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Simple purely infinite C *-algebras associated
with normal subshifts

Kengo Matsumoto

Abstract. We will introduce the notion of normal subshift. A subshift (A, ¢) is said to be normal
if it satisfies a certain synchronizing property called A-synchronizing and is infinite as a set. There
are many normal subshifts such as irreducible infinite sofic shifts, Dyck shifts, and S-shifts whose
associated C*-algebras are simple and purely infinite. Eventual conjugacy of one-sided normal
subshifts and topological conjugacy of two-sided normal subshifts are characterized in terms of the
associated C *-algebras and the associated stabilized C *-algebras with their diagonals and gauge
actions, respectively.
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1. Introduction

In [19] (see [33,34]), W. Krieger and the author introduced the notion of A-synchronization
for subshifts. The class of A-synchronizing subshifts contains a lot of important and
interesting subshifts such as irreducible shifts of finite type, irreducible sofic shifts, syn-
chronizing subshifts, Dyck shifts, B-shifts, substitution minimal shifts. In this paper, we
will introduce the notion of normal subshift. A subshift A is said to be normal if it is a
A-synchronizing subshift and has infinite cardinality as a set. The class of normal sub-
shifts is closed under topological conjugacy, and consists of irreducible A-synchronizing
subshifts excluding trivial subshifts. An important property of A-synchronization is that
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each of them has a minimal A-graph system presentation. The notion of A-graph systems
was introduced in [24] as a generalization of finite labeled graphs. Any A-graph system
presents a subshift, conversely any subshift can be presented by a A-graph system in a
canonical way. The A-graph system that presents a subshift in a canonical way is called
the canonical A-graph system for the subshift. Besides the canonical A-graph system, there
are in general many other A-graph systems that present a given subshift. The canonical A-
graph system corresponds to its left Krieger cover graph. We in fact see that the canonical
A-graph system for a sofic shift is the A-graph system associated to the left Krieger cover
graph. Hence the canonical A-graph system in general does not have certain irreducibility
unless the subshift is an irreducible shift of finite type. An irreducible sofic shift has an
irreducible minimal presentation as a labeled graph. The presentation is called the left (or
right) Fischer cover graph. It is an irreducible ergodic component of its left Krieger cover
graph. To catch the Fischer cover analogue of general subshifts, we introduced in [19] the
notion of A-synchronization of subshifts. It was shown that any A-synchronizing subshift
has a minimal presentation of A-graph system corresponding to the Fischer cover [19].
In [26], the author introduced a C *-algebra associated with a A-graph system as a gener-
alization of Cuntz—Krieger algebras. The C*-algebra is written Og for a A-graph system
£ and has a universal property subject to certain operator relations encoded by structure of
the A-graph system L. If a A-graph system is the canonical A-graph system £2 for a sub-
shift A, the C*-algebra in general is far from simple, namely has nontrivial ideals, unless
the subshift is a shift of finite type or special kinds of subshifts, because the canonical
A-graph system corresponds to the left Krieger cover, that is not irreducible in general.

On the other hand, if a subshift is normal, that is, A-synchronizing, we may construct
a minimal A-graph system as its presentation called the A-synchronizing A-graph system
written S'Xi“. It is called the minimal presentation (see [34]), so that the associated C*-
algebra are simple and purely infinite in many cases (see [33]). For a normal subshift A,
we write the C*-algebra as O min. Let us denote by X the associated right one-sided
subshift of a two-sided subshift A. As in the previous papers [19, 33], the C*-algebra
O amin has a natural action of the circle group T called gauge action written p™. The
fixed point algebra Fpmin of @ pmin under p® is an AF-algebra having its diagonal algebra
denoted by Dgmin. The commutative C*-algebra C(X ) of continuous functions on the
right one-sided subshift X 4 is naturally regarded as a subalgebra of @BrXin denoted by D .
We know that the relative commutant Dp" N @ pmin of Dp in @ pymin coincides with (@g?{in
(Proposition 3.13). Hence we have a triplet (O pmin, Da, p») from a normal subshift A.

In the first half of the paper, we will summarize the A-synchronization of subshifts and
describe a simplicity condition of the C*-algebras O pmin so that we have the following
theorem.

Theorem 1.1. Let A be a normal subshift. If A is A-irreducible, then the C*-algebra
O pnmin is simple. If in addition A satisfies A-condition (I), then the C*-algebra O pmin
is simple and purely infinite, where A-condition (I) is defined in [28] (see also Defini-
tion 2.15 (i)).
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As a corollary, we have the following result.

Corollary 1.2 (Proposition 4.2). Let A be an irreducible sofic shift such that A is not of
finite set. The C*-algebra O pmin is simple, purely infinite. It is isomorphic to the Cuntz—
Krieger algebra for the transition matrix of the left Fischer cover graph of the sofic shift A.

We will present several examples of simple purely infinite C *-algebras associated
with normal subshifts in Section 5. They are the C *-algebras associated with Dyck shifts,
Markov-Dyck shifts, Motzkin shifts and §-shifts.

In the second half of the paper, we will study the relationship between several kinds of
topological conjugacy of normal subshifts and structure of the associated C *-algebras. Let
£1, £, be left-resolving A-graph systems that present the subshifts Ay, A,, respectively.
In [37], the notion of (£, £,)-continuous orbit equivalence between their one-sided sub-
shifts (Xa,,0A,) and (Xa,,04,) was introduced. The author then proved that (XA ,,04,)
and (Xa,,04,) are (£, £,)-continuously orbit equivalent if and only if there exists an
isomorphism ® : Og, — Og, of C*-algebras such that (Dp,) = Dp, where Dy, isa
canonical commutative C *-subalgebra of Og, isomorphic to C(X,,;) fori = 1,2. We will
see that, under the condition that (Xa,,0A,) and (Xa,,04,) are (£, £2)-continuously
orbit equivalent, if A; is a normal subshift and £; is its minimal presentation, then A,
is a normal subshift and £; is its minimal presentation (Lemma 6.2). We then define the
one-sided subshifts (X4,,04,) and (Xa,,0n,) for normal subshifts A; and A, to be
continuously orbit equivalent if they are (Sﬁiln, Eﬁizn)-continuously orbit equivalent (Def-
inition 6.3). We then have that for normal subshifts A; and A,, their one-sided subshifts
(XA,.0a,) and (Xa,,0n,) are continuously orbit equivalent if and only if there exists an
isomorphism @ : O min — O, min of C*-algebras such that ®(Dx,) = Da, (Proposi-
tion 6.4).

In [37], the author also introduced the notion of (£, £,)-eventual conjugacy between
their one-sided subshifts (Xa,,0a,) and (Xa,,0a,) and proved that (Xa,,o4,) and
(Xa,.0n,) are (£1, £y)-eventually conjugate if and only if there exists an isomorphism
® : Og, — Og, of C*-algebras such that

D(Dp,) =Dy, and Pop ' =p2o®d, €T,

where D, is a canonical commutative C *-subalgebra of Og, isomorphic to C(X4,), and
ptsi is the gauge action on Og, fori = 1,2.

Let us denote by K the C*-algebra of compact operators on the separable infinite
dimensional Hilbert space £2(N) and € its commutative C *-subalgebra of diagonal oper-
ators. For two-sided topological conjugacy, the notion of (£, £,)-conjugacy between
two-sided subshifts (A1,04,), (A2,04,) was introduced in [30,37]. It was proved in [37]
that (A1, 01) and (A,, 02) are (81, £2)-conjugate if and only if there exists an isomor-
phism ® : Og, ® K — Og, ® K of C*-algebras such that

P(Da, ®C) =Dy, €, Do ®id) = (p 2 Rid)od, ¢eT.
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In [19], it was proved that A-synchronization is invariant under topological conjugacy
of two-sided subshifts. Hence if a normal subshift A is topologically conjugate to another
subshift A5, then A, is normal. We will first show the following theorems concerning one-
sided conjugacies.

Theorem 1.3. Let A1 and A, be normal subshifts. Assume that their one-sided subshifts
(XA,.0A,) and (X a,,0n,) are topologically conjugate. Then there exists an isomorphism
D : ), min = O p,min of C*-algebras such that ®(Dyp,) = Da, and P o P = pi2 o o,
teT.

Theorem 1.3 is a generalization of Cuntz—Krieger’s theorem [6, Proposition 2.17].
Related results are seen in [3,4, 36], etc.

The following theorem is a generalization of the results for irreducible topological
Markov shifts in [36] (cf. [3,4]).

Theorem 1.4. Let Ay and Ay be normal subshifts. Their one-sided subshifts (Xa,,0nA,)
and (Xa,,0A,) are eventually conjugate if and only if there exists an isomorphism @ :
Op min = O min of C*-algebras such that ®(Dp,) = D, and ® o pfl = ,otA2 o @,
teT.

The if part of Theorem 1.4 follows from a result in [37]. The proof of its only if part
is a main body in the second half of this paper. To prove the only if part, we provide
an auxiliary subshift written A/, whose one-sided subshift X A, 18 topologically conjugate
to X a,. We will then prove that there exists an isom/orphism of C*-algebras @, : O Apmn =
(9A2min satisfying <I>2(§DAr2) = Dp, and P, 0 pf\z = ,o,A2 o®,, t € T, so that we will
obtain Theorem 1.4 by using Theorem 1.3.

We will second show the following theorem concerning two-sided conjugacy, that is a
generalization of the case of topological Markov shifts proved by Cuntz—Krieger [6] and
Carlsen—Rout [5].

Theorem 1.5. Let Ay and A, be normal subshifts. The two-sided subshifts (A1, 0n,)
and (A2, 0n,) are topologically conjugate if and only if there exists an isomorphism P :
Opmin @ K — O p,mn ® K of C*-algebras such that 5(!0A1 ®TC) = DA, ® € and
o (pM ®id) = (o2 ®id) o d, 1 € T.

The C *-algebraic characterizations of eventual conjugacy and topological conjugacy
appeared in Theorems 1.4 and 1.5 are rephrased in terms of the associated groupoids as
seen in [37, Theorem 1.3] and [37, Theorem 1.4], respectively.

We may apply the above theorems to irreducible sofic shifts. Let A be an irreducible
sofic shift such that A is infinite. Let G X be its left Fischer cover graph, that is the unique
left-resolving irreducible minimal finite labeled graph that presents A ([9], cf. [21]). Then
the C *-algebra @ pmin is a simple purely infinite C *-algebra such that @ pmin is isomorphic
to the Cuntz—Krieger algebra O ; for the transition matrix A of the topological Markov
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shift defined by the Fischer cover G f (Proposition 4.2). By Proposition 6.4, Theorems 1.4
and 1.5, we have the following result.

Corollary 1.6. Let A1 and A, be two irreducible sofic shifts such that A;, i = 1,2 are
infinite.
(1)  Their one-sided sofic shifts (Xa,,ona,) and (Xa,,0n,) are continuously orbit
equivalent if and only if there exists an isomorphism ® : Oy win = O nwin of
simple C*-algebras such that ®(Dp,) = Da,.

(ii)  Their one-sided sofic shifts (Xa,,0n,) and (X a,,0n,) are eventually conjugate
if and only if there exists an isomorphism ® : O 5 min — O min of simple C*-
algebras such that ®(Dp,) = Dp, and D o p;"l = pf‘z od,teT.

(iii) Their two-sided sofic shifts (A1,0A,) and (A2,0,) are topologically conjugate
if and only if there exists an isomorphism P : Op,min ® K — O p min @ K of
simple C*-algebras such that &)(@Al ®C) =D, ®Cand do (pf\1 ®id) =
(P2 ®id)o ®, 1 € T.

We have to remark that in a recent paper [4] by Brix—Carlsen, similar results to the
present paper are seen. The C*-algebras treated by Brix—Carlsen are different from our
C *-algebras. In fact, their C*-algebras in [4] are not simple in many cases unless the
subshifts are irreducible shifts of finite type, whereas our C *-algebras in the present paper
are simple in many cases including infinite irreducible sofic shifts.

In what follows, the set of nonnegative integers and the set of positive integers are
denoted by Z 4 and N, respectively.

2. A-synchronization and normal subshifts

2.1. A-synchronization of subshifts

Let 3 be a finite set with its discrete topology. Denote by %% (resp. TV) the set of bi-
infinite (resp. right one-sided) sequences of ¥. We endow XZ (resp. ©N) with infinite
product topology, so that they are compact Hausdorff spaces. The shift homeomorphism
0: Y2 - 27 ig defined by 0 ((xn)nez) = (Xn+1)nez- A continuous surjection o : >N _,
>N s similarly defined. Let A C >Z be a closed o-invariant subset, that is, o(A) = A.
We denote the restriction o |5 of 0 to A by o . The topological dynamical system (A, op)
is called a subshift over alphabet X. It is often written as A for short. Let X5 be the set of
right infinite sequence (X, ),eN of X such that (x,),ez € A. The set X4 is a closed subset
of =N such that 6(X ) = X . We similarly denote o|x , by oa. The topological dynam-
ical system (XA, 04) is called the right one-sided subshift for A. For an introduction to
the theory of subshifts, we refer to text books of symbolic dynamical systems [13,21].
For | € Z, denote by B;(A) the admissible words {(x1,...,x;) € =' | (xp)nez € A}
of A with its length /. Denote by By (A) the set | Jj=, B;(A) of admissible words of A,
where Bo(A) denotes the empty word. The length m of a word = (1, ..., im) is
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denoted by |u|. For two words u = (i1, ..., Um), vV = (V1,...,V,) € Bx(A) denote
by pv the concatenation (Ui, ..., Um, V1, ..., Vy). For o = (U1, ..., hm) € Bx(A)
and x = (Xp)neN € XA, We put ux = (U1, ..., hm» X1, X2, ...) € >N, For a word
= (1,..., Um) € Bn(A), the cylinder set U,, C X is defined by

Up = {(xn)neN € Xa | X1 = [1, ..\ X;m = [}

For x = (Xn)neny € Xp andk,l e N withk <[, weput X ;= (Xk,...,X1) € Bi_g+1(A),
X,y = Xk, oo X1—1) € Bi—g(A) and X[g 00) = (X, Xk+1,-..) € XA.

A subshift A is said to be irreducible if for any u, v € By« (A), there exists a word
n € B«(A) such that unv € By (A) (cf. [21]). We note the following lemma. Although it
is well-known, the author has not been able to find a suitable reference, so that the proof
is given.

Lemma 2.1 (cf. [20, p. 142]). If a subshift A is irreducible and the cardinality of A is
infinite, then the subshift A and its right one-sided subshift X » are both homeomorphic
to a Cantor set.

Proof. We will show that X 5 does not have any isolated point. Since A is irreducible, one
may find a point z € X 5 such that its orbit {0} (z) | n € Z } is dense in X . For any point
x € X and word i € By, (A) with x € Uy, there exists ny € Z such that 0;’\‘ (z)eU, As
{oh (0} (z)) | n € N}isalso dense in X4, there exists 7, € N such that 03> (63" (2)) € U,,.
If 632 (0" (2)) = o' (2). then 6} (z) is periodic, so that {0} (z) | n € Z} is finite, and
X becomes a finite set, a contradiction. Therefore os>+"!(z) # o\ (2), and hence U,
contains two distinct points 03> "1 (z), 64! (z) so that x is not isolated. As X is totally
disconnected compact metric space, it is homeomorphic to a Cantor set. Similarly we can

prove that A does not have any isolated points. ]

We define predecessor sets and follower sets of a word . € B, (A) as follows:

Iy () = {v € Bi(A) | v € Bram(A)},
T (1) = {v € Bi(A) | v € Brypm(A))
and T7 (1) = U T7 (), T () = Ui T ().
Following [19,33,34], a word i € B« (A) forl € Z is said to be [-synchronizing if

the equality I';" (1) = T} (1) holds for all w € [;F(w). Let us denote by S;(A) the set
of [-synchronizing words of A, where So(A) = B«(A).

Definition 2.2 ([19, 33, 34]). An irreducible subshift A is said to be A-synchronizing if
for any word n € B;(A) and positive integer k > [, there exists v € Si(A) such that
nv € Sg—1(A).

It is shown in [19, 33, 34] that the following subshifts are A-synchronizing:
* irreducible shifts of finite type,

¢ irreducible sofic shifts,
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* synchronizing systems,

* Dyck shifts,

e Motzkin shifts,

* irreducible Markov—Dyck shifts,
* primitive substitution subshifts,
e B-shifts for every f > 1, etc.

There is an example of a coded system that is not A-synchronizing (cf. [19]).
Following [34], two admissible words 1, v € B4 (A) are said to be /-past equivalent if
[, (n) = 7 (v). In this case we write i~ .

Definition 2.3. A A-synchronizing subshift A is said to be A-transitive if for any two
admissible words p, v € S;(A), there exists k;,, € N such that for any n € Sy, ,(A)
satisfying v~ 7, there exists § € By, ,(A) such that pu~;&n.

In [19], the term “synchronized irreducible” was used for the above A-transitivity.

Definition 2.4. A subshift A is said to be normal if it is A-synchronizing and its cardinal-
ity |A] is not finite.

Hence the class of normal subshifts contains a lot of important nontrivial subshifts.

2.2. A-graph systems

A A-graph system £ over alphabet X consists of a quadruple (V, E, A,t), where (V, E, 1) is
a labeled Bratteli diagram with its vertex set V = {7, Vi, edgeset E = ez, Eri+1
and labelingmap A : E — 3. Foranedge e € E;;4;,denote by s(e) € V; and t(e) € V41
its source vertex and terminal vertex, respectively. The additional object ¢ is a surjection
t(=t1+41) : V41 — V; foreach | € Z,. The quadruple (V, E, A, 1) is needed to satisfy
the following local property. Put foru € V;_; and v € V41,

Ef g (u.v) = {e € Ergg | 1(0) = v. (s(e)) = u).
El7V ,v) = {e € Ei_11 | s(e) = u. t(e) = 1(v)}.

The local property requires a bijective correspondence preserving their labels between
E; H_1(u, v) and Ef_l’l(u, v) for every pair of vertices u, v. For k < [, we put

Exg={(e1.....e;1—g) € Eg g1 XX E_yp | t(e))=s(eip1). i =1,....1 —k —1}.

A member of Ey; is called a labeled path. For y = (ey,...,ej—¢) € Ex, we put s(y) :=
s(e) € Vi, t(y) := t(ej—x) € V; and A(y) := (Aer), ..., A(ej—x)) € =% Forv € 1},
we put

I (v) = {(Aer)..... A(er)) € ' | (er,....e1) € Egy, t(e)) = v} (2.1)

For a labeled path y € Ey; and a vertex v € Vg, if v = s(y), then y is said to leave v.
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A A-graph system £ is said to be predecessor-separated if T'; (v) # I'; (u) for every
distinct pair u, v € V;. A A-graph system £ is said to be left-resolving if e, f € Ej 141
satisfy t(e) = t(f), A(e) = A(f),thene = f.

Let us denote by A g the two-sided subshift over X, whose admissible words Bx(Ag)
are defined by the set of words appearing in the finite labeled sequences in the labeled
Bratteli diagram (V, E, A) of the A-graph system & = (V, E, A, ¢). We say that a subshift
A is presented by a A-graph system £ or £ presents A if A = Ag.

Let§ = ('V, &, 1) be a predecessor-separated left-resolving finite labeled graph over
alphabet X with finite vertex set 'V, finite edge set & and labeling A : & — X. It naturally
gives rise to a A-graph system £¢ by setting V; =V, E; ;41 = & forall/ € Z and ¢ =1id.
The presented subshift Ag, by the A-graph system £g is noting but the sofic shift Ag
presented by the finite labeled graph §. A detailed study of A-graph systems can be found
in [24].

Definition 2.5 ([33]). Let & = (V, E, A, ) be a A-graph system over X.

