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Simple purely infinite C �-algebras associated
with normal subshifts

Kengo Matsumoto

Abstract. We will introduce the notion of normal subshift. A subshift .ƒ; �/ is said to be normal
if it satisfies a certain synchronizing property called �-synchronizing and is infinite as a set. There
are many normal subshifts such as irreducible infinite sofic shifts, Dyck shifts, and ˇ-shifts whose
associated C�-algebras are simple and purely infinite. Eventual conjugacy of one-sided normal
subshifts and topological conjugacy of two-sided normal subshifts are characterized in terms of the
associated C�-algebras and the associated stabilized C�-algebras with their diagonals and gauge
actions, respectively.
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1. Introduction

In [19] (see [33,34]), W. Krieger and the author introduced the notion of �-synchronization
for subshifts. The class of �-synchronizing subshifts contains a lot of important and
interesting subshifts such as irreducible shifts of finite type, irreducible sofic shifts, syn-
chronizing subshifts, Dyck shifts, ˇ-shifts, substitution minimal shifts. In this paper, we
will introduce the notion of normal subshift. A subshift ƒ is said to be normal if it is a
�-synchronizing subshift and has infinite cardinality as a set. The class of normal sub-
shifts is closed under topological conjugacy, and consists of irreducible �-synchronizing
subshifts excluding trivial subshifts. An important property of �-synchronization is that
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each of them has a minimal �-graph system presentation. The notion of �-graph systems
was introduced in [24] as a generalization of finite labeled graphs. Any �-graph system
presents a subshift, conversely any subshift can be presented by a �-graph system in a
canonical way. The �-graph system that presents a subshift in a canonical way is called
the canonical �-graph system for the subshift. Besides the canonical �-graph system, there
are in general many other �-graph systems that present a given subshift. The canonical �-
graph system corresponds to its left Krieger cover graph. We in fact see that the canonical
�-graph system for a sofic shift is the �-graph system associated to the left Krieger cover
graph. Hence the canonical �-graph system in general does not have certain irreducibility
unless the subshift is an irreducible shift of finite type. An irreducible sofic shift has an
irreducible minimal presentation as a labeled graph. The presentation is called the left (or
right) Fischer cover graph. It is an irreducible ergodic component of its left Krieger cover
graph. To catch the Fischer cover analogue of general subshifts, we introduced in [19] the
notion of �-synchronization of subshifts. It was shown that any �-synchronizing subshift
has a minimal presentation of �-graph system corresponding to the Fischer cover [19].
In [26], the author introduced a C �-algebra associated with a �-graph system as a gener-
alization of Cuntz–Krieger algebras. The C �-algebra is written OL for a �-graph system
L and has a universal property subject to certain operator relations encoded by structure of
the �-graph system L. If a �-graph system is the canonical �-graph system Lƒ for a sub-
shift ƒ, the C �-algebra in general is far from simple, namely has nontrivial ideals, unless
the subshift is a shift of finite type or special kinds of subshifts, because the canonical
�-graph system corresponds to the left Krieger cover, that is not irreducible in general.

On the other hand, if a subshift is normal, that is, �-synchronizing, we may construct
a minimal �-graph system as its presentation called the �-synchronizing �-graph system
written Lmin

ƒ . It is called the minimal presentation (see [34]), so that the associated C �-
algebra are simple and purely infinite in many cases (see [33]). For a normal subshift ƒ,
we write the C �-algebra as Oƒmin . Let us denote by Xƒ the associated right one-sided
subshift of a two-sided subshift ƒ. As in the previous papers [19, 33], the C �-algebra
Oƒmin has a natural action of the circle group T called gauge action written �ƒ. The
fixed point algebra Fƒmin of Oƒmin under �ƒ is an AF-algebra having its diagonal algebra
denoted by DLmin

ƒ
. The commutative C �-algebra C.Xƒ/ of continuous functions on the

right one-sided subshiftXƒ is naturally regarded as a subalgebra of DLmin
ƒ

denoted by Dƒ.
We know that the relative commutant Dƒ

0 \Oƒmin of Dƒ in Oƒmin coincides with DLmin
ƒ

(Proposition 3.13). Hence we have a triplet .Oƒmin ;Dƒ; �
ƒ/ from a normal subshift ƒ.

In the first half of the paper, we will summarize the �-synchronization of subshifts and
describe a simplicity condition of the C �-algebras Oƒmin so that we have the following
theorem.

Theorem 1.1. Let ƒ be a normal subshift. If ƒ is �-irreducible, then the C �-algebra
Oƒmin is simple. If in addition ƒ satisfies �-condition (I), then the C �-algebra Oƒmin

is simple and purely infinite, where �-condition (I) is defined in [28] (see also Defini-
tion 2.15 (i)).
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As a corollary, we have the following result.

Corollary 1.2 (Proposition 4.2). Let ƒ be an irreducible sofic shift such that ƒ is not of
finite set. The C �-algebra Oƒmin is simple, purely infinite. It is isomorphic to the Cuntz–
Krieger algebra for the transition matrix of the left Fischer cover graph of the sofic shiftƒ.

We will present several examples of simple purely infinite C �-algebras associated
with normal subshifts in Section 5. They are the C �-algebras associated with Dyck shifts,
Markov–Dyck shifts, Motzkin shifts and ˇ-shifts.

In the second half of the paper, we will study the relationship between several kinds of
topological conjugacy of normal subshifts and structure of the associatedC �-algebras. Let
L1, L2 be left-resolving �-graph systems that present the subshifts ƒ1, ƒ2, respectively.
In [37], the notion of .L1;L2/-continuous orbit equivalence between their one-sided sub-
shifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/was introduced. The author then proved that .Xƒ1 ; �ƒ1/
and .Xƒ2 ; �ƒ2/ are .L1;L2/-continuously orbit equivalent if and only if there exists an
isomorphism ˆ W OL1 ! OL2 of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 where Dƒi is a
canonical commutative C �-subalgebra of OLi isomorphic to C.Xƒi / for i D 1; 2. We will
see that, under the condition that .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-continuously
orbit equivalent, if ƒ1 is a normal subshift and L1 is its minimal presentation, then ƒ2
is a normal subshift and L2 is its minimal presentation (Lemma 6.2). We then define the
one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ for normal subshifts ƒ1 and ƒ2 to be
continuously orbit equivalent if they are .Lmin

ƒ1
;Lmin

ƒ2
/-continuously orbit equivalent (Def-

inition 6.3). We then have that for normal subshifts ƒ1 and ƒ2, their one-sided subshifts
.Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are continuously orbit equivalent if and only if there exists an
isomorphism ˆ W Oƒ1min ! Oƒ2min of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 (Proposi-
tion 6.4).

In [37], the author also introduced the notion of .L1;L2/-eventual conjugacy between
their one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ and proved that .Xƒ1 ; �ƒ1/ and
.Xƒ2 ; �ƒ2/ are .L1;L2/-eventually conjugate if and only if there exists an isomorphism
ˆ W OL1 ! OL2 of C �-algebras such that

ˆ.Dƒ1/ D Dƒ2 and ˆ ı �L1
t D �L2

t ıˆ; t 2 T ;

where Dƒi is a canonical commutative C �-subalgebra of OLi isomorphic to C.Xƒi /, and
�

Li
t is the gauge action on OLi for i D 1; 2.

Let us denote by K the C �-algebra of compact operators on the separable infinite
dimensional Hilbert space `2.N/ and C its commutative C �-subalgebra of diagonal oper-
ators. For two-sided topological conjugacy, the notion of .L1; L2/-conjugacy between
two-sided subshifts .ƒ1; �ƒ1/, .ƒ2; �ƒ2/ was introduced in [30,37]. It was proved in [37]
that .ƒ1; �1/ and .ƒ2; �2/ are .L1;L2/-conjugate if and only if there exists an isomor-
phism ẑ W OL1 ˝K ! OL2 ˝K of C �-algebras such that

ẑ .Dƒ1 ˝ C/ D Dƒ2 ˝ C ; ẑ ı .�L1
t ˝ id/ D .�L2

t ˝ id/ ı ẑ ; t 2 T :



K. Matsumoto 606

In [19], it was proved that �-synchronization is invariant under topological conjugacy
of two-sided subshifts. Hence if a normal subshiftƒ1 is topologically conjugate to another
subshiftƒ2, thenƒ2 is normal. We will first show the following theorems concerning one-
sided conjugacies.

Theorem 1.3. Let ƒ1 and ƒ2 be normal subshifts. Assume that their one-sided subshifts
.Xƒ1 ;�ƒ1/ and .Xƒ2 ;�ƒ2/ are topologically conjugate. Then there exists an isomorphism
ˆ W Oƒ1min ! Oƒ2min of C �-algebras such thatˆ.Dƒ1/DDƒ2 andˆ ı �ƒ1t D �ƒ2t ıˆ,
t 2 T .

Theorem 1.3 is a generalization of Cuntz–Krieger’s theorem [6, Proposition 2.17].
Related results are seen in [3, 4, 36], etc.

The following theorem is a generalization of the results for irreducible topological
Markov shifts in [36] (cf. [3, 4]).

Theorem 1.4. Let ƒ1 and ƒ2 be normal subshifts. Their one-sided subshifts .Xƒ1 ; �ƒ1/
and .Xƒ2 ; �ƒ2/ are eventually conjugate if and only if there exists an isomorphism ˆ W
Oƒ1min ! Oƒ2min of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �

ƒ2
t ı ˆ,

t 2 T .

The if part of Theorem 1.4 follows from a result in [37]. The proof of its only if part
is a main body in the second half of this paper. To prove the only if part, we provide
an auxiliary subshift written ƒ02 whose one-sided subshift Xƒ02 is topologically conjugate
toXƒ1 . We will then prove that there exists an isomorphism ofC �-algebrasˆ2 WOƒ02min!
Oƒ2min satisfying ˆ2.Dƒ02/ D Dƒ2 and ˆ2 ı �ƒ

0
2

t D �ƒ2t ıˆ2, t 2 T , so that we will
obtain Theorem 1.4 by using Theorem 1.3.

We will second show the following theorem concerning two-sided conjugacy, that is a
generalization of the case of topological Markov shifts proved by Cuntz–Krieger [6] and
Carlsen–Rout [5].

Theorem 1.5. Let ƒ1 and ƒ2 be normal subshifts. The two-sided subshifts .ƒ1; �ƒ1/
and .ƒ2; �ƒ2/ are topologically conjugate if and only if there exists an isomorphism ẑ W
Oƒ1min ˝K ! Oƒ2min ˝K of C �-algebras such that ẑ .Dƒ1 ˝ C/ D Dƒ2 ˝ C and
ẑ ı .�ƒ1t ˝ id/ D .�ƒ2t ˝ id/ ı ẑ , t 2 T .

The C �-algebraic characterizations of eventual conjugacy and topological conjugacy
appeared in Theorems 1.4 and 1.5 are rephrased in terms of the associated groupoids as
seen in [37, Theorem 1.3] and [37, Theorem 1.4], respectively.

We may apply the above theorems to irreducible sofic shifts. Let ƒ be an irreducible
sofic shift such thatƒ is infinite. Let GFƒ be its left Fischer cover graph, that is the unique
left-resolving irreducible minimal finite labeled graph that presentsƒ ([9], cf. [21]). Then
the C �-algebra Oƒmin is a simple purely infinite C �-algebra such that Oƒmin is isomorphic
to the Cuntz–Krieger algebra O yA for the transition matrix yA of the topological Markov
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shift defined by the Fischer coverGFƒ (Proposition 4.2). By Proposition 6.4, Theorems 1.4
and 1.5, we have the following result.

Corollary 1.6. Let ƒ1 and ƒ2 be two irreducible sofic shifts such that ƒi , i D 1; 2 are
infinite.

(i) Their one-sided sofic shifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are continuously orbit
equivalent if and only if there exists an isomorphism ˆ W Oƒ1min ! Oƒ2min of
simple C �-algebras such that ˆ.Dƒ1/ D Dƒ2 .

(ii) Their one-sided sofic shifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are eventually conjugate
if and only if there exists an isomorphism ˆ W Oƒ1min ! Oƒ2min of simple C �-
algebras such that ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �ƒ2t ıˆ, t 2 T .

(iii) Their two-sided sofic shifts .ƒ1;�ƒ1/ and .ƒ2;�ƒ2/ are topologically conjugate
if and only if there exists an isomorphism ẑ W Oƒ1min ˝K ! Oƒ2min ˝K of
simple C �-algebras such that ẑ .Dƒ1 ˝ C/DDƒ2 ˝ C and ẑ ı .�ƒ1t ˝ id/D
.�
ƒ2
t ˝ id/ ı ẑ , t 2 T .

We have to remark that in a recent paper [4] by Brix–Carlsen, similar results to the
present paper are seen. The C �-algebras treated by Brix–Carlsen are different from our
C �-algebras. In fact, their C �-algebras in [4] are not simple in many cases unless the
subshifts are irreducible shifts of finite type, whereas our C �-algebras in the present paper
are simple in many cases including infinite irreducible sofic shifts.

In what follows, the set of nonnegative integers and the set of positive integers are
denoted by ZC and N, respectively.

2. �-synchronization and normal subshifts

2.1. �-synchronization of subshifts

Let † be a finite set with its discrete topology. Denote by †Z (resp. †N) the set of bi-
infinite (resp. right one-sided) sequences of †. We endow †Z (resp. †N) with infinite
product topology, so that they are compact Hausdorff spaces. The shift homeomorphism
� W†Z!†Z is defined by �..xn/n2Z/D .xnC1/n2Z. A continuous surjection � W†N !
†N is similarly defined. Let ƒ � †Z be a closed � -invariant subset, that is, �.ƒ/ D ƒ.
We denote the restriction � jƒ of � toƒ by �ƒ. The topological dynamical system .ƒ;�ƒ/

is called a subshift over alphabet †. It is often written as ƒ for short. Let Xƒ be the set of
right infinite sequence .xn/n2N of† such that .xn/n2Z 2ƒ. The setXƒ is a closed subset
of †N such that �.Xƒ/D Xƒ. We similarly denote � jXƒ by �ƒ. The topological dynam-
ical system .Xƒ; �ƒ/ is called the right one-sided subshift for ƒ. For an introduction to
the theory of subshifts, we refer to text books of symbolic dynamical systems [13, 21].
For l 2 ZC, denote by Bl .ƒ/ the admissible words ¹.x1; : : : ; xl / 2 †l j .xn/n2Z 2 ƒº
of ƒ with its length l . Denote by B�.ƒ/ the set

S1
lD0 Bl .ƒ/ of admissible words of ƒ,

where B0.ƒ/ denotes the empty word. The length m of a word � D .�1; : : : ; �m/ is
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denoted by j�j. For two words � D .�1; : : : ; �m/; � D .�1; : : : ; �n/ 2 B�.ƒ/ denote
by �� the concatenation .�1; : : : ; �m; �1; : : : ; �n/. For � D .�1; : : : ; �m/ 2 B�.ƒ/
and x D .xn/n2N 2 Xƒ, we put �x D .�1; : : : ; �m; x1; x2; : : :/ 2 †N . For a word
� D .�1; : : : ; �m/ 2 Bm.ƒ/, the cylinder set U� � Xƒ is defined by

U� D
®
.xn/n2N 2 Xƒ j x1 D �1; : : : ; xm D �m

¯
:

For xD .xn/n2N 2Xƒ and k; l 2N with k� l , we put xŒk;l�D .xk ; : : : ;xl /2Bl�kC1.ƒ/,
xŒk;l/ D .xk ; : : : ; xl�1/ 2 Bl�k.ƒ/ and xŒk;1/ D .xk ; xkC1; : : :/ 2 Xƒ.

A subshift ƒ is said to be irreducible if for any �; � 2 B�.ƒ/, there exists a word
� 2 B�.ƒ/ such that ��� 2 B�.ƒ/ (cf. [21]). We note the following lemma. Although it
is well-known, the author has not been able to find a suitable reference, so that the proof
is given.

Lemma 2.1 (cf. [20, p. 142]). If a subshift ƒ is irreducible and the cardinality of ƒ is
infinite, then the subshift ƒ and its right one-sided subshift Xƒ are both homeomorphic
to a Cantor set.

Proof. We will show thatXƒ does not have any isolated point. Sinceƒ is irreducible, one
may find a point z 2Xƒ such that its orbit ¹�nƒ.z/ j n 2ZCº is dense inXƒ. For any point
x 2Xƒ and word� 2Bm.ƒ/with x 2U�, there exists n1 2ZC such that �n1ƒ .z/ 2U� As
¹�nƒ.�n1ƒ .z// j n2Nº is also dense inXƒ, there exists n2 2N such that �n2ƒ .�

n1
ƒ .z//2U�.

If �n2ƒ .�
n1
ƒ .z// D �n1ƒ .z/; then �n1ƒ .z/ is periodic, so that ¹�nƒ.z/ j n 2 ZCº is finite, and

Xƒ becomes a finite set, a contradiction. Therefore �n2Cn1ƒ .z/ ¤ �n1ƒ .z/, and hence U�
contains two distinct points �n2Cn1ƒ .z/, �n1ƒ .z/ so that x is not isolated. As Xƒ is totally
disconnected compact metric space, it is homeomorphic to a Cantor set. Similarly we can
prove that ƒ does not have any isolated points.

We define predecessor sets and follower sets of a word � 2 Bm.ƒ/ as follows:

��l .�/ D
®
� 2 Bl .ƒ/ j �� 2 BlCm.ƒ/

¯
;

�C
l
.�/ D ®� 2 Bl .ƒ/ j �� 2 BlCm.ƒ/¯

and ��� .�/ D
S1
lD0 ��l .�/, �

C� .�/ D
S1
lD0 �

C
l
.�/.

Following [19, 33, 34], a word � 2 B�.ƒ/ for l 2 ZC is said to be l-synchronizing if
the equality ��

l
.�/ D ��

l
.�!/ holds for all ! 2 �C� .�/. Let us denote by Sl .ƒ/ the set

of l-synchronizing words of ƒ, where S0.ƒ/ D B�.ƒ/.
Definition 2.2 ([19, 33, 34]). An irreducible subshift ƒ is said to be �-synchronizing if
for any word � 2 Bl .ƒ/ and positive integer k � l , there exists � 2 Sk.ƒ/ such that
�� 2 Sk�l .ƒ/.

It is shown in [19, 33, 34] that the following subshifts are �-synchronizing:

• irreducible shifts of finite type,

• irreducible sofic shifts,
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• synchronizing systems,

• Dyck shifts,

• Motzkin shifts,

• irreducible Markov–Dyck shifts,

• primitive substitution subshifts,

• ˇ-shifts for every ˇ > 1, etc.

There is an example of a coded system that is not �-synchronizing (cf. [19]).
Following [34], two admissible words �; � 2 B�.ƒ/ are said to be l-past equivalent if

��
l
.�/ D ��

l
.�/. In this case we write ��l�.

Definition 2.3. A �-synchronizing subshift ƒ is said to be �-transitive if for any two
admissible words �; � 2 Sl .ƒ/, there exists k�;� 2 N such that for any � 2 SlCk�;� .ƒ/
satisfying ��l�, there exists � 2 Bk�;� .ƒ/ such that ��l��.

In [19], the term “synchronized irreducible” was used for the above �-transitivity.

Definition 2.4. A subshiftƒ is said to be normal if it is �-synchronizing and its cardinal-
ity jƒj is not finite.

Hence the class of normal subshifts contains a lot of important nontrivial subshifts.

2.2. �-graph systems

A �-graph system L over alphabet† consists of a quadruple .V;E;�; �/, where .V;E;�/ is
a labeled Bratteli diagram with its vertex set V DSl2ZC Vl , edge set E DSl2ZC El;lC1
and labeling map � WE!†. For an edge e 2El;lC1, denote by s.e/ 2 Vl and t .e/ 2 VlC1
its source vertex and terminal vertex, respectively. The additional object � is a surjection
�.D �l;lC1/ W VlC1 ! Vl for each l 2 ZC. The quadruple .V; E; �; �/ is needed to satisfy
the following local property. Put for u 2 Vl�1 and v 2 VlC1,

E�l;lC1.u; v/ D
®
e 2 El;lC1 j t .e/ D v; �

�
s.e/

� D u¯;
El�1;l� .u; v/ D ®e 2 El�1;l j s.e/ D u; t.e/ D �.v/¯:

The local property requires a bijective correspondence preserving their labels between
E�
l;lC1.u; v/ and El�1;l� .u; v/ for every pair of vertices u, v. For k < l , we put

Ek;lD
®
.e1; : : : ; el�k/2Ek;kC1 � � � � �El�1;l j t .ei /Ds.eiC1/; i D 1; : : : ; l � k � 1

¯
:

A member of Ek;l is called a labeled path. For 
 D .e1; : : : ; el�k/ 2 Ek;l , we put s.
/ WD
s.e/ 2 Vk , t .
/ WD t .el�k/ 2 Vl and �.
/ WD .�.e1/; : : : ; �.el�k// 2 †l�k . For v 2 Vl ,
we put

��l .v/ D
®�
�.e1/; : : : ; �.el /

� 2 †l j .e1; : : : ; el / 2 E0;l ; t .el / D v¯: (2.1)

For a labeled path 
 2 Ek;l and a vertex v 2 Vk , if v D s.
/, then 
 is said to leave v.
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A �-graph system L is said to be predecessor-separated if ��
l
.v/ ¤ ��

l
.u/ for every

distinct pair u; v 2 Vl . A �-graph system L is said to be left-resolving if e; f 2 El;lC1
satisfy t .e/ D t .f /, �.e/ D �.f /, then e D f .

Let us denote by ƒL the two-sided subshift over †, whose admissible words B�.ƒL/

are defined by the set of words appearing in the finite labeled sequences in the labeled
Bratteli diagram .V; E; �/ of the �-graph system L D .V; E; �; �/. We say that a subshift
ƒ is presented by a �-graph system L or L presents ƒ if ƒ D ƒL.

Let G D .V ;E; �/ be a predecessor-separated left-resolving finite labeled graph over
alphabet † with finite vertex set V , finite edge set E and labeling � W E ! †. It naturally
gives rise to a �-graph system LG by setting Vl DV ,El;lC1 D E for all l 2ZC and �D id.
The presented subshift ƒLG

by the �-graph system LG is noting but the sofic shift ƒG

presented by the finite labeled graph G . A detailed study of �-graph systems can be found
in [24].

Definition 2.5 ([33]). Let L D .V;E; �; �/ be a �-graph system over †.

(i) L is said to be �-irreducible if for any two vertices u; v 2 Vl and a labeled path

 leaving u, there exist labeled paths � of length n and 
 0 such that s.�/ D v,
�n.t.�// D u, and s.
 0/ D t .�/, �n.t.
 0// D t .
/ and �.
 0/ D �.
/.

(ii) L is said to be �-irreducible if for any ordered pair u; v 2 Vl of vertices, there
exists L.u; v/ 2 N such that for any vertex w 2 VlCL.u;v/ satisfying

�L.u;v/.w/ D u;
there exists a labeled path 
 such that s.
/ D v and t .
/ D w.

Lemma 2.6. Let LD .V;E;�; �/ be a �-graph system that presents a subshiftƒ. Consider
the following three conditions.

(i) L is �-irreducible.

(ii) L is �-irreducible.

(iii) ƒ is irreducible.

Then we have (i))(ii))(iii).

Proof. (i))(ii): Assume that L is �-irreducible. Let u; v 2 Vl be two vertices and 

a labeled path leaving u, Take L.u; v/ 2 N satisfying the �-irreducibility condition in
Definition 2.5 (ii). Let k denote the length of the path 
 and u
 D t .
/ 2 VlCk . Take
u0 2 VlCkCL.u;v/ such that �L.u;v/.u0/D u
 . By the local property of �-graph system, one
may find w 2 VlCL.u;v/ and a labeled path 
 0 such that

�L.u;v/.w/ D u; s.
 0/ D w; t.
 0/ D u0:
By the �-irreducibility, there exists a labeled path � such that s.�/ D v, t .�/ D w.

(ii))(iii): The assertion comes from [34, Lemma 3.5].

Remark 2.7. (i) If L is a �-graph system LG associated to a left-resolving finite labeled
graph G , then the presented subshift ƒLG

by LG is a sofic shift defined by G . It is easy
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to see that for the �-graph system LG , all of the conditions (i), (ii) and (iii) in Lemma 2.6
are mutually equivalent.

