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Generalized positive energy representations of groups
of jets

Milan Niestijl

Abstract. Let V be a finite-dimensional real vector space and K a compact simple Lie group with
Lie algebra k. Consider the Fréchet–Lie group G WD J10 .V IK/ of1-jets at 0 2 V of smooth maps
V ! K, with Lie algebra g D J10 .V I k/. Let P be a Lie group and write p WD Lie.P /. Let ˛ be a
smooth P -action onG. We study smooth projective unitary representations x� ofG Ì˛ P that satisfy
a so-called generalized positive energy condition. In particular, this class captures representations
that are in a suitable sense compatible with a KMS state on the von Neumann algebra generated
by x�.G/. We show that this condition imposes severe restrictions on the derived representation d x�
of g Ì p, leading in particular to sufficient conditions for x�jG to factor through J 20 .V IK/, or even
through K.

1. Introduction

This paper is concerned with projective representations of groups and Lie algebras of
jets. Let K denote a compact simple Lie group with Lie algebra k and let V be a finite-
dimensional real vector space. Then we consider the Fréchet–Lie group G WD J10 .V IK/
with Lie algebra g WD J10 .V I k/ Š RJV �K ˝ k. These consist of 1-jets at 0 2 V of
smooth K- and k-valued functions, respectively. We are interested in smooth projective
unitary representations of G which satisfy either a so-called positive energy, or a KMS
condition.

To describe these, let P be a finite-dimensional Lie group with Lie algebra p. Assume
that there is a smooth action ˛ of P on G. A continuous projective unitary representation
x� W G Ì˛ P ! PU.H�/ is of positive energy at the cone C � p if for every p 2 C , there
is a strongly continuous homomorphic lift t 7! eitH of t 7! x�.etp/ whose generator H
satisfies Spec.H/ � 0. We say that x� is KMS at p 2 p if there is a normal state � on
the von Neumann algebra M WD x�.G/00 generated by x�.G/ such that � satisfies the KMS
condition for the one-parameter group R! Aut.M/, t 7! Ad.x�.etp//. As we shall see,
these two seemingly very different classes of representations exhibit similar behavior in
certain respects. In particular, they both give rise to so-called generalized positive energy
representations, a notion which relaxes the positive energy condition and is introduced in
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Section 4 below. We study these generalized positive energy representations and thereby
also those which satisfy either the positive energy or the KMS condition.

The motivation for looking at the positive energy and KMS representations of the
groupG Ì˛ P originates in prior work by B. Janssens and K.-H. Neeb, who studied in [33]
a class of projective unitary representations of the group of compactly supported gauge
transformations G WD �c.M IAd.K// of a principal K-bundle K over M , where Ad.K/

denotes the corresponding adjoint bundle. Suppose that the Lie group P acts smoothly on
K by automorphisms of the principal bundle K . This induces a smooth action of P on
the infinite-dimensional Lie group G . Their main result is:

Theorem ([33, Thm. 7.19]). Let .x�;H / be a projective unitary representation of G Ì P
which has a dense set of smooth rays and is of positive energy at the cone C � p. If
the cone C has no fixed points in M , then there exists a 1-dimensional P -equivariantly
embedded submanifold S � M s.t. on the connected component G0 of the identity, the
projective representation x� factors through the restriction map r W G0 ! �c.S IAd.K//.

Thus, if there are no fixed points in M for C , then the problem of classifying the
projective unitary positive energy representations of G Ì P is essentially reduced to the
one-dimensional case, which has been extensively studied, see for example [22,35,36,57,
64,65,69]. Moreover, if there are no one-dimensional P -equivariantly embedded subman-
ifolds inM , one is essentially reduced to the case where x� factors through the germs at the
fixed point set†�M of the cone C � p. In the present paper, we address the setting where
fixed points do exist and where x� actually factors through the germs at a single fixed point.

Thus, let a 2 M be a fixed point of the P -action on M and let V WD Ta.M/. If a
smooth projective unitary representation x� of G factors through the germs at a 2M , then
the continuity of x� implies that it must further factor through the1-jets J1a .Ad.K// Š

J10 .V IK/ D G at a 2 M , as is shown in Section A in the appendix. This brings us
to groups of jets and motivates the study of smooth projective unitary representations of
G Ì˛ P . Clearly, any smooth projective unitary representation of G Ì˛ P defines one of
G Ì P via the jet homomorphism j1a W G ! J1a .Ad.K// Š G. In this way, the present
paper contributes to the understanding of positive energy and KMS-representations of
gauge groups.

In [61], KMS-representations were very recently studied in the context of finite-dimen-
sional Lie groups, leading to complete characterization of such representations that gen-
erate a factor of type I. In relation to the unitary representation theory of gauge groups,
let us also mention the papers [2, 20, 29, 55], in which unitary representations of gauge
groups C1c .M IK/ are constructed which are non-local in the sense that they do not fac-
tor through the restriction map C1c .M IK/! C1c .N IK/ for some proper submanifold
N � M . When dim.M/ � 3, these are irreducible [3, 67]. They are also considered in
[1, 5]. Unitary representations of groups of jets have also been considered in [4, 19].

Structure of the paper. The paper is divided in two parts. In Part I, we introduce both
the (generalized) positive energy and the KMS condition. We start in Section 2 by briefly
recalling the relation between continuous projective unitary representations, central exten-
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sions and the second Lie algebra cohomologyH 2
ct.g;R/. We move on to consider positive

energy representations in Section 3 and discuss some of their properties. In Section 4
we relax the positive energy condition and introduce the so-called generalized positive
energy condition. We show that for a projective unitary representation which of is gen-
eralized positive energy, its kernel is related to a particular quadratic form canonically
associated to the corresponding class in H 2

ct.g;R/. This observation will play a key role
in Part II. In Section 5, we briefly recall the modular theory of von Neumann algebras
and then proceed to define KMS representations. We consider a number of examples and
discuss some of their properties, in particular making the important observation that KMS
representations give rise to generalized positive energy ones. To some extent, this unifies
the positive energy and KMS conditions, allowing their simultaneous study. We remark
also that Part I is formulated in the general context of possibly infinite-dimensional locally
convex Lie groups, which is the appropriate context within the larger program that studies
the projective unitary representations of gauge groups.

In Part II, we return to the Fréchet–Lie group G WD J1a .V IK/ of 1-jets at 0 2 V .
After fixing our notation, we discuss in Section 7 a normal-form problem for the p-action
on gD J1a .V I k/. Using the general observations made in Part I together with the normal-
form results obtained in Section 7, we proceed in Section 8 with the study of (generalized)
positive energy representations of the Lie algebra g ÌD p, where D W p! der.g/ denotes
the p-action on g corresponding to ˛.

Overview of main results. Let us describe the main results of Section 8. We will first
need to introduce some notation. We write XI for the Lie algebra of formal vector fields
on V vanishing at the origin. The p-action D splits into a horizontal and a vertical part
according toD.p/D�Lv.p/C ad�.p/, for some Lie algebra homomorphism v W p!X

op
I

and a linear map � W p! g satisfying the Maurer–Cartan equation

�Lv.p1/�.p2/CLv.p2/�.p1/ � �
�
Œp1; p2�

�
C
�
�.p1/; �.p2/

�
D 0; 8p1; p2 2 p:

For any p 2 p, the formal vector field v.p/ splits further as

v.p/ D vl.p/C vho.p/;

into its linearization vl.p/ and its higher order part vho.p/, which is a formal vector field
on V vanishing up to first order at the origin. Let �0.p/ be the constant part of the for-
mal power series �.p/. Let †p � C denote the additive subsemigroup of C generated by
Spec.vl.p//. Let V C

c .p/ denote the span in VC of all generalized eigenspaces of vl.p/

corresponding to eigenvalues with zero real part. Set Vc.p/ WD V
C

c .p/ \ V . If C � p is a
subset, define Vc.C/ WD

T
p2C Vc.p/, which we call the “center subspace of V associated

to C”, in analogy with the center manifold of a fixed point of a dynamical system. Let
Vc.C/

? � V � be its annihilator in V �. If x� is a continuous projective unitary represen-
tation of g ÌD p, let C.x�/ be the set of all points p 2 p for which x� is of generalized
positive energy at p. Write R WD RJV �K WD

Q1
nD0 P

n.V / for the ring of formal power
series on V , where P n.V / denotes the set of degree-n homogeneous polynomials on V .
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The first main result concerns positive energy representations. It states that unless the
spectrum of vl.p/ and �0.p/ happens to intersect non-trivially, any smooth projective
unitary representation x� of G Ì˛ P which is of positive energy at p 2 p factors through
the 2-jets J 20 .V IK/ Ì˛ P :

Theorem (Theorem 8.8). Let x� be a smooth projective unitary representation of G Ì˛ P
which is of positive energy at p 2 p. Assume that

Spec.ad�0.p// \ Spec
�
vl.p/

�
D ;:

Then x� factors through J 20 .V IK/ Ì˛ P . Moreover the image of �Lvl.p/ C ad�0.p/ in
P 2.V /˝ k � J 20 .V IK/ is contained in ker x�.

The second main result determines restrictions imposed by the generalized positive
energy condition. If p 2 C.x�/, then unless possibly when the “non-resonance condition”
Spec.ad�0.p// \†p D ; is violated, it suffices to consider the case where all eigenvalues
of vl.p/ are purely imaginary. The precise statement is:

Theorem (Theorem 8.20). Let x� be a continuous projective unitary representation of
g ÌD p. Let C � C.x�/. Assume that Spec.ad�0.p// \ †p D ; for all p 2 C. Then
RVc.C/

? ˝ k � ker x� , and hence x�jg factors through RJVc.C/
�K˝ k.

Since RJVc.C/
�K˝ k D k whenever Vc.C/ D ¹0º, Theorem 8.20 in particular gives

sufficient conditions for x�jg to factor through k, that depend only on the spectrum of �0
and vl.p/. For the third main result, we consider the special case where p is non-compact
and simple.

Theorem (Theorem 8.24). Assume that p is non-compact and simple. Suppose that vl

defines a non-trivial irreducible p-representation on V . Let x� be a continuous projective
unitary representation of g ÌD p. Let C � C.x�/ be a P -invariant convex cone. Either C

is pointed or x�jg factors through k.

Remark 1.1. If x� is a smooth projective unitary representation of G Ì˛ P which is of
generalized positive energy at the cone C � p, then its derived representation d x� on the
space of smooth vectors H1� is so, too. Moreover, as we shall see in Lemma 6.3 below, the
exponential map of G D J10 .V IK/ restricts to a diffeomorphism from the pro-nilpotent
ideal ker.ev0 W J10 .V I k/! k/ onto ker.ev0 W J10 .V IK/! K/. Thus, the above results
all have immediate analogous consequences on the group level.

Part I
Positive energy and KMS representations

2. Projective representations and central extensions

In the following, the category of infinite-dimensional manifolds and smooth maps between
them is defined in the Michal–Bastiani sense [7, 44, 49]. This also defines the notion of
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a locally convex Lie group. Throughout the section, let G denote a locally convex Lie
group which is regular in the sense of [49, Def. II.5.2]. Then G in particular admits an
exponential map expG W g! G, see e.g. [49, Rem. II.5.3].

Definition 2.1. We use the following terminology:

• A (projective) unitary representation of G is said to be continuous if it is so w.r.t. the
strong operator topology on U.H�/.

• Let .�;H�/ be a unitary representation ofG on H�. A vector  2H� is called smooth
if the orbit map G ! H�, g 7! �.g/ is smooth. Denote by H1� � H� the subspace
of smooth vectors. The representation � is called smooth if H1� is dense in H�.

• Let .x�;H�/ be a projective unitary representation of G on H�. A ray Œ � 2 P.H�/

is called smooth if the orbit map G ! P.H�/, g 7! x�.g/Œ � is smooth. Denote by
P.H�/

1 the subspace of smooth rays. The projective representation x� is called smooth
if P.H�/

1 is dense in P.H�/.

Definition 2.2. If D is a complex vector space, denote by L.D/ the Lie algebra of linear
operators on D. If D is a pre-Hilbert space with Hilbert space completion H, we also write

L�.D/ WD
®
X 2 L.D/ W D � dom.X�/ and X�D � D

¯
:

For X 2 L�.D/ set X� WD X�jD . Then .X�/� D X and .�/� endows L�.D/ with an
involution [60, Ch. 2]. If D is a pre-Hilbert space, define the Lie algebra

u.D/ WD
®
X 2 L�.D/ W X� CX D 0

¯
:

Definition 2.3. Let D be a complex pre-Hilbert space.

• A unitary representation of the Lie algebra g on D is a Lie algebra homomorphism
� W g! u.D/. A projective unitary representation is a Lie algebra homomorphism
x� W g! pu.D/ WD u.D/=iRI .

• A unitary representation � of g is called continuous if � 7! �.�/ is continuous for
any  2 D . A projective unitary representation x� is continuous if � 7! �.�/Œ � is
continuous for every Œ � 2 P.D/.

Remark 2.4. Any unitary G-representation on H� defines a unitary g-representation
d� W g! u.H1� / on H1� by d�.�/ WD d

dt
jtD0�.e

t�/ . We will always consider ele-
ments of d�.g/ as unbounded operators defined on the invariant domain H1� . Projective
unitaryG-representations similarly define projective unitary g-representations on P.H1� /
by differentiation at the identity. If G is finite-dimensional, then H1� is dense in H� for
any continuous unitary representation � of G, by a result of Gårding [68, Prop. 4.4.1.1].

A continuous projective unitary representation x� W G ! PU.H�/ is equivalently given
by a continuous central T -extension

ı

G together with a unitary representation � W
ı

G !

U.H�/ which satisfies �.z/ D zI for z in the central T component. Of course,
ı

G is the
pull-back of the central T -extension U.H�/! PU.H�/ along x�. We say that � lifts x�.
Suppose x�1 and x�2 are two projective unitary representations, inducing by pull-back the



M. Niestijl 714

lifts �1 W
ı

G1! U.H�1/ and �2 W
ı

G2! U.H�1/ of x�1 and x�2, respectively. Then x�1 and x�2
are unitarily equivalent if and only if there is an isomorphism ˆ W

ı

G1 !
ı

G2 of central G-
extensions and a unitaryU WH�1!H�2 such that �2.ˆ.x//DU�1.x/U�1 for all x 2

ı

G1.
Analogously, any projective unitary g-representation x� with domain D can be lifted to a
unitary representation � W ıg! u.D/ of some central R-extension ı

g of g. The continuous
central extensions of g by R are up to isomorphism classified byH 2

ct.g;R/, the continuous
second Lie algebra cohomology with trivial coefficients [32, Def. 6.2, Prop. 6.3]. Thus, to
study the projective unitary representations of g up to equivalence, one may first determine
H 2

ct.g;R/, choose for each class Œ!� 2 H 2
ct.g;R/ a representative ! and then proceed

to determine the equivalence classes of unitary representations � of R ˚! g satisfying
�.1; 0/ D iI . We will also write c WD .1; 0/ 2 R˚! g for the central generator.

Remark 2.5. In the literature, one encounters the notion of the level of a unitary rep-
resentation � of Rc ˚! g, which is the number l 2 R such that �.c/ D i lI (see e.g.
[57, Sec. 9.3]). Let us briefly clarify how such representations are included in the program
outlined above, even though �.c/ D iI is always assumed. Simply notice that such a
representation of level l factors through the map Rc ˚! g! Rc ˚l �! g induced by mul-
tiplication by l on the central factor. The corresponding representation �2 of Rc ˚l �! g

satisfies �2.c/D iI . Notice that Rc ˚! g! R˚l �! g is an isomorphism of Lie algebras
whenever l ¤ 0, but not of central extensions unless l D 1, because a morphism of central
extensions is required to be the identity on the central component. For 1 ¤ l 2 R, the
cocycles ! and l � ! are not equivalent unless Œ!� D 0 in H 2

ct.g;R/.

Remark 2.6. If a projective unitary representation x� ofG is smooth, then the correspond-
ing central T -extension

ı

G is again a locally convex Lie group [32, Thm. 4.3]. Moreover,
there is a similar correspondence between smooth projective unitary representations x� of
G and their lifts � W

ı

G ! U.H�/, which are then again smooth [32, Cor. 4.5, Thm. 7.3].
We furthermore have P.H�/

1 D P.H1� / by [32, Thm. 4.3].

3. Positive energy representations

Let us introduce the class of positive energy representations. After defining the notion,
some immediate consequences are considered that will be relevant in Part II. Let G be a
regular locally convex Lie group with Lie algebra g. If c 2 R, D is a pre-Hilbert space
andX 2L�.D/ satisfiesX� DX , we writeX � c if h ;X i � ck k2 for every  2D .

Definition 3.1. Let C � g be a convex cone and D be a pre-Hilbert space.

• A continuous unitary representation � of g on D is said to be of positive energy (p.e.)
at � 2 g if �i�.�/ � 0. It is of p.e. at C if it is of p.e. at every � 2 C . We write
C.�/ WD ¹� 2 g W � is of p.e. at �º.

• Let x� be a continuous projective unitary representation of g on D with lift � W ıg!
u.D/. Then x� is of p.e. at � if there exists

ı

� 2 C.�/ �
ı
g covering �. Write D.x�/ for

the set of all such �. We say that x� is of p.e. at C if C � C.x�/.
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• A smooth (projective) unitary representation of G on H� is said to be of p.e. at � 2 g

if the corresponding derived (projective) unitary representation of g on H1� is so. It is
said to be of p.e. at C if it is so at every � 2 C .

Remark 3.2. Let � be a smooth unitary representation of G. Then C WD C.d�/ is always
a closed, G-invariant convex cone. Consequently, C \ �C and C � C are ideals in g,
called the edge and span of C , respectively. If � 2 C \�C then � 2 kerd�, so by passing
to the quotient g= ker d� one may always achieve that C is pointed.

Next, we define the notion of a semibounded representation.

Definition 3.3. Let � W G ! U.H / be a smooth unitary G-representation. Define its
momentum set by:

I� WD conv
®
� 7!

˝
 ;�id�.�/ 

˛
W  2 H1� ; k k D 1

¯
� g�:

The representation � is said to be semibounded if W� contains an interior point, where

W� WD
®
� 2 g W inf Spec

�
� id�.�/

�
> �1

¯
:

Remark 3.4. For finite-dimensional Lie groups, the class of semibounded representations
has been subject to detailed study in [47]. In particular, they are highest weight represen-
tations [47, Def. X.2.9, Thm. X.3.9]. For a consideration of semibounded representations
in the context of infinite-dimensional Lie groups, we refer to [51, 52].

In the finite-dimensional context, the semiboundedness condition turns out to be ex-
tremely restrictive, which in turn has consequences for arbitrary positive energy represen-
tations. The following result, Theorem 3.5, is based on the results in the monograph [47].

Theorem 3.5. Assume that G is connected and locally exponential. Take d 2 g and let
a D hdi G g be the closed ideal in g generated by d . Assume that dim.a/ <1 and that
a is stable, in the sense that AdG.a/ � a. Let A GG be a connected normal Lie subgroup
integrating a. Let .�;H�/ be a smooth unitary G-representation which is of p.e. at d 2 g.
Write h WD a= ker d�. The following assertions hold:

(1) a D C � C , where C � g is the closed G-invariant convex cone in g generated
by d .

(2) The closure of C C ker d� in h is a pointed, generating and G-invariant convex
cone. Thus C \ �C � ker d�.

(3) �jA is semibounded.

(4) Let hn denote the maximal nilpotent ideal of h. Then Œhn; hn� � z.h/. Moreover,
there exists a reductive Lie algebra l such that h Š hn Ì l.

(5) Let an denote the maximal nilpotent ideal of a. Then Œa; Œan; an�� � ker d�.