(i) & issaid to be t-irreducible if for any two vertices u, v € V; and a labeled path
y leaving u, there exist labeled paths 7 of length n and y’ such that s(n) = v,

M(t(m) = u,and s(y") = t(n), " (1 (y")) = t(y) and A(y') = A(y).
(i) L is said to be A-irreducible if for any ordered pair u, v € V; of vertices, there
exists L(u,v) € N such that for any vertex w € Vi1 v) satisfying

LD () =y,
there exists a labeled path y such that s(y) = v and ¢(y) = w.

Lemma 2.6. Let & = (V, E, A,t) be a A-graph system that presents a subshift A. Consider
the following three conditions.

(i) R is A-irreducible.

(ii) 8 is t-irreducible.

>iii) A is irreducible.
Then we have ()= (ii)=(iii).
Proof. ()= (ii): Assume that £ is A-irreducible. Let u, v € V; be two vertices and y
a labeled path leaving u, Take L(u, v) € N satisfying the A-irreducibility condition in
Definition 2.5 (ii). Let k denote the length of the path y and u, = t(y) € V1. Take
u € Vitk+L(u,v) such that L@y = u, . By the local property of A-graph system, one
may find w € V4 1,y and a labeled path y’ such that

Ly =u, s =w, t(y)=u.

By the A-irreducibility, there exists a labeled path 7 such that s(n) = v, t(n) = w.

(ii)=>(iii): The assertion comes from [34, Lemma 3.5]. ]

Remark 2.7. (i) If £ is a A-graph system £¢ associated to a left-resolving finite labeled
graph §, then the presented subshift Ag by £¢ is a sofic shift defined by §. It is easy



Simple purely infinite C *-algebras associated with normal subshifts 611

to see that for the A-graph system £¢, all of the conditions (i), (ii) and (iii) in Lemma 2.6
are mutually equivalent.

(ii) Let A¢ be the coded system defined by the code C = {a"b" | n = 1,2, ...} for
alphabet ¥ = {a, b} (see [2]). Then the subshift A ¢ has a synchronizing word w = aba,
so that it is an irreducible synchronizing subshift. Hence A¢ is a A-synchronizing [19].
Let £2(A¢) be its A-synchronizing A-graph system as in [34]. By [34, Lemma 3.6], irre-
ducibility of Ac implies t-irreducibility, so that @4(A¢) is i-irreducible. However, it is
not difficult to see that 2*(A¢) is not A-irreducible. Hence there is an example of A-graph
system such that the implication (ii)=>(i) above does not hold.

(iii) Let Ay be the even shift, that is defined to be a sofic shift over {0, 1} whose

admissible words are
even

—_——
10---01.

Let 4« be the canonical A-graph system for A% (see [24]). The subshift A, is irre-
ducible, whereas 2 is not -irreducible. Hence there is an example of A-graph system
such that the implication (iii)=>(ii) above does not hold.

2.3. A-synchronizing A-graph systems

Let & = (V, E, A, 1) be a A-graph system that presents a subshift A. Let v € V; and u €
B, (A), m € N. Following [33], we say that v launches p if the following two conditions
are both satisfied:

(i)  There exists a labeled path y € Ej ;4,, such that s(y) = v, A(y) = u.
(ii)) The word u does not leave any other vertex in V; than v

The vertex v is called the launching vertex for w.

Definition 2.8 ([33]). A A-graph system & = (V, E, A, 1) is said to be A-synchronizing if
any vertex of V' is a launching vertex for some word of A.

A A-synchronizing A-graph system is t-irreducible if and only if the presented sub-
shift A is irreducible [33, Proposition 3.7]. It was shown that if £ is t-irreducible and
A-synchronizing, then the presented subshift A is A-synchronizing. Conversely, as in [33],
one may construct a left-resolving, predecessor-separated t-irreducible A-synchronizing
A-graph system from a A-synchronizing subshift A. We briefly review its construction.
Let A be a A-synchronizing subshift. Recall that S;(A) denotes the set of /-synchronizing
words of A. Denote by VZA(A) the set of /-past equivalence classes of S;(A), where
VOMA) = {vo} a singleton. Let us denote by [u]; the equivalence class of u € S;(A).
For v € S;41(A) and a € ' (v), an edge from [av]; € VIMA) to [v]j4+1 € VA with

I+1
its label « is defined. The set of such edges is denoted by Eﬁﬁ)l The labeling map from

Elll(ﬁ)l to X is denoted by A*™. As S;,1(A) C S;(A), we have a natural map

A(A A(A
A0l € VA = )y e Y.
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The quadruplet (VA AN QA4 A(A)) defines a left-resolving, predecessor-separated,
t-irreducible A-graph system that presents the subshift A [33, Proposition 3.2]. The A-
graph system was denoted by £*() in [33, Proposition 3.2] and called the canonical
A-synchronizing A-graph system for A. The following proposition was proved in [33, The-
orem 3.9].

Proposition 2.9 ([33, Theorem 3.9]). Let A be a A-synchronizing subshift. Then there
uniquely exists a left-resolving, predecessor-separated, t-irreducible, A-synchronizing A-
graph system that presents the subshift A. The unique A-synchronizing A-graph system is
the canonical A-synchronizing A-graph system @) for A.

Lemma 2.10. Let A be a A-synchronizing subshift.
() A is irreducible if and only if R*®) is 1-irreducible.
(i) A is A-transitive if and only if &*®) s A-irreducible.

Proof. (i) The assertion comes from [33, Proposition 3.7].
(ii) The equivalence between A-transitivity of A and A-irreducibility of 24 s direct
by definition. ]

Definition 2.11 ([33]). A A-graph system £ is said to be minimal if £ has no proper
A-graph subsystem of £.

It was proved that for a A-synchronizing subshift A, the canonical A-synchronizing
A-graph system £4(Y) is minimal.

In what follows, for a A-synchronizing subshift A, the canonical A-synchronizing A-
graph system 24 is denoted by ETX“‘. Recall that a subshift A is said to be normal if it
is A-synchronizing and its cardinality |A| is not finite as a set. We call the A-graph system
B‘Xi“ for a normal subshift A the minimal presentation of a normal subshift A. We often
write RN = (y/min, prmin jmin | min) op (VAmi", EA™ AA™ LAmi").

2.4. Condition (I) for A-graph systems

Let & be a A-graph system over X and A the presented subshift A ¢. The condition (I) for a
A-graph system was introduced in [26] that yields uniqueness of certain operator relations
of canonical generators of the associated C *-algebra Og¢.

Definition 2.12. A A-graph system £ is said to satisfy condition (I) if for any vertex
v € V, the follower set I'f; (v) of v defined by

) == {(Aen). Aea)....) € Xa | s(er) = v.
ei € Ejqpi10+4i, t(e;)) =s(ejy1), i =1,2,. }
contains at least two distinct sequences.

In [23, Lemma 5.1], the following lemma is shown for the case of the canonical A-
graph system £4 for A.
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Lemma 2.13 (cf. [23, Lemma 5.1]). Let & be a left-resolving A-graph system. Consider
the following three conditions:

(i) L satisfies condition (I).
(i) Forle€Zy,veVy, (xp)nen € UL (v) andm € N, there exists (yn)nen € UL ()
such that

xj=y; forallj=12,....mandxy # yn for some N > m.

(iii) Fork,l € N withk <, there exists y(i) € F;(vlz)foreachi =1,2,....,m()
such that

ox (@) #y(j) foralli,j=1,2,....m(l)andm =1,2,... k.

Then we have implications: (1)< (ii))=(iii). If in particular, & is the minimal A-graph
system BT" for a normal subshift A, then the three conditions are all equivalent.
Proof. ()= (ii): For x = (A(ex))neN € F;(vf), put v]l-J”” = t(em) € Vitm. Since
Fot(v§+m) contains at least two distinct sequences, one may find y € F;g(vf ) such that
xj=yjforall j =1,2,...,mand xy # yy forsome N > m.

(ii))=>(i): The assertion is clear.

(ii)=(iii): Take and fix k < [. We will first see that for a vertex vf eV,

there exists y € F;(vf) such that o (y) # y for 1 <n <k. 2.2)

Take x € T'5 (v!). If o5 (x) = x, we may find y € T'f(v}) such that o (y) # y by the
assertion (ii). We may assume that o5 (x) 7 x. Now suppose that o} (x) # x foralln € N
with 1 <n < K for some K € N. We will show that

there exists y € ' (v!) such that 67 (y) # y for1 <n < K + 1.

Let x = (x;)ien. As 0 (x) # x foralln € N with 1 <n < K, there exists k, € N such
that xg, 7# Xx,+4k, foreachn € N with 1 <n < K. Put

M =max{n +k, |n=12,...,K}

so that M > K + 1. Suppose that of‘H (x) = x. By the condition (ii) for m = M, there
exists y = (yn)nen € I'dh(v!) such that
xj=y; forallj=12,...,M, 2.3)
xy #yny forsome N > M. 24

As X, # Xp+k, foreachn € N with | <n < K, the equality (2.3) implies yx, # Vn+k,
for all n» with 1 < n < K. Hence we have

oh(y)#y forl<n<K. (2.5)
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Now of“(x) = x so that xg414; = x; foralli € N. Ifcrf“(y) =y, the equality (2.3)
implies x; = y; for all j € N, a contradiction to (2.4). Hence we see that of“(y) £y
so that by (2.5), we obtain that o’ (y) # y foralln € N with 1 <n < K + 1 and thus the
assertion (2.2).

We will next show the following: fori = 1,2,...,m(l) and k,l € N with k </, there
exists y! € T'f(v!) such that

or (v #yl foralli,j =1,2,....m()andn =1,2,... k.

For i = 1, by (2.2), there exists y{ € FO“;(U{) such that a}’\(y{) # y{ for 1 <n <k.
By the condition (ii), it is easy to see that the set of F;g(vf ) satisfying (2.2) for each
i =1,2,...,m(l) is infinite. We will show that for a fixed k <,

there exists yl.l S Fjo(vf) foreachi = 1,2,...,m < m(l) such that

oy #yl foralli,j =1,2,....omandn =1.2,....k (2.6)

by induction on m with 1 < m < m(l).

As in the preceding argument, (2.6) holds for m = 1. Now assume that (2.6) holds for
all i < m. We will then prove that (2.6) holds for all i < m + 1. It is easy to see that the
set

L +(0 n
Yi={y el"(v;) |oj(y) #yforl <n <kj

is infinite by the above argument. In particular, Y, is infinite. Take yf el (vf ) for
i =1,2,...,msuch that

UK(y]l»);éyf foralli,j =1,2,...,mandn =1,2,...,k.

We may take and fix the above yf elrt (vf ) fori =1,2,...,m by the induction hypoth-
esis. Consider the following set for the yil, i=1,2,...,m:

Z={y el“+(vfn+1)|01’{(y]l-) = yforsome j =1,2,...,mandn =1,2,... .k}

U{y e T (w4 | ok () =yjl~ forsome j =1,2,....,mandn =1,2,... k}.

As Z is a finite set and Y,,+; is an infinite set, the set Y;,41 N Z€ is infinite. Hence we
may find an element yfn 41 € Ym41 N Z€ satisfying

UX(yrln-i-l) # yrln+17 UX(J’]I') # y,’n+1, UX(J’;Zn+1) # y]l'

forall j =1,2,...,mandn = 1,2,..., k. Therefore the assertion (2.6) holds for m + 1,
so that the induction completes. We thus obtain the assertion (iii).

(iii)=>(i): Assume that £ is the minimal A-graph system £ for a normal subshift A.
Suppose that £ does not satisfy condition (I), so that there exists a vertex vf € 1} such
that F;(vf ) = {y} a singleton for some y € X . Now we are assuming that £ is minimal
and hence A-synchronizing, so that there exists No € N such that v/ launches y[; n,]. Let
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I'H € V41 be a vertex such thatt(vH'l) = vl Forany y’ € T} (vl+1) the local property
of A-graph system £ ensures us that y' € F+(vl ) and hence y = y. Hence we have
Fg;(v]l"']) F;g(vll) whenever vjl 1 e Y4y with L(vl+1) = v . Since & is A-synchro-
nizing, y never leaves any other vertex than U}l+ in Vl+1 Hence a vertex vjl‘H € Vit
satisfying L(UI+1) = v is unique. We may write j asz(l +1),sothat T} (vl‘|r1 )) ={y}.

i(l+1
Similarly we have a unique sequence of vertices vidn =1,2,... satisfying

(l+n)’

!
€ Vitns L(Ul(l_,’_n)) = vl;;frnll) forn =1,2,....

I+
vi(l-r:-n)
Now by the assumption (iii), we have o (y) # y, and hence there exists j; = 1,2, ...,
m(l + 1) such that o5 (y) € TS (le) Hence we have j; #i(l +1). Asy = y10a())
and I'f(v]) = {y}, we have F+(vl+l) = {oa(y)}. Together with L (v/F1 1) = {y},

i(l+1)
we have a contradiction to the COIldlthIl (iii).

Proposition 2.14. Let 2“&“‘ be the minimal presentation of a normal subshift A. Then the
A-graph system Q‘Xi“ satisfies condition (I).

Proof. By Lemma 2.1, X 5 is homeomorphic to a Cantor set. For vf € V;““‘, there exists an
[-synchronizing word p € S;(A) for which vf launches p. Hence we have U, C T (vf )
the cylinder set for the word (1. As X 5 is homeomorphic to a Cantor set, the cylinder set
U,, contains at least two points, so that €3 satisfies condition (I). m

The following definition have been already introduced in previously published papers.
The first one was introduced in [28], that is stronger than condition (I) for A-graph system
in Definition 2.12. The second one was introduced in [19] that was named as synchroniz-
ing condition (I) [19, (5.1)].

Definition 2.15. (i) A A-graph system £ is said to satisfy A-condition (1) if for any vertex

vf € V}, there exists a vertex vj-L, € V. for some L’ > [ such that there exist labeled paths

Y1, Y2 in L satisfying

st =s(r2) = vl 1) =t(2) = vF. A1) # M)

(i1) A normal subshift A is said to satisfy A-condition (I) if for any [ € N and p €
S7(A), there exist £1, &, € Bi(A) and v € S;4 g (A) for some K € N such that

£1.52 € T (v), &1 # &, [Svl = [62v]r = [l

The A-condition (I) for a normal subshift had been called synchronizing condition (I)
in [19]. Hence we know the following lemma that was already shown in [19].

Lemma 2.16 ([19, Lemma 5.1]). Let A be a normal subshift. Then the following two
conditions are equivalent.

(1) A satisfies the A-condition (I).

(ii) E"X“ satisfies the A-condition (I).
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3. Structure and simplicity of @ jwin

3.1. The C *-algebras associated with A-graph systems

Following [26], let us recall the construction of the C *-algebra Q¢ associated with a left-
resolving A-graph system £. The C*-algebra was first defined as a groupoid C *-algebra
C*(Gg) of an étale amenable groupoid G¢ defined by a continuous graph E¢ in the sense
of V. Deaconu (cf. [7,8]). Let = (V, E, A, ) be a left-resolving A-graph system over X
and A its presented subshift. The vertex set 2¢ of the continuous graph is defined by the
compact Hausdorff space of the projective limit:

Qe = {(u’)lez+ e T Vi lusm @™ =l 1 e Z+}.
=y

of the system t; ;41 : Vi1 — Vi, [ € Z of continuous surjections. It is endowed by its
projective limit topology. We call each element of Q2¢ a vertex or an t-orbit. The contin-
uous graph Eg for £ is defined by the set of triplets (4, o, w) € Qg x X x Qg where
u = (ul)leZ+, w = (wl)lez;+ € Qg such that there exists an edge e; ;41 € Ej ;41 satis-
fying

ul = s(er1+1)s wit! = t(e;i+1), and o = A(e;;4q) foreachl e Z4

([26, Proposition 2.1], cf. [7,8]). Let us denote by Xg the set of one-sided paths of Eg:

Xg = {(cxi,ui)ieN € 1—[(2 x Qg) | (ug,x1,u1) € Eg for some ug € Qg
ieN
and (uj,®j+1,U;j+1) € Eg foralli € N}.

We endow X¢ with the relative topology from the infinite product topology of IT;en (X %
Qg), that makes X¢ a zero-dimensional compact Hausdorff space. The continuous sur-
jection of the shift map og : (¢, u;)ieNn € Xg = (®i+1,Ui+1)ieN € Xg is defined on Xg.
Since the A-graph system £ is left-resolving, it follows that og is a local homeomorphism
on Xg [26, Lemma 2.2]. Let us define a factor map

mg t (@, ui)ien € Xg — (t)ien € 2N,

The image 7g (Xg) in =N is the shift space X5 of the one-sided subshift (X 5, 05) with
shift transformation oz ((¢¢j)ieN) = (@i+1)ien. We then have g 0 0g = 0 © 7g.

For the shift dynamical system (Xg, 0g), one may construct a locally compact étale
groupoid Gg, called a Deaconu—Renault groupoid as in the following way. We put

Gg = {(x,n,z) € Xg x Z x Xg | there existk,! € Z; og(x) = 0h(2), n =k —1}

(cf. [7,8,44,46,47]). The unit space Gg = {(x,0,x) € Gg | x € Xg} is identified with
the space Xg through the map x € Xg — (x,0,x) € Gg. The range map and the domain
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map of Gg are defined by r(x,n,z) = x and d(x,n,z) = z for (x,n,z) € Gg. The
multiplication and the inverse operation are defined by (x,n,z)(z,m,w) = (x,n + m,w)
and (x,n,z)~! = (z, —n, x). An open neighborhood basis of Gg is given by

ZWUk1,V)={(x.k—1,2) € Gg | x € U,z € V,0§(x) = 04 (2)}

for open sets U, V of Xg and k, [ nonnegative integers such that 0§ | and 0513 |y are home-
omorphisms with the same open range. We then have an étale amenable groupoid Gg.
We will describe the construction of the groupoid C *-algebra C*(Gg¢) for the groupoid
Gg as in the following way ([44,46,47], cf. [7,8]). Let us denote by C.(Gg) the set of
compactly supported continuous functions on Gg that has a natural product structure and
*-involution of x-algebra given by

(fx)) = > fg)= Y fgt '),

t1,10€Gg, s=t1t2 teGg, r(t)=r(s)
f*(S) = f(s_l) for f, g € C.(Gg), s € Gg.

Let us denote by CO(G,%) the C*-algebra of continuous functions on Gg that vanish at
infinity. The algebra C.(Gg) has a structure of Co(G)-right module with a Co(Gg)-
valued inner product by

WNn2) =@ f@). En@= Y. Exmone.n.z),

(x,n,z)eGg

for £, n € C.(Gg), [ € CO(Gg), (x,n,z) € Gg, z € Xg. The completion of the inner
product Co(Gg)-right module C.(Gg) is denoted by £2(Gg), that is a Hilbert C*-right
module over the commutative C *-algebra Co(G ). Let us denote by B({*(Gg)) the C*-
algebra of all bounded adjointable Cy (Gg)-module maps on £2(Gg). Let  be the *-
homomorphism of C.(Gg) into B({?(Gg)) defined by w(f)n = f * nfor f.n € C.(Gg).
The (reduced) C*-algebra of the groupoid Gg is defined by the closure of 7 (C.(Gg))
in B({*(Gg)), that we denote by C*(Gg). General theory of C*-algebras of groupoids
says that for a Deaconu—Renault groupoid G, the reduced C*-algebra C;*(G) and the
universal C*-algebra C*(G) are canonically isomorphic and hence they are identified
(see for instance [45, Proposition 2.4]). We denote them by C*(G).

Definition 3.1 ([26]). The C *-algebra Q¢ associated with a left-resolving A-graph system
£ is defined to be the C *-algebra C*(Gg) of the groupoid Gg.