(ii) Let ƒC be the coded system defined by the code C D ¹anbn j n D 1; 2; : : :º for
alphabet † D ¹a; bº (see [2]). Then the subshift ƒC has a synchronizing word ! D aba,
so that it is an irreducible synchronizing subshift. Hence ƒC is a �-synchronizing [19].
Let L�.ƒC / be its �-synchronizing �-graph system as in [34]. By [34, Lemma 3.6], irre-
ducibility of ƒC implies �-irreducibility, so that L�.ƒC / is �-irreducible. However, it is
not difficult to see that L�.ƒC / is not �-irreducible. Hence there is an example of �-graph
system such that the implication (ii))(i) above does not hold.

(iii) Let ƒev be the even shift, that is defined to be a sofic shift over ¹0; 1º whose
admissible words are

1

even‚…„ƒ
0 � � � 0 1:

Let Lƒev be the canonical �-graph system for ƒev (see [24]). The subshift ƒev is irre-
ducible, whereas Lƒev is not �-irreducible. Hence there is an example of �-graph system
such that the implication (iii))(ii) above does not hold.

2.3. �-synchronizing �-graph systems

Let L D .V; E; �; �/ be a �-graph system that presents a subshift ƒ. Let v 2 Vl and � 2
Bm.ƒ/,m 2 N. Following [33], we say that v launches � if the following two conditions
are both satisfied:

(i) There exists a labeled path 
 2 El;lCm such that s.
/ D v, �.
/ D �.

(ii) The word � does not leave any other vertex in Vl than v

The vertex v is called the launching vertex for �.

Definition 2.8 ([33]). A �-graph system L D .V;E; �; �/ is said to be �-synchronizing if
any vertex of V is a launching vertex for some word of ƒ.

A �-synchronizing �-graph system is �-irreducible if and only if the presented sub-
shift ƒ is irreducible [33, Proposition 3.7]. It was shown that if L is �-irreducible and
�-synchronizing, then the presented subshiftƒ is �-synchronizing. Conversely, as in [33],
one may construct a left-resolving, predecessor-separated �-irreducible �-synchronizing
�-graph system from a �-synchronizing subshift ƒ. We briefly review its construction.
Letƒ be a �-synchronizing subshift. Recall that Sl .ƒ/ denotes the set of l-synchronizing
words of ƒ. Denote by V �.ƒ/

l
the set of l-past equivalence classes of Sl .ƒ/, where

V
�.ƒ/
0 D ¹v0º a singleton. Let us denote by Œ��l the equivalence class of � 2 Sl .ƒ/.

For � 2 SlC1.ƒ/ and ˛ 2 ��1 .�/, an edge from Œ˛��l 2 V �.ƒ/l
to Œ��lC1 2 V �.ƒ/lC1 with

its label ˛ is defined. The set of such edges is denoted by E�.ƒ/
l;lC1. The labeling map from

E
�.ƒ/

l;lC1 to † is denoted by ��.ƒ/. As SlC1.ƒ/ � Sl .ƒ/, we have a natural map

��.ƒ/ W Œ��lC1 2 V �.ƒ/lC1 ! Œ��l 2 V �.ƒ/l
:
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The quadruplet .V �.ƒ/;E�.ƒ/;��.ƒ/; ��.ƒ// defines a left-resolving, predecessor-separated,
�-irreducible �-graph system that presents the subshift ƒ [33, Proposition 3.2]. The �-
graph system was denoted by L�.ƒ/ in [33, Proposition 3.2] and called the canonical
�-synchronizing �-graph system forƒ. The following proposition was proved in [33, The-
orem 3.9].

Proposition 2.9 ([33, Theorem 3.9]). Let ƒ be a �-synchronizing subshift. Then there
uniquely exists a left-resolving, predecessor-separated, �-irreducible, �-synchronizing �-
graph system that presents the subshift ƒ. The unique �-synchronizing �-graph system is
the canonical �-synchronizing �-graph system L�.ƒ/ for ƒ.

Lemma 2.10. Let ƒ be a �-synchronizing subshift.

(i) ƒ is irreducible if and only if L�.ƒ/ is �-irreducible.

(ii) ƒ is �-transitive if and only if L�.ƒ/ is �-irreducible.

Proof. (i) The assertion comes from [33, Proposition 3.7].
(ii) The equivalence between �-transitivity ofƒ and �-irreducibility of L�.ƒ/ is direct

by definition.

Definition 2.11 ([33]). A �-graph system L is said to be minimal if L has no proper
�-graph subsystem of L.

It was proved that for a �-synchronizing subshift ƒ, the canonical �-synchronizing
�-graph system L�.ƒ/ is minimal.

In what follows, for a �-synchronizing subshift ƒ, the canonical �-synchronizing �-
graph system L�.ƒ/ is denoted by Lmin

ƒ . Recall that a subshift ƒ is said to be normal if it
is �-synchronizing and its cardinality jƒj is not finite as a set. We call the �-graph system
Lmin
ƒ for a normal subshift ƒ the minimal presentation of a normal subshift ƒ. We often

write Lmin
ƒ D .V min; Emin; �min; �min/ or .V ƒ

min
; Eƒ

min
; �ƒ

min
; �ƒ

min
/.

2.4. Condition (I) for �-graph systems

Let L be a �-graph system over† andƒ the presented subshiftƒL. The condition (I) for a
�-graph system was introduced in [26] that yields uniqueness of certain operator relations
of canonical generators of the associated C �-algebra OL.

Definition 2.12. A �-graph system L is said to satisfy condition (I) if for any vertex
v 2 Vl , the follower set �C1.v/ of v defined by

�C1.v/ WD
®�
�.e1/; �.e2/; : : :

� 2 Xƒ j s.e1/ D v;
ei 2 ElCi�1;lCi ; t .ei / D s.eiC1/; i D 1; 2; : : :

¯

contains at least two distinct sequences.

In [23, Lemma 5.1], the following lemma is shown for the case of the canonical �-
graph system Lƒ for ƒ.
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Lemma 2.13 (cf. [23, Lemma 5.1]). Let L be a left-resolving �-graph system. Consider
the following three conditions:

(i) L satisfies condition (I).

(ii) For l 2ZC, v 2 Vl , .xn/n2N 2�C1.v/ andm2N, there exists .yn/n2N 2�C1.v/
such that

xj D yj for all j D 1; 2; : : : ; m and xN ¤ yN for some N > m:

(iii) For k; l 2 N with k � l , there exists y.i/ 2 �C1.vli / for each i D 1; 2; : : : ;m.l/
such that

�mƒ .y.i// ¤ y.j / for all i; j D 1; 2; : : : ; m.l/ and m D 1; 2; : : : ; k:

Then we have implications: (i),(ii))(iii). If in particular, L is the minimal �-graph
system Lmin

ƒ for a normal subshift ƒ, then the three conditions are all equivalent.

Proof. (i))(ii): For x D .�.en//n2N 2 �C1.vli /, put vlCmj D t .em/ 2 VlCm. Since
�C1.v

lCm
j / contains at least two distinct sequences, one may find y 2 �C1.vli / such that

xj D yj for all j D 1; 2; : : : ; m and xN ¤ yN for some N > m.
(ii))(i): The assertion is clear.
(ii))(iii): Take and fix k � l . We will first see that for a vertex vli 2 Vl ,

there exists y 2 �C1.vli / such that �nƒ.y/ ¤ y for 1 � n � k: (2.2)

Take x 2 �C1.vli /. If �ƒ.x/ D x, we may find y 2 �C1.vli / such that �ƒ.y/ ¤ y by the
assertion (ii). We may assume that �ƒ.x/¤ x. Now suppose that �nƒ.x/¤ x for all n 2N
with 1 � n � K for some K 2 N. We will show that

there exists y 2 �C1.vli / such that �nƒ.y/ ¤ y for 1 � n � K C 1:

Let x D .xi /i2N . As �nƒ.x/ ¤ x for all n 2 N with 1 � n � K, there exists kn 2 N such
that xkn ¤ xnCkn for each n 2 N with 1 � n � K. Put

M D max¹nC kn j n D 1; 2; : : : ; Kº

so that M � K C 1. Suppose that �KC1ƒ .x/ D x. By the condition (ii) for m DM , there
exists y D .yn/n2N 2 �C1.vli / such that

xj D yj for all j D 1; 2; : : : ;M; (2.3)

xN ¤ yN for some N > M: (2.4)

As xkn ¤ xnCkn for each n 2 N with 1 � n � K, the equality (2.3) implies ykn ¤ ynCkn
for all n with 1 � n � K. Hence we have

�nƒ.y/ ¤ y for 1 � n � K: (2.5)
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Now �KC1ƒ .x/D x so that xKC1Ci D xi for all i 2N. If �KC1ƒ .y/D y, the equality (2.3)
implies xj D yj for all j 2 N, a contradiction to (2.4). Hence we see that �KC1ƒ .y/ ¤ y
so that by (2.5), we obtain that �nƒ.y/¤ y for all n 2 N with 1 � n � K C 1 and thus the
assertion (2.2).

We will next show the following: for i D 1; 2; : : : ;m.l/ and k; l 2N with k � l , there
exists yli 2 �C1.vli / such that

�nƒ.y
l
j / ¤ yli for all i; j D 1; 2; : : : ; m.l/ and n D 1; 2; : : : ; k:

For i D 1, by (2.2), there exists yl1 2 �C1.vl1/ such that �nƒ.y
l
1/ ¤ yl1 for 1 � n � k.

By the condition (ii), it is easy to see that the set of �C1.vli / satisfying (2.2) for each
i D 1; 2; : : : ; m.l/ is infinite. We will show that for a fixed k � l ,

there exists yli 2 �C1.vli / for each i D 1; 2; : : : ; m � m.l/ such that

�nƒ.y
l
j / ¤ yli for all i; j D 1; 2; : : : ; m and n D 1; 2; : : : ; k (2.6)

by induction on m with 1 � m � m.l/.
As in the preceding argument, (2.6) holds for m D 1. Now assume that (2.6) holds for

all i � m. We will then prove that (2.6) holds for all i � mC 1. It is easy to see that the
set

Yi D
®
y 2 �C.vli / j �nƒ.y/ ¤ y for 1 � n � k¯

is infinite by the above argument. In particular, YmC1 is infinite. Take yli 2 �C1.vli / for
i D 1; 2; : : : ; m such that

�nƒ.y
l
j / ¤ yli for all i; j D 1; 2; : : : ; m and n D 1; 2; : : : ; k:

We may take and fix the above yli 2 �C1.vli / for i D 1; 2; : : : ;m by the induction hypoth-
esis. Consider the following set for the yli , i D 1; 2; : : : ; m:

Z D ®y 2 �C.vlmC1/ j �nƒ.ylj / D y for some j D 1; 2; : : : ; m and n D 1; 2; : : : ; k¯

[ ®y 2 �C.vlmC1/ j �nƒ.y/ D ylj for some j D 1; 2; : : : ; m and n D 1; 2; : : : ; k¯:
As Z is a finite set and YmC1 is an infinite set, the set YmC1 \ Zc is infinite. Hence we
may find an element ylmC1 2 YmC1 \Zc satisfying

�nƒ.y
l
mC1/ ¤ ylmC1; �nƒ.y

l
j / ¤ ylmC1; �nƒ.y

l
mC1/ ¤ ylj

for all j D 1; 2; : : : ;m and nD 1; 2; : : : ; k. Therefore the assertion (2.6) holds formC 1,
so that the induction completes. We thus obtain the assertion (iii).

(iii))(i): Assume that L is the minimal �-graph system Lmin
ƒ for a normal subshiftƒ.

Suppose that L does not satisfy condition (I), so that there exists a vertex vli 2 Vl such
that �C1.vli /D ¹yº a singleton for some y 2 Xƒ. Now we are assuming that L is minimal
and hence �-synchronizing, so that there exists N0 2 N such that vli launches yŒ1;N0�. Let



Simple purely infinite C�-algebras associated with normal subshifts 615

vlC1j 2 VlC1 be a vertex such that �.vlC1j /D vli . For any y0 2 �C1.vlC1j /, the local property
of �-graph system L ensures us that y0 2 �C1.vli / and hence y0 D y. Hence we have
�C1.v

lC1
j / D �C1.vli / whenever vlC1j 2 VlC1 with �.vlC1j / D vli . Since L is �-synchro-

nizing, y never leaves any other vertex than vlC1j in VlC1. Hence a vertex vlC1j 2 VlC1
satisfying �.vlC1j /D vli is unique. We may write j as i.l C 1/, so that �C1.v

lC1
i.lC1//D ¹yº.

Similarly we have a unique sequence of vertices vlCn
i.lCn/, n D 1; 2; : : : satisfying

vlCn
i.lCn/ 2 VlCn; �.vlCn

i.lCn// D vlCn�1i.lCn�1/ for n D 1; 2; : : : :

Now by the assumption (iii), we have �ƒ.y/ ¤ y, and hence there exists j1 D 1; 2; : : : ;
m.l C 1/ such that �ƒ.y/ 2 �C1.vlC1j1

/. Hence we have j1 ¤ i.l C 1/. As y D y1�ƒ.y/
and �C1.vli / D ¹yº, we have �C1.v

lC1
j1

/ D ¹�ƒ.y/º. Together with �C1.v
lC1
i.lC1// D ¹yº,

we have a contradiction to the condition (iii).

Proposition 2.14. Let Lmin
ƒ be the minimal presentation of a normal subshift ƒ. Then the

�-graph system Lmin
ƒ satisfies condition (I).

Proof. By Lemma 2.1,Xƒ is homeomorphic to a Cantor set. For vli 2 V min
l

, there exists an
l-synchronizing word � 2 Sl .ƒ/ for which vli launches �. Hence we have U� � �C1.vli /
the cylinder set for the word �. As Xƒ is homeomorphic to a Cantor set, the cylinder set
U� contains at least two points, so that Lmin

ƒ satisfies condition (I).

The following definition have been already introduced in previously published papers.
The first one was introduced in [28], that is stronger than condition (I) for �-graph system
in Definition 2.12. The second one was introduced in [19] that was named as synchroniz-
ing condition (I) [19, (5.1)].

Definition 2.15. (i) A �-graph system L is said to satisfy �-condition (I) if for any vertex
vli 2 Vl , there exists a vertex vL

0
j 2 VL0 for some L0 > l such that there exist labeled paths


1; 
2 in L satisfying

s.
1/ D s.
2/ D vli ; t .
1/ D t .
2/ D vL0j ; �.
1/ ¤ �.
2/:

(ii) A normal subshift ƒ is said to satisfy �-condition (I) if for any l 2 N and � 2
Sl .ƒ/, there exist �1; �2 2 Bk.ƒ/ and � 2 SlCK.ƒ/ for some K 2 N such that

�1; �2 2 ��K.�/; �1 ¤ �2; Œ�1��l D Œ�2��l D Œ��l :

The �-condition (I) for a normal subshift had been called synchronizing condition (I)
in [19]. Hence we know the following lemma that was already shown in [19].

Lemma 2.16 ([19, Lemma 5.1]). Let ƒ be a normal subshift. Then the following two
conditions are equivalent.

(i) ƒ satisfies the �-condition (I).

(ii) Lmin
ƒ satisfies the �-condition (I).
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3. Structure and simplicity of Oƒmin

3.1. The C �-algebras associated with �-graph systems

Following [26], let us recall the construction of the C �-algebra OL associated with a left-
resolving �-graph system L. The C �-algebra was first defined as a groupoid C �-algebra
C �.GL/ of an étale amenable groupoidGL defined by a continuous graphEL in the sense
of V. Deaconu (cf. [7, 8]). Let L D .V;E; �; �/ be a left-resolving �-graph system over †
and ƒ its presented subshift. The vertex set �L of the continuous graph is defined by the
compact Hausdorff space of the projective limit:

�L D
²
.ul /l2ZC 2

Y
l2ZC

Vl j �l;lC1.ulC1/ D ul ; l 2 ZC
³
:

of the system �l;lC1 W VlC1 ! Vl , l 2 ZC of continuous surjections. It is endowed by its
projective limit topology. We call each element of �L a vertex or an �-orbit. The contin-
uous graph EL for L is defined by the set of triplets .u; ˛; w/ 2 �L � † � �L where
u D .ul /l2ZC , w D .wl /l2ZC 2 �L such that there exists an edge el;lC1 2 El;lC1 satis-
fying

ul D s.el;lC1/; wlC1 D t .el;lC1/; and ˛ D �.el;lC1/ for each l 2 ZC

([26, Proposition 2.1], cf. [7, 8]). Let us denote by XL the set of one-sided paths of EL:

XL D
²
.˛i ; ui /i2N 2

Y
i2N

.† ��L/ j .u0; ˛1; u1/ 2 EL for some u0 2 �L

and .ui ; ˛iC1; uiC1/ 2 EL for all i 2 N

³
:

We endow XL with the relative topology from the infinite product topology of…i2N.†�
�L/, that makes XL a zero-dimensional compact Hausdorff space. The continuous sur-
jection of the shift map �L W .˛i ; ui /i2N 2XL! .˛iC1; uiC1/i2N 2XL is defined onXL.
Since the �-graph system L is left-resolving, it follows that �L is a local homeomorphism
on XL [26, Lemma 2.2]. Let us define a factor map

�L W .˛i ; ui /i2N 2 XL ! .˛i /i2N 2 †N :

The image �L.XL/ in †N is the shift space Xƒ of the one-sided subshift .Xƒ; �ƒ/ with
shift transformation �ƒ..˛i /i2N/ D .˛iC1/i2N . We then have �L ı �L D �ƒ ı �L.

For the shift dynamical system .XL; �L/, one may construct a locally compact étale
groupoid GL, called a Deaconu–Renault groupoid as in the following way. We put

GL D
®
.x; n; z/ 2 XL � Z �XL j there exist k; l 2 ZCI �kL.x/ D � lL.z/; n D k � l

¯

(cf. [7, 8, 44, 46, 47]). The unit space G0L D ¹.x; 0; x/ 2 GL j x 2 XLº is identified with
the space XL through the map x 2 XL ! .x; 0; x/ 2 G0L. The range map and the domain
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map of GL are defined by r.x; n; z/ D x and d.x; n; z/ D z for .x; n; z/ 2 GL. The
multiplication and the inverse operation are defined by .x; n; z/.z;m;w/D .x; nCm;w/
and .x; n; z/�1 D .z;�n; x/. An open neighborhood basis of GL is given by

Z.U; k; l; V / D ®.x; k � l; z/ 2 GL j x 2 U; z 2 V; �kL.x/ D � lL.z/
¯

for open setsU , V ofXL and k, l nonnegative integers such that �kLjU and � lLjV are home-
omorphisms with the same open range. We then have an étale amenable groupoid GL.
We will describe the construction of the groupoid C �-algebra C �.GL/ for the groupoid
GL as in the following way ([44, 46, 47], cf. [7, 8]). Let us denote by Cc.GL/ the set of
compactly supported continuous functions on GL that has a natural product structure and
�-involution of �-algebra given by

.f � g/.s/ D
X

t1;t22GL; sDt1t2
f .t1/g.t2/ D

X
t2GL; r.t/Dr.s/

f .t/g.t�1s/;

f �.s/ D f .s�1/ for f; g 2 Cc.GL/; s 2 GL:

Let us denote by C0.G0L/ the C �-algebra of continuous functions on G0L that vanish at
infinity. The algebra Cc.GL/ has a structure of C0.G0L/-right module with a C0.G0L/-
valued inner product by

.�f /.x; n; z/ D �.x; n; z/f .z/; h�; �i.z/ D
X

.x;n;z/2GL

�.x; n; z/�.x; n; z/;

for �; � 2 Cc.GL/, f 2 C0.G0L/, .x; n; z/ 2 GL, z 2 XL. The completion of the inner
product C0.G0L/-right module Cc.GL/ is denoted by `2.GL/, that is a Hilbert C �-right
module over the commutative C �-algebra C0.G0L/. Let us denote by B.`2.GL// the C �-
algebra of all bounded adjointable C0.G0L/-module maps on `2.GL/. Let � be the �-
homomorphism of Cc.GL/ intoB.`2.GL// defined by �.f /�D f � � for f;� 2Cc.GL/.
The (reduced) C �-algebra of the groupoid GL is defined by the closure of �.Cc.GL//

in B.`2.GL//, that we denote by C �r .GL/. General theory of C �-algebras of groupoids
says that for a Deaconu–Renault groupoid G, the reduced C �-algebra C �r .G/ and the
universal C �-algebra C �.G/ are canonically isomorphic and hence they are identified
(see for instance [45, Proposition 2.4]). We denote them by C �.G/.

Definition 3.1 ([26]). TheC �-algebra OL associated with a left-resolving �-graph system
L is defined to be the C �-algebra C �.GL/ of the groupoid GL.

The vertex set Vl at level l of L is denoted by ¹vl1; : : : ; vlm.l/º. For x D .˛n; un/n2N 2
XL, we put �.x/n D ˛n 2†, v.x/n D un 2�L for n 2N, respectively. The �-orbit v.x/n
is written as v.x/n D .v.x/ln/l2ZC 2 �L. Now L is left-resolving so that there exists a
unique vertex v.x/0 2�L satisfying .v.x/0; ˛1; u1/ 2 EL. Define U.˛/� GL for ˛ 2†,
and U.vli / � GL for vli 2 Vl by

U.˛/ D ®.x; 1; z/ 2 GL j �L.x/ D z; �.x/1 D ˛
¯
;
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and
U.vli / D

®
.x; 0; x/ 2 GL j v.x/l0 D vli

¯
where v.x/0 D .v.x/l0/l2ZC 2 �L. They are clopen sets of GL. We define

S˛ D �.�U.˛//; Eli D �.�U.vli // in �
�
Cc.GL/

�

where �F 2 Cc.GL/ stands for the characteristic function of a clopen set F on the
groupoid GL.

The transition matrix system .Al;lC1; Il;lC1/l2ZC for the �-graph system L deter-
mines the structure of the �-graph system L that are defined by

Al;lC1.i; ˛; j / D
8<
:
1 if there exists e 2 El;lC1I s.e/ D vli ; �.e/ D ˛; t.e/ D vlC1j ;

0 otherwise,

Il;lC1.i; j / D
8<
:
1 if �l;lC1.vlC1j / D vli ;
0 otherwise

for i D 1; 2; : : : ;m.l/, j D 1; 2; : : : ;m.l C 1/, ˛ 2†. More generally for vli 2 Vl , vlCnk
2

VlCn and � D .�1; : : : ; �n/ 2 Bn.ƒ/, we define

Al;lCn.i; �; k/ D
8<
:
1 if there exists 
 2 El;lCnI s.
/ D vli ; �.
/ D �; t.
/ D vlCnk

;

0 otherwise,

Il;lCn.i; k/ D
8<
:
1 if .�l;lC1 ı � � � ı �lCn�1;lCn/.vlCnk

/ D vli ;
0 otherwise

so that

Al;lCn.i; �; k/ D
X

j1;:::;jn�1
Al;lC1.i; �1; j1/ � � �AlCn�1;lCn.jn�1; �n; k/;

Il;lCn.i; k/ D
X

j1;:::;jn�1
Il;lC1.i; j1/ � � � IlCn�1;lCn.jn�1; k/:

For a vertex vli 2 Vl , denote by ��
l
.vli / the predecessor set of vli that is defined in (2.1)

as the set of words in Bl .ƒ/ that are realized by labeled edges in L whose terminal
is vli . Recall that L is predecessor-separated if ��

l
.vli / ¤ ��

l
.vlj / for distinct i; j D

1; 2; : : : ; m.l/. We had proved the following theorem.

Proposition 3.2 ([26, Theorem 3.6, Theorem 4.3, and Proposition 5.6]). Let L be a left-
resolving �-graph system. The C �-algebra OL is a universal unital C �-algebra generated
by partial isometries S˛ for ˛ 2 † and projections Eli for vli 2 Vl subject to the following
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relations called .L/:

X
ˇ2†

SˇS
�
ˇ D

m.l/X
iD1

Eli D 1; S˛S
�
˛E

l
i D Eli S˛S�˛

Eli D
m.lC1/X
jD1

Il;lC1.i; j /ElC1j ; S�˛E
l
i S˛ D

m.lC1/X
jD1

Al;lC1.i; ˛; j /ElC1j

for ˛ 2 †, i D 1; 2; : : : ; m.l/, l 2 ZC. If in particular L satisfies condition (I), then
any non-zero generators satisfying the above relations .L/ generate an isomorphic copy
of OL. Hence OL is a unique nuclear C �-algebra subject to the relations .L/ and belongs
to the UCT class if L satisfies condition (I). If in addition, L is �-irreducible, the C �-
algebra OL is simple and purely infinite [28].

