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On relative bounds for interacting Fermion operators

Volker Bach and Robert Rauch

Abstract. We consider a system of interacting fermions whose Hamiltonian is unitarily transformed
so that the interaction is a quartic perturbation of the Hartree—Fock effective Hamiltonian. It is shown
under natural model assumptions that the interaction does not admit a relative bound with respect to
the effective Hamiltonian that is uniform in the system’s size.

This bound is exemplified on the Hubbard model with nearest neighbor interaction on a discrete
d-dimensional torus of length L around its Hartree-Fock ground state and derive relative bounds
of the effective interaction with respect to the effective kinetic energy. It is shown that there are no
relative bounds uniform in L.

1. Introduction and main result

All models of matter in physics and chemistry used in science and technology ultimately
derive from the quantum mechanical description of interacting many-body systems. The
precise description of these interacting quantum many-body systems is one of the most
important tasks of mathematical and theoretical physics. The conceptual and mathematical
framework was formulated almost a century ago and has not changed much since. Yet, the
analysis especially of interacting systems is complex and remains challenging.

In this paper, we consider a many-fermion quantum system whose states are repre-
sented by vectors in a fermion Fock space & = &7 (), where b is the Hilbert space of a
single fermion, and a second-quantized Hamiltonian

A=t +§v (1.1)

acting on a suitable domain in &. Here, T is a one-particle operator which is quadratic in
the fields and represents the kinetic energy and external fields, V > 0 is the purely repul-
sive pair interaction between the fermions and quartic in the fields, and g > 0 is a small
coupling constant. This is the standard framework which is described with mathematical
precision, e.g., in [7, 13, 14,17, 18].

Assume the N -fermion Slater determinant dDgI\f) = I(HF) AN A(,HF) to be a Hartree—
Fock ground state. It induces a unitary particle-hole Bogoliubov transformation Uyg on .
After Wick-ordering, the transformed Hamiltonian assumes the form

H:= U} HUyr = EX + Tyr + %Q, (1.2)
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where the constant E}({g) = (Q | HR) is the vacuum expectation value of the transformed
Hamiltonian, Ty is quadratic and normal-ordered in the field operators, and Q is quartic
and normal-ordered in the field operators. More specifically, it turns out that EI({IX) =
(CIDI(;;I) | 11"4'1@,‘}}”) is the Hartree—Fock energy of the system and that Tyr > 0, called the
Hartree—Fock Hamiltonian, is the second quantization of a positive effective one-body
operator. We think of (1.2) as an expansion of H around the transformed Hartree—Fock
ground state CDgp, where Q encodes the properties of the system beyond Hartree—Fock
theory. For a review of Hartree—Fock theory we refer the reader to [2].

To develop a rigorous perturbation theory for the many-fermion system in an operator-
theoretic framework, it is natural to decompose Q as Q = Qain + Qrem, Where Qain > 0
and Qe is relatively bounded by Tyg + %Qmain with a small relative bound. The main
result of this paper is that this idea fails and that, in general, there is no such decomposi-
tion. We demonstrate this statement by constructing a counterexample in several steps:

(i) In equations (3.6)—(3.9), we decompose Q as

Q =Re[Q; + Q2 —2Q3 +2Q4 + 4Q5 + 4Qs + 2Q7],

where Qain = Q1 + Q2 and Q; > 0 and Q, > 0 is the particle-particle and the hole-hole
repulsion, respectively.

(ii) For system of electrons (spin—% fermions) on a periodic d -dimensional lattice A =
ZZ of sidelength L € Z* with an interaction given by a repulsive pair potential v : A —
R(J{ we show in Theorem 3.1 that the quadratic forms corresponding to Q3, Q4, Qs5, and
Q¢ are bounded relative to N + Qp,in, uniformly in the thermodynamic (TD) limit, i.e., as
L — oo. Note that N + Qain is comparable to Hy = Tyg + Qmain, provided the effective
one-body operator entering the Hartree—Fock Hamiltonian Ty is strictly positive.

(iii) Our counterexample is built on @7 which is a sum of products of four cre-
ation operators, namely, two particle and two hole creation operators. Our first main
result is Theorem 3.2, in which we define a normalized trial vector ®, = V1 — s2Q +
e|Q727'Q,R, for e € (0, %] We show that 0 < (&, | Tur®,) < 4|/t]lop and 0 <
(Pe | 5 QuainPe) < 2g&?||v|lop are uniformly bounded in the TD limit, provided that
the one-particle kinetic energy ¢ and the pair interaction v are bounded. In contrast,
(Pe|Q7P;) = £[Q722], and |Q7€2||? is characterized in Theorem 3.2 by (3.30), which
suggests that | Q7|2 ~ |A| = L? is an extensive quantity, at least for translation invari-
ant systems.

(iv) In Theorem 3.3 we choose a specific model which falls into the category of models
considered in (ii) and (iii) above, namely, the Hubbard model at half-filling. Following the
lines of [4] for this model, E }({1;7) Tyr, and Q can be explicitly computed. While any opera-
tor is relatively bounded to any other operator in case of finite-dimensional Hilbert spaces,
we show here that QQ contains indefinite contributions Qe,, which cannot be bounded
relative to Tyg + Qmain With a relative bound that is uniform in the thermodynamic (large-
volume) limit.

Note that the importance of the term Q7 in the perturbative expansions for fermion
systems (and also for boson systems) has been observed before in [5, 6, 9]. These go
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beyond the results of the present paper in as much as unitary operators that approximately
eliminate Q7 have been constructed and proven to yield the next correction, e.g., in an
expansion of the ground state energy in powers of the coupling constant.

In condensed matter theory, the expansion of physical quantities in powers of a small
coupling constant g > 0 is usually not carried out by expanding the Hamiltonian opera-
tor or its resolvent directly. One rather studies (thermal) Green’s functions which encode
all the physical information sought for, see, e.g., [15]. These Green’s functions are then
expanded in formal series in g with expansion coefficients given by sums of Feynman
diagrams. In diagrammatic language, our result may be considered an attempt to sum up
the contributions of all four-point ladder diagrams to the interacting four-point function.
It is known that these summations often diverge, see, e.g., [16, Section 4.5], and the result
of the present paper contributes to the identification of the cause for this divergence.

In the present paper the question of the validity of norm bounds for translation-in-
variant pair-interactions (quartic in the quantum fields) relative to a one-body operator
(quadratic in the quantum fields) is investigated. This approach is adequate for weakly
interacting systems and has a long history with diagrammatic expansions described above.
More recently, as the theory of quantum computers developed, topologically ordered quan-
tum lattice systems and the stability of their spectral gap has come into focus of studies. In
[8] a perturbation expansion of these systems was studied, a new technique to prove rel-
ative operator bounds was developed, and the notion of quasi-adiabatic continuation was
introduced which has been further developed in the past decade, see, e.g., [12] and ref-
erences therein. The quasi-adiabatic continuation seems to be related to the approximate
eliminations in [5, 6, 9] of terms in the Hamiltonian by conjugations with unitary opera-
tors. It would be interesting to explore the relation between these different approaches in
future research projects.