The vertex set V; at level [ of £ is denoted by {v{, e, vfn(l)}. For x = (aty, Uy )neN €
X, weput A(x), =a, € X, v(x), =u, € Q¢ forn € N, respectively. The ¢-orbit v(x),
is written as v(x), = (v(x)ﬁl) 1ez, € S2g. Now £ is left-resolving so that there exists a
unique vertex v(x)o € Qg satisfying (v(x)g,®1,u1) € Eg. Define U(x) C Gg fora € X,
and U(vf) C Gg for vf € V; by

Ua) = {(x.1,z) € Gg | og(x) = z,A(x); = a},
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and
U(vll) = {(X,O,X) € Gg | U(x){) = vll}

where v(x)g = (v(x)f))lGZJr € Qg. They are clopen sets of Gg. We define

Se = 1(u@). Ef = T(Xyeh)  in7(Ce(Ge))

where yr € C.(Gg) stands for the characteristic function of a clopen set F on the
groupoid Gg.

The transition matrix system (A; 41, {1741)1ez, for the A-graph system £ deter-
mines the structure of the A-graph system £ that are defined by

) ) 1 ifthereexistse € Ejj11; s(e) = vf, Ale) =a, t(e) = v]l-+1,
Al,l-i-l(lsas./): .
otherwise,

. 1+1
. Lif e (07 = ol
I (i j) = _
0 otherwise

fori =1,2,....,m(),j =1,2,...,m(l 4+ 1), x € . More generally for vf eV, v,l(+” €
Vignand v = (vq,..., V) € By(A), we define

1 if there exists y € Ejjyn; s(y) = vf, Ay) =v, t(y) = v,l(+”,

Al,]+n(i,l),k) = .
otherwise,

. 1
. 1 if (yer0---0 Ll+n—1,l+n)(vk+n) = Uz!’
I pn(i k) = .
otherwise

so that

Arpn(v. k)= > Apgrove j0) - Argnetagn Ginets v k),

J1seees Jn—1
Ian(K) = Y Tasroj) - Dien1a4n (1, k).
jl ~~~~~ jnfl

For a vertex vf €V}, denote by I';” (vf) the predecessor set of vf that is defined in (2.1)
as the set of words in B;(A) that are realized by labeled edges in £ whose terminal
is vf. Recall that £ is predecessor-separated if Fl_(vf) # Fl_(v]l.) for distinct i, j =
1,2,...,m(l). We had proved the following theorem.

Proposition 3.2 ([26, Theorem 3.6, Theorem 4.3, and Proposition 5.6]). Let £ be a left-
resolving A-graph system. The C*-algebra Og is a universal unital C*-algebra generated
by partial isometries Sy, for a € X and projections Ell for vf € V; subject to the following
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relations called (8):

m(l)
D SpSp=> E/ =1, SuSYE! = E!'S,S}
Bex i=1
m(l+1) m(l+1)
El = > Iyl )EN. SyE[Sy= ) Ao j)EST!
j=1 j=1
forae X i =1,2,...,m(l), | € Zy. If in particular £ satisfies condition (I), then

any non-zero generators satisfying the above relations () generate an isomorphic copy
of Og. Hence Og is a unique nuclear C *-algebra subject to the relations (&) and belongs
to the UCT class if £ satisfies condition (I). If in addition, & is A-irreducible, the C*-
algebra Og is simple and purely infinite [28].

Remark 3.3. (i) In [26], the notion of irreducibility of a left-resolving A-graph system
£ had been defined so that if & satisfies condition (I) and is irreducible, the C*-algebra
Og is simple. The irreducibility is weaker than A-irreducibility. In a recent paper [40],
the two notions of transitivity and A-minimality of a left-resolving A-graph system were
introduced. As a result, the following four assertions under the condition (I)

(a) The A-graph system £ is irreducible.
(b) The A-graph system £ is transitive.
(¢) The A-graph system £ is A-minimal.
(d) The C*-algebra Q¢ is simple.

were proved to be all equivalent [40, Theorem 1.1].

(i) In [40], the notion of locally contracting A-graph system was introduced. It was
proved that if a left-resolving A-graph system & satisfying condition (I) is irreducible
and locally contracting, then the C*-algebra Og is simple and purely infinite [40, Theo-
rem 1.2].

If £ is predecessor-separated, then the projections E tl are written by using the partial
isometries Sy, @ € X in the following way:

El= ] SiSu- I1 (1-588,), i=12,....md) (3.1)
wely ) vel'[ (vh)enB;(A)

where S;, denotes S, -+ Sy, for & = (i1, ..., m) € B«(A). Hence the C*-algebra Og
is generated by the finite family Sy, o € X of partial isometries. By the above relation (£),
one sees that the algebra of finite linear combinations of the elements of the form

SLELS* forp.ve Bu(Xa). i=1,....m(). 1 €7,

forms a dense *-subalgebra of Og. Let us denote by Dg the C *-subalgebra of Q¢ gen-
erated by the projections of the form SMEZ.IS;;, i=12,....m(),l € Z4, u € B«(N).
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We also know that the algebra D¢ is canonically isomorphic to the commutative C *-
algebra C(Xg) of continuous functions on X¢. The C *-subalgebra of Dg generated by
the projections of the form S, S, u € B«(A) is canonically isomorphic to the commuta-
tive C*-algebra C(X ) of continuous functions on the right one-sided subshift X 4, that
is written Op .

Let us define several kinds of C*-subalgebras of Q¢ that will be useful in our fur-
ther discussions. For a subset F C Og, we denote by C*(F) the C *-subalgebra of O¢
generated by all elements of F. Let k,[ € Z4 with k < [. We define C*-subalgebras of
Og by

Ay =C*(E! i =1,2,....m(0)),
Ag =C*(El i =1,2,....m(), | € Z3),
Dig = C*(SWE!Sy i =1.2,....m(l). p € Br(A)),
Dre = C*(SuE!SS i =1.2,....m(), p € Be(A), | € Zy),
Freg = C*(SLE!SY 1i =1,2,....m(l), u,v € Br(A)),
Fre = CH(SLE!SY 1i=1,2,....m(), u,v € B(A), | € Zy),
Fe = C*(SLELS; i =1,2,....m(l), p,v € Be(A), k.l € Z4).

As in the papers [19, 26, 33], etc., the C*-algebra Qg has a natural action of the circle
group T = R/Z called gauge action written p<, that is defined by forz € T,

p(Se) = ™V NS, aex, pHEN=E.i=1..ml).1€Zy. (32

The fixed point algebra of Qg under p* is the AF-algebra Fg with its diagonal alge-
bra Dg. Let us define ¢g : Dg — D by ¢p(X) =), c5 Sa XS5, X € Dg. The restriction
of ¢g to D is denoted by ¢4 .

Lemma 3.4. Let & be a left-resolving A-graph system. Then the following two conditions
are equivalent:

(i) Fork,l e Nwithk <landi =1,2,...,m(l), there exists y(i) € F;;(vf)for
eachi = 1,2,...,m(l) such that

GX(y(i)) £ y(j) foralli,j =1,2,....m(I),n=1,2,....k. (3.3)
(i) Fork,l € N withk <1, there exists a projection q,l{ € Dp such that
(1) gla #0forall 0 # a € A,
) qtet(gl)=0forn=1.2,... k.

Proof. (i)=(ii): By the condition (i), take y(i) € I'jo(vf) for each i = 1,2,...,m(l)
satisfying (3.3). Put a finite subset of X 5

Y ={y@)|i=12,....m()} C Xa.
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We then have 0,"(Y)NY =@ foralln = 1,2,..., k. Now X, is Hausdorff so that
we may take a clopen set V' C XA suchthat Y C Vand o, "(V)NV =@ forall n =
1,2,..., k. Define q]lc = yy € C(Xa)(= Dp) the characteristic function of V on X4.
Since y(i) € Y C V and y(i) € Fg;(vf) we have q]lc . Ell # 0. On the other hand, the
condition o," (V) NV =@ foralln = 1,2, ..., k ensures us q,iqﬁﬁ(q,lc) =0 forn =
1,2,...,k. As the C*-subalgebra +A; is the direct sum @:"z(ll)(CEl-l, we see that q]lca #0
forall 0 # a € A;.

(i1))=(i): Assume the condition (ii). For k,/ € N with k < [, there exists a projection
q,lC € Dy satisfying the conditions (1) and (2). The condition (1) implies that q,lc Ell #0
foralli =1,2,...,m(l). One may take a clopen set V' C X such that q,lc = xy and
hence

VNATL) #@fori =1,2,....m() and VNoy"(V)=0forn=1.2,... k.

Take y(i) e V' N F;g(vf) foreachi = 1,2,...,m(l), so that we have o} (y(I)) # y(j)
foralli,j =1,2,...,m(l),n =1,2,..., k. Thus the assertion (i) holds. [ ]

Since the condition (i) in the above lemma is the same as the condition (iii) in Lemma
2.13, the following lemma holds.

Lemma 3.5. Let £ be a left-resolving A-graph system satisfying condition (I). Then for
k,l € N withk <1, there exists a projection q]lc € D, such that

(1) gha #0forall 0+ a € A,
2) q,lcgﬁf\(q,l() =0forn=12,... k.

Now we put Q ,lc = <]§£§ (q,i) € Dy aprojection in Dp. We note that each element of
De commutes with elements of Ag. As we see the identity

Sudh(X) = M (X)S,, for X € De. p € Bu(A). j € Zy,

where |p| denotes the length of the word j, a similar argument to [6, 2.9 Proposition]
leads to the following lemma, that was seen in [26, Lemma 4.2].

Lemma 3.6. Using the above notation, the following hold.

i e correspondence X € ¥ — € %.1 Q. extends to an isomor-
(i Th pondence X € ¥y, ' X0 € QL% 0! extends t
phism from ¥y ; to Q,lc\?f'k,l Q,lC

(i) For X € Fg, we have
|0LX —XQL| -0 and |QLX| —[IX] =0 ask,| — .

(iii) For u € B«(A), we have || QL S, ||, |QLS% 04| — Oas k.l — oc.

The following lemma was seen in [37, Lemma 2.5] and [30, Lemma 6.5] without its
detail proofs. We will give its detail proof here, where D/, stands for the commutant of D.
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Lemma 3.7 (cf. [25, Lemma 3.1, Lemma 3.2]). Let & be a left-resolving A-graph system
satisfying condition (I).

i) Da’'N0O¢ C Fe.
(i) DA’ N Fe C Dg.

Proof. (i) Let E : Og — Fg¢ be the conditional expectation defined by
E(X) = f pf(X)dt X € Og
T

where dt denotes the normalized Lebesgue measure on T = R/Z. For X € D’ N Og,
we put
X, = E(S;X), X_,, = E(XS,) forpu e Bi(A).

We will show that X, = X_,, = 0 for u € B«(A) with || > 1. For f € O,, we have
XuSufS; = ESyXSufS)) = E(S;SufS;X)=E(fS;X)= fXy.
It follows that

X8 () = XSSt > SufSy = XuSuSySufSh = X,
VEB|,(A)

Now suppose that X, # 0. For ¢ > 0, there exist k,/ € Z4 with k <[ and X ; € Fi;
such that |u| < k and || X, — Xl < &. We may assume that || X, || = || Xz || = 1. We
then have for f € Dy,

|/ Xea = Xead' (O] <21 £ lle.

Now £ satisfies condition (I), so that there exists a projection Q,lc in Dy defined by O ,l( =
¢>§(q,l() satisfying the previous lemma. By considering SESE*X k,ngS; instead of Xj ;,
we may suppose that X ; is of the form S,;EiZ S, for some &, 1 € By (A). It then follows
that

QiXki =Y, SvaiS;StE[Sy = SeqiSESeE! Sy = SeElq; Sy

vEBL(A)

and

XeiQp = SeEISy Y Suqi Sy = SeE[S;SnqiSy = SeElq; Sy

veB(A)

so that Q fc commutes with Xy ;. Hence we have
| Xe Of = Xiadd (00| = | Q4 Xet — Xia9l1 (0] < 20104 lle =26 (3.4)
As 04" (04) = #K(aL ¢ (g})) = 0, we have

|1 X0k — Xi 198 (0L)| = max {I|Xes QLI | Xxa08" (0D |}-
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Since the correspondence X € F ; — QIICXQIIc € Qiff«‘k,l Q]lc extends to an isomorphism
from F ; to Q]lcfff"k,lQ,lC so that ||Xk1Qf€|| = || Xkl = 1. Hence we have

| Xe1 0% = Xiag ()] = 1
a contradiction to (3.4). We thus have X, = 0 and similarly X_,, = 0. This means that
X =EX) € Fe.

(ii) For u € Br(A), we put P, = S,LS;; and define the map E»”,lC : Frg — Dy, by
setting SIIC(X) =Y ueB(a) PuXPy for X € Fj ;. Since the restriction of 8,’(“ to Fr;
coincides with & ,lc the sequence {& ]lc }k<i gives rise to an expectation & If’ P Fre = Die
for k € N. Similarly the above sequence {& ;f’}keN of expectations yields an expectation
&L : Fg — Dg such that the restriction of &€ to F.e coincides with 8,’5’ for k € N.

For X € D¢’ N Fg, we know that Sf(X) = X fork € N, so that £¥(X) = X. Since
&% (X) € Dg, we have 2(X) € Dg. |

We thus have the following proposition.

Proposition 3.8 (cf. [25, Lemma 3.1, Lemma 3.2]). Let £ be a left-resolving A-graph
system satisfying condition (I). Then we have

Dp' N Og = Deg.

Proof. The inclusion relation D’ N Og O Dg is obvious. For X € DA’ N Og by the
assertions (i) and (ii) in Lemma 3.7, we know that X belongs to ¥¢ and Dg so that
@A/ NOg C Dg. [ ]

3.2. The C *-algebras associated with normal subshifts
For a normal subshift A, denote by S’Xi“ its minimal presentation.

Definition 3.9. The C*-algebra O pmin associated with the normal subshift A is defined
by the C *-algebra O gnin associated with the minimal A-graph system Bﬁi“.

Let (AP . I} iez,, be the transition matrix system for the minimal A-graph sys-

tem S?i“ that is defined before Proposition 3.2. Then we have the following proposition.

Proposition 3.10. The C*-algebra O pmin is the universal concrete unique C*-algebra
generated by partial isometries Sy, indexed by symbols a € ¥ and projections E ll indexed
by vertices vf € Vlmi“ subject to the following operator relations called (B“Ai“).'

m(l)
1= "SuS;=) El.  SiSrE}
oEX i=1
m(l+1) m(l+1)
Ef = Y IMG.)ET. S;E[Se= > APfG.a j)EIT!
i=1 =1

E!S,S},

fora e X, i =1,2,...,m(l).
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Proof. By Proposition 2.14, the A-graph system Sﬁi“ satisfies condition (I) so that we
know that the C *-algebra O pmin is the universal concrete unique C *-algebra generated by
partial isometries S, indexed by symbols « € ¥ and projections Ell indexed by vertices
vf € Vj subject to the operator relations (Eﬁin). ]

We thus have the following theorem, that was already seen in [19,33].

Theorem 3.11. Let A be a normal subshift.
(1)  If A is A-transitive, then the C*-algebra O omn is simple.

(i1)  If A is A-transitive and satisfies the A-condition (I), then the C*-algebra O pmin
is simple and purely infinite.

Proof. (i) The assertion was already seen in [19,33].
(ii) By Lemma 2.16, the A-graph system S’Xi“ satisfies the A-condition (I). By [28], the
C*-algebra O pmin is simple and purely infinite. [ ]

The following lemma is useful in our further discussions.

Lemma 3.12 ([33, Proposition 3.3]). Let A be a normal subshift. For a vertex vf € Vlmin
in BrXi", there exists i € S;(A) such that Ell > SuSy in O pmin. That is, ifvf launches L,
the inequality Ell > SuS}; holds.

The above algebraic property of the C *-algebra @ zmin characterizes the C *-algebra
Og to be O pmin.

We note that the minimal A-graph system eri“ is predecessor-separated, so that the
projections Ell are written in terms of the partial isometries Sy, € ¥ asin (3.1). Hence the
C *-algebra O pmin is generated by only the finite family of the partial isometries Sy, € 2.

We will see that irreducible sofic shifts A such that A is not finite as a set satisfy the
condition (ii) in the above theorem. We will study more detail in Section 4.

Recall that the C *-algebras ﬁ)gl},\m and D, are both commutative C *-subalgebras of
O pAmin defined by

Dgnin = C*(SLE!S) e Bu(A), i =1,2,....m(), | € Zy),
Dp = C*(SuSp: 1 € Bu(A)).

The former is isomorphic to C(X ’35"\“‘)’ and the latter is isomorphic to C(X ). The natural
factor map g : X gnin —> X A induces the inclusion

JDA( = C(XA)) C c"DgT\in( = C(Xsrxin)).

min

Since the minimal A-graph system £ of a normal subshift A satisfies condition (I) by
Proposition 2.14, we have the following proposition.

Proposition 3.13. Let A be a normal subshift and E‘I“\i“ be its minimal presentation. Then
we have
/ . — .
o((-)A N (9Amm = o(Dsrxm.
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4. Irreducible sofic shifts

Let A be an irreducible sofic shift over alphabet 2. An irreducible sofic shit is defined by
using an irreducible finite directed labeled graph. It is realized as a factor of an irreducible
shift of finite type. The class of irreducible sofic shifts includes the class of irreducible
shifts of finite type (see [9,13,15,16,21,49], etc.). It is shown in [19,33,34] that irreducible
sofic shifts are A-synchronizing. Let GK =(VF E [f , Ai) be its irreducible left-resolving
predecessor-separated finite labeled graph over ¥ that presents A, where (V{ E f) is
a finite directed graph with vertex set VI and edge set EF, and Ai  E K — X isa
labeling map. It is well-known that such a finite labeled graph always exists for A. It
is minimal and unique up to graph isomorphism [9, 21]. The labeled graph is called the
minimal left-resolving presentation of an irreducible sofic shift, or the left Fischer cover.
Let V{ = {vy,...,vn} and Elf = {e1,...,ep}. We will first define a labeled Bratteli
diagram (V, E, 1) over ¥ as follows. Let Vy = {vo} a singleton, and V; = {vy,..., vy}
for! € N.Let Eo1 = {f...., fJ} such that

s(fio) = vy, t(fio) = t(e;), /l(fio) =AF(e;) fori=1,2,....M,
and Ej ;41 = {fll, ey fﬂl,l} for € N such that
s(fH =s(e). t(f)y=1t@). AMfH =rF(e) fori=1,2,....M.
For v; € V1, putlet I'T (v;) be its predecessor set for the vertex v;, that is defined by
Iy =AU eS| t(f) =vi}. i=12,....N.