Remark 3.3. (i) In [26], the notion of irreducibility of a left-resolving �-graph system
L had been defined so that if L satisfies condition (I) and is irreducible, the C �-algebra
OL is simple. The irreducibility is weaker than �-irreducibility. In a recent paper [40],
the two notions of transitivity and �-minimality of a left-resolving �-graph system were
introduced. As a result, the following four assertions under the condition (I)

(a) The �-graph system L is irreducible.

(b) The �-graph system L is transitive.

(c) The �-graph system L is �-minimal.

(d) The C �-algebra OL is simple.

were proved to be all equivalent [40, Theorem 1.1].
(ii) In [40], the notion of locally contracting �-graph system was introduced. It was

proved that if a left-resolving �-graph system L satisfying condition (I) is irreducible
and locally contracting, then the C �-algebra OL is simple and purely infinite [40, Theo-
rem 1.2].

If L is predecessor-separated, then the projections Eli are written by using the partial
isometries S˛; ˛ 2 † in the following way:

Eli D
Y

�2��
l
.vli /

S��S� �
Y

�2��
l
.vli /

c\Bl .ƒ/
.1 � S�� S�/; i D 1; 2; : : : ; m.l/ (3.1)

where S� denotes S�1 � � �S�m for �D .�1; : : : ;�m/ 2 B�.ƒ/. Hence the C �-algebra OL

is generated by the finite family S˛ , ˛ 2† of partial isometries. By the above relation .L/,
one sees that the algebra of finite linear combinations of the elements of the form

S�E
l
i S
�
� for �; � 2 B�.Xƒ/; i D 1; : : : ; m.l/; l 2 ZC

forms a dense �-subalgebra of OL. Let us denote by DL the C �-subalgebra of OL gen-
erated by the projections of the form S�E

l
i S
�
�, i D 1; 2; : : : ; m.l/, l 2 ZC, � 2 B�.ƒ/.
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We also know that the algebra DL is canonically isomorphic to the commutative C �-
algebra C.XL/ of continuous functions on XL. The C �-subalgebra of DL generated by
the projections of the form S�S

�
�, � 2 B�.ƒ/ is canonically isomorphic to the commuta-

tive C �-algebra C.Xƒ/ of continuous functions on the right one-sided subshift Xƒ, that
is written Dƒ.

Let us define several kinds of C �-subalgebras of OL that will be useful in our fur-
ther discussions. For a subset F � OL, we denote by C �.F / the C �-subalgebra of OL

generated by all elements of F . Let k; l 2 ZC with k � l . We define C �-subalgebras of
OL by

Al D C �
�
Eli W i D 1; 2; : : : ; m.l/

�
;

AL D C �
�
Eli W i D 1; 2; : : : ; m.l/; l 2 ZC

�
;

Dk;l D C �
�
S�E

l
i S
�
� W i D 1; 2; : : : ; m.l/; � 2 Bk.ƒ/

�
;

Dk;L D C �
�
S�E

l
i S
�
� W i D 1; 2; : : : ; m.l/; � 2 Bk.ƒ/; l 2 ZC

�
;

Fk;l D C �
�
S�E

l
i S
�
� W i D 1; 2; : : : ; m.l/; �; � 2 Bk.ƒ/

�
;

Fk;L D C �
�
S�E

l
i S
�
� W i D 1; 2; : : : ; m.l/; �; � 2 Bk.ƒ/; l 2 ZC

�
;

FL D C �
�
S�E

l
i S
�
� W i D 1; 2; : : : ; m.l/; �; � 2 Bk.ƒ/; k; l 2 ZC

�
:

As in the papers [19, 26, 33], etc., the C �-algebra OL has a natural action of the circle
group T D R=Z called gauge action written �L, that is defined by for t 2 T ,

�L
t .S˛/ D e2�

p�1tS˛; ˛ 2 †; �L
t .E

l
i / D Eli ; i D 1; : : : ; m.l/; l 2 ZC: (3.2)

The fixed point algebra of OL under �L is the AF-algebra FL with its diagonal alge-
bra DL. Let us define �L WDL!DL by �.X/DP˛2†S˛XS �̨,X 2DL. The restriction
of �L to Dƒ is denoted by �ƒ.

Lemma 3.4. Let L be a left-resolving �-graph system. Then the following two conditions
are equivalent:

(i) For k; l 2 N with k � l and i D 1; 2; : : : ; m.l/, there exists y.i/ 2 �C1.vli / for
each i D 1; 2; : : : ; m.l/ such that

�nƒ
�
y.i/

� ¤ y.j / for all i; j D 1; 2; : : : ; m.l/; n D 1; 2; : : : ; k: (3.3)

(ii) For k; l 2 N with k � l , there exists a projection ql
k
2 Dƒ such that

(1) ql
k
a ¤ 0 for all 0 ¤ a 2 Al ,

(2) ql
k
�nƒ.q

l
k
/ D 0 for n D 1; 2; : : : ; k.

Proof. (i))(ii): By the condition (i), take y.i/ 2 �C1.vli / for each i D 1; 2; : : : ; m.l/

satisfying (3.3). Put a finite subset of Xƒ

Y D ®y.i/ j i D 1; 2; : : : ; m.l/¯ � Xƒ:
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We then have ��nƒ .Y / \ Y D ; for all n D 1; 2; : : : ; k. Now Xƒ is Hausdorff so that
we may take a clopen set V � Xƒ such that Y � V and ��nƒ .V / \ V D ; for all n D
1; 2; : : : ; k. Define ql

k
D �V 2 C.Xƒ/.D Dƒ/ the characteristic function of V on Xƒ.

Since y.i/ 2 Y � V and y.i/ 2 �C1.vli / we have ql
k
� Eli ¤ 0. On the other hand, the

condition ��nƒ .V / \ V D ; for all n D 1; 2; : : : ; k ensures us ql
k
�nƒ.q

l
k
/ D 0 for n D

1; 2; : : : ; k. As the C �-subalgebra Al is the direct sum ˚m.l/iD1 CEli , we see that ql
k
a ¤ 0

for all 0 ¤ a 2 Al .
(ii))(i): Assume the condition (ii). For k; l 2 N with k � l , there exists a projection

ql
k
2 Dƒ satisfying the conditions (1) and (2). The condition (1) implies that ql

k
Eli ¤ 0

for all i D 1; 2; : : : ; m.l/. One may take a clopen set V � Xƒ such that ql
k
D �V and

hence

V \ �C1.vli / ¤ ; for i D 1; 2; : : : ; m.l/ and V \ ��nƒ .V / D ; for n D 1; 2; : : : ; k:

Take y.i/ 2 V \ �C1.vli / for each i D 1; 2; : : : ; m.l/, so that we have �nƒ.y.i// ¤ y.j /
for all i; j D 1; 2; : : : ; m.l/, n D 1; 2; : : : ; k. Thus the assertion (i) holds.

Since the condition (i) in the above lemma is the same as the condition (iii) in Lemma
2.13, the following lemma holds.

Lemma 3.5. Let L be a left-resolving �-graph system satisfying condition (I). Then for
k; l 2 N with k � l , there exists a projection ql

k
2 Dƒ such that

(1) ql
k
a ¤ 0 for all 0 ¤ a 2 Al ,

(2) ql
k
�nƒ.q

l
k
/ D 0 for n D 1; 2; : : : ; k.

Now we put Ql
k
WD �kƒ.qlk/ 2 Dƒ a projection in Dƒ. We note that each element of

DL commutes with elements of AL. As we see the identity

S��
j

L.X/ D �jCj�jL .X/S� for X 2 DL; � 2 B�.ƒ/; j 2 ZC;

where j�j denotes the length of the word �, a similar argument to [6, 2.9 Proposition]
leads to the following lemma, that was seen in [26, Lemma 4.2].

Lemma 3.6. Using the above notation, the following hold.

(i) The correspondence X 2 Fk;l ! Ql
k
XQl

k
2 Ql

k
Fk;lQ

l
k

extends to an isomor-
phism from Fk;l to Ql

k
Fk;lQ

l
k

.

(ii) For X 2 FL, we have

kQl
kX �XQl

kk ! 0 and kQl
kXk � kXk ! 0 as k; l !1:

(iii) For � 2 B�.ƒ/, we have kQl
k
S�k, kQl

k
S��Ql

k
k ! 0 as k; l !1.

The following lemma was seen in [37, Lemma 2.5] and [30, Lemma 6.5] without its
detail proofs. We will give its detail proof here, where D 0ƒ stands for the commutant of D .
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Lemma 3.7 (cf. [25, Lemma 3.1, Lemma 3.2]). Let L be a left-resolving �-graph system
satisfying condition (I).

(i) Dƒ
0 \OL � FL.

(ii) Dƒ
0 \ FL � DL.

Proof. (i) Let E W OL ! FL be the conditional expectation defined by

E.X/ D
Z

T
�L
t .X/dt X 2 OL

where dt denotes the normalized Lebesgue measure on T D R=Z. For X 2 Dƒ
0 \ OL,

we put
X� D E.S��X/; X�� D E.XS�/ for � 2 B�.ƒ/:

We will show that X� D X�� D 0 for � 2 B�.ƒ/ with j�j � 1. For f 2 Dƒ, we have

X�S�fS
�
� D E.S��XS�fS��/ D E.S��S�fS��X/ D E.fS��X/ D fX�:

It follows that

X��
j�j
L .f / D X�S�S��

X
�2Bj�j.ƒ/

S�fS
�
� D X�S�S��S�fS�� D fX�:

Now suppose that X� ¤ 0. For " > 0, there exist k; l 2 ZC with k � l and Xk;l 2 Fk;l
such that j�j � k and kX� � Xk;lk < ". We may assume that kX�k D kXk;lk D 1. We
then have for f 2 Dƒ,



fXk;l �Xk;l�j�jL .f /


 � 2kf k":

Now L satisfies condition (I), so that there exists a projectionQl
k

in Dƒ defined byQl
k
D

�kL.q
l
k
/ satisfying the previous lemma. By considering S�S�� Xk;lS�S

�
�

instead of Xk;l ,
we may suppose that Xk;l is of the form S�E

l
i S
�
� for some �; � 2 Bk.ƒ/. It then follows

that
Ql
kXk;l D

X
�2Bk.ƒ/

S�q
l
kS
�
� S�E

l
i S
�
� D S�qlkS�� S�Eli S�� D S�Eli qlkS��

and
Xk;lQ

l
k D S�Eli S��

X
�2Bk.ƒ/

S�q
l
kS
�
� D S�Eli S�� S�qlkS�� D S�Eli qlkS��

so that Ql
k

commutes with Xk;l . Hence we have



Xk;lQl
k �Xk;l�j�jL .Ql

k/


 D 

Ql

kXk;l �Xk;l�j�jL .Ql
k/


 � 2kQl

kk" D 2": (3.4)

As Ql
k
�
j�j
L .Ql

k
/ D �kL.qlk�j�jL .ql

k
// D 0, we have



Xk;lQl
k �Xk;l�j�jL .Ql

k/


 D max

®kXk;lQl
kk;



Xk;l�j�jL .Ql
k/


¯:
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Since the correspondence X 2 Fk;l !Ql
k
XQl

k
2Ql

k
Fk;lQ

l
k

extends to an isomorphism
from Fk;l to Ql

k
Fk;lQ

l
k

so that kXk;lQl
k
k D kXk;lk D 1. Hence we have



Xk;lQl
k �Xk;l�j�jL .Ql

k/


 � 1

a contradiction to (3.4). We thus have X� D 0 and similarly X�� D 0. This means that
X D E.X/ 2 FL.

(ii) For � 2 Bk.ƒ/, we put P� D S�S
�
� and define the map E l

k
W Fk;l ! Dk;l by

setting E l
k
.X/ DP

�2Bk.ƒ/ P�XP� for X 2 Fk;l . Since the restriction of E lC1
k

to Fk;l

coincides with E l
k

, the sequence ¹E l
k
ºk�l gives rise to an expectation EL

k
W Fk;L ! Dk;L

for k 2 N. Similarly the above sequence ¹EL
k
ºk2N of expectations yields an expectation

EL W FL ! DL such that the restriction of EL to Fk;L coincides with EL
k

for k 2 N.
For X 2DL

0 \FL, we know that EL
k
.X/D X for k 2 N, so that EL.X/D X . Since

EL.X/ 2 DL, we have EL.X/ 2 DL.

We thus have the following proposition.

Proposition 3.8 (cf. [25, Lemma 3.1, Lemma 3.2]). Let L be a left-resolving �-graph
system satisfying condition (I). Then we have

Dƒ
0 \OL D DL:

Proof. The inclusion relation Dƒ
0 \ OL � DL is obvious. For X 2 Dƒ

0 \ OL by the
assertions (i) and (ii) in Lemma 3.7, we know that X belongs to FL and DL so that
Dƒ
0 \OL � DL.

3.2. The C �-algebras associated with normal subshifts

For a normal subshift ƒ, denote by Lmin
ƒ its minimal presentation.

Definition 3.9. The C �-algebra Oƒmin associated with the normal subshift ƒ is defined
by the C �-algebra OLmin

ƒ
associated with the minimal �-graph system Lmin

ƒ .

Let .Amin
l;lC1; I

min
l;lC1/l2ZC be the transition matrix system for the minimal �-graph sys-

tem Lmin
ƒ that is defined before Proposition 3.2. Then we have the following proposition.

Proposition 3.10. The C �-algebra Oƒmin is the universal concrete unique C �-algebra
generated by partial isometries S˛ indexed by symbols ˛ 2 † and projections Eli indexed
by vertices vli 2 V min

l
subject to the following operator relations called .Lmin

ƒ /:

1 D
X
˛2†

S˛S
�
˛ D

m.l/X
iD1

Eli ; S˛S
�
˛E

l
i D Eli S˛S�˛ ;

Eli D
m.lC1/X
jD1

Imin
l;lC1.i; j /E

lC1
j ; S�˛E

l
i S˛ D

m.lC1/X
jD1

Amin
l;lC1.i; ˛; j /E

lC1
j

for ˛ 2 †, i D 1; 2; : : : ; m.l/.
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Proof. By Proposition 2.14, the �-graph system Lmin
ƒ satisfies condition (I) so that we

know that the C �-algebra Oƒmin is the universal concrete unique C �-algebra generated by
partial isometries S˛ indexed by symbols ˛ 2 † and projections Eli indexed by vertices
vli 2 Vl subject to the operator relations .Lmin

ƒ /.

We thus have the following theorem, that was already seen in [19, 33].

Theorem 3.11. Let ƒ be a normal subshift.

(i) If ƒ is �-transitive, then the C �-algebra Oƒmin is simple.

(ii) If ƒ is �-transitive and satisfies the �-condition (I), then the C �-algebra Oƒmin

is simple and purely infinite.

Proof. (i) The assertion was already seen in [19, 33].
(ii) By Lemma 2.16, the �-graph system Lmin

ƒ satisfies the �-condition (I). By [28], the
C �-algebra Oƒmin is simple and purely infinite.

The following lemma is useful in our further discussions.

Lemma 3.12 ([33, Proposition 3.3]). Let ƒ be a normal subshift. For a vertex vli 2 V min
l

in Lmin
ƒ , there exists � 2 Sl .ƒ/ such that Eli � S�S�� in Oƒmin . That is, if vli launches �,

the inequality Eli � S�S�� holds.

The above algebraic property of the C �-algebra Oƒmin characterizes the C �-algebra
OL to be Oƒmin .

We note that the minimal �-graph system Lmin
ƒ is predecessor-separated, so that the

projectionsEli are written in terms of the partial isometries S˛;˛ 2† as in (3.1). Hence the
C �-algebra Oƒmin is generated by only the finite family of the partial isometries S˛;˛ 2†.

We will see that irreducible sofic shifts ƒ such that ƒ is not finite as a set satisfy the
condition (ii) in the above theorem. We will study more detail in Section 4.

Recall that the C �-algebras DLmin
ƒ

and Dƒ are both commutative C �-subalgebras of
Oƒmin defined by

DLmin
ƒ
D C ��S�Eli S�� W � 2 B�.ƒ/; i D 1; 2; : : : ; m.l/; l 2 ZC

�
;

Dƒ D C �
�
S�S

�
� W � 2 B�.ƒ/

�
:

The former is isomorphic to C.XLmin
ƒ
/, and the latter is isomorphic to C.Xƒ/. The natural

factor map �L W XLmin
ƒ
! Xƒ induces the inclusion

Dƒ

� D C.Xƒ/� � DLmin
ƒ

� D C.XLmin
ƒ
/
�
:

Since the minimal �-graph system Lmin
ƒ of a normal subshift ƒ satisfies condition (I) by

Proposition 2.14, we have the following proposition.

Proposition 3.13. Letƒ be a normal subshift and Lmin
ƒ be its minimal presentation. Then

we have
Dƒ
0 \Oƒmin D DLmin

ƒ
:
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4. Irreducible sofic shifts

Let ƒ be an irreducible sofic shift over alphabet †. An irreducible sofic shit is defined by
using an irreducible finite directed labeled graph. It is realized as a factor of an irreducible
shift of finite type. The class of irreducible sofic shifts includes the class of irreducible
shifts of finite type (see [9,13,15,16,21,49], etc.). It is shown in [19,33,34] that irreducible
sofic shifts are �-synchronizing. LetGFƒ D .V Fƒ ;EFƒ ; �Fƒ/ be its irreducible left-resolving
predecessor-separated finite labeled graph over † that presents ƒ, where .V Fƒ ; E

F
ƒ / is

a finite directed graph with vertex set V Fƒ and edge set EFƒ , and �Fƒ W EFƒ ! † is a
labeling map. It is well-known that such a finite labeled graph always exists for ƒ. It
is minimal and unique up to graph isomorphism [9, 21]. The labeled graph is called the
minimal left-resolving presentation of an irreducible sofic shift, or the left Fischer cover.
Let V Fƒ D ¹v1; : : : ; vN º and EFƒ D ¹e1; : : : ; eM º. We will first define a labeled Bratteli
diagram .V; E; �/ over † as follows. Let V0 D ¹v0º a singleton, and Vl D ¹v1; : : : ; vN º
for l 2 N. Let E0;1 D ¹f 01 ; : : : ; f 0M º such that

s.f 0i / D v0; t .f 0i / D t .ei /; �.f 0i / D �F .ei / for i D 1; 2; : : : ;M;
and El;lC1 D ¹f l1 ; : : : ; f lM º for l 2 N such that

s.f li / D s.ei /; t.f li / D t .ei /; �.f li / D �F .ei / for i D 1; 2; : : : ;M:
For vi 2 V1, put let ��1 .vi / be its predecessor set for the vertex vi , that is defined by

��1 .vi / D
®
�.f 0n / 2 † j t .f 0n / D vi

¯
; i D 1; 2; : : : ; N:

If ��1 .vi / D ��1 .vj /, then the two vertices vi and vj are identified with each other in
V1, and we have a new vertex set written V F1 . The sources ¹s.f 01 /; : : : ; s.f 0M /º of edges
¹f 01 ; : : : ;f 0M º are identified following the identification in V1, so that we obtain a new edge
set written EF0;1. Similarly, for vi ; vj 2 V2, if ��2 .vi / D ��2 .vj /, then the two vertices vi
and vj are identified in V2, and the sources ¹s.f 11 /; : : : ; s.f 1M /º of edges ¹f 11 ; : : : ; f 1M º are
identified following the identification in V2, so that we obtain a new edge set written EF1;2.
Like this way, we continue this procedure to get new vertex sets V F

l
, l D 0; 1; 2; : : : and

edge sets EF
l;lC1, l D 0; 1; 2; : : : : Since ƒ is sofic and the original labeled graph GFƒ D

.V Fƒ ; E
F
ƒ ; �

F
ƒ/ is predecessor-separated, there exists K 2 N such that ��

k
.vi / ¤ ��k .vj /

in Bk.ƒ/ for all k � K and i; j D 1; 2; : : : ; N with i ¤ j , so that we have

V Fl D Vl .D V Fƒ /; EFl;lC1 D El;lC1.D EFƒ / for all l � K:
We thus have a labeled Bratteli diagram .V F

l
; EF

l;lC1; �
F
l;lC1/l2ZC over †. Let us denote

by ¹vl1; : : : ; vlm.l/º the vertex set V F
l

. Since ��
lC1.vi / D ��

lC1.vj / implies ��
l
.vi / D

��
l
.vj /, we have a natural surjective map V F

lC1! V F
l

written �F
lC1;l for l �K. For l �K,

the identity map V F
lC1 ! V F

l
written �F

lC1;l is defined. We thus have a �-graph system

LFƒ D .V F ; EF ; �F ; �F /
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that presents the original sofic shiftƒ. As the original labeled graphGFƒ D .V Fƒ ;EFƒ ; �Fƒ/
is minimal, left-resolving and hence predecessor-separated, our �-graph system LFƒ is
left-resolving and predecessor-separated and presents ƒ. And also, every vertex vi of the
directed graph GFƒ has a word � such that any directed labeled path labeled � in GFƒ
must leave the vertex vi (cf. [21, Proposition 3.3.17]), so that every vertex of the �-graph
system LFƒ launches some word (see [34, Section 3]). Therefore the �-graph system LFƒ
is �-synchronizing. Asƒ is irreducible, LFƒ is �-irreducible by Lemma 2.10 (i). Hence LFƒ
is nothing but the minimal �-graph system Lmin of ƒ. Therefore we have the following
proposition.

Proposition 4.1. For an irreducible sofic shift ƒ, let Lmin D .V min; Emin; �min; �min/ be
the minimal �-graph system for ƒ. Let GFƒ D .V F ; EF ; �F / be its Fischer cover graph
for ƒ. Then there exists L 2 N such that

V min
l D V Fƒ ; Emin

l;lC1 D EFƒ ; �min D �Fƒ ; �minjV min
l
D id

for all l � L.

By the previous proposition, we can identify the minimal �-graph system Lmin of an
irreducible sofic shiftƒwith the left Fischer cover ofƒ. Letƒ be an irreducible sofic shift
such that ƒ is not finite as a set, so that ƒ is a normal subshift. Let GFƒ D .V Fƒ ; EFƒ ; �Fƒ/
be its left Fischer cover graph with vertex set V Fƒ D ¹v1; : : : ; vN º. Consider the following
matrix:

A.i; ˛; j / D
´
1 if there exists e 2 EFƒ I �Fƒ.e/ D ˛; s.e/ D vi ; t .e/ D vj ;
0 otherwise.