2. N-Fermion systems and Hartree—Fock approximation

N -Fermion systems. The state of a system of N € Z* :={1,2,3,...} interacting nonrel-
ativistic fermions at time ¢ € R in an atom, a molecule, or a crystal is described by a wave
function ¥, € F™) = FW)(p) in, or more generally a density matrix p; € I#(%(N))
on, the N-fermion Hilbert space ) (h) € H®N, which is the subspace of totally anti-
symmetric vectors in the N-fold tensor product of the one-particle Hilbert space ). The
Hilbert space §) (D) is the closure of the span of N-fermion Slater determinants

Sfinenfw = (VT2 3D fr) ® 0 ® Sy

ﬂESN

Here, Sy is the set of permutations of {1,..., N} and (—1)" denotes their sign. If
{fx },’3:1 C b is an orthonormal basis (ONB) then so is

{feay A A feny | 1 < k(1) <--- <k(N) < D} € M (p),

where D := dim(f)) € ZT U {oo} is the dimension of the one-particle Hilbert space.
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The dynamics of the N-fermion system is determined by the Schrédinger equation
iV, = HMW, ori o = [HM), p,], respectively. Its generator is the self-adjoint Hamil-

tonian
HWN = 7). Sy Q.1
2 ’ '
where
N N
TNV =3"T,, V™= 3" V.
m=1 m,n=1;m#n

T}y is the one-body Hamiltonian ¢ acting on the mth variable, V}, , is the pair interaction
v acting on the mth and the nth variable, and k¥ > 0 is a coupling constant. That is, T, =
M0 ®1®---®1)ollyand Vi =10, 0 (V®1®--- ®1) o [ 5, where I,
is the natural permutation operator exchanging the factor f; with f;,, and I1,, , is the
natural permutation operator exchanging the factors f; with f;,, and f, with f,, in the
tensor product 1 ® 2 ® - ® fn.

The semiboundedness and self-adjointness of H ™) can be ensured by the assumption
thatt : s — b is a semibounded and self-adjoint linear operator defined on a dense domain
s Chandthat v :s ® s - h ® b is a symmetric, nonnegative linear operator and an
infinitesimal perturbation of t ® 1 + 1 ® ¢. Furthermore, we assume w.l.o.g. that v is
invariant under exchanging the tensor factors in ) ® b, i.e., that Ex ov = v o Ex, where
the exchange operator Ex € B[l ® b] is defined by Ex(f ® g) = g ® f. Then H®) is
semibounded and essentially self-adjoint on the subspace %gﬁ])(s) c M (p) of (finite)
linear combinations of Slater determinants f1 A --- A fy with f1,..., fx € s.

Basic quantities for the description of an N -fermion system are its ground state energy
Eg(i") defined to the smallest expectation value of H™) evaluated on N-fermion wave
functions,

EQM :=inf {(g™ | HM WM | ¢ e gWM () 0V w?] = 1},

and, if existent, the corresponding minimizers \I’éiv) e M) N s® called ground
states, which necessarily fulfill the time-independent Schrédinger equation given by

N N N N
HWMyW) — Eg(s Iy V)

Fock space, CAR, and second quantization. It is convenient to consider ™) () a
subspace of the fermion Fock space

o

) =P V).

N=0

where %@ = C - Q is the one-dimensional vacuum subspace spanned by the normal-
ized vacuum vector 2. We introduce the usual fermion creation operators {¢*(f)}sep <
B[F] as follows. For a fixed orbital f € h and N < D, these are bounded operators
c*(f) € B[FM); FW+D] defined by their action ¢*(f)Q := f on the vacuum vector,
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for N =0, and ¢*(f)[g1 A---Agn]:= f A g1 A--- A gy on Slater determinants,

for N € Z* and g1, ..., gn € b. Extending these definitions by linearity and continu-
ity to all of &, one obtains a family {c*(f)}rep S B[F] of bounded operators on F
whose norm equals ||[¢*(f)|| = || f||- The Slater determinants can now be rewritten as

fin-Afa=c*(f1) - c*(fn)R, and from an ONB {fk}1?=1 C } of the one-particle
Hilbert space we obtain ONB

{e* ey - e*fean)Q | 1 < k(1) <--- <k(N) < D} € M (p),

o

U {e* ey - c* (fen)Q | 1 < k(1) <= <k(N) < D} € F(H).
N=0
of the N-fermion Hilbert space and the fermion Fock space, respectively.
Given an orbital f € §, the adjoint

c(f) =" (NI € B[]

of the creation operator ¢*(f) is called annihilation operator. Creation and annihilation
operators {¢*(f), c(f)}rep form a Fock representation of the canonical anticommutation
relations (CAR), i.e., for all f,g € b,

[ ()™ (@) = {c(N)el@) =0, {c(f).c(@) =(f1g) -1z, c(fHH=0.
2.2)
We introduce the number operator N and the second quantizations of H®™) = 7®) 4
%V(N), as defined in (2.1), and its constituents TW) and V) by

oo oo oo
N=@nN T=Pr™. v:=PvW,
N=0 N=0 N=0

oo
fl=@Hu®=T+5V.
N=0

These operators are essentially self-adjoint on the subspace Fn(s) € F(h) of finite vec-
tors, i.e., finite linear combinations of Slater determinants f; A--- A fy with f1,..., fy €
s and varying N € Z{ . Using an ONB { fi }xc1 C s of orbitals in §), where

I:={1,2,...,D},

the number operator and the second quantized operators T and V—and hence also H—
can be represented as N = >, ., ¢*(fi)e(fr),

T = > (fe | tfm)e*(fe(fm). (2.3)
k.mel

V=Y (i ® felv(fu ® )™ (SO (fide(fm)e(fo)- (2.4)
kt,mnel

In case of unbounded ¢ or v, the existence of the matrix elements ( fx | 2 f,,,) and ( fx ® f¢ |
v(fm ® fu)) is guaranteed by sufficient regularity of the elements of .
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Finite dimension. For the purpose of this paper, the unboundedness of the operators
under consideration is an unnecessary complication, and we hence simply assume that
the dimension

D = dim(h) < o0 (2.5)

of the one-particle Hilbert space | is finite and that D > N, where the latter requirement
ensures that statements we make are not void. Consequently, the Fock space & (§) is finite-
dimensional, too, namely, dim[&(H)] = 2P < oco. Thanks to Assumption (2.5), the linear
operators ¢, v, N, T, V, and I are actually all finite-dimensional self-adjoint matrices,
s = b and Fan(s) = F(H). The description of the theory without the assumption of finite
dimension can be found, e.g., in [2]. In the end, the assertions formulated in our theorems
become non-trivial in the asymptotic limit D > N > 1.

