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Remarks on the diagonal embedding and strong
1-boundedness

Srivatsav Kunnawalkam Elayavalli

Abstract. We identify a large class of hyperbolic groups whose von Neumann algebras are not
strongly 1-bounded: Sela’s hyperbolic towers over F2 subgroups. We also show that any intermedi-
ate subalgebra of the diagonal embedding of L.F2/ into its ultrapower does not have Property (T).

1. Introduction

Voiculescu initiated a revolutionary theory of free entropy in his paper [46]. The free
entropy computes the asymptotic volume of the microstate spaces (matrix models approx-
imating the distribution of a fixed tuple in a tracial von Neumann algebra). Voiculescu’s
asymptotic freeness theorem allowed him to show that the free entropy of a tuple of freely
independent semicirculars is non vanishing. On the other hand, one is able to compute the
free entropy when there are algebraic constraints present in the ambient algebra, such as
sufficiently many commutation relations or the existence of diffuse regular subalgebras
that are hyperfinite. Combining these two ideas, Voiculescu (in [47]) showed that L.F2/

admits no Cartan subalgebras, then Ge (in [19]) obtained using the same idea, that L.F2/

is prime. These settled problems left open by Popa in [41] where he showed that L.FX /

is prime and admits no Cartan subalgebras where X is an uncountable set.
One of the main modern threads of Voiculescu’s free entropy theory is that of strong

1-boundedness for von Neumann algebras, which originated with remarkable ideas of
Jung in [31]. Inspired by ideas from geometric measure theory, in particular Besicovitch’s
classification of metric spaces with Hausdorff measure 1, Jung developed technical tools
to study the case when Voiculescu’s free entropy dimension (a Minkowski dimension
type quantity for the microstate spaces) for a tuple is 1, and discovered natural condi-
tions wherein this property passes to the von Neumann algebra generated by the tuple. In
particular, if one locates such a tuple in a von Neumann algebra, one can automatically
conclude non isomorphism with L.F2/, as the free entropy dimension of the semicircular
generating set is 2. Jung used this in [31] to prove that L.F2/ cannot be generated by two
amenable (more generally strongly 1-bounded) subalgebras with diffuse intersection.
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More recently, by carefully analyzing ideas of Jung, Hayes in [24] extracted a numer-
ical invariant of the von Neumann algebra, called the 1-bounded entropy. This framework
has proved very robust and has been used to obtain several new rigidity results for non
strongly 1-bounded von Neumann algebras (such as L.F2/). For instance, Hayes showed
in [24] that L.F2/ does not admit even quasi regular diffuse strongly 1-bounded subalge-
bras, generalizing the Theorem of Voiculescu. For more recent results see [4,9,10,25,28].
For these reasons it is of great interest to identify examples of non strongly 1-bounded von
Neumann algebras.

In this note we observe using 1-bounded entropy, some structural properties of inter-
mediate subalgebras of the diagonal embedding of L.F2/ into its ultrapower. By way
of leveraging existentially closed (see Section 2) copies of F2 in the group level, our
first main result identifies a family of hyperbolic groups introduced by Sela [43] whose
von Neumann algebras are not strongly 1-bounded von Neumann algebras. Some familiar
examples are hyperbolic surface groups.

Theorem A. The group von Neumann algebras of all hyperbolic towers over F2 sub-
groups are not strongly 1-bounded.

Remark 1.1. We thank D. Shlyakhtenko for pointing out to us that surface group von
Neumann algebras are not strongly 1-bounded is already known through a computa-
tion of the free entropy dimension, which is an apriori stronger result (see paragraph
below [8, Theorem 4.13]). Roughly speaking, one sees that the hyperbolic surface groups
are decomposed as an iterated amalgamated free product over copies of Z. Then, using the
free entropy dimension estimate for amalgamated free products over hyperfinite subalge-
bras, which is the main technical result of [8, Theorem 4.4], one can identify a generating
set using an iterative process, whose microstates free entropy dimension has a precise
lower bound (in the case of genus g, the lower bound is 2g � 1 which is significantly
greater than 1). We would like to point out that our proof not only applies to more groups
but is conceptually different and softer. Indeed, on the von Neumann algebra level we only
use the fact that L.F2/ is not strongly 1-bounded, and the 1-bounded entropy inequality
(see Fact 5.2) whose proof as outlined in [24, Proposition 4.5] is quite elementary.