(4.1)

Let S˛ , ˛ 2 † and Ei , i D 1; 2; : : : ; N be partial isometries and projections respectively
satisfying the following operator relations:

1 D
X
˛2†

S˛S
�
˛ D

NX
iD1

Ei ; S˛S
�
˛Ei D EiS˛S�˛ ; S�˛EiS˛ D

NX
jD1

A.i; ˛; j /Ej (4.2)

for ˛ 2 †, i D 1; 2; : : : ; N . Let us denote by OGFƒ
the universal C �-algebra generated by

S˛; ˛ 2 † and Ei , i D 1; 2; : : : ; N satisfying the above relations. We put

y† D ®.˛; i/ 2 † � ¹1; 2; : : : ; N º j there exists e 2 EFƒ I �Fƒ.e/ D ˛; t.e/ D vi
¯
:

For .˛; i/; .ˇ; j / 2 y†, by using the matrix A given by (4.1), we define a matrix

yA�.˛; i/; .ˇ; j /� D
NX
kD1

A.k; ˛; i/A.i; ˇ; j /: (4.3)

Since the labeled graphGFƒ is left-resolving, the .˛; i/; .ˇ;j /-entry yA..˛; i/; .ˇ;j // of the
matrix yA is one or zero. Let us denote by O yA the Cuntz–Krieger algebra for the matrix yA.
We then have the following proposition.
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Proposition 4.2. Let ƒ be an irreducible sofic shift such that ƒ is infinite. Then the C �-
algebra Oƒmin of the minimal presentation Lmin

ƒ of �-graph system for the irreducible sofic
shift ƒ is a simple purely infinite C �-algebra that is isomorphic to the Cuntz–Krieger
algebra O yA for yA defined by (4.3) for its left Fischer cover graph GFƒ D .V Fƒ ; EFƒ ; �Fƒ/.
Proof. By the universality and the uniqueness of the C �-algebra Oƒmin for the canonical
generating partial isometries S˛; ˛ 2 † and projections Eli , i D 1; 2; : : : ; m.l/, l 2 ZC
subject to the relations .Lmin

ƒ / as in Proposition 3.10, the C �-algebra Oƒmin is canonically
isomorphic to the above C �-algebra OGFƒ

.
We will henceforth show that OGFƒ

is isomorphic to the Cuntz–Krieger algebra O yA.
Let S˛ , ˛ 2 † and Ei , i D 1; 2; : : : ; N be partial isometries and projections respectively
satisfying the operator relations (4.2). For .˛; i/ 2 y†, put S.˛;i/ D S˛Ei . We then have

X
.˛;i/2y†

S.˛;i/S
�
.˛;i/ D

X
˛2†

NX
iD1

S˛EiS
�
˛ D 1:

As S �̨S˛ D
PN
kD1 S �̨EkS˛ D

PN
kD1

PN
jD1A.k; ˛; j /Ej ; we have

S�.˛;i/S.˛;i/ D Ei
 

NX
kD1

NX
jD1

A.k; ˛; j /Ej

!
Ei D

NX
kD1

A.k; ˛; i/Ei : (4.4)

Since S�
ˇ
EiSˇ D

PN
jD1A.i; ˇ; j /Ej , we have

Ei D
X
ˇ2†

NX
jD1

A.i; ˇ; j /SˇEjS
�
ˇ D

X
.ˇ;j /2y†

A.i; ˇ; j /S.ˇ;j /S
�
.ˇ;j /: (4.5)

By (4.4) and (4.5), we thus obtain

S�.˛;i/S.˛;i/ D
NX
kD1

A.k; ˛; i/
� X
.ˇ;j /2y†

A.i; ˇ; j /S.ˇ;j /S
�
.ˇ;j /

�

D
X

.ˇ;j /2y†

NX
kD1

A.k; ˛; i/A.i; ˇ; j /S.ˇ;j /S
�
.ˇ;j /

D
X

.ˇ;j /2y†
yA�.˛; i/; .ˇ; j /�S.ˇ;j /S�.ˇ;j /:

Hence the C �-algebra C �.S.˛;i/I .˛; i/ 2 y†/ generated by S.˛;i/; .˛; i/ 2 y† is isomorphic
to the Cuntz–Krieger algebra O yA for the matrix yA. By (4.5), we have

Ei D
X

.ˇ;j /2y†
A.i; ˇ; j /S.ˇ;j /S

�
.ˇ;j /; S˛ D

NX
iD1

S˛Ei D
NX
iD1

S.˛;i/
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so that S˛ , Ei are generated by S.˛;i/, .˛; i/ 2 y†. We thus have

C �.S˛; Ei I ˛ 2 †; i D 1; 2; : : : ; N / D C �
�
S.˛;i/I .˛; i/ 2 y†

�

and hence OGFƒ
D O yA.

5. Other examples of normal subshifts

In this section, other examples of normal subshifts than irreducible sofic shifts and their
C �-algebras will be presented.

5.1. Dyck shifts

For a positive integer N > 1, the Dyck shift DN of order N was introduced by W.
Krieger [14], related to Dyck language in formal language theory in computer science
(cf. [11]). Consider an alphabet

† D †C t†� where †� D ¹˛1; : : : ; ˛N º; †C D ¹ˇ1; : : : ; ˇN º:

Following [14], the Dyck inverse monoid for † is the inverse monoid defined by the
product relations: ˛i ǰ D 1 if i D j , otherwise ˛i ǰ D 0, for i; j D 1; : : : ;N . The symbol
1 plays a rôle of empty word such that ˛i1 D 1˛i D ˛i , ǰ 1 D 1 ǰ D ǰ . By the product
structure, a word !1 � � � !n of † is defined to be admissible if the reduced word of the
product !1 � � � !n in the monoid is not 0. The Dyck shift written DN is defined to be
the subshift over alphabet † whose admissible words are the admissible words in this
sense. It is well-known that the subshift DN is not sofic for every N > 1. It is shown
in [19] that the Dyck shiftDN is �-synchronizing and hence normal. Its minimal �-graph
system Lmin

DN
D .V min; Emin; �min; �min/ was already studied in [18], in which the minimal

�-graph system Lmin
DN

was called the Cantor horizon �-graph system written LCh.DN /. Let
us briefly review its construction.

Let ƒN be the two-sided full N -shift over ¹1; 2; : : : ; N º. Let

V min
l WD ®ˇ�1 � � �ˇ�l 2 .†C/l j �1 � � ��l 2 Bl .ƒN /

¯
(5.1)

and the mapping �min W V min
lC1 ! V min

l
is defined by

�.ˇ�1 � � �ˇ�lˇ�lC1/ D ˇ�1 � � �ˇ�l for ˇ�1 � � �ˇ�lˇ�lC1 2 V min
lC1:

Define a labeled edge labeled j̨ from ˇ�1 � � � ˇ�l 2 V min
l

to ˇ�0ˇ�1 � � � ˇ�l 2 V min
lC1

precisely if �0 D j . Define a labeled edge labeled ǰ from ǰˇ�1 � � � ˇ�l�1 2 V min
l

to
ˇ�1 � � �ˇ�lˇ�lC1 2 V min

lC1. Such edges are denoted by Emin
l;lC1. We then have a �-graph sys-

tem presenting the Dyck shift DN . It is the minimal left-resolving presentation and hence
it is the minimal �-graph system Lmin

DN
(cf. [33]). Since the subshift DN is �-irreducible

satisfying �-condition (I), we have the following proposition.
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Proposition 5.1 ([18, 29, 33]). The C �-algebra ODmin
N

associated with the minimal �-
graph system Lmin

DN
for the Dyck shift DN is simple and purely infinite.

The K-groups of the algebra ODmin
N

was computed in the following way:

K0.ODmin
N
/ Š Z=NZ˚ C.C;Z/; K1.ODmin

N
/ Š 0

where C.C;Z/ denotes the abelian group of Z-valued continuous functions on a Cantor
set C [18, 33].

5.2. Markov–Dyck shifts

The class of Markov–Dyck shifts contains the class of Dyck shifts. It is a natural general-
ization of Dyck shifts as the class of topological Markov shifts contains the class of full
shifts. LetAD ŒA.i; j /�Ni;jD1 be anN �N square matrix with entries in ¹0;1º. We assume
that the matrix is irreducible satisfying condition (I) in the sense of Cuntz–Krieger [6]. The
Markov–Dyck shift DA for the matrix A is defined by using the canonical generating par-
tial isometries of the Cuntz–Krieger algebra OA in the following way. Let s1; : : : ; sN be
the canonical generating partial isometries of the Cuntz–Krieger algebra OA that satisfies
the relations:

1 D
NX
jD1

sj s
�
j ; s�i si D

NX
jD1

A.i; j /sj s
�
j ; i D 1; 2; : : : ; N:

Similarly to the Dyck shift, we consider the alphabet

† D †C t†� where †� D ¹˛1; : : : ; ˛N º; †C D ¹ˇ1; : : : ; ˇN º:
Let y̨i D s�i , y̌i D si , i D 1; 2; : : : ;N . We say that a word 
1 � � �
n of† for 
1; : : : ; 
n 2†
is forbidden if y
1 � � � y
n D 0 in the algebra OA. The Markov–Dyck shift DA for the matrix
A is defined by the subshift over alphabet † by the forbidden words. These kinds of
subshifts first appeared in [17] by using certain semigroups. More general setting was
studied in [10]. The above definition by using generators of C �-algebras was seen in [32]
(cf. [35]). If all entries of A are one’s, then the product structure of y̨i , y̌i , i D 1; 2; : : : ;N
goes to that of the Dyck inverse monoid, so that the Markov–Dyck shift DA coincides
with the Dyck shift DN .

For any irreducible matrixAwith entries in ¹0;1º satisfying condition (I), the Markov–
Dyck shiftDA is not sofic [32]. It is always �-synchronizing and hence normal. Hence we
have its minimal �-graph system Lmin

DA
for DA. The �-graph system was studied in [18]

in which it was called the Cantor horizon �-graph system and written LCh.DA/. Let ƒA
denotes the shift space

ƒA D
®
.xn/n2Z 2 ¹1; : : : ; N ºZ j A.xn; xnC1/ D 1 for all n 2 Z

¯

of the two-sided topological Markov shift defined by the matrix A. We denote by Bl .ƒA/
the set of admissible words of ƒA with its length l . The vertex set V min

l
at level l of the
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minimal �-graph system Lmin
DA

is defined by

V min
l WD ®ˇ�1 � � �ˇ�l 2 .†C/l j �1 � � ��l 2 Bl .ƒA/

¯
:

The mapping �min W V min
lC1! V min

l
is similarly defined to the minimal �-graph system Lmin

DN

of the Dyck shift by deleting its rightmost symbol of words in V min
lC1. A labeled edge labeled

j̨ from ˇ�1 � � � ˇ�l 2 V min
l

to ˇ�0ˇ�1 � � � ˇ�l 2 V min
lC1 is defined precisely if �0 D j . A

labeled edge labeled ǰ from ǰˇ�1 � � �ˇ�l�1 2V min
l

to ˇ�1 � � �ˇ�lˇ�lC1 2V min
lC1 is defined.

Such edges are denoted byEmin
l;lC1. We then have a �-graph system presenting the Markov–

Dyck shift DA. It is the minimal left-resolving presentation and hence it is the minimal
�-graph system Lmin

DA
(cf. [33]). Since the matrixA is irreducible and satisfies condition (I),

the subshift DA is �-irreducible satisfying �-condition (I), so that we have the following
proposition.

Proposition 5.2 ([18, 33]). The C �-algebra ODmin
A

associated with the minimal �-graph
system LDmin

A
for the Makov–Dyck shift DA is simple and purely infinite.

K-group formulas for the C �-algebras ODmin
A

were studied in [32].

5.3. Motzkin shifts

Motzkin language appears in automata theory as well as Dyck language [11]. The Motzkin
shifts are non sofic subshifts associated with the Motzkin language (cf. [27]). For a positive
integerN > 1, similarly to the Dyck shift, we consider the alphabet†D†C t†� where
†� D ¹˛1; : : : ; ˛N º, †C D ¹ˇ1; : : : ; ˇN º and the Dyck inverse monoid for †C t †�
as in previous paragraphs. The Dyck inverse monoid is defined by the product relations:
˛i ǰ D 1 if i D j , otherwise ˛i ǰ D 0, for i; j D 1; : : : ;N . Let us consider a new alphabet
set †1 defined by

†1 D †C [†� [ ¹1º:
The Motzkin shift MN of order N is defined to be a subshift over †1 such that a word

1 � � � 
n of †1 is forbidden precisely if 
1 � � � 
n D 0. As seen in [27], the subshift MN

is �-synchronizing and hence normal. Its minimal �-graph system Lmin
MN

was described as
the Cantor horizon �-graph system written LCh.MN / in [27]. Let V min

l
be the vertex set

defined by (5.1). The mapping � W V min
lC1! V min

l
is similarly defined as in the case of Dyck

shifts. Labeled edges labeled symbols in † from V min
l

to V min
lC1 are defined in a similar

way to Dyck shifts. In addition to the labeled edges above, an additional labeled edge
labeled 1 from ˇ�1 � � � ˇ�l 2 V min

l
to ˇ�1 � � � ˇ�lˇ�lC1 2 V min

lC1 is defined for every pair
ˇ�1 � � � ˇ�l 2 V min

l
and ˇ�1 � � � ˇ�lˇ�lC1 2 V min

lC1. We then have a �-graph system that is
the minimal �-graph system Lmin

MN
for the Motzkin shift MN . Since the �-graph system

Lmin
MN

contains the minimal �-graph system Lmin
DN

of the Dyck shift DN as a subsystem,
Lmin
MN

is �-irreducible and satisfies the �-condition (I). Therefore we have the following
proposition.

Proposition 5.3 ([27]). The C �-algebra OMmin
N

associated with the minimal �-graph sys-
tem Lmin

MN
for the Motzkin shift MN is simple and purely infinite.



Simple purely infinite C�-algebras associated with normal subshifts 631

The K-groups of the algebra OMmin
N

was computed in [27] for the case ofN D 2. As in
the paper [27], the strategy to compute Ki .OMmin

N
/, i D 1; 2 works well for general OMmin

N
,

N D 2; 3; : : :, so that we have:

K0.OMmin
N
/ Š C.C;Z/; K1.OMmin

N
/ Š 0

where C.C;Z/ denotes the abelian group of Z-valued continuous functions on a Cantor
set C [27].

5.4. ˇ-shifts

The ˇ-shift for real number ˇ > 1 was first introduced in [43, 48]. It is an interpolation
between full shifts, simultaneously one of natural generalization of full shifts. For a real
number ˇ > 1, take a natural numberN such thatN � 1 < ˇ �N . Let fˇ W Œ0; 1�! Œ0; 1�

be the mapping fˇ .x/ D ˇx � Œˇx� for x 2 Œ0; 1�, where Œt � is the integer part of t 2 R.
Let † D ¹0; 1; : : : ; N � 1º. The ˇ-expansion of x 2 Œ0; 1� is a sequence di .x; ˇ/, i 2 N
of † defined by

di .x; ˇ/ D
�
f̌ i�1ˇ .x/

�
; i 2 N;

so that we know that x DP1
iD1

di .x;ˇ/

ˇ i
. We endow †N with the lexicographical order.

Put �ˇ D supx2Œ0;1/.di .x; ˇ//i2N . Define the one-sided subshift Xƒˇ by setting

Xƒˇ D
®
! 2 †N j � i .!/ � �ˇ ; i 2 ZC

¯
;

where � i .!/ D .!nCi /n2N for ! D .!n/n2N . Its two-sided extension ƒˇ is defined by

ƒˇ D
®
.!n/n2Z 2 †Z j .!nCk/n2N 2 Xƒˇ ; k 2 Z

¯
:

Suppose �ˇ D .�1; �2; : : :/ and let

b�1����k D ˇk � �1ˇk�1 � �2ˇk�2 � � � � � �k�1ˇ � �k :
It is shown in [1, Section 4] (cf. [12, Proposition 3.8]) that

(i) ƒˇ is a full shift if and only if b�1 D 1.

(ii) ƒˇ is a shift of finite type if and only if b�1����k D 1 for some k � 1.

(iii) ƒˇ is a sofic subshift if and only if b�1����l D b�1����m for some l ¤ m.

Hence ƒˇ is not sofic unless ˇ is an algebraic integer. It is shown in [19] that the ˇ-shift
ƒˇ is �-synchronizing for every ˇ, so that it is normal. In [12], the C �-algebra Oˇ of
the ˇ-shiftƒˇ was studied (cf. [22]). The C �-algebra Oˇ is indeed the C �-algebra OLmin

ƒˇassociated with the minimal �-graph system Lmin
ƒˇ

of the subshift ƒˇ .
We will briefly review the construction of Lmin

ƒˇ
done in [12]. For l 2 N, order the

real numbers ¹b�1 ; b�1�2 ; : : : ; b�1�2����l º by its usual order in R. They give rise to dis-
joint intervals partitioned by ¹b�1 ; b�1�2 ; : : : ; b�1�2����l º in Œ0; 1�. Let m.l/ be the number
of the partitions in .0; 1�. If ƒˇ is sofic, there exist L and l0 such that m.l/ D L for
all l > l0. If ƒˇ is not sofic, then m.l/ D l C 1 for all l . Let vl1; : : : ; v

l
m.l/

be the ordered
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set of the disjoint partitions of .0; 1�. The order is defined along the usual order in R.
We denote by V min

l
the set ¹vl1; : : : ; vlm.l/º. Suppose that vli corresponds to the interval

.b�1����q ; b�1����p � with b�1����q < b�1����p . For �pC1 2 †, we define the labeled edge labeled
�pC1 from vli to the vertices vlC1j 2 V min

lC1 corresponding to the partitions contained in
the interval .b�1����q�pC1 ; b�1����p�pC1 �. For 0 � ˛ < �pC1 with ˛ 2 †, we define the labeled
edge labeled ˛ from vli to the vertices vlC1j 2 V min

lC1 corresponding to the partitions con-
tained in the interval .b�1����q˛; 1�. Such edges are written Emin

l;lC1. We define the map

�min W V min
lC1 ! V min

l
by setting �.vlC1j / D vli if the interval in .0; 1� corresponding to vlC1j

is contained in the interval in .0; 1� corresponding to vlC1i . The resulting labeled Brat-
teli diagram becomes a �-graph system. It is not difficult to see that the �-graph system
is �-synchronizing and hence minimal (cf. [19]). The C �-algebra Oˇ studied in [12] is
generated by a finite family S0; S1; : : : ; SN�1 of partial isometries corresponding to the
letters of †. For an admissible word � 2 B�.ƒˇ /, put a� D S��S�. It was proved in [12]
that there exists a unique KMS-state written ' for gauge action on Oˇ (cf. [12]). It is also
shown in [12] that

'.a�1�2����k / D b�1�2����k ; k 2 N:

By [12, Corollary 3.2], we see for ˛ 2 †

S�˛a�1����nS˛ D

8̂
<̂
ˆ̂:
0 ˛ > �nC1;
a�1����nC1 ˛ D �nC1;
1 ˛ < �nC1:

(5.2)

Since the projections in the commutative C �-algebra Aˇ generated by the projections of
the form a�;�2B�.ƒˇ / is generated by the projection of the formEli WD b�1����p � b�1����q ,
the relation (5.2) tells us that the C �-algebra Oƒmin

ˇ
associated with the minimal �-graph

system Lmin
ƒˇ

is canonically isomorphic to the C �-algebra Oˇ studied in [12]. We therefore
have the following proposition.

Proposition 5.4 ([12, Theorems 3.6 and 4.12]). The C �-algebra Oƒmin
ˇ

of the ˇ-shift ƒˇ
is simple and purely infinite for each 1 < ˇ 2 R and

K0.Oƒmin
ˇ
/ D

8̂
<̂
ˆ̂:

Z=.�1 C � � � C �m � 1/Z if d.1; ˇ/ D �1�2 � � � �m P0;
Z=.�1 C � � � C �k/Z if d.1; ˇ/ D �1 � � � �l P�1 � � � P�k ;
Z otherwise,

K1.Oƒmin
ˇ
/ D ¹0º for any ˇ > 1;

where P0 D 00 � � � ; P�1 � � � P�k D �1 � � � �k�1 � � � �k � � � mean the recurring words.

Remark 5.5. It was shown that the KMS-state for the gauge action on Oˇ is unique at the
inverse temperature logˇ, which is the topological entropy for the ˇ-shiftƒˇ [12]. Hence
two subshifts ƒˇ ; ƒˇ 0 are topologically conjugate if and only if ˇ D ˇ0.
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6. Continuous orbit equivalence

In this section, we will discuss continuous orbit equivalence of normal subshifts. Let
L1, L2 be left-resolving �-graph systems and .ƒ1; �ƒ1/, .ƒ2; �ƒ2/ their associated two-
sided subshifts, respectively. In [37], the notion of .L1;L2/-continuous orbit equivalence
between their one-sided subshifts .Xƒ1 ; �ƒ1/, .Xƒ2 ; �ƒ2/ was introduced in the follow-
ing way.

Definition 6.1 ([37, Definition 4.1], [30, Section 6]). Let L1; L2 be left-resolving �-
graph systems. Then their one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are said to be
.L1;L2/-continuously orbit equivalent if there exist two homeomorphisms hL W XL1 !
XL2 and hƒ W Xƒ1 ! Xƒ2 and continuous functions ki ; li W XLi ! ZC, i D 1; 2 such
that �L2 ı hL D hƒ ı �L1 and

�
k1.x/

L2

�
hL

�
�L1.x/

�� D � l1.x/L2

�
hL.x/

�
; x 2 XL1 ;

�
k2.y/

L1

�
h�1L

�
�L2.y/

�� D � l2.y/L1

�
h�1L .y/

�
; y 2 XL2 :

We first show the following lemma.

Lemma 6.2. Let L1;L2 be left-resolving �-graph systems satisfying condition (I) and
.ƒ1; �ƒ1/, .ƒ2; �ƒ2/ their associated two-sided subshifts, respectively. Suppose that one-
sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-continuously orbit equivalent. If
ƒ1 is a normal subshift and L1 is its minimal presentation of ƒ1, then ƒ2 is also normal
and L2 is its minimal presentation.

Proof. Assume that .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-continuously orbit equiva-
lent and L1 is the minimal presentation of the normal subshift ƒ1. By [37, Theorem 1.2],
there exists an isomorphism ˆ W OL1 ! OL2 of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 .
Now L1 D Lmin

ƒ1
, so that we may write OL1 D Oƒ1min . Let S1˛ ; E

1l
i and S2˛ ; E

2l
i be the

canonical generators of the C �-algebras Oƒ1min and OL2 ; respectively. By Proposition 3.8,
the condition ˆ.Dƒ1/ DDƒ2 implies ˆ.DL1/ DDL2 . Hence for a vertex v2li in L2 and
the corresponding projection E2li 2DL2 , we haveˆ�1.E2li / 2DL1 . We may find a word
� 2 B�.ƒ1/ and a vertex v1lj in L1 such that

ˆ�1.E2li / � S1�E1lj S1�� ; S1�� S
1
� � E1lj :

Since ƒ1 is normal, there exists a word � 2 B�.ƒ1/ such that E1lj � S1�S1�� by [33,
Proposition 3.3], so that

S1�E
1l
j S

1�
� � S1�S1�S1�� S1�� ¤ 0:

Hence we have
E2li � ˆ.S1��S1��� /: (6.1)
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Since ˆ.Dƒ1/ D Dƒ2 , one may find � 2 B�.ƒ2/ such that

ˆ.S1��S
1�
�� / � S2�S2�� : (6.2)

By (6.1), (6.2), we have
E2li � S2�S2�� :

This implies that the vertex v2li in L2 launches � by [33, Proposition 3.3] so that the �-
graph system L2 is �-synchronizing. Therefore we conclude that the subshiftƒ2 is normal
and L2 is its minimal presentation.

Now the following definition seems to be reasonable.

Definition 6.3. Let .ƒ1; �1/ and .ƒ2; �2/ be normal subshifts. Their one-sided sub-
shifts .Xƒ1 ; �1/ and .Xƒ2 ; �2/ are said to be continuously orbit equivalent if they are
.Lmin
ƒ1
;Lmin

ƒ2
/-continuously orbit equivalent.

Therefore we know the following proposition.

Proposition 6.4 ([37, Theorem 1.2]). Let .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ be normal subshifts.
Then the following two assertions are equivalent:

(i) Their one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are continuously orbit
equivalent.

(ii) There exists an isomorphism ˆ W Oƒ1min ! Oƒ2min of C �-algebras such that
ˆ.Dƒ1/ D Dƒ2 .

We note the following proposition.

Proposition 6.5. Let .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ be normal subshifts such that their one-
sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are continuously orbit equivalent.

(i) .Xƒ1 ; �ƒ1/ is a shift of finite type if and only if .Xƒ2 ; �ƒ2/ is a shift of finite
type.

(ii) .Xƒ1 ; �ƒ1/ is a sofic shift if and only if .Xƒ2 ; �ƒ2/ is a sofic shift.

Proof. The minimal presentations Lmin
ƒ1

, Lmin
ƒ2

of ƒ1, ƒ2 are written L1, L2, respectively.
(i) It is easy to see that a normal subshift ƒ is a shift of finite type if and only if

Dƒ D DLmin
ƒ

. Now there exists an isomorphism ˆ W Oƒ1min ! Oƒ2min of C �-algebras
such thatˆ.Dƒ1/DDƒ2 . Since DLmin

ƒ
DD 0ƒ \Oƒmin for a normal subshiftƒ, we know

that DL1 D Dƒ1 if and only if DL2 D Dƒ2 . Hence .Xƒ1 ; �ƒ1/ is a shift of finite type if
and only if .Xƒ2 ; �ƒ2/ is a shift of finite type.

(ii) Suppose that .Xƒ1 ;�ƒ1/ is sofic. As in Section 4, the dynamical system .XL1 ;�L1/

is a shift of finite type. We know that the class of shifts of finite type is preserved under
continuous orbit equivalence by the above discussion (i). By definition, the shift of finite
type .XL1 ; �L1/ is continuously orbit equivalent to .XL2 ; �L2/ as shifts of finite type
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Figure 1. Left Fischer covers of ƒ0 and ƒ1.

u3u2

u1

w3w2

w1

Figure 2. Transition graphs for the left Fischer covers of ƒ0 and ƒ1.