If I'T (v;) = I'y (vj), then the two vertices v; and v; are identified with each other in
V1, and we have a new vertex set written VIF . The sources {s(f),...,s( fﬂ(})} of edges
(... f 1&} are identified following the identification in V1, so that we obtain a new edge
set written E({ 1- Similarly, for v;, v; € V,, if I'; (v;) = I'; (v}), then the two vertices v;
and v; are identified in V>, and the sources {s(f}!),. .. ,s(fA}I)} ofedges { f!,..., fAll} are
identified following the identification in V5, so that we obtain a new edge set written E f 5
Like this way, we continue this procedure to get new vertex sets VIF ,1=0,1,2,...and
edge sets E11;+1’ [ =0,1,2,.... Since A is sofic and the original labeled graph GII; =
vFE, EK )Li) is predecessor-separated, there exists K € N such that I, (v;) # 'y (v))
in By (A) forallk > K andi,j =1,2,..., N withi # j, so that we have

Vil =vi=v). Ef =E (= Ef) foralll > K.
We thus have a labeled Bratteli diagram (VZF E lFl +1° )\II“: ; +1)16Z . over X. Let us denote
by {v{, cee vfn(l)} the vertex set VIF. Since I'/, ; (v;) = I’/ (vj) implies T} (v;) =
[, (vj), we have a natural surjective map Vlf—l — VZF written LfHJ forl < K.Forl > K,
the identity map VII-:H — VZF written LlF 4108 defined. We thus have a A-graph system

el = (wF EF AFF)
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that presents the original sofic shift A. As the original labeled graph G = (Vl{v E 11\7 , Ai)
is minimal, left-resolving and hence predecessor-separated, our A-graph system 25 is
left-resolving and predecessor-separated and presents A. And also, every vertex v; of the
directed graph Gﬁ has a word p such that any directed labeled path labeled p in G 1’;
must leave the vertex v; (cf. [21, Proposition 3.3.17]), so that every vertex of the A-graph
system Ei launches some word (see [34, Section 3]). Therefore the A-graph system Ei
is A-synchronizing. As A is irreducible, Eﬁ is t-irreducible by Lemma 2.10 (i). Hence Ei
is nothing but the minimal A-graph system £™" of A. Therefore we have the following
proposition.

Proposition 4.1. For an irreducible sofic shift A, let ™" = (/min pmin jmin  min) 7,
the minimal A-graph system for A. Let Gf = (VF,EF AF) be its Fischer cover graph
for A. Then there exists L € N such that

min __ F min  __ F min _ 1 F min o
I/l —VA, El,l+1_EA’ A —)\,A, L |Vlm1n—ld

foralll > L.

By the previous proposition, we can identify the minimal A-graph system £™" of an
irreducible sofic shift A with the left Fischer cover of A. Let A be an irreducible sofic shift
such that A is not finite as a set, so that A is a normal subshift. Let GK = (Vf ,E [f , AK )
be its left Fischer cover graph with vertex set Vf = {v1,...,vy}. Consider the following
matrix:

1 if there exists e € Ef; )&i(e) =a, s(e) =v;, t(e) =vj, @10
0 otherwise. '

A, a,j) = {

Let Sy, € ¥ and E;,i = 1,2,..., N be partial isometries and projections respectively
satisfying the following operator relations:

N N
1= SuSy =Y Ei. SuSyEi=EiSaS;. SiEiSe=) Ali.a.j)E; (42)
) i=1 j=1

forw € ¥,i =1,2,..., N. Letus denote by (961{ the universal C *-algebra generated by
S, € Xand E;,i = 1,2,..., N satisfying the above relations. We put

T = {(oc,i) € ¥ x{l1,2,...,N} | thereexists e € EK; Ai(e) =, tle) = v,-}.

For («,i),(B, ) € s, by using the matrix A given by (4.1), we define a matrix

N
Ao ). (B.))) = Y Alk.. ) AG. B. j). (4.3)
k=1
Since the labeled graph G f is left-resolving, the (o, i), (8, j )-entry ff((oz, i),(B,j)) of the
matrix A is one or zero. Let us denote by O ; the Cuntz—Krieger algebra for the matrix A.
We then have the following proposition.
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Proposition 4.2. Let A be an irreducible sofic shift such that A is infinite. Then the C*-
algebra O pwin of the minimal presentation ngin of A-graph system for the irreducible sofic
shift A is a simple purely infinite C*-algebra that is isomorphic to the Cuntz—Krieger
algebra O ; for /’l\deﬁned by (4.3) for its left Fischer cover graph GII\T = (VF, EII\:, )Li)

Proof. By the universality and the uniqueness of the C *-algebra (9 ymin for the canonical
generating partial isometries S,,® € ¥ and projections Ell i=12,....m(),l € Z4
subject to the relations (erin) as in Proposition 3.10, the C*-algebra 9 pmin is canonically
isomorphic to the above C*-algebra O ;r .

We will henceforth show that (961{ is isomorphic to the Cuntz—Krieger algebra O ;.
Let Sy, € X and E;,i = 1,2,..., N be partial isometries and projections respectively
satisfying the operator relations (4.2). For («,i) € s, put S(e,i) = S¢ E;. We then have

N
> SeiSesy =Y. Y SuEiS=1.

(a,i)ei aeXi=1

As SFSe = Z,?,:l SyErSq = Z,jc\;l Z]N=1 A(k,a, j)E;, we have

N N N
SteiySiy = Ei ( > Ak j)Ej) Ei =) Atk.a.D)E. (44

k=1j=1 k=1

Since SEEiSﬁ = Zj-vzl A(i, B, j)E;, we have

N
Ei=) Y AGB.)SpES;= ) AGCBNS@NSG @5

pezi=1 (B./)eZ
By (4.4) and (4.5), we thus obtain

N

SE‘a,i)S<a,i>=ZA(k’%")( > AGBN)SENSE))
k=1 (B./)e%
N
= Y > Al )AG. B )SB.HSH.
(B,))eL k=1
= Y A ). (B, ))S.nSi. )
(B.))€S

Hence the C*-algebra C*(S(q,i); (@, i) € fl) generated by S(q ), (@,7) € Tis isomorphic
to the Cuntz—Krieger algebra O ; for the matrix A. By (4.5), we have

N N
Ei= ) AGB.)Se.nSGp Sa=2 Sabi=)_ Sai
B.J)<S =t =
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so that Sy, E; are generated by Sy ), (@, 1) € . We thus have
C*(Sa.Eii €%, i=12,....N) = C*(Sq); (i) €X)

and hence OGK = (92. [

5. Other examples of normal subshifts

In this section, other examples of normal subshifts than irreducible sofic shifts and their
C *-algebras will be presented.

5.1. Dyck shifts

For a positive integer N > 1, the Dyck shift Dy of order N was introduced by W.
Krieger [14], related to Dyck language in formal language theory in computer science
(cf. [11]). Consider an alphabet

S=3TUX" whereX” ={ay,....an}, T ={B1.....Bn}.

Following [14], the Dyck inverse monoid for X is the inverse monoid defined by the
product relations: «;; f; = 1if i = j, otherwise o;; §; =0, fori, j =1,..., N. The symbol
1 plays a r6le of empty word such that ;1 = 1o; = o5, ;1 = 18; = B;. By the product
structure, a word w; --- w, of X is defined to be admissible if the reduced word of the
product w; - -+ @, in the monoid is not 0. The Dyck shift written Dy is defined to be
the subshift over alphabet ¥ whose admissible words are the admissible words in this
sense. It is well-known that the subshift Dy is not sofic for every N > 1. It is shown
in [19] that the Dyck shift Dy is A-synchronizing and hence normal. Its minimal A-graph
system Brg; = (ymin gmin Amin min) wag already studied in [18], in which the minimal
A-graph system Bgi; was called the Cantor horizon A-graph system written LE#(PN) Let
us briefly review its construction.
Let A y be the two-sided full N-shift over {1,2,...,N}. Let

min l
Vit = ABu, - Buy € (B1) |y € Bi(An)} (5.1)
and the mapping (™" : V™% — V™" is defined by

By By Brysr) = Buy = Buy Tor By -+ B, By € Vlnjrnl1

Define a labeled edge labeled o from B, -+ B, € V™ 10 BuoBu, -+ B € Vl‘i“l‘

precisely if uo = j. Define a labeled edge labeled B; from BB, -+ Bu,_, € Vlmi“ to
Buus - BuyBusyy € V/. Such edges are denoted by Ej", | . We then have a A-graph sys-
tem presenting the Dyck shift Dy . It is the minimal left-resolving presentation and hence
it is the minimal A-graph system BB‘; (cf. [33]). Since the subshift Dy is A-irreducible

satisfying A-condition (I), we have the following proposition.
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Proposition 5.1 ([18, 29, 33]). The C*-algebra (9D1mvin associated with the minimal A-
graph system 8%‘; for the Dyck shift Dy is simple and purely infinite.

The K-groups of the algebra @ ppin Was computed in the following way:
K()((gD]\m]in) = Z/NZ @C(G,Z), K](@D%in) = O

where C(C, Z) denotes the abelian group of Z-valued continuous functions on a Cantor
set € [18,33].

5.2. Markov-Dyck shifts

The class of Markov—Dyck shifts contains the class of Dyck shifts. It is a natural general-
ization of Dyck shifts as the class of topological Markov shifts contains the class of full
shifts. Let A = [A(, j)]ij=1 bean N x N square matrix with entries in {0, 1}. We assume
that the matrix is irreducible satisfying condition (I) in the sense of Cuntz—Krieger [6]. The
Markov—Dyck shift D4 for the matrix A is defined by using the canonical generating par-
tial isometries of the Cuntz—Krieger algebra 04 in the following way. Let 51, ..., sy be
the canonical generating partial isometries of the Cuntz—Krieger algebra (04 that satisfies

the relations:

N N
L= "ss¥. sfsi=Y AG.j)s;sf. i=12....N.
j=1 =1

Similarly to the Dyck shift, we consider the alphabet
S=YTUuX" whereX = {1,...,an}, >t = {B1,..-,BN}-

Let &; =s;",/§,- =s;,i =1,2,...,N.Wesaythataword y; - - -y, of T foryy,...,y, € X
is forbidden if 3; - - - ¥, = 0 in the algebra @ 4. The Markov—Dyck shift D4 for the matrix
A is defined by the subshift over alphabet ¥ by the forbidden words. These kinds of
subshifts first appeared in [17] by using certain semigroups. More general setting was
studied in [10]. The above definition by using generators of C *-algebras was seen in [32]
(cf. [35]). If all entries of A are one’s, then the product structure of @;, ,BAi, i=12,...,N
goes to that of the Dyck inverse monoid, so that the Markov-Dyck shift D4 coincides
with the Dyck shift Dy .

For any irreducible matrix A with entries in {0, 1} satisfying condition (I), the Markov—
Dyck shift D4 is not sofic [32]. It is always A-synchronizing and hence normal. Hence we
have its minimal A-graph system BBT for D4. The A-graph system was studied in [18]
in which it was called the Cantor horizon A-graph system and written LMD Let Ay
denotes the shift space

Aa = {(xn)nez € {1,.... N} | A(xn,Xn41) = 1 foralln € Z}

of the two-sided topological Markov shift defined by the matrix A. We denote by B;(Ay4)
the set of admissible words of A4 with its length /. The vertex set Vlmin at level / of the
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minimal A-graph system Sgi: is defined by

min l
V] :={ m"'ﬂm G(E+) |M1"‘ﬂl eBZ(AA)}~

The mapping (™" : Vl“_;lrl‘ — Vlmi“ is similarly defined to the minimal A-graph system B%i;

of the Dyck shift by deleting its rightmost symbol of words in Vl“j_“l‘ A labeled edge labeled

aj from B, - By € V™™ 10 BuoBu, - Buy € V;i“ll is defined precisely if o = j. A

labeled edge labeled B from B By, -+ By, € V™™ 10 By -+ By By, € VIT-H; is defined.

Such edges are denoted by E;“l“_‘i_l . We then have a A-graph system presenting the Markov—
Dyck shift D4. It is the minimal left-resolving presentation and hence it is the minimal
A-graph system SBI‘ (cf. [33]). Since the matrix A is irreducible and satisfies condition (I),
the subshift Dy is A-irreducible satisfying A-condition (I), so that we have the following

proposition.

Proposition 5.2 ([18,33]). The C*-algebra O prin associated with the minimal A-graph
system £ prpin for the Makov—Dyck shift D 4 is simple and purely infinite.

K-group formulas for the C *-algebras @ prin Were studied in [32].

5.3. Motzkin shifts

Motzkin language appears in automata theory as well as Dyck language [11]. The Motzkin
shifts are non sofic subshifts associated with the Motzkin language (cf. [27]). For a positive
integer N > 1, similarly to the Dyck shift, we consider the alphabet ¥ = X+ LI ¥~ where
" ={ag,...,an}, 27 = {B1,..., By} and the Dyck inverse monoid for =+ LU 2~
as in previous paragraphs. The Dyck inverse monoid is defined by the product relations:
a;B; =1ifi = j,otherwise ; f; =0, fori, j =1,..., N.Letus consider a new alphabet
set X defined by
T, =xtuz u{l.

The Motzkin shift My of order N is defined to be a subshift over X; such that a word
y1 -+ yn of X is forbidden precisely if y; -+ y, = 0. As seen in [27], the subshift My
is A-synchronizing and hence normal. Its minimal A-graph system ﬁﬂg was described as
the Cantor horizon A-graph system written £C#M~) in [27]. Let Vlmin be the vertex set
defined by (5.1). The mapping ¢ : V,"I" — Vlmin is similarly defined as in the case of Dyck

shifts. Labeled edges labeled symll)—(glls in ¥ from Vlmin to Vl“j_“; are defined in a similar
way to Dyck shifts. In addition to the labeled edges above, an additional labeled edge
labeled 1 from ’3‘.“ B € Vlmin to B, ---/3‘,”/3,”+1 € Vl’i“l‘ is defined for every pair
By Bu, € V" and B, -+ ,BM,BMJrl € V11. We then have a A-graph system that is
the minimal A-graph system Lty for the Motzkin shift My . Since the A-graph system
L3y contains the minimal A-graph system L3 of the Dyck shift Dy as a subsystem,
25{‘,,‘; is A-irreducible and satisfies the A-condition (I). Therefore we have the following

proposition.

Proposition 5.3 ([27]). The C*-algebra O Mpin associated with the minimal A-graph sys-
tem 8%“\, for the Motzkin shift My is simple and purely infinite.
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The K-groups of the algebra O Myn Was computed in [27] for the case of N = 2. Asin
the paper [27], the strategy to compute K; (O Mﬁm), i = 1,2 works well for general O My
N =2,3,..., so that we have:

KO(OMﬁin) = C(G:, Z), K] (QMﬁm) = O

where C(C, Z) denotes the abelian group of Z-valued continuous functions on a Cantor
set € [27].

5.4. B-shifts

The B-shift for real number 8 > 1 was first introduced in [43,48]. It is an interpolation
between full shifts, simultaneously one of natural generalization of full shifts. For a real
number 8 > 1, take a natural number N suchthat N —1 < 8 < N.Let f3 :[0,1] = [0,1]
be the mapping fg(x) = Bx — [Bx] for x € [0, 1], where [¢] is the integer part of ¢ € R.
Let ¥ ={0,1,..., N — 1}. The B-expansion of x € [0, 1] is a sequence d;(x, B),i € N
of X defined by

dix.B) = [Bfi" ()], ieN,

so that we know that x = ) 72, % We endow =N with the lexicographical order.
Put {g = sup,¢(o,1)(di(x, B))ien. Define the one-sided subshift X4, by setting

Xp, = {a)e EN|6i(a))§§ﬂ, i eZ.,.},

B

where 07 (0) = (Wp4i)neN for @ = (wp)nen. Its two-sided extension Ap is defined by
Ap = {(@n)nez € =% | (On4i)nen € Xa,. k € Z}.

Suppose {g = (£1,§2,...) and let
byt = B =51 52T~ — G~ i

It is shown in [1, Section 4] (cf. [12, Proposition 3.8]) that
(i)  Ag is afull shiftif and only if bg, = 1.
(ii)  Ag is a shift of finite type if and only if bg,..,, = 1 for some k > 1.
(iii) Ap is a sofic subshift if and only if bg,..e, = bg,...¢, for some [ # m.

Hence Ag is not sofic unless § is an algebraic integer. It is shown in [19] that the B-shift
Ap is A-synchronizing for every B, so that it is normal. In [12], the C*-algebra Opg of
the B-shift A g was studied (cf. [22]). The C*-algebra O is indeed the C *-algebra (DSIXm
associated with the minimal A-graph system S’Xi; qf the subshift Ag. s

We will briefly review the construction of SIXII'; done in [12]. For [ € N, order the
real numbers {bg,, bg g, ..., bgg,..g, } Dy its usual order in R. They give rise to dis-
joint intervals partitioned by {bg,, bg,g,, ..., b g,.g, } in [0, 1]. Let m(l) be the number
of the partitions in (0, 1]. If Ag is sofic, there exist L and /o such that m(/) = L for
all [ > lo. If Ag is not sofic, then m(/) = 4 1 for all /. Let v{, A vfn(l) be the ordered
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set of the disjoint partitions of (0, 1]. The order is defined along the usual order in R.
We denote by Vlmin the set {v{ cees vfn(l)}. Suppose that vf corresponds to the interval
(bg, g, - bgy g, ] With bg g, < bg,..g,. For §541 € X, we define the labeled edge labeled
&p+1 from vf to the vertices v]l.+1 € VIT{ corresponding to the partitions contained in
the interval (bg,..,¢,,,> Dg,£,6,41]- For 0 <o < EPH with & € X, we define the labeled
edge labeled o from vf to the vertices vjl.+1 e V™" corresponding to the partitions con-

I+1 :
tained in the interval (bg,..g,a, 1]. Such edges are written E}"" ;. We define the map
I+1

(i YN — VRN by setting L(vjl.+1) = v! if the interval in (0, 1] corresponding to v ;
is contained in the interval in (0, 1] corresponding to vf *1. The resulting labeled Brat-
teli diagram becomes a A-graph system. It is not difficult to see that the A-graph system
is A-synchronizing and hence minimal (cf. [19]). The C*-algebra Og studied in [12] is
generated by a finite family Sy, S, ..., Sy—1 of partial isometries corresponding to the
letters of X. For an admissible word . € B«(Ag), puta, = S;S,L. It was proved in [12]
that there exists a unique KMS-state written ¢ for gauge action on Qg (cf. [12]). It is also
shown in [12] that

p(ag g-5) = bggygys k € N.
By [12, Corollary 3.2], we see fora € X

0 a > Sn+l»
S;agl...gn So = ag ..k, o= Entls 5.2)
1 o <&nt1.

Since the projections in the commutative C *-algebra 4g generated by the projections of
the form a,,, it € B+ (A p) is generated by the projection of the form E! := bg,..e, — bg, g,
the relatioq (5.2) tells us that the C *-algebra O Ay associated with the minimal A-graph
system £ is canonically isomorphic to the C *-algebra @4 studied in [12]. We therefore
have the following proposition.

Proposition 5.4 ([12, Theorems 3.6 and 4.12]). The C*-algebra O Agn of the B-shift Ag
is simple and purely infinite for each 1 < € R and

Z/m+-+nmm—DZ ifdQ1,p) = 711772"'f7m(.),‘
Ko(Opgn) =\ Z/(E1 + -+ &)L ifd(1,B) =vi---viy -,

Z otherwise,

K, ((QAZAin) = {0} foranypB > 1,

where 0 = 00 - - ,él Ek =& ---&& - & - - - mean the recurring words.

Remark 5.5. It was shown that the KMS-state for the gauge action on @ is unique at the
inverse temperature log 8, which is the topological entropy for the B-shift A g [12]. Hence
two subshifts Ag, A g are topologically conjugate if and only if 8 = B’
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6. Continuous orbit equivalence

In this section, we will discuss continuous orbit equivalence of normal subshifts. Let
£1, £, be left-resolving A-graph systems and (A1, 04,), (A2, 04,) their associated two-
sided subshifts, respectively. In [37], the notion of (£, £3)-continuous orbit equivalence
between their one-sided subshifts (Xa,,04,), (Xa,.0a,) was introduced in the follow-
ing way.

Definition 6.1 ([37, Definition 4.1], [30, Section 6]). Let £;, £, be left-resolving A-
graph systems. Then their one-sided subshifts (X4,,0a,) and (Xa,,04,) are said to be
(81, 82)-continuously orbit equivalent if there exist two homeomorphisms &g : Xg, —
Xg, and hp : XA, — Xa, and continuous functions k;,/; : Xg, — Z4, i = 1,2 such
that we, o hg = hp o me, and

ot (he(og, (1)) = 0g. P (he(x).  x € Xe,.
0 (g (02,(1)) = 0g " (hg' (7). ¥ € Xs,.
We first show the following lemma.

