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This paper describes results concerning the construction of low-
regularity solutions of nonlinear partial differential equations that
depend on a random parameter. The motivations for this study
are very varied. However, in the end, the results obtained and the
methods used are conceptually very similar.

1 Multiple Fourier series and Sobolev spaces on the torus

For x = (x1,…, xd) ∈ ℝd, we set

⟨x⟩ ∶= (1+ x21 +⋯+ x2d)
1/2.

Let 𝕋d = (ℝ/(2πℤ))d be the torus of dimension d. If f ∶ 𝕋d → ℂ
is a function of class 𝒞∞, then for all x ∈ 𝕋d,

f(x) = ∑
n∈ℤd

̂f(n)e in⋅x,

where ̂f(n) are the Fourier coefficients of f. For s ∈ ℝ, the Sobolev
norm of f is defined by

‖f‖2Hs(𝕋d) = ∑
n∈ℤd

⟨n⟩2s| ̂f(n)|2. (1)

For an integer s ≥ 0, we have the equivalence of norms

‖f‖2Hs(𝕋d) ≃ ∑
|α|≤ s

‖∂αf‖2L2(𝕋d). (2)

In (2), ∂α represents a partial derivative of order ≤ s. For s = 0, we
recover the norm of the Lebesgue space L2(𝕋d).

The Sobolev space H s(𝕋d) is defined as the completion of
𝒞∞(𝕋d) with respect to the norm (1). In contrast to the case s ≥ 0,
for s < 0 the elements of H s(𝕋d) are not classical functions on the
torus, but can be interpreted as Schwartz distributions. Note that
the Sobolev spaces are nested: the larger s is, the more regular the
elements of H s(𝕋d) are; the intersection of all H s(𝕋d) is 𝒞∞(𝕋d).
On the other hand, the smaller s is, the larger H s(𝕋d) is; the union
of all the spaces H s(𝕋d) is the Schwartz space of (2πℤ)d-periodic
distributions on ℝd.

2 Probabilistic effects in fine questions of analysis

2.1 An almost sure improvement of the Sobolev embedding
Let (Ω,ℱ,p) be a probability space. Recall that a random variable
g∶ Ω → ℝ belongs to 𝒩(0,σ2), with σ > 0, if the image of the
measure p under g is

1
σ√2π

exp(− x2

2σ2 )dx,

where dx is the Lebesgue measure on ℝ. The random variable
g then follows the centered normal distribution with variance σ.
Similarly, a random variable g ∶ Ω → ℂ belongs to 𝒩ℂ(0, σ2), if
g = h+ i l with h ∈ 𝒩(0,σ2) and l ∈ 𝒩(0,σ2) independent.

Let u ∈ L2(𝕋2) be a deterministic function. There exists a se-
quence (cn)n∈ℤ ∈ l2(ℤ) (which consists of the Fourier coefficients
of u) such that

u(x) = ∑
n∈ℤ

cne inx.

Now consider a randomized version of u given by the expression

uω(x) = ∑
n∈ℤ

cngn(ω)e inx,

where (gn(ω))n∈ℤ is a sequence of independent variables of
𝒩ℂ(0, 1). The randomization has no effect on the Sobolev regu-
larity of uω (see, e.g., [5]). On the other hand, randomization has
an important effect on regularity in Lebesgue spaces Lp(𝕋d). Using
the rotation invariance of 𝒩ℂ(0, 1), we obtain that gn(ω)e inx ∈
𝒩ℂ(0, 1), and then the independence of gn ensures that for
a fixed x

uω(x) ∈ 𝒩ℂ(0, ∑
n∈ℤ

|cn|2).