We then have the associated transition graphs for GF
ƒ0

and GF
ƒ1

, respectively. They are
shown in Figure 2. Their transition matrices are denoted by yA0 and yA1, respectively. They
are written

yA0 D
2
40 1 1

1 0 0

0 1 1

3
5 ; yA1 D

2
40 1 1

1 0 0

1 0 0

3
5 :

Let s1, s2, s3 and t1, t2, t3 be the generating partial isometries of the Cuntz–Krieger alge-
bras O yA0

and O yA1
, respectively. They satisfy the following operator relations:

3X
iD1

si s
�
i D 1; s�

1 s1 D s2s
�
2 C s3s

�
3 ; s�

2 s2 D s1s
�
1 ; s�

3 s3 D s2s
�
2 C s3s

�
3 ;

3X
iD1

ti t
�
i D 1; t�1 t1 D t2t

�
2 C t3t

�
3 ; t�2 t2 D t1t

�
1 ; t�3 t3 D t1t

�
1 :

Proposition 6.8. There exists an isomorphismˆ W O yA0
! O yA1

of Cuntz–Krieger algebras
such that

ˆ.D yA0
/ D D yA1

; ˆ
�
C.Xƒ0/

� D C.Xƒ1/;

where D yAi
D C.X yAi

/, i D 0; 1.

Figure 1. Left Fischer covers of ƒ0 and ƒ1.

(cf. [31]). Hence .XL2 ; �L2/ is a shift of finite type. As there exists a factor map

�2 W XL2 ! Xƒ2

such that �2 ı �L2 D �ƒ2 ı �2, we see that .Xƒ2 ; �ƒ2/ is a sofic shift by [49].

Proposition 6.6. Let .ƒi ; �ƒi /, i D 1;2 be sofic shifts andGFƒi , i D 1;2 be its left Fischer
cover graphs. Let us denote by yAi , i D 1; 2 the transition matrices of the graphs GFƒi ,
i D 1; 2. Let �i W X yAi ! Xƒi , i D 1; 2 be the natural factor maps from the shifts of
finite type X yAi to the sofic shifts Xƒi , i D 1; 2. Then the following three assertions are
equivalent.

(i) Their one-sided sofic shifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are continuously orbit
equivalent.

(ii) The shifts of finite type .X yA1 ; � yA1/ and .X yA2 ; � yA1/ are continuously orbit equiv-
alent via a homeomorphism h yA W X yA1 ! X yA2 such that there exists a homeo-
morphism hƒ W Xƒ1 ! Xƒ2 satisfying �2 ı h yA D hƒ ı �1.

(iii) There exists an isomorphism ˆ W O yA1 ! O yA2 of Cuntz–Krieger algebras such
that ˆ.C.Xƒ1// D C.Xƒ2/; where C.Xƒi / is embedded into C.X yAi / � O yAi
through the factor maps �i W X yAi ! Xƒi , i D 1; 2.

Proof. Since the topological dynamical systems .XLƒi
; �Lƒi

/ are the shifts of finite type
.X yAi ; � yAi /, i D 1; 2, the assertions are direct from the previous discussions.

We will give an example (cf. [4, Example 6.15]).

Example 6.7. Let ƒ0 and ƒ1 be the even shift over the alphabet ¹0; 1º and the odd shift
over the alphabet ¹0; 1º, respectively. Their forbidden words F�.ƒ0/ are F�.ƒ1/ are
defined by

F�.ƒ0/ D ¹102nC11 j n 2 ZCº; F�.ƒ1/ D ¹102n1 j n 2 ZCº

where 10k1D 1
k‚…„ƒ

0 � � � 0 1 for kD 2nC 1, 2n. It is well-known that the subshiftsƒ0,ƒ1 are
both sofic shifts. Their left Fischer covers GFƒ0 , GFƒ1 are shown in Figure 1, respectively.
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We then have the associated transition graphs for GF
ƒ0

and GF
ƒ1

, respectively. They are
shown in Figure 2. Their transition matrices are denoted by yA0 and yA1, respectively. They
are written

yA0 D
2
40 1 1

1 0 0

0 1 1

3
5 ; yA1 D

2
40 1 1

1 0 0

1 0 0

3
5 :

Let s1, s2, s3 and t1, t2, t3 be the generating partial isometries of the Cuntz–Krieger alge-
bras O yA0

and O yA1
, respectively. They satisfy the following operator relations:

3X
iD1

si s
�
i D 1; s�

1 s1 D s2s
�
2 C s3s

�
3 ; s�

2 s2 D s1s
�
1 ; s�

3 s3 D s2s
�
2 C s3s

�
3 ;

3X
iD1

ti t
�
i D 1; t�1 t1 D t2t

�
2 C t3t

�
3 ; t�2 t2 D t1t

�
1 ; t�3 t3 D t1t

�
1 :

Proposition 6.8. There exists an isomorphismˆ W O yA0
! O yA1

of Cuntz–Krieger algebras
such that

ˆ.D yA0
/ D D yA1

; ˆ
�
C.Xƒ0/

� D C.Xƒ1/;

where D yAi
D C.X yAi

/, i D 0; 1.

Figure 2. Transition graphs for the left Fischer covers of ƒ0 and ƒ1.

We write ˛ D 0, ˇ D 1 for the alphabet ¹0; 1º. To describe the transition matrices for
the Fischer cover graphs GFƒ0 , GFƒ1 , consider the new alphabet sets y†0, y†1 by setting

y†0 WD
®
.˛; v1/; .˛; v2/; .ˇ; v1/

¯
; y†1 WD

®
.˛; v1/; .˛; v2/; .ˇ; v2/

¯
;

and put

u1 WD .˛; v1/; u2 WD .˛; v2/; u3 WD .ˇ; v1/ in y†0;
w1 WD .˛; v1/; w2 WD .˛; v2/; w3 WD .ˇ; v2/ in y†1:

We then have the associated transition graphs for GFƒ0 and GFƒ1 , respectively. They are
shown in Figure 2. Their transition matrices are denoted by yA0 and yA1, respectively. They
are written

yA0 D
2
40 1 1

1 0 0

0 1 1

3
5 ; yA1 D

2
40 1 1

1 0 0

1 0 0

3
5 :

Let s1, s2, s3 and t1, t2, t3 be the generating partial isometries of the Cuntz–Krieger alge-
bras O yA0 and O yA1 , respectively. They satisfy the following operator relations:

3X
iD1

sis
�
i D 1; s�1 s1 D s2s�2 C s3s�3 ; s�2 s2 D s1s�1 ; s�3 s3 D s2s�2 C s3s�3 ;

3X
iD1

ti t
�
i D 1; t�1 t1 D t2t�2 C t3t�3 ; t�2 t2 D t1t�1 ; t�3 t3 D t1t�1 :

Proposition 6.8. There exists an isomorphismˆ WO yA0!O yA1 of Cuntz–Krieger algebras
such that

ˆ.D yA0/ D D yA1 ; ˆ
�
C.Xƒ0/

� D C.Xƒ1/;
where D yAi D C.X yAi /, i D 0; 1.

Proof. Put s01 D t1, s02 D t2, s03 D t3t1. They are partial isometries in O yA1 satisfying

s01s
0�
1 C s02s0�2 C s03s0�3 D 1; s0�1 s

0
1 D s02s0�2 C s03s0�3 ;

s0�2 s
0
2 D s01s0�1 ; s0�3 s

0
3 D s02s0�2 C s03s0�3 :
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Since t3 D s03s0�1 , by putting ˆ.si / D s0i , i D 1; 2; 3, ˆ extends an isomorphism from O yA0
to O yA1 . For an admissible word � of the shift of finite type .ƒ yA0 ; � yA0/ defined by the

matrix yA0, denote by z� an admisible word of .ƒ yA1 ; � yA1/ defined by substituting

1! 1; 2! 2; 3! 31:

It is direct to see that the equalityˆ.s�s��/D tz�t�z� holds. Hence we haveˆ.D yA0/DD yA1 .
We will next show thatˆ.C.Xƒ0//DC.Xƒ1/. Define the partial isometries by setting

S˛ WD s1 C s2; Sˇ WD s3 in O yA0 and T˛ WD t1 C t2; Tˇ WD t3 in O yA1 :

It is easy to see that the equalities

ˆ.S˛/ D T˛; ˆ.Sˇ / D Tˇ˛ and ˆ�1.T˛/ D S˛; ˆ�1.Tˇ / D SˇS�˛
hold. For � 2 B�.ƒ0/, let x� be the admissible word of ƒ1 by substituting

˛ ! ˛; ˇ ! ˇ˛

in �. Then we have ˆ.S�S�� / D Tx�T �x� . As C.Xƒ0/ and C.Xƒ1/ are generated by projec-
tions S�S�� , � 2 B�.ƒ0/ and T�T �� , � 2 B�.ƒ1/, respectively, we know that

ˆ
�
C.Xƒ0/

� D C.Xƒ1/:
Corollary 6.9. The even shift .Xƒ0 ; �ƒ0/ and the odd shift .Xƒ1 ; �ƒ1/ are continuously
orbit equivalent to each other.

Remark 6.10. Keep the above notation for S˛ , Sˇ and T˛ , Tˇ with ˛ D 0, ˇ D 1. Let
us denote by C �.S˛; Sˇ / the C �-subalgebra of O yA0 generated by the partial isometries
S˛; Sˇ . It is easy to see that the identities

s1 D S�˛S�ˇSˇS˛S˛; s2 D S˛ � S�˛S�ˇSˇS˛S˛; s3 D Sˇ
hold, so that the C �-subalgebra C �.S˛; Sˇ / coincides with O yA0 . Similarly we know the
identities

t1 D T �ˇ TˇT˛; t2 D T˛ � T �ˇ TˇT˛; t3 D Tˇ
so that the C �-subalgebra C �.T˛; Tˇ / coincides with O yA1 .

7. One-sided topological conjugacy

In what follows, a sliding bock code means a shift commuting continuous map between
subshifts. Such a map is always given by a block map (see for instance [21]).

In this section, we will prove that the triplet .Oƒmin ;Dƒ; �
ƒ/ for a normal subshift

ƒ is invariant under topological conjugacy of one-sided subshifts, where �ƒ denotes the
gauge action �Lmin

ƒ on Oƒmin defined in (3.2). For a left-resolving �-graph system L, let
us denote by ƒ the associated subshift. Recall from Section 3 that there exists a natural
factor map �L W XL ! Xƒ such that �L ı �L D �ƒ ı �L that is defined in Section 3.
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Definition 7.1 ([30,37]). Let L1 and L2 be left-resolving �-graph systems with associated
subshiftsƒ1 andƒ2, respectively. The one-sided subshifts .Xƒ1 ;�ƒ1/ and .Xƒ2 ;�ƒ2/ are
said to be .L1;L2/-conjugate if there exist topological conjugacies

hL W .XL1 ; �L1/! .XL2 ; �L2/ and hƒ W .Xƒ1 ; �ƒ1/! .Xƒ2 ; �ƒ2/

such that �L2 ı hL D hƒ ı �L1 .

Equivalently, there exist homeomorphisms hL W XL1 ! XL2 and hƒ W Xƒ1 ! Xƒ2
such that ´

hL

�
�L1.x/

� D �L2

�
hL.x/

�
; x 2 XL1 ;

h�1L

�
�L2.y/

� D �L1

�
h�1L .y/

�
; y 2 XL2 ;

(7.1)

and
�L2 ı hL D hƒ ı �L1 : (7.2)

We remark that the equalities (7.1) and (7.2) automatically imply the equalities
´
hƒ
�
�ƒ1.a/

� D �ƒ2�hƒ.a/�; a 2 Xƒ1 ;
h�1ƒ

�
�ƒ2.b/

� D �ƒ1�h�1ƒ .b/
�
; b 2 Xƒ2 :

(7.3)

We note that if one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-conjugate,
they are .L1;L2/-eventually conjugate in the sense of [37] and in the sense of the follow-
ing section ((8.1)).

Lemma 7.2. Let Lmin
ƒ1

and Lmin
ƒ2

be the minimal �-graph systems for normal subshifts ƒ1
and ƒ2, respectively. Assume that there exists a topological conjugacy h W Xƒ1 ! Xƒ2 .
Then there exists L 2 N such that for any l 2 N and a word � 2 Sl .ƒ1/, there exists a
word z� 2 Sl .ƒ2/ with jz�j D j�j C L such that

(i) for � 2 ��
l
.z�/ and y 2 �C1.z�/, the equality h�1.�z�y/ŒlC1;lCj�j� D � holds,

(ii) there exists 
 2 �C2L.�/ such that for � 2 ��
l
.�/, x 2 �C1.��
/, the equality

h.��
x/ŒlC1;lCj�jCL� D z� holds, so that h.�
x/Œ1;j�jCL� D Q�.

Proof. Let ƒ1; ƒ2 be normal subshifts over alphabets †1; †2, respectively. Since h W
Xƒ1 ! Xƒ2 is a topological conjugacy, there exist L 2 N and block maps

' W BLC1.ƒ1/! †2; � W BLC1.ƒ2/! †1;

such that

h D 'Œ0;L�1 W Xƒ1 ! Xƒ2 and h�1 D �Œ0;L�1 W Xƒ2 ! Xƒ1

where 'Œ0;L�1 ..xn/n2N/D .'.xn; : : : ;xLCn//n2N and �Œ0;L�1 is similarly defined (see [21]).
Let � 2 Sl .ƒ1/ with �D .�1; : : : ; �m/. Since h�1 W Xƒ2 ! Xƒ1 is a sliding block code,
there exists an admissible word z� D .z�1; : : : ; z�j�jCL/ 2 Bj�jCL.ƒ2/ such that

�n D �.z�n; : : : ; z�nCL/; n D 1; 2; : : : ; m:
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Suppose that y; y0 2 �C1.z�/ and � 2 ��
l
.z�y/. Hence we have h�1.�z�y/ 2 Xƒ1 such

that h�1.�z�y/ŒlC1;lCj�j� D �. Take � 2 Bl .ƒ1/ such that h�1.�z�y/ D �h�1.z�y/. Since
h�1.z�y/ D �z for some z 2 �C1.�/, we have h�1.�z�y/ D ��z, so that we have � 2
��
l
.�z/.
Let h�1.z�y0/D �z0 for some z0 2 �C1.�/. As � 2 Sl .ƒ1/, the condition � 2 ��

l
.�z/

implies � 2 ��
l
.�z0/, so that ��z0 2Xƒ1 . As h.��z/D �z�y, we see h.��/Œ1;l� D �. Now

z�y0 D h.�z0/ so that we have

h.��z0/ D h.��/Œ1;l�h.�z0/ D �z�y0:

Hence we have � 2 ��
l
.z�y0/. This implies that ��

l
.z�y/ D ��

l
.z�y0/ so that we conclude

that z� 2 Sl .ƒ2/. One may find 
 D .
1; : : : ; 
2L/ 2 �C2L.�/ such that h.�
x/Œ1;j�jCL� D
z� for any x 2 �C1.�
/. Hence h.��
x/ŒlC1;lCj�jCL� D z� holds for � 2 ��

l
.�/, x 2

�C1.��
/. Since h ı �ƒ1 D �ƒ2 ı h, we know that h.�
x/Œ1;j�jCL� D Q�.

Lemma 7.3. For � 2 Sl .ƒ1/, let z� 2 Sl .ƒ2/ be as above. For 
 0 2 �C2L.�/, put z�0 WD
h.��
 0x0/ŒlC1;lC�jCL� 2 Sl .ƒ2/ for some � 2 ��

l
.�/, x0 2 �C1.��
 0/. Then z��l z�0 in

Sl .ƒ2/. Hence the l-past equivalence class of z� does not depend on the choice of 
 and
x as long as ��
x 2 Xƒ1 .

Proof. We first note that Q�0 D h.�
 0x0/Œ1;j�jCL�. For � 2 ��
l
.z�/, take y 2 �C1.z�/ such

that �z�y 2 Xƒ2 . Hence h�1.�z�y/ D ��z 2 Xƒ1 . As 
 0 2 �C2L.�/ and hence ��
 0 2
B�.ƒ1/, we have ��
 0x0 2 Xƒ1 for any x0 2 �C1.��
 0/. We then have

h.��
 0x0/Œ1;j�jCL� D �h.��
 0x0/ŒlC1;j�jCL� D �z�0

so that � 2 ��
l
.z�0/ and hence ��

l
.z�/ � ��

l
.z�0/. Similarly we have ��

l
.z�0/ � ��

l
.z�/ so

that ��
l
.z�/ D ��

l
.z�0/.

Lemma 7.4. Suppose � 2 B�.ƒ1/ with j�j � L and �
 2 Sl .ƒ1/ and �ı 2 SlC1.ƒ1/
for some 
; ı 2 �C� .�/ such that �
�l�ı. Then we have f�
 2 Sl .ƒ2/ and e�ı 2 SlC1.ƒ2/
such that f�
�l e�ı.
Proof. By the previous lemma, we know that f�
 2 Sl .ƒ2/ and e�ı 2 SlC1.ƒ2/. It suffices
to show that f�
�l e�ı. For � 2 ��

l
.f�
/, we have �f�
y 2 Xƒ2 for some y 2 Xƒ2 . Hence

we have h�1.�f�
y/ D ��
z for some � 2 ��
l
.�
/; z 2 �C

l
.�
/. As �
�l�ı and hence

��ı 2 B�.ƒ1/, we see ��ız0 2 Xƒ1 for some z0 2 Xƒ1 . Since �f�
y D h.��
z/, we have

h.��ız0/ D �h.�ız0/ŒlC1;1/ D �e�ıy0 for some y0 2 �C1.e�ı/:
Hence we have � 2 ��

l
.e�ı/ so that ��

l
.f�
/ � ��

l
.e�ı/. Similarly we have ��

l
.e�ı/ �

��
l
.f�
/ so that ��

l
.f�
/ D ��

l
.e�ı/.

Proposition 7.5. Let Lmin
ƒ1

and Lmin
ƒ2

be the minimal �-graph systems for normal subshifts
ƒ1 and ƒ2, respectively. Assume that the one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/
are topologically conjugate. Then they are .Lmin

ƒ1
;Lmin

ƒ2
/-conjugate.
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Proof. Let h W Xƒ1 ! Xƒ2 be a topological conjugacy. Keep the notation as in the previ-
ous lemmas. For .˛i ;ui /i2N 2XLmin

ƒ1

where ui D .uli /l2ZC 2�Lmin
ƒ1

, i 2N. Put .z̨i /i2N WD
h..˛i /i2N/ 2 Xƒ2 . Fix i 2 N and l 2 N. Take 
 2 B�.ƒ1/ such that ulCLiCL launches 
 ,
and ı 2 B�.ƒ1/ such that ulCLC1iCL launches ı. We then have the following diagram:

uli
˛iC1�����! ulC1iC1

˛iC2�����! ulC2iC2 �����! � � �
˛iCL�����! ulCLiCL


�����!
�

x?? �

x?? �

x?? �

x??
ulC1i

˛iC1�����! ulC2iC1
˛iC2�����! ulC3iC2 �����! � � �

˛iCL�����! ulCLC1iCL
ı�����!

Put � D .˛iC1; ˛iC2; : : : ; ˛iCL/ 2 BL.ƒ1/ with j�j D L. Hence we see that uli D Œ�
�l
the l-past equivalence class of �
 2 Sl .ƒ1/, and ulC1i D Œ�ı�lC1 the l C 1-past equiva-
lence class of �ı 2 SlC1.ƒ1/. By the preceding lemma, we know that f�
 2 Sl .ƒ2/, e�ı 2
SlC1.ƒ2/ and f�
 �l e�ı. Define Quli WD Œf�
�l the l-past equivalence class of f�
 2 Sl .ƒ2/,
and QulC1i WD Œe�ı�lC1 the l C 1-past equivalence class of e�ı 2 SlC1.ƒ2/. It follows from
Lemma 7.4 that the equivalence classes Œf�
�l and Œe�ı�lC1 do not depend on the choice of

 and ı. We then have that

Quli 2 V ƒ
min
2

l
and QulC1i 2 V ƒ

min
2

lC1 :

Since f�
 �l e�ı, we have �. QulC1i / D Quli so that we have an �-orbit

Qui D . Quli /l2ZC 2 �Lmin
ƒ2

for each i 2 N:

By its construction, we have for some x 2 Xƒ1
h
�
.˛1; : : : ; ˛i /�
x

� D h�.˛1; : : : ; ˛i /.˛iC1; : : : ; ˛iCL/
x�Œ1;i�h.�
x/
D .z̨1; : : : ; z̨i /h.�
x/Œ1;j�
 j�h.x/Œ1;1/
D .z̨1; : : : ; z̨i /f�
h.x/:

Hence we have .z̨1; : : : ; z̨i / 2 ��i . Quli /. It is easy to see that . Qui�1; ˛i ; Qui / 2 ELmin
ƒ2

so that

we have a sequence .z̨i ; Qui /i2N 2 XLmin
ƒ2

. Consequently we get a map

' W .˛i ; ui /i2N 2 XLmin
ƒ1

! .z̨i ; Qui /i2N 2 XLmin
ƒ2

that is continuous by its construction. Since h..˛i /i2N/ D .z̨i /i2N , it satisfies h ı �L1 D
�L2 ı '. Similarly we get a map

� W .ˇi ; wi /i2N 2 XLmin
ƒ2

! . ži ; Qwi /i2N 2 XLmin
ƒ1

satisfying ' ı � D idX
Lmin
ƒ2

and � ı ' D idX
Lmin
ƒ1

. By putting hL D ', we have a desired
topological conjugacy

hL W XLmin
ƒ1

! XLmin
ƒ2

:
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Theorem 7.6. Let ƒ1 and ƒ2 be normal subshifts. Assume that their one-sided subshifts
.Xƒ1 ;�ƒ1/ and .Xƒ2 ;�ƒ2/ are topologically conjugate. Then there exists an isomorphism
ˆ W Oƒ1min ! Oƒ2min of C �-algebras such thatˆ.Dƒ1/DDƒ2 andˆ ı �ƒ1t D �ƒ2t ıˆ,
t 2 T .

Proof. By Proposition 7.5, .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .Lmin
ƒ1
; Lmin

ƒ2
/-conjugate, so

that they are .Lmin
ƒ1
;Lmin

ƒ2
/-eventually conjugate in the sense of [37] and in the sense of

the following section ((8.1)). By [37, Theorem 1.3], we have a desired isomorphism ˆ W
Oƒ1min ! Oƒ2min of C �-algebras.

Remark 7.7. (i) Brix–Carlsen in [3] gave an example of a pair .XA; �A/ and .XB ; �B/
of irreducible shifts of finite type such that the converse of Theorem 7.6 does not hold.
They found two irreducible matrices A; B with entries in ¹0; 1º such that there exists an
isomorphism ˆ W OA ! OB of the Cuntz–Krieger algebras such that ˆ.DA/ D DB and
ˆ ı �At D �Bt ıˆ, but the one-sided topological Markov shifts .XA; �A/ and .XB ; �B/ are
not topologically conjugate.

(ii) After the submission of the paper, Theorem 7.6 was strengthened in [38] in the
following way: Let ƒ1 and ƒ2 be normal subshifts. Then their one-sided subshifts
.Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are topologically conjugate if and only if there exists an iso-
morphism ˆ W Oƒ1min ! Oƒ2min of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 and

ˆ ı �ƒ1;ft D �ƒ2;ˆ.f /t ıˆ for all f 2 C.Xƒ1 ;Z/; t 2 T ;

where �ƒ1;ft , �ƒ2;ˆ.f /t are generalized gauge actions with potential functions f , ˆ.f /,
respectively (see [38] for details, see also [39]). In the proof of the result, Theorem 7.6
was used.

8. One-sided eventual conjugacy

In this section, we will prove that a slightly weaker equivalence relation than one-sided
topological conjugacy in one-sided normal subshiftsXƒ1 ,Xƒ2 , called eventual conjugacy,
is equivalent to the condition that there exists an isomorphismˆ WOƒ1min!Oƒ2min ofC �-
algebras satisfying ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �ƒ2t ı ˆ, t 2 T . A part of its proof
will need Theorem 7.6.