Potentially, there is a larger class of groups that admit an existential copy of F2, how-
ever in light of Sela’s classification of groups that are elementarily equivalent to free
groups, finding more examples could be hard. Note also that there also is the famous class
of existentially closed groups (see [29]).We document a proof that the group von Neumann
algebras of these groups are on the other hand McDuff II1 factors (see Proposition 4.1).

By virtue of being hyperbolic, many rigidity results are already known in the setting
of Theorem A through Ozawa’s biexactness techniques and Popa’s deformation rigidity
(see [11,36,37,42]). However, one obtains using non-strong 1-boundedness, the following
stronger rigidity results below:

Corollary B. LetN be the group von Neumann algebra of a hyperbolic tower over an F2

subgroup. Then the following hold:
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(1) N cannot be written as the join of two strongly 1-bounded subalgebras (see a com-
prehensive list in Fact 5.5) with diffuse intersection.

(2) N contains no diffuse quasi regular strongly 1-bounded subalgebra.

Our next observation describes a surprising structural property of intermediate subal-
gebras of the diagonal embedding:

Theorem C. For any ultrafilter U on any set I , one cannot embed a property (T) von
Neumann algebra M into L.F2/

U such the M contains the diagonal copy of L.F2/.

We would like to point out that Theorem C works if we just replaceL.F2/ by any finite
von Neumann algebra N with h.N \M W N/ D1 (see the first paragraph of Section 5).
Also note that anyM here (regardless of whetherM has property (T) or not) will also not
have any diffuse quasi regular amenable subalgebra. We record below a question asked to
us by J. Peterson, as a conjecture:

Conjecture 1.2. Let N be a non Gamma II1 factor with the Haagerup property. Then for
any ultrafilter U on any set I , one cannot embed a property (T) von Neumann algebraM
into NU containing the diagonal embedding.

Note that J. Peterson’s conjecture on ultrapowers (see [40, Problem U.5]) implies the
above conjecture. In particular Theorem C, can be seen as some evidence for the more
general J. Peterson’s conjecture.

We remark that in the realm of model theory of II1 factors (see [15–17]), N being
an intermediate subalgebra of L.F2/ and its ultrapower is a very well known situation.
This means that N admits an existential embedding of L.F2/. Thus one of the features of
this article is to emphasize the link between model theory and strong 1-boundedness (see
also [30]).

2. Theories of groups

We work in the language of groups. Here the terms are words in the variables, their
inverses, and the identity element (denoted by 1). An atomic formula is two terms sep-
arated by “D”. Combining atomic formulae, logical connectors (_, ^, :) and quantifiers
(8, 9) one describes first order formulae. When there are no free variables we call it a
sentence ': for example, 8x18x2 9x3 .x

2
1x

3
2x3 D 1/. The elementary theory of a group

is the collection of sentences that hold true in the group.
An existential sentence is a formula without free variables that can be expressed in the

following way: � D9x1 � � � 9xn '.x1 � � �xn/. The existential theory of a group is the collec-
tion of existential sentences that hold true in the group. Note that one can also define a uni-
versal sentence, as a formula without free variables of the form 8x1 � � � 8xn '.x1 � � � xn/,
and the universal theory of a group as the collection of universal sentences that hold true
in the group.
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Remark 2.1. Observe that if G andH have the same universal theory, then they have the
same existential theory because the negation of every universal sentence is an existential
sentence.

An embedding of groups � WH ! G is said to be elementary if for every first-order
formula � with k free variables x1; : : : ; xk in the language of groups, and for every k-tuple
h1; : : : ; hk 2 H , the statement �.h1; : : : ; hk/ is true in H if and only if the statement
�.�.h1; : : : ; hk// is true in G. Similarly one defines an embedding to be existential by
replacing an arbitrary first-order formula � with an existential first-order formula.