Since Gaussian variables have finite moments of any order, we get

uω(x) ∈ Lp(Ω×𝕋),

which implies that uω(x) ∈ Lp(𝕋) almost surely, a remarkable im-
provement in the Lp regularity of uω compared to that of u. Note
that the Sobolev embedding requires that a deterministic function
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be H1/2(𝕋)-regular in order to conclude that it lies in Lp(𝕋) for
any p < +∞ (and this restriction on regularity is optimal). In de-
scriptive terms, randomization saves half a derivative compared
with the Sobolev embedding. Like the Sobolev embedding, this
effect has been known since the beginning of the 20th century,
and it may seem surprising that the interaction between these two
phenomena has not been studied more in the past.

Finally, thanks to the Khinchin inequality, in the preceding dis-
cussion one is allowed to replace Gaussian variables by a more
general family of random variables (e.g., Bernoulli variables).

2.2 Almost sure products in Sobolev spaces of negative index
Let

uω(x) = ∑
n∈ℤ

gn(ω)
⟨n⟩α e inx,

1
4
< α < 1

2
,

be a random series, with gn as in the preceding section. It is easy
to verify that almost surely uω ∈ Hσ(𝕋) for σ < α− 1

2 , but almost
surely uω ∉ Hα− 1

2 (𝕋). In the following, we fix a number σ such
that σ < α − 1

2 (it should be assumed that this number is very
close to α− 1

2 ). The series uω is therefore in a Sobolev space of
negative index and it is difficult to define an object like |uω|2. After
renormalization, it is nevertheless possible to give a meaning to
|uω|2, and even to determine its regularity in Sobolev spaces. Let
us start by considering the partial sums

uω,N(x) = ∑
|n|≤N

gn(ω)
⟨n⟩α e inx,

which are 𝒞∞ functions. Now expand |uω,N(x)|2 as

|uω,N(x)|2 = ∑
|n|≤N

|gn(ω)|2

⟨n⟩2α

+ ∑
n1≠n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)
⟨n1⟩α⟨n2⟩α

e i(n1−n2)x.

The first term of this expansion (the zero-order Fourier coefficient)
contains all the singularity, while the second term has a limit almost
surely in H2σ(𝕋). We then set

cN ∶= 𝔼( ∑
|n|≤N

|gn(ω)|2

⟨n⟩2α ) = ∑
|n|≤N

2
⟨n⟩2α ∼ N1−2α,

and we define the renormalized partial sum as

|uω,N(x)|2 − cN = ∑
|n|≤N

|gn(ω)|2 − 2
⟨n⟩2α

+ ∑
n1≠n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)
⟨n1⟩α⟨n2⟩α

e i(n1−n2)x.

The independence of the random variables gn ensures that the

zero-order Fourier coefficient is well-defined. More precisely, we
obtain

𝔼(| ∑
|n|≤N

|gn(ω)|2 − 2
⟨n⟩2α |

2
) = ∑

|n|≤N

4
⟨n⟩4α ,

which has a limit as N → +∞ if α > 1/4.
Similarly, the independence implies that the expectation

𝔼(‖ ∑
n1≠n2

|n1|,|n2|≤N

gn1(ω)gn2(ω)
⟨n1⟩α⟨n2⟩α

e i(n1−n2)x‖
2

H2σ

)

is bounded from above by a term of the order of

∑
n1,n2

⟨n1 − n2⟩4σ

⟨n1⟩2α⟨n2⟩2α
.

The latter sum is convergent under the condition −4σ+ 4α > 2,
which is equivalent to our assumption σ < α− 1

2 . Consequently,
the sequence

(|uω,N(x)|2 − cN)N≥1 (3)

has a limit in L2(Ω;H2σ(𝕋)). This limit is by definition the renormal-
ization of |uω|2. We can also establish (using more sophisticated
arguments) the almost sure convergence in the Sobolev space
H2σ(𝕋) of the sequence (3). Note that since σ < 0, the norm in
H2σ(𝕋) is weaker than the norm in Hσ(𝕋) (where the series uω(x)
is defined).