Lemma 6.2. Let £, £, be left-resolving A-graph systems satisfying condition (I) and
(A1,04,), (A2,04,) their associated two-sided subshifts, respectively. Suppose that one-
sided subshifts (Xa,,0a,) and (Xa,,04,) are (81, £2)-continuously orbit equivalent. If
A1 is a normal subshift and £ is its minimal presentation of A1, then A, is also normal
and £ is its minimal presentation.

Proof. Assume that (Xa,,04,) and (Xa,,04,) are (£1, £2)-continuously orbit equiva-
lent and £, is the minimal presentation of the normal subshift A;. By [37, Theorem 1.2],
there exists an isomorphism ® : Og, — Og, of C*-algebras such that ®(Dp,) = Da,.
Now £ = 2“&11“, so that we may write Og, = O min. Let S4, El.” and S2, El.zl be the
canonical generators of the C *-algebras O y mn and Og,, respectively. By Proposition 3.8,
the condition ®(Dx,) = Dy, implies (Dg,) = Dg,. Hence for a vertex v in £, and
the corresponding projection EiZI € Dg,, we have ! (El.ZI ) € Dg,. We may find a word
v € Bx(A1) and a vertex v}l in £ such that

o N (EF) = S, E}'S,*. S)*S) = E}.

Since A is normal, there exists a word 1 € B4«(A ;) such that EJ-” > 85,8,* by [33,
Proposition 3.3], so that

SYE}S)* > SISISI*SI* £ 0.

Hence we have
EZ > @(S,,50%). (6.1)

1
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Since ®(Dp,) = Dp,,one may find i € By (Ay) such that

(S, Sor) = SASH*. (6.2)

By (6.1), (6.2), we have
EY > SESP.

This implies that the vertex v !'in £, launches j by [33, Proposition 3.3] so that the A-
graph system £, is A- synchronlzlng. Therefore we conclude that the subshift A, is normal
and £, is its minimal presentation. ]

Now the following definition seems to be reasonable.

Definition 6.3. Let (A1, 01) and (A3, 02) be normal subshifts. Their one-sided sub-
shifts (Xa,,01) and (Xa,, 02) are said to be continuously orbit equivalent if they are
(S“Xil“, eri;)—continuously orbit equivalent.

Therefore we know the following proposition.

Proposition 6.4 ([37, Theorem 1.2]). Let (A1,0n,) and (Az, 04,) be normal subshifts.
Then the following two assertions are equivalent:

(1)  Their one-sided subshifts (Xa,,0n,) and (Xa,,0a,) are continuously orbit
equivalent.

(i)  There exists an isomorphism ® : O p mn — Oy min of C*-algebras such that
D(Dp,) = Da,.

We note the following proposition.

Proposition 6.5. Let (A1,04,) and (A2, op,) be normal subshifts such that their one-
sided subshifts (Xa,,oa,) and (Xp,,0n,) are continuously orbit equivalent.

(1)  (XA,,0a,) is a shift of finite type if and only if (Xa,,0n,) is a shift of finite
type.
(i1))  (Xa,,04,) is a sofic shift if and only if (X a,,0A,) is a sofic shift.

Proof. The minimal presentations Emm Emm of A1, A, are written £1, £,, respectively.

@A) It is easy to see that a normal subshlft A 1is a shift of finite type if and only if
Dp = e(l)gmm Now there exists an isomorphism @ : Oy min — Oy min Of C*-algebras
such that CD(J)AI) = Dp,- Since ci)gmm = D), N O pmin for a normal subshift A, we know
that Dg, = Dy, if and only if Dg, = DOa,. Hence (X,,04,) is a shift of finite type if
and only if (Xa,,0a,) is a shift of finite type.

(ii) Suppose that (X 5 ,,04,) is sofic. As in Section 4, the dynamical system (Xg,,0¢,)
is a shift of finite type. We know that the class of shifts of finite type is preserved under
continuous orbit equivalence by the above discussion (i). By definition, the shift of finite
type (Xg,,0g,) is continuously orbit equivalent to (Xg,, 0g,) as shifts of finite type
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Figure 1. Left Fischer covers of Ag and A1.

(cf. [31]). Hence (Xg,.0¢,) is a shift of finite type. As there exists a factor map
Ty . ng — XA2
such that 7 o 0g, = oA, © w2, we see that (Xa,,04,) is a sofic shift by [49]. [ ]

Proposition 6.6. Let (A;,0p;), i = 1,2 be sofic shifts and GFi, i = 1,2 beits left Fischer
cover graphs. Let us denote by fTi, i = 1,2 the transition matrices of the graphs Gt .
i =1,2 Let mj : Xgi — X, 1 = 1,2 be the natural factor maps from the shifts of
finite type X i o the sofic shifts Xp,, i = 1,2. Then the following three assertions are
equivalent.

(1)  Their one-sided sofic shifts (Xa,,0n,) and (Xa,,0n,) are continuously orbit
equivalent.

(ii)  The shifts of finite type (X/Tl , 021) and (ng , 021) are continuously orbit equiv-
alent via a homeomorphism h ; : X i X i such that there exists a homeo-
morphism hp @ Xn, — X, satisfying my o h ; = hp o my.

(iii) There exists an isomorphism ® : O i O i of Cuntz—Krieger algebras such
that ®(C(Xa,)) = C(Xa,), where C(Xa,) is embedded into C(X/Ti) cO;
through the factor maps m; : X«‘Ti — Xp i =12

Proof. Since the topological dynamical systems (Xg 2008 Ai) are the shifts of finite type
(X 1207, ), i = 1,2, the assertions are direct from the previous discussions. n
1 1

We will give an example (cf. [4, Example 6.15]).

Example 6.7. Let Ao and A; be the even shift over the alphabet {0, 1} and the odd shift
over the alphabet {0, 1}, respectively. Their forbidden words F«(Ag) are F« (A1) are
defined by

Fe(Mo) = {1071 [ n € Zy},  Fu(A) ={10""1 |n € Zy)
k

—_——
where 10s1=10---01fork =2n + 1, 2n. It is well-known that the subshifts Ag, A1 are
both sofic shifts. Their left Fischer covers G 11\70’ G [If , are shown in Figure 1, respectively.
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VANVAN

Figure 2. Transition graphs for the left Fischer covers of Ag and Aj.

We write « = 0, § = 1 for the alphabet {0, 1}. To describe the transition matrices for
the Fischer cover graphs G 11\70, G K ,» consider the new alphabet sets Yo, X by setting

A~

i\:0 = {((X,Ul), ((X’UZ)v (/371)1)}’ 21 = {(O{,Ul), ((X,Uz), (1871)2)}3
and put

L= (@v1), uzi=(@,vp), uzi=(B,v1) in S,
wy = (e, v1), Wy i= (@, v2), wsi=(B,v2) in Dy,

We then have the associated transition graphs for G fo and G 1{71’ respectively. They are

shown in Figure 2. Their transition matrices are denoted by /fo and Ay, respectively. They
are written

~ ~

0 1 1 0
A0= 1 0 0 s A1= 1
0 1 1 1

1 1

0 0

0 0

Let 51, 2, 53 and 71, #», 13 be the generating partial isometries of the Cuntz—Krieger alge-
bras O A and O i respectively. They satisfy the following operator relations:

* * * * * * * * *
E Sis; = 1, S181 = 8285 + 8383, S,82 = 8187, S§383 = $25, + §353,
i=1

Ztiti* =1, fn =01+t n=ntf, i =nt).
i=1
Proposition 6.8. There exists an isomorphism ® : O e O i of Cuntz—Krieger algebras
such that
®(Dg,) = Dg,.  P(C(Xno)) = C(Xny),
where ngTi = C(X,Ii)’ i =01

Proof. Putsy =11, s, = 15, s5 = t311. They are partial isometries in O 4, satisfying

! Ik ! % Ik 1% |/ ! Ik ! %
s187 + 8585 +s383 =1, S1 81 = 858, + 8383,

% % 1ok
Sy 8y = 8187, 8383 =855, + 5383
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Since 3 = s351", by putting ®(s;) = s;,i = 1,2, 3, ® extends an isomorphism from O

to @ ; . For an admissible word w of the shift of finite type (A ; A 04, ) defined by the
matrix Ay, denote by /& an admisible word of (A » A0 Al) defined by substituting

1—-1, 2—2, 3—3l.

Itis direct to see that the equality ®(s,s;,) = tﬁtll: holds. Hence we have & (D go) =D i

We will next show that ®(C(Xa,)) = C(Xa,). Define the partial isometries by setting

S¢ =581+ 52, Sg:=s3 in (9120 and Ty :=t +1, Tg:=1t3 in (9121.
It is easy to see that the equalities

O(Sa) = Tu. ®(Sp) =Tpa and & '(To) = So.  ®~'(Tp) = S5,
hold. For & € By(Ag), let & be the admissible word of A; by substituting
oa—>a p—Pa
in £. Then we have ®(S¢ Sg‘) = Tng*. As C(X4,) and C(Xp,) are generated by projec-
tions Sg Sg‘, & € Bi(Ap) and Ty, Tn*’ n € B« (A1), respectively, we know that
D(C(Xp,)) = C(Xa,). L]

Corollary 6.9. The even shift (Xp,,0A,) and the odd shift (Xa,,oa,) are continuously

orbit equivalent to each other.

Remark 6.10. Keep the above notation for Sy, Sg and Ty, Tg witha = 0, B = 1. Let
us denote by C*(Sy, Sg) the C*-subalgebra of O ; generated by the partial isometries
Sa, Sg. Itis easy to see that the identities

1= 8:S5SpSaSas  52= Sa—SiSySSuSa. 53=Sp

hold, so that the C*-subalgebra C*(S,, Sg) coincides with O 4, Similarly we know the
identities

= TETﬂTa, th =Ty — TgTﬁTa, t3=1Tg
so that the C*-subalgebra C*(T,, T) coincides with O e

7. One-sided topological conjugacy

In what follows, a sliding bock code means a shift commuting continuous map between
subshifts. Such a map is always given by a block map (see for instance [21]).

In this section, we will prove that the triplet (O pmn, Dp, p?) for a normal subshift
A is invariant under topological conjugacy of one-sided subshifts, where o™ denotes the
gauge action p¥A" on 9 pmn defined in (3.2). For a left-resolving A-graph system £, let
us denote by A the associated subshift. Recall from Section 3 that there exists a natural
factor map g : Xg — X such that mg o g = 0 o e that is defined in Section 3.
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Definition 7.1 ([30,37]). Let £; and £, be left-resolving A-graph systems with associated
subshifts A and A, respectively. The one-sided subshifts (X ,,04,) and (Xa,,04,) are
said to be (£1, £2)-conjugate if there exist topological conjugacies

hg : (Xg,.08,) = (Xg,,08,) and hp : (Xa,,0n,) = (XA,.04,)
such that e, o hg = hp o me,.

Equivalently, there exist homeomorphisms g : Xg, — Xg, and hip : Xo, = Xa,
such that

{hg(agl(x)) = ng(hg(x)), x € Xg,, 1)
and
g, ohg = hp ome,. (7.2)
We remark that the equalities (7.1) and (7.2) automatically imply the equalities
{hA(O’Al(a)) =op,(ha(a)), a € Xa,, 3
hxl (OA2 (b)) =0x, (hxl (b)), b e XA,

We note that if one-sided subshifts (Xa,,04,) and (Xa,,0n,) are (£, £2)-conjugate,
they are (£, £,)-eventually conjugate in the sense of [37] and in the sense of the follow-
ing section ((8.1)).

Lemma 7.2. Let 8‘1‘{11“ and 8’1‘\“2“ be the minimal A-graph systems for normal subshifts A4
and A,, respectively. Assume that there exists a topological conjugacy h : Xp, — Xp,.
Then there exists L € N such that for any | € N and a word . € S;(A1), there exists a
word i € S;(Az) with |[i| = || + L such that
() forneT, (i) andy € TL([K). the equality h™" ({Ly)z41,14+|u] = K holds,
(ii)  there exists y € F;L (u) such that for & € T/ (n), x € Tt (Eny), the equality
h(ERYx) 41,14 p1+L) = [ holds, so that h(LyX)(1,ju+L) = [i-
Proof. Let Ay, A, be normal subshifts over alphabets X, X5, respectively. Since & :
XA, = X4, is a topological conjugacy, there exist L € N and block maps

¢ :Bry1(A) = 22, ¢:Brii(Az) — Xy,

such that

h=QM: X) — Xp, and h7' =@M X\, — Xy,
where <p£‘3;”((x,,)neN) = (¢(Xpn,...,XL+n))neN and ¢[[>2’L] is similarly defined (see [21]).
Let € S;(Ay) with o = (U1, ..., fm). Since h™1 : X5, — X4, is a sliding block code,
there exists an admissible word & = (fi1, ..., A|u+L) € Bju+L(A2) such that

Un = d(n, ... . Antr), n=12,...,m.
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Suppose that y, y’ € TE (1) and n € [, (y). Hence we have h~'(nfiy) € Xa, such
that "' (LY i41,04/u) = K- Take & € By (A1) such that A= (nfiy) = £h~ ' (fLy). Since
h=Y(fty) = pz for some z € T'E (1), we have A~ (njiy) = &uz, so that we have £ €
I (pz).

Let h=1(fiy") = pz' for some z’ € TE (). As € S;(A1), the condition £ € I, (nz)
implies § € I'; (uz'), so thatEuz’ € Xa,. As h(§uz) = njiy, we see h(§p)(1,1) = 1. Now
y" = h(uz’) so that we have

h(Epz') = h(Ewp,nh(pz') = iy’

Hence we have n € T, (fiy’). This implies that F’(,U,y) = I';7(j1y") so that we conclude
that ;i € S;(A3). One may find y = (y1,...,y2L) € I' 1 (1) such that A (uyx)(,pu+1] =

f for any x € TE(uy). Hence h(EuyX)i+1,1+41ul+L] = [ holds for & € L7 (n), x €
L (Eny). Since h o op, = o, 0 h, we know that A(Uyx)1,u+L] = M- |

Lemma 7.3. For u € S;(A1), let i € S;(A3) be as above. For y' € F (), put fi" :
R(ERY' X V1,04 0411 € S1(A2) for some & € T (), x" € TH(Euy’ )- Then i~ in
S1(A2). Hence the l-past equivalence class of [L does not depend on the choice of y and
X as long as Epyx € Xa,.

Proof. We first note that i’ = h(py'x")[1,|u)+1]- For n € F’(,iZ) take y € I'} (%) such
that nfiy € Xa,. Hence h™1(niy) = S,uz € Xp,.Asy € F (1) and hence uy’ €
By(A1), we have §puy’x’ € Xp, forany x' € TE (Eny’). We then have

hEwy X+ = nhERY' Xt ui+2) = nit’

so that n € I';7(j1") and hence I';” (1) C I'; (ji'). Similarly we have I'; (1) C I';"(fX) so
that T'; (i) = '/ (i0'). L]

Lemma 7.4. Suppose v € B,(A1) with |[v| > L and vy € S;(A1) and vd € Si11(A1)
for some y,§ € l:;(v) such that vy ~jv8. Then we have vy € S;(Ay) and v8 € S;41(A»)
such that vy ~pvé.

Proof. By the previous lemma, we know that vy € S;(A5) and V8 € S14+1(A2). It suffices
to show that 17)7«»11;3. For n € T;"(Vy), we have nvyy € X, for some y € Xj,. Hence
we have h=1(n0yy) = Evyz for some £ € L (vy).ze Fl+(vy). As vy~;v§ and hence
Ev3 € B«(A1), wesee Ev8z’ € X, for some z' € Xp,. Since nvyy = h(§vyz), we have

h(Ev8z") = nh(v8z')141,00) = nvdy’  for some y’ € 1";(1:3).

Hence we have n € Fl_(gg) so_that I (vy) C Fl_(;;?). Similarly we have Fl_(\ZS) C
[ (vy) so that T, (vy) = I/ (vé). [

Proposition 7.5. Let Em'“ and 2‘1‘:‘; be the minimal A-graph systems for normal subshifts
Ay and A,, respectlvely Assume that the one-sided subshifts (Xa,,oa,) and (Xa,,0A,)
are topologically conjugate. Then they are (8“““ BrXi;)-conjugate.



K. Matsumoto 640

Proof. Leth : Xp, — X, be a topological conjugacy Keep the notation as in the previ-
ous lemmas. For (o;,u;)jeN € szm where u; = (u iz, € Qsmm i € N.Put(@;)ijeN :=

h((ai)ien) € Xa,. Fixi e N andl € N. Take y € B«(A1) such that uffrf launches y,

and § € B«(A1) such that ufié“ launches §. We then have the following diagram:

1 Yit1 I+1 _%it2 I+2 GitlL I+L 4
Uuj Uit1 Uiys Uipr —
1 1 | |
I+1 %+ I+2 _%+2  j43 %+l o j4L41 8
Uy - > Ui Uiy Uiy, —
Putv = (j41,®i+2,...,%+1) € B (A1) with |v| = L. Hence we see that ull. = [vy];
I+1 _

the /-past equivalence class of vy € S;(A1), and u;™" = [vd]; 4, the [ + 1-past equiva-
lence class of v§ € S1+1(A1) By the precedmg lemma we know that by € S;(A»), 8 €
S1+1(A3) and vy vy~ v8. Define i u = [vy]; the [-past equivalence class of vy € S;(A3),
and ul+1 : [v8]1+1 the / + 1- past equlvalence class of V8 € S1+1(A2). Tt follows from
Lemma 7.4 that the equivalence classes [vy]; and [vi)’] 71+1 do not depend on the choice of
y and §. We then have that

min Amin

ftfeVlz and ul+1€Vl+1.
Since vy ~; 18, we have L(ftf“) = ftf so that we have an t-orbit
Ui = (ﬁg)lez+ € Q’Brll\li; foreachi € N.
By its construction, we have for some x € X4,
h((ar, ... ai)vyx) = h((er, ... ) (@41, ..,Oli+L))/x)[1,,-]h(Wx)
= (@1, .-, %)hVYX) 1,y () [1,00)
= (ay1,...,0)vyh(x).

Hence we have (&1,...,q;) € Fi_(ﬁﬁ). It is easy to see that (if;—q, ®;, ;) € Engi; so that

we have a sequence (@;,%;)jeN € X grin- Consequently we get a map
2
gﬂ . (ai,ui)ieN € Xgrxin — (&i5ﬁi)i€N € Xsrlr{in
1 2

that is continuous by its construction. Since h((®;)ieN) = (&;)ieN, it satisfies h o wg, =
g, o ¢. Similarly we get a map

¢ . (/3,', wl')l'eN € Xgmin —> (ﬂi, wi)iEN S Xgmin
Ay Aq

satisfying ¢ o ¢ = idy
topological conjugacy

emn aNd P 0@ = 1dXme. By putting g = ¢, we have a desired

2

hg XEerln —>X£111;1; |
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Theorem 7.6. Let A1 and A, be normal subshifts. Assume that their one-sided subshifts
(XA, 0A,) and (X ,,0n,) are topologically conjugate. Then there exists an isomorphism
@ : Oy mn = Oy, min of C*-algebras such that ®(Dn,) = Da, and P o ,otA1 = ptAz o ®,
teT.