Hartree-Fock approximation and Bogoliubov transformations. The computation of
the ground state energy Eéfv ) and the corresponding ground state(s) ‘-I-’éﬁv) is far too com-
plicated, due to the large dimension of the problem, even though the finiteness of D
ensures their existence. The Hartree—Fock approximation described below is one of the
most important methods for N -fermion systems.

The Hartree—Fock energy Egg) is defined to be the smallest expectation value of
evaluated on N -fermion Slater determinants,

EM =inf{(fin—Afw |BHAAAS]fes (fi] ) =28,

Note that, for orthonormal fi,..., fy € 5,
- K
(fracnfn THAA A f) = Eur(y) = Trglty] + - Tryep [v(1—Ex)(y ® ¥)],

where y = ZII;V=1 | fu){(fv| = y* = y? is the rank-N orthogonal projection onto the linear
span of the orbitals fi, ..., fa, and Ex € 8(f) ® b) is the exchange operator determined
by Ex(f ® g) = g ® f. Therefore,

ES =inf{€ur(y) |y = y* = y2 Tr(y) = N}
=inf{€ur(y) |0 <y <1, Tr(y) = N}, (2.6)

where the second equality is known as Lieb’s variational principle [1, 1 1]. Note that

{yeg'®|0<y<1Te(y) =1} C £(h)

is a closed convex subset.

Thanks to D < oo, the infimum in (2.6) is actually always a minimum attained at
Pyr = Zi\;l | fv(HF))( fv(HF)l, say, with orthonormal { fl(HF), o f If,HF)} C b. The mini-
mizer(s) Pyr, called the Hartree—Fock ground state, fulfills a stationarity condition

Pur = 1n[hup(Pur)]. (2.7)
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known as the Hartree—Fock equation, where 1y denotes the projection onto the low-
est N eigenvalues (counting multiplicities) of the Hartree—Fock effective Hamiltonian
hyr(Pyr) € B[B], which is determined by

Tr [hur(y)n] = Trylrn] + « Tryep [v(1 — Ex)(y ® )],

for all trace-class operators n € £ (). Assuming w.l.o.g. that the eigenvalues e](HF) eR
of hyr(Pyr) are given in ascending order, egHF) < egHF) <...< egIF), we obtain an ONB
{ fl(HF) e fD(HF)} C § of eigenvectors of hyr(Pyr) with the first N vectors being the
orbitals that enter the Hartree—Fock ground state Pyg. The no unfilled shells theorem of
(unrestricted) Hartree—Fock theory [3,4] ensures that

(HF)

(HF)
ey teyy @R

eglp)</"LN T 2 N+1°

and hence that there is no paradoxy in equation (2.7) caused by

dim Ran l[hHF(PHF) = ej(\I;IF)] > N.

3. Wick-ordering and relative bounds

Wick-ordering following a Bogoliubov transformation. For each orbital fk(HF) we ab-

breviate the corresponding creation and annihilation operator by ¢; := ¢*( fk(HF)) and
cx = c( fk(HF)), respectively. Moreover, we define

Tiesm = (LD 1 £ED) and Viegm,n = (AP © 8 1 0(£8P ® £0P)),

such that p
H = Z TiemCrcm + 3 Z Vietsmn €y CrCmCn.
k.mel k,{,mnel

Following the intuition that, for small v, the Hartree—Fock energy E]({]}Y) and the Hartree—

Fock ground state ®yp := I(HF) Ao A S ]s,HF) e FM(p) are good approximations of
the actual ground state energy Egs ° and a ground state Wy, respectively, it is natural to
introduce a unitary operator Ugg € U[F(H)] on Fock space which transforms the vacuum
vector 2 into ®yr = UypS2, because then the Hartree—Fock energy becomes the vacuum
expectation value of H conjugated by the unitary Uyp,

EW = (Q | UlHUuQ),

as a natural offset for the energy. A unitary operator with this property is the Bogoliubov

transformation Uyr defined by U2 := CDI({I;:’) =ci---cnyQand

Uppe™ (f ) Uyr = C*(PHlFf) + c(i(Pur f)).
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where v
PHF — Z |fk(HF))<fk(HF)| (31)
k=1

and j : h — b is the antiunitary involution defined byj(Z,?=1 oy fk(HF)) = Z,?:l oy k(HF).

Note that Pyp o j = j o Pyp. It is convenient to express this definition entirely in terms of
the ONB { f"™\D_ C pas

UQFC;UHF = h;: + Ek,
hlt = lI(h)(k)C]: and Ek = 11(5)(k)ck,

where I(h):={kel|k>N+1}and I({):={k € I |k < N}.Note that the operators
{h,’;, hi, E,’:, Lx }ker are again a Fock representation of the CAR, i.e., forall j, k € I,

{hig 157y = {hie hyh = e 6} = k. 4} = {hg )
= {he. 4} = e, €3 = (B} €} = 0, (3.2)
{hie, b7} = Sk j Loy (k). k. £} = Sk jlr(k), meQ =62 =0,  (33)
with respect to which the new number operator is
N:=N; +Np. where Ny := Y hihe. Npi= Y iy (3.4)
keI(h) keI(l)
Conjugating H with Uyg, we obtain the transformed Hamiltonian

~ K
H := U HUnr = UgeT Unr + 2 UiV Ui = D Tem (b + ) (him + £5,)
k.mel

Z Vj,k;m,n(h]t + gk)(h}k + ej)(hm + E:(n)(hn + e;),
Jj.k,mnel

+

ST

and by Wick-ordering, i.e., anticommuting all creation operators /; and £ to the left and
all annihilation operators hj and ¢, to the right, we rewrite the result in the form

H = E + Tur + 5Q.
where the first term is indeed the Hartree—Fock energy,
EY = (®ur | Hbyr)
= Er(Pyr) = Try[tPur] + gm,@, [v(1 — Ex)(Pur ® Pup)].

and serves as an energy offset. The second term Tyr is the second quantization of the
positive one-particle operator |hgr(Pyr) — | and, hence, itself positive. It collects all
terms that are quadratic in the field operators and equals

1
T = Y oehihe+ Y oclple = S@minN > 0. (3.5)
kelI(h) kelI(h)
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where

HF
Wy 1= |e,(c ) _

un| and  @pp, i= minwg > 0,
kel

and we recall that uy = %(e%{z + egm). Finally, the quartic terms in the Hamiltonian

are collected in Q = Re[Q1 + Q2 —2Q3 + 2Q4 + 4Q5 + 4Q¢ + 2Q7], with

Q= Y Vikmahfhihmhn, Q2= Y Viewmalolilili. (3.6

jk,mnel J.k.m,nel

Q3 := Z Vj,k;m,nh]tz;knejhnv Q4 := Z Vj,k;m,nhjg;kngkhn» 3.7
j.k,m,nel J.k.m.nel

Q5= Y Vikmahilnliti. Qs:= > Vikmah hmlihn,  (3.8)
j.k.mnel J.ksmnel

Q7= Y Vikmahihithtr. (3.9
J.k.mnel

Positivity of the main interaction term Qp,.in = Q1 + Q2. We recall that the interaction
potential V' > 0 is assumed to be positive. Hence, we may define W := y1/2 > (0 and
observe that
Vikimn = Z Wik;p.aWp.gim.n-
p.qel
Introducing