To sum up in a very informal way, the squared modulus of an
element of Hσ is in H2σ, after renormalization. This is a remarkable
probabilistic effect which lies at the heart of the study of evolu-
tionary PDE, in the presence of randomness, in Sobolev spaces of
negative index. We will further develop this topic in the remainder
of this text.

3 Solving the nonlinear wave equation with low-regularity
initial data

The wave equation is a typical example of a dispersive PDE. Solving
dispersive PDE with low-regularity initial data has a long history,
dating back to the seminal works of Ginibre and Velo and of Kato.
Kenig, Ponce and Vega, Klainerman and Machedon, and most
notably Bourgain have developed tools from harmonic analysis
allowing to obtain solutions of very low regularity. The question
of the optimality of these results then arose. It was Lebeau’s work
that launched a series of results on the construction of counter-
examples showing the optimality of the assumption of regularity
in the previous results. It was in this context that the idea of prov-
ing a kind of probabilistic well-posedness for regularities where
counterexamples were constructed was introduced in [23], and
then implemented in [5,6].
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3.1 Solving the linear wave equation with periodic
distributions as initial data

Consider the linear wave equation

(∂2t − Δ)u = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x), (4)

where t∈ℝ, x∈𝕋3, u∶ ℝ×𝕋3 →ℝ and Δ is the Laplace operator.
It is readily verified that for

(u0,u1) ∈ 𝒞∞(𝕋3) ×𝒞∞(𝕋3)

the solution of (4) is given by the map S(t) defined by

S(t)(u0,u1) = ∑
n∈ℤ3

(cos(t|n|)û0(n) +
sin(t|n|)

|n| û1(n))e in⋅x,

where |n| = (n21 + n22 + n23)1/2. For n = 0, the expression sin(t|n|)
|n|

is naturally understood as its limit t.
Since | cos(t|n|)| ≤ 1 and | sin(t|n|)| ≤ 1, it follows from the

above definition that

‖S(t)(u0,u1)‖HS ≤ C(1+ |t|)(‖u0‖Hs + ‖u1‖Hs−1). (5)

Since the map S(t) is linear, we can define a unique extension of
S(t) for

(u0,u1) ∈ Hs(𝕋3) × Hs−1(𝕋3)

and solve (4) with initial data in H s(𝕋3) × H s−1(𝕋3) for arbitrary
s ∈ ℝ.

3.2 The nonlinear problem. Resolution by deterministic
methods

The previous discussion makes it easy to solve (4) with singular
initial data (in Sobolev spaces of arbitrary negative index). The
argument is based on the a priori estimate (5) and the linear nature
of the map S(t) (or of equation (4)). The situation changes radically
if we consider a nonlinear perturbation of (4). In this text, we
restrict our attention to the case of a cubic nonlinear interaction.
More precisely, we consider the problem

(∂2t −Δ)u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x). (6)

For this problem, the crucial information (5) and the linear nature of
the equation are lost. Nevertheless, equation (6) is of Hamiltonian
type. Therefore, formally, the solutions of (6) satisfy the algebraic
relation

d
dt

∫
𝕋3
((∂tu(t, x))2 + |∇xu(t, x)|2 +

1
2
u4(t, x))dx = 0. (7)

This relation implies that the Sobolev space H1(𝕋3) is one of the
natural settings for the study of problem (6). The starting point of
this study is given by the following classical result.

Theorem 3.1. For any pair (u0,u1) ∈ H1(𝕋3) × L2(𝕋3) (real val-
ued) there exists a unique global in time solution of (6) in the
class

(u, ∂tu) ∈ 𝒞0(ℝ;H1(𝕋3) × L2(𝕋3)).

If, in addition, (u0, u1) ∈ H s(𝕋3) × H s−1(𝕋3), for a given s ≥ 1,
then

(u, ∂tu) ∈ 𝒞0(ℝ;Hs(𝕋3) × Hs−1(𝕋3)). (8)

Finally, the dependence on the initial data is continuous.