Proof. For the first point, let a0 be the closure of C � C in g. As a0 is a closed ideal in g

containing d , we have a � a0. On the other hand, we know that AdG.d/ � a because a is
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stable. Thus C � a and hence a0� a. So a0D a. In particular dim.a0/ <1 and so C �C D

a0 D a. Next we prove the second statement. Take � 2 .C C ker d�/ \ �.C C ker d�/.
Then d�.�/ � 0 and d�.�/ � 0, in view of Remark 3.2, and hence Spec.d�.�//D ¹0º. As
d�.�/ is essentially skew-adjoint, it follows that � 2 ker d�. Thus C C ker d� is pointed
in h. As C is closed, G-invariant and convex, it is clear that the same holds for the cone
C C ker d� in h. The latter is also generating in h because a D C � C . Next we show
that �jA is semibounded. As a is spanned by C and dim a < 1, it follows that C � a

has interior points. As C � W�, this implies that W� has interior points. Hence �jA is
semibounded. For the remaining points, we use the results in [47]. We first show that h

is admissible, in the sense of [47, Def. VII.3.2]. Using the second point, the convex cone
.C C ker d�/˚R�0 in h˚R is closed, pointed, generating and Inn.h/-invariant. By [47,
Lem. VII.3.1, Def. VII.3.2] this implies that h is admissible. By [47, Thm. VII.3.10], it
follows that Œhn;hn� � z.h/ and that h contains a compactly embedded Cartan subalgebra
t (where as in [47, Def. VII.1.1], a subalgebra t � h is called compactly embedded if
head.t/i is compact in Aut.h/). Using [47, Lem. VII.2.26(iv)], we obtain that there exists
some reductive Lie algebra l with h Š hn Ì l. Since Œh; Œhn; hn�� D 0 and h D a= ker d�,
it follows in particular that Œa; Œan; an�� � ker d�.

For projective p.e. representations, this leads to:

Corollary 3.6. Let G, d ;a and an be as Theorem 3.5. Let .x�;H�/ be a smooth projective
unitary representation ofG. Suppose that x� is of p.e. at d 2 g. Then Œa; Œan;an��� kerd x�.

Proof. Let � W
ı

G ! U.H�/ be the lift of x� to a central T -extension
ı

G of G. Let

ı
g WD Lie.

ı

G/:

There exists some
ı

d 2
ı
g s.t. d� is of p.e. at

ı

d 2
ı
g. Let ıa denote the ideal in ı

g generated
by

ı

d and let ıan denote the maximal nilpotent ideal in ı
a. Then d�.Œ ıa; Œ ıan;

ı
an��/ D ¹0º by

Theorem 3.5. Thus d x�.Œa; Œan; an��/ D ¹0º, where we used that the quotient map ı
g! g

projects ıa and ı
an onto a and an, respectively.

The following simple lemma will also be useful.

Lemma 3.7. Assume that dim.G/ <1. Let x� W G! PU.H�/ be a continuous projective
unitary representation of G which is of p.e. at every element of g. Then x� is continuous
w.r.t. the norm-topology on U.H�/.

Proof. Let d� W ıg! u.H1� / be the lift of d x�. Identify ı
g Š R˚! g for some 2-cocycle

! W g � g ! R. The assumptions imply that for every � 2 g there exists E� 2 R s.t.
�id�.�/ � E� . As this holds in particular for both � and �� , d�.�/ is a bounded operator
for any � 2 g. As dim.g/ <1, one finds by choosing a basis .e�/ of g that there exists
C > 0 s.t. kd�.�/k � Ck�k where k�k WD sup�j��j if � D

P
� ��e�. Thus � 7! d�.�/ is

norm-continuous. This implies norm-continuity of x� because B.H�/!B.H�/; T 7! eT

is norm-continuous and x�.exp.�// D Œed�.�/� 2 PU.H�/ for � 2 g.
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4. Generalized positive energy representations

Let G denote a regular locally convex Lie group with Lie algebra g. The class of p.e. rep-
resentations can be generalized by relaxing the condition �id�.�/ � 0 in Definition 3.1.
We define a suitable relaxed notion, the generalized positive energy condition, and show
that it can still be very restrictive. In Section 5, we will encounter a class of representations
which are not of p.e. but are of generalized positive energy.

Definition 4.1. Let D be a pre-Hilbert space with Hilbert space closure H . Let h be a
locally convex topological Lie algebra.

• A continuous unitary representation � W h! u.D/ is of generalized positive energy
(g.p.e.) at � 2 h if there exists a 1-connected Lie group H with Lie algebra h and a
dense subspace D0 � D such that

8 2 D0 W E .�; �/ WD inf
h2H

˝
 ;�i�

�
Adh.�/

�
 
˛
> �1: (4.1)

We write C.�/ WD ¹� 2 g W � is of g.p.e. at �º. If C � g, we say that � is of g.p.e. at
C if C � C.�/.

• Let x� W h! pu.D/ be a continuous projective unitary representation of h on D with
lift � W

ı

h! u.D/. Let C.x�/ � h denote the image of C.�/ �
ı

h under the quotient
map

ı

h! h. Then x� is said to be of generalized positive energy at � 2 h if � 2 C.x�/.
Similarly, we say it is of g.p.e. at C � h if C � C.x�/.

• Let � W G ! U.H�/ be a smooth unitary representation of G. Then � is said to be of
g.p.e. at � 2 g if its derived representation d� on H1� is so.

• Let x� W G ! PU.H�/ be a smooth projective unitary representation of G with lift
� W

ı

G ! U.H�/. Let ıg be the Lie algebra of
ı

G. Then x� is of g.p.e. at � 2 g if � is of
g.p.e. at some

ı

� 2
ı
g covering � .

Remark 4.2. If � is a (projective) continuous unitary representation of g, then the set
C.�/ � g is always an AdG-invariant cone.

An important observation for the class of g.p.e. representations is the following one:

Lemma 4.3. Let � W g! u.D/ be a continuous unitary representation of g on the pre-
Hilbert space D . Let � 2 C.�/. Suppose that � 2 g satisfies ŒŒ�; ��; �� 2 Z.g/. Then for
every  in some dense subspace D0 � D we have

0 � h ;�i�.ŒŒ�; ��; ��/ i;

h ;�i�.Œ�; ��/ i2 � 2h ;�i�.ŒŒ�; ��; ��/ i
�
h ;�i�.�/ i �E .�; �/

�
:

(4.2)

In particular, if ŒŒ�; ��; �� D 0 then �.Œ�; ��/ D 0.

Proof. Let D0 � D be a dense subspace for which (4.1) is valid. Let  2 D0. Then
h ;�i�.etad��/ i � E .�; �/ for all t 2 R. As ŒŒ�; ��; �� 2 Z.g/, the third derivative
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 .3/ W R! g of the smooth path  W R! g, t 7! etad�� vanishes. From Taylor’s formula
(which holds for smooth maps between locally convex vector spaces by [49, Prop. I.2.3]),
it follows that etad�� D � C t Œ�; ��C t2

2
ŒŒ�; ��; �� for all t 2 R. Thus

h ;�i�.�/ i C th ;�i�.Œ�; ��/ i C
t2

2
h ;�i�.ŒŒ�; ��; ��/ i � E .�; �/; 8t 2 R

The inequalities in (4.2) follow from the fact that at2 C bt C c � 0 for all t 2 R if and
only if a; c � 0 and b2 � 4ac. In particular, if ŒŒ�; ��; �� D 0 then h ;�i�.Œ�; ��/ i D 0
for all  2D0. As D0 is a complex vector space, this implies by the polarization identity
that �.Œ�; ��/ D 0.

In the projective context, this sets up a relation between ker x� and the class Œ!� 2
H 2

ct.gIR/ defined by the corresponding central R-extension ı
g of g. This is exploited in

Section 8.

Proposition 4.4. Let x� be a continuous projective unitary g-representation on the pre-
Hilbert space D with lift � W ıg! u.D/ for some continuous central R-extension ı

g of g.
Let ! represent the corresponding class in H 2

ct.g;R/. Let � 2 C.x�/. Suppose that � 2 g

satisfies ŒŒ�; ��; �� D 0. Then !.Œ�; ��; �/ � 0 and

!
�
Œ�; ��; �

�
D 0 ” x�

�
Œ�; ��

�
D 0:

Proof. Identify ıg with R˚! g. Let
ı

� 2C.�/ and ı�2 ıg be lifts of � and �, respectively. We
have that ŒŒ

ı

�;
ı
��;

ı
�� D !.Œ�; ��; �/ 2 Z.

ı
g/, because ŒŒ�; ��; �� D 0. Using Lemma 4.3 it fol-

lows that !.Œ�; ��; �/� 0. If !.Œ�; ��; �/D 0, then ŒŒ
ı

�;
ı
��;

ı
��D 0 and so Lemma 4.3 implies

that �.Œ
ı

�;
ı
��/ D 0. Hence x�.Œ�; ��/ D 0. Conversely, if x�.Œ�; ��/ D 0, then i!.Œ�; ��; �/ D

Œ�.Œ�; ��/; �.�/� � �.ŒŒ�; ��; ��/ D 0, because ŒŒ�; ��; �� D 0.

Remark 4.5. Notice in the setting of Proposition 4.4 that whenever ŒŒ�; ��; �� D 0, the
value of !.Œ�; ��; �/ does not depend on the choice of representative ! of the class Œ!� 2
H 2

ct.g;R/.

In Part II, a particular special case of Proposition 4.4 is used extensively:

Corollary 4.6. Let p and g be locally convex Lie algebras. Let D W p ! der.g/ be a
homomorphism for which the corresponding action p � g! g is continuous. Let D be
a complex pre-Hilbert space and let x� W g ÌD p ! pu.D/ be a continuous projective
unitary representation of g ÌD p on D . Let Œ!� 2 H 2

ct.g ÌD pIR/ be the corresponding
class in H 2

ct.g ÌD pIR/. Let � 2 g, p 2 C.x�/\ p and assume that ŒD.p/�; �� D 0. Then
!.D.p/�; �/ � 0 and !.D.p/�; �/ D 0, x�.D.p/�/ D 0.

5. KMS representations

In the following, we introduce the class of KMS representations. We will see in particular
that these give rise to generalized positive energy representations. Consequently, they can
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be studied using the results of Section 4. Its definition makes use of the modular theory of
von Neumann algebras, which we recall first.

5.1. Modular theory of von Neumann algebras

Let us recall the modular condition and the notion of a KMS state on a von Neumann alge-
bra M, whilst fixing our conventions and notation. We refer to [62, Ch. VIII], [12, Ch. 2.5]
and [13, Ch. 5.3] for a detailed consideration of the modular theory of von Neumann alge-
bras and of KMS states.

If M is a von Neumann algebra, we write M� for its pre-dual, equipped with the
�.M�;M/-topology. Write �.M/ � M� for the set of normal states on M. Further, if
� 2 �.M/, write �� WM!B.H�/ for the GNS-representation of M relative to �. Write
M� WD ��.M/00. Let �� 2 H� denote the canonical cyclic vector satisfying �.x/ D
h�� ; ��.x/��i for all x 2 M. Whenever �� is separating for M� , let S� denote the
unique closed conjugate-linear operator satisfying S�x�� D x��� for all x 2M� . Let

S� D J��
1
2

�

be its polar decomposition, where the operators �� and J� are positive and anti-unitary,
respectively.

Definition 5.1. A map � W R! Aut.M/ is said to be �.M�;M/-continuous if for every
x 2M, the map R!M, t 7! �t .x/ is continuous w.r.t. the �.M�;M/-topology on M.

Definition 5.2. Let � 2 �.M/ be a normal state. Let � WR!Aut.M/ be a one-parameter
group of automorphisms of M. Define St WD ¹z W z 2 C; 0 < Im.z/ < 1º.

• � is said to satisfy the modular condition for � if the following two conditions are
satisfied:

(1) � D � ı �t for all t 2 R.

(2) For every x; y 2M, there exists a bounded continuous function Fx;y W St!
C which is holomorphic on St and s.t. for every t 2 R:

Fx;y.t/ D �
�
�t .x/y

�
; Fx;y.t C i/ D �

�
y�t .x/

�
:

• � is said to be KMS w.r.t. � at inverse temperature ˇ > 0 if it satisfies the modular con-
dition for t 7! ��ˇt . In that case, we also say that � is � -KMS at inverse-temperature
ˇ. If ˇ D 1 we simply say that � is a � -KMS state.

Remark 5.3. We note the following facts:
(1) Suppose that � 2 �.M/ is faithful. Then there exists a unique automorphism group

�� W R! Aut.M/ for which � satisfies the modular condition [62, Thm. VIII.1.2], [12,
Thm. 2.5.14]. The automorphism group �� is �.M�;M/-continuous. As � is faithful, �� W
M!M� is injective and hence a �-isomorphism between M and M� [12, Thm. 2.4.24].
Thus one may identify M with M� via �� WM!M� �B.H�/. Finally, there is a unique
conditional expectation E WM!MR s.t. � D �0 ı E , where MR WD¹x2M W �

�
t .x/Dx

8t 2 Rº and �0 WD �jMR [62, Thm. IX.4.2].
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(2) If � is not necessarily faithful, then � satisfies the modular condition for some
�.M�;M/-continuous 1-parameter group � W R! Aut.M/ of �-automorphisms of M if
and only if �� 2 H� is separating for M� D ��.M/00 � B.H�/. In that case, there is a
central projection p 2 Z.M/ such that �.1� p/ D 0 and � is faithful on Mp. Moreover,
�t .p/ D p for all t 2 R and � jMp is uniquely determined by the modular condition for �
[13, Thm. 5.3.10].

(3) In particular, if M is a factor and � is KMS w.r.t. � WR!Aut.M/, then necessarily
p D I and whence � must be faithful. Consequently � D ��t is necessary.

(4) In the converse direction, given a �.M�;M/-continuous automorphism group � W
R! Aut.M/, there may be no, precisely one, or multiple states in �.M/ that are KMS
w.r.t. � . The set of � -KMS states in �.M/ is considered in [13, Ch. 5.3.2]. In particular,
if � 2 �.M/ is a faithful � -KMS state and  2 �.M/, then  is � -KMS if and only if
there is a (necessarily unique) positive operator T affiliated to Z.M/ such that  .x/ D
�.T

1
2 xT

1
2 / for all x 2M [13, Prop. 5.3.29]. In [10, 11], the set Kˇ of normal � -KMS

states at inverse temperature ˇ is studied in the setting of C �-dynamical systems.
(5) As a consequence of the previous points, if M is a factor and �; 2 �.M/ are both

� -KMS, then � D  , so that two distinct normal states can not share the same modular
automorphism group.

Remark 5.4. Suppose � 2 �.M/ is KMS w.r.t. � W R! Aut.M/. Let

�� W R! Aut.M�/

denote the modular automorphism group defined by the faithful state h�� ; ���i on M� D

��.M/00. It then holds true that ��t .��.x// D ��.��t .x// for any x 2 M and t 2 R.
Indeed, by [13, Cor. 5.3.4], the state h�� ; ���i on M� is KMS w.r.t. the unique automor-
phism group � W R! Aut.M�/ satisfying �t .��.x//�� D ��.�t .x//�� for all t 2 R.
Then ��t D ��t by uniqueness of the modular automorphism group (and the minus sign in
the definition of KMS states). As �� is separating for M� , it follows that

�
�
t

�
��.x/

�
D ��

�
��t .x/

�
:

Example 5.5 (Gibbs states). Let M D B.H / and �t .x/ D eitHxe�itH for some self-
adjoint operator H satisfying

Zˇ WD Tr.e�ˇH / <1 for some ˇ > 0:

Consider the normal state �.x/ D 1
Zˇ

Tr.e�ˇHx/ on M. The modular automorphism
group corresponding to � is given by ��t .x/ D e�iˇ tHxeiˇ tH D ��ˇt .x/ [12, Exam-
ple 2.5.16]. Thus � satisfies the modular condition for ��ˇt and is therefore KMS at
inverse-temperature ˇ w.r.t. �t .

Gibbs states �.x/D 1
Zˇ

Tr.e�ˇHx/ constitute the simplest class of examples of KMS
states. We will encounter a variety of different KMS states in Section 5.2.2 below.
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5.2. KMS representations

In the following, let G be a regular locally convex Lie group with Lie algebra g. Let
N � G be an embedded Lie subgroup.

Definition 5.6. Let .�;H�/ be a continuous unitaryG-representation. Let N WD �.N /00 �

B.H�/ be the von Neumann-algebra generated by �.N /. For �2N�, define the function
y� W N ! C by y�.n/ WD �.�.n//. Write

N1� WD
®
� 2 N� W y� 2 C

1.N IC/
¯

and set �.N /1 WD �.N / \N1� .

• Let �2g and �2�.N /. We say that � is KMS-compatible with .�; �;N / if et�Ne�t� �
N for all t 2 R and � is KMS w.r.t. the automorphism group R! Aut.N / defined
by t 7! Ad.�.et�//.

• Define KMS.�;�;N / WD ¹� 2 �.N / W� is KMS-compatible with .�;�;N /º. Similarly,
let KMS.�; �; N /1 WD KMS.�; �; N / \ �.N /1.

• � is said to be KMS at � 2 g relative to N if KMS.�; �; N / ¤ ;.
It is called smoothly-KMS at � relative to N if KMS.�; �; N /1 ¤ ;.

If the subgroupN is clear from the context, we dropN from the notation and simply write
KMS.�; �/ and KMS.�; �/1. We then also say that � is KMS at � if it is so relative to N .

Remark 5.7. For any fixed � 2 g satisfying Ad.et�/N � N for all t 2 R, one may as
well consider the semidirect productN Ì˛ R, where ˛ W R! Aut.N / is defined by ˛t WD
Ad.et�/jN . Definition 5.6 additionally allows for the situation where � is KMS at multiple
�I 2 g, relative to possibly distinct subgroups NI � G, where I 2 	 for some indexing
set 	. We will see an example of this in Example 5.21 below.

In the following, let .�;H�/ be a continuous unitary G-representation and let N WD

�.N /00 � B.H�/ be the von Neumann-algebra generated by �.N /. If � 2 �.N /, write
�� W N ! B.H�/ for the GNS-representation of N relative to �. Let �� 2 H� denote
the canonical N -cyclic vector satisfying �.x/ D h�� ; ��.x/��i for all x 2 N . Write

�� WD �� ı � W N ! U.H�/

for the unitary N -representation on H� . Define

N� WD ��.N /
00
� B.H�/:

Lemma 5.8. Let � 2 �.N /. Then y� is smooth on N if and only if�� 2H1�� . In this case
H1�� is dense, so �� is smooth.

Proof. Assume that y� is smooth on N . Then n 7! h�� ; ��.n/��i is smooth. By [50,
Thm. 7.2], it follows n 7! ��.n/�� is smooth N !H� . The converse direction is trivial.
Assume that �� 2 H1�� . As H1�� is N -invariant and �� is cyclic for N , it follows that
H1�� is dense in H� .
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Consider the left action of G on �.N / defined by .g � �/.x/ WD �.�.g/�1x�.g// for
x 2 N . Notice that this action leaves �.N /1 invariant.

Lemma 5.9. Let g 2 G and � 2 g. Then

� 2 KMS.�; �; N / ” g � � 2 KMS
�
�;Adg.�/; gNg�1

�
:

Proof. Write Ng WD �.g/N �.g/�1. Let � 2 KMS.�; �;N /. As et�Ne�t� � N it follows
that et Adg .�/ normalizes gNg�1 for every t 2 R. Define the following automorphism
groups:

�� W R! Aut.N /; �� WD Ad
�
�.et�/

�
;

�� W R! Aut.Ng/; �� WD Ad
�
�.et Adg �/

�
:

In order to show g � � 2 KMS.�;Adg.�/; gNg�1/, we must verify that g � � satisfies the
modular condition for the automorphism group ���t of Ng . Notice that as isomorphisms
Ng ! N we have

�
�
t ı Ad

�
�.g/�1

�
D Ad

�
�.g/�1

�
ı �

�
t ; 8t 2 R: (5.1)

As � 2 KMS.�; �;N /, we know that � ı ��t D � for all t 2R. It then follows immediately
from (5.1) that

.g � �/ ı �
�
t D � ı Ad

�
�.g/�1

�
ı �

�
t D � ı �

�
t ı Ad

�
�.g/�1

�
D � ı Ad

�
�.g/�1

�
D g � �

for every t 2R. Next, take x;y 2Ng . Then x D �.g/x0�.g/�1 and y D �.g/y0�.g/�1 for
some x0; y0 2 N . Let the function Fx0;y0 W St! C be continuous and bounded, holomor-
phic on St and satisfy Fx0;y0.t/ D �.�

�
�t .x

0/y0/ and Fx0;y0.t C i/ D �.y0�
�
�t .x

0// for all
t 2R. Define zFx;y W St!C by zFx;y.z/ WD Fx0;y0.z/. Then zFx;y satisfies the conditions of
Definition 5.2 for ���t . Indeed, notice using equation (5.1) that ��t .x

0/D �.g/�1�
�
t .x/�.g/.