Apg =Y Wogmnhmhn. Bpg:= > Wunnpglnlm.

m,nel m,nel

we now observe that Q; and Q, are manifestly positive,
Ql = ZA;,qu,q >0, QZ = ZBZ,qu,q > 0.
P.q p.q

Note that both absolute, but also relative, norm bounds on Q; become large as the dimen-
sion D > N of the one-particle Hilbert space §) growths large. The reason for this is that
the number of degrees of freedom corresponding to the transformed creation operators
is D — N. Since Q is the only term in H which contains quartic terms in &, and /y,
i.e., monomials in i and s of highest degree, it can never be relatively bounded by the
other terms in the Hamiltonian with a relative bound which is uniform in D — oo. This
fact holds true independent of the regularity properties one may assume on the interaction
potential v. A similar argument applies to Q5.

It is therefore natural to integrate the terms Q and @Q, in what is considered the
unperturbed Hamiltonian

K .
Ho := Tyr + EQmain with Quain 1= Q1 + Q2 >0,
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and treat the remaining sum Qe := 2323 Qy as a perturbation of Hy,
K
H= HO + EQrem'

In fact, one would hope that the apparent big size of Q; and @, now turns into an advan-
tage and helps to control the terms entering Q.. For this strategy to be successful, we
need to establish sufficiently strong bounds of Q.. relative to Hy, because then the spec-
tral properties of H could be derived from those of Hy, provided the coupling constant
k > 0 is sufficiently small. The main result of this paper, however, is that this strategy
fails, due to the presence of Q7 in Qqem, see (3.9).

Smallness of the interaction terms Q3, Q4, Q5 and Qg. To derive explicit bounds on
the interaction terms Q,, we specify the model further and consider spin-% particles on
the periodic d -dimensional lattice A = Z¢ = (Z/LZ)?, such that

h=(Ax{11}), D=dim®p) =2L9. (3.10)

The canonical ONB in | is denoted {8x,6 } xeA,ceft, 4} S B, where 6x o (y, 7) 1= 6x,y00.z.
We introduce the corresponding creation and annihilation operators by c¥ , := ¢*(8x,0)
and cx,¢ = c(8x,6), forx € A and o € {1, | }. Hence,

&r(®) =span{cy, 5 ey oy I N €No, x; € A, 07 € {1, |}}. (3.11)

The interaction V in (2.4) is assumed to be of the usual form, i.e., to be induced by a
nonnegative, spin-independent, pair potential v : A — RS’ . It takes the familiar form

V= Z Z UX—J’C;,UC;,rCy,er,a' (3.12)

x,YEA o,te{, !}

Defining
Rigi= Y 0o () and Gy = Y P00 (7). ¢.13)

keI(h) keI(X)

we observe that

{hxgs yr}—{hxav y‘r}_{exo" }—{Zxo, y‘r}_{hxo'v }

= {hxo: by} = thxo, b)) =y 5 by} =0, (3.14)
{hx,ovh;,-,;} = (8):,0 | P[-ﬁ:(sy,ﬁs { xcﬁg* } - ( X,0 | PHF(gy,t)7 (315)
Mo =Ly oQ =0, (3.16)

forallx,y € Aando,t € {1, |}, and

1= > Y veyhk B hy ch (3.17)

x,yeA o,7e{t,}
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Q=Y Y vyl b lolys, (3.18)
x,yeA o,te{t,{}

W= Y Y vl e, (3.19)
x,yEA o,te{t,}

Q=Y Y vl gh. (3.20)
x,yeA o,te{t,|}

Qs := Z Z vx-yh;,oe;,rg;oey,f’ (321
x,yeA o,te{,|}

QG = Z Z Uxfyh;,thy,zex’ghx’o', (322)
x,yeA o,te{t,|}

Q7= Z Z Ux—yh;,gh;,rz;,re;:,a' (3.23)

x,yeA o,te{t,}

Finally, we introduce the one-particle density

prp(X) == > pur(x. 7).  pur(x.7) := (Sx0 | Purdy.o) (3.24)
se{t, 4}

of the Hartree—Fock ground state at x € A and the number operators

Npi= > highxo. Nei= Y i leo. N=N,+No. (329
xeA,ce{t, |} xeA,ce{t, |}

With these definitions we are in position to formulate the relative bounds on Q3, Q4, Qs,
and Qg to demonstrate that these terms are under control. We remark that the bounds
formulated in Theorem 3.1 below for k = 2, actually hold uniformly for 0 < x < 2.

Theorem 3.1. The interaction terms Qs3, Q4, Qs, and Qg vanish on the vacuum sec-
tor and obey the following quadratic form bounds on the orthogonal complement of the
vacuum sector:

[NTV2Qa N2 [NTV2Q NTV2 |, [ NTY2QsNTV2| < 2]l % purlleo,  (3.26)
[N+ Q1) 2Q6(N + Q)™"2| < lv * purlles,  (3:27)
where ||v * pu oo = maxxea Y ,ep V(X — ¥)pur(y).

Proof. We only need to bound the absolute value of diagonal matrix elements (Q,) :=
(¥ | Q, W) of normalized vectors W € %. We make multiple use of the Cauchy—Schwarz
inequality |(A* B)|?> < (A*A)(B* B). Additionally using

6y < prr(y.7) - 13 (3.28)
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for the estimate of (Q3, we obtain

|(Q3)}:2 Z Z Ux_y xae;re h )

x,yEA o,te{t, |}
<23 3 vy o) (B gheo)
x.yeh oe(t,l)

< 2|v * prElloo (Ni) =< 2{[v * prFl oo (N).

By the Cauchy—Schwarz inequality and again (3.28), we have

Q5|_ Z Z Ux— J’| xoe;rzia >|

x,y€A o,te{t, |}

= Z Z vx_y xog; rz h )1/2<€;,r€x502;,0£)’,1>1/2
x,yeA o,re{t, |}

< > Y vVt 0)pur(y DA phao) PG by )

x,yeA o,te{t,{}
< v * prrlloo (NA) Y2 (N Y2 < [|v * prrlloo (N).