Using compactness methods (going back to the work of Leray)
we can exploit (7) and obtain a much weaker version of Theorem
3.1, without uniqueness and without the propagation of regu-
larity (8). In Theorem 3.1, uniqueness results from the Sobolev
embedding H1(𝕋3) ↪ L6(𝕋3). The L6-norm appears here naturally
when we study the L2-norm of the nonlinear term u3. As for the
propagation of the regularity, it derives from the estimate

‖u3‖Hs(𝕋3) ≤ C‖(1− Δ)s/2u‖L6(𝕋3)‖u‖2L6(𝕋3). (9)

The details of the proof of (9) can be found in [1], where estimates
of the type (9) are called tame. The key point in estimate (9) is that
the s derivatives acting on the expression u3 are redistributed in
such a way that, at the end, the right-hand side of (9) depends
only linearly on the strong norm (the one that contains derivatives).

In view of the discussion of the linear problem (4), it is now
natural to ask whether Theorem 3.1 generalizes to initial data in
H s × H s−1 for a given s < 1. As we shall see below, such a gener-
alization is possible for some s, but not for all. By using Strichartz
estimates instead of the Sobolev embedding H1(𝕋3) ↪ L6(𝕋3),
part of Theorem 3.1 generalizes to

(u0,u1) ∈ Hs(𝕋3) × Hs−1(𝕋3), s ≥ 1/2. (10)

More precisely, the local well-posedness of (6) can be estab-
lished under the assumption (10). A more detailed description
of Strichartz’s estimates would go beyond our objectives in this
text. We merely point out that Strichartz estimates can be seen as
improvements almost everywhere in time of Sobolev embeddings,
when, instead of considering an arbitrary function, we consider
a function that satisfies a dispersive PDE. We refer to [24] for
more details on Strichartz estimates and the generalization of The-
orem 3.1 under assumption (10). It can be conjectured that the
global in time part of Theorem 3.1 remains true under assump-
tion (10). The most advanced results towards the resolution of this
conjecture are in [8,21].

3.3 The limitations of deterministic methods
The restriction (10) is optimal with respect to the well-posedness in
the sense Hadamard of the problem (6) with initial data inH s(𝕋3)×
H s−1(𝕋3). More precisely, we have the following result.
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Theorem 3.2. Let s∈(0,1/2) and (u0,u1)∈H s(𝕋3)×H s−1(𝕋3).
There exists a sequence

uN(t, x) ∈ 𝒞0(ℝ;𝒞∞(𝕋3)), N = 1, 2,…

such that

(∂2t −Δ)uN + u3N = 0,

with

lim
N→+∞

‖uN(0) − u0, ∂tuN(0) − u1‖Hs(𝕋3)×Hs−1(𝕋3) = 0

but for all T > 0

lim
N→+∞

‖uN(t), ∂tuN(t)‖L∞([0,T];Hs(𝕋3)×Hs−1(𝕋3)) = +∞.

Well-posedness in the sense of Hadamard requires existence,
uniqueness and continuous dependence on the initial data. The-
orem 3.2 shows that continuous dependence on initial data fails.

The proof of Theorem 3.2 is based on an idea of Lebeau (see
for example [15]): if the initial data are localized at high frequency,
then for small times a good approximation of the solution of (6) is
given by the solution of

∂2t u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x) (11)

which is obtained from (6) by neglecting the effect of the Laplacian.
In other words, under the hypothesis of Theorem 3.2, nonlin-
ear effects dominate in the regime described above. The solution
of (11) manifests the phenomenon of amplification described by
Theorem 3.2 and this property propagates to the solutions of (6)
by a perturbative, highly non-trivial argument. A detailed proof of
Theorem 3.2 can be found in [24].