Thus

zFx;y.t/ D Fx0;y0.t/D �
�
�
�
�t .x

0/y0
�
D �

�
�.g/�1�

�
�t .x/y�.g/

�
D .g � �/

�
�
�
�t .x/y

�
;

zFx;y.t C i/ D Fx0;y0.t C i/ D �
�
y0�

�
�t .x

0/
�
D �

�
�.g/�1y�

�
�t .x/�.g/

�
D .g � �/

�
y�

�
�t .x/

�
:

Thus g � � 2 KMS.�;Adg.�/; gNg�1/.

Let � 2 KMS.�; �; N /. Let ˛ denote the smooth R-action on N defined by ˛t .n/ WD
et�ne�t� . We extend �� to N Ì˛ R by setting ��.n; t/ D ��.n/��it� . Define

N1;� WD
®
x 2 N W .n; t/ 7! ��.n; t/��.x/�� is smooth N Ì˛ R! H�

¯
;

D� WD ��.N
1;�/�� � H1�� :

Notice that N1;� and D� are invariant under the leftN - andNÌ˛R-actions, respectively.
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Lemma 5.10. If � 2 KMS.�; �; N /1, then N1;� is SOT-dense in N and D� is dense
in H� . In particular, �� is smooth when considered as representation of N Ì˛ R.

Proof. Since � 2 �.N /1, the vector �� is smooth for the N -action �� by Lemma 5.8.
Let m 2 N . For any n 2 N and t 2 R we have

��.n; t/��.m/�� D ��.n/�
�it
� ��.m/�

it
��� D ��.n/�

�
�t

�
��.m/

�
��

D ��.ne
t�me�t�/�� ;

where the last equality follows by Remark 5.4. Thus .n; t/ 7! ��.n; t/��.m/�� is smooth
N Ì˛ R! H� and so �.m/ 2 N1;� . Thus �.N / � N1;� and ��.N /�� � D� . Since
�.N /00 D N and ��.N /�� is total for H� , it follows that N1;� is SOT-dense in N and
that D� is dense in H� . As D� is contained in the set of N Ì˛ R-smooth vectors by
definition, the final observation follows.

5.2.1. Restrictions imposed by the KMS condition. Let us next determine some conse-
quences of the KMS condition. Most notably, we will show that representations � which
are smoothly-KMS give rise to generalized positive energy representations �� on the
GNS-Hilbert space H� of the corresponding state �.

We continue in the notation of Section 5.2. Fixing a Lie subgroup N � G and some
element � 2 g satisfying Ad.et�/N � N for all t 2 R, we may as well suppose that
G D N Ì˛ R for some smooth R-action ˛ on N by automorphisms. Let g WD Lie.G/,
n WD Lie.N / and write D 2 der.n/ for the derivation on n corresponding to ˛. Thus g D

n ÌD Rd , where d WD 1 2R denotes the standard basis element. Assume that � is KMS at
d relative to N , and let � 2 KMS.�;d ;N /. We extend the N -representation �� D �� ı �
on the GNS-Hilbert space H� to G D N Ì˛ R by setting ��.n; t/ D ��.n/��it� . Define
further H� WD � log�� D �id��.d/.

A first observation is the following:

Proposition 5.11. Let A be an Abelian Lie subgroup of N such that ˛t .A/ � A for all
t 2 R. Then ��.˛t .a// D ��.a/ for every t 2 R and a 2 A. In particular, if N is a factor
then �.˛t .a// D �.a/ for every t 2 R and a 2 A.

Proof. Let A� WD ��.A/
00. Write again � for the vector state h�� ; ���i on N� . Let  WD

�jA�
denote its restriction to A� . As A is R-invariant, so is A� � N� . Thus, the modular

automorphism group �� of N� leaves A� invariant. As � satisfies the modular condition
for �� , so does  for the automorphism group t 7! �

�
t jA�

. Recall from Remark 5.3 (2)
that �� is separating for N� . Hence it is so for A� . In view of Remark 5.3 (1) this
implies that the modular automorphism group � on A� is uniquely determined by the
modular condition. Thus � t D �

�
t jA�

for all t 2 R. As A� is Abelian, we know by
[13, Prop. 5.3.28] that � t D idA�

. Thus ��t jA�
D idA�

. We know from Remark 5.4 that
�� ı ˛�t D �

�
t ı �� . Thus ��.˛t .a// D ��.a/ for all a 2 A and t 2 R. If N is a factor,

then � is faithful and �� is injective by Remark 5.3 (1), (3). Thus �.˛t .a//D �.a/ follows
from ��.˛t .a// D ��.a/.
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Let us illustrate Proposition 5.11 with the following noteworthy consequence for loop
groups:

Corollary 5.12. Let K be a compact 1-connected simple Lie group with Lie algebra k.
Define LK WD C1.S1IK/ and Lk WD C1.S1I k/. Let ˛ denote the T -action on LK by
rotations, with corresponding derivation D WD d

d�
on Lk. Consider the Lie group G WD

LK Ì˛ T with Lie algebra g WD Lk ÌD Rd , where d WD 1 2 R. Suppose that the smooth
unitary G-representation � is KMS at d 2 g relative to LK. Assume that �.LK/00 is a
factor. Then LK � ker �.

Proof. Suppose T � K is a maximal torus with Lie algebra t. Then LT � LK is an
Abelian ˛-invariant subgroup. By Proposition 5.11 it follows that d�.DLt/ D ¹0º. As
any X 2 k is contained in a maximal torus, it follows that d�.df

d�
˝ X/ D 0 for any f 2

C1.S1/ and X 2 k. Consequently d�.Dg/ D ¹0º and hence DgC � ker d�, where we
have extended d� W g! L�.H1� / C-linearly to the complexification gC . As kerd� is an
ideal in gC and LkC D DLkC C ŒDLkC; DLkC�, it follows that LkC � ker d�. Notice
thatLK is connected becauseK is 1-connected. It is also locally exponential by [48, Thm.
II.1]. It follows that LK � ker �.

Thus, one necessarily has to pass to a non-trivial central T -extension
ı

LK of LKÌ˛T
to allow for interesting KMS-representations of

ı

LK that are smoothly-KMS at some
ı

d 2
ı

Lk covering d 2 Lk ÌD Rd , as one may have expected from the positive energy
analogue (which follows from [57, Thm. 9.3.5]).

We now proceed with the observation that KMS representations give rise to general-
ized positive energy representations on the GNS-Hilbert space corresponding to the KMS
state:

Theorem 5.13. Let � 2 KMS.�;d ; N /1. Let x 2 N �;1 and assume  WD ��.x/�� 2
D� has unit norm. Then˝

��.x/�� ;�id��
�

Adn.d/
�
��.x/��

˛
� � log

���.x/2� 8n 2 N:
In particular the representation �� of N Ì˛ R on H� is of generalized positive energy at
d 2 n ÌD Rd .

Lemma 5.14. Let x 2 N be such that 0 ¤  WD ��.x/�� 2 dom.H�/. Then

h ;H� i

k k2
� � log

�
kS� k

2

k k2

�
: (5.2)

Proof. In view of the correlation lower bounds satisfied by KMS states, see e.g. [13, Thm.
5.3.15 (1))(2)] or [17, Thm. II.4, (i))(iii)], we have

˝
��.x/�� ;

�
H� ; ��.x/

�
��
˛
� �

��.x/��2 log

 ��.x/���2��.x/��2
!
:
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Since H��� D 0, it follows that˝
��.x/�� ;

�
H� ; ��.x/

�
�ˆ

˛
D
˝
��.x/�� ;H���.x/��

˛
:

The assertion follows.

Proof of Theorem 5.13. Recall that D� � H1�� and that D� � dom.S�/, because the
stronger condition N��� � dom.S�/ is satisfied. Let n 2 N . Notice that kS���.n/ k D
k��.x

�/��.n/
�1��k � k��.x/k. Recalling that D� is N -invariant, we can apply equa-

tion (5.2) to the vector ��.n/ . Using �id�.d/ D � log�� D H� it follows that˝
 ;�id��

�
Adn�1.d/

�
 
˛
D
˝
��.n/ ;�id��.d/��.n/ 

˛
� � log

�
kS���.n/ k

2
�

� � log
�
k��.x/k

2
�
:

As a consequence of Theorem 5.13, we find that the observations of Section 4 impose
restrictions on KMS representations. Let us illustrate this with the following immediate
consequence:

Corollary 5.15. Let x� be a smooth projective unitary representation of G on H�. Assume
that N WD x�.N /00 is a factor. Let � W

ı

G ! U.H�/ be the lift of x�, for some central T -
extension

ı

G of G with Lie algebra ı
g. Let

ı

N �
ı

G cover N . Let ! represent the class in
H 2

ct.g;R/ corresponding to ı
g. Let � 2 g and suppose

ı

� 2
ı
g covers �. Let

� 2 KMS.�;
ı

�;
ı

N/1:

Assume that � 2 n satisfies ŒŒ�; ��; �� D 0. Then !.Œ�; ��; �/ � 0 and

!
�
Œ�; ��; �

�
D 0 ” d x�

�
Œ�; ��

�
D 0:

Proof. Consider the representation �� of
ı

N Ì R on the GNS Hilbert space H� , where R

acts on
ı

N by Ad.et
ı

�/j ı
N

and where ��.1; t/D��it� for t 2R. Let x�� be the corresponding
projective unitary representation of N Ì R on H� , where R acts on N by Ad.et�/jN . By
Theorem 5.13, �� is of g.p.e. at d 2 ı

n Ì Rd and so x�� is of g.p.e. at d . It follows from
Proposition 4.4 that !.Œ�; ��; �/ � 0 and !.Œ�; ��; �/ D 0, d x��.Œ�; ��/ D 0. As N is
a factor, the KMS state � 2 �.N / is faithful and the corresponding GNS-representation
�� W N ! B.H�/ is injective, by Remark 5.3 (1) (3). This implies that kerd�� D kerd�.
Thus !.Œ�; ��; �/ D 0, d x�.Œ�; ��/ D 0.

Remark 5.16. A related notation is that of a passive state, which is usually considered
in the context of a C �-dynamical system .A; �/, where A is a C �-algebra and � W R!
Aut.A/ is a strongly continuous homomorphism. If ı is the generator of � with domain
D.ı/ � A, a state � on A is said to be passive if

�i�
�
u�ı.u/

�
� 0; 8u 2 U0.A/ \D.ı/; (5.3)
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where U0.A/ denotes the identity component of the group U.A/ of unitary elements
in A. In this case, � is necessarily � -invariant [58, Thm. 1.1], so that � is canonically
implemented by a strongly-continuous unitary 1-parameter group t 7! eitH� on the GNS-
Hilbert space H� . Let �� W A! B.H�/ be the GNS-representation of A associated to �
and let �� 2 H� be the corresponding cyclic vector. Then (5.3) becomes

�i
˝
�� ; ��.u/

�1H���.u/��
˛
� 0; 8u 2 U0.A/ \D.ı/;

which is similar to equation (4.1). It was moreover shown in [58] that any ground- or
� -KMS state is necessarily passive (cf. [13, Thm. 5.3.22]), which is analogous to the
observation that both positive energy and KMS representations provide examples of gen-
eralized positive energy ones, in view of Theorem 5.13. We refer to [13, 58] for more
information on (completely) passive states.

5.2.2. Some examples of KMS representations. Let us consider a variety of examples
of KMS representations, thereby showing in various situations that a well-known � -KMS
state � on a von Neumann algebra N admits some underlying smooth structure. More
precisely, we construct a continuous unitary representation � of a (typically infinite-dimen-
sional) Lie group G such that N D �.N /00, � 2 KMS.�; �;N /1 and �t D Ad.�.et�// for
some � 2 g and Lie subgroup N of G. In particular, in this case the 1-parameter group �
on N implements the R-action t 7! Ad.et�/jN on the Lie subgroup N of G.

Let us begin with the simplest class of examples, which correspond to Gibbs states, as
in Example 5.5:

Example 5.17. Take forN simplyN DG. Let .�;H / be a continuous irreducible unitary
G-representation. Then N D B.H /. Let � 2 g and define the self-adjoint operator H WD
�i d

dt
jtD0�.e

t�/. Let ˇ > 0 and assume thatZˇ WD Tr.e�ˇH / <1. Define the Gibbs state
�.x/ WD 1

Zˇ
Tr.e�ˇHx/ for x 2 N . As in Example 5.5, we have

�
�
�t .x/ D e

itˇHxe�itˇH D �.etˇ�/x�.e�tˇ�/

for any x 2N . Consequently, � 2KMS.�;ˇ�/ and so � is a KMS representation at ˇ� 2 g.
If in additionb� W G ! C is smooth, then � is smoothly-KMS at ˇ� 2 g. By Lemma 5.9,
� is also KMS at any element in the adjoint orbit of ˇ�. In view of Example 5.5, the

representation �� of G Ì R on H� WD B.H�/
h�;�i� is given by

��.g; t/x�� D �.g/�.e
tˇ�/x�.e�tˇ�/�� D �.g/�

�
�t .x/�� ;

where �� WD I 2 B.H�/ � H� denotes the cyclic vector.

In fact, Proposition 5.18 below entails that any KMS representation � for which N is
a factor of type I is of the form described in Example 5.17. Moreover a complete charac-
terization of such representations was very recently obtained in the context where N is a
finite-dimensional Lie group [61].
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Proposition 5.18. Let � 2 g and ˇ > 0. Suppose that �jN is irreducible and that � 2
KMS.�; ˇ�; N /. Let H WD �i d

dt
jtD0�.e

t�/. Then Zˇ WD Tr.e�ˇH / < 1 and �.x/ D
1
Zˇ

Tr.e�ˇHx/.

Proof. As �jN is irreducible, it follows that N D B.H�/. Thus �.x/ D Tr.ıx/ for some
ı 2 L1.H�/C satisfying Tr.ı/ D 1, where L1.H�/ denotes Banach space of trace-class
operators on H�. Moreover, in view of Remark 5.3 (3), we know that � is faithful on N .
By assumption, � satisfies the modular condition for the automorphism group

t 7! Ad
�
�.e�tˇ�/

�
DW ��ˇt :

On the other hand, as � is faithful, there exists by Remark 5.3 (1) a unique automorphism
group ��t of N for which � satisfies the modular condition. It follows that ��ˇt D �

�
t .

When N D B.H�/ and �.x/ D Tr.ıx/, the modular automorphism group ��t corre-
sponding to � is ��t .x/ D ıitxı�it . In view of ��t D ��tˇ , it follows that ıitxı�it D
�.e�tˇ�/x�.etˇ�/ for every x 2N . As Z.N /DCI and both t 7! ıit and t 7! �.etˇ�/ are
strongly continuous unitary 1-parameter groups, it follows that there is some continuous
homomorphism c WR! T such that ıit D c.t/�.e�tˇ�/D c.t/e�itˇH for all t 2R. Thus
there exists � 2 R such that ıit D e�it.ˇHC�I/ for all t 2 R. So log ı D �.ˇH C �I/.
Since Tr.ı/ D 1, we have

Zˇ D Tr.e�ˇH / D Tr.e�.ˇHC�/e�1/ D Tr.ıe�1/ D e��.1/ D e� <1:

It follows that
1

Zˇ
Tr.e�ˇHx/ D e�� Tr.e�ˇHx/ D Tr.e�.ˇHC�/x/

D Tr.ıx/ D �.x/; 8x 2 B.H /:

For more interesting examples, one has to consider a Lie subgroup N of G which is
not of type I, so that the von Neumann algebra N need not be type I.

Example 5.19 (Powers’ factors). DefineGn WD
Qn
kD1 SU.2/ and let �n W Gn ,! GnC1 be

defined by

�n W Gn
id�1
���! Gn � SU.2/ D GnC1:

Write gn WD Lie.Gn/ and L.�n/ WD Lie.�n/. The direct limit G WD lim
�!n

.Gn; �n/ consists
of sequences .uk/ in SU.2/ with uk D 1 for all but finitely many values of k. It can be
equipped with the structure of a regular Lie group that is modeled on the locally convex
inductive limit g WD lim

�!n
.gn;L.�n// [21, Thm. 4.3] and has the exponential map expG D

lim
�!n

expGn [21, Prop. 4.6]. LetH WD
�
1 0
0 �1

�
and � WD iH 2 su.2/. Consider the following

R-action ˛ on G defined by .˛t .u//k WD et�uke�t� for u 2 G. The corresponding action
R � G ! G is smooth. Indeed, the restriction of ˛ to R � Gn yields a smooth action
˛.n/ W R �Gn ! Gn for every n 2 N. It follows from [21, Thm. 3.1] that

lim
�!
n

˛.n/ W lim
�!
n

.R �Gn/! G
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is smooth. By [21, Prop. 3.7] we further have lim
�!n

.R �Gn/ D R �G as smooth mani-
folds. This shows that ˛ W R �G ! G is smooth. Consider the Lie group G] WD G Ì˛ R
with Lie algebra g] WD g ÌD Rd , where d WD .0; 1/. Using the so-called Powers’ fac-
tors, we define unitary representations � of G] which are smoothly-KMS at d relative to
G G G] and for which �.G/00 is a factor of type III� for arbitrary � 2 .0; 1/. Define the
finite-dimensional C �-algebra

Mn WD

nO
kD1

B.C2/ for every n 2 N:

Let ˇ > 0. Define the state �.x/ WD 1
Z

Tr.e�ˇHx/ on B.C2/, where Z WD Tr.e�ˇH / D
2 cosh.ˇ/. Let �n be the state on Mn defined by �n.x1 ˝ � � � ˝ xn/ D

Qn
kD1 �.xk/. The

GNS-representation of B.C2/ defined by � is H� WD B.C2/ equipped with left B.C2/-
action and the inner product ha; bi WD 1

Z
Tr.e�ˇHa�b/. Similarly the GNS-representation

of Mn corresponding to �n is H�n WD
Nn
kD1H� . The isometric inclusions H�n ,!H�nC1 ,

x 7! x ˝ 1 define a directed system of Hilbert spaces, and the algebraic direct limit
lim
�!n

H�n becomes naturally a pre-Hilbert space. Let H denote its Hilbert space com-
pletion. Let �n W H�n ,! H denote the canonical inclusion. For every n 2 N, there is a
�-representation �n of Mn on H defined for x D x1 ˝ � � � ˝ xn 2Mn by

�n.x/�m. 1 ˝ � � � ˝  m/ WD �m.x1 1 ˝ � � � xn n ˝  nC1 ˝ � � � ˝  m/; m � n:

Let M1 WD .
S
n2N �n.Mn//

00. The vector� WD 1˝ 1˝ � � � 2H is cyclic and separating
for M1 [63, Prop. XIV.1.11], so H may be identified with the GNS-representation of M1
w.r.t. the state �1 WD h�; � �i on M1. Observe that �1 satisfies �1.�n.x//D �n.x/ for
all n 2 N and x 2Mn. The von Neumann algebra

.M1; �1/ DW

1O
kD1

�
B.C2/; �

�
is the so-called Powers’ factor with parameter a WD e�ˇ

2 cosh.ˇ/ 2 .0;
1
2
/, which is a fac-

tor of type III� with � D e�2ˇ D a
1�a
2 .0; 1/ [63, Theorem XVIII.1.1]. The modular

automorphism group ��1t on M1 defined by �1 is given by ��1t D
N1
kD1 Ad.e�ˇt�/

[63, Prop. XIV.1.11], where
N1
kD1 Ad.eˇt�/ 2 Aut.M1/ satisfies

1O
kD1

Ad.eˇt�/ ı �n D �n ı
nO
kD1

Ad.eˇt�/

for all t 2 R and n 2 N and is defined from this condition by continuity, where we used
[63, Thm. XIV.1.13] and that � ı Ad.eˇt�/ D � for all t 2 R. Consider the unitary repre-
sentation � W G Ì˛ R! U.H / defined by

�.u; ˇt/ WD

� 1O
kD1

uk

�
ı��it�1

; u 2 G; t 2 R
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which is well defined because u D .uk/ 2 G is a sequence in SU.2/ with uk D 1 for all
k sufficiently large. Since �.ˇt/ D ��it�1

and �.G/00 DM1, it follows that � is KMS at
ˇd 2 g] relative to G G G]. To see that b�1 W G ! C is smooth, it suffices to show that
its restriction to Gn is smooth for every n 2 N, using the universal property of the smooth
manifold structure on G D lim

�!n
Gn [21, Thm. 3.1]. This is the case, as h�; �.u/�i DQn

kD1 �.uk/ for any u 2 Gn, which is smooth Gn ! C. Thus � 2 H1� and so � is
smoothly-KMS at ˇd 2 g] relative to G GG].