Next, we observe that Q4 = Q, — QY, where

Qpi= Y Y vey(bro | Purdyc) () hxo).

x,y€A o,te{t,{}

Z . Z Z Ux—y (h;,rzx,oe;,rhx,a)s

x,yeA o,te{t, |}

and thanks to |(8x, | Purdy,c)|*> < pur(x,0)pur(y, 7). these two terms obey the estimates

QD < D > vy Vour(x, 0)pur(y, D) chy o) V2 (0 ph o)

x,yeA o,te{t,|}

lv * puElloo(Ng),

|< X)| = Z Z Ux—y (h;,rex,oe:,ahyyf>1/2<h;,a€y,fﬁ;,rhxﬂ)l/2
x,yeA o,7e{,{}

=< v * purlloo(Na),

IA

which yields [{Q4)] < 2||v * pxF|lco (IN). Finally,

Z Z vx—y|<h;,r£x,0hy,rhx,cr>|

x,yeA o,7e{t,}
= Z Z Ux—y (h;,fzx’aei,oh%f)l/z(h; oh; rh chx )1/2
x,y€A o,re{t, |}
< llv * purll 307 (NR) /2(Q1) V2. -
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Main result: lower bound on | (Q7)]|. We come to the main result of this paper, namely a
lower bound on the absolute value of (W | Q7 W), for a suitable choice of ¥, which proves
that Q7 neither obeys a quadratic form bound (3.26) nor (3.27) nor any other bound that
is nontrivial in the limit D — oo.

The absence of such a bound does not hold in general, and of course, a counterexample
depends on the model. The counterexample we give is based on the Hartree—Fock ground
state of the Hubbard model at half-filling because in this case the solution is explicitly
known [4] — we review its construction below. We point out that this additionally illustrates
that the absence of a relative bound for Q7 is not caused by the long-range nature of the
interaction potential — in fact, in the Hubbard model the pair interaction is vyx—, = x,y,
i.e., of zero range.

Before we focus on the Hubbard model, we characterize our choice of ¥ and the main
term (W | Q7 W) it yields in the following theorem which, like Theorem 3.1, we formulate
only for k = 2 — even though it actually holds true uniformly for all 0 < k¥ < 2.

Theorem 3.2. Assume that t € B[h] and v € B[h ® b] are bounded uniformly in D =
dim(}), and define by
1
Up 1= 4_1(1 —Ex)v(l —Ex) € 8[h ® §]

the restriction of v to the subspace §) A Y C h ® § of antisymmetric vectors. For Q7 as
in (3.9)and ¢ € (0, %], define the normalized vector

®, = V1-£2Q +£|Q,2| ' Q0.
Then

(@ | Tup®e) < [|tllop(Pe | NDe) < 4&|¢]|op,
(q)e | Qmainq)e> = 482”1)”0]39
(@ | Q7P;) = 2¢[ Q72

where Tyg is as in (3.5), and the number operator N is defined in (3.4). In particular,
choosing € := min{%, (I + [[v]lop)} > O, we have that

(®e | Q7P,) > min{%, vV 1+ ”U”op}

(cDé‘ | (THF + Qmain + l)qDé‘) - 4 + ”t”l)p

1Q7€2]. (3.29)

Furthermore,
1Q7R1* = Tryep [vA(Pir ® Prip)va(Pur ® Phr)]- (3.30)

Proof. We first recall that

Qr= > Y Vikmahphttr.

JkeI(h) m,nelI(l)
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Qi= Y Vesuuhihfhihy,
r,s,t,ucI(h)

QZ = Z Vr,s;t,ug;kg;:eserv
r.s,t,uel(l)

from (3.6) and (3.9). Observe that Q72 L 2 because NQ2 = 0 and NQ;Q2 = 4Q,Q
belong to different particle number subspaces. Hence, ®, is normalized and

0 < (@ | Trp®e) < [llop(®s | NPe) = 4|t . (3.31)
Furthermore, Qmain := Q1 + Q5 preserves the particle number and Q2 = 0. Thus
(®e | Quain®e) = 2[Q7Q)7>((Q | Q3Q:Q7Q) + (2 | Q3Q2Q7Q)).  (3.32)
Similarly, we obtain from (2 | Q;Q2) = (Q7Q | Q3Q) = 0 that

(@ | Re[Q7]®e) = el Q2] 7' ({2 | (Q7 + Q7)Q72) + Q72 | (Q7 + Q7))
= 2¢]|Q7Q[ (2 | Q7Q7Q) = 2¢]|Q72. (3.33)

Next, we compute (2 | Q7Q7Q), (2 | Q3Q,Q7R2), and (2 | Q3Q,Q~L). To this end
we use (3.2) and (3.3) and obtain

(Q | Ll o i WERE L2 Q) = (R | hyjrhgoREREQUR | Lyl 5, 02Q),  (3.34)

jt*m*n
(Q | hjrhhghEQ) = (8, 08k — 8 Sk,57)- (3.35)
(Q | Ll 505 = S S — S Snm’). (3.36)

for all j, j',k, k' € I(h) and m,m’,n,n’ € I(£). Moreover, if additionally z, u € I (h)
and r, s € I(€) then

hthuh,th;Z:nK:Q = (8uk8t,j — 6u,j0e i) lnS2. (3.37)
esﬁrh,’;h;e;z;‘;sz = (8r,mBsn — Sr,nSS,m)h,th;‘Q, (3.38)
which imply
(2] ﬁnrﬁm/hj/hk/h;‘hfh,huh,th_;k@,’;ﬁ;Q)
= (h,hsh};/h;,ﬁj;l/ﬁ:,ﬂ | h,huhZh_fﬁan:Q)

= BsrSr 7 — 85,5181 i) GusS.i — Su ;S0 sNC Q| C401Q)
= (Ss,k’gr,j’ - 8s,j’8r,k’)(8u,k81,j - 8u,j8t,k)(8m,m’8n,n’ - (Sm,n’fgn,m’)a (3.39)
and, similarly,
(@ | Lrlrhjhyo CECL L BERTES E5Q)

= (8r,m5s,n - Sr,ngs,m)((st,m’gu,n’ - 5t,n’Su,m’)(fgk,k/gj,j’ - 5k,j’ j,k/)' (3.40)
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Equations (3.34)—(3.40) yield

lQ:eI>= > S Vi Vikma(SQ | ol hjhiohi T 0 65R2)
Jik,j' k'€eI(h) m,n,m',;n’€I({)

=2 Z Z Vm,n;j,k(Vj,k;m,n - Vk,j;m,n)

JjkeI(h) mnel(l)
= 2 Tryep [Ua (P ® Pip)va(Phr ® Pup)].

where we use (3.1), Vi jnm = Vikunn and Vj gom n = Vinnsj k> Which follow from the
symmetry Ex ov = v o Ex and the self-adjointness of v. Similarly,

(Q | Q;QIQ7Q> =4 Z Z Vrsm n rs ]k(Vj,k;m,n - Vj,k;n,m)
J.k,r,seI(h) mneI(l)
= 4 Trpep [vA (P ® Pap)va(Par ® Pap)va(Pur ® Prr)].
<Q | Q;Q2Q7Q> =4 Z Z V_]‘,k;t,uVm,n;t,u(Vj,k;m,n - Vj,k;n,m)
Jj.k,€I(h) m,n,t,ueI(l)
= 4TI'[)®5 [U,\(PHF ® PHF)U,\(PPJﬁ: ® P}Jﬁ:)v/\(PHF ® PHF)]-

We abbreviate the two orthogonal projections Pyr ® Pyr =: P and PHLF ® PHlF =P,
observing that P + P # 1. With the abbreviations, we further introduce

A1 :=Piv P, By :=PivPvsP| >0,
A2 = ]P)U/\]P), Bz = ]PU/\PJ_U/\P Z O.