3.4 Resolution by probabilistic methods beyond the
limitations of deterministic theory

Despite the result of Theorem 3.2, we can ask whether a form of
the well-posedness of (6) remains true for initial data in

Hs(𝕋3) × Hs−1(𝕋3), s < 1/2. (12)

The answer to this question is positive if we endow the space (12)
with a non-degenerate probability measure such that we have
existence, uniqueness and (a form of) continuous dependence
almost surely with respect to this measure.

We will choose the initial data for (6) from the realizations of
the following random series:

uω0 (x) = ∑
n∈ℤ3

gn(ω)
⟨n⟩α e in⋅x, uω1 (x) = ∑

n∈ℤ3

hn(ω)
⟨n⟩α−1 e

in⋅x. (13)

Here (gn)n∈ℤ3 and (hn)n∈ℤ3 are two families of independent ran-
dom variables conditioned by gn = g−n and hn = h−n, so that uω

0

and uω
1 are real valued. Furthermore, it is assumed that for n ≠ 0,

gn and hn are complex Gaussians with distribution𝒩ℂ(0,1), while
g0 and h0 are real Gaussians with distribution 𝒩(0, 1).

The partial sums associated with (13) are Cauchy sequences in
L2(Ω;H s(𝕋3) × H s−1(𝕋3)) for all s < α− 3

2 . Therefore, the initial
data (13) belong almost surely toH s(𝕋3)×H s−1(𝕋3) for s<α− 3

2 .
Furthermore, the probability of the event

(uω0 ,uω1 ) ∈ Hα− 3
2 (𝕋3) × Hα− 5

2 (𝕋3)

is zero. It follows that for α> 5/2we can apply Theorem 3.1 to the
data (u0, u1) described by (13). For α > 2, we can apply refined
deterministic results (based on Strichartz estimates). Finally, for
α ∈ (3/2, 2), Theorem 3.2 applies and we get:

Theorem 3.3 (pathological approximations). Let α ∈ (3/2,2) and
0 < s < α− 3/2. For almost every ω, there exists a sequence

uωN(t, x) ∈ 𝒞0(ℝ;𝒞∞(𝕋3)), N = 1, 2,…

such that

(∂2t −Δ)uωN + (uωN)3 = 0,

with

lim
N→+∞

‖uωN(0) − uω0 , ∂tu
ω
N(0) − uω1 ‖Hs(𝕋3)×Hs−1(𝕋3) = 0,

but for all T > 0

lim
N→+∞

‖uωN(t), ∂tuωN(t)‖L∞([0,T];Hs(𝕋3)×Hs−1(𝕋3)) = +∞.

However, the following result also holds.

Theorem 3.4 (probabilistic well-posedness). Let α ∈ (3/2, 2) and
0< s< α− 3/2. Using Theorem 3.1, define the sequence (uω

N)N≥1

of solutions of problem (6) with regular initial conditions given by

uω0,N(x) = ∑
|n|≤N

gn(ω)
⟨n⟩α e in⋅x, uω1,N(x) = ∑

|n|≤N

hn(ω)
⟨n⟩α−1 e

in⋅x. (14)

Then there exists a set Σ ⊂ Ω of probability 1 such that for
every ω ∈ Σ the sequence (uω

N)N≥1 converges when N → +∞
in 𝒞0(ℝ;H s(𝕋3)) to a (unique) limit that satisfies (6) in the sense
of distributions.

Theorems 3.3 and 3.4 show that the type of approximation
of the initial data is crucial when establishing the probabilistic
well-posedness.

Using compactness methods (à la Leray), we can hope to
obtain convergence of a subsequence of (uω

N)N≥1. The conver-
gence of the whole sequence (uω

N)N≥1 is beyond the reach of
weak-solutions techniques. The fact that the whole sequence con-
verges already contains a form of uniqueness. In [6], one can find
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a form of uniqueness that can be formulated in a suitable functional
framework.

In [6], we also obtain a probabilistic continuous dependence
on the initial data, the proof of which makes use of conditioned
large deviation properties which seem to be of independent in-
terest.