Example 5.20 (Standard real subspaces and Heisenberg representations). Let H be a
complex Hilbert space. Consider the real Heisenberg group

G WD H.H ; !/;

where !.v;w/ D Imhv;wi. An R-linear closed subspace K � H is called cyclic if K C

iK is dense in H . It is called separating if K \ iK D ¹0º. A standard subspace is
a closed R-linear subspace K � H which is both cyclic and separating. We show that
any standard real subspace gives rise to a smooth KMS representation. Let K � H be a
standard real subspace. Write ıK for the corresponding modular operator on H , which
is generally unbounded, positive and self-adjoint, see e.g. [53, Sec. 3]. Then t 7! ıit

K
is a

strongly-continuous unitary 1-parameter group on H satisfying in particular ıit
K

K � K .
We first pass to the R-smooth vectors K1 to obtain a regular Lie group H.K1; !/ Ì R.
We then construct a KMS representation thereof using second-quantization. The details
are given below.

Let K1 denote the set R-smooth vectors in K . Then K1 is dense in K and R-
invariant. It moreover carries a Fréchet topology which is finer than the one inherited as
a subspace of K and for which the action R �K1 ! K1 is smooth [50, Thm. 4.4,
Lem. 5.2]. As ! W K1 �K1 ! R is bilinear and continuous w.r.t. this topology, it is
smooth. Thus the generalized Heisenberg group N WD H.K1; !/ is a Lie group. (Notice
that !jK1 may be degenerate.) It is as a subgroup of G generated by K1. As K1 is
a Frèchet space, it is Mackey complete by [39, Thm. I.4.11], which implies using [49,
Thm. V.1.8] that N is regular. Write n WD Lie.N /. By construction R acts smoothly on
N by ıit

K
, so that N ] WD N Ì R is a regular Lie group. Let n] WD n Ì Rd denote its Lie

algebra. We construct a representation ofN ] which is smoothly KMS at d 2 n] relative to
N GN ]. Let us recall the standard representation of H.H ; !/ on the Bosonic Fock space
F .H /. Equip the symmetric algebra S�.H / with the inner product

hv1 � � � vn; w1 � � �wni D
X
�2Sn

nY
jD1

hvj ; w�j i:

Let F .H / denote the Hilbert space completion of S�.H / and let � WD 1 2 H denote the
vacuum vector. Then H contains (and is generated by) the vectors ev WD

P1
nD0

1
nŠ
vn 2H

for v 2 H . There is a continuous irreducible unitary representation W of H.H ; !/ on
F .H / satisfyingW.z;v/ewDze�

1
2 kvk

2�hv;wievCw for v;w2H and z2T [57, Sec. 9.5].
Moreover, any unitary u 2 U.H / extends canonically to a unitary F .u/ 2 U.F .H //. We
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further have:

W.uv/ D F .u/W.v/F .u/�1; 8u 2 U.H /; v 2 H (5.4)

In view of (5.4), W and F together define a representation � of the Lie group N ] by
�.n; t/ WD W.n/F .ıit

K
/. Let N WD W.N/00. As K is a standard real subspace and K1 is

dense in K , it follows that � is cyclic and separating for N [53, Lem. 6.2]. Let � denote
the faithful vector state on N defined by �.x/D h�;x�i. Using [53, Prop. 6.10] we have
�it� D F .ıit

K
/ for all t 2R. Consequently � is KMS at�d 2 n] relative toN GN ] (notice

the minus sign in Definition 5.2). To see it is smoothly KMS, observe that y� W N ! C is
smooth because it is given by

y�.z; v/ D
˝
�;W.z; v/�

˛
D ze�

1
2 kvk

2

: (5.5)

The following provides an example where � is smoothly-KMS at various �I 2 g, rel-
ative to distinct subgroups NI � G, where I 2 	 for some indexing set 	:

Example 5.21 (Bisognano–Wichmann and SU.1; 1/-covariant nets). Recall that SU.1; 1/
acts on S1. Explicitly, for g D

� ˛ ˇ
x̌ x̨
/2SU.1; 1/ with ˛; ˇ2C satisfying j˛j2�jˇj2D1,

define g.z/ WD ˛zCˇ
x̌zCx̨

for z 2 C with jzj D 1. With g as above, define the unitary action
of SU.1; 1/ on the complex Hilbert space L2.S1IC/ by�

u.g/f
�
.z/ WD .˛ � x̌z/�1f

�
g�1.z/

�
for f 2 L2.S1IC/. Let H 2

C.S
1IC/ be the closed subspace of L2.S1IC/ spanned by the

non-negative Fourier modes. LetH 2
�.S

1IC/ be its orthogonal complement in L2.S1IC/.
Notice that SU.1; 1/ leaves these subspaces invariant. Consider the complex Hilbert space
V WD H 2

C.S
1IC/˚H 2

�.S
1IC/, where H 2

�.S
1IC/ denotes the Hilbert space complex-

conjugate toH 2
�.S

1IC/. Let VR D L
2.S1IC/ denote the real vector space underlying V .

Define the real Fréchet space V1R WDC
1.S1IC/ and consider the symplectic vector space

.V1R ; !/, where !.v;w/ WD Imhv;wiV for v;w 2 V1R . Let H.V1R ; !/ be the correspond-
ing real Heisenberg group. Consider the regular Fréchet–Lie group G WD H.V1R ; !/ Ì
SU.1; 1/. Let r WD i

2

�
1 0
0 �1

�
and d WD 1

2

�
0 1
1 0

�
denote the generators in su.1; 1/ of the

rotation and the dilation subgroups in SU.1; 1/, respectively. By an interval of S1, we
mean a connected, open, non-empty and non-dense subset of S1. Write 	 for the set of
intervals of S1, on which SU.1; 1/ acts naturally, and let I0 denote the upper-semicircle.
For I 2 	, define �I 2 su.1; 1/ by �I WD Adg.d/, where g 2 SU.1; 1/ is any element
satisfying g:I0 D I . Notice that �I is well defined. Define further the closed real subspace
VI WD L

2.I IC/ of VR and set V1I WD VI \ V
1

R . Let NI WD H.V1I ; !/ � G be the cor-
responding closed subgroup of G. We construct a unitary representation � of G which is
of p.e. at r 2 su.1; 1/ and which is KMS at �I 2 su.1; 1/ relative to NI , for every I 2 	.
The details are given below.

As the SU.1;1/-action u onL2.S1IC/ leaves bothH 2
C.S

1IC/ andH 2
�.S

1IC/ invari-
ant, we obtain a unitary representation Qu of SU.1; 1/ on V D H 2

C.S
1IC/˚H 2

�.S
1IC/

which is by construction of p.e. at r 2 su.1; 1/. As in Example 5.20, let W denote the
standard representation of the real Heisenberg group H.V; Imh�;�i/ on the Fock space
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F .V /. Letting SU.1; 1/ act on F .V / by second quantization, we obtain a smooth uni-
tary representation � of G on F .V / which is of p.e. at r 2 su.1; 1/. Explicitly, � is
given by �.v; g/ D W.v/F . Qu.g// for v 2 H.V1R ; !/ and g 2 SU.1; 1/. It follows from
[69, Sec. II.14] that VI � V is a standard real subspace for any interval I 2 	. Let ıitI
denote the corresponding modular 1-parameter group, as in Example 5.20. The assign-
ment I 7! VI , called a net of standard subspaces, satisfies I1 � I2) VI1 � VI2 (isotony),
Vg:I D Qu.g/VI for g 2 SU.1; 1/ (SU.1; 1/-covariance) and I1 \ I2 D ; ) VI2 � V

?!
I1

(locality). It moreover follows from [69, Sec. II.14] that ıitI D Qu.e
�2�t�I / for all t 2 R

and I 2 	 (cf. [40, Thm. 3.3.1] and [9, Thm. II.9]). Passing to the second quantization, let
NI WD �.NI /

00 D W.V1I /00 denote the von Neumann algebra generated by W.V1I / for
I 2 	. By Example 5.20, we obtain that

�.e�2�t�I / D F
�
Qu.e�2�t�I /

�
D F .ıitI / D �

it
I ;

where �I denotes the modular operator on F .V / defined from NI using the cyclic and
separating vector � WD 1 2 F .V /. Let � D h�; � �i be the corresponding state on NI .
Then (5.5) shows that y� WNI !C is smooth. Thus � is smoothly-KMS at 2��I 2 su.1;1/

relative toNI �G, for any I 2 	. For more details on the Bisognano–Wichmann property
and nets of standard subspaces, see e.g. [45, 46].

Part II
Generalized positive energy representations of jet Lie groups and
algebras

We now depart from the general context of Part I. Using the observations made in Part I,
we study projective unitary representations of jet Lie groups and algebras that are of gen-
eralized positive energy. Let us first fix our notation, which is kept throughout Part II.

6. Notation
Let V be a finite-dimensional real vector space and K a 1-connected compact simple Lie
group with Lie algebra k. For any n 2N�0, we denote by P n.V / � R the space of homo-
geneous polynomials on V of degree n. LetR WDRJV �K WD

Q1
nD0P

n.V / denote the ring
of formal power series on V with coefficients in R, equipped with the product topology.
Let I D .V �/ be the maximal ideal of R, containing those elements with vanishing con-
stant term. We write ev0 W R! R Š R=I for the corresponding quotient map. Let g be
the R-module g WD R˝ k of formal power series on V with coefficients in k. Then g is a
topological Lie algebra with the Lie bracket defined by

Œf ˝X; g ˝ Y � WD fg ˝ ŒX; Y �; f; g 2 R; X; Y 2 k:

We also write fX instead of f ˝ X for f 2 R and X 2 k. Define Rk WD R=I kC1,
Ik WD I=I

kC1 and gk WD g=.I kC1 � g/ for k 2 N�0. Then

R D lim
 �

Rk and g D lim
 �

gk
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as topological vector spaces and Lie algebras, respectively. For k 2 N�0, let

Gk D J
k
0 .V IK/

be the unique 1-connected Lie group integrating the finite-dimensional Lie algebra gk .
Let G WD J10 .V IK/ WD lim

 �
Gk be the corresponding projective limit, which is a pro-Lie

group with topological Lie algebra gD lim
 �k

gk . (See e.g. [26] for a detailed consideration
of pro-Lie groups). Write XI for the Lie algebra of formal vector fields on V vanishing
at the origin. Identify XI Š der.I / using the Lie derivative v 7! Lv. Notice further that
der.I / Š I ˝ V . Define similarly XIk WD XI=.I

kC1XI / Š der.Ik/.
Let p be a finite-dimensional Lie algebra acting on g by the homomorphism D W p!

der.g/. Using the fact that all derivations of k are inner, by Whitehead’s first Lemma [30,
Lem. III.7.3], it follows from [35, Ex. 7.4] that D.p/ splits into a horizontal and vertical
part according to D.p/ D �Lv.p/ C ad�.p/, where v W p! X

op
I is a homomorphism of

Lie algebras and where � W p! g is a linear map that necessarily satisfies the following
Maurer–Cartan equation:

�Lv.p1/�.p2/CLv.p2/�.p1/� �
�
Œp1; p2�

�
C
�
�.p1/; �.p2/

�
D0; 8p1; p22p: (6.1)

Remark 6.1. As we shall see in Section 7.3 below, equation (6.1) can be written as ı� C
1
2
Œ�; �� D 0 in the differential graded Lie algebra .

V� p�/˝ g, whose differential is that
of the Chevalley–Eilenberg complex, where g is considered as p-module according to
p 7! �Lv.p/.

We will refer to D as a lift of the p-action on R to g and we call � the vertical twist
of the lift D. We remark also that D.p/ satisfies the following Leibniz rule:

D.p/.f �/ D �Lv.p/.f /� C fD.p/�; f 2 R; � 2 g; 8p 2 p:

We will denote by j k various k-jet projections R! Rk , g! gk and XI ! XIk . It
should be clear from the context which map is being used. Also, we will freely identify the
quotient g0 Š k with the Lie subalgebra k � g of formal power series having only a non-
trivial constant term. Similarly, we identify j 1XI D XI1 Š gl.V / with the subalgebra
gl.V / � XI of linear vector fields on V .

A first observation is the fact that G D J10 .V IK/ is not just a pro-Lie group, but
actually a regular Lie group modeled on the Fréchet space g D J10 .V I k/.

Proposition 6.2. Both G and G Ì˛ P are regular Fréchet–Lie groups.

Proof. It is clear that the Lie algebras g and g ÌD p are Fréchet. For every n 2 N, the Lie
groupGn D J n0 .V IK/ is 1-connected, becauseK is so. Then alsoG is 1-connected, since
�k.G/D �k.lim

 �n
Gn/D lim

 �n
�k.Gn/ for every k 2 N, see e.g. [24, Prop. 4.67]. Thus G

is the unique 1-connected pro-Lie group with Lie.G/ D g, which is locally contractible
by [27, Thm. 1.2]. Then [27, Thm. 1.3, Prop. 5.7] entails that G is a regular Lie group.
As the action ˛ W P �G ! G is smooth, also G Ì˛ P is a Lie group and it is regular by
[49, Thm. V.I.8], because both G and P are so.
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Moreover, we have the following useful fact:

Lemma 6.3. The exponential map expG W g! G restricts to a diffeomorphism from I ˝

k D ker.ev0 W g! k/ onto ker.ev0 W G ! K/.

Proof. For k 2N�0, letHk WD ker.ev0 WGk!K/ GGk be the maximal nilpotent normal
subgroup ofGk . Then hk WD Lie.Hk/D ker.ev0 W gk ! k/D .Ik ˝ k/ G gk . WriteH WD
lim
 �k

Hk for the corresponding normal subgroup of G and h D lim
 �

hk for its Lie algebra.
Let k 2 N. Notice that Hk is nilpotent and 1-connected. Consequently, its exponential
map is a diffeomorphism expHk W hk !Hk [14, Thm. 1.2.1]. Write logHk WHk ! hk for
its inverse. If m � k, then

expHk ıj
k
D j k ı expHm W hm ! Hk

and consequently logHk ıj
k D j k ı logHm WHm! hk . Passing to the projective limit, we

obtain the inverse logH WD lim
 �k

logHk of expH . It is smooth becauseH D lim
 �k

Hk carries
the projective limit topology and logHk is smooth for every k 2 N. Thus expH W h! H

is a global diffeomorphism.

7. Normal form results

By choosing suitable local coordinates, one may attempt to simplify the vector fields v.p/
and the vertical twist �.p/ of the liftD.p/D�Lv.p/C ad�.p/ simultaneously. One might
for example try to show that there are local coordinates in which the formal vector fields
v.p/ are linear for every p 2 p simultaneously, thereby linearizing the formal p-action.
Similarly, one might aim to show that in suitable coordinates, �.p/ 2 k � R ˝ k is con-
stant for all p 2 p, so that � is a Lie algebra homomorphism p! k. In the following,
this “normal form problem” is considered. The results of Section 8 will depend on the
availability of suitable normal forms, whose existence we study in the present section.

In Section 7.1, we briefly recall the transformation behavior of v and � under suitable
automorphisms of g. We proceed in Section 7.2 to recollect some known results regarding
normal forms for Lie algebras of vector fields with a common fixed point. Finally, we
consider in Section 7.3 the vertical twist � .

7.1. Transformation behavior

Definition 7.1. We use the following terminology:

• A formal diffeomorphism of V is an automorphism h of R. An automorphism of g is
said to be horizontal if it is of the form h˝ idk for some h 2 Aut.R/. We write h � �
or h.�/ instead of .h˝ idk/.�/ for � 2 g.

• A gauge transformation is an automorphism of g of the form ead� for some � 2 g.

Remark 7.2. Any formal diffeomorphism h 2 Aut.R/ preserves the maximal proper
ideal I and is determined by its restriction hjV � , which can be regarded as an element Qh
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of I ˝ V for which j 1 Qh 2 V � ˝ V Š gl.V / is invertible. It is then a consequence of
Borel’s Lemma [28, Thm. 1.2.6] and the Inverse Function Theorem that for any automor-
phism h ofR, there exist 0-neighborhoods U;U 0 � V and a diffeomorphism h0 W U ! U 0

satisfying h0.0/ D 0 such that h.j10 .f // D j10 .f ı h
�1
0 /. Similarly, for � 2 g there

exists � 2 C1c .V I k/ s.t. j10 .�/ D �, where we have identified g Š J10 .V I k/. We then
have ead� ı j10 D j

1
0 ı e

ad� .

To determine the transformation behavior of D W p! der.g/, we have to consider the
adjoint action of Aut.g/ on der.g/. Instead of considering arbitrary automorphisms of g,
we will specialize to horizontal ones and to gauge transformations. For h 2 Aut.R/ and
v 2 X

op
I , we write h � v for the action of Aut.R/ on X

op
I obtained from the adjoint action

of Aut.R/ on der.R/ Š XI Š X
op
I . The following two proofs are due to K.-H. Neeb and

B. Janssens. They appear in the presently unpublished article [34].

Lemma 7.3 ([34]). Let D 2 der.g/ and � 2 g. Then

ead� ıD ı e�ad� D D C ad
�
F.ad�/D�

�
;

where F.w/ D �
R 1
0
etwdt D �

P1
nD0

1
.nC1/Š

wn.

Proof. Let k 2 N be arbitrary. Consider the continuous path  W I ! der.g/ defined by
.t/ D etad�De�tad� . Notice that j k ı  W I ! der.gk/ is smooth for all k and conse-
quently so is  . Moreover

 0.t/ D etad� Œad� ;D�e�tad� D �etad� adD�e�tad� D �ad
�
etad�D�

�
;

where the last step uses that ˛ ı ad� D ad˛.�/ ı ˛ for any ˛ 2 Aut.g/. Thus

ead� ıD ı e�ad� �D D

Z 1

0

 0.t/dt D �

Z 1

0

ad
�
etad�D�

�
dt

D �ad
�Z 1

0

etad�dt

�
.D�/ D ad

�
F.ad�/D�

�
:

Proposition 7.4 ([34]). Let h 2 Aut.R/ � Aut.g/, �; � 2 g and v 2 XI .
Consider the derivation D WD �Lv C ad� 2 der.g/. Then

h ıD ı h�1 D �Lh�v C ad.h � �/;

ead� ıD ı e�ad� D �Lv C ad
�
ead�� C F.ad�/.�Lv�/

�
:

Proof. It is trivial that h ı Lv ı h
�1 D Lh�v . Moreover, h ı ad� ı h�1 D adh�� is valid

because ˛ ı ad� D ad˛.�/ ı ˛ for any ˛ 2 Aut.g/. Notice next that F.ad�/.Œ�; ��/ DP1
nD1

1
nŠ

ad�n� D ead�� � � . It follows from Lemma 7.3 that

ead� ıD ı e�ad� D �Lv C ad� C ad
�
F.ad�/.�Lv�/

�
C ad

�
F.ad�/Œ�; ��

�
D �Lv C ad

�
ead�� C F.ad�/.�Lv�/

�
:
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Definition 7.5. We define the following notions of equivalence:

• Two homomorphisms v;w W p! X
op
I are said to be formally-equivalent if there is a

formal diffeomorphism h 2 Aut.R/ such that h � v.p/ D w.p/ for all p 2 p.