Proof. By Proposition 7.5, (Xa,,04,) and (Xa,,04,) are (L}, £31M-conjugate, so
that they are (S’Xiln, eri;)—eventually conjugate in the sense of [37] and in the sense of
the following section ((8.1)). By [37, Theorem 1.3], we have a desired isomorphism & :
O p min = O p,min Of C*-algebras. L

Remark 7.7. (i) Brix—Carlsen in [3] gave an example of a pair (X4, 04) and (Xp, 0B)
of irreducible shifts of finite type such that the converse of Theorem 7.6 does not hold.
They found two irreducible matrices A, B with entries in {0, 1} such that there exists an
isomorphism ® : @4 — Op of the Cuntz—Krieger algebras such that ®(Dy) = Dp and
Do p;“ = ptB o @, but the one-sided topological Markov shifts (X4,04) and (Xp,0p) are
not topologically conjugate.

(ii) After the submission of the paper, Theorem 7.6 was strengthened in [38] in the
following way: Let A; and A, be normal subshifts. Then their one-sided subshifts
(XA,.0n,) and (Xa,,0n,) are topologically conjugate if and only if there exists an iso-
morphism @ : O mn — O min Of C*-algebras such that ®(Dy,) = Da, and

CDO,otAl’f =pf\2’q>(f)ocl> forall f € C(Xa,,Z), t €T,

where pf\"f , p;\2,<1>(f ) are generalized gauge actions with potential functions f, ®(f),

respectively (see [38] for details, see also [39]). In the proof of the result, Theorem 7.6
was used.

8. One-sided eventual conjugacy

In this section, we will prove that a slightly weaker equivalence relation than one-sided
topological conjugacy in one-sided normal subshifts X 5, X ,, called eventual conjugacy,
is equivalent to the condition that there exists an isomorphism @ : @y min — O p min of C*-
algebras satisfying ®(Dp,) = D, and d o pf\‘ = ,otA2 o®,t € T. A part of its proof
will need Theorem 7.6.

Let A; and A, be subshifts. Suppose that their one-sided subshifts (Xa,,0a,) and
(Xa,,0n,) are eventually conjugate. This means that there exist a homeomorphism 4 :
XA, = XA, and an integer K € Z 4 such that

011\{2 (h(oAl ()C))) = O—l{(z_'_l(h(x))’ x € XAl’

(8.1)
of (M (0a,(»)) = o TH (D)), ¥ € Xa,.
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Lethpy gy : Xa, = Bg(Az)and iy 0 X5, — X4, be continuous maps defined by setting
i) (%) i= (k) (x) =0k, (h(x)),  x € Xa,.

We then have
h(x) = hp,g1(0)h1(x),  x € Xa,.

Since A1 k7 XA, = Bk (A2) is continuous, for & € {&1,....&n} = B (A2), h[_llK](Ei) is
a finite union of cylinder sets, so that there exist M; € N and a block map ¢; : By, (A1) —
Bx (A2) such that

hik1(x) = @i(x, ..., xp,)  for x = (X;)ien € Xa,.
Hence we have
h(x) = e1(xp,mDh1(x),  x € Xa,.
By (8.1), we have the equality
hl(UAl(x)) = O—l\z(l’ll(x))7 x € Xn,,

sothat iy : XA, — Xa, is a sliding block code (cf. [21]).
Similarly there exist M € N, ablock map ¢5 : By, (A2) — Bk (A1) and a continuous
map h : Xp, — Xa, such that

() = 020mm)h2 (). ha(oa,(0)) = o, (h2(y))

for y = (yi)ieN € Xa,. We may assume that M; = M, written M such that M > K. It
then follows that

x =h""(h(x))
= @2 (h(xX)p1,m7) 2 (R (x))
= @2 (o1 (1, 1) h1 ()1, m—k7) P2 (01 (X[, a1 ().
This implies
X1 = ¢2(1 (ep ) (D) pm - k1) (8.2)
X[K+1,00) = h2 (1 (xp1,m7)h1 (%)), (8.3)
and hence

X[2K+1,00) = Ufl (X[K+1,00) = hZ(GII\(Z((Pl(X[l,M])hl(x))) = hy(h1(x))

for x € X,. Similarly we have

yir,x1 = 1 (2(p, D2 (V) m—k7)-
ViK+1,00 = M1 (02(p,mDh2(»)),
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and
YiK+1,00) = h1(h2()). ¥ € Xa,.

For & = (§(1).....£(K)) € Bg(A2) and y = (yn)neN € Xa, With y € TE(E), we
write (§,y) := (£(1),...,&(K), y1,¥2,...) € Xa,. Now suppose that (£, y) € Xa, such
that £ = @1 (x[1,0m7), ¥ = h1(x) for some x = (X, )nen € X4, . Define

(5, y) = (e1(x2,m+11). h(0oa, (%))).
Under the identification (£, y) = (¢1(x[1,m7), h1(x)) = h(x), we have

t(h(x)) = h(oa,(x)) forx € Xy,.
Hence we have a continuous surjection t : X5, — X, such that

t=hoop, oh™!.
By the relations (8.2) and (8.3), we know that
X2, M+1] = X2, KIX[K+1,M+1] = ©2EVp,m—xD,x1h2EV)pn M-k +1]
so that
o1(x2,m+17) = 01 (02Eyp, M-k D2, k112 EV)1, M=K +11)
and
t(5,y) = (01 (02Gypm—xD 2, k172 (V)M -k +11)- 04, (V) € Br(A2) X Xa,,

for (§,y) € Xp,. Ashyi: Xa, = X, and hy : Xp, — X4, are both sliding block codes,
one may take integers N1, N € N and block maps ¢; : By, (A1) = X2, ¢2 : By, (A2) —
%1 such that

hi(x) = ¢1(x[i N +i))ien forx € Xp, and  ha(y) = ¢2(V[i,N,+i])ieN

for y € X5,. We may assume that Ny, N» > K. We then have that 7, (§y)1, m—k+1] =
$2(EVm—2k+1485)- We put L = M — 2K + 1 + N3 and

(€, y) = o1 (2Eyn,m—kD 2. k192(E1, L))
so that
(€. y) = (195, 9).04,(»)) € Bk(A2) X Xp,, (£.Y) € Xa,.

As N > K, we note that L > M — K. Hence the word 79! (£, y) € Bx(A,) is determined
by only £ € Bg(A3) and y[y, 1], so that we may write

(€. y) =t ¢y
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Let X, 1) be the right one-sided subshift of the Lth higher block shift AL of A (see for
2
instance [21]). Define sliding block codes:

g1:x € Xp, = (01 (X, m4n-11)) ey € Brx(A2)Y,

hE i x e Xy, — (71 (), L+n—11)pen € XA[zL]
and put

81(xX)n = @1(X[n,M+n-1]) € Bx(A2),
BE(X)n = hi (), 14n—1] € BL(A2)

so that g1(x) = (g1(X)n)nen, hy (x) = (hf (X)n)nen. Since hy 0 op, = 0o, 0 b1, we
have h{ o oA, = 0, o hi. Define h™ : X, — (Bk(A2) x BL(A2))N by setting

hE(x) = (g1(x), hE(x)) = (01 (X, m 4n-1)- B (D, L+n-1]) e -
Lemma 8.1. Define
X o, a1 = {(8100).hF () € (Br(A2) x BL(A2)™ | x € Xa, },

and the map GA;I XAl : XA§’1 Al — XASI Al by setting

UAgl x AL ((gl (*)ns h%(x)n)neN) = (gl(x)n+1 ) h%(x)n+1)n€N~

Then (XAgl x AL N
conjugate to (Xa,,04,) via

o ><A[ZL]) is a subshift over Bx(A2) x Br(A3) that is topologically

Wt xe Xpa, — (gl(x)nvhf(x)n)neN € XAgle[ZL]'

Proof. Since
hL . XAI — XAgl ><A[ZL]
is a sliding block code, the pair (X

Bk (A2) x BL(A2). As

A% AlL) O’Agle[ZL]) gives rise to a subshift over

rL NL
h™ oo, = 0p05p, L) oh",

it remains to show that AL is injective. Suppose that hL (x) = hL (z) for some x =
(Xn)neN, z = (zy)nen. Hence we have

o1y = oG, hE() = hE(z) andhence By (x) = hi(2)
so that i(x) = h(z) proving x = z. m
Define

=5 = (€, yii.21) € Bx(A2) x BL(A2) | § € Tx (o))
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and a subshift (A}, 05, ) over X by its right one-sided subshift

N
Xy = {n. Yin,L+n—1DneN € (Bx(A2) X BL(A)) |
Ent1 = En. Y.L 4n-11) 1 € N, (§1. (Vn)nen) € Xa,}

amda,\/2 : XA/2 — XA/2 by
ony (Gns Y.L +n-11)neN) = Ent1, Yint1,L+n]))neN-
We then have the following lemma.

Lemma 8.2. (XA¢1 L, 0 o1 a121) = (Xaz,042) so that (X1, 042) is topologically
5 XAj Ay XA 2 2 2 2
conjugate to (X p,,0,). Hence the subshift (A, UA/Z) is normal if (A1, 01) is normal.

Proof. Take an arbitrary element (§,. yn,L+n—1])neN € Xy, so that (§1, y1, y2....) €
Xp,.-Putx =h~1 (&1, y1,2,...) € Xa,. We then have that &, = g1 (x), and Y[y, L4n—1] =
hlL(x)n for all n € N. Hence we may identify (g1 (x), hlL(x)) with (&z, Yin,L+n—1])neN.
The identification between (g7(x), hlL(x)) and (§,, Y[n,L+n—1])neN Yields the identifi-
cation between the subshifts (XA;” AL O g1 XA[ZL]) and (XA'z’ O'A/z). This implies that
(X4, 04,) is topologically conjugate to (Xa,,04,). ]

In what follows, we assume that the subshifts (A1, o4,) and (A2, 04,) are both nor-
mal. Since the one-sided subshift (X4, 04,) is topologically conjugate to (Xa,.04,),
Theorem 7.6 ensures us that there exists an isomorphism ®1 : Oy win — O AT of C*-
algebras such that

@1(&)[\1) = i)A/z and @, Op;\l = p?lz od;, teT.

We will henceforth prove that there exists an isomorphism @5 : @/ min — O min Of C *-
2
algebras such that

@2(@1\/2) = <>(OA2 and &, o0 pt = pf\z od,, teT.

Let (V', E’, ), (') be the minimal A-graph system Bm‘“ of A’. The vertex set V/
is denote by {v1 ey ,(l)} Since 2"“,“ is predecessor—separated the projections of
the form E’l in the C*-algebra O AT correspondmg to the vertex v’l €V of 8““,“ is
written in terms of the generating part1a1 isometries S(S, o) (6.yp1,1)) € =) by the for—
mula (3.1).

Let Sy, o € X be the generating partial isometries of the C*-algebra O, min. For
(§.y) € Bx(A2) x Xp, with § € T (y), let us define a sequence (§,)nen of words of
Bk (A2) by

t&1:=& &1 =G YnLtn-11). neN. (8.4)
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For a word w = (wy, ..., wr) € Br(A3), we write the partial isometry Sy, -+ Sy, €
Op,min as Sy in O p mn. For (§, yj1,1]) € X, we define a partial isometry S,y ;)
in O 5, win by setting

S(E,Y[l,L]) = S%'ly[l,L]Sg;y[z,L] € (9A2min where £; = £, £ = ¥ (. y11.L)-
We also write for & = (i1, ..., km) € Bm(A%)
S/,L = SMl S//Lm S (9A2min.
We write £31 = (VAR EAS" 343" (AS™) The transition matrix system of Lo s

. . Amin
denoted by (A;‘j}rjrl, Ilr:]llll)lez+' For w = (wq,...,w;) € B;(A3) and le- eV, 2, we

define a matrix component Agl,il“ (0, w, j) by

1 if there exists y € E(;\J'Z‘““; Aly) =w, t(y) = vjl.,

Amin(o, w,j) —
0. 0 otherwise,

Amin . X
where the top vertex V> = {vo} a singleton. We note the following lemma.

Lemma 8.3. For (§,y) € Bx(A2) x Xp, with§ € T (y), let (§1)nen be the sequence

of Bx(A3) deﬁneciby (8.4). We then have Sgly[l,L+1]S§1y[1»L+1] < S‘;Zy[Z,LJrl] Stryp.rq and
hence Sg,y, ;. SSzy[z,LH] Stayp.ren = Sty More generally we have
* *
Sény[n,un] Sény[n,LJrn] = S5n+1y[n+1,L+n] S§"+1yln+1,L+n] 8.5)
and
* —
SEn.)’[n,L+n] S$n+1y[n+1!L+n]S§n+1Y[n+1,L+n] - SEnJ’[n,L-f—n]’ n e N. (86)

Proof. Forz = (zy)neN € Xa, withz € TE(§1y1,L41)) we putx =A=' (§1yp1,041)2) €
Xp,. Lety, =y, forn=1,2,...,L+1 and y’L+n+1 = z, for n € N, and hence

(Vp)neN = Y[1,L+11Z € X, Puté] =& and§;, | = r“’(é,/l,yfn,LH_l]), n € N. Hence

NL
RINIPNG (h (x)) = ((‘i:é’yfz,L+1])’ (%vJ’fa,LH])"--)-

Since Eéyfz’oo) € Xa, and yELH,OO) = z, we have

ExViaL+1? € Xn,
As & =181,y 1)) = T Erype) = &2 and iy oy = Ypi,L+1), We know
£2V12,L+11Z € Xa,.

Hence we see
T Eype+n) CThEvp.r+1) in Xa,
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and hence
TFEype+1) C T E2yp,r+1)  in Ba(Az). (8.7)

Consider the A-graph system )me Suppose that A0 %+1+10.81y01,L+1), ) = 1 for some
Jje{l,2,. m(K + L+ 1} Slnce Bmm is a A-synchronizing A-graph system, the vertex

pKHL+1 K4L+1 _
v; in V K441 1S written as v; = [w]g+L+1 for some w € Sg+1+1(A2).

Hence w € T'f (§1yp1,2+1))- By (8.7), w € Tf (622,417 s0 that 2y, 1417w € S1(A2)
and _there exists a labeled edge labeled £ y[2,1.+1] from the top vertex vg to [w]k+1 €
VK+L in Bm‘" Since [w]x+z = ™"([w]g+1+1), by putting UK+L [w]k+L, we have

gl,lln<+L(0, Evpr+1.J) =1 Ixksr kv j) =1

so that
K+L+1 K+L )
Ej < E_]., in (DAzmm.
As
m(K+L+1)
i N K4+L+1
Sékly[l,L+|]Sé§_IY[1,L+1] = Z Ag],l?(+L+1(0»€IJ’[1,L+1]yJ)Ej s
j=1
m(K+L)
_ i N K+L
Sty ey Sernren = Z Aok+10. 8200041, JETT
j'=1
we have
* *
S&y[l,Hl]S‘EIJ’[I,LH] = Sézy[z,LH] Seayp.Len
so that
SElJ’[l,LH] ngy[z’LH]S&Y[z,LH] = Si"l)’[l,LH]'
Similarly we have the inequality (8.5) and the equality (8.6). |

By using the above lemma, we see that the following lemma holds.

Lemma 8.4. For (§,y) € Bg(A2) X Xp, with§ € T (), let (§1)neN be the sequence
of Bx(A2) defined by (8.4). We then have

SE S SEnri i) = Seri St vt in
forn € N.
Proof. The following equalities hold:
§($1,y[1,L])§($2J[2,L+1]) e S\(Sn,y[n,LJrn—l])
= Sélyu,L] Ss*zy[z,L] Sézy[z,Lﬂ] Sg;y[f; L+1] '”S\(En’J’[n,Lanfl])
= SElJ’[l,L] Sé*zJ’[z,L] Sézy[z,L SyL+1 S;L+1 SYL+1 Sg;y[S’LH] "'§(§naJ’[n,L+n71])
= S$1Y[1,L] SJ’L+1S;L+1 Sg;y[zu S«Ezy[z,L] Syri1 Sg;y[uﬂ] "'§($n,Y[n,L+n—1])

= * * CECIEY g
- SSlY[l,L-H] SEZy[Z,L+]] SSZY[Z,L-H] Sé3y[3,L+1] S(Sn SYin,L+n—11)"
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By Lemma 8.3, we see that

* —_—
Si"l YI1,L+1] SSZJ’[z,L-H] S§2Y[2,L+1] = SE] Y[,L+1]"

We thus have

S(Su)/n,u)5(52,Y[2,L+1]) ce S(Sn,y[n,L+n—1]) = SSlY[1,L+1]Sg3y[3,L+1] S(Sn,y[n,L+n—1])’

so that inductively we have the desired equality.

The following lemma directly follows from Lemma 8.4.
Lemma 8.5. For (§,y) € Bx(A2) X Xp, with§ € T (v), let (§1)nen be the sequence
of Bk () defined by (8.4). We have the following three equalities:

Sy SEprem  SEnvmrm) SEonmSEypra) " SEmvmrin))
neN, (8.8)

— * *
- SS”‘Hy[”JrlaLJr"*l]SélY[l,Lﬁ-n—l]SSly[lzLJr"*l] En+1Yn+1,L+n—1]1"

Seyp.05E 1 SEnymiim)) * SEnmSEypra) " SEvmLin))
neN, (8.9)

_ *
= SElJ’[l,Hn—l] Sély[1,L+n—1]’
(8.10)

3 o —
Z S(El,y[l,L])S(El,y[l,L]) =1L

ELyp,LDE)
The following lemma directly follows from the above lemma.

Lemma 8.6. For v, u € By(A}), we have

A~

525,857 = 5,5:525..

Proof. Let

V= ((Elv y[l,L])v ceey (En’ y[n,L-‘rn—l]))v

w= (. w2 s Wi, Ly m—1)))-
Since

S*S, =8 Sy S *
vV Ent1Y[n+1,L+n—1] §1Y[1,L+n-1] E1Y[1,L+n—1] En+1Y[n+1,L+n—1]
and
A~ g

o _
SM nw S'Ilw[l,L+m—1] MW, L+m—1]°

. are contained in the commutative C *-algebra o{{)gr};in.
2

both S*S, and S,

Let O Aym be the C *-subalgebra of @ A,mn generated by the partial isometries

S(él,y[l,u)v (€1, v, € 3.
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The C *-subalgebra o{{’jgmin of @ A.min is defined by the C*-algebra generated by elements
Al 2
of the form: ’
SMS:SVS;, U,V € By(A))

and the C *-subalgebra D A, of O A.min is defined by the C *-algebra generated by elements
2
of the form:
SMS;, WU € Bi(AS).

Lemma 8.7. Let v, u € B«(A)}) be v = ((§1, yi,17): - -+ Gns Yin,L4n—1])) and p =

(M, w,z)s -+ > Mms Wim,L+m—11))- We then have
Sflyll’H"—ll S;;lw[l,Lerfl]Smw[l,Ler*l]SE*1Y[1,L+n—1]
SySySuSy = if€nt1 = Mm+1s Yint1,L4n—1] = Wim+t1,L+m—1]> (8.11)

0 otherwise,

where §,11 = 9 (¢n, Yin,L4n—11): Tm+1 = T (Nms Win, L4+m—1])-

Proof. We have

¢ oxd ax N N
SVSMSMSV - SSIY[I,LM—I]S$n+1y[n+1,L+n71] S”Vﬂ+1w[m+1,L+m—l]Smw[l,L+m—1]
* *
’ S’“w[l,L+m—1] Nn+1Wimt1,L4m—1] S§n+1y[n+1,L+n71]SEly[l,LJrn—l]'

Similarly to (8.7), we know T (§1y1,04n-1]) C Ts (Ent1Y[n+1.L4n—1]), sO that the
equality
SElY[1,L+n—1] Sg,ﬂy[,,ﬂ,u,,,l] 'Snm+1w[m+1,L+m—1] = S$1y[1,L+n—1]

holds if and only if En+1y[n+1,L+n_1] = Mm+1Wim+1,L4+m—1]> otherwise

=0.