Then, for v = 1, 2, we have that

(2] Q7QvQ7R) = 4 Tryey[Ay By] < 4] Ay llop Trpep[Bu] < 2[00 | Q7217

and thus
(Q | Q3QuainQ72) < 4[|v]lop Q721

Equation (3.29) finally results from putting the latter estimate together with (3.32), (3.33),
and (3.31). [

We are now in position to formulate our main assertion on the absence of uniform
relative bounds on the example of the Hubbard model at half-filling.

Theorem 3.3 (Absence of uniform relative bounds). Let d € Z*, L € 4ZF, A = Z4,
A* = 2Z Zd, and g > 0. For the Hubbard model at half-filling described in Section 4
below, it holds true that u

Q72?2 §|A|, (3.41)

where

Z 1 _& (3.42)
|A*| e © i+ (g/z)2 ~4d g2 4 g2 '



V. Bach and R. Rauch 698

Proof. We first notice that the Hubbard model falls into the category of translation invari-
ant models specified in (3.10)—(3.25). According to (3.23), in this case Q7 takes the simple
form
Q7= Y 2h% h% U Uh s
XEA
Hence

Q720> =4 Q| g layha yhx b B L3 05 Q)
xXeEA

=4 (e | Paebe)(Brny | Pitibeny) — | | Pide )|

xXeA

(Bt | Purbup)(8xy | Pearby) — (82t | Prrdyy)|?)-

Introducing the self-adjoint 2 x 2 matrix M (0, 7) := (8x,0| Purdx,z), We observe that
Tre2[My] = Trg[(1x ® 1¢2) Pur] = 1, due to (A.8). Thus, det[1 — M| = det[M,] and

172U = 4> (8.1 | Prrde.t) By | Prrdsy) — | (Snp | Purby)]*)>.
xXe€EA

Moreover, (0,4 | Purdy,y) = 0 according to (4.5). Inserting (8x, | Pupdx,c), for v =1,,
from (4.5), we thus arrive at

Q7917 = ) (1-44%) = (1 -4A%)|A],

X€EA
where 0 < A < % is the unique solution of (4.3). It remains to show that A < % uniformly
in L — oo. To this end it is convenient to introduce

1
| A~

2
> X, 0<e:=1-4A<1 and ég:zﬁ,
g

EeA*

E[X] :=

so that (4.3) is equivalent to

2 X e wap T =B[Vi—e ¥ o))

EeA*

The concavity of A VA and Jensen’s inequality imply that

0=(E[VI-e+a) 1))’ —1<E[(1-e+0)"']-1

2 ~2
gl ¢ a)A <t g a)A .
- l—e+d2| " 1—¢ 14 ®2

Solving this inequality for &, we arrive at

a
14+a

€=

a 0?2
> —, witha:=E|: :| € (0,1),
2 D)
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and, hence, at (3.41). For the derivation of (3.42) we observe that cos(Z”"” )> cos( )> 2 ,
foralln, + LZ € Zj, with |n,| < L/8. For each coordinate direction v = 1, . d there
are at least L/4 € Z™ such n,,. Therefore,

a =
A |$§* +(g/2)2

G A S I N W
—d2+g2 L4 —4dd2+g2'

4. Hartree—Fock theory of the Hubbard model at half-filling

The Hubbard model at half-filling. The Hubbard model is a simplified model for the
description of interacting electrons on a discrete set A called the lattice. The single-
fermion Hilbert space for this model is § := £2(A x {1, |}). Note that § =~ g ® C?,
where g := ¢%(A) is the space of complex-valued functions on A, and we frequently
change between these representations without further notice.

Here we choose the lattice A to be the discrete d-dimensional torus given by A =
AL = Zi, where Zj := Z/LZ and L € 4Z™ is a positive integer multiple of 4. The
(Pontryagin) dual lattice is A* = A] = ZT”ZZ The lattice A is a metric space w.r.t. the
natural metric |x — y| := min{|Z — L§|, : § € Z%}, where 7 € Z¢ is such that x — y =
Z+ LZ4. Similarly, [§ — n| := + min{|K — 27§|oo : § € Z9} defines a metric on A*,
where ¥ € Z4 such that § —n = k/L + 2nZ%.

The canonical ONB with respect to coordinate space A and Fourier space A*, respec-
tively, are {Sx,o}(x,a)eAx{T,u C hand {¢E,U}(E,U)EA*X{T,¢} C b, where 8, ¢, Peo € b are
given by

e &Y

8x,0(¥,7) :=0x,y00,: and @go(y,7) = ——=60,c,
’ VIA|

forall (y,7) € A x {1, ]}, where £ -y = & y1 + -+ + £5y4, as usual. The fermion cre-
ation and annihilations operators corresponding to (2.2) are denoted by ¢y ; := ¢*(Jx,0)
and ¢x o := ¢(8x,0), for (x,0) € A x {1, |}, and ¢ 1= ¢*(¢g,0) and G0 := c(@g,0),
for (§,0) € A* x {1, |}, respectively.

Equipped with this notation and following (1.1), we introduce the Hubbard Hamilto-
nian by

fi-T+%v,

where, comparing with (3.12), the interaction V is the on-site repulsion

. . e * *
Ux—y = 08x,y, e,V :=2 E CxpCr 1 Cx A Cx s

xX€A
and the kinetic energy

Z Z tX—yC;,JCy,U = Z Z wéég:géé,a

x,yeAo=1%,] eA*o=1,{
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is the second quantization of the (traceless) discrete Laplacian. That is, T = (fx—))x,yeA
is the nearest-neighbour hopping matrix, 7 = 7* € C2*A, and w = 7 is its Fourier trans-
form,

d
tz:=-1(z| =1) and wg:= Ze_ig'ztz = —Zcos(év).
z€A v=1
Before describing the Hartree—Fock theory on the example of the Hubbard model, we
discuss the special spectral properties of the hopping matrix 7" that allow us to determine
the Hartree—Fock minimizers explicitly.
The hopping matrix T is bipartite, i.e., the lattice A = AUB is the union of two
disjoint subsets A, B € A such that 7k, = 0 whenever either x, y € A or x,y € B.
Introducing a unitary (gauge) transformation G € U[¢?(A)] on the functions on A by

[GY](x) := (=D)*¥(x), where (=1)* :=14(x) —15(x),

it is easy to check that G is an involution and that 7" transforms under conjugation with G
as
GTG =-T.