We can prove the result of Theorem 3.4 for more general
randomizations than (13). For example, Gaussian variables can be
replaced by Bernoulli variables and the deterministic coefficients
⟨n⟩−α by other coefficients with “similar” behaviour for |n| ≫ 1
(see [6] for more details).

Theorem 3.4 provides a nice dense set Σ of initial data such
that for good approximations we get nice global solutions (but
for bad approximations we get divergent sequences, as shown
by Theorem 3.3!). On the other hand, due to [22], we also have
a dense set of bad initial data, even for the natural approximations
by Fourier truncation (or convolution).

Theorem 3.5 (pathological initial data). Let 0 < s < 1
2 . Then there

is a dense set S⊂H s(𝕋3)×H s−1(𝕋3) such that for every (f,g)∈ S,
the sequence (uN)N≥1 of (smooth) solutions of

(∂2t − Δ)u+ u3 = 0

with data

u0(x) = ∑
|n|≤N

̂f(n)e in⋅x, u1(x) = ∑
|n|≤N

ĝ(n)e in⋅x

does not converge. More precisely, for every T > 0,

lim
N→∞

‖uN(t)‖L∞([0,T];Hs(𝕋3)) = +∞.

Onemay even prove that the pathological set S contains a dense
Gδ set and consequently the good-data set is not generic in the
sense of Baire.

3.5 Going even further
For α < 3/2, uω

0 is no longer a classical function. In this case, it
can be interpreted as a distribution belonging to a Sobolev space
with negative index. We cannot expect a result like that of The-
orem 3.4 for α < 3/2. A renormalization is necessary, as shown by
the following result established in [19].

Theorem 3.6. Let α∈( 54 ,
3
2 ) and s<α−3/2. There exists positive

constants γ, c,C, T0 and a divergent sequence (cN)N≥1 such that
for any T ∈ (0, T0), there exists a set ΩT such that the probability
of its complement is smaller than C exp(−c/T γ) and such that if
we denote by (uω

N)N≥1 the solution of

(∂2t −Δ)uωN − cNuωN + (uωN)3 = 0

with initial data given by (14), then for any ω ∈ ΩT, the sequence
(uN)N≥1 converges for N → +∞ in 𝒞0([−T, T];H s(𝕋3)). In par-
ticular, for almost every ω there exists Tω > 0 such that (uω

N)N≥1

converges in 𝒞0([−Tω, Tω];H s(𝕋3)).

Theorem 3.6 was a first step in the study of problem (6) in
Sobolev spaces of negative index. In the remarkable recent work [4]
the result of Theorem 3.6 was extended to the range α > 1.

4 Invariant measures for the nonlinear Schrödinger
equation

Let us now consider the nonlinear Schrödinger equation, posed on
the torus of dimension two:

(i∂t +Δ)u− |u|2u = 0, u(0, x) = u0(x), x ∈ 𝕋2. (15)

Here the solution u is complex valued, but the equation is of first
order in time. We have the following analogue of Theorem 3.1 in
the context of (15).

Theorem 4.1. For any u0 ∈ H1(𝕋2) there exists a unique global
solution of (15) in the class 𝒞0(ℝ; H1(𝕋2)). If moreover u0 ∈
H s(𝕋2) for some s ≥ 1, then u ∈ 𝒞0(ℝ;H s(𝕋2)). The dependence
on the initial data is also continuous.