Let ƒ1 and ƒ2 be subshifts. Suppose that their one-sided subshifts .Xƒ1 ; �ƒ1/ and
.Xƒ2 ; �ƒ2/ are eventually conjugate. This means that there exist a homeomorphism h W
Xƒ1 ! Xƒ2 and an integer K 2 ZC such that

8<
:
�Kƒ2

�
h
�
�ƒ1.x/

�� D �KC1ƒ2

�
h.x/

�
; x 2 Xƒ1 ;

�Kƒ1

�
h�1

�
�ƒ2.y/

�� D �KC1ƒ1

�
h�1.y/

�
; y 2 Xƒ2 :

(8.1)
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Let hŒ1;K� W Xƒ1 ! BK.ƒ2/ and h1 W Xƒ1 ! Xƒ2 be continuous maps defined by setting

hŒ1;K�.x/ WD h.x/Œ1;K�; h1.x/ WD �Kƒ2
�
h.x/

�
; x 2 Xƒ1 :

We then have
h.x/ D hŒ1;K�.x/h1.x/; x 2 Xƒ1 :

Since hŒ1;K� WXƒ1!BK.ƒ2/ is continuous, for �i 2 ¹�1; : : : ; �mºDBK.ƒ2/, h�1Œ1;K�.�i / is
a finite union of cylinder sets, so that there existM1 2N and a block map '1 WBM1.ƒ1/!
BK.ƒ2/ such that

hŒ1;K�.x/ D '1.x1; : : : ; xM1/ for x D .xi /i2N 2 Xƒ1 :

Hence we have
h.x/ D '1.xŒ1;M1�/h1.x/; x 2 Xƒ1 :

By (8.1), we have the equality

h1
�
�ƒ1.x/

� D �ƒ2�h1.x/�; x 2 Xƒ1 ;

so that h1 W Xƒ1 ! Xƒ2 is a sliding block code (cf. [21]).
Similarly there existM2 2N, a block map '2 WBM2.ƒ2/!BK.ƒ1/ and a continuous

map h2 W Xƒ2 ! Xƒ1 such that

h�1.y/ D '2.yŒ1;M2�/h2.y/; h2
�
�ƒ2.y/

� D �ƒ1�h2.y/�

for y D .yi /i2N 2 Xƒ2 . We may assume that M1 DM2 written M such that M � K. It
then follows that

x D h�1�h.x/�
D '2

�
h.x/Œ1;M�

�
h2
�
h.x/

�
D '2

�
'1.xŒ1;M�/h1.x/Œ1;M�K�

�
h2
�
'1.xŒ1;M�/h1.x/

�
:

This implies

xŒ1;K� D '2
�
'1.xŒ1;M�/h1.x/Œ1;M�K�

�
; (8.2)

xŒKC1;1/ D h2
�
'1.xŒ1;M�/h1.x/

�
; (8.3)

and hence

xŒ2KC1;1/ D �Kƒ1.xŒKC1;1// D h2
�
�Kƒ2

�
'1.xŒ1;M�/h1.x/

�� D h2�h1.x/�

for x 2 Xƒ1 . Similarly we have

yŒ1;K� D '1
�
'2.yŒ1;M�/h2.y/Œ1;M�K�

�
;

yŒKC1;1/ D h1
�
'2.yŒ1;M�/h2.y/

�
;
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and
yŒ2KC1;1/ D h1

�
h2.y/

�
; y 2 Xƒ2 :

For � D .�.1/; : : : ; �.K// 2 BK.ƒ2/ and y D .yn/n2N 2 Xƒ2 with y 2 �C1.�/, we
write .�; y/ WD .�.1/; : : : ; �.K/; y1; y2; : : :/ 2 Xƒ2 . Now suppose that .�; y/ 2 Xƒ2 such
that � D '1.xŒ1;M�/, y D h1.x/ for some x D .xn/n2N 2 Xƒ1 . Define

�.�; y/ WD �'1.xŒ2;MC1�/; h��ƒ1.x/��:
Under the identification .�; y/ D .'1.xŒ1;M�/; h1.x// D h.x/, we have

�
�
h.x/

� D h��ƒ1.x/� for x 2 Xƒ1 :

Hence we have a continuous surjection � W Xƒ2 ! Xƒ2 such that

� D h ı �ƒ1 ı h�1:

By the relations (8.2) and (8.3), we know that

xŒ2;MC1� D xŒ2;K�xŒKC1;MC1� D '2.�yŒ1;M�K�/Œ2;K�h2.�y/Œ1;M�KC1�
so that

'1.xŒ2;MC1�/ D '1
�
'2.�yŒ1;M�K�/Œ2;K�h2.�y/Œ1;M�KC1�

�
and

�.�; y/ D �'1�'2.�yŒ1;M�K�/Œ2;K�h2.�y/Œ1;M�KC1��; �ƒ2.y/� 2 BK.ƒ2/ �Xƒ2 ;
for .�; y/ 2 Xƒ2 . As h1 W Xƒ1 ! Xƒ2 and h2 W Xƒ2 ! Xƒ1 are both sliding block codes,
one may take integersN1;N2 2N and block maps �1 W BN1.ƒ1/!†2, �2 W BN2.ƒ2/!
†1 such that

h1.x/ D �1.xŒi;N1Ci�/i2N for x 2 Xƒ1 and h2.y/ D �2.yŒi;N2Ci�/i2N

for y 2 Xƒ2 . We may assume that N1; N2 � K. We then have that h2.�y/Œ1;M�KC1� D
�2.�yŒ1;M�2KC1CN2�/. We put L DM � 2K C 1CN2 and

�'1.�; y/ D '1
�
'2.�yŒ1;M�K�/Œ2;K��2.�yŒ1;L�/

�

so that

�.�; y/ D ��'1.�; y/; �ƒ2.y/� 2 BK.ƒ2/ �Xƒ2 ; .�; y/ 2 Xƒ2 :

AsN2 �K, we note thatL�M �K. Hence the word �'1.�;y/ 2BK.ƒ2/ is determined
by only � 2 BK.ƒ2/ and yŒ1;L�, so that we may write

�'1.�; y/ D �'1.�; yŒ1;L�/:
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Let X
ƒ
ŒL�
2

be the right one-sided subshift of the Lth higher block shift ƒŒL�2 of ƒ2 (see for
instance [21]). Define sliding block codes:

g1 W x 2 Xƒ1 !
�
'1.xŒn;MCn�1�/

�
n2N
2 BK.ƒ2/N ;

hL1 W x 2 Xƒ1 !
�
h1.x/Œn;LCn�1�

�
n2N
2 X

ƒ
ŒL�
2

and put

g1.x/n D '1.xŒn;MCn�1�/ 2 BK.ƒ2/;
hL1 .x/n D h1.x/Œn;LCn�1� 2 BL.ƒ2/

so that g1.x/ D .g1.x/n/n2N , hL1 .x/ D .hL1 .x/n/n2N . Since h1 ı �ƒ1 D �ƒ2 ı h1, we
have hL1 ı �ƒ1 D �ƒ2ŒL� ı hL1 . Define OhL W Xƒ1 ! .BK.ƒ2/ � BL.ƒ2//N by setting

OhL.x/ D �g1.x/; hL1 .x/� D �'1.xŒn;MCn�1�/; h1.x/Œn;LCn�1��n2N
:

Lemma 8.1. Define

X
ƒ
'1
2 �ƒŒL�2 D

®�
g1.x/; h

L
1 .x/

� 2 �BK.ƒ2/ � BL.ƒ2/�N j x 2 Xƒ1¯;
and the map �

ƒ
'1
2 �ƒŒL�2 W Xƒ'12 �ƒŒL�2 ! X

ƒ
'1
2 �ƒŒL�2 by setting

�
ƒ
'1
2 �ƒŒL�2

��
g1.x/n; h

L
1 .x/n

�
n2N

� D �g1.x/nC1; hL1 .x/nC1�n2N
:

Then .X
ƒ
'1
2 �ƒŒL�2 ; �ƒ'12 �ƒŒL�2 / is a subshift over BK.ƒ2/ � BL.ƒ2/ that is topologically

conjugate to .Xƒ1 ; �ƒ1/ via

OhL W x 2 Xƒ1 !
�
g1.x/n; h

L
1 .x/n

�
n2N
2 X

ƒ
'1
2 �ƒŒL�2 :

Proof. Since
OhL W Xƒ1 ! X

ƒ
'1
2 �ƒŒL�2

is a sliding block code, the pair .X
ƒ
'1
2 �ƒŒL�2 ; �ƒ'12 �ƒŒL�2 / gives rise to a subshift over

BK.ƒ2/ � BL.ƒ2/. As
OhL ı �ƒ1 D �ƒ'2�ƒ2ŒL� ı Oh

L;

it remains to show that OhL is injective. Suppose that OhL.x/ D OhL.z/ for some x D
.xn/n2N , z D .zn/n2N . Hence we have

'1.xŒ1;M1�/ D '1.zŒ1;M1�/; hL1 .x/ D hL1 .z/ and hence h1.x/ D h1.z/

so that h.x/ D h.z/ proving x D z.

Define

†02 D
®
.�; yŒ1;L�/ 2 BK.ƒ2/ � BL.ƒ2/ j � 2 ��K.yŒ1;L�/

¯
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and a subshift .ƒ02; �ƒ02/ over †02 by its right one-sided subshift

Xƒ02 D
®
.�n; yŒn;LCn�1�/n2N 2

�
BK.ƒ2/ � BL.ƒ2/

�N j
�nC1 D �'1.�n; yŒn;LCn�1�/; n 2 N;

�
�1; .yn/n2N

� 2 Xƒ2¯

and �ƒ02 W Xƒ02 ! Xƒ02 by

�ƒ02
�
.�n; yŒn;LCn�1�/n2N

� D .�nC1; yŒnC1;LCn�/n2N :

We then have the following lemma.

Lemma 8.2. .X
ƒ
'1
2 �ƒŒL�2 ; �ƒ'12 �ƒŒL�2 / D .Xƒ02 ; �ƒ02/ so that .Xƒ02 ; �ƒ02/ is topologically

conjugate to .Xƒ1 ; �ƒ1/. Hence the subshift .ƒ02; �ƒ02/ is normal if .ƒ1; �1/ is normal.

Proof. Take an arbitrary element .�n; yŒn;LCn�1�/n2N 2 Xƒ02 , so that .�1; y1; y2; : : :/ 2
Xƒ2 . Put xD h�1.�1;y1;y2; : : :/2Xƒ1 . We then have that �nD g1.x/n and yŒn;LCn�1�D
hL1 .x/n for all n 2 N. Hence we may identify .g1.x/; hL1 .x// with .�n; yŒn;LCn�1�/n2N .
The identification between .g1.x/; hL1 .x// and .�n; yŒn;LCn�1�/n2N yields the identifi-
cation between the subshifts .X

ƒ
'1
2 �ƒŒL�2 ; �ƒ'12 �ƒŒL�2 / and .Xƒ02 ; �ƒ02/. This implies that

.Xƒ02 ; �ƒ02/ is topologically conjugate to .Xƒ1 ; �ƒ1/.

In what follows, we assume that the subshifts .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are both nor-
mal. Since the one-sided subshift .Xƒ02 ; �ƒ02/ is topologically conjugate to .Xƒ1 ; �ƒ1/,
Theorem 7.6 ensures us that there exists an isomorphism ˆ1 W Oƒ1min ! O

ƒ02
min of C �-

algebras such that

ˆ1.Dƒ1/ D Dƒ02 and ˆ1 ı �ƒ1t D �ƒ
0
2

t ıˆ1; t 2 T :

We will henceforth prove that there exists an isomorphism ˆ2 W Oƒ02min ! Oƒ2min of C �-
algebras such that

ˆ2.Dƒ02/ D Dƒ2 and ˆ2 ı �ƒ
0
2

t D �ƒ2t ıˆ2; t 2 T :

Let .V 0; E 0; �0; �0/ be the minimal �-graph system Lmin
ƒ02

of ƒ02. The vertex set V 0
l

is denote by ¹v0l1 ; : : : ; v0lm0.l/º. Since Lmin
ƒ02

is predecessor-separated, the projections of
the form E 0li in the C �-algebra O

ƒ02
min corresponding to the vertex v0li 2 V 0l of Lmin

ƒ02
is

written in terms of the generating partial isometries S 0
.�;yŒ1;L�/

; .�; yŒ1;L�/ 2 †02 by the for-
mula (3.1).

Let S˛; ˛ 2 †2 be the generating partial isometries of the C �-algebra Oƒ2min . For
.�; y/ 2 BK.ƒ2/ � Xƒ2 with � 2 ��K.y/, let us define a sequence .�n/n2N of words of
BK.ƒ2/ by

�1 WD �; �nC1 D �'1.�n; yŒn;LCn�1�/; n 2 N: (8.4)
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For a word w D .w1; : : : ; wk/ 2 Bk.ƒ2/, we write the partial isometry Sw1 � � � Swk 2
Oƒ2min as Sw in Oƒ2min . For .�; yŒ1;L�/ 2 †02, we define a partial isometry yS.�;yŒ1;L�/
in Oƒ2min by setting

yS.�;yŒ1;L�/ WD S�1yŒ1;L�S��2yŒ2;L� 2 Oƒ2min where �1 D �; �2 D �'1.�; yŒ1;L�/:

We also write for � D .�1; : : : ; �m/ 2 Bm.ƒ02/
yS� WD yS�1 � � � yS�m 2 Oƒ2min :

We write Lmin
ƒ2
D .V ƒ

min
2 ; Eƒ

min
2 ; �ƒ

min
2 ; �ƒ

min
2 /. The transition matrix system of Lmin

ƒ2
is

denoted by .Amin
l;lC1; I

min
l;lC1/l2ZC . For w D .w1; : : : ; wl / 2 Bl .ƒ2/ and vlj 2 V

ƒmin
2

l
, we

define a matrix component Amin
0;l
.0; w; j / by

Amin
0;l .0; w; j / D

´
1 if there exists 
 2 Eƒ

min
2

0;l
I �.
/ D w; t.
/ D vlj ;

0 otherwise,

where the top vertex V ƒ
min
2

0 D ¹v0º a singleton. We note the following lemma.

Lemma 8.3. For .�; y/ 2 BK.ƒ2/ � Xƒ2 with � 2 ��K.y/, let .�n/n2N be the sequence
of BK.ƒ2/ defined by (8.4). We then have S�

�1yŒ1;LC1�S�1yŒ1;LC1� � S
�
�2yŒ2;LC1�S�2yŒ2;LC1� and

hence S�1yŒ1;LC1�S
�
�2yŒ2;LC1�S�2yŒ2;LC1� D S�1yŒ1;LC1� . More generally we have

S��nyŒn;LCn�S�nyŒn;LCn� � S
�
�nC1yŒnC1;LCn�S�nC1yŒnC1;LCn� (8.5)

and
S�nyŒn;LCn�S

�
�nC1yŒnC1;LCn�S�nC1yŒnC1;LCn� D S�nyŒn;LCn� ; n 2 N: (8.6)

Proof. For zD .zn/n2N 2Xƒ2 with z 2 �C1.�1yŒ1;LC1�/, we put xD h�1.�1yŒ1;LC1�z/ 2
Xƒ1 . Let y0n D yn for n D 1; 2; : : : ; L C 1 and y0LCnC1 D zn for n 2 N, and hence
.y0n/n2N D yŒ1;LC1�z 2 Xƒ2 . Put � 01 D �1 and � 0nC1 D �'.� 0n; y0Œn;LCn�1�/, n 2 N. Hence

�
ƒ
'1
2 �ƒŒL�2

� OhL.x/� D �.� 02; y0Œ2;LC1�/; .� 03; y0Œ3;LC2�/; : : :
�
:

Since � 02y0Œ2;1/ 2 Xƒ2 and y0
ŒLC2;1/ D z, we have

� 02y
0
Œ2;LC1�z 2 Xƒ2 :

As � 02 D �'.� 01; y0Œ1;L�/ D �'.�1; yŒ1;L�/ D �2 and y0
Œ1;LC1� D yŒ1;LC1�, we know

�2yŒ2;LC1�z 2 Xƒ2 :

Hence we see
�C1.�1yŒ1;LC1�/ � �C1.�2yŒ2;LC1�/ in Xƒ2
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and hence
�C� .�1yŒ1;LC1�/ � �C� .�2yŒ2;LC1�/ in B�.ƒ2/: (8.7)

Consider the �-graph system Lmin
ƒ2

. Suppose thatAmin
0;KCLC1.0;�1yŒ1;LC1�; j /D 1 for some

j 2 ¹1;2; : : : ;m.KCLC 1/º. Since Lmin
ƒ2

is a �-synchronizing �-graph system, the vertex

vKCLC1j in V ƒ
min
2

KCLC1 is written as vKCLC1j D Œw�KCLC1 for some w 2 SKCLC1.ƒ2/.
Hence w 2 �C� .�1yŒ1;LC1�/. By (8.7), w 2 �C� .�2yŒ2;LC1�/ so that �2yŒ2;LC1�w 2 S1.ƒ2/
and there exists a labeled edge labeled �2yŒ2;LC1� from the top vertex v0 to Œw�KCL 2
V
ƒmin
2

KCL in Lmin
ƒ2

. Since Œw�KCL D �min.Œw�KCLC1/, by putting vKCLj 0 D Œw�KCL, we have

Amin
0;KCL.0; �2yŒ2;LC1�; j

0/ D 1; IKCL;KCLC1.j 0; j / D 1
so that

EKCLC1j � EKCLj 0 in Oƒ2min :

As

S��1yŒ1;LC1�S�1yŒ1;LC1� D
m.KCLC1/X

jD1
Amin
0;KCLC1.0; �1yŒ1;LC1�; j /E

KCLC1
j ;

S��2yŒ2;LC1�S�2yŒ2;LC1� D
m.KCL/X
j 0D1

Amin
0;KCL.0; �2yŒ2;LC1�; j

0/EKCLj 0 ;

we have
S��1yŒ1;LC1�S�1yŒ1;LC1� � S

�
�2yŒ2;LC1�S�2yŒ2;LC1�

so that
S�1yŒ1;LC1�S

�
�2yŒ2;LC1�S�2yŒ2;LC1� D S�1yŒ1;LC1� :

Similarly we have the inequality (8.5) and the equality (8.6).

By using the above lemma, we see that the following lemma holds.

Lemma 8.4. For .�; y/ 2 BK.ƒ2/ � Xƒ2 with � 2 ��K.y/, let .�n/n2N be the sequence
of BK.ƒ2/ defined by (8.4). We then have

yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�/ D S�1yŒ1;LCn�1�S��nC1yŒnC1;LCn�1�
for n 2 N.

Proof. The following equalities hold:

yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�/
D S�1yŒ1;L�S��2yŒ2;L�S�2yŒ2;LC1�S

�
�3yŒ3;LC1� � � � yS.�n;yŒn;LCn�1�/

D S�1yŒ1;L�S��2yŒ2;L�S�2yŒ2;L�SyLC1S
�
yLC1SyLC1S

�
�3yŒ3;LC1� � � � yS.�n;yŒn;LCn�1�/

D S�1yŒ1;L�SyLC1S�yLC1S��2yŒ2;L�S�2yŒ2;L�SyLC1S
�
�3yŒ3;LC1� � � � yS.�n;yŒn;LCn�1�/

D S�1yŒ1;LC1�S��2yŒ2;LC1�S�2yŒ2;LC1�S
�
�3yŒ3;LC1� � � � yS.�n;yŒn;LCn�1�/:
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By Lemma 8.3, we see that

S�1yŒ1;LC1�S
�
�2yŒ2;LC1�S�2yŒ2;LC1� D S�1yŒ1;LC1� :

We thus have

yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�/ D S�1yŒ1;LC1�S��3yŒ3;LC1� � � � yS.�n;yŒn;LCn�1�/;

so that inductively we have the desired equality.

The following lemma directly follows from Lemma 8.4.

Lemma 8.5. For .�; y/ 2 BK.ƒ2/ � Xƒ2 with � 2 ��K.y/, let .�n/n2N be the sequence
of BK.ƒ2/ defined by (8.4). We have the following three equalities:

. yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�//� � . yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�//
D S�nC1yŒnC1;LCn�1�S��1yŒ1;LCn�1�S�1yŒ1;LCn�1�S

�
�nC1yŒnC1;LCn�1� ; n 2 N; (8.8)

. yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�// � . yS.�1;yŒ1;L�/ yS.�2;yŒ2;LC1�/ � � � yS.�n;yŒn;LCn�1�//�

D S�1yŒ1;LCn�1�S��1yŒ1;LCn�1� ; n 2 N; (8.9)
X

.�1;yŒ1;L�/2†02

yS.�1;yŒ1;L�/ yS�.�1;yŒ1;L�/ D 1: (8.10)

The following lemma directly follows from the above lemma.

Lemma 8.6. For �; � 2 B�.ƒ02/, we have

yS�� yS� yS� yS�� D yS� yS�� yS�� yS� :

Proof. Let

� D �.�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/�;
� D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/�:

Since
yS�� yS� D S�nC1yŒnC1;LCn�1�S��1yŒ1;LCn�1�S�1yŒ1;LCn�1�S

�
�nC1yŒnC1;LCn�1�

and
yS� yS�� D S�1wŒ1;LCm�1�S��1wŒ1;LCm�1� ;

both yS�� yS� and yS� yS�� are contained in the commutative C �-algebra DLmin
ƒ2

.

Let yO
ƒ02

min be the C �-subalgebra of Oƒ2min generated by the partial isometries

yS.�1;yŒ1;L�/; .�1; yŒ1;L�/ 2 †02:
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The C �-subalgebra yDLmin
ƒ02

of yO
ƒ02

min is defined by the C �-algebra generated by elements

of the form:
yS� yS�� yS� yS��; �; � 2 B�.ƒ02/

and the C �-subalgebra yDƒ02 of yO
ƒ02

min is defined by the C �-algebra generated by elements
of the form:

yS� yS��; � 2 B�.ƒ02/:
Lemma 8.7. Let �; � 2 B�.ƒ02/ be � D ..�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�// and � D
..�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�//. We then have

yS� yS�� yS� yS�� D

8̂
<̂
ˆ̂:

S�1yŒ1;LCn�1�S
�
�1wŒ1;LCm�1�S�1wŒ1;LCm�1�S

�
�1yŒ1;LCn�1�

if �nC1 D �mC1; yŒnC1;LCn�1� D wŒmC1;LCm�1�;
0 otherwise;

(8.11)

where �nC1 D �'1.�n; yŒn;LCn�1�/, �mC1 D �'1.�m; wŒm;LCm�1�/.
Proof. We have

yS� yS�� yS� yS�� D S�1yŒ1;LCn�1�S��nC1yŒnC1;LCn�1� � S�mC1wŒmC1;LCm�1�S
�
�1wŒ1;LCm�1�

� S�1wŒ1;LCm�1�S��mC1wŒmC1;LCm�1� � S�nC1yŒnC1;LCn�1�S��1yŒ1;LCn�1� :

Similarly to (8.7), we know �C� .�1yŒ1;LCn�1�/ � �C� .�nC1yŒnC1;LCn�1�/, so that the
equality

S�1yŒ1;LCn�1�S
�
�nC1yŒnC1;LCn�1� � S�mC1wŒmC1;LCm�1� D S�1yŒ1;LCn�1�

holds if and only if �nC1yŒnC1;LCn�1� D �mC1wŒmC1;LCm�1�, otherwise

S�1yŒ1;LCn�1�S
�
�nC1yŒnC1;LCn�1� � S�mC1wŒmC1;LCm�1� D 0:

Hence we have the equality (8.11).

Recall that S 0
.�;yŒ1;L�/

for .�; yŒ1;L�/ 2 †02 and E 0li for v0li 2 V 0l stand for the canonical
generating partial isometries and projections in O

ƒ02
min , respectively.

Lemma 8.8. For �; � 2 B�.ƒ02/, we have

(i) S 0�� S 0� � S 0�S 0�� in O
ƒ02

min if and only if yS�� yS� � yS� yS�� in yO
ƒ02

min .

(ii) 1 � S 0�� S 0� � S 0�S 0�� in O
ƒ02

min if and only if 1 � yS�� yS� � yS� yS�� in yO
ƒ02

min .