• Two linear maps �; � W p! R ˝ k satisfying the Maurer–Cartan equation (6.1) are
called gauge-equivalent if there is some � 2 g such that

�.p/ D ead��.p/C F.ad�/.�Lv.p/�/; 8p 2 p: (7.1)

In this case, we write � � � and say that � and � are related by the gauge transforma-
tion ead� .

7.2. Lie algebras of formal vector fields with a common fixed point

The normal form problem for vector fields near a fixed point has been subject to extensive
study. Let us first gather some relevant known results.

The case of a single vector field. Naturally, the special case which has been considered
most is the case where p is simply R, in which case one is looking for normal forms of
dynamical systems near a fixed point, in the formal context. This case is already quite
interesting. Let us recollect some relevant results. For more information, we refer to [6].

Let v be a vector field on V . Write v D vl C vho, where

vl D j
1
0 .v/ 2 gl.V / � XI

is the linearization of v at 0 2 V and vho 2XI2 is a vector field vanishing up to first order
at 0 2 V . Let vl D vl;s C vl;n be the Jordan decomposition of vl over C, where vl;s is
semisimple and vl;n is nilpotent. Write VC WD V ˝R C. Let .ej /djD1 be a basis of eigen-
vectors of vl;s in VC with dual basis .xj /djD1 of V �. Let .�j /djD1 denote the corresponding
eigenvalues.

Definition 7.6. Let n 2 Nd
�0 be a multi-index. A monomial vector field xn@xj with jnj � 2

is called resonant if hn;�i D �j , where hn;�i WD
Pd
iD1 ni�i . Identifying vl;s with the

linear vector field
Pd
jD1 �jxj @xj on Cd , this is equivalent to Œvl;s; x

n@xj � D 0.

Theorem 7.7 (Poincaré–Dulac Theorem [16] [6, Ch. 5]). There exists who 2 XI2 which
is a C-linear combination of resonant monomials s.t. v is formally equivalent to w D
vl Cwho 2 XI . In particular Œvl;s; who� D 0 in XI .

Corollary 7.8 (Poincaré [56]). If there are no resonances, that is to say, if hn;�i ¤ �j
for all n 2 Nd

�0 with jnj � 2 and j 2 ¹1; : : : ; dº, then the vector field v can be formally
linearized, so that v is formally equivalent to the linear vector field vl.

The case of actions by a compact Lie group. For actions of compact Lie groups there
is the following well-known result, see also [15, Ch. 2.2].

Theorem 7.9 (Bochner’s Linearization Theorem [8]). Let G �M ! M be a smooth
action of compact Lie group on a smooth manifold which has a fixed point a 2M . Then,
in suitably chosen smooth local coordinates around the fixed point, the action is linear.
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The case of actions by semisimple Lie algebras. Next, we move to Lie algebra repre-
sentations by formal vector fields of semisimple Lie algebras. As nicely explained in [18]
and first observed by Hermann in [25], in the formal setting the obstructions to being able
to linearize a Lie algebra of vector fields simultaneously lie in various first Lie algebra
cohomology groups H 1.p; W / for suitable finite-dimensional p-modules W . In view of
Whitehead’s First Lemma [30, Lem. III.7.3], this results in:

Theorem 7.10 ([25]). Let p be a semisimple Lie algebra and v W p!X
op
I be a Lie algebra

homomorphism. Then v is formally equivalent to its linearization j 1v W p! gl.V /�X
op
I

around the origin.

Remark 7.11. Corresponding statements of Theorem 7.10 in the setting of germs of
smooth/analytic vector fields and diffeomorphisms have been proven in [18, 23] under
additional assumptions. They are false in general without suitable extra conditions, as was
shown in [23].

7.3. Normal form results for the vertical twist

Let us next consider the vertical twist � W p! g of the liftD.p/D �Lv.p/ C ad�.p/ to g

of the p-action �Lv.p/ on R, which has to satisfy the Maurer–Cartan equation (6.1). We
fix the horizontal part v W p! X

op
I and act by gauge transformations. The main results of

this section are the following two theorems, whose proof comprises the remainder of the
section. The reader who is eager to consider the projective unitary g.p.e. representations
of g can proceed to Section 8 after reading Theorems 7.20 and 7.22 below.

Let us also remark that the methods used in this section to prove Theorems 7.20 and
7.22 were communicated to the author by B. Janssens and K.-H. Neeb and appear in
similar form in their presently unpublished work [34], albeit in a more specific context.
The author has placed their approach in a more general context and extracted the two
theorems below.

Theorem (Theorem 7.20). Assume that p is semisimple. Let the linear map � W p! g

satisfy the Maurer–Cartan equation (6.1). Then � is gauge-equivalent to �0 WD ev0 ı� W
p! k. If p has no non-trivial compact ideals, then � is gauge-equivalent to 0.

The next result concerns the case p D R, in which case we identify v with v.1/ 2 XI

and � with �.1/ 2 g. In this case, the Maurer–Cartan equation (6.1) is trivially satisfied
for any � 2 g and v 2 XI .

Theorem (Theorem 7.22). Assume that p D R. Let � 2 g and v 2 XI . Let vl WD j
1v 2

gl.V / be the linearization of v at 0 2 V . Assume w.l.o.g. that �0 WD ev0.�/ 2 t for some
maximal torus t � k. The following assertions hold:

(1) Assume that hn;�i ¤ ˛.�0/ for any root ˛ 2 it� of k and n 2 Nd
�0 with jnj � 1.

Then � is gauge-equivalent to some � 0 2 R˝ t.

(2) If vl is semisimple, then � is gauge-equivalent to some � 2 R ˝ k satisfying
�Lvl� C Œ�0; �� D 0.
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(3) Suppose that vD vl is linear. Assume thatD D�Lv C ad� integrates to a contin-
uous T D R=2�Z-action on g. Then � is gauge-equivalent to �0 2 t. Moreover
Spec.vl/ [ Spec.ad� / � 2�iZ.

Remark 7.12. Suppose that K ! M is a principal fiber bundle with compact simple
structure group K. Let ˛ W T ! Aut.K/ be a smooth action on K by bundle auto-
morphisms. Suppose that a 2 M is a fixed point of the induced T -action on M and set
V WD Ta.M/. By Theorem 7.9, the T -action on M is linear in suitable local coordinates
around a 2 M . Passing to J1a .M/ Š R and J1a .Ad.K// Š g, one obtains a T -action
on both R and g. The corresponding derivations are given by �Lv and D D �Lv C ad�
respectively, for some linear semisimple vector field v on V and some � 2 g. This is the
setting of the third item in Theorem 7.22, according to which we may further assume that
� 2 t, where t � k is a maximal torus, by acting with gauge transformations.

The remainder of this section is devoted to the proof of Theorems 7.20 and 7.22.

Reformulation using differential graded Lie algebras. In order to classify the equiva-
lence classes of vertical twists � W p! g, we interpret equation (6.1) as the Maurer–Cartan
equation in the differential graded Lie algebra (DGLA) L WD LR WD .

V� p�/˝ g. As a
cochain complex, L is the Chevalley–Eilenberg complex associated to the p-module g,
where p acts on g by p �  D �Lv.p/ . Explicitly, the differential ı is given by

ı.˛/.p1; : : : ; pkC1/ D
X
i

.�1/iC1pi � ˛.p1; : : : ; bpi ; : : : ; pkC1/
C

X
i<j

.�1/iCj˛
�
Œpi ; pj �; p1; : : : ; bpi ; : : : ; bpj ; : : : ; pkC1�;

where as usual, the arguments with a caret are to be omitted. The graded Lie bracket on L
is the unique bilinear map Œ�;�� W L � L! L satisfying

Œ˛ ˝ �; ˇ ˝  � WD .˛ ^ ˇ/˝ Œ�;  �

for ˛;ˇ 2
V� p� and �; 2 g. Write Lk WD .

Vk p�/˝ g for the degree k-elements in L.
Interpreting � as a degree-1 element of L, equation (6.1) can now equivalently be written
as the usual Maurer–Cartan equation ı� C 1

2
Œ�; �� D 0 in L.

Let us next reformulate the gauge-action (7.1) of g on the set of vertical twists, using
the DGLA L. Consider the extended DGLA L Ì RD, where D is a degree-1 element
satisfying ŒD; �� D ı.�/ for any � 2 L. Notice for � 2 g D L0 that ı.�/.p/ D �Lv.p/�.
We define the gauge-action of L0 D g on L by

� � � D ead.�/.D C �/ �D D ead� .�/C F.ad�/
�
ı.�/

�
; � 2 g; (7.2)

considered as an expression inLÌ RD, where F.w/D�
P1
nD0

1
.nC1/Š

wnD�
R 1
0
etwdt .

Let us check that the above is indeed well defined, even thoughL is not a nilpotent DGLA.
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Since G D lim
 �k

Gk is a regular Lie group, it has an exponential map and so the automor-

phism ead� WD Ad.e�/ on g is defined. Consequently, so is

F.ad�/.�Lv.p/�/ D

Z 1

0

etad� .Lv.p/�/dt

for any p 2 p. Thus the expression in equation (7.2) makes sense. Notice further that for
� 2 L1, the above reduces precisely to the transformation behavior (7.1) of the vertical
twist. In accordance with Definition 7.5, we say that the Maurer–Cartan elements �; � 0 2
L1 are gauge-equivalent if they satisfy � 0 D � � � for some � 2 L0, in which case we write
� � � 0. Our goal is to study the Maurer–Cartan elements in L1 up to gauge-equivalence.

Let n 2N�0. Define analogously the following DGLAs, where we consider P n.V / as
p-module by identifying P n.V / with I n=I nC1 for n 2 N�0, so that p � f D �Lvl.p/f

for p 2 p and f 2 P n.V /:

LI WD
� �^

p�
�
˝ .I ˝ k/; LRn WD

� �^
p�
�
˝ .Rn ˝ k/;

LIn WD
� �^

p�
�
˝ .In ˝ k/; LP n WD

� �^
p�
�
˝
�
P n.V /˝ k

�
:

Shifted DGLAs. It will be beneficial to split off the constants terms of the k-valued for-
mal power series, because contrary to LR, LI is a projective limit of nilpotent DGLAs.
We discuss next how this can be done.

For any Maurer–Cartan element � 2 L1R0 D p� ˝ k � LR of degree 1, define the
“shifted” DGLA L

�
R, which agrees with LR as a graded Lie algebra but has a shifted

differential given by ı�.�/ WD ı.�/C Œ�;��. The differential ı� agrees with the Chevalley–
Eilenberg differential of .

V� p�/ ˝ g if g is considered as p-module with the twisted
action p � � WD �Lv.p/C Œ�;��. In particular, ı2� D 0. Let us writeR˝� k for this module
structure to distinguish it form the usual one on g D R ˝ k, which was given by p � � D
�Lv.p/�. Define also the extended DGLA L

�
R Ì RD�, where ŒD�; �� D ı�.�/. Define

in analogous fashion L�In , L�I and L�P n , where we have used that the p-action on R˝� k

leaves In˝ k invariant for every n, so that P n.V /˝ k Š .In˝ k/=.InC1˝ k/ is naturally
a p-module. The following is a standard result:

Lemma 7.13. The following assertions are valid:

(1) Let � 2 L1R. Then �C � is a Maurer–Cartan element in LR if and only if � is a
Maurer–Cartan element in L�R.

(2) Let �; � 0 2 L�R be degree-1 Maurer–Cartan elements. Then � C � � � C � 0 in
LR if and only if � � � 0 in L�R.

(3) Let  2 L1R be a Maurer–Cartan element. Then  D �C � for some degree-1
Maurer–Cartan elements � 2 L�I and � 2 LR0 .

Proof. (1) As � is a Maurer–Cartan element and Œ�; �� D Œ�; �� we have

ı.�C �/C
1

2
Œ�C �; �C �� D ı.�/C

1

2
Œ�; ��C Œ�; �� D ı�.�/C

1

2
Œ�; ��:
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(2) Observe that �F.ad�/.Œ�; ��/ D ead� .�/ � �. Consequently

F.ad�/
�
ı�.�/

�
D F.ad�/

�
ı.�/

�
C F.ad�/

�
Œ�; ��

�
D F.ad�/

�
ı.�/

�
C ead� .�/ � �:

Thus, for any � 2 g we have

ead� .�C �/C F.ad�/
�
ı.�/

�
D �C

�
ead� .�/C F.ad�/

�
ı�.�/

��
:

(3) SinceRDR0˚ I as a vector space, we can write D �C � , where �D j 0. / 2
LR0 and � 2 L�I . As j 0 is a morphism of DGLAs, it is clear that �D j 0. / is a Maurer–
Cartan element in LR0 � LR. By the first point it follows that � is a Maurer–Cartan
element in L�I � L

�
R.

Study of Maurer–Cartan elements. In view of Lemma 7.13, let us first study the clas-
sification problem of gauge-orbits of Maurer–Cartan elements in L1R0 and then, for each
Maurer–Cartan element � 2 L1R0 consider the orbits in L�I under the gauge-action.

Lemma 7.14. The following assertions are valid:

(1) Let � W p! k be linear. Then � is a Maurer–Cartan element in L1R0 if and only
if it is a Lie algebra homomorphism. Thus if there are no homomorphisms p! k,
then any Maurer–Cartan element � 2 L1R0 D p� ˝ k is trivial.

(2) The gauge-action of X 2 k D L0R0 on LR0 is given by X � � D eX�.

Proof. Notice that ı.X/ D 0 for any X 2 k � g, because �Lv.p/X D 0 for any p 2 p.
So p acts trivially on k D g0 D j 0g. Thus the Maurer–Cartan condition reads simply
�.Œp1;p2�/� Œ�.p1/;�.p2/�D 0 for all p1;p2 2 p, proving the first statement. The second
statement follows at once from the definition (7.2), using once more that the p-action on
k is trivial.

Next, we fix a homomorphism � W p! k and turn to the Maurer–Cartan elements of
the twisted DGLAs L�I . Consider the following diagram of DGLAs:

L
�
I

� � � L
�
IkC1

L
�
Ik

� � � L
�
I0
D ¹0º

Any Maurer–Cartan element in L�I projects to one in L�Ik for any k 2 N, and all maps
in the above diagram are equivariant w.r.t. the gauge-actions. Notice further that each L�Ik
is nilpotent. To study the Maurer–Cartan elements in L�I , we consider lifts of Maurer–
Cartan elements from L

�
Ik

to L�IkC1 , so as to solve the problem step-by-step. This can
be done using the following central extension of nilpotent DGLAs, where L�I0 D ¹0º is
trivial:

0! L
�

P k
! L

�
Ik
! L

�
Ik�1
! 0; k 2 N (7.3)

in combination with the following known result from deformation theory (cf. [43, Sec.
V.6]):
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Lemma 7.15. Let 0! K ! L! M ! 0 be a central extension of nilpotent DGLAs.
Let �M 2M 1 be a Maurer–Cartan element.

(1) Suppose that �L 2 L projects to �M . Then h WD ı�L C 1
2
Œ�L; �L� 2 K

2 is closed
and Œh� 2 H 2.K/ is independent of the lift �L of �M . Moreover, there is some
� 2 K1 such that �L C � is a Maurer–Cartan element in L1 if and only if Œh� D 0
in H 2.K/.

(2) If �L and � 0L are two lifts of �M that are both Maurer–Cartan elements in L1,
then � WD � 0L � �L 2 K

1 is closed. Conversely, if � 2 K1 is closed and �L is a
lift of �M and a Maurer–Cartan element, then � 0L WD �L C� is also a lift of �M
and a Maurer–Cartan element. Moreover, the class Œ�� 2 H 1.K/ vanishes if and
only if �L and �L0 are related by a gauge transformation of some element � 2 K0.

(3) If �L is a lift of �M and a Maurer–Cartan element, then the map � 7! �L C �

induces a bijection betweenH 1.K/ andK0-orbits of Maurer–Cartan elements in
L1 lifting �M .

Proof. (1) It is clear that h 2 K2 as it projects to zero in M 2. Since ıh D Œı�L; �L� (by
the graded Leibniz rule), we find using ı�L D h � 1

2
Œ�L; �L� that

ıh D Œh; �L� �
1

2

�
Œ�L; �L�; �L

�
D 0;

where the second term vanishes by the graded Jacobi identity and the first term vanishes
because h 2 K is central. Thus h is closed. Suppose that � 0L is some other lift of �M and
define h0 WD ı� 0L C

1
2
Œ� 0L; �

0
L� 2 K

2. Then � WD � 0L � �L 2 K lies in the center, so that
h0 D hC ı�. It follows that Œh� 2 H 2.K/ does not depend on the lift. If there is some
� 2 K1 such that �L C � is a Maurer–Cartan element in L1, then

0 D ı.�L C �/C
1

2
Œ�L C �; �L C �� D ı�C h:

Hence Œh� D 0. Conversely, if Œh� D 0 2 H 2.K/, then there exists � 2 K1 such that hC
ı� D 0. Then �L C � is a Maurer–Cartan element, by the same computation.

(2) Let � 0L and �L be Maurer–Cartan elements in L1 lifting �M . We have already
noticed that h0 D hC ı�, where � WD � 0L � �L 2 K

1. Since h D h0 D 0 by assumption,
it follows that ı� D 0. Conversely, suppose � 2 K1 is closed and that �L is a Maurer–
Cartan element projecting to �M . Then � 0L WD �L C� projects to �M as well. Also, � 0L
is a Maurer–Cartan element, because ı� 0L C

1
2
Œ� 0L; �

0
L� D ı�L C

1
2
Œ�L; �L�C ı� D 0. To

see that Œ�� D 0 in H 1.K/ if and only if �L and � 0L D �L C � are related by a gauge
transformation by some element � 2 K0, observe that if � 2 K0, then as � is central we
have

� � �L D e
ad� .�L CD/ �D D �L � ŒD; �� D �L � ı�:

(3) This is immediate from the previous point.

Next, we apply Lemma 7.15 to the exact sequences (7.3).
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Lemma 7.16. For every sequence .�k/k2N of degree-0 elements in L�I with

�k 2 P
k.V /˝� k

for every k 2 N, there exists � 2 I ˝� k such that j n.� � �/ D �n � �n�1 � : : : � �1 � � for
every � 2 L�I and n 2 N.

Proof. Consider the Lie subgroup H WD ker.ev0 W G ! K/ GG with Lie algebra

h WD ker.ev0 W g! k/ D I ˝ k:

Similarly, for n 2 N let Hn WD ker.ev0 W Gn ! K/ and hn WD Lie.Hn/. Recall that the
exponential map exp W h!H is a global diffeomorphism, by Lemma 6.3. Write log WH!
h for its inverse. From j n ı exp D exp ıj n W h! Hn we obtain that log ıj n D j n ı log W
H ! hn for any n 2 N. As Œ�k ; I ˝ k� � I kC1 ˝ k and the �k are of increasing order,
we claim that the limit � WD limN!1 log.

QN
kD1 e

�k / exists in I ˝ k w.r.t. the projective
limit-topology, where k increases from right to left in the expression. Indeed, to see this it
suffices to show that for each n 2 N the sequence .j n�N /1ND1 stabilizes for large enough
values of N , where �N WD log.