Equation (15) is again Hamiltonian in nature. This implies that
the functional

E(u) = ∫
𝕋2
(|∇xu(t, x)|2 + |u(t, x)|2 + 1

2
|u(t, x)|4)dx (16)

is preserved by (15). The Gibbs measure associated with (16) is
a “renormalization” of the completely formal object

exp(−E(u))du. (17)

This renormalization is a classic procedure in quantum field theory,
which would be impossible to present in this short text. Let us just
say that the measure obtained by this renormalization is absolutely
continuous with respect to the Gaussian measure induced by the
random series

uω0 (x) = ∑
n∈ℤ2

gn(ω)
⟨n⟩ e in⋅x, (18)

where (gn)n∈ℤ2 is a family of independent complex Gaussians with
distribution 𝒩ℂ(0, 1). Once the measure (17) has been rigorously
defined, the natural question is whether we can define a dynamics
related to (15) that leaves this measure invariant. The answer to
this question is given by the work of Bourgain [3]. The difficulty
lies in the fact that (18) does not define a classical function. The
object defined by (18) almost surely belongs to the Sobolev space
H s(𝕋2) for all s < 0. Such a regularity implies that Theorem 4.1
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cannot be applied in the context of an initial datum given by (18).
This regularity is also beyond the reach of the most sophisticated
deterministic techniques. Nevertheless, the following statement
can be deduced from [3].

Theorem 4.2. Using Theorem 4.1, define the sequence (uω
N)N≥1

of solutions of (15) for the initial conditions of class 𝒞∞ given by

uω0,N(x) = ∑
|n|≤N

gn(ω)
⟨n⟩ e in⋅x. (19)

Then for any s < 0 the sequence

(exp( i t
2π2 ‖u

ω
N(t)‖2L2)u

ω
N(t))N≥1

converges almost surely in 𝒞0(ℝ;H s(𝕋2)) to a limit which sat-
isfies (in the sense of distributions) a renormalized version of
problem (15).

There is a similarity between Theorems 3.4 and 4.2. One notable
difference is the need to renormalize the sequence (uω

N)N≥1 of
Theorem 4.2 in order to obtain a limit. This renormalization is linked
to the construction of the measure from the formal object (17)
mentioned above.

The result of Theorem 4.2 can be formulated in the spirit of
Theorem 3.6. More precisely, we can establish the convergence of
the solutions of the problem

(i∂t + Δ)uN + cNuN − |uN|2uN = 0

with initial data (19), where (cN(ω))N≥1 is a sequence of real
numbers almost surely divergent to +∞.

5 Singular stochastic PDEs

The issues considered in the previous sections are very close to
the analysis of PDE in the presence of a singular random source
(noise). This topic has received a lot of attention in recent years
(see, for example, [7,9–12,14]). The closest equation to those in
the previous sections is the nonlinear heat equation. More precisely,
we consider the problem

∂tu− Δu+ u3 = ξ, u(0, x) = 0, x ∈ 𝕋3. (20)

In this equation, ξ is the space-time white noise on [0,+∞[ ×
𝕋3. The unknown u is a real valued function. There are many
physical motivations for considering a PDE perturbed by white
noise. A serious discussion of these motivations is beyond the
scope of this paper.

The source term ξ represents the singular randomness in (20),
while in (6) and (15), the initial datum is the source of the singular
randomness. A little experience with the analysis of evolutionary
PDE is enough to know that the two situations are very similar

and even that, in some cases, for reasons of convenience, we can
easily transform the problem with initial data into a problem with
a source term and zero as initial data.

A representation in the spirit of (13) and (18) of white noise on
[0,+∞[×𝕋3 is given by the formula

ξ = ∑
n∈ℤ3

̇βn(t)e in⋅x, (21)

where βn are independent Brownian motions, conditioned by
βn = β−n (β0 is real and for n ≠ 0, βn is complex valued). The
derivative with respect to t of βn in (21) is in the sense of distribu-
tions.

If ξ ∈ 𝒞∞([0,∞[ × 𝕋3), equation (20) can be solved by de-
terministic methods. This is the analogue of Theorems 3.1 or 4.1
in the context of (20). For N ≫ 1, an approximation of ξ given
by (21) by smooth functions is defined by

ξN(t, x) = ρN ⋆ ξ,

where ρN(t,x) =N5ρ(N2t,Nx), with ρ a test function with integral
1 on [0,∞[×𝕋3. This is a convolution regularization, very similar
to the regularizations used in (14) and (19). The following statement
can be deduced from [12,17].