3. Ultrapowers of groups and of von Neumann algebras

Let G be a countable group and let 1G denote the identity element of G. For an ultrafilter
U on a set I , we denote by GU the algebraic ultraproduct: .

Q
I G/=N where

N D
®
.gi / W ¹i 2 I W gi D 1Gº 2 U

¯
:

Note that N is a normal subgroup of
Q

I G, hence GU is a group. We have a natural
diagonal inclusion dUWG ! GU given by g 7! .gi /U, where gi D g, for all i 2 I .

The following are standard results in model theory, following from work of Kaisler–
Shelah [33, 44]. For the sake of convenience assume the continuum hypothesis in this
paper.

Fact 3.1. (1) G and H are elementarily equivalent, if and only if exists an ultrafilter U

on a set I such that GU Š HU.
(2) � WH ! G is an elementary embedding if and only if there exists an ultrafilter U

on a set I such that �UWHU ! GU is an isomorphism.
(3) � WH ! G is an existential embedding if and only if there exists an ultrafilter U

on a set I and an embedding �WG ! HU such that � ı � D dU.

In this paper we will be concerned with the objects .M; �/, tracial von Neumann alge-
bras, i.e., a pair consisting of a von Neumann algebraM and a faithful normal tracial state
� WM ! C. For any group G, one denotes the group von Neumann algebra (see [1, Sec-
tion 1.3]) as L.G/ D ¹ugº

00
g2G � B.`2G/. For any subgroup H < G, one has the natural

inclusion of von Neumann algebras L.H/ � L.G/.
For an ultrafilter U on a set I , we denote by MU the tracial ultraproduct: the quo-

tient `1.I; M/=J by the closed ideal J � `1.I; M/ consisting of x D .xn/U with
limn!U kxnk2 D 0. We have the canonical trace on MU given by

�U
�
.xn/U

�
D lim

n!U
�.xn/:

We have a natural diagonal inclusionDUWM !MU given by x 7! .xn/U, where xnD x,
for all n 2 I .
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Lemma 3.2. Let G be a countable group, and U be an ultrafilter on a set I . Then
there exists a unital �-homomorphism ‚WL.GU/! L.G/U such that ‚.L.dU.G/// D

DU.L.G//.

Proof. Let � WGU ! L.G/U be the injective homomorphism given by

�
�
.gn/U

�
D .ugn/U:

Observe that �U..ugn/U/ D limn!U �.ugn/ D 0. Hence it follows that � extends to a
unital �-homomorphism ‚WL.GU/! L.G/U such that

‚
�
L
�
dU.G/

��
D DU

�
L.G/

�
:

4. Existentially closed groups and their von Neumann algebras

A group G is said to be existentially closed if every embedding of G into a group H is
existential. Such groups exist, and have been studied extensively in group theory. See [29]
for a survey. Recall also that a II1 factorM is McDuff (see [34,35]) if the central sequence
algebra, namely M 0 \MU is non abelian. The McDuff property has been very useful in
the study of model theory of II1 factors recently, particularly in identifying elementary
equivalence classes (see [3, 5, 13, 18, 20, 22]).

Proposition 4.1. Let G be an existentially closed group. Then, L.G/ is a McDuff II1

factor.

Proof. Firstly, observe that every conjugacy class ofG is infinite. Indeed, by contradiction
suppose there is a finite conjugacy class ¹g1; : : : ; gnº. Then there exists an element h of
G such that h ¤ gi for any i 2 ¹1; : : : ; nº, and jhj D jg1j, i.e, they have the same order.
Indeed, let k D jg1j, and consider G ! G � Z=kZ and apply that this is an existential
embedding. Then, one sees that h and g1 are conjugate by considering the HNN extension
and applying again the existential property. Secondly, consider the embedding of � WG !
G � .G � G/ given by g 7! .g; 1G�G/. Since G is existentially closed, � is existential.
Hence for any finite set F � G, there exists gF;1; gF;2 2 G such that ŒF; gF;i � D 1G for
all i 2 ¹1; 2º and ŒgF;1; gF;2� ¤ 1G . This implies that L.G/ is McDuff. Indeed fix U a
non principal ultrafilter on N. Let Fn be an increasing family of finite subsets of G such
that

S
n Fn D G. Then see that .gFn;i /U 2 L.G/

0 \ L.G/U for all i 2 ¹1; 2º and also
Œ.gFn;1/U; .gFn;2/U� ¤ 0. Hence we are done.

