allow deviations by a quantity as small as desired.
The mathematical language allows for a precise formulation:

Theorem 1.1. Let σ ∈ (1/2, 1) and ε > 0 be fixed. Then, every
plane curve is, up to an error of order ε and affine translation,
contained in the graph of the curve ℝ ∋ t ↦ ζ(σ+ i t) ∈ ℂ.

Here, of course, we regard any curve on the Euclidean plane,
via ℝ2 ≃ ℂ, also as a curve on the complex plane.

Proof. The proof relies on Voronin’s celebrated universality the-
orem [12] from 1975 which states, roughly speaking, that certain
shifts of the zeta-function approximate every zero-free analytic
function, defined on a sufficiently small disk – a remarkable ap-
proximation property!

For our purpose, we recall the universality theorem [12] in
a stronger form: Suppose that 𝒦 is a compact subset of the
strip 1/2 < Re s < 1 with connected complement, and let g(s)
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be a non-vanishing continuous function on 𝒦 which is analytic
in the interior of 𝒦. Then, for every ε > 0, the set of real τ > 0
satisfying

max
s∈𝒦

|ζ(s+ iτ) − g(s)| < ε (3)

has positive lower density (see [11]). The main differences from
Voronin’s original statement in [12] are the positive lower density
of the set of shifts τ (which is already implicit in Voronin’s proof,
but not in his formulation of the theorem) and the rather general
set𝒦, where Voronin considered only disks; this is first apparent in
Gonek’s PhD thesis [6] and later in Bagchi’s PhD thesis [2]. The to-
pological restriction on𝒦 follows fromMergelyan’s approximation
theorem and its limitations (see [8] and [11, p. 107]). We will also
make use of the following observation, due to Andersson [1]: If 𝒦
has empty interior, then the target function g in the universality
theorem is allowed to have zeros.

In order to describe curves, the concept of curvature of
a smooth curve is essential. We omit the technical definition of this
notion, and only mention that the curvature of a curve (with a suit-
able parametrization (1)) is a real-valued function that measures
the deviation of the curve from a straight line. It is a well-known
fact that a smooth plane curve is determined by its curvature;
this follows from the fundamental theorem of the local theory of
curves (see [5]). Let κ be the curvature of a parametrized plane
curve (1) with respect to the arc length t (in order to have a unique
representation). Define

𝜗(u) = ∫
u

0
κ(t)dt.

Then, a model of the curve with curvature κ on the complex plane
ℂ is given by the parametrization

t ↦ γ(t) = ∫
t

0
exp (i𝜗(u))du,

where t ranges through the interval ℐ ∶= [0, 1]. By the universality
theorem, more precisely Andersson’s observation and (3) with
𝒦 = {σ+ i t ∣ t ∈ [0, 1]}, for every ε > 0, there exists τ > 0 such
that

max
t∈ℐ

|ζ(σ+ i t+ iτ) − γ(t)| < ε.

In view of the positive lower density for the set of real shifts
τ> 0 that lead to the desired approximation of the target function,
it follows that any plane curve appears infinitely often, up to a tiny
error bounded by ε, in any curve ζ(σ + iℝ) with any fixed σ ∈
(1/2, 1) (even with positive lower density). In this sense, the zeta-
function provides a single plane curve that contains all the plane
curves with an error too small to be seen with the naked eye! Note
that the Planck length is about 1.6 ⋅ 10−36 meters and, according

to quantum mechanics, one cannot see anything smaller than this
tiny quantity.

Hence, the values of the zeta-function on any vertical line in
the right open half of the critical strip provide an atlas for plane
curves (where atlas should be understood as in geography, rather
than as in the mathematical context of manifolds). We note that,

Figure 2. The first four iteration steps for the Peano curve.

in view of the universality theorem, the target function just needs
to be continuous if 𝒦 has empty interior. This even allows to
approximate space-filling curves like the Peano curve, for which
a continuous representation (1) exists (see [10] and Figure 2 for the
Peano curve as the limit of an iteration). This Peano curve maps the
unit interval [0,1] onto the unit square [0,1]2. On the contrary, the
map t ↦ ζ(σ+ i t) is differentiable and, therefore, if t is restricted
to a bounded interval, the corresponding curve necessarily has
finite length. That nevertheless the approximation of a space-filling
curve is possible follows from the inaccuracy hidden behind the
epsilon.

Is it possible to extend these results further? To answer this
question we recall that, more than a century ago, Bohr (the math-
ematician Harald, younger brother of the physicist Niels) and Cour-
ant [3] proved that ζ(σ + iℝ) is dense in ℂ for every fixed σ ∈
(1/2,1] (which means that one can find a value ζ(σ+ i t) for some
real t in every neighbourhood of every point of the complex plane).
Of course, this result also follows from universality (by choosing
a constant target function). For the critical line, however, it is un-
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known whether ζ(1/2+ iℝ) is dense in the complex plane or not.
Universality applies neither to the critical line (because of too many
zeros of ζ ), nor to any vertical line σ + iℝ with σ > 1 (because
of the absolute convergence of the defining series (2)). These lim-
itations also hold for the approximation of plane curves, which
is obvious for σ > 1 (since then |ζ(σ+ i t)| ≤ ζ(σ)); for σ ≤ 1/2,
however, this follows from a result of Gonek and Montgomery [7],
who showed that the curvature of t ↦ ζ(1/2 + i t) is negative
for t ≥ 3 and something similar holds for σ < 1/2 as well. The
latter result is conditional subject to the truth of the famous, yet
unproven, Riemann Hypothesis that

ζ(σ+ i t) ≠ 0 for σ > 1/2.

This open conjecture is one of the seven Millennium Problems in
mathematics.

We conclude with a related problem in the universe of numbers.
Does every finite pattern of digits appear in the infinite decimal frac-
tion expansion of the circle number π = 3.14159 26535 897…?
There exist real numbers with this property, for example the Cham-
pernowne constant 0.1234567891011… (built from the positive
integers in ascending order) and it has been proven that almost all
real numbers have this property (such numbers are called normal;
see [4]); however, the case of special numbers is difficult and wide
open in the case of π.

A more detailed account of our study with additional results in
this context will appear elsewhere.
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