Theorem 5.1. There exists a sequence (cN)N≥1 of positive num-
bers, divergent when N → ∞, such that if we denote by uN the
solution of the problem

∂tuN − ΔuN − cNuN + u3N = ξN, uN(0, x) = 0, x ∈ 𝕋3,

then (uN)N≥1 converges in law when N → ∞.

It is also possible to have almost sure convergence in suitable
Hölder spaces. The initial datum u(0, x) can be non-zero: it just
has to belong to a well-chosen function space (see [17]).

The complete analogue of (13) and (18) in the context of
problem (20) would be the white noise on 𝕋×𝕋3 defined by

ξ = ∑
m∈ℤ

∑
n∈ℤ3

gm,n(ω)e imte in⋅x, (22)

where (gm,n)(m,n)∈ℤ4 is a family of independent standard Gaus-
sian variables conditioned so that ξ is real valued. The result of
Theorem 5.1 remains true for a noise ξ of the form (22).

There are other parabolic PDEs for which a result in the spirit of
Theorem 5.1 can be obtained, perhaps the most famous example
being the KPZ equation (see [11]).

6 Final discussion

The statements of Theorems 3.4, 3.6, 4.2 and 5.1 are similar. Their
proofs also follow the same pattern. First, local in time solutions
are constructed. Then we use global information, which is either an
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invariant measure or an energy estimate, to move towards global
in time solutions.

To construct local solutions, we look for solutions in the form

u = u1 + u2,

where u1 contains the singular part of the solution.
By probabilistic arguments, very close to the considerations in

Section 2, u1 and some maps related to it have better properties
than those given by deterministic methods. The whole probabilistic
machinery is to be found in this part of the analysis. In the proof
of Theorem 3.4, we use almost sure improvements of the Sobolev
embedding, while in the proofs of Theorems 3.6, 4.2 and 5.1, we
construct almost sure products in Sobolev spaces of negative index.

Next, we solve the problem for u2 using deterministic argu-
ments. Here the nature of the equation becomes even more im-
portant. In Theorem 5.1, the basic tool is elliptic regularity, whereas
in Theorems 3.4, 3.6 and 4.2 we make crucial use of oscillations in
time (captured by Bourgain spaces, for example).

The transition to global in time solutions in Theorem 4.2 uses
an invariant measure as a global control over the solutions. In
Theorem 3.4 the globalization of solutions is done by an argument
based on energy estimates. It is remarkable that, in the context of
Theorem 5.1, we can also use these two methods to globalize local
solutions: in [13] the globalization is done using a control coming
from an invariant measure, whereas the work [17] uses the (much
more flexible) method of energy estimates.

Oh’s work [18] establishes the analogue of Theorem 3.2 in the
context of Theorem 4.2. To the best of my knowledge, no such
amplification result for particular approximations is known in the
context of Theorem 5.1.

We have already mentioned that, in Theorem 3.4, we allow
more general randomizations compared to Theorem 4.2. This has
made it possible to consider randomizations for functions of So-
bolev spaces on the whole space ℝd and to prove results in the
spirit of Theorem 3.4 for problems posed on the whole space
(instead of on the torus). For work in this direction, see [2,16].

Theorem 3.4 allows more general randomizations than The-
orem 4.2, but it says nothing about the transport by the flow of
the measure defining the initial data set (whereas the proof of The-
orem 4.2 tells us that the initial Gaussian measure is quasi-invariant
under the flow). We still do not know the nature of the measure
transported by the flow in the context of Theorem 3.4 (see [20] for
recent progress on this interesting problem).

The list of references below is far from complete. This is a very
active field. For a description of other results directly related to
what we have just described, we refer the reader to [9,11,24].
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