A separable tracial von Neumann algebra N is called existentially closed (see [14]) if
for unital inclusion N � M into a von Neumann separable tracial von Neumann algebra
M , there exists an ultrafilter U on a set I and an embedding � WM ! NU such that �
restricted toN coincides withDU.N /. It is well known that existentially closed separable
tracial von Neumann algebra exist and are McDuff (see [21]). In the context of the above
Proposition, it is natural to wonder if L.G/ is an existentially closed tracial von Neumann
algebra, when G is an existentially closed group.
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5. 1-bounded entropy
For a finite tuple X of self-adjoint operators in a tracial von Neumann algebra .M; �/,
one has the 1-bounded entropy h.X/, implicit in Jung’s work [31] and defined explicitly
by Hayes [24]. It is the exponential growth rate of the covering numbers of Voiculescu’s
microstate spaces (see [46]) up to unitary conjugation. For an inclusion N � M of tra-
cial von Neumann algebras, the 1-bounded entropy of N in the presence of M , denoted
h.N WM/, is defined by modifying the definition of 1-bounded entropy to only mea-
sure the size of the space of microstates for N which have an extension to microstates
for M . See [26, Sections 2.2 and 2.3] for a detailed and rigorous exposition. Note that
h.X1 W M/ D h.X2 W M/ if X 001 D X

00
2 by [24, Theorem A.9]. Hence, given a von Neu-

mann subalgebra N �M , we unambiguously write h.N WM/ (and call it the 1-bounded
entropy of N in the presence of M ) to be h.X W Y / for some generating sets X of N and
Y of M . We write h.M/ D h.M WM/ and call it the 1-bounded entropy of M .

For the purposes of this article we recall the following facts about h:

Fact 5.1 (See [26, Fact 2.3.3]). h.N1 WM1/ � h.N2 WM2/ if N1 � N2 �M2 �M1 and
N1 is diffuse.

Fact 5.2 (See [24, Proposition 4.5]). h.N WM/ D h.N WMU/ if N �M is diffuse, and
U is an ultrafilter on a set I . (Note that [24, Proposition 4.5] asserts this fact for free
ultrafilters U. The fact is trivially true also for non-free (i.e., principal) ultrafilters.)

Fact 5.3 (See [31, Lemma 3.7]). h.N1 � N2/ D 1 where .N1; �1/ and .N2; �2/ are
Connes-embeddable diffuse tracial von Neumann algebras. In particular h.L.F2// D1.

Fact 5.4 (See [24, Proposition A.16]). N is strongly 1-bounded in the sense of Jung [31]
if and only if h.N / <1.

The following are examples of strongly 1-bounded von Neumann algebras:

Fact 5.5. (1) Diffuse amenable tracial von Neumann algebras (see [31]).
(2) Tensor products of two diffuse tracial von Neumann algebras (see [31]).
(3) Tracial von Neumann algebras that have a diffuse hyperfinite quasi regular subal-

gebra (see [24, Theorem 3.8]).
(4) Tracial von Neumann algebras that have a Kazhdan set (see [26]). This includes

all property (T) II1 factors, and property (T) group von Neumann algebras.
(5) Group von Neumann algebras of groups that have vanishing first L2 Betti number

and are sofic and finitely presented (see [27, 32, 45]).
(6) Free orthogonal quantum group von Neumann algebras (see [6]).
(7) The non Gamma factors constructed in [10] and their ultrapowers.

6. Existential embeddings of F2

A sequence of homomorphisms ¹�nWG ! H º, n 2 N, is eventually faithful if for every
g ¤ 1G , there exists an N 2 N such that for all n > N , �n.g/ ¤ 1H .
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Lemma 6.1 (See also [2, Lemma 3.1]). Let G be a finitely generated group and let H be
a finitely generated subgroup of G. If there is a sequence of eventually faithful homomor-
phisms ¹�nWG ! H º, such that �n.h/ D h for all h 2 H , n 2 N, then there exists a non
principal ultrafilter U on N and an embedding � WG ! HU such that �jH D dU.H/.