Proof. Let �; � 2 B�.ƒ02/ be � D ..�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�// and

� D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/�:
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(i) Assume that S 0�� S 0� � S 0�S 0�� . Put �mC1 D �'1.�m; wŒm;LCm�1�/. Since

�� D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/; .�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/�
is admissible in ƒ02, we see that �1 D �mC1; wŒmC1;LCm�1� D yŒ1;L�1�. Hence we have

yS�� yS� � yS� yS�� D S�mC1wŒmC1;LCm�1�S��1wŒ1;LCm�1�S�1wŒ1;LCm�1�S��mC1wŒmC1;LCm�1�
� S�1yŒ1;LCn�1�S��1yŒ1;LCn�1�
D S�1yŒ1;L�1�S��1wŒ1;LCm�1�S�1wŒ1;LCm�1�S��1yŒ1;L�1� � S�1yŒ1;LCn�1�S

�
�1yŒ1;LCn�1�

D S�1yŒ1;LCn�1�S��1yŒ1;LCn�1�S�1yŒ1;L�1�S
�
�1wŒ1;LCm�1�

� S�1wŒ1;LCm�1�S��1yŒ1;L�1�S�1yŒ1;LCn�1�S
�
�1yŒ1;LCn�1�

D S�1yŒ1;LCn�1�S�yŒL;LCn�1�S��1yŒ1;L�1�S�1yŒ1;L�1�S
�
�1wŒ1;LCm�1�

� S�1wŒ1;LCm�1�S��1yŒ1;L�1�S�1yŒ1;L�1�SyŒL;LCn�1�S
�
�1yŒ1;LCn�1� :

Now the equality

S�1wŒ1;LCm�1�S
�
�1yŒ1;L�1�S�1yŒ1;L�1� D S�1wŒ1;LCm�1�S

�
�mC1wŒmC1;LCm�1�S�mC1wŒmC1;LCm�1�

D S�1wŒ1;LCm�1�
holds because the last equality may be shown in a similar way to (8.6). Hence we have

yS�� yS� � yS� yS�� D S�1yŒ1;LCn�1�S�yŒL;LCn�1�S��1wŒ1;LCm�1� � S�1wŒ1;LCm�1�SyŒL;LCn�1�S��1yŒ1;LCn�1�
D S�1yŒ1;LCn�1�S��1wŒ1;LCm�1�yŒL;LCn�1�S�1wŒ1;LCm�1�yŒL;LCn�1�S��1yŒ1;LCn�1� :

Since for


 D �.�1; zŒ1;L�/; .�2; zŒ2;LC1�/; : : : ; .�k ; zŒk;LCk�1�/� 2 �C� .�/; (8.12)

with

�
 D �.�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/;
.�1; zŒ1;L�/; .�2; zŒ2;LC1�/; : : : ; .�k ; zŒk;LCk�1�/

� 2 B�.ƒ02/;
the condition S 0�� S 0� � S 0�S 0�� implies

��
 D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/; .�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/;
.�1; zŒ1;L�/; .�2; zŒ2;LC1�/; : : : ; .�k ; zŒk;LCk�1�/

� 2 B�.ƒ02/: (8.13)

Hence in addition to �1 D �mC1; wŒmC1;LCm�1� D yŒ1;L�1�, we have the inequality

S�1yŒ1;LCn�1�S
�
�1wŒ1;LCm�1�yŒL;LCn�1�S�1wŒ1;LCm�1�yŒL;LCn�1�S

�
�1yŒ1;LCn�1�

� S�1yŒ1;LCn�1�S��1yŒ1;LCn�1� ; (8.14)

proving yS�� yS� � yS� yS�� � yS� yS�� and hence

yS�� yS� � yS� yS�� D yS� yS�� :
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Conversely suppose that the inequality yS�� yS� � yS� yS�� in yO
ƒ02

min holds. The inequality
is equivalent to the equality yS�� yS� � yS� yS�� D yS� yS�� that is also equivalent to the inequal-
ity (8.14) because of the preceding equality

yS�� yS� � yS� yS�� D S�1yŒ1;LCn�1�S��1wŒ1;LCm�1�yŒL;LCn�1�S�1wŒ1;LCm�1�yŒL;LCn�1�S��1yŒ1;LCn�1� :

For 
 2 �C� .�/ as in (8.12), the inequality (8.14) together with (8.13) implies ��
 2
B�.ƒ02/ and hence �
 2 �C� .�/. In the identity

S 0�S
0�
� D

m0.j�jCj�j/X
kD1

S 0�E
0j�jCj�j
k

S 0�� in O
ƒ02

min ; (8.15)

take k 2 ¹1; 2; : : : ; m0.j�j C j�j/º such that S 0�E
0j�jCj�j
k

S 0�� ¤ 0. As S 0�� S 0� � E 0j�jCj�jk
,

we see that

A0j�j;j�jCj�j.j; �; k/ D 1 for some j 2 ®1; 2; : : : ; m0�j�j�¯

where A0j�j;j�jCj�j.j; �; k/ is a matrix component defined by the transition matrix system
.A0
l;lC1; I

0
l;lC1/l2ZC of Lmin

ƒ02
. Since

S 0�S
0�
� E

0j�j
j S 0�S

0�
� D

m0.j�jCj�j/X
kD1

A0j�j;j�jCj�j.j; �; k/S
0
�E
0j�jCj�j
k

S 0�� ;

we have
E
0j�j
j � S 0�E 0j�jCj�jk

S 0�� : (8.16)

Take ı 2 E 0j�j;j�jCj�j such that

�.ı/ D �; s.ı/ D v0j�jj 2 V 0j�j; t .ı/ D v0j�jCj�j
k

2 V 0j�jCj�j

in the �-graph system Lmin
ƒ02

. There exists a word 
2B�.ƒ02/ such that v0j�jCj�j
k

launches 
 .
Take ı0 2 E 0j�jCj�j;j�jCj�jCj
 j such that

�.ı0/ D 
; s.ı0/ D v0j�jCj�j
k

2 V 0j�jCj�j in Lmin
ƒ02
:

The labeled path ıı0 is the unique path labeled �
 inE 0j�jCj�j;j�jCj�jCj
 j. Since 
 2 �C� .�/
implies �
 2 �C� .�/, we know that � 2 ��j�j.v0j�jj /. Hence there exists a labeled path

ı00 2 E 0
0;j�j labeled � such that t .ı00/ D v0j�jj . This implies that

S 0�� S
0
� � E 0j�jj

so that by (8.16) we see S 0�� S 0� � S 0�E 0j�jCj�jk
S 0�� . By the identity (8.15), we conclude the

inequality S 0�� S 0� � S 0�S 0�� in O
ƒ02

min .
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(ii) Assume that 1 � S 0�� S 0� � S 0�S 0�� in O
ƒ02

min . Now suppose that

yS�� yS� � yS� yS�� ¤ 0 in yO
ƒ02

min :

By Lemma 8.5, we have

0 ¤ yS�� yS� � yS� yS��
D S�mC1wŒmC1;LCm�1�S��1wŒ1;LCm�1�S�1wŒ1;LCm�1�S��mC1wŒmC1;LCm�1�
� S�1yŒ1;LCn�1�S��1yŒ1;LCn�1� :

Since S��mC1wŒmC1;LCm�1�S�1yŒ1;LCn�1� ¤ 0, we have �1 D �mC1, wŒmC1;LCm�1� D yŒ1;L�1�.
We thus have

S�1yŒ1;LCn�1�S
�
�1yŒ1;LCn�1�S�mC1wŒmC1;LCm�1�

D S�1yŒ1;LCn�1�S��1yŒ1;LCn�1�S�1yŒ1;L�1� D S�1yŒ1;LCn�1�S
�
yŒL;LCn�1�

and
S��mC1wŒmC1;LCm�1�S�1yŒ1;LCn�1�S

�
�1yŒ1;LCn�1� D SyŒL;LCn�1�S

�
�1yŒ1;LCn�1�

so that

yS�� yS� � yS� yS�� D yS� yS�� � yS�� yS� � yS� yS��
D S�1yŒ1;LCn�1�S�yŒL;LCn�1� � S��1wŒ1;LCm�1�S�1wŒ1;LCm�1�
� SyŒL;LCn�1�S��1yŒ1;LCn�1�
D S�1yŒ1;LCn�1�S��1wŒ1;LCm�1�yŒL;LCn�1�S�1wŒ1;LCm�1�yŒL;LCn�1�S��1yŒ1;LCn�1� :

Since j�1wŒ1;LCm�1�yŒL;LCn�1�j D K C LCm � 1C n, there exists

j 2 ®1; 2; : : : ; m.K C LCmC n � 1/¯

such that
0 ¤ S�1yŒ1;LCn�1�EKCLCmCn�1j S��1yŒ1;LCn�1� in Oƒ2min ;

and hence
�1yŒ1;LCn�1� 2 ��KCLCn�1.vKCLCmCn�1j / in Lƒmin

2
:

Take zŒ1;k� 2 SKCLCmCn�1.ƒ2/ such that k > L and vKCLCmCn�1j launches zŒ1;k�. By
putting

�1 D �'1.�n; yŒn;LCn�1�/; �2 D �'1.�1; zŒ1;L�/; : : : ; �k�L D �'1.�k�L�1; zŒk�LC1;k�/;

the word
�
.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/; .�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/;
.�1; zŒ1;L�/; : : : ; .�k�L; zŒk�LC1;k�/

�
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belongs to BmCnCk�L.ƒ02/. Put


 D �.�1; zŒ1;L�/; .�2; zŒ2;LC1�/; : : : ; .�k�L; zŒk�LC1;k�/�:
Since zŒ1;k� 2 SKCLCmCn�1.ƒ2/, we have 
 2 SmCn.ƒ02/ so that we have

S 0�� S
0
� � S 0�S 0�� � S 0�
S 0��
 ¤ 0 in O

ƒ02
min ;

a contradiction.
Conversely, assume 1� yS�� yS� � yS� yS�� in yO

ƒ02
min . Now suppose that S 0�� S 0� �S 0�S 0�� ¤ 0

in O
ƒ02

min . Since

S 0�� S
0
� D

m0.j�j/X
jD1

A00;j�j.0; �; j /E
0j�j
j in O

ƒ02
min ;

take j 2 ¹1; 2; : : : ; m0.j�j/º such that A0
0;j�j.0; �; j / D 1 and E 0j�jj � S 0�S 0�� ¤ 0 so that

S 0�� E
0j�j
j � S 0� ¤ 0. As

S 0�� E
0j�j
j S 0� D

m0.j�jCj�j/X
kD1

A0j�j;j�jCj�j.j; �; k/E
0j�jCj�j
k

;

there exists k 2 ¹1; 2; : : : ; m0.j�j C j�j/º such that A0j�j;j�jCj�j.j; �; k/ D 1 and hence

S 0�� E
0j�j
j S 0� � E 0j�jCj�jk

:

One may take an admissible word 
 D ..�1; zŒ1;L�/; : : : ; .�p; zŒp;LCp�1�// 2 Bp.ƒ02/ such
that v0j�jCj�j

k
launches 
 so that E 0j�jCj�j

k
� S 0
S 0�
 . Hence we have

E
0j�j
j � S 0�
S 0��
 so that S 0�� S

0
� � S 0�
S 0��
 :

By (i) we have yS�� yS� � yS�
 yS��
 . Since

yS�� yS� � yS� yS�� � yS�
 yS��
 D yS�
 yS��
 ¤ 0;

we get yS�� yS� � yS� yS�� ¤ 0, a contradiction to 1 � yS�� yS� � yS� yS�� .

In the minimal �-graph system Lmin
ƒ02

, recall that ¹v0l1 ; : : : ; v0lm0.l/º denote the vertex

set V 0
l

of Lmin
ƒ02

of the normal subshift ƒ02. For a vertex v0li 2 V 0l , define a function f li W
Bl .ƒ

0
2/! ¹0; 1º by setting for � 2 Bl .ƒ02/

f li .�/ D
8<
:
1 if � 2 ��

l
.v0li /;

�1 if � 62 ��
l
.v0li /:
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Recall that S 0̨ ; ˛ 2†02 andE 0li ; v
0l
i 2 V 0l denote the canonical generating partial isometries

and projections of the C �-algebra O
ƒ02

min . We then have by (3.1)

E 0li D
Y

�2Bl .ƒ02/
S 0�� S

0f li .�/
� in O

ƒ02
min (8.17)

where for � 2 Bl .ƒ02/

S 0�� S
0f li .�/
� D

´
S 0�� S 0� if f li .�/ D 1;
1 � S 0�� S 0� if f li .�/ D �1:

In the C �-algebra yO
ƒ02

min , we define a projection for each v0li 2 V 0l by setting

yEli WD
Y

�2Bl .ƒ02/
yS�� yS

f li .�/
� in yO

ƒ02
min (8.18)

where for � 2 Bl .ƒ02/

yS�� yS
f li .�/
� D

´ yS�� yS� if f li .�/ D 1;
1 � yS�� yS� if f li .�/ D �1:

Let .A0
l;lC1; I

0
l;lC1/l2ZC be the transition matrix system for Lmin

ƒ02
.

Lemma 8.9. For each v0li 2 V 0l , we have the identities

m0.l/X
iD1
yEli D 1; yEli D

m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j :

Proof. We will first show yEli � yElC1j for i D 1; 2; : : : ; m0.l/; j D 1; 2; : : : ; m0.l C 1/
with I 0

l;lC1.i; j /D 1. Assume that I 0
l;lC1.i; j /D 1. Hence we have ��

l
.v0lC1j /D ��

l
.v0li /

in Lmin
ƒ02

. For � 2 ��
l
.v0li / and ˇ 2 ��1 .�/, we have yS�� yS�ˇ ySˇ yS� D yS�ˇ� ySˇ� . Hence

yS�� yS� � yS�ˇ� ySˇ� for ˇ 2 ��1 .�/:

For � 62 ��
l
.v0li / and ˇ1; ˇ2 2 ��1 .�/, we have

.1 � yS�ˇ1� ySˇ1�/.1 � yS�ˇ2� ySˇ2�/ D 1 � yS�� . yS�ˇ1 ySˇ1 C yS�ˇ2 ySˇ2 � yS�ˇ1 ySˇ1 yS�ˇ2 ySˇ2/ yS� :

Similarly we see that

Y
ˇ2��1 .�/

.1 � yS�ˇ� ySˇ�/ D 1 � yS��
� _
ˇ2��1 .�/

yS�ˇ ySˇ
�
yS� (8.19)
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where_
ˇ2��1 .�/

yS�ˇ ySˇ

D
X

ˇ2��1 .�/
yS�ˇ ySˇ �

X
ˇ1¤ˇ22��1 .�/

yS�ˇ1 ySˇ1 yS�ˇ2 ySˇ2 C � � � � .�1/j�
�
1 .�/j

Y
ˇ2��1 .�/

yS�ˇ ySˇ

the projection spanned by yS�
ˇ
ySˇ ; ˇ 2 ��1 .�/. Now

W
ˇ2†02

yS�
ˇ
ySˇ D 1 so that we have

yS�� yS� D yS��
� _
ˇ2†02

yS�ˇ ySˇ
�
yS� D yS��

� _
ˇ2��1 .�/

yS�ˇ ySˇ
�
yS� : (8.20)

By (8.19) and (8.20), we haveY
ˇ2��1 .�/

.1 � yS�ˇ� ySˇ�/ D 1 � yS�� yS� (8.21)

For � 2 ��
l
.v0li /.D ��l .v0lC1j // and ˇ 2 ��1 .�/ with � D ˇ� 2 ��

lC1.v
0lC1
j /, we have

yS�� yS� � yS�� yS�:
For � 62 ��

l
.v0li /.D ��

l
.v0lC1j // and ˇ 2 ��1 .�/ with � D ˇ� 62 ��

lC1.v
0lC1
j /, we have

by (8.21) Y
ˇ2��1 .�/

.1 � yS�ˇ� ySˇ�/ D 1 � yS�� yS� :

Hence we have

yEli D
Y

�2��
l
.v0li /

yS�� yS� �
Y

� 62��
l
.v0li /

.1 � yS�� yS�/

�
Y

�2��
lC1.v

0lC1
j /

yS�� yS� �
Y

� 62��
lC1.v

0lC1
j /

.1 � yS�� yS�/

� yElC1j :

We will next see that yElC1j � yElC1j 0 D 0 for j ¤ j 0. As v0lC1j ¤ v0lC1j 0 in V 0
lC1, we know

��
lC1.v

0lC1
j / ¤ ��

lC1.v
0lC1
j 0 / because Lmin

ƒ02
is predecessor-separated. Hence we have two

cases:
Case (1): There exists � 2 ��

lC1.v
0lC1
j / such that � 62 ��

lC1.v
0lC1
j 0 /.

Case (2): There exists � 2 ��
lC1.v

0lC1
j 0 / such that � 62 ��

lC1.v
0lC1
j /.

In both the cases, it is easy to see that yElC1j � yElC1j 0 D 0 by its definition (8.18).

Since yEli � yElC1j for i D 1;2; : : : ;m0.l/; j D 1;2; : : : ;m0.l C 1/with I 0
l;lC1.i; j /D 1,

and yElC1j � yElC1j 0 D 0 for j ¤ j 0, we have the inequality

yEli �
m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j : (8.22)
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We will next show that
Pm0.l/
iD1 yEli D 1. Denote by ¹1;�1ºBl .ƒ02/ the set of functions

f W Bl .ƒ02/! ¹1;�1º:

For f 2 ¹1;�1ºBl .ƒ02/, we set

yS�� ySf .�/� D
´ yS�� yS� if f .�/ D 1;
1 � yS�� yS� if f .�/ D �1

and put
yEf D

Y
�2Bl .ƒ02/

yS�� ySf .�/� in yO
ƒ02

min :

For � 2 Bl .ƒ02/, the identity 1 D yS�� yS� C .1 � yS�� yS�/ implies

1 D
Y

�2Bl .ƒ02/

� yS�� yS� C .1 � yS�� yS�/� D
X

f 2¹1;�1ºBl .ƒ02/
yEf :

For � D ..�1; wŒ1;L�/; : : : ; .�l ; wŒl;LCl�1�// 2 Bl .ƒ02/, put �lC1 D �'1.�l ; wŒl;LCl�1�/ 2
BK.ƒ

0
2/ as usual. Let us consider a subset S.�/ � V ƒ

min
2

KCLCl�1 defined by

S.�/ D ®v D s.
/ 2 V ƒmin
2

KCLCl�1 j there exists 
 2 Eƒ
min
2

l;KCLCl�1I
�1wŒ1;LCl�1� 2 ��KCLCl�1.v/; �.
/ D �lC1wŒlC1;LCl�1� 2 ��KCL�1.v/

¯
:

Define two subsets of V ƒ
min
2

KCLCl�1 for the function f by

S1f D
\®

S.�/ j � 2 Bl .ƒ02/ with f .�/ D 1¯;
S�1f D

\®
S.�/c \ V ƒ

min
2

KCLCl�1 j � 2 Bl .ƒ02/ with f .�/ D �1¯:
Now suppose that yEf ¤ 0. Since

yS�� yS� D S�lC1wŒlC1;LCl�1�S��1wŒ1;LCl�1�S�1wŒ1;LCl�1�S��lC1wŒlC1;LCl�1� in Oƒ2min ;

the condition yEf ¤ 0 ensures us that S1
f
\ S�1

f
¤ ;. One may take a vertex vKCLCl�1j0

2
S1
f
\ S�1

f
and � D ..�1; wŒ1;L�/; : : : ; .�l ; wŒl;LCl�1�// 2 Bl .ƒ02/ such that vKCLCl�1j0

2
S.�/. As S��1wŒ1;LCl�1�S�1wŒ1;LCl�1� � EKCLCl�1j0

; we have

yS�� yS� � S�lC1wŒlC1;LCl�1�EKCLCl�1j0
S��lC1wŒlC1;LCl�1� :

For �0 D ..�01; w0Œ1;L�/; : : : ; .�0l ; w0Œl;LCl�1�// 2 Bl .ƒ02/ with f .�0/D 1, we have yS��0 yS�0 �
yS�� yS� � yEf ¤ 0 so that

S�
�0
lC1w

0
ŒlC1;LCl�1�

S�lC1wŒlC1;LCl�1� ¤ 0
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and hence �0
lC1 D �lC1; w0ŒlC1;LCl�1� D wŒlC1;LCl�1�. We thus have

yS��0 yS�0 � S�lC1wŒlC1;LCl�1�EKCLCl�1j0
S��lC1wŒlC1;LCl�1� : (8.23)

For �00 D ..�001;w00Œ1;L�/; : : : ; .�00l ;w00Œl;LCl�1�// 2 Bl .ƒ02/ satisfying f .�00/D�1, we know

that vKCLCl�1j0
2 S.�00/c so that

yS��00 yS�00 ? S�lC1wŒlC1;LCl�1�EKCLCl�1j0
S��lC1wŒlC1;LCl�1� :

Hence we have

1 � yS��00 yS�00 � S�lC1wŒlC1;LCl�1�EKCLCl�1j0
S��lC1wŒlC1;LCl�1� : (8.24)

By (8.23) and (8.24), we obtain

yEf � S�lC1wŒlC1;LCl�1�EKCLCl�1j0
S��lC1wŒlC1;LCl�1� :

As Lmin
ƒ2

is �-synchronizing, for the word vKCLCm�1j0
2 V ƒ

min
2

KCLCm�1 there exists an admis-
sible word .b1; : : : ; bp/ 2 Bp.ƒ2/ such that vKCLCm�1j0

launches .b1; : : : ; bp/. This
implies that the inequalities

EKCLCm�1j0
� Sb1���bpS�b1���bp in Oƒ2min

and hence
yEf � S�lC1wŒlC1;LCl�1�Sb1���bpS�b1���bpS��lC1wŒlC1;LCl�1� (8.25)

hold. Put

�1 D �lC1 2 BK.ƒ2/; yŒ1;LCp� D wŒlC1;LCl�1�b1 � � � bp 2 BLCp.ƒ2/;
�iC1 D �'1.�i ; yŒi;LCi�1�/; i D 1; 2; : : : ; p � 1:

Define the word

� D �.�1; yŒ1;L�/; : : : ; .�p; yŒp;LCp�1�/� 2 Bp.ƒ02/:
It follows from (8.9) that

yS� yS�� D S�1yŒ1;LCp�1�S��1yŒ1;LCp�1� D S�lC1wŒlC1;LCl�1�b1���bpS
�
�lC1wŒlC1;LCl�1�b1���bp :

By (8.25), we have
yEf � yS� yS�� ¤ 0 in yO

ƒ02
min : (8.26)

We put
E 0f D

Y
�2Bl .ƒ02/

S 0�� S
0f .�/
� in O

ƒ02
min :
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By applying Lemma 8.8 for (8.26), we have

E 0f � S 0�S 0�� in O
ƒ02

min

and hence E 0
f
¤ 0. Since

1 D
X

f 2¹1;�1ºBl .ƒ02/
E 0f D

m0.l/X
iD1

E 0li

andE 0
f li
D E 0li , we know thatE 0

f
¤ 0 if and only if f D f li for some v0li 2 V 0l . Hence the

conditionE 0
f
¤ 0 implies that f D f li for some v0li 2 V 0l . Therefore we see that yEf D yEf li

for some v0li 2 V 0l . Since yEf li D yE
l
i and 1 DP

f 2¹1;�1ºBl .ƒ02/
yEf , we conclude that

1 D
m0.l/X
iD1
yEli in yO

ƒ02
min : (8.27)

Since for each j D 1; 2; : : : ;m0.l C 1/, there exists a unique i D 1; 2; : : : ;m0.l/ such that
I 0
l;lC1.i; j / D 1, we have yElC1j DPm0.l/

iD1 I
0
l;lC1.i; j / yElC1j . As the identity (8.27) holds

for all l 2 ZC, we have

1 D
m0.lC1/X
jD1

yElC1j D
m0.l/X
iD1

m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j

so that

1 D
m0.l/X
iD1
yEli D

m0.l/X
iD1

m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j :

By the inequality (8.22), we conclude that

yEli D
m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j :

Define the commutative C �-subalgebras:

ALmin
ƒ02
D C ��S 0�� S 0� W � 2 B�.ƒ02/� � O

ƒ02
min ;

yALmin
ƒ02
D C �� yS�� yS� W � 2 B�.ƒ02/� � yOƒ02min :

Lemma 8.10. Using the above notation, the following hold.