This implies that the eigenvalues of T come in pairs of opposite sign and that the projec-
tions onto its negative and positive eigenvalues, respectively, have the same dimension.

In the present case A = A = Zi, the subsets A and B are the even and odd sites,
respectively, forming a chessboard structure on A. More specifically, x = (x1,...,xg7) € A
belongs to A or B if x; + -+ + x4 is even or odd, respectively, and G acts on wave
functions at x by multiplication with

(=D* = (=D - (=1)",
In Fourier representation, G acts as a translation of momenta by
7= (m...,m)=—m € A¥,

ie., Gygs = Qetx,0, Whichis consistent with wg_, = —wg when conjugating 7" with G.
Note that the translation § — & + 7 is a bijection A* — A* without any fixed point. We
collect the momenta corresponding to strictly positive eigenvalues and to strictly negative
eigenvalues, respectively, in

AL :={teA|wg>0) and A*:={te€A|w: <0},

and observe that, due to wg_, = —wg, the map § — & + 7 is an involution A:L — A*.
Since the bijection A* 3 £ > & + 7 € A™ leaves K3 ={ecA| wg=0}= K; +
invariant, but has no fixed point, we can find a disjoint partition A* = K; +07\3’_ such
that § = £ + m is an involution /~\(’;,_ — /~\(’;’+. It follows that

A% =A% UA}, and A*:=A*UR}_ 4.1)
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form a disjoint partition of A = AiUAf such that £ = £ + 7 is a bijection from A% to
A* (and therefore also from A* to A%}).

We are now in position to formulate the Hartree—Fock theory for the Hubbard model
[4]. According to Lieb’s variational principle [1, 10], the Hartree—Fock energy of the Hub-
bard model for N electrons is given by

Eup(N) = inf {Eur(y) | y € £1(h), 0 <y <1, Tr(y) = N}, 4.2)

where the Hartree—Fock functional &y is defined as

Enr(y) := Try, [(T®1)V]+gz Z {(8x,a | V‘Sx,a)wx,t | V‘gx,t)_|(8x,a | y‘sx,r)|2}
x€A o,7=1,]

= Try [(T & 1)}/] + g Z {[TT(CZ(VX)]Z - Tl”(cz(]/)%)},
x€A

and y, € C?*2is given as yx(0,7) := (8x.0 | ¥8x.2)-
We recall that any self-adjoint matrix A = A* € C2*2 can be written as

1 I
A= E(p(A)lcz + U(A) - 7).

where p(A4) := Tre2(A), 9(A) := Tre2(GA), and 5 = (0D, 0@, 0®) are the (traceless)
Pauli matrices 0 = (9 1),0® = (9 /), and 0® := (§ ). Since Tr(42) = 1p(4) +
1[9(A))?, it follows that
2 1 1.
[Tre2(yx)]” = Tree (v3) = Epi - §|Ux|2»
where

px = p(yx) = Try [(Le ® Dy] and ¥ := ¥(yx) = Try [(1x ® 5)y].

Moreover, with these definitions, 0 < y, < 1¢2 is equivalent to 0 < || < px < 2 and we

obtain g
Enr(y) =Ty [(T @ Dy]+ 5 3 ok — 157},

x€A
Next, we characterize the Hartree—Fock energy Eyr(|A|) and Hartree—Fock ground states.
The latter are 1-RDM y of particle number Tr(y) = |A|, for which the Hartree—Fock
energy is attained, Eyr(y) = Eur(JA|), see [4].
Theorem 4.1. Let g > 0.
(i)  The Hartree—Fock energy per unit volume is given by
Eue(IAl) g 1
— 7 =2 A2 w2 272,
N 2+g |A*|Z a)s—i-g
EeA*
where A € (0, %) is the unique solution of

1
2= A > g(wf +g%A%)
EeA*

172, (4.3)
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(ii) A reduced one-particle density matrix y € £1(9), 0 < y < 1, of particle number
Tr(y) = |A| is a Hartree—Fock ground state if, and only if there exists a vector
¢ € R3 of unit length |é| = 1 such that

y=1T®1-gAG® (-56) <0]. (4.4)

We observe that, for any é € R? of unit length there is a unitary rotation R; € U(C?)
in spin space such that Rz (¢ - 6)R} = —€3-G = —0®_ Hence, for r > 0,

H=T®1+rG®cP =(1®R)[T®1-rG® (¢-5)](1® R;)*,

and we may henceforth assume w.l.o.g. that é = —é3 = (0,0, —1)". We observe that H,
leaves the two-dimensional subspaces (£, 0) := Cyg o & Cogyr o invariant, for each
(§,0) € A% x {1, |} andall r > 0. More specifically,

Hy = Q%) H.(§,0), with H,(§,0) = (ws or )

or —wg
(E,0)eATx{1,4}

w.r.t. the ONB {¢¢ 5, 0t 401 € (&, 0), where here and henceforth we identify 1= +1

and |= —1. Fixing (§,0) € A% x {1,]}, an ONB {Wg(r;+ w(r) } € h(&, o) of eigen-

vectors of H, (&, o) with corresponding eigenvalues :I:)Lg) is given by

) _ () )
‘/fé,ro,x - Eagrx‘/’so + Ea _K<P§+n o>

Wg
vV a)gz T2
)Lg) = \/a)s2 +r2,

for (§,0,k) € A% x {1, ]} x {£} with {£} := {~1, 1}. We frequently omit to display the
dependence on r > 0 and simply write Y¢ 5, = WE o> Ak = aé Z, and AE = )t(')

The projection onto the Hartree-Fock ground state corresponding to € = (0, 0 —1)’
is hence given as Pyr = y©2) where y) := 1[H, < 0], for r > 0. Note that y) =
1[H, < 0], because all eigenvalues of H, are nonvanishing. Moreover, we have the explicit

representation

) . _
ag = 1+«

YO= Y e Vo
(E.0)eNLx{1, )}
Since
or e_lgx

(8x.c|V0—) = [Uaé— — (=D*ag 4],

a simple computation yields

801 t(=1)*r —1/2
o) o G) — % AN 242
er (O—’ T) i (8)6,(7'7/ ’ Sx,r) - |:1 - |A*| Sg\:* (wg i ) .
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Especially for r = gA, the self-consistent equation (4.3) implies that

<8x,0|PHF5x,r) = 80’,‘[ (% - f(_l)xA)' 4.5)

A. Proof of Theorem 4.1

We follow [4]. Let
FL(n) == gn— |A*| > Jei+emn (A1)

EeA*
We first show that

oq

Eue(|A])[A]7" = 5 T min {?L(TI)}-

To this end we observe that

2
AP =(Dp) = IAIY 02
X€A XEA
by the Cauchy—Schwarz inequality. Hence,
g g -
Eur(y) = 1Al = Elp(y) =Ty [(T @ Dy] = 5 3 15 (A2)