QN
kD1 e

�k /. This is the case because for N � n we have

j n�N D j
n log

 
NY
kD1

e�k

!
D log

 
NY
kD1

ej
n.�k/

!
D log

 
nY
kD1

ej
n.�k/

!
D j n�n

where it was used that j n.�k/ D 0 for all k > n, because �k 2 I k . Thus � D limN �N is
well defined and satisfies j n� D j n�n for all n 2 N. Let � 2 L�I . Using the fact that

�nC1 � �n � � D e
ad�nC1 .�n � � CD�/ �D� D e

ad�nC1 ead�n .D� C �/ �D�

D ead�nC1 .D� C �/ �D� D �nC1 � �;

it follows by induction that for any n 2N, the equality �n � � D �n � �n�1 � � � �1 � � is valid.
We thus get:

j n.� � �/ D j n.�n � �/ D j
n.�n � �n�1 � � � �1 � �/; 8n 2 N:

Proposition 7.17. Assume that H 1.p; P k.V / ˝� k/ D 0 for every k 2 N. Then every
degree-1 Maurer–Cartan element in L�I is gauge-equivalent to 0 in L�I .

Proof. Fix a Maurer–Cartan element � 2 L�I . Recall that j n.� � �/ is again a Maurer–
Cartan element in L�In for any n 2 N and � 2 L�I of degree 0. Notice also that j 0�D0.
As H 1.p; P k.V /˝� k/ D 0 for every k 2 N, it follows using Lemma 7.15 and the exact
sequences (7.3), by induction on n 2 N, that we can find a sequence of degree-0 elements
.�k/k2N inL�I with �k 2 P k.V /˝ k such that j n.�n � �n�1 � � � �1 � �/D 0 for every n 2N.
It follows from Lemma 7.16 that there is some � 2 I ˝� k such that

j n.� � �/ D �n � �n�1 � : : : � �1 � � D 0 in L�I for all n 2 N:

Thus � � 0.
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Lemma 7.18. Let p be a semisimple Lie algebra with no nontrivial compact ideals. If k is
a compact semisimple Lie algebra, then there are no non-trivial homomorphisms p! k.

Proof. Let � W p! k be a homomorphism. Then p= ker � is isomorphic to a subalgebra
of k and is therefore compact. As p is semisimple and has no nontrivial compact ideals, it
also has no non-trivial compact quotients. Thus p= ker� D ¹0º or equivalently p D ker�,
so � is trivial.

Proposition 7.19. Assume that p is semisimple. Let � W p! k be a homomorphism and
let � 0 2 L�I . Suppose that � WD �C � 0 is a degree-1Maurer–Cartan element in LR. Then
� is gauge-equivalent to � in LR.

Proof. Since H 1.p; P k.V / ˝� k/ D 0 for all k 2 N�0 by Whitehead’s Lemma [30,
Lem. III.7.3], Proposition 7.17 implies that � is equivalent to 0 in L�I . Equivalently �C �
is equivalent to � in LR.

Theorem 7.20. Assume that p is semisimple. Let the linear map � W p! g satisfy the
Maurer–Cartan equation (6.1). Then � is gauge-equivalent to �0 WD ev0 ı� W p! k. If p

has no non-trivial compact ideals, then � is gauge-equivalent to 0.

Proof. Since � 2 p� ˝ g is a Maurer–Cartan element in LR, there is some degree-1
Maurer–Cartan element � 0 2 L�0I such that � D �0 C � 0, by Lemma 7.13. Then Proposi-
tion 7.19 implies that � is gauge-equivalent to �0. By Lemma 7.14 we further know that
�0 W p! k is a homomorphism of Lie algebras. Thus, if p has no non-compact ideals then
�0 is trivial by Lemma 7.18.

Remark 7.21. Alternatively, Theorem 7.20 also follows from the structure theory of pro-
Lie algebras, developed in [26]. To see this, assume that p is semisimple. Consider the
pro-Lie algebra h ÌD0 p, were h WD I ˝ k � g and where D0 W p! der.h/ is given by

D0.p/ D �Lv.p/ C ad�0.p/ for p 2 p:

Since p is semisimple, the radical and Levi-factor of h ÌD0 p are h and p, respectively. A
Levi subalgebra of .g ÌD0 p/ is equivalently given by a splitting of the exact sequence

0! h! h ÌD0 p! p! 0; (7.4)

which in turn is equivalently given by a linear map � 0 W p ! h satisfying the Maurer–
Cartan equation

� 0
�
Œp1; p2�

�
D
�
� 0.p1/; �

0.p2/
�
CD0.p1/�

0.p2/ �D0.p2/�
0.p1/; 8p1; p2 2 p:

That is, by a degree-1 Maurer–Cartan element � 0 in the DGLA L
�0
I . The splitting s� 0

and Levi subalgebra l� 0 corresponding to � 0 are given by s� 0 W p! h ÌD0 p; s� 0.p/ WD

.� 0.p/; p/, and l� 0 WD ¹.�
0.p/; p/ W p 2 pº � h ÌD0 p, respectively. Any two Levi sub-

algebras in h ÌD0 p are conjugate by an automorphism of the form ead� for some � 2 h,
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by [26, Thm. 7.77 (i)]. So if � 0 2 L�0I is a degree-1 Maurer–Cartan element, there exists
� 2 h such that

ead�
�
� 0.p/; p

�
D .0; p/ for all p 2 p:

Notice for p 2 p that ead� .� 0.p/; p/ D ..� � � 0/.p/; p/, where

.� � � 0/.p/ D ead�� 0.p/C F.ad�/
�
D0.p/�

�
D ead�� 0.p/C F.ad�/

�
ı�0.�/.p/

�
is precisely the gauge action of the degree-zero elements .L�0I /

0 D h on L�0I . We thus find
that � � � 0 D 0, so � 0 � 0 in L�0I . By Lemma 7.14, this is equivalent with � � �0 in LR.

For the case where p D R, we have:

Theorem 7.22. Assume that p D R. Let � 2 g and v 2 XI . Let vl WD j
1v 2 gl.V / be

the linearization of v at 0 2 V . Assume w.l.o.g. that �0 WD ev0.�/ 2 t for some maximal
torus t � k. The following assertions hold:

(1) Assume that hn;�i ¤ ˛.�0/ for any root ˛ 2 it� of k and n 2 Nd
�0 with jnj � 1.

Then � is gauge-equivalent to some � 0 2 R˝ t.

(2) If vl is semisimple, then � is gauge-equivalent to some � 2 R ˝ k satisfying
�Lvl� C Œ�0; �� D 0.

(3) Suppose that vD vl is linear. Assume thatD D�Lv C ad� integrates to a contin-
uous T D R=2�Z-action on g. Then � is gauge-equivalent to �0 2 t. Moreover
Spec.vl/ [ Spec.ad� / � 2�iZ.

Proof. (1) Using Lemma 7.13, write � D �0 C � 0, where � 0 2 L�0I is a degree-1 Maurer–
Cartan element in the shifted DGLA L

�0
I . Passing to the complexification, observe for

n 2 N that
P n.VC/˝�0 .k=t/C Š

M
˛

P n.VC/˝�0 .kC/˛

as p-modules. The eigenvalues of �Lvl C ad�0 acting on P n.V /˝�0 .kC/˛ are given by
˛.�0/ � hn;�i, as n ranges over the multi-indices n 2 Nd

�0 with jnj D n, and ˛ over the
roots of k. Thus �Lvl C ad�0 is invertible on P n.V /˝�0 .kC/˛ . Consequently

H 0
�
p; P n.VC/˝�0 .kC/˛

�
D H 1

�
p; P n.VC/˝�0 .kC/˛

�
D 0

for any n 2 N and root ˛, which in turn implies that

H 0
�
p; P n.V /˝�0 k=t

�
D H 1

�
p; P n.V /˝�0 k=t

�
D 0:

By the long exact sequence of cohomology groups associated to the short exact sequence

0!
�^�

p�
�
˝ P n.V /˝ t!

�^�

p�
�
˝ P n.V /˝�0 k

!

�^�

p�
�
˝ P n.V /˝�0 k=t! 0;
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it follows that for every n 2 N, the inclusion p� ˝ P n.V / ˝ t ,! p� ˝ P n.V / ˝�0 k

induces an isomorphismH 1.p;P n.V /˝ t/ŠH 1.p;P n.V /˝�0 k/. It then follows using
Lemma 7.15 by induction on n 2 N that we can find elements �k 2 P k.V / ˝�0 k s.t.
j n.�n � �n�1 � � � �1 � �

0/ 2 In˝ t for every n 2N, the gauge action taking place in L�0I . By
Lemma 7.16 there exists � 2 I ˝�0 k s.t. j n.� � � 0/ D j n.�n � �n�1 � : : : � �1 � � 0/ 2 In ˝ t

for every n 2 N. Hence � WD � � � 0 2 I ˝ t and � 0 is gauge-equivalent to � in L�0I . By
Lemma 7.13 it follows that � D �0 C � 0 is gauge-equivalent to �0 C � 2 R˝ t.

(2) As before, decompose �D�0C� 0 using Lemma 7.13, where � 02L�0I is a degree-1
Maurer–Cartan element in the shifted DGLA L�0I . Let n 2N. Identify p�˝P n.V /˝�0 k

with P n.V /˝�0 k by evaluating elements of p� at 1 2 p D R. This induces an isomor-
phism

H 1
�
p; P n.V /˝�0 k

�
Š
�
P n.V /˝�0 k

�
= Im.�Lvl C ad�0/

Since vl is semisimple, so is �Lvl C ad�0 as operator on P n.V /˝�0 k. Consequently, the
inclusion .P n.V /˝�0 k/p ,! P n.V /˝�0 k induces an isomorphism�

P n.V /˝�0 k
�p
Š
�
P n.V /˝�0 k

�
= Im.�Lvl C ad�0/:

So every element ofH 1.p; P n.V /˝�0 k/ admits a representative in p�˝.P n.V /˝�0 k/p,
for any n2N. By a similar argument as in the previous item, it follows that � 0 is gauge-
equivalent to some �2I˝�0 k inL�0I that satisfies�Lvl.�/CŒ�0; ��D0. By Lemma 7.13 it
follows that �0C � 0 � �0C� inLR. Notice that � WD�0C� satisfies �Lvl�C Œ�0; ��D 0.

(3) Observe first that any derivationD0 2 der.g/ satisfyingD0.I ˝ k/ � .I ˝ k/ inte-
grates to a unique 1-parameter group t 7! etD

0

of automorphisms on g that leave the ideal
I ˝ k � g invariant. Indeed, this follows from fact that the corresponding statement is true
for the finite-dimensional Lie algebra der.gn/ for every n 2 N, where we use that g is the
projective limit g D lim

 �n
gn. In particular this applies to the T -action etD on g, which

therefore leaves I ˝ k invariant. It thus induces a continuous T -action on

V � ˝ k Š .I ˝ k/=.I 2 ˝ k/;

which integrates the linear operator �Lvl ˝ 1C 1˝ ad�0 on V � ˝ k. This implies that
vl 2 gl.V / and ad�0 2 der.k/ integrate to continuous T D R=2�Z-actions on V and k,
respectively. As T is compact it follows in particular that vl is semisimple and that

Spec.vl/ [ Spec.ad�0/ � 2�iZ:

By Lemma 7.13 we know that there is some degree-1 Maurer–Cartan element � 0 2 L�0I
such that � D �0C � 0. By the previous item, it follows that we may assume that � 0 satisfies
�Lvl�

0 C Œ�0; �
0� D 0, by acting with gauge transformations in L�0I if necessary. Let

n 2 N. The T -action on gn D Rn ˝ k must be unitarizable because T is compact, so
that its generator Dn WD �Lvl C Œj

n�;�� 2 der.gn/ must be semisimple. Notice further
that �Lvl C Œ�0;�� is semisimple on gn whereas Œj n� 0;�� is nilpotent. Since �Lvl�

0 C

Œ�0; �
0� D 0, the operators �Lvl C Œ�0;�� and Œj n� 0;�� on gn commute. Thus Dn D
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.�Lvl C Œ�0;��/C Œj
n� 0;�� is the Jordan decomposition of Dn. As Dn is semisimple,

this implies that Œj n� 0;�� D 0. Thus j n� 0 2 Z.gn/, where Z.gn/ denotes the center of
gn. As k is simple, we know that

Z.gn/ D P
n.V /˝ k � gn:

Thus � 0 2 I n�1 ˝ k for every n 2 N, where I 0 WD R. As
T
n2N.I

n�1 ˝ k/ D ¹0º, it
follows that � 0 D 0. Hence � D �0 2 t.

8. Projective unitary G.P.E. representations of .R ˝ k/ ÌD p

Having obtained the normal form results Theorem 7.20 and Theorem 7.22, we now pro-
ceed with the study of continuous projective unitary representation of jet Lie groups and
algebras that are of generalized positive energy.

Let us begin by briefly recalling the setting and our notation. We have that V is a finite-
dimensional real vector space, R D RJV �K WD

Q1
nD0 P

k.V / is the ring of formal power
series on V with coefficients in R and equipped with the product topology. Moreover, g

denotes the topological Lie algebra g D R ˝ k, where k is a compact simple Lie algebra
and p is a finite-dimensional real Lie algebra acting on g by the homomorphism D W p!

der.g/, which splits into a horizontal and a vertical part according to D.p/ D �Lv.p/ C

ad�.p/, where v W p ! X
op
I is a homomorphism and where the linear map � W p ! g

satisfies the Maurer–Cartan equation (6.1). Let P and K be the 1-connected Lie groups
integrating p andK, respectively. For n2N writeGn WD J n0 .V IK/,G

]
n WD J

n
0 .V IK/ÌP

and g
]
n WD gn ÌD p. Define further G WD J10 .V IK/ WD lim

 �n
Gn, G] WD G Ì˛ P and

g] WD g ÌD p Š lim
 �n

g
]
n.

In the following, we are interested in understanding the extent to which the lineariza-
tion vl of v and the values of �.p/ at the origin already determine properties of the class
of representations which are of g.p.e. at a given cone C � p. To describe the main results,
we first have to introduce some more notation.

Define �0 WD ev0 ı� W p! k and let vl D j
1v W p! gl.V / be the linearization of v

at the origin. For p 2 p, the vector fields v.p/ splits as v.p/ D vl.p/C vho.p/ for some
formal vector field vho.p/ 2 XI2 vanishing up to first order at the origin. Let vl.p/ D

vl.p/sC vl.p/n be the Jordan decomposition of vl.p/ over C. Let V C
c .p/ denote the span

in VC of all generalized eigenspaces of vl.p/ corresponding to eigenvalues with zero real
part. Set Vc.p/ WD V

C
c .p/\ V . If C� p is a subset, define Vc.C/ WD

T
p2C Vc.p/. We call

Vc.C/ the “center subspace associated to C”, in analogy with the center manifold of a fixed
point of a dynamical system. Let Vc.C/

? � V � denote the annihilator of Vc.C/ in V �. For
any p 2 p, let †p � C denote the additive subsemigroup of C generated by Spec.vl.p//.
Recall from Definition 4.1 that for any continuous projective unitary representation x� of
g ÌD p, the set C.x�/ consists of all points p 2 p for which x� is of generalized positive
energy at p.

Let us describe the main results of this section. In the context of positive energy rep-
resentations, we have:
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Theorem (Theorem 8.8). Let x� be a smooth projective unitary representation of G Ì˛ P
which is of positive energy at p 2 p. Assume that Spec.ad�0.p//\ Spec.vl.p//D ;. Then
x� factors through J 20 .V IK/Ì˛ P . Moreover the image of �Lvl.p/C ad�0.p/ in P 2.V /˝
k � J 20 .V IK/ is contained in ker x�.

Remark 8.1. Notice that Spec.ad�0.p// D ¹˛.�0.p// W ˛ 2 �º [ ¹0º is a finite subset
of iR. In particular, the condition Spec.vl.p// \ Spec.ad�0.p// D ; is satisfied if vl has
no purely imaginary eigenvalues.

This is complemented by the following results, which in particular give sufficient con-
ditions for x� to factor through k, because RJVc.C/

�K˝ k Š k whenever Vc.C/ D ¹0º.

Theorem (Theorem 8.20). Let x� be a continuous projective unitary representation of
g ÌD p. Let C � C.x�/. Assume that Spec.ad�0.p// \†p D ; for all p 2 C. Then

RVc.C/
?
˝ k � ker x�;

and hence x�jg factors through RJVc.C/
�K˝ k.

Theorem (Theorem 8.21). Let t � k be a maximal Abelian subalgebra. Let x� be a con-
tinuous projective unitary representation of g]. Let C � C.x�/. Assume for every p 2 C

that �.p/ 2 R˝ t and Œvl.p/s; vho.p/� D 0. Then RVc.C/
? ˝ k � ker x� and hence x�jg

factors through RJVc.C/
�K ˝ k.

To prove these results, we consider in Section 8.1 the second continuous Lie algebra
cohomology H 2

ct.g ÌD pIR/ so as to obtain particular representatives ! of cohomology
classes therein. We proceed in Section 8.2 to show that any irreducible smooth projective
unitary representation G Ì˛ P factors through the finite-dimensional Gn Ì P for some
n 2 N. This gives us access to techniques that are available for finite-dimensional Lie
groups, and in particular to Corollary 3.6, which leads to Theorem 8.8. In Section 8.3 and
Section 8.4 we study the kernel of the quadratic form � 7! !.D.p/�; �/. Recalling from
Corollary 4.6 that�

D.p/�; �
�
D 0 H)

�
!
�
D.p/�; �

�
D 0 ” x�

�
D.p/�

�
D 0

�
; 8� 2 g;

this leads to an ideal in g contained in ker x� , and to the proof of Theorem 8.20 and Theo-
rem 8.21. These results are supplemented in Section 8.5 by a consideration of the special
case where p is a simple non-compact Lie algebra, in which case Theorem 7.20 is avail-
able. This leads to the following:

Theorem (Theorem 8.22). Assume that p is non-compact and simple. Let x� be a contin-
uous projective unitary representation of g ÌD p. Write C WD C.x�/ � p. Then x�jg factors
through RJVc.C/

�K˝ k.

Theorem (Theorem 8.24). Assume that p is non-compact and simple. Suppose that vl

defines a non-trivial irreducible p-representation on V . Let x� be a continuous projective
unitary representation of g ÌD p. Let C � C.x�/ be a P -invariant convex cone. Either C

is pointed or x�jg factors through k.
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8.1. The second Lie algebra cohomologyH 2
ct.g ÌD p;R/

We next determine suitable representatives of classes in the second Lie algebra cohomol-
ogy H 2

ct.g ÌD p;R/, which classifies the continuous R-central extensions of g Ì p DW g]

up to equivalence. As an intermediate step we first consider H 2
ct.g;R/, which is com-

pletely understood.
Define �kR WD R˝

Vk
V �, equipped with projective limit topology obtained from

�kR D lim
 �
n

�kRn ;

where�kRn WD Rn˝
Vk

V �. This makes�kR into a Fréchet space. In particular�0R D R.
Since J10 .�

k.V // Š �kR, we can define a continuous differential d W �kR ! �kC1R by
dj10 ˛ WD j

1
0 d˛ 2 J

1
0 .�

nC1.V // Š �kC1R , which is indeed well defined. Choosing a
basis .e�/d�D1 of V with dual basis .dx�/d�D1 of V �, the above differential d is on R
given by df D

P
�.@�f /˝ dx� for f 2 R.

Lemma 8.2. Let E be a topological R-module and let D W R ! E be a continuous
derivation. Then there exists a unique continuous R-linear map xD W �1R ! E such that
D D xD ı d .