*
SEIY[I,LjLnfl] SS,,Hy[,,H!LJrn_I] : S’]m+1w[m+1,L+m71]
Hence we have the equality (8.11). ]

/
Recall that S(S,y[l,L

generating partial isometries and projections in O Aymins respectively.

) for (§, yp1,r7) € X5 and E{l for vlfl € V] stand for the canonical

Lemma 8.8. For v, u € By(A}), we have
() S[rS) =SS in Oy mn if and only if S8 = S, in O .
(i) 1=S[S), = S,S"in Oy, mnif and only if 1 = 535, = 5,55 in Oy mn.
Proof. Letv, it € Bu(Ay) be v = ((E1. y1,0))- - - - (En. Yn L+n-1))) and

M= ((7717 w[l,L])’ ey (ﬂm’ w[m,L+m—1]))-
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(i) Assume that S"L*S"L > S, Put Nyt = 9 (N, Wim, L+m—1])- Since
v = (1. w2 - s Wom, L4m—11) €1 Y, - - - Gns Yin,L4n—11))

. Ly, _ _
is admissible in A}, we see that §1 = Nm41, Wim+1,L4+m—1] = Y[1,L—1]- Hence we have
o*xQ S Ox _ * *
SMSM : SVSV - Sﬂm+1w[m+1,L+m—1]Snlw[LL+m_1]Sﬂlw[l,L+m—1] Snm+1w[m+1!L+m_1]
*
: SEIY[I,L-HL—I] Sé‘ly[l,LJr,,,l]

_ * * . *
- Sély[IaL*US"Ilw[l,L+m—l]Snlw[l,Ler*l]SElJ’[l,L—l] S‘Ely[l,LJrnfl]S§1y[1,L+n—1]

S

_ * *
- Sgly[l,Lﬁ-n—l] SEly[1,L+n—1]S$1y[1,L—1] MW, L+m—1]

* *
) Snlw[l,L+m—1] Sélyu,zfu Sgly[l,LHfl]S§1J/[1,L+n71]
_ * * *
= Se1y1.L4n- Sy[L,L+n—1] S’s’lyn,L—]]Sfly[l,L—l] Smw[1,L+m—1]
S S

3
'Snlw[l,L+m—]]Sély[l’L,l]SglJ’[l,L—l] VL L+n—112E1 V1 Ln1]’

Now the equality

* _ *
S’“w[l,L+m—1]SSly[1,L71]Sgly[1,L—l] - Snlw[l,L+m—1]Snm+1w[m+1,L+m—1] S"m+1w[m+1,L+m—1]
= S'llw[1,L+m—1]

holds because the last equality may be shown in a similar way to (8.6). Hence we have

A~

*Q Q9 Q9% _ * * *
SMSM S"Sv - SSly[laL'*'"—l]Sy[L,L-%—n—l] Sﬂlw[l,L+m—1] Snlw[le‘Fm—l]Sy[L,L+ﬂ_1]S§1y[1,L+n—l]

_ * *
- Sgly[laL+"*1]S']lw[l,Lerfl]y[L,L#»nfl] S’ll“’[l,L+m711y[L,L+n71] SSly[1,L+n—1]'

Since for
Y = (Cr.zi). C2n 2, n41)s - - - Gk 2k, L4k—1)) € T (0, (8.12)

with

vy = ((Elv y[l,L])v cees (En, y[n,L+n—1]),

(12,2 G2, 22, 41)s - -+ Gk 2k, Lk—11)) € Bx(A)),
the condition S, S), > S}, S.* implies
Hyy = ((nla w[l,L])» D) (n}'na w[m,L—i—m—l])a (Slﬂ y[l,L])’ e (En’ y[n,L—‘rn—l])»
(1. zi,01)s G2 22,0 411)s - - -+ Gk Zik, L+k—1])) € Bx(AY). (8.13)

Hence in addition to §&1 = 41, Wim+1,L+m—1] = Y[1,L—1]> We have the inequality

* *
SSIY[I,LM—I] Sm W1, L+m—1]Y[L,L+n—1] S’71w[1,L+m—11ylL,L+n—1] SSlY[l,L+n—1]

(8.14)

> *
= Sély[l,L+n—1] Sély[l,un—l]’

proving §;§M . §v§* > §,, A: and hence
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Conversely suppose that the inequality A;§ > S, S in @ Ay holds. The inequality
is equivalent to the equality S o S e S, §: =S5, A,’f that is also equ1valent to the inequal-

ity (8.14) because of the preceding equality

AL A A A

* * * *
SpSu - SvSy = Sty pann Smw[l L+m—1]Y[L,L+n—1] Smw[le*'m—l]y[L!LJf"—l]S‘Sly[l,LHt*l]'
For y € I'J(v) as in (8.12), the inequality (8.14) together with (8.13) implies uvy €

B (A%) and hence vy € T';(w). In the identity

' (| +1v))
SySpr= Y SyEMMg in O, m, (8.15)
k=1

take k € {1,2,...,m'(|u| + [v])} such that S, E;“ Mg o£ 0. As s*5) > QMM
we see that

A1u|,|u|+|w(j’v’k) =1 forsomej € {1,2,....m'(|ul)}

where A/ v, k) is a matrix component defined by the transition matrix system

el el U VoK) 3
min 1
(Al 1410 U_H)leZJr of SA,Z. Since

m' (|l +v))
SySTEMSIST = 30 Ay oo S BT S
k=1
we have
Take § € E/ such that

el | el vl

A8 =v, 5@ =v"e 1(8) = v ¢

Im’ |M|+\v\

in the A-graph system 2""“ There exists a word y € B« (A)) such that v,’c‘” " Jaunches Y.

Take 8" € Ej o) +1vl-+1y) Such that

ME) =y s@) =M e

: min
el 0 ERT

The labeled path 54 is the unique path labeled vy in EWJFIV| L+l Since y € T} (v)
implies vy € T (i), we know that p € T, Ml(vjlﬂ ). Hence there exists a labeled path

§" € E .| 1abeled o such that t(8") = v}‘“l. This implies that

1% Q! g
> E
Su Su > EJ

so that by (8.16) we see S/*S/, > S, E’WH"'S’* By the identity (8.15), we conclude the

inequality S, S;, > S, S’* in (9A, min.
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(ii) Assume that 1 — S/*S/, > S, 87" in O, min. Now suppose that
2

S:SM'SVS: ;é() in (9A/2min.

By Lemma 8.5, we have
PPN PPN
0 # SMSI'L ° SU Sv
= Sﬂm+1w[m+1,L+m—1] Smw[l,L+m—1]Snlw[1,L+m—1]S’7m+1w[m+l,L+m—1]
*
Sle[l,L+n—1]S§1y[1,L+n—1] :

. * _ _
Since S?’]m+1IU[m+1’L+m,1]SEIY[I,L+n—1] # 0’ we have El = Nm+1, U)[m+1,L+m_1] - y[l,L—l]'

We thus have

k
Sfl Y[1,L4+n—-1] S&'l Y[,L+n—1] STlm+1 Wim+1,L+m—1]

= S$1y[1,L+n—1]S;y[l,un,l] S&yu,L—l] = Sély[1,L+n—1] S;[L,Hn_l]
and
S;m+1w[m+1,L+m—1]SEIY[I,L+n—1]S;J’[1,L+n—1] = Sy[LsLJr"*l]S;ly[l,L+n—l]
so that
§:8,-5,81 = 5,87 58, 5,57
= SEIY[I,L+H] ;[L,L+n—1] ’ S;lklw[1,L+m71]S'llw[l,L+m—l]
’ SY[L,L+n—1]Sgly[1,L+n-u

_ * *
- Sfl Y[1,L+n-1] Sm W[1,L+m—1]Y[L,L+n—1] S”I W1, L+m—11Y[L,L+n~1] Sél Y,L+n-1]"

Since [n1w[1,L+m—11Y[L,L+n—1]] = K + L +m — 1 4 n, there exists
je{l,2.....m(K+L+m+n-1)}

such that

K+L+m+n—1 ¢g* . .
0 # SSly[l,L+n—1] Ej SSly[1,L+n71] mn 01\2'“‘“’
and hence

K+L+m+n—1)

E1Y[1,L4n—1] € FEJFLJF,,,I(UJ- in SAgﬁn.

Take z[1 k] € Sk+L+m+n—1(A2) such that k > L and v;(+L+’"+"_1 launches z[; k. By
putting

¢t =1 En, YinL4n—11)s 2 = G,z s Sk— = TP (Ck—L—15 Zlk—L+1,4])>
the word

((nlv w[l,L])v MR (nm» w[m,L—i—m—l])v (Slv y[l,L])a MRS (Sn» y[n,L+n—1])»
oz Crers Zk—L+1.4]))
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belongs to By pn4k—r(AS). Put

Y = (€1 zi,n) Q2. zp,n417)s - - -+ Ck—L Zk—L+1,41)) -
Since z[3 k] € Sk+L+m+n—1(A2), we have y € Sp1,(A)) so that we have

I* g/ / /% / % . .
SH' SM.SVSU ZSU]/SU)/#O ln(gA/me,

a contradiction.
Conversely, assume 1 — S5, > S, S in O, mn. Now suppose that S,*S), - S} S,* # 0
. . 2
in O, min. Since
2

m'(|uu)) ||
rkQl / 7 )
SESL = Ao O HEM i O pymins
j=1

take j € {1,2,...,m'(|u])} such that 4 ). i, j) =1 and E;“’“l - S)S* £ 0 so that
SPFEM.S) £ 0. As

l m’ (|l +v]) bl

I /L or 2 . |+ v

SUEMIS = D Al G O EST
k=1

there exists k € {1,2,...,m'(|u] + |v|)} such that AT j,v,k) = 1 and hence

M|,|u|+IV\(
1% /|l qr =+
S, Ej S, > E, .

One may take an admissible word y = ((¢1, z(1,21), - - - (§p, Z[p,L+p—1])) € Bp(A}) such
that v;clmHvl launches y so that E,'(“erv| > S, 8" Hence we have

| ’oQrk 1% Qf ok
EM > 55,80 sothat S)FS), = S), S0k

~ & Se o
Su = Svy Sy, Since

By (i) we have Alj

" v vy vy
we get §;SAM -8,8* + 0, a contradiction to 1 — §:§u > S§,8*. L]
In the minimal A-graph system 2‘1‘\11,“, recall that {v’ll s v,’f, ,(1)} denote the vertex
2

set Vl’ of eri,“ of the normal subshift A’,. For a vertex vlfl € VZ’ , define a function fil :
2

Bi(A}) — {0, 1} by setting for u € B;(A%)

1 ifp eIy,

Sl = ,
-1 ifp g7 @h.
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Recall that S, € &5 and E/', v/ € ¥}/ denote the canonical generating partial isometries

and projections of the C*-algebra O ,, mn. We then have by (3.1)
2

I e .
El = ]‘[ S8, in Oy min (8.17)
WeB;(Ay)
where for 1 € B;(A))
mr L= SISt i £l () = —
In the C *-algebra O A.min, We define a projection for each vl{l € V/ by setting
2
Al gxofi 5
El.= ] SiSi in O, mn (8.18)

HEB(AY)

where for 1 € B;(A))

§*5,

~

G/l _ {S;SM if f1(n) =1,
1= 8k, if fl(w) =—

Let (Al J+1e l/,l+1)l€Z+ be the transition matrix system for 2?‘,2“

Lemma 8.9. For each vlfl € V/, we have the identities

m' (1) m'(I+1)

! ! A
S El=1, El= ) Ij,,G.)E™.
i=1 j=1

Proof. We will first show EZ > E;H fori =1,2,....m'10),j =1,2,....m'"(I +1)
with Il 141(,j) = 1. Assume that I’lH(z J) = 1. Hence we have I';” (v’l+1) =TIy (v’l)
in 2“““ Forv e I'; (v’l) and B € I'{ (v), we have S S* SﬂSU = S Sﬂv Hence

SrS, > 8% S, for B ey (v).
Forv ¢ Fl_(vl/.l) and B, B2 € I'7 (v), we have
(1—585.,86,,)(1 = 85 ,88,0) = 1 = 83(55,Sp, + 85,858, — S, 85,55, 55,) S,
Similarly we see that

[T a-58;,8)=1-35 ( \/ Sﬁsﬂ) (8.19)
BeT[ (v) Bel[ (v)
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where
\VARTYY:
Ber; (v)
= 2 SiSe— 2 SESeSESm = DOV [T 55
Berr (v) B1#£B2el; (v) Ber (v)

the projection spanned by §§§ﬂ, B € I'T (v). Now \/ﬂeg/2 §E§3 = 1 so that we have

$:8.=8:(\V 538)8. =8:( \V 835%)S.. (8.20)
Bex) Bel'[ (v)
By (8.19) and (8.20), we have
[T a-5;,5)=1-5;8, (8.21)
BeT; (v)

Forv € Fl_(vl/-l)(z I‘l_(v]’-l"’l)) and B € T (v) with u = Bv € Fl_ﬂ(v}”l), we have

Sk, =S58,

%
For v & Fl_(vl’.l)(z Fl_(v]'.lﬂ)) and f € ' (v) with p = v ¢ Fl_H(vj’-l“), we have
by (8.21)
[] a-5;,56) =1-58;5,.
Bl (v)
Hence we have

El= ] S58- [T a-5:8)

vel; (v}) vel (v}
>[I Sise- J] «a-38:80
weT, @l RET, ] )

41

> Ejt

We will next see that E}H E\jlj'l =0for j # j'. As U}I-H + v;.l,"'l inV/,,,

Iy (v]’.H'l) #* FI_H(UJ’.Z,H) because 8"&2‘ is predecessor-separated. Hence we have two
cases:

Case (1): There exists u € FI_+I(UJ/-I+1) such that 1 & FZ_H(UJ’.I,H).

Case (2): There exists u € Ff+1(v]’.l,+1) such that 1 & Fl’ﬂ(vj’-lﬂ).

In both the cases, it is easy to see that E‘]l_+1 . EjlfH = 0 by its definition (8.18).

Since E! > E{*! fori =1.2,....m'(1).j = 1.2....m'(L + D with I}, . (i.j) =1,
and E‘]{+1 . EJI,'H = 0 for j # j’, we have the inequality

we know

m'(l+1)
El= > If, G )ET. (8.22)
j=1



K. Matsumoto 656

We will next show that Z:";(ll ) Ef = 1. Denote by {1, —1}B1(A2) the set of functions

f i Bi(AY) = {1,-1}.

For f € {1,—1}B1A2) we set

PPN . _
§;§l{(“) _ {SMSM if f(p) =1,
1= SpSu i ) = -
and put
Ep= ] SiS/% in0ym.
weB;(A))
For € B;(A}), the identity 1 = A;:S\M + (01— §;§M) implies
= [ GSe+a-880= Y &
WEB(A3) Fef1,—1yB1(AY)

For ju = ((n1, wp,2)), - -+ (0, W, 41-1))) € BI(A/z) puti 4 = 1 (N1, wy,L41-1]) €
Bk (A%) as usual. Let us consider a subset S(u) C V, K+L+l | defined by

min

Al
S(/L)—{U—S(]/)E K+L+l 1|thereex1stsy€ElK+L+l 0

mwi,L+1-1] € Tg -1 (), A(Y) = mp1wpt1,0+1-17 € F1;+L—1(U)}-
Define two subsets of VK +141— for the function f by
Sp=({Sw I ne Bz(A’2> with /(1) = 1},
S;t = (SO N Vez, iy | v € Bi(Ay) with f(v) = —1}.
Now suppose that E r # 0. Since

*Q * * . .
S/LSM - S’71+1w[l+1,L+l I]Smw[l L+l- 1]S"lw[l,L+l—1]Sm+1w[1+1,L+1—1] n (91\2“""’

the condition Ef # 0 ensures us that S1 N S 1 £ (. One may take a vertex UK+L+I le

Sy NSyt and = ((n,wp,zp), - (771 W,z +1-11)) € Bi(A)) such that vK+L+I le

K+L+I1-1
S(/L) As Smw[1 poySmwp oy = Ejg , we have
G*8 K+L+1-1
S/LS'“‘ = S"l+1w[1+1 L+1— 1]EJo S771+1w[l+1 L+1-1]"

For p' = ((n, W]y 1)s - () w1 4yyp) € Bi(Ay) with f(1') = 1, we have 87,/ -
S;Su > Ey # 0o that

*

- S 0
M1 W1, L+i—1] N+1W[I+1,L+1-1] 76
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and hence ) | = Nr+41, = W[ 41,L+1—1]- We thus have

/
Wirg1,L+1-1]

S*8, > EftLH-lgy (8.23)

W Sm+1w[1+1 L+1-1] M+1W[I+1,L+1-1]"

For p” = ((n, wf . L]) (], lL+l 1) € Bi (A}) satisfying f(1”) = —1, we know
that v].Ig+L+l_1 € S(u")¢ so that

EK+L+I IS*
M+1W[I+1,L+1-1] M1 W[l +1,L+1-1]°

S* S//J_S

/LH

Hence we have

Gx o K+L+i1-1
1— SM,,SM > S7H+1w[l+1L+l 1]E S771+1w[l+1L+l e (8.24)
By (8.23) and (8.24), we obtain
A K+L+I1-1
Ef z S7ll+1w[l+1 L+1—- 1]E S771+1w[1+1 L+1-1]"

mm K+L+m—1 AY in . .
As &\ is A-synchronizing, for the word v; o € Vg {1 +m—1 there exists an admis-

sible word (b1, ....bp) € By(A2) such that v}0{+L+m ! launches (b1, ..., bp). This
implies that the inequalities

K+L+m—1 * . )
E io > Sbl...bp Sb]bp m (9A2mm

and hence

A * *

Ef 2 S’?l+1 W[l41,L+1-1] Sbl bp Sb] bp S?]/+1 W[l +1,L+1-1] (8'25)
hold. Put

§1 = ni+1 € Bk(A2),  yu,L+p] = Wi+1,L+1-1101++-bp € BLyp(A2),
&1 =1"GE yliL+i-y), i=12,...,p—1

Define the word

= (G1.y.L)- - Ep Yip.L+p-11)) € Bp(A)).

It follows from (8.9) that

d O* _ * _ *
SVSV - SSly[l,Lﬂ)—l]Si"l)’[l,L+p—1] - S"1+1w[1+1,L+1—1]b1"'b1’Sﬂl+1w[l+1,L+l—1]b1"’bp'
By (8.25), we have

Er>8,8*#0 in0O Ay (8.26)

We put
Ep= [[ sSpsi/®™ o
HEBI(AY)

s min .
A2
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By applying Lemma 8.8 for (8.26), we have
Ej'f > 8,8 in0

4 min
A2

and hence E J’, # 0. Since

m'(l)
1= Y E=)
fe{l,_l}Bl(A’z) i=1

and EJ,’il = E/!, we know that E/’, # Oifand only if £ = f forsome v/ € V). Hence the
condition E J/, # 0 implies that [ = fil for some vlfl € V/. Therefore we see that Ey = E 1l

for some v} € V). Since Ef_z = Ell and 1 =)

Fetl 1B Ef, we conclude that

m'(l)
1=>"E in0, m. (8.27)
i=1 ?
Since foreach j = 1,2,...,m'(l + 1), there exists a unique i = 1,2, ...,m’(/) such that
I} 141G, j) =1, wehave EXF = YD 1 (L j)EFY. As the identity (8.27) holds
forall [ € Z, we have

m/(I+1) m' () m'(I+1)

D NLED S S
j=1

i=1 j=1

so that
m'(l) m'(l) m'(I+1)

1=YEl=>" 3" Ij,,,G. )HE™.
i=1

i=1 j=1
By the inequality (8.22), we conclude that

m'(I+1)
El = Y Ij,,,G. )HET. ]
j=1

Define the commutative C *-subalgebras:
AS[RZ = C*(S;L*S;L :ﬂ € B*(A/z)) C (9A/2min,
1 _ J*x3 . ’ 9
AS[RZ _C*(S;SM /.LEB*(AZ)) C(9A/2mm
Lemma 8.10. Using the above notation, the following hold.