2
xeA

Note that Exp(y) — £|A| = &}p(y) if, and only if, p, = 1, forall x € A.
A trivial, but important, observation is that Uy > 20y - Wy — W2 > 0, for any Wy € R3,
with strict inequality unless Wy = Uy. Taking |Ux| < 2 into account, this leads to
[Ux|> = max {20y - Wy — [Wx|?}
[y |<2
and in turn to

Epw(y) = min { Ty [(T © Dy] = Y gibs s+ 5 3 lial?}

XEA xeA
= min {Trb[(T®l—ZgExx®wx a) ]+§§|wx|2},

where Ey , € B[¢?(A)] is the matrix unit corresponding to (x, y) € A2, and min,, denotes

- 1A . .. .
the minimum over w = (Wy)xep € Br3 (0, 2)‘ ‘. Inserting this into (4.2), we obtain the
lower bound

Eue(|A]) = 14|
zr‘Bn{oi‘;il(T”’KT@l_ZgEx,x@J’x'?’)V]+§Z|ﬁ)x|2)}
-~ o xX€A
= min {Trf)[(T@l—ZgExx@wx 5) ]+§Zli)x|2},

xeA

where (1)— := min{A, 0} = —§|/\| + 5/'\ = —%w\z + %)L denotes the negative part of
a real number A. Since both 7' € B[¢2(A)] and 6™ € C2*2 are traceless, sois T ® 1 —
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Y ven 8Exx ® Wy -6 € B[h] and hence

1 -
Eue(A]) = SIAL= S min {Try (- VAW) +¢ Y [P} A3

x€eA
where
AW) i=T2 @1+ Y gL Ere @ 1-g{T® 1Y Ex ® iy -5
x€A xX€A
=T?®1+ Y glixl’Exx ®1— Y glx yEry ® (y + 1)) - 5.

XEA X, yEA

with {4, B} := AB + BA denoting the anticommutator of two operators A and B. Since
GE, G = Ey, and GTG = —T, we have that

GA(w)G = A(—w). (A4)
Furthermore, the strict convexity of IR(')" 51> —v/AeR implies the strict convexity of
A Tr[ - V4], (A.5)

as a map on self-adjoint positive operators. Equations (A.4) and (A.5) imply that

Try [ — VAW)]
= 3T [ VAW + 3 T [~ VD) 2 T [ - 34w + 2w

=Ty [ (T2 + ) g2|u7x|2Ex,x)l/2 ®1]

xeA

. 1/2
= 27T, [(T2 +3 g2|wx|2Ex,x) ] (A.6)
X€EA

with strict inequality unless 75—, (Wx + Wy) = 0, for all x, y € A. Here we use that f) =
g ® C2, where g := £?(A) denotes the space of complex-valued functions on A.

Next, we introduce by 7 € U[g] the translation of wave functions by z € A. That
is, [tZy¥](x) := ¥(x — z), for all x € A, and (t%)* = t7%. Then Tt % = T and
1% Ex y17% = Ex4z,y+2. Again the strict convexity (A.5) implies that

- Trg [(T2 + Z g2|ﬁ>x|2Ex,x>l/2]
— |A| ZTrg[ z(Tz + Z gz|'1’x|2Ex,x)l/zt_z]

xXeA

. 1/2
> —Trg [(TZ + m Z g |wx|2Ex—z,x—z) ]

[T ] - - Y

EeA*
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where (0?) := ﬁ > ea [Wx|? € [0, 4], with strict inequality unless |Wy | is independent

of x € A. Inserting this and (A.6) into (A.3), we obtain
1.8 .
Eur(|A])|AI7T! > > + 015117;24 {FL(n)}
with #7, : Rf — R as defined in (A.1),

1
FLO) = gn = o 3 (@ +g%)' "

EeA*
Note that 7, € C®°(R*;R) with
2
. g 1 -1/2
FLOD =8~ as > (0F +¢%n)
EeA*

and F/'(n) > 0, for n > 0. Since L € 4Z7, we have that

1 1 1 .
—nm=|=-m,...,—m | €A
2 2 2

with w1, = Zf=1 cos(/2) = 0. This implies that lim, ¢ ¥} (1) = —oc. Furthermore,
Fl () > g — ﬁﬁ) > 0, for any n > %. It follows that the minimum of 7, is attained

for the unique solution 0 < A? < % of (4.3) and that

Eur(IAl) _ g 2
—2 > =+ Fr(AY).
A 22 + FL(A)

Next we show that this lower bound is attained precisely by the projections defined in
(4.4). To this end we introduce

H@) =T®1+GQ®(a-6) and y(@):=1[H(@) <0],
for any @ € R3 \ {0}. Note that zero is not an eigenvalue of H(a) because
H@)? = (T*+al*) ® 1> |a|* > 0.
Therefore, y(a) = 1[{H (a) < 0] is the projection onto the negative eigenvalues of H(a)
independent of its functional form at zero, and

y(@) = %1 — F[H(a)] (A7)

where F € C*°(R; R) is an odd function F[-1] = —F[A] with F = 1 on (%|5|, 00).
If b € R3 is a unit vector perpendicular to d then b-Ge U[C?] is a unitary involution
and (b-6)(a-c)(b-6) = —a - 7. Since furthermore GT G = —T, this implies that

UsH(@)U; = —H@), Uy :=US:=G® (b-5)e Ulb),
and further
Trg {(Le ® DF[H@)]} = Try {(1Le @ DU; F[H(@)]U;} = Trg {1 ® DF[ — H(@)]}
= —Try {1, ® DF[H@)]} = 0.
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using that 1, ® 1 and U, 7 commute. Inserting this into (A.7), we obtain

Try [(1x @ Dy(a)] = %Tr[,[lx ®1] =1, (A.8)

for any x € A.
Next suppose that x, y € A, set z = x — y, and use the unitary V, := G @1 =
72Gl?l @ 1 and that
V.F[H@]V;} = F[G¥'TG" ® 1+ 1°Gt™* ® (a-5)]
F[(-1)’'T®1—(-1)°G® (a-5)]
F[(-1)?H(a)] = (1)’ F[H(a)].

Since the Pauli matrices are traceless, we obtain

Try [(1x ® 6)y(@)] = Try {(1x ® 6)F[H(a)]} = Try {(1, ® )V F[H(@)]V;}*}

—Try {(1, ® 6)F[H(@)]} = (-1)" 7 Try [(1, ® 6)y(@)].

It follows that Inequalities (A.2) and (A.6) actually become equalities when we insert
y(@):=1T ®1 -G ® (d-5)] and w := v[y(a)]. Choosing a := gAé, this implies that
EHF(|A|) - SHF(y(gAE)) g

=2+ FL(A?
Al ST Al y TILEAD

and the asserted characterization (ii) of the Hartree—Fock ground states.
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