Proof. Let RŒV �� denote the ring of polynomial functions on V . As RŒV ���R,E is also
a RŒV ��-module and DjRŒV �� W RŒV ��! E is a derivation. Using the universal property
of the Kähler differential forms �1RŒV �� Š RŒV ��˝ V �, there is a unique RŒV ��-linear
map xD W �1RŒV �� ! E such that xD ı d jRŒV �� D DjRŒV ��. As �1RŒV �� is dense in �1R, it
remains to extend xD continuously to the Fréchet space �1R. Let ˛ 2 �1R and let .˛n/n2N

be a sequence in �1RŒV �� s.t. ˛n ! ˛ in �1R. We show that D˛ WD limn!1
xD˛n exists

and is independent of the approximating sequence .˛n/. Choose a basis .dx�/d�D1 of V �.

Write ˛n D
Pd
�D1 f

.n/
� dx� and ˛ D

Pd
�D1 f�dx� for some unique f .n/� 2 RŒV �� and

f� 2 R. Then f .n/� ! f� in R for every � and hence

lim
n!1

xD˛n D

dX
�D1

lim
n!1

f .n/� Dx� D

dX
�D1

f�Dx�;

which is independent of the approximating sequence .˛n/. It follows that xD extends to a
continuous R-linear map D W �1R ! E, which satisfies xD ı d D D by construction. It is
unique with these properties because its restriction to the dense subspace RŒV �� � R is
so.

Remark 8.3. Lemma 8.2 entails that d W R! �1R is the universal differential module R
in the category of complete locally convex R-modules, in the sense of [41, Thm. 6]

Proposition 8.4. Any class Œ!� 2 H 2
ct.g;R/ has a unique representative of the form

!.�; �/ D �
�
�.�; d�/

�
;
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where � 2�1R
� is closed and continuous functional on�1R and � is the Killing form on k.

(Closed meaning that �.dR/ D 0.) Conversely, any such � defines a 2-cocycle represent-
ing some non-zero class in H 2

ct.g;R/. Consequently, the center of the universal central
extension of g is .�1R=dR/.

Proof. This is a special case of [41, Thm. 16], seeing as g D R˝ k, where R is a unital,
associative and commutative Fréchet algebra and k is a simple Lie algebra.

Lemma 8.5. Let ! be an extension of the 2-cocycle �.�.�; d�// on g to a 2-cocycle on
g] D g Ì p. Then � is p-invariant in the sense that �.Lv.p/�

1
R/ D 0 for every p 2 p.

Proof. Take � D f ˝X and �D g˝X for f;g 2R and 0¤X 2 k. Notice that Œ�; ��D 0
in R˝ k. Using the cocycle identity, this implies

!
�
D.p/�; �

�
C !

�
�;D.p/�

�
D !

�
D.p/; Œ�; ��

�
D 0

!
��
�.p/; �

�
; �
�
C !

�
�;
�
�.p/; �

��
D !

�
�.p/; Œ�; ��

�
D 0:

Using D.p/� D �Lv.p/� C Œ�.p/; �� it follows that

0 D !.Lv.p/�; �/C !.�;Lv.p/�/ D �.Lv.p/fdg/�.X;X/:

As �.X;X/ ¤ 0 and RdR D �1R, this shows the claim.

Lemma 8.6. Let ! W g] � g]! R be a continuous 2-cocycle on g] D g ÌD p. Then there
exists n 2N and a 2-cocycle !n on g

]
n such that !.�; �/D !n.j n�; j n�/ for all �; � 2 g].

Proof. Let ! W g] � g]! R be a continuous 2-cocycle on g]. Choose norms k�kn on the
finite-dimensional Lie algebras g

]
n s.t. the quotient maps j n W g]m! g

]
n are contractive for

any n; m 2 N with n � m. The topology on g] D lim
 �

g
]
n is specified by the seminorms

� 7! kj n�kn for n 2 N and � 2 g]. As ! is continuous and the maps g
]
m ! g

]
n are

contractive for n � m, there exist n 2 N such thatˇ̌
!.�; �/

ˇ̌
� kj n�knkj

n�kn

for all �; � 2 g] (e.g. using [66, Props. 43.1 and 43.4]). As j n W g] ! g
]
n is surjective, it

follows that !.�; �/ D !n.j n�; j n�/ for a unique 2-cocycle !n on g
]
n.

8.2. Factorization through finite jets

In the context of smooth projective unitary representations x� of the Lie group G], it is no
loss of generality to consider the case where x� factors through the finite-dimensional Lie
group G]n for some n 2 N:

Theorem 8.7. Let x� be a smooth projective unitary representation of G] with lift � W
ı

G ! U.H�/ for some central T -extension
ı

G of G]. Then � decomposes as a (possibly
uncountable) direct sum � D

L
i2	 �i s.t. for every i 2 	 there exists n 2 N s.t. the

projective unitary representations x�i associated to �i factors through G]n. In particular, if
x� is irreducible then it factors through G]n for some n 2 N.



Generalized positive energy representations of groups of jets 749

Proof. WriteN ]
m WD ker.jm WG]!G

]
m/ and n

]
m WD ker.jm W g]! g

]
m/ for anym2N�0,

so thatG]m ŠG]=N
]
m for anym 2N�0. Notice thatN ]

m �N
]
n whenever n�m. Since x� is

a smooth projective representation, it follows from [32, Thm. 4.3] that
ı

G is a Lie group. It
is moreover regular by [49, Thm. V.I.8], because both G] and T are so. Let ıg WD Lie.

ı

G/.
Then ı

g is a central R-extension of g] in the category of locally convex Lie algebras. Let
the continuous 2-cocycle ! W g] � g]!R represent the corresponding class inH 2

ct.g
];R/.

By Lemma 8.6, there is some n 2 N such that for all � 2 g] we have

j n� D 0) !.�; �/ D 0 for all � 2 g]:

Let
ı

Nn be the closed normal subgroup of
ı

G covering N ]
n and let ınn be its Lie algebra.

Then
ı

Nn is a central T -extension of N ]
n integrating ı

nn. Since !j
n
]
n�n

]
n
D 0, the central

R-extension ı
nn is trivial. Hence ı

nn Š R˚ n
]
n as central R-extensions of n

]
n. As N ]

n is
regular and 1-connected, it follows from [49, Thm. III.1.5] that there is a commutative
diagram

R R �N ]
n N

]
n

T
ı

Nn N
]
n

e2�i
� z� id

of locally convex regular Lie groups. Observe that z� is surjective and that ker z� D Z.
Thus

ı

Nn Š T � N ]
n as central T -extension of N ]

n . Let � W T � N ]
n !

ı

N realize the
isomorphism. For any integer m � n, let Nm WD �.¹1º � N

]
m/ �

ı

Nn �
ı

G, which is a
closed normal subgroup of

ı

G isomorphic to and covering N ]
m. Then N WD ¹Nmºm�n

is a filter basis of (decreasing) closed normal subgroups of
ı

G satisfying lim
�!

N D ¹1º,
in the sense that for any 1-neighborhood U of

ı

G there exists m � n such that Nm � U .
Indeed, sinceG] D lim

 �m
G
]
m carries the projective limit topology and

ı

G is a locally trivial
principal T -bundle over G] [32, Thm. 4.3], it follows that any 1-neighborhood U �

ı

G

contains �.I � N ]
m/ for large enough m and some open 1-neighborhood I � T . It now

follows from [50, Thm. 12.2] that � decomposes as a possibly uncountable direct sum
� Š

L
i2	 �i such that for every i 2 	 there exists some m � n with �i .Nm/ D ¹1º,

which implies that x�i .N
]
m/ D ¹1º.

Theorem 8.7 gives us access to techniques that are available for finite-dimensional Lie
groups, and in particular to Corollary 3.6. This can be used to prove the following:

Theorem 8.8. Let x� be a smooth projective unitary representation of G Ì˛ P which is of
positive energy at p 2 p. Assume that Spec.ad�0.p// \ Spec.vl.p// D ;. Then x� factors
through J 20 .V IK/ Ì˛ P . Moreover the image of �Lvl.p/ C ad�0.p/ in P 2.V / ˝ k �

J 20 .V IK/ is contained in ker x�.

To prove Theorem 8.8, it suffices by Theorem 8.7 to consider the case where x� factors
through the finite-dimensional Lie group G]

k
for some k 2 N, which we thus assume.

Write a for the ideal in g
]

k
generated by p 2 p. Let an � a denote the maximal nilpotent
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ideal in a. According to Corollary 3.6 we have Œa; Œan; an�� � ker d x�. Recall that

Ik WD I=I
kC1:

Lemma 8.9. Suppose that V � ˝ k � j 1an. Then Ik ˝ k � an.

Proof. By assumption V � ˝ k � an C I
2
k
˝ k. As k is perfect it follows that

I lC1
k
˝ k D ŒV � ˝ k; I lk ˝ k� � an C ŒI

2
k ˝ k; I lk ˝ k� D an C I

lC2
k
˝ k; 8l 2 N:

Thus it follows by induction that

V � ˝ k � an C I
lC1
k
˝ k for all l 2 N:

As
T
l .an C I

lC1
k
˝ k/ D an, it follows that V � ˝ k � an and hence Ik ˝ k � an.

Proof of Theorem 8.8. We may assume that x� factors through G]
k

for some k 2 N. It
suffices to show that d x� factors through g

]
2 and that the image of �Lvl.p/ C ad�0.p/ in

P 2.V / ˝ k � g2 is contained in ker d x�. By Corollary 3.6 we know that Œa; Œan; an�� �
kerd x�. Moreover I 3

k
˝ k D ŒIk ˝ k; ŒIk ˝ k; Ik ˝ k��, because k is perfect. To see that d x�

factors through g
]
2 it thus suffices to show that Ik ˝ k � an. By Lemma 8.9 it is further

sufficient to show that V � ˝ k � j 1.an/. Write D1.p/ WD �Lvl.p/ C Œ�0.p/;��. Notice
that j 1.D.p/�/ D D1.p/� for � 2 V � ˝ k. The assumption that

Spec
�
vl.p/

�
\ Spec.ad�0.p// D ;

implies that D1.p/ is invertible on V � ˝ k. Thus if � 2 V � ˝ k is arbitrary, there exists
� 2 V � ˝ k such that � D D1.p/� . Then

� D D1.p/� D j
1
�
D.p/�

�
D j 1

�
Œp; ��

�
2 j 1.an/:

Thus V � ˝ k � j 1.an/. We obtain that Ik ˝ k � an and I 3
k
˝ k � ker d x�, so d x� factors

through g
]
2. We may thus assume that k D 2. We then obtain

D1.p/
�
P 2.V /˝ k

�
D D.p/.I 2k ˝ k/

D
�
p; ŒIk ˝ k; Ik ˝ k�

�
�
�
a; Œan; an�

�
� ker d x�:

8.3. The case where p D R

We proceed with the study of projective unitary representations x� of g] D g ÌD p which
are of generalized positive energy. We first specialize to the case where p D R, aiming to
consider its consequences for the general case afterwards.

As p D R, we may as well identify v with v.1/ 2 XI , D with D.1/ and � with
�.1/ 2 g. Recall that the derivation D is given by D D �Lv C Œ�;��. Write v D vl C

vho, where vl WD j 1v 2 gl.V / is the linearization of v at 0 2 V and where vho 2 XI2 .
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Let vl D vl;s C vl;n denote the Jordan decomposition of vl over C. Write V C
c for the span

of the eigenspaces of vl whose corresponding eigenvalue has zero real part. Set Vc WD

V C
c \ V . Write d WD .0; 1/ 2 g] D g ÌD R. Let V ?c � V

� denote the annihilator of Vc

in V �, so V ?c Š .V=Vc/
�.

Theorem 8.10. Let t � k be a maximal Abelian subalgebra. Assume that � 2 R˝ t � g

and Œvl;s;vho�D 0 in XI . Let x� be a continuous projective unitary representation of g] on
the pre-Hilbert space D . Assume that x� is of g.p.e. at d 2 g ÌD Rd . Then RV ?c � ker x� .
Consequently, x�jg factors through RJV �c K˝ k. In particular, if Vc D ¹0º then x�jg factors
through k.

Remark 8.11. By acting with formal diffeomorphisms if necessary, one may by Theo-
rem 7.7 always bring v into a normal form, in the sense that Œvl;s;vho�D 0 in XI . Moreover,
Theorem 7.22 provides sufficient conditions guaranteeing that � is gauge equivalent to
some element in R˝ t.

We proceed with the proof of Theorem 8.10. Let ! be a continuous 2-cocycle on
g] that represents the class in H 2

ct.g;R/ corresponding to the central R-extension of g]

obtained from x� by pulling back u.D/! pu.D/ along x� . In view of Proposition 8.4
and Lemma 8.5, we may and do assume that ! satisfies !.�; �/ D �.�.�; d�// for any
�; � 2 g, where � W �R ! R is continuous, p-invariant and closed. We write fX instead
of f ˝X for f 2 RC and X 2 kC . Let� � it� denote the set of roots of k. Finally, write
h WD tC � kC . Recall from Corollary 4.6 that

ŒD�; �� D 0 H)
�
!.D�; �/ D 0 ” x�.D�/ D 0

�
; 8� 2 g: (8.1)

Moreover, !.D�; �/ � 0 whenever ŒD�; �� D 0. In the present setting, this yields:

Proposition 8.12. Fix f 2 R. Then x�.RLvf ˝ k/ D ¹0º , �.fdLvf / D 0.

Proof. For any H 2 t, observe that DfH D �LvfH because � 2 R˝ t, so

ŒDfH; fH� D �ŒLvfH; fH� D 0:

Using (8.1) we obtain that

�.H;H/�
�
Lv.f /df

�
D 0 ” x�.LvfH/ D 0; 8H 2 t: (8.2)

Assume that x�.RLvf ˝ k/ D ¹0º. Then

x�.LvfH/ D 0

for anyH 2 t, so �.Lv.f /df /D 0 by (8.2). Conversely, suppose that �.Lv.f /df /D 0.
Then x�.LvfH/D 0 for allH 2 t, by (8.2). Taking the commutator with x�.gX˛/, where
g 2 R, ˛ 2 � is a root and X˛ 2 .kC/˛ is a corresponding root vector, it follows that

x�.gLvfX˛/ D 0 8X˛ 2 .kC/˛; g 2 R: (8.3)
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TakeX˛ 2 .kC/˛ and Y�˛ 2 .kC/�˛ . WriteH˛ D ŒX˛; Y�˛�. By taking commutators with
x�.1˝ Y�˛/ in equation (8.3) we find that x�.gLvfH˛/D 0. As hD

P
˛Œ.kC/˛; .kC/�˛�,

this shows by linearity together with equation (8.3) and the root space decomposition that
x�.RLvf ˝ k/ D ¹0º.

Define the quadratic form q.f / WD �.Lv.f /df / D ��.fdLvf / on R. Let N WD

ker q denote its kernel. By Proposition 8.12, N generates an ideal J ˝ k on which x�
vanishes, where J WD RLvN .

Corollary 8.13. Set J WD RLvN . Then J ˝ k � ker.x�/.

Together with the fact that � vanishes on exact forms and is Lv-invariant, this puts
severe restrictions on the representation x� and leads to Theorem 8.10. Let us also remark
the following:

Lemma 8.14. The bilinear form ˇq.f;g/WD�.Lv.f /dg/ onR associated to q is symmet-
ric, the quadratic form q is positive semi-definite and N D¹f 2R W ˇq.f; g/D 0 8g2Rº.

Proof. As � is closed and Lv-invariant, it follows that ˇ is symmetric. To see that q
is positive semi-definite, let f 2 R and 0 ¤ H 2 t. Write � WD fH and notice that
ŒD�; �� D 0. By Corollary 4.6 we know that ��.H;H/�.Lv.f /df / D !.D�; �/ � 0.
As � is negative definite on k we obtain that q is positive semi-definite. It follows that
jˇq.f; g/j

2 � q.f /q.g/, which implies N D ¹f 2 R W ˇq.f; g/ D 0 8g 2 Rº.

The following observation is also noteworthy, although it will not be used:

Lemma 8.15. N � R is a subalgebra.

Proof. Let f; g 2 N . Then using the Leibniz rule and Proposition 8.12 we obtain

x�
�
RLv.fg/˝ k

�
� x�.fRLvg ˝ k/C x�.gRLvf ˝ k/ � ¹0º;

Applying Proposition 8.12 once more, we conclude that fg 2 N .

Lemma 8.16. � is Lvl;s -invariant, in the sense that � ıLvl;s D 0.

Proof. As � W �1R ! R is continuous, it factors through the finite-dimensional space

�1Rk D Rk ˝ V
� for some k 2 N:

Notice that both Lvl;n and Lvho are nilpotent on �1Rk ˝R C, whereas Lvl;s is semisim-
ple on it. Also ŒLvl;s ;Lvl;n CLvho � D 0 because Œvl;s; vho� D Œvl;s; vl;n� D 0. Thus Lv D

Lvl;s C .Lvl;n C Lvho/ is the Jordan decomposition of Lv acting on �1Rk ˝R C. Thus
Im.Lvl;s/ � Im.Lv/ when Lvl;s and Lv are considered as operators on �1Rk ˝R C. As �
is Lv-invariant, we know � ıLv D 0. Thus � ıLvl;s D 0.

In particular, � vanishes on the eigenspaces in�1RC
of Lvl;s corresponding to non-zero

eigenvalues. We introduce some more notation. Let EC denote the span of all eigenspaces
inRC of Lvl;s corresponding to eigenvalues with non-zero real part. DefineE WD EC \R

and En WD E \ I n.
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Lemma 8.17. We have E � N .

Proof. Let � 2 Spec.Lvl;s/ with Re.�/ ¤ 0. Set E� WD ker.Lvl;s � �I/ � RC . Sup-
pose first that � 2 R. If  2 E� \ R then because Lv leaves the eigenspaces of Lvl;s

invariant, the 1-form  dLv is an eigenvector of Lvl;s with non-zero eigenvalue 2�. By
Lemma 8.16 it follows that q. / D 0 and hence  2 N . Thus E� � N . Next, suppose
that � is not real. Then also x� is an eigenvalue of Lvl;s . Write WC WD E� ˚ Ex� and
W WD WC \ R. Take  2 W arbitrary. Then  D � C x� for some � 2 E� (and hence
x� 2 Ex�). As �C x� D 2Re.�/ ¤ 0 and Lv leaves the eigenspaces of Lvl;s invariant, each
of the 1-forms �dLv�, �dLvx�, x�dLv� and x�dLvx� are eigenvectors of Lvl;s with non-
zero eigenvalue. Using Lemma 8.16 it follows that q. / D 0 and hence  2 N . Thus
W � N . As N is a linear subspace, we have shown E � N .

Lemma 8.18. The inclusion RE � RLvE is valid.

Proof. Write J WD RLvE. As J is an ideal in R it suffices to show E � J . We claim that
En � J C EnC1 for every n 2 N�0. Indeed, take  2 En. As Lvl is invertible on En

(which is true because Lvl is invertible on every finite-dimensional and Lvl -invariant sub-
spaceE \P k.V /�E), there exists some �2En s.t. Lvl�D . Observe that LvhoE �E

because ŒLvl;s ;Lvho �D 0. Also LvhoI
n � I nC1, since vho 2XI2 . Thus LvhoE

n � EnC1.
In particular Lvho� 2 E

nC1. Then  D Lvl� D Lv� �Lvho� 2 J C E
nC1, as required.

By induction it follows thatE DE0 � J CEn for every n 2N. As
T
n2N.J CE

n/D J ,
this implies E � J .

Proof of Theorem 8.10. Using Lemma 8.17 we obtain E � N . By Corollary 8.13, this
implies J ˝ k � ker x� , where J D RLvE. By Lemma 8.18, we know RE � J . Notice
that E \ V � D V ?c , so in particular RV ?c � J . Thus RV ?c ˝ k � ker x� . Notice that
R=.RV ?c / Š RJV �c K, because V �c D V �=V ?c . We conclude that x� factors through the
quotient .R˝ k/=.RV ?c ˝ k/ Š .RJV �c K˝ k/.

8.4. The case of general p

Let us return to the case where P is a 1-connected finite-dimensional Lie group with Lie
algebra p. Let us recall some of the notation introduced earlier in Section 8.