() The commutative C*-subalgebras Agmin and Agmin satisfy that
Ay Ay
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(i)  There exists an isomorphism ® 4, : Agmin — Aguin of C *-algebras such that
AL A%

S*®A(X)Sy = PA(SIFXS.), X € Agmin, & € T). (8.28)
Ay

1
Proof. (i) By the identity (8.17), Elfl is written in terms of S ,;* S ,;f" (M). Conversely for any

word p € Bj(A}) we set

1 if e Ty (),

0 otherwise.

J' (i) = {
By the formula 1 = Z:"zl(ll) Elfl , we have

m'(1) m'(l)
SpES, =" SESLE =" J(u.)E]
i=1

i=1

1 ()
so that §/*S);

is written in terms of E{l . Hence we have

AERZ =C*E!':i=12,....m'(1), 1 €Zy).
The other equality

"gﬁk“‘; =C*(Elii=12,....m'(), 1 € Z3).

is similarly proved.
(i1) The identities

m'(I+1) m'(l)
l _ - I1+1 _ (A )
El= Y I DES 1= E in 'A’SX'/Z"’
j=1 i=1
m'(I+1) m'(l)
=~ N A _ ol T
Ej = 2; I DET, 1= X} Ej in ‘A’SZ“;
j= i=

hold. Since the projections £ lfl JE ll are all nonzero, the correspondence £ l.'l —E ll extends
to an isomorphism @4 : Agmn — Agmn of C*-algebras such that @4 (E/') = E! and
A A

A A 2 2
hence ®4(S,S,) = S Sy, for p € B«(A}). We then have

Sa®a(SrS)Se = 838%8,80 = S5y Sia = Pa(S)5Shy) = PA(SLSES!SL)

proving the identity (8.28). ]

Recall that 4}, 41 (i, , j) denotes a matrix component of the transition matrix system
/ / min
A T )iezy of SA; .
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Lemma 8.11. The following identity holds.

m'([+1)

j=1

Proof. We note that the identity

m'(l+1)
SEE!Sy =Y Aj G DEIT fora = (€. yp1,0) € Th
j=1

holds. By using the preceding lemma, we have

SaElSu = S;0AE!NSe = ®(SSE]'S,)

m' (I+1)
cp( > A}J+1(i,a,j)E]’.l+1)

Jj=1

m'(141)
. N
= Y Ao HET n
j=1

Recall that
C*(Serypup © Er-301) € T)),
Dgmn = C*(8,8:8,8%.: 1. v € Bu(A))).
= C*(S,.8% : 11 € Bu(A))).
Then the inclusion relations
O pymin C O pymin. :/3312 C Dy, Dy, C Da,

. ~A) .. .
are obvious. Let p, 2 be the restriction of the gauge action ,o,A2 on Oy min to the subalgebra

A~

O Aymin- The gauge action on Apmin is denoted by p; 2.

Lemma 8.12. Keep the above notation. There exists an isomorphism @ : O , , min — O A7 min
2 2

of C*-algebras such that

®(££T\‘/n) = jjgr[n;i,n, (D(@A/z) = 331\’2, do p?z = ﬁ?z o q)

2 2

Proof. By the universal property and its uniqueness of the C*-algebra @, , mn, the corre-
2

spondence
.o/ 11 ) S pl 0 ) )
®:S5,, E € (9A,2mm — So, E; € (9A/2mm C O, min

yields an isomorphism ® : @,/ min — O A.min Of C*-algebras such that
2 2
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Since

A Ay S
(Pr* 0 ®)(Se) = 51 *(Sa) = 07 (Styyy.1y Staypp.)

S Sy = €7 = (@05 )(S)),

the equality & o ,o,A2 = ﬁtA 2 o @ holds. [

We will finally prove that the C *-subalgebra o Apmin of @ 5 ,min actually coincides with
the ambient algebra @ , min. This is the final step proving Theorem 1.4.

Let ¥, mn be the canonical AF algebra of O Vs min that is realized as the fixed point
subalgebra of O min under the gauge action p; A eTof 9 A,min- Let 7 AL be the
C *-subalgebra of ) Ay generated by elements of the form:

A~ A~

SVS;SMS:, W, v,y € Bx(A}) with |v| = |y].
The subalgebra ¥ \min is nothing but the C *-subalgebra of O A min generated by elements
2 2
of the form:
S,E'S*, i=1,2,....m' ().l € Zy, v,y € Bu(A}y) with [v| = |y|.

Lemma 8.13. f'A, min — ? min.
2 2

Proof. Let

V= ((51’ y[l,L])’ BRI (Sn» y[n,L+n—l]))’ M= ((7717 WI1,L] ) (ﬂm, Wim L+m—1]))
and y = ((§1, 211,25 - - - » Cs 2k, L+k—11)) € Bx(A}) with k = n. Put
Eni1 =1 En Y L4n—-11)s Mmt1 = T2 N, Wi, L4m—11)» Sk+1 = 79 Sk, Z[k, L+k—1])-

By definition we know §(§1,y[1’”) = Sty Se,

P € (9A2min, so that we have

$,5:5,8;
= S SEnvimren-) * Sorwpr)  SOmwpm L omo)
(S Stmwm L em) " Sz Sz ran)

_ * . *

- S&lJ’[I,L+n—1]Sén+1y[n+1’1‘+n,1] S'Im+1w[m+1 L+m—1] Smw[l Ltm—1]
* *

S MW[1,L+m— I]Sﬂm+1w[m+1L+m 1] S§n+lz[n+1,L+n71] S1z[1,L4n-1]

*
SEl J’[I,L+n71]S7]1w[1,L+m—1] ) S’““’[LHWHSZlZ[1,L+n—1]
= il ént1 = Nm+1 = Cnt1s Yin+1,L+n—1] = Wim+1,L+m—1] = Z[n+1,L+n—1]>

0 otherwise.

S Aed O ' P _
Hence S, SMSMS;/ belongs to fFAzmm, so that fA,zmm c¥ Jmin.
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Conversely, for admissible words a, b, ¢ € B«(A3) with |a| = |c|, by considering the
identity
SaSpSpSE =Y SasSpsSesSl (8.29)
8eBy(A2)

for any N € N, one may assume that |a|(= |c|), |b| > K, where K is the integer given
in (8.1). For p € Td(a) N T (b) N TH(c), we define (yi)ien, (wi)ien, (Zi)ieN € Xa,
by setting

Y1 = AK+1s---V|a|-K = Qla|>  Vial-K+i = pi» [ =1,2,...,
Wi =bg41,..., Wpj—k =bp|, Wpl—k+i =pi» i =1,2,...,
Z1 = CK+1»++-+Z2|b|-K = Cle|»  Zle|-K+i = pi» I =1,2,....

Define sequences (§;)ien, (7:)ieN, (§i)ien of Bk (Az2) by setting:
Sl Za[l,K]7 El“rl = T(pl (gla y[l,L—‘rl—l])» i = 1525"‘5
m =buky, Mi+1 =t wiLi-1), 1=1,2,...,
G=cnky Civ1 =Gzl p4io), =12,
Define elements x = (x;);en, X' = (x)ien, X" = (X]')ien € X4, by setting
x=h"6y), X =hT"mw), x"=h""(G2).
By the previous discussions, we know that
&= o1 mri-n)s M= o1 prpioy)s G = @1 prqioay)s 1 EN.
Put p = |a| — |b| € Z. Since ofl oh™l: Xa, — Xa, is a sliding block code, there
exists N1, N, € N such that w; 4, = yj(= z;) forall j > N, implies in+p’M+i+p_1] =
X[, M+i—1](= xE; M+i—1]) for alli > N;. Hence we have
ni =6&i+p =CLi+p fori = Ny.
Let n = max{Ny, N}, m = n + p. By putting
v=(G1.ym.LD- - En Yin,L4n-11)) € Bu(A)),
M= ((7719 w[l,L])v ceey (77m» w[m,L+m—1])) € BM(A/Z)»
Y = (€1 zi,0)s - - -+ Cns Ze,L4n—1])) € Ba(AS),

we have

Nm+1 = $n+1 = §n+l» Wim,L+m—1] = Y[n,L4+n—1] = Z[k,L+n—1]-
Let$ = (p1,. .., Pk+L+n—la|-1) € Bx(A2). We then have
S Sk

MW[1,L+m—1] CIZ[I,L+n+1]

SasS;sSps S

* *
s SEIY[I,L+n—1]Smw[l,umﬂ] )

= $5,8:5,8x.
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By the formula (8.29) for N = K + L + n — |a| — 1, we know that S;S; S,S; with
|a| = |c| belongs to the AF-algebra ¥ Aymins SO that we have , min C 7 AL i [
2

Lemma 8.14. J(/)\Afz = Dy, and @A, min = O 5 min.
2

Proof. The equality D A, = Dn, is easily obtained by (8.9).

The inclusion relation @ Ay C O, min is obvious. To prove O Apmn = 0,4, min, | it suf-
fices to show that for any « € ¥, = B;j(Aj), the partial isometry S belongs to O Ay
For (§1, yp1,1)) € X5, we have

S(ElJ[l,L]) = SSIY[],L]S;zy[z,L] € (9A2““"’
sothatfort € T

A G* _ A *
Pt Z(S(El,y[l,L])S“) =Pt 2(S"EZJ’[Z,L] Sély[l,L]Sa)
_ * _ ox
- SSZYIZ,L] S%'lyu L] Sa = S@la)’[l L])S""

This implies that S@ i L])S € Fp,min. By Lemma 8.13, we see that S@ Lo, L])S belongs
to fA, min for any (£1, yp1,27) € X. By the identity
_ q o*
Se= D0 Sernin St Se
E1,yp,LDET)
we obtain that S, belongs to O AL and hence @ A,min C 0] AT n

We thus have the following proposition.

Proposition 8.15. There exists an isomorphism @3 : O, min — O, min of C*-algebras
2
such that N
Dy(Dpy) = Da,. P20p; 2 = p;2 0 0y

Proof. The assertion follows from Lemmas 8.12 and 8.14. ]

Therefore we reach the following theorem.

Theorem 8.16. Let A1 and A, be normal subshifts. If their one-sided subshifts (Xa,,0A,)
and (X n,,0n,) are eventually conjugate, then there exists an isomorphism ® : O Agmin >

O p,min of C*-algebras such that ®(Dp,) = Da, and P o pf\l = pf\z od,t eT.

Proof. By Lemma 8.2, the one-sided subshifts (X Ay» OA) ) and (Xa,,0n,) are topologi-
cally conjugate, so that by Theorem 7.6 there exists an 1somorphlsm Dy 1 Op min—>O ) min
2

of C*-algebras such that ®1(Dx,) = Dy, and Py o p = pt o®;,t € T. By Propo-
sition 8.15, there exists an isomorphism <I>2 Oy min = O min of C*-algebras such that
2

A/
Dy(Dpy) = Da,. P20p;2 = pp2 0 0y

Therefore we have a desired isomorphism of C *-algebras between Oy min and O p jmn. ®
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Let £, £, be left-resolving A-graph systems that present subshifts A, A,, respec-
tively. In [37], the author introduced the notion of (£, £,)-eventually conjugacy between
one-sided subshifts (X,,0A,) and (Xa,,04,)-

Definition 8.17 ([37, Definition 5.1]). Let £; and £, be left-resolving A-graph systems
that present subshifts A and A, respectively. Their one-sided subshifts (Xa,,0a,) and
(Xa,.0n,) are said to be (£1, £2)-eventually conjugate if there exist homeomorphisms
hg 1 Xg, = Xg,, ha : XA, = X4, and an integer K € Z such that

Ué(z(hg(ogl(x))) = (75;_1(/’13()()), x € Xg,,

K (-1 K+1(7—1 (8.30)
%l(hs (0e,(»)) = Og, (hg' (). ¥ € Xe,.

and
g, 0 hg = hp ome,. (8.31)

We remark that the equalities (8.30) and (8.31) automatically imply the equalities

U[I\{z(hA(OAl(a))) = O—II\(;—I(I’IA(G)), ae XA]’
GII\(l (hxl (OAZ (b))) = UII\(l+1 (hj_\l (b))’ b € XAZ‘
In [37], the following proposition was proved.

Proposition 8.18 ([37, Theorem 1.3]). Suppose that two left-resolving A-graph systems
£1, &, satisfy condition (I). Then (Xp,,0n,) and (Xa,,0n,) are (L1, £2)-eventually
conjugate if and only if there exists an isomorphism ® : Og, — Og, of C*-algebras such
that

D(Dp,) = Dp, and CIDOpfl = pf’z od, teT.

Proof of Theorem 1.4. Let A1, A, be two normal subshifts. Assume that (X,,04,) and
(Xa,.0n,) are eventually conjugate. By Theorem 8.16, there exists an isomorphism & :
Op mn = Oy, mn of C*-algebras such that ®(Dp,) = Da, and @ o pf‘l = pfh o P,
teT.

Conversely, suppose that there exists an isomorphism @ : @y min — O min Of C*-
algebras such that ®(Dp,) = Da, and P o pf\l = ,o,A2 o®d,t e€T.Let &, £, be their
minimal A-graph systems 53?1“, 8%12“, respectively. By virtue of Proposition 2.14, the A-
graph systems L3, L3 both satisfy condition (I). The associated C *-algebras (QQT.,

1
(9,37\12 are nothing but the C*-algebras O y min, @, min, respectively. By Proposition 8.18,
we know that (Xa,,04,) and (Xa,,04,) are (81, £,)-eventually conjugate, in particular,
(XA,,0n,) and (Xa,,04,) are eventually conjugate. |

9. Two-sided topological conjugacy

In this section, we study two-sided topological conjugacy of normal subshifts in terms of
the associated stabilized C *-algebras with their diagonals and gauge actions. Let £ be a
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left-resolving A-graph system over X that presents a subshift A. Following [37], we will
consider the compact Hausdorff space

Xg = {(ai,ui)ieZ (S H(E X Qg) | (ai+ksui+k)ieZ S Xg forall k € Z}
i€Z
with the shift homeomorphism o¢
e (i, ui)iez) = (@it1.ui+1)iez, (@i.ui)iez € Xg
on Xg, where X¢ is endowed with the relative topology from the infinite product topology
of [[;e7(2 x Qg). For x = (0, uj)icz € Xg, @ = (¢i)iez € A and k € Z, we set
Xlk,oo) = (@, Ui)i2g,  Ukc0) = ()72
Definition 9.1 ([37, Definition 7.1]). The topological dynamical systems (X, ¢,.0g,) and
(X ¢,.0g,) are said to be right asymptotically conjugate if there exists a homeomorphism
¥ : X, — Xg, such that ¥ 0 Gg, = Gg, o ¥ and
(i) form € Z, there exists M € Z such that X[a1,00) = Z[M,00) iMmplies ¥ (X)[m,00) =
Y (2)[m,00) for x,z € Xg,,
(ii) forn € Z, thereexists N € Z such that y[y o0) = W[N,00) implies Vs Min,00) =
U W) 00) Tor y, w € Xg,.
We call ¢ : X, e, = X ¢, a right asymptotic conjugacy.

Let us denote by 77; : Xg ; — A the factor map defined by
wi((ai, ui)iez) = (&i)iez € Ay fori =1,2.

Definition 9.2 ([37, Definition 7.2]). Two subshifts A; and A, are said to be (£, £,)-
conjugate if there exists a right asymptotic conjugacy Ve : X e, — X ¢, and a topological
conjugacy YA : A — Aj such that 7, o g = Yp o 75.

Proposition 9.3. Let Ay, Ay be normal subshifts and £1, £, be their minimal A-graph
systems, respectively. Suppose that A1, A, are topologically conjugate, then they are
(81, £,)-conjugate.

Proof. We may assume that A; and A, are bipartitely related by a bipartite subshift A
over alphabet ¥ = C U D (see [41,42]). Hence there exist specifications k1 : X1 — C - D
and k5 : ¥ — D - C such that the 2-higher block shift ALY of A is decomposed into two
disjoint subshifts A2l = A€2 1 APC where

APl = {(xixi+1)iez | (xi)iez € A},
AP = {(cidi)iez € AP | ¢; € C, di e D, i € Z),
KDC = {(dici+1)i€Z S K[Z] | di € D, Ci+1 € C,ice Z},

and specifications k1 : 1 — C - D, k» : ¥ — D - C mean injective maps. The notion
that two subshifts Aj, A, are bipartitely related means that A, A, are identified with
ACD ADC through 1, k3, respectively.
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The specifications «; and k, naturally extend to the maps By (A1) — B (KCD ) and
B«(A3) = By« (/A\D ), respectively. We still denote them by k1 and >, respectively. We
write &; = (Vi,Ei,)&i,Li), i=1,2.Let (oj,uj)iez € )?gl.ln the A-graph system £, take
a vertex uf € Vll such that (uf)leN =u; € Qg,,i € Z4. There exists an /-synchronizing
word u! € Sl(Al),i € N such thatu! = [Mf], € S;(A)/~1. Let/cl(ai) = ¢;d; for ¢; e C,
di € D. As /q(pc ) € Bk« ([A\CD) take c € C such that Kl(,LL )c € B*(/A\) Put v =
Ky 1(a’ K1 (/Lf“)cl‘H) € V2 and B; = k; 1 (di—1¢) € . We then have /3,1) ~p_ 1\)1 11
and v ~p_ 11)1 ! Define w [vl]l € S;(A3)/ ~ so that w € V2 Slncet(wl+1) = wl
forl € Z4, we have w; = (wl )iez, € Qg, fori € Z and (,BZ,w,)leZ € ng Under the
identification between APC and A», we know that the correspondence

(i ui)iez € Xg, — (Bi. wi)iez € Xg,
written ¥ : Xg, — Xg, gives rise to a topological conjugacy between (Xg,, og,) and
(X, 2,,0¢,) such that ¥ : Xe L= X, ¢, 1s a right asymptotic conjugacy and there exists a

topological conjugacy ¥ 5 : A; — A, such that 75 o Yy = Y o m;. Therefore the two-
sided subshifts (A1,04,) and (A2, 04a,) are (£, £2)-conjugate. |

Therefore we have the following proposition.

Proposition 9.4. Let Ay, Ay be normal subshifts and £1, £, be their minimal A-graph
systems, respectively. Then the following two conditions are equivalent.

(1)  The two-sided subshifts (A1,04,) and (A2, 04,) are (81, £2)-conjugate.
(i) (A1,04,) and (A2, 0p,) are topologically conjugate.

Let us recall that K denotes the C*-algebra of compact operators on the separable
infinite dimensional Hilbert space ¢2(N) and € denotes its commutative C *-subalgebra
of diagonal operators.

Proof of Theorem 1.5. Let A1, A, be two normal subshifts. Suppose that the two-sided
subshifts (A1,04,) and (A3, 0a,) are topologically conjugate. By Proposition 9.4, they
are (21, £,)-conjugate, so that [37, Theorem 1.4] ensures us that there exists an isomor-
phism o (9A min @ K — (9A min ® JC of C *-algebras such that @(éDAl RE)=Dp, QFC
andCIDo(pt ®id) = (pt ®id)o®d,7 € T.

Conversely suppose that there exists an isomorphism d:0 Ayin @ K = O p min @ K
of C*-algebras such that CTD(@AI ®€) = Dy, ® € and o (/of\l ®id) = (/otA2 ®id) o
®,reT. By [37, Theorem 1.4] the two-sided subshifts (A1, 0a,) and (A3, op,) are
(%1, £5)-conjugate, and hence they are topologically conjugate. |
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