(i) The commutative C �-subalgebras ALmin
ƒ02

and yALmin
ƒ02

satisfy that

ALmin
ƒ02
D C ��E 0li W i D 1; 2; : : : ; m0.l/; l 2 ZC

�
;

yALmin
ƒ02
D C �� yEli W i D 1; 2; : : : ; m0.l/; l 2 ZC

�
:
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(ii) There exists an isomorphism ˆA W ALmin
ƒ02
! yALmin

ƒ02
of C �-algebras such that

yS�˛ˆA.X/ yS˛ D ˆA.S
0�
˛ XS

0
˛/; X 2 ALmin

ƒ02
; ˛ 2 †02: (8.28)

Proof. (i) By the identity (8.17), E 0li is written in terms of S 0�� S
0f li .�/
� . Conversely for any

word � 2 Bl .ƒ02/ we set

J 0.�; i/ D
´
1 if � 2 ��

l
.v0li /;

0 otherwise:

By the formula 1 DPm0.l/
iD1 E

0l
i , we have

S 0�� S
0
� D

m0.l/X
iD1

S 0�� S
0
�E
0l
i D

m0.l/X
iD1

J 0.�; i/E 0li ;

so that S 0�� S
0f li .�/
� is written in terms of E 0li . Hence we have

ALmin
ƒ02
D C ��E 0li W i D 1; 2; : : : ; m0.l/; l 2 ZC

�
:

The other equality

yALmin
ƒ02
D C �� yEli W i D 1; 2; : : : ; m0.l/; l 2 ZC

�
:

is similarly proved.
(ii) The identities

E 0li D
m0.lC1/X
jD1

I 0l;lC1.i; j /E
0lC1
j ; 1 D

m0.l/X
iD1

E 0li in ALmin
ƒ02
;

yEli D
m0.lC1/X
jD1

I 0l;lC1.i; j / yElC1j ; 1 D
m0.l/X
iD1
yEli in yALmin

ƒ02

hold. Since the projections E 0li , yEli are all nonzero, the correspondence E 0li ! yEli extends
to an isomorphism ˆA W ALmin

ƒ02
! yALmin

ƒ02
of C �-algebras such that ˆA.E

0l
i / D yEli and

hence ˆA.S
0�
� S
0
�/ D yS�� yS� for � 2 B�.ƒ02/. We then have

yS�˛ˆA.S
0�
� S
0
�/
yS˛ D yS�˛ yS�� yS� yS˛ D yS��˛ yS�˛ D ˆA.S

0�
�˛S

0
�˛/ D ˆA.S

0�
˛ S
0�
� S
0
�S
0
˛/

proving the identity (8.28).

Recall that A0
l;lC1.i; ˛; j / denotes a matrix component of the transition matrix system

.A0
l;lC1; I

0
l;lC1/l2ZC of Lmin

ƒ02
.
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Lemma 8.11. The following identity holds.

yS�˛ yEli yS˛ D
m0.lC1/X
jD1

A0l;lC1.i; ˛; j / yElC1j for ˛ D .�1; yŒ1;L�/ 2 †02:

Proof. We note that the identity

S 0�˛ E
0l
i S
0
˛ D

m0.lC1/X
jD1

A0l;lC1.i; ˛; j /E
0lC1
j for ˛ D .�1; yŒ1;L�/ 2 †02

holds. By using the preceding lemma, we have

yS�˛ yEli yS˛ D yS�˛ˆA.E
0l
i /
yS˛ D ˆ.S 0�˛ E 0li S 0˛/

D ˆ
 
m0.lC1/X
jD1

A0l;lC1.i; ˛; j /E
0lC1
j

!

D
m0.lC1/X
jD1

A0l;lC1.i; ˛; j / yElC1j :

Recall that

yO
ƒ02

min D C �� yS.�1;yŒ1;L�/ W .�1; yŒ1;L�/ 2 †02
�
;

yDLmin
ƒ02
D C �� yS� yS�� yS� yS��; W �; � 2 B�.ƒ02/�;

yDƒ02 D C �
� yS� yS�� W � 2 B�.ƒ02/�:

Then the inclusion relations

yO
ƒ02

min � Oƒ2min ; yDLmin
ƒ02
� DLmin

ƒ2

; yDƒ02 � Dƒ2

are obvious. Let y�ƒ
0
2

t be the restriction of the gauge action �ƒ2t on Oƒ2min to the subalgebra
yO
ƒ02

min . The gauge action on Oƒ0min
2

is denoted by �ƒ
0
2

t .

Lemma 8.12. Keep the above notation. There exists an isomorphismˆ WO
ƒ02

min! yO
ƒ02

min

of C �-algebras such that

ˆ.DLmin
ƒ02
/ D yDLmin

ƒ02
; ˆ.Dƒ02/ D yDƒ02 ; ˆ ı �ƒ

0
2

t D y�ƒ
0
2

t ıˆ:

Proof. By the universal property and its uniqueness of the C �-algebra O
ƒ02

min , the corre-
spondence

ˆ W S 0˛; E 0li 2 O
ƒ02

min ! yS˛; yEli 2 yOƒ02min � Oƒ2min

yields an isomorphism ˆ W O
ƒ02

min ! yO
ƒ02

min of C �-algebras such that

ˆ.DLmin
ƒ02
/ D yDLmin

ƒ02
; ˆ.Dƒ02/ D yDƒ02 :
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Since

.y�ƒ
0
2

t ıˆ/.S 0˛/ D y�ƒ
0
2

t . yS˛/ D �ƒ2t .S�1yŒ1;L�S
�
�2yŒ2;L�

/

D e2�
p�1tS�1yŒ1;L�S

�
�2yŒ2;L�

D e2�
p�1t yS˛ D .ˆ ı �ƒ

0
2

t /.S 0˛/;

the equality ˆ ı �ƒ
0
2

t D y�ƒ
0
2

t ıˆ holds.

We will finally prove that the C �-subalgebra yO
ƒ02

min of Oƒ2min actually coincides with
the ambient algebra Oƒ2min . This is the final step proving Theorem 1.4.

Let Fƒ2min be the canonical AF algebra of Oƒ2min that is realized as the fixed point
subalgebra of Oƒ2min under the gauge action �ƒ2t , t 2 T of Oƒ2min . Let yF

ƒ02
min be the

C �-subalgebra of yO
ƒ02

min generated by elements of the form:

yS� yS�� yS� yS�
 ; �; �; 
 2 B�.ƒ02/ with j�j D j
 j:

The subalgebra yF
ƒ02

min is nothing but the C �-subalgebra of yO
ƒ02

min generated by elements
of the form:

yS� yEli yS�
 ; i D 1; 2; : : : ; m0.l/; l 2 ZC; �; 
 2 B�.ƒ02/ with j�j D j
 j:

Lemma 8.13. yF
ƒ02

min D Fƒ2min .

Proof. Let

� D �.�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/�; � D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/�

and 
 D ..�1; zŒ1;L�/; : : : ; .�k ; zŒk;LCk�1�// 2 B�.ƒ02/ with k D n. Put

�nC1D �'1.�n; yŒn;LCn�1�/; �mC1D �'1.�m;wŒm;LCm�1�/; �kC1D �'1.�k ; zŒk;LCk�1�/:

By definition we know yS.�1;yŒ1;L�/ D S�1yŒ1;L�S��2yŒ2;L� 2 Oƒ2min , so that we have

yS� yS�� yS� yS�

D yS.�1;yŒ1;L�/ � � � yS.�n;yŒn;LCn�1�/ � . yS.�1;wŒ1;L�/ � � � yS.�m;wŒm;LCm�1�//�

� . yS.�1;wŒ1;L�/ � � � yS.�m;wŒm;LCm�1�// � . yS.�1;zŒ1;L�/ � � � yS.�n;zŒn;LCn�1�//�
D S�1yŒ1;LCn�1�S��nC1yŒnC1;LCn�1� � S�mC1wŒmC1;LCm�1�S

�
�1wŒ1;LCm�1�

� S�1wŒ1;LCm�1�S��mC1wŒmC1;LCm�1� � S�nC1zŒnC1;LCn�1�S��1zŒ1;LCn�1�

D

8̂
<̂
ˆ̂:

S�1yŒ1;LCn�1�S
�
�1wŒ1;LCm�1� � S�1wŒ1;LCm�1�S��1zŒ1;LCn�1�

if �nC1 D �mC1 D �nC1; yŒnC1;LCn�1� D wŒmC1;LCm�1� D zŒnC1;LCn�1�;
0 otherwise.

Hence yS� yS�� yS� yS�
 belongs to Fƒ2min , so that yF
ƒ02

min � Fƒ2min .
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Conversely, for admissible words a; b; c 2 B�.ƒ2/ with jaj D jcj, by considering the
identity

SaS
�
b SbS

�
c D

X
ı2BN .ƒ2/

SaıS
�
bıSbıS

�
cı (8.29)

for any N 2 N, one may assume that jaj.D jcj/, jbj > K, where K is the integer given
in (8.1). For � 2 �C1.a/ \ �C1.b/ \ �C1.c/, we define .yi /i2N ; .wi /i2N ; .zi /i2N 2 Xƒ2
by setting

y1 D aKC1; : : : ; yjaj�K D ajaj; yjaj�KCi D �i ; i D 1; 2; : : : ;
w1 D bKC1; : : : ; wjbj�K D bjbj; wjbj�KCi D �i ; i D 1; 2; : : : ;
z1 D cKC1; : : : ; zjbj�K D cjcj; zjcj�KCi D �i ; i D 1; 2; : : : :

Define sequences .�i /i2N ; .�i /i2N ; .�i /i2N of BK.ƒ2/ by setting:

�1 D aŒ1;K�; �iC1 D �'1.�i ; yŒi;LCi�1�/; i D 1; 2; : : : ;
�1 D bŒ1;K�; �iC1 D �'1.�i ; wŒi;LCi�1�/; i D 1; 2; : : : ;
�1 D cŒ1;K�; �iC1 D �'1.�i ; zŒi;LCi�1�/; i D 1; 2; : : : :

Define elements x D .xi /i2N , x0 D .x0i /i2N , x00 D .x00i /i2N 2 Xƒ1 by setting

x D h�1.�1y/; x0 D h�1.�1w/; x00 D h�1.�1z/:
By the previous discussions, we know that

�i D '1.xŒi;MCi�1�/; �i D '1.x0Œi;MCi�1�/; �i D '1.x00Œi;MCi�1�/; i 2 N:

Put p D jaj � jbj 2 Z. Since �Kƒ1 ı h�1 W Xƒ1 ! Xƒ1 is a sliding block code, there
existsN1;N2 2N such that wjCp D yj .D zj / for all j � N2 implies x0

ŒiCp;MCiCp�1� D
xŒi;MCi�1�.D x00Œi;MCi�1�/ for all i � N1. Hence we have

�i D �iCp D �iCp for i � N1:
Let n D max¹N1; N2º, m D nC p. By putting

� D �.�1; yŒ1;L�/; : : : ; .�n; yŒn;LCn�1�/� 2 Bn.ƒ02/;
� D �.�1; wŒ1;L�/; : : : ; .�m; wŒm;LCm�1�/� 2 Bm.ƒ02/;

 D �.�1; zŒ1;L�/; : : : ; .�n; zŒk;LCn�1�/� 2 Bn.ƒ02/;

we have

�mC1 D �nC1 D �nC1; wŒm;LCm�1� D yŒn;LCn�1� D zŒk;LCn�1�:
Let ı D .�1; : : : ; �KCLCn�jaj�1/ 2 B�.ƒ2/. We then have

SaıS
�
bıSbıS

�
cı D S�1yŒ1;LCn�1�S��1wŒ1;LCm�1� � S�1wŒ1;LCm�1�S��1zŒ1;LCnC1�
D yS� yS�� yS� yS�
 :



Simple purely infinite C�-algebras associated with normal subshifts 663

By the formula (8.29) for N D K C L C n � jaj � 1, we know that SaS�b SbS
�
c with

jaj D jcj belongs to the AF-algebra yF
ƒ02

min , so that we have Fƒ2min � yF
ƒ02

min .

Lemma 8.14. yDƒ02 D Dƒ2 and yO
ƒ02

min D Oƒ2min .

Proof. The equality yDƒ02 D Dƒ2 is easily obtained by (8.9).

The inclusion relation yO
ƒ02

min � Oƒ2min is obvious. To prove yO
ƒ02

min D Oƒ2min , it suf-
fices to show that for any ˛ 2 †2 D B1.ƒ2/, the partial isometry S˛ belongs to yO

ƒ02
min .

For .�1; yŒ1;L�/ 2 †02, we have

yS.�1;yŒ1;L�/ D S�1yŒ1;L�S��2yŒ2;L� 2 Oƒ2min ;

so that for t 2 T

�
ƒ2
t . yS�.�1;yŒ1;L�/S˛/ D �

ƒ2
t .S�2yŒ2;L�S

�
�1yŒ1;L�

S˛/

D S�2yŒ2;L�S��1yŒ1;L�S˛ D yS
�
.�1;yŒ1;L�/

S˛:

This implies that yS�
.�1;yŒ1;L�/

S˛ 2Fƒ2min . By Lemma 8.13, we see that yS�
.�1;yŒ1;L�/

S˛ belongs
to yF

ƒ02
min for any .�1; yŒ1;L�/ 2 †02. By the identity

S˛ D
X

.�1;yŒ1;L�/2†02

yS.�1;yŒ1;L�/ � yS�.�1;yŒ1;L�/S˛;

we obtain that S˛ belongs to yO
ƒ02

min , and hence Oƒ2min � yO
ƒ02

min .

We thus have the following proposition.

Proposition 8.15. There exists an isomorphism ˆ2 W Oƒ02min ! Oƒ2min of C �-algebras
such that

ˆ2.Dƒ02/ D Dƒ2 ; ˆ2 ı �ƒ
0
2

t D �ƒ2t ıˆ2:
Proof. The assertion follows from Lemmas 8.12 and 8.14.

Therefore we reach the following theorem.

Theorem 8.16. Letƒ1 andƒ2 be normal subshifts. If their one-sided subshifts .Xƒ1 ;�ƒ1/
and .Xƒ2 ; �ƒ2/ are eventually conjugate, then there exists an isomorphism ˆ W Oƒ1min !
Oƒ2min of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �ƒ2t ıˆ, t 2 T .

Proof. By Lemma 8.2, the one-sided subshifts .Xƒ02 ; �ƒ02/ and .Xƒ1 ; �ƒ1/ are topologi-
cally conjugate, so that by Theorem 7.6 there exists an isomorphismˆ1 W Oƒ1min!O

ƒ02
min

of C �-algebras such that ˆ1.Dƒ1/ D Dƒ02 and ˆ1 ı �ƒ1t D �ƒ
0
2

t ıˆ1, t 2 T . By Propo-
sition 8.15, there exists an isomorphism ˆ2 W Oƒ02min ! Oƒ2min of C �-algebras such that

ˆ2.Dƒ02/ D Dƒ2 ; ˆ2 ı �ƒ
0
2

t D �ƒ2t ıˆ2:
Therefore we have a desired isomorphism of C �-algebras between Oƒ1min and Oƒ2min .
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Let L1, L2 be left-resolving �-graph systems that present subshifts ƒ1, ƒ2, respec-
tively. In [37], the author introduced the notion of .L1;L2/-eventually conjugacy between
one-sided subshifts .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/.

Definition 8.17 ([37, Definition 5.1]). Let L1 and L2 be left-resolving �-graph systems
that present subshifts ƒ1 and ƒ2, respectively. Their one-sided subshifts .Xƒ1 ; �ƒ1/ and
.Xƒ2 ; �ƒ2/ are said to be .L1;L2/-eventually conjugate if there exist homeomorphisms
hL W XL1 ! XL2 , hƒ W Xƒ1 ! Xƒ2 and an integer K 2 ZC such that8<

:
�KL2

�
hL

�
�L1.x/

�� D �KC1L2

�
hL.x/

�
; x 2 XL1 ;

�KL1

�
h�1L

�
�L2.y/

�� D �KC1L1

�
h�1L .y/

�
; y 2 XL2 ;

(8.30)

and
�L2 ı hL D hƒ ı �L1 : (8.31)

We remark that the equalities (8.30) and (8.31) automatically imply the equalities8<
:
�Kƒ2

�
hƒ
�
�ƒ1.a/

�� D �KC1ƒ2

�
hƒ.a/

�
; a 2 Xƒ1 ;

�Kƒ1

�
h�1ƒ

�
�ƒ2.b/

�� D �KC1ƒ1

�
h�1ƒ .b/

�
; b 2 Xƒ2 :

In [37], the following proposition was proved.

Proposition 8.18 ([37, Theorem 1.3]). Suppose that two left-resolving �-graph systems
L1, L2 satisfy condition (I). Then .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-eventually
conjugate if and only if there exists an isomorphism ˆ W OL1 ! OL2 of C �-algebras such
that

ˆ.Dƒ1/ D Dƒ2 and ˆ ı �L1
t D �L2

t ıˆ; t 2 T :

Proof of Theorem 1.4. Let ƒ1; ƒ2 be two normal subshifts. Assume that .Xƒ1 ; �ƒ1/ and
.Xƒ2 ; �ƒ2/ are eventually conjugate. By Theorem 8.16, there exists an isomorphism ˆ W
Oƒ1min ! Oƒ2min of C �-algebras such that ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �

ƒ2
t ı ˆ,

t 2 T .
Conversely, suppose that there exists an isomorphism ˆ W Oƒ1min ! Oƒ2min of C �-

algebras such that ˆ.Dƒ1/ D Dƒ2 and ˆ ı �ƒ1t D �ƒ2t ı ˆ, t 2 T . Let L1, L2 be their
minimal �-graph systems Lmin

ƒ1
, Lmin

ƒ2
, respectively. By virtue of Proposition 2.14, the �-

graph systems Lmin
ƒ1

, Lmin
ƒ2

both satisfy condition (I). The associated C �-algebras OLmin
ƒ1

,

OLmin
ƒ2

are nothing but the C �-algebras Oƒ1min , Oƒ2min , respectively. By Proposition 8.18,
we know that .Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are .L1;L2/-eventually conjugate, in particular,
.Xƒ1 ; �ƒ1/ and .Xƒ2 ; �ƒ2/ are eventually conjugate.

9. Two-sided topological conjugacy

In this section, we study two-sided topological conjugacy of normal subshifts in terms of
the associated stabilized C �-algebras with their diagonals and gauge actions. Let L be a
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left-resolving �-graph system over † that presents a subshift ƒ. Following [37], we will
consider the compact Hausdorff space

xXL D
²
.˛i ; ui /i2Z 2

Y
i2Z

.† ��L/ j .˛iCk ; uiCk/i2Z 2 XL for all k 2 Z

³

with the shift homeomorphism x�L

x�L

�
.˛i ; ui /i2Z

� D .˛iC1; uiC1/i2Z; .˛i ; ui /i2Z 2 xXL

on xXL, where xXL is endowed with the relative topology from the infinite product topology
of
Q
i2Z.† ��L/. For x D .˛i ; ui /i2Z 2 xXL, ˛ D .˛i /i2Z 2 ƒ and k 2 Z, we set

xŒk;1/ D .˛i ; ui /1iDk ; ˛Œk;1/ D .˛i /1iDk :
Definition 9.1 ([37, Definition 7.1]). The topological dynamical systems . xXL1 ; x�L1/ and
. xXL2 ; x�L2/ are said to be right asymptotically conjugate if there exists a homeomorphism
 W xXL1 ! xXL2 such that  ı x�L1 D x�L2 ı  and

(i) form 2Z, there existsM 2Z such that xŒM;1/ D zŒM;1/ implies  .x/Œm;1/ D
 .z/Œm;1/ for x; z 2 xXL1 ,

(ii) for n2Z, there existsN 2Z such that yŒN;1/DwŒN;1/ implies �1.y/Œn;1/D
 �1.w/Œn;1/ for y;w 2 xXL2 .

We call  W xXL1 ! xXL2 a right asymptotic conjugacy.

Let us denote by x�i W xXLi ! ƒi the factor map defined by

x�i ..˛i ; ui /i2Z/ D .˛i /i2Z 2 ƒi for i D 1; 2:
Definition 9.2 ([37, Definition 7.2]). Two subshifts ƒ1 and ƒ2 are said to be .L1;L2/-
conjugate if there exists a right asymptotic conjugacy  L W xXL1 ! xXL2 and a topological
conjugacy  ƒ W ƒ1 ! ƒ2 such that x�2 ı  L D  ƒ ı x�1.

Proposition 9.3. Let ƒ1, ƒ2 be normal subshifts and L1, L2 be their minimal �-graph
systems, respectively. Suppose that ƒ1, ƒ2 are topologically conjugate, then they are
.L1;L2/-conjugate.

Proof. We may assume that ƒ1 and ƒ2 are bipartitely related by a bipartite subshift yƒ
over alphabet†D C tD (see [41,42]). Hence there exist specifications �1 W†1! C �D
and �2 W †2! D � C such that the 2-higher block shift yƒŒ2� of yƒ is decomposed into two
disjoint subshifts yƒŒ2� D yƒCD t yƒDC , where

yƒŒ2� D ®.xixiC1/i2Z j .xi /i2Z 2 yƒ
¯
;

yƒCD D ®.cidi /i2Z 2 yƒŒ2� j ci 2 C; di 2 D; i 2 Z
¯
;

yƒDC D ®.diciC1/i2Z 2 yƒŒ2� j di 2 D; ciC1 2 C; i 2 Z
¯
;

and specifications �1 W †1 ! C �D, �2 W †2 ! D � C mean injective maps. The notion
that two subshifts ƒ1, ƒ2 are bipartitely related means that ƒ1, ƒ2 are identified with
yƒCD , yƒDC through �1, �2, respectively.
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The specifications �1 and �2 naturally extend to the maps B�.ƒ1/! B�.yƒCD/ and
B�.ƒ2/! B�.yƒDC /, respectively. We still denote them by �1 and �2, respectively. We
write Li D .V i ;Ei ;�i ; �i /, i D 1;2. Let .˛i ;ui /i2Z 2 xXL1 . In the �-graph system L1, take
a vertex uli 2 V 1l such that .uli /l2N D ui 2 �L1 , i 2 ZC. There exists an l-synchronizing
word�li 2 Sl .ƒ1/, i 2N such that uli D Œ�li �l 2 Sl .ƒ1/=�l . Let �1.˛i /D cidi for ci 2C ,
di 2 D. As �1.�li / 2 B�.yƒCD/, take cli 2 C such that �1.�li /c

l
i 2 B�.yƒ/. Put �li D

��12 .di�1.�
lC1
i /clC1i / 2 V 2

l
and ˇi D ��12 .di�1ci / 2 †2. We then have ˇi�li�l�1�l�1i�1

and �li�l�1�l�1i�1 . Define wli D Œ�li �l 2 Sl .ƒ2/= � so that wli 2 V 2l . Since �.wlC1i / D wli
for l 2 ZC, we have wi D .wli /l2ZC 2 �L2 for i 2 Z and .ˇi ; wi /i2Z 2 xXL2 . Under the
identification between yƒDC and ƒ2, we know that the correspondence

.˛i ; ui /i2Z 2 xXL1 ! .ˇi ; wi /i2Z 2 xXL2

written  W xXL1 ! xXL2 gives rise to a topological conjugacy between . xXL1 ; x�L1/ and
. xXL2 ; x�L2/ such that  W xXL1 ! xXL2 is a right asymptotic conjugacy and there exists a
topological conjugacy  ƒ W ƒ1 ! ƒ2 such that �2 ı  D  ƒ ı �1. Therefore the two-
sided subshifts .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are .L1;L2/-conjugate.

Therefore we have the following proposition.

Proposition 9.4. Let ƒ1, ƒ2 be normal subshifts and L1, L2 be their minimal �-graph
systems, respectively. Then the following two conditions are equivalent.

(i) The two-sided subshifts .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are .L1;L2/-conjugate.

(ii) .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are topologically conjugate.

Let us recall that K denotes the C �-algebra of compact operators on the separable
infinite dimensional Hilbert space `2.N/ and C denotes its commutative C �-subalgebra
of diagonal operators.

Proof of Theorem 1.5. Let ƒ1, ƒ2 be two normal subshifts. Suppose that the two-sided
subshifts .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are topologically conjugate. By Proposition 9.4, they
are .L1;L2/-conjugate, so that [37, Theorem 1.4] ensures us that there exists an isomor-
phism ẑ WOƒ1min ˝K!Oƒ2min ˝K ofC �-algebras such that ẑ .Dƒ1 ˝C/DDƒ2 ˝C

and ẑ ı .�ƒ1t ˝ id/ D .�ƒ2t ˝ id/ ı ẑ , t 2 T .
Conversely suppose that there exists an isomorphism ẑ W Oƒ1min ˝K ! Oƒ2min ˝K

of C �-algebras such that ẑ .Dƒ1 ˝ C/ D Dƒ2 ˝ C and ẑ ı .�ƒ1t ˝ id/ D .�ƒ2t ˝ id/ ı
ẑ , t 2 T . By [37, Theorem 1.4] the two-sided subshifts .ƒ1; �ƒ1/ and .ƒ2; �ƒ2/ are
.L1;L2/-conjugate, and hence they are topologically conjugate.
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