Proof. Fix a non principal ultrafilter U on N. Define the map � WG ! HU as follows:

�.g/ D
�
�n.g/

�
:

Clearly, �.h/D .h/U and hence, �jH D dU.H/. Moreover, the fact that � is a homomor-
phism is checked easily since �n is a homomorphism for all n 2 N. Also, � is injective
because for all g 2 G, ¹�n.g/ ¤ 1H º 2 U.

One can construct by hand such an eventually faithful sequence of homomorphisms
in the case that G is a hyperbolic surface group and H is a particular non abelian free
subgroup.

Lemma 6.2 (See [7, Corollary 2.2]). Let G be the fundamental group of a surface of an
orientable surface of genus 2r . Consider a presentation of G as follows:

G D

�
ai ; a

0
i ; bi ; b

0
i ; 1 � i � r

ˇ̌̌̌ rY
iD1

Œai ; a
0
i �

rY
jD1

Œbj ; b
0
j � D 1G

�
:

Then consider the automorphism � of G that leaves ai and a0i fixed for all 1 � i � r
and sends every bi to gbig

�1 and every b0i to gb0ig
�1 where g D

Qr
iD1Œai ; a

0
i �. Abuse

notation and let
� WG ! ha1; : : : ; ar ; a

0
1; : : : ; a

0
ri

given by �.ai / D �.bi / D ai and �.a0i / D �.b
0
i / D a

0
i . Then the sequence of homomor-

phisms ¹� ı �nºn2N is eventually faithful.

More generally than this discussion one can describe a class of groups that admit an
elementary inclusion of F2, which in particular satisfies the conclusion of Lemma 6.1. For
the definition of this family, we direct the reader to [38,39]. See Section A.1 and the Proof
of Corollary A.2 (of [23]), where an eventually faithful sequence of homomorphisms in
the case that G is a hyperbolic tower over an F2 subgroup is constructed:

Theorem 6.3 ([23]). Let G be a hyperbolic tower (in the sense of Sela [43]) over an F2

subgroup. Then this inclusion of F2 in G satisfies the conclusion of Lemma 6.1.

7. Proofs

Proof of Theorem A. Let G be a hyperbolic tower overH D F2. Then from Theorem 6.3
and Lemma 6.1, we see that there exists a non principal ultrafilter U on N, H < G and
an embedding � WG ! HU such that �jH D dU.H/. Now applying Lemma 3.2, we see
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that there exists a unital �-homomorphism ‚WL.G/! L.H/U such that

‚
�
L
�
dU.H/

��
D DU

�
L.H/

�
:

Now applying Facts 5.1 and 5.2 we see the following inequality:

1D h
�
L.F2/

�
D h

�
L.H/

�
D h

�
L.H/ W L.H/U

�
� h

�
L.G/ W L.H/U

�
� h

�
L.G/

�
:

Finally, applying Fact 5.4 we are done.

We record the following proposition which is contained in the above proof:

Proposition 7.1. If there exists F2 < G an existential embedding for some group G, then
L.G/ is not strongly 1-bounded. More generally, if N is not strongly 1-bounded, and
N �M is an existential embedding, then M is not strongly 1-bounded.

Proof of Theorem C. From the same inequality as above, we have

1D h
�
L.F2/

�
D h

�
L.F2/ W L.F2/

U
�
� h

�
M W L.F2/

U
�
� h.M/:

However, since L.F2/ does not have property Gamma, it follows that M is a factor,
and hence admits a Kazhdan set (see [12, Proposition 1]). By Fact 5.5 (4), we get a
contradiction.

Remark 7.2. From Theorem C, one actually obtains for every inclusion of L.F2/ �M ,
where M has property (T), a model theoretic sentence � with n free variables such that
�M .x1 � � � xn/ D 0 and �L.F2/.x1 � � � xn/ > 0 for some tuple xi 2 L.F2/, i D 1; : : : ; n.
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