Define �0 WD ev0 ı� W p! k and let vl D j
1v W p! gl.V / be the linearization of v at

0 2 V . For p 2 p, the vector fields v.p/ splits as v.p/ D vl.p/C vho.p/ for some formal
vector field vho.p/ 2 XI2 vanishing up to first order at the origin. Let vl.p/ D vl.p/s C

vl.p/n be the Jordan decomposition of vl.p/ over C. Let V C
c .p/ denote the span in VC of

all generalized eigenspaces of vl.p/ corresponding to eigenvalues with zero real part. Set
Vc.p/ WD V

C
c .p/ \ V . If C � p is a subset, define Vc.C/ WD

T
p2C Vc.p/. Let Vc.C/

? �

V � denote the annihilator of Vc.C/ in V �. Let †p � C denote the additive subsemigroup
of C generated by Spec.vl.p//. For any continuous projective unitary representation x� of
g ÌD p, the set C.x�/ consists of all points p 2 p for which x� is of generalized positive
energy at p.
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We use Theorem 8.10 combined with suitable normal form results to prove Theo-
rems 8.20 and 8.21.

Lemma 8.19. Let W be a finite-dimensional real vector space and let Wi � W be a
collection of linear subspaces, where i 2 	 for some indexing set 	. Then�\

i2	

Wi
�?
D Spani2	 W

?
i :

Proof. Notice first that
T
i2	W

?
i D ŒSpani2	Wi �

?. Applying this observation to the sub-
spacesW ?i �W

�, we obtain that
T
i2	Wi D

T
i2	.W

?
i /
? D ŒSpani2	W

?
i �
?, where we

also used that .W ?i /
? Š Wi for any i 2 	. Taking annihilators, the assertion follows.

Theorem 8.20. Let x� be a continuous projective unitary representation of g ÌD p. Let
C � C.x�/. Assume that Spec.ad�0.p// \ †p D ; for all p 2 C. Then RVc.C/

? ˝ k �

ker x� , and hence x�jg factors through RJVc.C/
�K˝ k.

Proof. Let p 2 C. By Theorem 7.7, there is a formal vector field who.p/ 2 XI2 satis-
fying Œvl.p/s;who.p/� D 0 s.t. v.p/ is formally equivalent to w.p/ WD vl.p/C who.p/.
If h 2 Aut.R/ � Aut.g/ is a formal diffeomorphism s.t. w.p/ D h � v.p/, then h leaves
the constant part �0.p/ of �.p/ fixed, so ev0.h � �.p// D ev0 �.p/ D �0.p/. Thus, we
may assume that Œvl.p/s;vho.p/�D 0 and Spec.ad�0.p//\†p D ;. By acting with gauge
transformations, we may by Theorem 7.22 further assume that � 2 R ˝ t, where t is
a maximal torus containing �0.p/. By Theorem 8.10, it follows that RVc.p/

? � ker x� .
The above holds for all p 2 C, so Spanp2CRVc.p/

? � ker x� . By Lemma 8.19 we know
Spanp2C.Vc.p/

?/ D Vc.C/
?, so that R=.Spanp2CRVc.p/

?/ Š RJVc.C/
�K.

Theorem 8.21. Let t� k be a maximal Abelian subalgebra. Let x� be a continuous projec-
tive unitary representation of g]. Let C�C.x�/. Assume for every p 2C that �.p/2R˝ t

and Œvl.p/s; vho.p/� D 0. Then RVc.C/
? ˝ k � ker x� and hence x�jg factors through

RJVc.C/
�K ˝ k.

Proof. By Theorem 8.10 it follows that Spanp2CRVc.p/
? D RVc.C/

? � ker x� .

8.5. The case where p is simple

Let us consider the special case where p is simple. Let P be a 1-connected Lie group with
Lie.P / D p. In this case, suitable normal form theorems for v and � are available (see
Theorem 7.10 and Theorem 7.20). In particular, v W p!X

op
I is always formally equivalent

to its linearization vl at 0 2 V . Similarly, by Theorem 7.20, the vertical twist � W p! g is
gauge-equivalent to some Lie algebra homomorphism �0 W p! k. In particular, if p is not
compact then we may and do assume that � D 0 by acting with gauge transformations if
necessary, for in that case there are no homomorphisms p! k (because k is compact, see
Lemma 7.18). Combined with Theorem 8.21 we immediately obtain Theorem 8.22 below,
where Vc.C/ WD

T
p2C Vc.p/.
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Theorem 8.22. Assume that p is non-compact and simple. Let x� be a continuous projec-
tive unitary representation of g ÌD p. Write C WD C.x�/ � p. Then x�jg factors through
RJVc.C/

�K˝ k.

Let p D k0 ˚ p0 be a Cartan decomposition of p, so that k0 and p0 are theC1 and �1
eigenspaces of a Cartan-involution � , respectively [37, Cor. 6.18]. Let a0 � p0 be a maxi-
mal Abelian subalgebra of p0. According to the Iwasawa decomposition [37, Prop. 6.43],
p decomposes as p Š k0 ˚ a0 ˚ n0, where n0 � p is nilpotent. For p 2 p we write
pD pe CphCpn for the corresponding decomposition of p, where pe 2 k0;ph 2 a0 and
pn 2 n0. Then Spec.adpe / � iR, Spec.adph/ � R and adpn is nilpotent [37, Lem. 6.45].
Moreover, a0 is contained in a Cartan subalgebra of p0 [37, Cor. 6.47].

Proposition 8.23. Suppose that p is simple and that the p-representation vl on V is non-
trivial and irreducible. Let C � p be an AdP -invariant convex cone and let Vc.C/ WDT
p2C Vc.p/. Assume that C contains some non-zero ph 2 a0. Then Vc.C/ D ¹0º.

Proof. Notice first that as P is 1-connected, the p-action vl W p! gl.V / integrates to a
continuous representation of P on V . As C is AdP -invariant, the subspace Vc.C/ is P -
invariant. Thus either Vc.C/ D ¹0º or Vc.C/ D V , so it suffices to show Vc.C/ ¤ V . By
assumption ph ¤ 0. In view of Cartan’s unitary trick, see e.g. [38, Prop. V.5.3], the image
of elements in a0 in any finite-dimensional representation are semisimple and have real
spectrum. Thus Spec.vl.ph// � R. As p is simple and vl is a non-trivial p-representation
by assumption, it follows that vl is injective. As vl.ph/ 2 gl.V / is semisimple, there exists
0¤ v 2 V s.t. vl.ph/vD�v for some 0¤� 2R. Thus 0¤ v … Vc.C/. Hence Vc.C/¤ V

and so Vc.C/ D ¹0º.

Theorem 8.24. Assume that p is non-compact and simple. Suppose that vl defines a
non-trivial irreducible p-representation on V . Let x� be a continuous projective unitary
representation of g ÌD p. Let C�C.x�/ be a P -invariant convex cone. Either C is pointed
or x�jg factors through k.

Remark 8.25. Notice that if p is simple and C is a closed AdP -invariant convex cone
which is not pointed, then C \ �C D p and hence C D p.

Proof of Theorem 8.24. The edge e WD xC \ �xC of the closure xC of C is an ideal in p.
Assume that C is not pointed. Then neither is xC. As p is simple, it follows that e D p

and hence xC D p. Thus C is a dense convex cone in the finite-dimensional real vector
space p, which implies that C D p. As p is non-compact, it contains some hyperbolic
element. Thus, so does C. By Proposition 8.23 it follows that Vc.C/ D ¹0º and hence
Theorem 8.22 implies that x� factors through k.

Thus if C is an AdP -invariant convex cone which is not pointed, then g admits no
continuous projective unitary representations which are of g.p.e. at C � p other than those
which factor through k. On the other hand, we know by [54, Cor. 2.3] that if p is simple,
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then a non-trivial pointed closed and P -invariant convex cone exists in p if and only
if p is of hermitian type, meaning that dim.z.k0// D 1, where p D k0 ˚ p0 is a Cartan
decomposition of p and where k0 is the Lie algebra of a compact Lie group.

Let us shift our attention to positive energy representations, in which case a different
argument is available.

Lemma 8.26. Suppose that P is a non-compact simple connected Lie group. If .�;H� /

is a unitary P -representation that is norm-continuous, then � is trivial.

Proof. As p is simple, d� is either injective or trivial. Assume that d� is not trivial.
Let p D k0 ˚ a0 ˚ n0 be the Iwasawa decomposition of p. Take x 2 a0. Then adx is
semisimple and Spec.adx/ � R. As � is unitary and d� is injective, z 7! kd�.z/kB.H/

defines a P -invariant norm on p. With respect to this norm, etadx is an isometry on p

for every t 2 R. As adx is semisimple, it follows that Spec.adx/ � iR. So Spec.adx/ �
R \ iR D ¹0º and hence adx D 0. Since p has trivial center it follows that x D 0. So
a0 D ¹0º and hence p is compact. But P is non-compact by assumption. So d� must be
trivial. As P is connected, it follows that � is trivial.

Proposition 8.27. Suppose that P is a non-compact 1-connected simple Lie group. As-
sume that the P -action on V is irreducible and non-trivial. Let x� be a continuous projec-
tive unitary representation of G which is of positive energy at C WD p. Then x�jG factors
through K.

Proof. By Theorem 8.7 it suffices to consider the case where x� factors through Gk for
some k 2 N. From Whitehead’s Second Lemma, [30, Lem. III.9.6], we know that

H 2.p;R/ D ¹0º:

Using in addition that P is simply connected, it follows that x�jP lifts to a continuous
unitary representation � W P ! U.H�/ of P , so that x�.p/ D Œ�.p/� in PU.H�/ for all
p 2 P . By Lemma 3.7, the fact that x�jP is of p.e. at C D p implies that � is norm-
continuous. It follows from Lemma 8.26 that � is trivial. Thus x�. p̨.g// D x�.g/ for all
g 2 G and p 2 P . It follows that d x� vanishes on D.p/g. As p acts irreducibly and non-
trivially on V , it follows that the ideal in g generated by D.p/g is I ˝ k. Thus I ˝ k �

ker d x�. This implies that x�jGk factors through K.

The following provides a simple example of a projective p.e. representation x� of G1 Ì
P s.t. x�jG1 does not factor through K.

Example 8.28. LetP DMp.2;R/ be the double-cover of SL.2;R/. LetP act on V WDR2

via the defining action of SL.2;R/. We consider a trivial vertical twist, so that the p-action
on g D R ˝ k is given by D.p/ D �Lv.p/. In this case the generator p0 of rotations
generates the unique (up to a sign) pointed, closed and P -invariant convex cone C in p.
Explicitly, v.p0/D y@x � x@y . Let us construct a non-trivial continuous projective unitary
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representation of G1 Ì P Š .V � ˝ k/ Ì .K � P / that is of p.e. at the cone C � p. Write
W WD V � ˝ k.

We begin by specifying a suitable 2-cocycle on V �˝ k� g1. Notice that .
V2

V /pŠR
is one-dimensional. Let 0 ¤ � 2 .

V2
V /p and consider it as a p-invariant bilinear map

V � � V � ! R. To be consistent with Proposition 8.4, let us write �.fdg/ instead of
�.f; g/ for f; g 2 V �. Let x; y 2 V � be the usual basis of V �. Then � is fully specified
by the number �.ydx/. If �.ydx/ > 0, then the quadratic form q.v/ WD �.Lv.p0/vdv/

is positive-definite, because q.ax C by/ D .a2 C b2/�.ydx/ for a; b 2 R. Let ! be the
unique symplectic form on W satisfying !.vX; wY / WD �.vdw/�.X; Y / for X; Y 2 k

and v;w 2 V �. Then !.D.p0/�; �/ � 0 for every � 2W (recalling that � is negative defi-
nite). Let H.W;!/ be the corresponding Heisenberg group. LetL˙ be the˙i -eigenspaces
in WC of the complex structure J WD D.p0/ on WC , so that WC D L� ˚ LC. The p-
invariance of � ensures that J�! D !. Indeed, extend ! C-bilinearly to WC . As � is
p-invariant, it follows that !.J�; �/ C !.�; J�/ D 0 for all �; � 2 WC , which implies
that L˙ � WC are J-invariant Lagrangian subspaces for !. Then J�! D ! follows
from J�!.wC; w�/ D !.iwC;�iw�/ D !.wC; w�/ for w˙ 2 L˙. Notice further that
!.J�; �/ � 0 holds for all � 2 W , by construction. Equip LC with the positive definite
hermitian form defined by hv;wiLC WD �2i!. Nv;w/ for v;w 2LC. For each n 2N, equip
the symmetric algebra Sn.LC/ with the inner product satisfying

hv1 � � � vn; w1 � � �wni WD
X
�2Sn

nY
kD1

hv�k ; wkiLC ; vk ; wk 2 LC:

Let F WD S�.LC/ be the Hilbert space completion, where S�.LC/D
L1
nD0S

n.LC/. The
metaplectic representation � of H.W; !/ Ì Mp.W; !/, with �.z/ D zI on the central T
component, can be realized on the Fock space F , where Mp.W;!/ denotes the metaplec-
tic group [47, Thm. X.3.3]. Notice that SL.2;R/ ,! Sp.W;!/ because � is p-invariant. By
pulling back the metaplectic representation we obtain a continuous unitary representation
of H.W; !/ Ì P which is of p.e. at C and does not factor through K.

A. From germs to jets

Let K !M be locally trivial bundle of Lie groups with typical fiber a finite-dimensional
Lie group G with Lie algebra g. Write K!M for the corresponding Lie algebra bundle.
The following justifies the claim made in Section 1 that any continuous projective unitary
representation of �c.K/which factors through the germs at a point a 2M actually factors
through the1-jets J1a .K/ at a 2M . The group �c.K/ is a locally exponential Lie group
modeled on the LF-Lie algebra �c.K/ [31, Prop. 2.3].

Let U � Rd be an open neighborhood of the origin. Let C1flat.U / denote the kernel of
the1-jet projection

j10 W C
1
c .U /! J10

�
C1c .U /

�
Š RJx1; : : : ; xd K
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at 0 2 U . In the following we show the known fact that the closure C1c .U n ¹0º/ in
C1.U / is C1flat.U /. As a consequence, we deduce that if a continuous projective unitary
representation of the Lie algebra �c.K/ factors through the germs at a point a 2M , then it
factors through the1-jets J1a .K/ at a 2M . In turn, this implies a group level-analogue.

If K � U is a compact set, we write C1K .U / for the subspace of C1.U / consisting
of functions on U with support in K. Then C1K .U / is the projective limit C1K .U / D
lim
 �n

C nK.U / of the Banach spaces C nK.U /, which we equip with the norm

kf kCnK .U / WD sup
jkj�n

kDkf kCK .U /;

where the supremum runs over all multi-indices k 2 Nd
�0 with jkj � n. Then C1c .U / WD

lim
�!

C1K .U / is the corresponding locally convex inductive limit. See e.g. [59, Thm. 6.5]
for a description of this topology. For r > 0, writeBr WD ¹x 2Rd W kxk � rº for the closed
ball centered at 0 2 Rd with radius r .

Lemma A.1. The closure of C1c .U n ¹0º/ in C1c .U / is C1flat.U /.

Proof. As C1flat.U / � C
1
c .U / is closed and C1c .U n ¹0º/ � C1flat.U /, we have

C1c
�
U n ¹0º

�
� C1flat.U /:

It remains to show the reverse inclusion. Let f 2 C1flat.U / � C
1
c .U /. We show f 2

C1c .U n ¹0º/. Let K0 �M be a relatively compact open subset such that supp f � K0.
Set K WD K0. We may assume that 0 2 K0, for otherwise f 2 C1c .U n ¹0º/ and we are
done. By [42, Lem. I.4.2], we can find constants Ck > 0 for k 2 Nd

�0, depending only
on k, such that for any 0 < r < 1 with B2r � K0, there exists a smooth function  r 2
C1.Rd / s.t.  r � 0,  r jBr D 0,  r j.Rd nB2r /

D 1 and supx2Rd jDk r .x/j � Ckr
�jkj for

every k 2Nd
�0. In particular f  r 2 C1c .U n ¹0º/ and suppf  r �K. Moreover, observe

that supp.1� r / � B2r and k.1 �  r /kCnB2r .R
d / . r�n for some constant depending on

n 2 N�0, where we used that 0 < r < 1. On the other hand, suppose that ˛ 2 Nd
�0 is a

multi-index. Since j10 .D
˛f /D 0, it follows from Taylor’s Theorem that kD˛f kC.B2r / .

r l for arbitrary l 2 N�0, with a constant depending on f , ˛ and l but not on r . Thus
kf kCn.B2r / . r l for arbitrary n; l 2 N�0. In particular kf kCn.B2r / . rnC1. Combining
the previous observations, we obtain that

kf � f  rkCn.K/ D
f .1 �  r /Cn.K/

D
f .1 �  r /Cn.B2r /

. kf kCn.B2r /
.1 �  r /Cn.B2r / . r;

the constants depending only on f and n but not on r . This shows that f  r ! f in
C1K .U / as r ! 0. Thus f  r ! f in C1c .U /. Since  rf 2 C1c .U n ¹0º/ for every r ,
we conclude that f 2 C1c .U n ¹0º/.
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If a 2M , define the spaces of smooth section of K and K which are flat at a 2M :

�flat.a/.K/ WD ker
�
j1a W �c.K/! J1a .K/

�
;

�flat.a/.K/ WD ker
�
j1a W �c.K/! J1a .K/

�
:

Proposition A.2 below clarifies the apparent ambiguity in the topology on J1a .K/, for
which two candidates are available.

Proposition A.2. Let a 2 M . The projective limit topology on J1a .K/ WD lim
 �k

J k.K/

coincides with the quotient topology obtained from J1a .K/ Š �c.K/=�flat.a/.K/.

Proof. The continuous k-jet projections j ka W �c.K/! J ka .K/ at a 2 M all descend to
continuous maps �c.K/=�flat.a/.K/! J ka .K/. By the universal property of the projective
limit, they induce a continuous map

ˆ W �c.K/=�flat.a/.K/! J1a .K/:

Using Borel’s Lemma [28, Thm. 1.2.6], it is not hard to check that this map is bijective.
It remains to show it is an open map, which follows immediately from the Open Mapping
Theorem [59, Cor. 2.12] because �c.K/=�flat.a/.K/ and J1a .K/ are both Fréchet spaces
and ˆ is bijective and continuous.

Proposition A.3. Let a 2M .

• The closure of �c.M n ¹aºIK/ in �c.M IK/ is �flat.a/.K/.

• The closure of �c.M n ¹aºIK/ in �c.M IK/ is �flat.a/.K/.

Proof. By a partition of unity argument, we may assume that the bundle K!M is triv-
ial, that M � Rd is open neighborhood of 0 2 Rd and that a D 0. Then �c.M IK/ Š

C1c .M I k/. The claim now follows from Lemma A.1. Notice for the second assertion that
�flat.a/.M IK/ is a locally exponential, being an embedded closed Lie subgroup of the
locally exponential Lie group �c.M IK/. The result is then immediate from the previ-
ous point.

Proposition A.4. Let a 2M .

(1) Let x� W �c.M IK/ ! L�.D/ be a continuous projective unitary representation
on the pre-Hilbert space D . Assume that x� vanishes on �c.M n ¹aºIK/. Then x�
factors continuously through J1a .K/.

(2) Let x� W �c.M IK/! PU.H / be a continuous projective unitary representation of
�c.M IK/. Assume that x� vanishes on �c.M n ¹aºIK/. Then x� factors through
�flat.a/.M IK/.

Proof. For the first point, notice by continuity that x� must also vanish on the closure
of �c.M n ¹aºIK/ in �c.M IK/, which by Proposition A.3 equals �flat.a/.M IK/. Thus
�c.M IK/ factors continuously through the quotient space

J1a .K/ Š �c.M IK/=�flat.a/.M IK/;
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where Proposition A.2 was used. The second point is proven similarly using Proposi-
tion A.3.
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